BMJ Open

Postextraction bleeding in patients taking warfarin: Focus on the utility of the HAS-BLED score : a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010471
Article Type:	Research
Date Submitted by the Author:	06-Nov-2015
Complete List of Authors:	Kataoka, Toshiyuki; Tokyo women's medical university, Oral and maxillofacial surgery Hoshi, Keika; Kitasato University School of Medicine, Department of Hygiene Ando, Tomohiro; Tokyo women's medical university, Oral and maxillofacial surgery
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Medical management
Keywords:	post-extraction bleeding, warfarin, HAS-BLED score, concomitant antiplatelet agents

SCHOLARONE[™] Manuscripts

BMJ Open

Postextraction bleeding in patients taking warfarin: Focus on the utility of the HAS-BLED score: a retrospective cohort study Toshiyuki KATAOKA¹⁾, Keika HOSHI²⁾,Tomohiro ANDO¹⁾ 1)Department of Oral and Maxillofacial Surgery, Tokyo Women's medical university 2)Department of Hygiene, School of medicine, Kitasato University Correspondence to Toshiyuki KATAOKA;kataoka@oms.twmu.ac.jp

ABSTRACT

Objective: Post-extraction bleeding is often experienced in our clinical unexpectedly. Therefore, this study aimed to clarify the risk factors for bleeding after tooth extraction in patients taking warfarin and to verify whether the HAS-BLED score is useful in predicting post-extraction bleeding.

Design: Retrospective cohort study.

Setting: Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University. Participants: Subjects comprised 258 sequential cases (462 teeth) of inpatients who had undergone tooth extraction between January 1, 2010 and December 31, 2012 while continuing anticoagulant therapy.

Main outcome measure: Post-extraction risk factors of bleeding. As predicting variables of multivariate logistic analysis, extraction site, teeth type, stability of teeth, and extraction procedure, PT-INR value, platelet count, HAS-BLED score, concomitant antiplatelet agents use were collected.

Results: Post-extraction bleeding was noted in 21 (8.1%) of the 258 cases. The risk of postextraction bleeding for wisdom teeth extraction was approximately seven times more than that for incisor teeth (RR = 6.894; P = 0.027, univariate analysis). The HAS-BLED score was insufficient for predicting post-extraction bleeding (AUC = 0.548, P = 0.867, multivariate analysis). The risk of post-extraction bleeding was approximately three times more for patients taking oral antiplatelet agents (RR = 2.881, P = 0.035, multivariate analysis).

Conclusions: The HAS-BLED score alone was insufficient to predict post-extraction bleeding. The concomitant use of oral antiplatelet agents is a risk factor for post-extraction bleeding.

However, because this was a retrospective study conducted at a single institution, we believe that a large-scale prospective cohort study, including outpatient tooth extraction cases, will be

necessary in the future.

Strengths and limitations of this study

- We investigated all cases of tooth extraction, including wisdom tooth and impacted tooth extractions.
- No previous reports have investigated the effects of each individual tooth extracted, extraction procedure, and effects of concomitant antiplatelet agents on post-extraction bleeding using statistical analyses and demonstrated a high level of evidence for correlations.
- This is the first study to verify the usefulness of the HAS-BLED score for predicting postextraction bleeding risk.
- Because this is a retrospective cohort study conducted at a single institution, a large-scale, prospective cohort study including outpatients is required in the future.

INTRODUTION

In western countries, patients undergoing anticoagulant therapy and who are scheduled to undergo tooth extraction are typically advised to undergo extraction while continuing anticoagulant therapy ^{1,2)}. In Japan, guidelines, such as the "Guidelines for management of anticoagulant and antiplatelet therapy in cardio-vascular disease ³), as well as the JCS Joint Working Group's "Guidelines for Pharmacotherapy of Atrial Fibrillation⁴)" recommend that tooth extraction be performed while continuing anticoagulant therapy. Performing tooth extraction without temporarily discontinuing or reducing the dosage of anticoagulants offers a significant advantage of preventing the onset of potentially fatal thromboembolism ⁵). However, there is an additional risk of bleeding due to the invasive treatment, and thus, sufficient measures must be taken to stop excessive post-extraction bleeding; furthermore, care must be taken to limit post-extraction bleeding. In the past, a number of studies have investigated tooth extraction while continuing anticoagulant therapy, with the frequency of post-extraction bleeding reported to range from 0% to 26% $^{6-17)}$. As each study involved significant differences in patient backgrounds (e.g., subjects including simple extraction cases only or differing prothrombin timeinternational normalized ratio (PT-INR) ranges), simple comparisons of post-extraction bleeding rates across different studies have limited value. Furthermore, anticoagulant therapy is known to be effective in Japanese people because they are highly sensitive to warfarin potassium

(hereinafter: "warfarin") ¹⁸⁾. For example, although the recommended range for PT-INR in cases of valvular heart disease is 2.0–3.0, a slightly less intense treatment range is set for Japanese patients $(1.6-2.8)^{3,4}$. Accordingly, it appears inappropriate to compare the results of reports of patients in western countries, which are likely to include more cases of PT-INR treatment levels of 3.0 or above, with those of patients in Japan. Moreover, as is the case with warfarin, it is recommended to perform tooth extraction on patients taking antiplatelet agents at the maintenance antiplatelet therapy dose^{19,20}. However, the effects of taking warfarin and antiplatelet agents on post-extraction bleeding are unclear.

Recently, the HAS-BLED score²¹⁻²³⁾ has been used as an index for evaluating the risk of bleeding complications in patients undergoing anticoagulant therapy. The HAS-BLED score evaluates nine risk factors for bleeding. The European Society of Cardiology guidelines²⁴⁾ has stated that patients who score three points or higher are at a high risk of bleeding complications. No reports to date have investigated whether the HAS-BLED score is useful in predicting the risk of post-extraction bleeding.

The preoperative identification of patients with a high risk of post-extraction bleeding could facilitate appropriate preparations prior to performing tooth extraction. Therefore, we examined post-extraction bleeding risk factors in patients undergoing anticoagulant therapy with PT-INR treatment at levels of \leq 3.0 and who underwent tooth extraction, including extraction of wisdom or impacted teeth, and additionally investigated whether the HAS-BLED score is useful in predicting post-extraction bleeding.

MATERIAL AND METHODS

Study design This was a retrospective cohort study.

Study population and eligibility criteria

This study included patients who were hospitalized at the Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University and who had undergone tooth extraction between January 1, 2010 and December 31, 2012 while receiving a maintenance dose of anticoagulant therapy. As a rule, tooth extraction for patients undergoing anticoagulant therapy shall be performed after the patient is admitted to the hospital. Antiplatelet agents, which were being

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

concomitantly taken, were continued to be administered at the maintenance dose. Exclusion criteria were as follows: 1) patients younger than 20 years at the time of hospital admission; 2) presence of comorbid blood disease; and 3) a PT-INR level of \geq 3.1 as indicated by the results of the blood tests performed on the day of tooth extraction. Patients underwent follow-up examinations for 1 month after discharge. The physician and nurse records obtained from medical examination records were registered in a database along with the results of the clinical tests. When the same patient was hospitalized and underwent tooth extraction more than once during the study period, all instances were registered.

Tooth extraction procedure

The primary physician for the underlying disease of each patient was preoperatively consulted regarding the general medical status of the patient, including their use of anticoagulants. When acute symptoms, such as periodontal abscesses, apical periodontitis, or pericoronitis were present around the tooth that was determined to be eligible for tooth extraction, antibacterial drugs were administered prior to tooth extraction and anti-inflammation procedures, such as incision and drainage, were performed as necessary. During tooth extraction, electrocardiograms, blood pressure, pulse rate, and percutaneous oxygen saturation levels were monitored. For local anesthesia, 1.8–3.6 ml of 2% lidocaine containing 1/80000 epinephrine was administered. Tooth extraction was performed with minimal invasion. When multiple teeth were indicated for extraction and comprised within 1/3 of the jaw area, all the teeth were extracted in one procedure. When the teeth comprised over 1/3 of the total jaw area, multiple teeth were extracted in one procedure if the procedure was expected to take <30 min while considering the age and any comorbid diseases of the patient. After extraction, a curettage of the inflammatory granulation tissue around the wound border was performed, hemostatic gelatin sponge was inserted into the socket (product name: Spongel, Astellas Pharma Inc.), and suturing was performed to reduce the size of the wound border. The patient was requested to bite down on the absorbent cotton for 20 min after completing tooth extraction to achieve pressure hemostasis. At 30 min after tooth extraction, the patient was examined to confirm that the bleeding had stopped. After extraction, patients were instructed to avoid strong or frequent gargling and to rest as much as possible. Post-extraction meals comprised rice gruel. In the patient group with a high risk of adverse effects due to effective endocarditis onset²⁵⁾, 2 g ampicillin was administered 30 min prior to

Page 5 of 25

BMJ Open

tooth extraction, and 1 g ampicillin was intravenously administered 6 h after the initial dose. Patients who were allergic to penicillin were intravenously administered 600 and 300 mg clindamycin 30 min before tooth extraction and 6 h after the initial dose, respectively. For patients with a heart disease that did not necessarily require IE prophylaxis for dental procedures or patients receiving anticoagulant therapy, oral antibacterial drugs (750–1000 mg/day amoxicillin, 300 mg/day cefditoren pivoxil, 300 mg/day cefcapene pivoxil, and 500 mg/day levofloxacin) were administered for 3 days following tooth extraction. Five doses of analgesics comprising loxoprofen sodium or acetaminophen were prescribed as a potion when pain was experienced.

Post-extraction Bleeding

Patients who complained of bleeding during the examination 30 min after tooth extraction and who underwent some sort of hemostatic procedure were categorized in the post-extraction bleeding group. Hemostatic procedures performed in accordance with the decisions by the examining physician are described below. For mild bleeding, the patient was requested to bite down on a gauze or absorbent cotton placed on the tooth extraction wound to achieve pressure hemostasis. For cases of moderate or higher bleeding in which there was a large amount of bleeding that was determined to be difficult to resolve using primary hemostasis, we aimed to utilize the local vasoconstrictive effects of the local dental anesthetic epinephrine and administered a dose of 1.0-1.8 ml to achieve infiltration anesthesia around the tooth extraction wound. Pressure was then applied to the wound by requesting the patient to bite down on gauze or absorbent cotton. When it was determined that the bleeding could not sufficiently be halted by pressure hemostasis alone, the area was additionally filled with local hemostatic agents or additional or repeat suturing of the wound was performed as necessary. For cases of repeated bleeding or prolonged exudative bleeding after hemostatic procedures, a hemostatic splint was fabricated to apply continuous pressure on the wound and to allow the patient to rest. This was fitted after applying a cavity lining with a periodontal pack or denture base tissue conditioner. For cases in which the patient complained of bleeding and was examined but hemostatic procedures were not deemed necessary, patients were instructed to adequately rest and refrain from excessive gargling; regular follow-up examinations were performed. These patients were not included in the post-extraction hemorrhage group. Patients who did not require treatments,

such as those outlined above for after bleeding, were placed into the non-post-extraction hemorrhage group.

Bleeding risk factors for tooth extraction

Details of extracted teeth, surgical procedure, bleeding tendency, and concomitant antiplatelet agents were investigated as possible factors affecting post-extraction bleeding. With respect to details noted regarding extracted teeth, the extraction site (maxilla/mandible), type of teeth (incisor/premolar/molar/wisdom), and stability of teeth were examined. Regarding the stability of teeth, teeth exhibiting alveolar bone resorption of at least 2/3 of the tooth root length as determined by preoperative X-rays or teeth found to have clinical grade III instability. The surgical procedure was classified into simple and surgical extractions. For surgical extraction, the strategy followed was to make an incision in the gingiva, detach and turn the mucoperiosteal flap over, and extract the tooth after cutting off the alveolar bone or root separation. All extractions other than that defined above were simple extractions. With regard to bleeding tendency, PT-INR value and platelet count were investigated.

HAS-BLED score

The HAS-BLED score was evaluated according to the European Society of Cardiology guidelines ²⁴⁾ (Table 1) and is described below. Patients with systolic blood pressure of \geq 160 mmHg, which was measured on arrival at the hospital, were categorized as having "hypertension." Patients receiving hemodialysis or those who had a kidney transplant; patients with a serum creatinine level of \geq 2.26 mg/dl in the most recent blood test; patients exhibiting chronic liver disease, such as liver cirrhosis, and bilirubin levels of at least two times the normal upper limit; and patients having at least three times the normal upper limit of either alanine transaminase, aspartate aminotransferase, or alkaline phosphatase levels were categorized as having "abnormal renal and liver function." "Stroke" or "bleeding" was determined according to the information of patients obtained from medical interviews on admission to the hospital. "Labile INRs" were described as being in a poorly controlled anticoagulation state in cases, such as directly after initiating anticoagulant therapy or during poor compliance, and additionally during detection of a level of PT-INR \geq 3.1 on the morning of tooth extraction. The "elderly"

categorization was defined as a patient age ≥ 65 years at the time of tooth extraction. Patients with long-term administration of antiplatelet agents or non-steroidal anti-inflammatory drug (NSAIDs) or patients with alcohol dependence were categorized as "drug and alcohol." One point was allocated for each of these categories if a patient was applicable. Thus, patients were scored according to a possible full score of nine points.

Selection of representative teeth

One representative tooth was selected when the same patient underwent extraction of multiple teeth. However, when the same patient underwent multiple tooth extraction operations during different hospitalization periods, representative extracted teeth were selected for each instance. The most posterior tooth was selected as the representative tooth, and in cases of multiple posterior teeth, the upper tooth or the tooth showing good stability was selected.

Statistical analyses

Univariate and multivariate logistic analysis were applied to analyze the bleeding risk factor for tooth extraction data with the presence/absence of post-extraction bleeding as the response variable and bleeding risk factor as the explanatory variable. The two variable values were used to describe tooth extraction site (maxilla/mandible), four variable values were used to describe the type of teeth (incisor/premolar/molar/wisdom), two variable values were used to describe stability of teeth (good/poor), and two variable values were used to describe the surgical procedure (simple /surgical extraction). For the PT-INR value and platelet count, the actual measured values were analyzed as continuous variables, and the HAS-BLED score was used in analysis with both a continuous and nominal variable. Concomitant antiplatelet agents were evaluated as two variable values (yes/no). During logistic analysis, we calculated the risk ratio, 95% confidence interval (CI), and p value. The risk ratio was calculated as the ratio of maxilla to mandible for a site, the tooth type within anterior teeth for type of teeth, good to poor for the condition of the periodontium, and from surgical to simple for the surgical procedure. The risk ratio for the HAS-BLED score was calculated for each level. For concomitant antiplatelet agents, the risk ratio of "yes" to "no" was calculated. In multivariate analysis, risk factors were combined to create post-extraction bleeding analysis models. For each model, we plotted the receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) in

addition to the p value and 95% CI for the C-statistic model overall. Many screening tools used a C-statistic value of \geq 0.70. We used C-statistic to compare between each model. Model 1 was constructed from extracted tooth state, surgical procedure, and bleeding tendency. Model 2 was constructed from the HAS-BLED score only. Model 3 was constructed by adding the HAS-BLED score to Model 1. Model 4 was constructed by adding concomitant antiplatelet agents as an explanatory variable to Model 1. Data were analyzed with the use of JMP Pro 11 software (2014 SAS Institute Inc., US) with a two-tailed alpha level of 0.05.

Ethics

This study was approved by the ethical review board of the Tokyo Women's Medical University (approval number: 3079). The first and second authors take complete responsibility for the integrity of the data and the accuracy of the data analysis.

RESULTS

A total of 462 extracted teeth in 258 patients (males: 157, females: 101, mean age: 66.4 years) were analyzed. Post-extraction bleeding was observed in 21 patients (8.1%).

Patient characteristics

Post-extraction bleeding was noted in 21 patients (males: 14, females: seven, mean age: 63.4 ± 13.2 years). Table 2 shows the underlying diseases for anticoagulant therapy. Mean warfarin dosage was 3.9 ± 1.4 mg, and median PT-INR was 2.1 (1.8–2.5). Mean platelet count was $16.8 \pm 5.3 \times 10^4/\mu$ l. Eleven patients were taking only warfarin, whereas 10 were taking an antiplatelet agent in addition to warfarin. Aspirin was administered as the antiplatelet agent to all cases.

The non-post-extraction hemorrhaging group included 237 patients (males: 143, females: 94, mean age: 66.6 ± 13.7 years). Underlying diseases for anticoagulant therapy are shown in Table 2. Mean warfarin dosage was 3.2 ± 1.3 mg. The mean (25 percentile, 75 percentile) of PT-INR was 2.0 (1.8, 2.3). Mean platelet count was $18.2 \pm 5.8 \times 10^4/\mu$ l. A total of 174 patients were taking warfarin only, whereas 63 patients were taking warfarin and an antiplatelet agent. Table 2 shows a breakdown of the antiplatelet agents. Seven patients who were taking two types of antiplatelet agents were all included in the non-post-extraction hemorrhaging group. A statistically significant difference was noted for warfarin dosage; however, no difference was

BMJ Open

Details of extracted tooth

In the post-extraction hemorrhaging group, the tooth extraction site in 14 and seven cases was the maxilla and mandible, respectively. For the non-post-extraction hemorrhaging group, it was the maxilla and mandible in 122 and 115 cases, respectively. Thus, no differences were noted between the two groups (P = 0.254, Fisher's exact test).

Results for teeth type

Numbers of incisor:premolar:molar:wisdom teeth were 1:2:9:9, respectively, in the postextraction hemorrhaging group and 36:65:89:47, respectively, in the non-post-extraction hemorrhaging group. Thus, a statistically significant difference was noted between the two groups (P = 0.039, Fisher's exact test).

In the post-extraction hemorrhaging group, the stability of teeth was good in 17 cases and poor in four. In the non-post-extraction hemorrhaging group, stability was good in 158 cases and poor in 79. No statistically significant difference was noted between the two groups (P = 0.227, Fisher's exact test).

Extraction procedure

In the post-extraction hemorrhaging group, the extraction procedure selected was simple extraction in 17 cases and surgical extraction in four cases. In the non-post-extraction hemorrhaging group, the procedure selected was simple extraction in 165 cases and surgical extraction in 72 cases. No differences were noted between the two groups (P = 0.328, Fisher's exact test).

Number of teeth extracted per operation

The number of teeth extracted per operation was 1.7 ± 0.6 in the post-extraction hemorrhaging group and 1.8 ± 1.1 in the non-post-extraction hemorrhaging group. There were no cases of multiple extractions of four or more teeth in the post-extraction hemorrhaging group. No differences were noted between the two groups with regards to the number of teeth extracted per operation (P = 0.576, Student's t-test).

HAS-BLED score

The highest HAS-BLED score obtained was three points. The mean score was 1.3 ± 0.9 in the

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

post-extraction hemorrhaging group and 1.2 ± 0.8 in the non-post-extraction hemorrhaging group. No statistically significant differences were noted between the two groups (P = 0.467, Student's t-test). In both the post-extraction and non-post-extraction hemorrhaging groups, scores were highest for the "elderly" group, followed by the "drug and alcohol" group, and then the "stroke" group.

Statistical examination

Univariate analysis demonstrated statistically significant differences between the wisdom teeth and incisor (RR = 8.894, P = 0.027) and for between concomitant antiplatelet agents (yes/no) (RR = 2.511, P = 0.500). RR was ≤ 1 for surgical procedure and platelet count. No statistically significant difference was noted for a HAS-BLED score of ≥ 3 compared with a HAS-BLED score of ≤ 2 (RR = 1.362, P = 0.7033).

No statistically significant differences were noted within multivariate analysis for any of the parameters in the models 1, 2, or 3. In Model 4, a statistically significant difference was noted for antiplatelet agents (yes) in the non-post-extraction hemorrhaging group (RR = 2.881, P = 0.035). AUCs for models 1, 3, and 4 were 0.7, with a statistically significant difference noted in Model 4 only. AUC for Model 2 was the lowest at 0.5, and a statistically significant difference was noted between models 2 and 3 (P = 0.004).

Discussion

Many cases of tooth extraction performed while continuing anticoagulant therapy have been reported; tooth extraction may be performed while the patient continues the maintenance dose of anticoagulants if PT-INR is within the treatment range (PT-INR < 3.5-4.0) and local hemostasis is properly performed ²⁶⁻²⁸⁾. The optimal treatment range for warfarin in Japanese patients is considered to be PT-INR in a range of $1.6-3.0^{4}$, and it is recommended that tooth extraction be performed while continuing the maintenance dose of anticoagulants. However, in clinical settings, it is not uncommon to encounter post-extraction hemorrhaging during tooth extraction in cases of PT-INR ≤ 3 . Iwabuchi et al.²⁹⁾ reported through a multicenter, large-scale study that risk factors for post-extraction bleeding in patients taking warfarin were age, PT-INR, and inflammation at the extraction site. Although many reports to date have not included cases of surgical extraction, such as the extraction of wisdom teeth and impacted teeth, these types of surgical extraction are often performed within clinical settings. Therefore, this study targeted

cases that were managed according to the optimal treatment range for Japanese patients (PT-INR \leq 3.0) and investigated all cases of tooth extraction, including the extraction of wisdom teeth, impacted teeth, and multiple teeth concurrently. Our investigation of risk factors for bleeding included extracted tooth state and surgical procedure. The HAS-BLED score is used in the field of cardiology to evaluate the risk of hemorrhagic complications. We verified whether the score is additionally useful for the evaluation of post-extraction hemorrhaging risk.

We have many patients receiving anticoagulant therapy because of circulatory diseases at our facility. As a rule, tooth extraction is performed on an inpatient basis because preoperative antibacterial agent administration and monitoring of post-invasive procedures are necessary. Approximately 50% of patients in this study had undergone heart valve replacement surgery prior to tooth extraction.

Our investigation of 258 tooth extraction patients indicated that post-extraction bleeding occurred in 21 patients (8%) or in 39 of the total 462 extracted teeth (8.4%). Various methods of hemostasis have been reported for cases of tooth extraction performed while continuing anticoagulant therapy. These include pressure hemostasis only, wound suturing, and the application of local hemostatic agents ³⁰⁻³³. To implement hemostasis, we placed a hemostatic gelatin sponge in the extraction socket and routinely conducted pressure hemostasis using absorbent cotton with suturing of the wound. Patients were examined 30 min after tooth extraction to confirm whether the bleeding had stopped. Hemostasis was determined to have been sufficient for all cases. As all patients underwent tooth extraction on an inpatient basis, the patient could rapidly be examined by a physician or nurse and could receive early diagnosis and appropriate treatment if post-extraction bleeding was suspected. However, although patients were examined, many did not require hemostatic treatment. Of the patients who exhibited post-extraction bleeding, no systemic hemostatic treatment, such as blood transfusion, was required in any case.

Investigation of conditions of the individual teeth extracted indicated that post-extraction bleeding risk was five to six times higher for wisdom teeth compared with that for anterior teeth. Extraction site and stability had little effect. Although no differences were observed for the number of teeth extracted in one treatment, there were no cases of multiple extractions of four teeth or more in the post-extraction hemorrhaging group. Results indicated that surgical extraction hardly had any effect on post-extraction bleeding (RR = 0.539, P = 0.256). However,

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

because cases that we defined as invasive tooth extraction also included many cases showing a short tooth root remaining, we believe that this may have greatly affected the results.

The effects of warfarin are easily influenced by factors, such as interaction with meals and/or drugs, and additionally by the general state of the patient. In this study, to accurately determine the anticoagulation state directly before tooth extraction, all blood tests were performed before breakfast on the tooth extraction day or the first tooth extraction day if tooth extraction was planned on consecutive days. Although post-extraction bleeding cases were being administered high doses of warfarin, no difference was observed for PT-INR. There were no cases showing an unstable anticoagulation state directly after warfarin introduction or with poor compliance. Because cases of PT-INR > 3.1 were excluded on the basis of the eligibility criteria, no cases were classified as labile INRs according to the HAS-BLED score. Accordingly, the PT-INR value was investigated using actual measured values as the continuous variable. There were no statistically significant differences noted for PT-INR value had little effect on post-extraction bleeding in patients undergoing anticoagulant therapy while being managed within the optimal treatment range (PT-INR \leq 3.0).

The HAS-BLED score is used in the field of cardiology to evaluate the risk of hemorrhaging in patients showing good anticoagulation. As it would be highly significant if the HAS-BLED score could be additionally used for predicting the risk of post-extraction hemorrhaging, we evaluated its use in this study. In our study, the highest HAS-BLED score was three points. A score of one point was the most commonly achieved among the 137 patients (53%). The most common risk factor was found to be age (174 patients; 67%). No difference was noted for the mean HAS-BLED score between the post-extraction hemorrhaging and non-post-extraction hemorrhaging groups. The European Society of Cardiology has proposed that a score of HAS-BLED ≥ 3 indicates a high risk of hemorrhagic complications. In cases of post-extraction hemorrhaging, we compared patients with a HAS-BLED score of three or higher and those with a score of two or lower but did not detect any statistically significant difference (univariate analysis; RR = 1.362, P = 0.703). Multivariate analysis indicated that there was little risk associated with the score increasing by one (Table 6). AUC for HAS-BLED score alone (Model 2) was 0.55, which was the lowest for all of the models we constructed. In Model 3, to which the details of extracted teeth were added to the HAS-BLED score, AUC was 0.745, suggesting that this model is useful

BMJ Open

for predicting post-extraction bleeding. However, a statistically significant difference was noted for Model 2 versus Model 3 (P = 0.004), indicating that the HAS-BLED score alone was insufficient for predicting post-extraction bleeding.

No fixed consensus has been reached regarding the concomitant use of warfarin and antiplatelet agents because some reports have indicated that this increases the risk of post-extraction bleeding ^{1,34}, whereas other reports have suggested that antiplatelet agents have little effect ³⁵. Both of our univariate and multivariate analyses results indicated that the use of concomitant antiplatelet agents was a significant factor affecting post-extraction bleeding. Of the models that we created in this study, Model 4 exhibited the highest predictive ability for post-extraction bleeding (AUC = 0.76, P = 0.0309). It has been reported that the concomitant use of two antiplatelet agents significantly increases the frequency of intracranial hemorrhaging ³⁶. Furthermore, a prospective observational study of hemorrhagic complications in Japanese cerebral infarction patients ³⁷⁾ found that compared with patients taking one antiplatelet agent only; those taking two or three antiplatelet agents along with warfarin clearly exhibited higher annual onset rates of intracranial hemorrhaging. We believe that these results suggest that concomitant antiplatelet agents are a risk factor for post-extraction bleeding.

The limitations of this study included the fact that data were obtained only at a single facility and that outpatients were not included in the subjects investigated. Many patients treated at our facility suffer from circulatory diseases (post-operative valve replacement patients are particularly common). Furthermore, because our study excluded patients who exhibited PT-INR of \geq 3.1 during the blood testing performed on the day of tooth extraction, the current study included patients whose anticoagulant therapy was being well managed. Thus, our subjects did not exactly constitute generalized cases of tooth extraction patients taking warfarin. Moreover, because this was a retrospective study, we believe that a large-scale, prospective, cohort study including outpatient tooth extraction cases required to be conducted in the future.

Moreover, we could not examine the drug interaction effects because our subjects included both patients who intravenously received antibacterial agents and those who received oral administration. Warfarin use results in a number of drug interactions, and many antibacterial agents and NSAIDs have been reported to increase anticoagulant effects ³⁸. However, some reports have stated that in most stable anticoagulant therapy patients, exposure to antibacterial agents causes no clinical problems ³⁹; furthermore, other reports have found that NSAIDs and

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

antibacterial agents often increased warfarin effects in cases of long-term administration ¹⁷). We also believe that the short-term or low-dose administration of NSAIDs or antibacterial agents does not cause any prolongation of clinically problematic PT-INR.

Of the models used for our multivariate analysis, Model 4 exhibited the highest AUC, demonstrating that it could predict post-extraction bleeding. However, because there were no significant differences observed between Model 1 or 3 versus Model 4, we were unable to construct an optimal model for predicting post-extraction bleeding. To increase model precision, it may be optimal to add factors demonstrating surgeon skill (e.g. years of surgeon experience or time required for one tooth extraction), which were not included in our current investigation. Furthermore, it will be necessary to put all extraction data from outpatients into analysis set to conduct a multilevel analysis.

CONCLUSIONS

1. We investigated post-extraction bleeding risk factors for all types of tooth extraction, including wisdom teeth and impacted teeth in patients taking warfarin (PT-INR \leq 3.0). Post-extraction bleeding requiring hemostatic treatment was observed in 8% patients.

2. The risk of post-extraction bleeding was five to six times more for the wisdom teeth than that for the incisor teeth.

3. Post-extraction bleeding could not be predicted using the HAS-BLED score alone.

4. Concomitant use of antiplatelet agents is a risk factor for post-extraction bleeding. More care must be taken regarding post-extraction bleeding within these cases than in cases with the administration of warfarin alone.

Acknowledgments

We would like to extend our gratitude and thanks to the professors at the Department of Oral and Maxillofacial Surgery at Tokyo Women's Medical University who offered their kind cooperation in this study.

Contributors

TA and TK were involved in the planning of the study concept and design. TK wrote the drafting of the manuscript. KH and TK were involved in the statistical analysis. TA and TK reviewed and revised the manuscript. All authors read and approved the final manuscript.

Funding

This research received no specific grant from any funding agency in the public.

Conflicts of interest

The authors have no conflicts of interest to declare regarding this study.

Data sharing statement

No additional data are available.

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

References

1) Scully C, Wolff A. Oral surgery in patients on anticoagulant therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:57-64.

2) Perry DJ, Noakes TJ, Helliwell PS. Guideline for the management of patients on oral anticoagulants requiring dental surgery. Br Dent J 2007;203:389-93.

3)Guidelines for management of anticoagulant and antiplatelet therapy in cardio-vascular disease(JSC2004). Circ J 2004;68(suppl.IV) 1153-1219.

4)JCS Joint Woring Group. Guidelines for Pharmacotherapy of Artial Fibrillation(JSC2008): digest version. Circ J 2010;74:2479-500.

5) Wahl MJ. Myths of dental surgery in patients on anticoagulant therapy. JADA 2000;131:77-81.

6)Devani P, Lavery KM, Howell CJ. Dental extractions in patients on warfarin: is alteration of anticoagulant regime necessary? Br J Oral Maxillofac Surg 1998;36: 107-11.

7)Campbell JH, Alvarado F, Murray RA. Anticoagulation and minor oral surgery: should the anticoagulation regimen be altered? J Oral Maxillofac surg 2000;58: 131-5.

8) Blinder D, Manor Y, Martinowitz U, et al. Dental extraction in patients maintained on oral

anticoagulant therapy: comparison of INR value with occurrence of postoperative bleeding. J Oral Maxillofac Surg 2001;30: 518-21.

9)Evans IL, Sayers MS, Gibbons AJ, et al. Can warfarin be continued during dental extraction? Results of randomized controlled trial. Br J Oral Maxillofac Surg 2002;40:248-52.

10)Zanon E, Martinelli F, Bacci C, et al. Safety of dental extraction among consecutive patients on oral anticoagulant treatment managed using a specific dental management protocol. Blood Coagul Fibrinolysis 2003;14:27-30.

11)Cannon PD, Dharmar VT. Minor oral surgical procedures in patients on oral anticoagulants-a controlled study. Aust Dent J 2003;48:115-8.

12)Salam S, Yusuf H, Milosevic A. Bleeding after dental extactions in patients taking warfarin. Br J Oral Maxillofac Surg 2007;45:463-6.

13)Sacco R, Sacco M, Carpenedo M, et al. Oral surgery in patients on oral anticoagulant therapy: a randomized comparison of different intensity targets. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:e18-21.

14) Ferrieri GR, Castiglioni S, Carmagnola D, et al : Oral Surgery in patients on anticoagulant treatment without therapy interruption. J Oral Maxillofac Surg 2007;65:1149-54.

15) Morimoto Y, Niwa H, Minematsu K. Hemostatic management of tooth extractions in patients on oral antithrombotic therapy. J Oral Maxillofac Surg 2008;66:51-7.

16) Fujimori M, Nishimura T, Tani K, et al. Clinical evaluatuion of Postoperative bleeding in patients undergoing antithrombotic therapy. Japan Stomatological Society 2010;59:113-122.

17)Shigeta T, Umeda M, Yoshitake M, et al. A clinical atudy of hemorrhagic complications in patients with antithrombotic therapy who underwent dental extraction without discontinuation of antithrombotic drugs: 282patients receiving administration of warfarin. Japan Stomatological Society 2012;61:1-7.

18) Echizen H. Genetic polymorphism associated with interpatient variability in the anticoagulation response to warfarin. Japanese society on thrombosis and hemostasis 2001;12:111-8.

19)Pototski M, Amenabar JM. Dental management of patients receiving anticoagulation or antiplatelet treatment. J oral Sci 2007;49:253-8.

20)Wahl MJ. Dental surgery and antiplatelet agents: bleed or die. Am J Med 2014;127:260-267.

BMJ Open

21) Hughes M, Lip GY. Guideline Development Group for the NICE national clinical guideline for management of atrial fibrillation in primary and secondary care. : Risk factors for anticoagulation-related bleeding complications in patients with atrial fibrillation: a systematic review. QJM 2007;100:599-607.
22)Palareti G, Cosmi B. Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients. Thromb Haemost 2009;102:268-78.

23)Pisters R, Lane DA, Nieuwlaat R, et al. A novel user-friendly score(HAS-BLED) to assess 1year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093-100.

24)European Heart Rhythm Association. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology(ESC). Eur Heart J 2010;31:2369-429.

25)Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease in the Yong, and the Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736-54.

26) Herman WW, Konzelman JL, Sutley SH. Current perspectives dental patients receiving coumarin anticoagulant therapy. JADA 1997;128:327-35.

27) Scully C, Wolff A. Oral Surgery in patients on anticoagulant therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:57-64.

28) Little JW, Falace DA, et al: Bleeding disorder dental management of the medically compromised patients. 6th ed, Mosby, St Louis, 2002, p.332-364

29) Iwabuchi H, Imai Y, Asanami S, et al. Evaluation of postextraction bleeding incidence to compare patients receiving and not receiving warfarin therapy: across-sectional, multicenter, observational study. BMJ open 2014;4:e005777

30) Shikimori M. Clinical and hemostatic studies on dental extractions of patients undergoing oral anticoagulant therapy. Japanese Society of Oral Maxillofacial Surgeons 1982;28:1629-42.

31)Halfpenny W, fraser JS, Adlam DM. Comparison of 2 hemostatic agents for the prevention of postextraction hemorrhage in patients on anticoagulants. Oral Surg Oral Med Oral Pathol Oral

Radiol Endod 2001;92:257-9. 32)Carter G, Goss A, Lloyd J, et al. Tranexamic acid mouthwash versus autologous fibrin glue in patients taking warfarin undergoing dental extractions : a randomized prospective clinical

study. J Oral Maxillofac Surg 2003;61:1432-5. 33)Perry DJ, Noakes TJ, Helliwell PS, et al. Guideline for the management of patients on oral anticoagulants requiring dental surgery. Br Dent J 2007;203:389-93.

34)Hong C, Napenas JJ, Brennan M, et al. Risk of postoperative bleeding after dental procedures in patients on warfarin: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:464-8.

35) Morimoto Y, Niwa H, Yoneda T, et al. Hemostatic management of tooth extraction in patients undergoing antithrombotic therapy. Japan Stomatological Society 2004;53:74-80.

36)Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient aschaemic attack in high-risk patients (MATCH) : randomized, double-blind, placebo-controlled trial. Lancet 2004;364:331-7.

37)Toyoda T, Yasaka M, Iwade K, et al. Dual antithrombotic therapy increases severe bleeding events in patients with stroke and cardiovascular disease: a prospective, multicenter, observational study. Stroke 2008;39:1740-5.

38) Holbrook AM, Pereira JA, Labiris R, et al. Systemic overview of warfarin and its drug and food interactions. Arch Intern Med 2005;165:1095-106.

39)Clark NP, Delate T, Riggs CS, et al. Warfarin interactions with antibiotics in the ambulatory care setting. JAMA Intern Med 2014;174:409-16.

1 2
3 4 5 6
6 7
8 9 10
11 12 13
14 15 16
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
20 21 22 23 24
22 23 24 25 26 27 28 29 30 31 32
26 27 28
29 30 31
32 33 34
30 31 32 33 34 35 36 37 38
38 39 40
41 42 43
44 45 46
47 48 49
50 51 52
53 54 55
56 57 58
58 59 60

Table 1 HAS-BLED bleeding risk score	
risk factor	clinical characteristics
H Hypertension	uncontrolled, >160mmHg systolic
A Abnomal renal and liver function(1point each)	presence of chonic dialysis, renal pramsplantation or serum creatinine ≥200 µmol/L chornic hepatic disease(eg, cirrhosis), bilirubin >2X upper limit of nomal, AST/AL/T/ALP >3X upper limit of nomal
S Stroke	previous history
B Bleeding	bleeding history or predisposition
L Labile INRs	unstable/high INRs(PT-INR>3.1)
E Elderly	>65 years
D Drugs or alcohol	concomitantly antiplatelet agents and NSAIDs,
(1point each)	alcohol excess
Criteria from the European Society of Cardiology ²⁴⁾ were used.	iology ²⁴⁾ were used.
AST=aspartate aminotransferase, ALT=alanine	iine aminotransferase, ALP=alkaline phosphatase,
NSAIDs=nonsteroidal antiinflammatory drugs	1gs

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

	post-extraction bleeding	non post-extraction		
	group	bleeding group	p value	χ^2 value
	N=21	N=237		
	number of patients	number of patients		
Age $(mean \pm SD)$	63.4±13.2	66.6 ± 13.7	0.2944^{a}	
Gender(Male/Female)	14/7	143/94	0.6463^{c}	0.32
Primary disease				
post Heart Valve Prosthesis Implantation	17	120		
atrial fibrillation	2	76		
cerebral infarction	2	13		
dilated cardiomyopathy	1	9		
myocardial infarction	0	23		
deep vein thrombosis	0	11		
arteriosclerosis obliterans	0	3		
intracardiac thrombus	0	2		
Anticoagulation				
warfarin dose(mg) (mean ± SD)	3.9±1.4	3.2 ± 1.3	0.0241^{a}	*
PT-INR value (mean [25%tile, 75%tile])	2.1[1.8, 2.5]	2.0[1.8, 2.3]	0.3296^{b}	
Platelet count(×10 ⁴ /µl)	16.8±5.3	18.2±5.8	0.2978^{a}	
Concomitant antiplatelet agents				
yes	10	63	0.0732°	4.21
aspirin	10	52		
ticlopidine	0	8		
ethyl icosapentate	0	6		
cilostazol	0	2		
limaprost	0	1		
dipyridamole	0	1		

a; Student's t-test, b; Mann-Whitney U test, c; Fisher's exact test $*:p \langle 0.05 was$ considered significant.

	post-extraction bleeding	non post-extraction			
	group	bleeding group	p value		χ^2 value
	N=21	N=237			
	number of patients	number of patients			
	or mean ± SD	or mean ± SD			
Extraction site					
maxilla	14	122	0.07.0 [°]		1.70
mandibula	7	115	0.254°		1.79
Гeeth type					
incisor	1	36			
premolar	2	65	0.000 [°]	*	0.70
molar	9	89	0.039^{c}	Â	8.70
wisdom	9	47			
Stability of teeth					
good	17	158	c		1 00
poor	4	79	$0.227^{ m c}$		1.80
Extraction procedure					
simple	17	165	6		1.10
surgical	4	72	0.328°		1.19
Number of teeth extracted			а		
n one procedure	1.7 ± 0.6	1.8 ± 1.1	0.576^{a}		
One tooth	8	125			
Two tooth	12	65			
Three tooth	1	24			
Four tooth	0	18	0.188°		9.12
Five tooth	0	3			
Six tooth	0				
Seven tooth	0	1			
SD:standard deviation,			÷		
a; Student's t-test, c;fisher's	exact test				
∵p ⟨0.05 was considered sig					
P (0100 1100 000000000000000000000000000			1		

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Table 4 HAS-BLEI				
	post-extraction bleeding	non post-extraction	p value	2 1
	group	bleeding group	p value	χ^2 valu
	N=21	N=237		
	mean ± SD	mean ± SD	-	
	or number of patients	or number of patients	a (a - ª	
HAS-BLED score	1.3±0.9	1.2±0.8	0.467^{a}	
0	3	41	-	
1	10	127	-	
2	6	52	-	
3	2	17	-	
4	0	0	0.804^{c}	0.75
5	0	0	0.001	
6	0	0	_	
7	0	0	_	
8	0	0	_	
9	0	0		
risk factor				
Н	1	3		
А	1	11		
S	2	38		
В	0	5		
L	0	0		
E	13	161		
D	11	63		
SD:standard deviat	ion,			
a; Student's t-test, o	c;Fisher's exact test			

		98	5%CI		
	RR	lower	upper	p value	
Extraction site					
maxilla/mandibula	1.885	0.756	5.128	0.177	
Teeth type					
premolar/incisor	1.108	0.103	24.300	0.934	
molar/incisor	3.640	0.649	68.346	0.160	
wisdom/incisor	6.894	1.213	130.039	0.027	*
Stability of teeth					
good/poor	2.125	0.756	7.572	0.161	
Extraction procedure					
surgical/simple	0.539	0.151	1.518	0.256	
PT-INR value	1.782	0.597	5.387	0.300	
Platelet count(×10 ⁴ /µl)	0.959	0.887	1.037	0.296	
HAS-BLED score					
1/0	1.076	0.312	4.968	0.914	
2/0	1.577	0.391	7.825	0.529	
3/0	1.608	0.199	10.551	0.626	
2/1	1.465	0.477	4.157	0.487	
3/1	1.494	0.218	6.305	0.636	
3/2	1.020	0.140	4.922	0.982	
3/ less than 2	1.362	0.206	5.255	0.703	
Concomitant antiplatelet					
agents use					
yes/no	2.511	1.001	6.238	0.050	*
• Criteria from the European S	Society o	of Cardio	$plogy^{24}$ we	ere used.	
RR:risk ratio					
*:p<0.05 was considerred signi	ficant.				

2	
3	
4	
2 3 4 5 6 7 8 9 10	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
10	
12 13 14 15 16 17 18	
1 M	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
24	
31	
32	
33	
34	
25	
35	
36	
37	
38	
00	
20	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 99	
40	
39 40 41	
40 41	
40 41 42	
40 41 42 43	
40 41 42 43 44	
40 41 42 43	
40 41 42 43 44 45	
40 41 42 43 44 45 46	
40 41 42 43 44 45 46 47	
40 41 42 43 44 45 46 47 48	
40 41 42 43 44 45 46 47 48 49	
40 41 42 43 44 45 46 47 48 49	
40 41 42 43 44 45 46 47 48 49 50	
40 41 42 43 44 45 46 47 48 49 50 51	
40 41 42 43 44 45 46 47 48 49 50 51 52	
40 41 42 43 44 45 46 47 48 49 50 51 52 53	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
40 41 42 43 44 45 46 47 48 950 51 52 53 54 55	
40 41 42 43 44 45 46 47 48 49 51 52 53 55 55 56	
40 41 42 43 44 45 46 47 48 9 50 51 52 53 55 56 57	
40 41 42 43 44 45 46 47 48 49 51 52 53 55 55 56	
40 41 42 43 44 45 46 47 48 9 50 51 52 53 55 56 57	

1

		ä	model 1			8	model 2				model 3				model 4		
		⁵ 6	95%CI			95	95%CI				95%CI				95%CI		
I	risk ratio lower upper	lower	upper	p value	risk ratio lower upper	lower		p value	risk r	risk ratio lower upper	r upper	p value	risk r	atio low	risk ratio lower upper	p value	
Extraction site																	
maxilla/mandibula	1.855	0.7	5.286	0.216	1	1	I	I	1.914	14 0.716	5 5.494	0.198	1.936	6 0.722	22 5.585	0.192	
Teeth type																	
premolar/incisor	1.118	0.102	24.727	0.928	1	I	I	I	1.045	15 0.095	5 23.222	0.972	1.159	9 0.104	04 25.901	0.906	
molar/incisor	3.468	0.594	0.594 65.974	0.188	1	1	Ι	I	3.388	88 0.579	9 64.544	0.199	3.730	0 0.630		0.164	
wisdom/incisor	5.228	0.85	101.628	0.078	1	I	I	1	5.380	30 0.860	105.301	0.075	5.113	3 0.804	04 100.719	0.804	
Stability of teeth																	
good/poor	1.790	0.551	6.994	0.344		1	I		1.961	31 0.588	3 7.893	0.283	1.916	6 0.568	38 7.780	0.304	
Extraction procedure																	
surgical/simple	0.624	0.166 1.915	1.915	0.425	1	I	I	1	0.674	74 0.177	7 2.125	0.515	0.670	0 0.175	75 2.117	0.509	
PT-INR value	2.078	0.681	6.606	0.204	1	1	I	I	2.288	88 0.727	7.543	0.162	2.687	7 0.831	31 9.349	0.107	
Platelet count(x10 ⁴ /ul)	0.970	0.892	1.053	0.461		Ι	I	I	0.968	38 0.889) 1.053	0.443	0.970	0 0.894	94 1.052	0.465	
HAS-BLED score																	
1/0	I	Ι	Ι	1	1.076	0.312	4.968	0.914	1.197	97 0.325	5 5.777	0.798			1	Ι	
2/0	I	I	I	1	1.577	0.391	7.825	0.529	2.271	71 0.515	5 12.242	0.284				1	
3/0	I	I	I	1	1.608	0.199	10.551	0.626	2.338	38 0.269	9 16.989	0.410				1	
2/1	I	1	Ι	1	1.465	0.477	4.157	0.487	1.8	0.580	5.871	0.279				1	
3/1	I	1	Ι	1	1.494	0.218	6.305	0.636	1.954	54 0.266	3 9.403	0.463				1	
3/2	I	Ι	I	1	1.020	0.14	4.922	0.982	1.030		5.605	0.975				1	
Concomitant antiplatelet																	
agements use																	
yes/no				1		1		I		1	1		2.881	1 1.079	7.740	0.035	*
• Criteria from the European Society of Cardiology ²⁴⁾ were used.	n Society	· of Car	diology ²⁴⁾ .	were used.													
•*:n(0.05																	

0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Table 7 Com			%CI		
	AUC	lower	upper	p value	
model 1	0.738	0.630	0.824	0.083	
model 2	0.548	0.425	0.666	0.867	
model 3	0.745	0.632	0.832	0.148	
model 4	0.763	0.650	0.847	0.031	*
model 1vs3				0.727	
model 1vs4				0.441	
model 2vs3				0.004	*
model 3vs4				0.398	
•*:p<0.05					
AUC;area un	ider the cu	arve			

BMJ Open

HAS-BLED score alone could not be predict post-extraction bleeding: a retrospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010471.R1
Article Type:	Research
Date Submitted by the Author:	21-Dec-2015
Complete List of Authors:	Kataoka, Toshiyuki; Tokyo women's medical university, Oral and maxillofacial surgery Hoshi, Keika; Kitasato University School of Medicine, Department of Hygiene Ando, Tomohiro; Tokyo women's medical university, Oral and maxillofacial surgery
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Medical management
Keywords:	post-extraction bleeding, warfarin, HAS-BLED score, concomitant antiplatelet agents

BMJ Open

ctive cohort
y
It is very
-BLED
niversity.
ad ontinuing
les of
of teeth, and use were
st-extraction
riate
or patients
ing. The g. This study
ire.
believe that
ll be
I

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

HAS-BLED score alone could not be predict post-extraction bleeding: a retrospe study. Toshiyuki KATAOKA¹, Keika HOSHI², Tomohiro ANDO¹ 1)Department of Oral and Maxillofacial Surgery, Tokyo Women's medical university 2)Department of Hygiene, School of medicine, Kitasato University Correspondence to Toshiyuki KATAOKA;kataoka@oms.twmu.ac.jp ABSTRACT Objective: Post-extraction bleeding is often experienced in our clinical unexpectedly. beneficial if the determination is post-extraction bleeding risk prior to surgery in the anticoagulant therapy patient. Therefore, this study aimed to verify whether the HAS score is useful in predicting post-extraction bleeding in patients taking warfarin. Design: Retrospective cohort study. Setting: Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical Un Participants: Subjects comprised 258 sequential cases (462 teeth) of inpatients who have undergone tooth extraction between January 1, 2010 and December 31, 2012 while co warfarin therapy. Main outcome measure: Post-extraction risk factors of bleeding. As predicting variab multivariate logistic analysis, HAS-BLED score, extraction site, teeth type, stability of extraction procedure, PT-INR value, platelet count, concomitant antiplatelet agents collected. Results: Post-extraction bleeding was noted in 21 (8.1%) of the 258 cases. Whole post bleeding was hemostasis in localized hemostatic procedure. The HAS-BLED score w insufficient for predicting post-extraction bleeding (AUC = 0.548, P = 0.867, multiva analysis). The risk of post-extraction bleeding was approximately three times more for taking oral antiplatelet agents (RR = 2.881, P = 0.035, multivariate analysis). Conclusions: The HAS-BLED score alone could not be predict post-extraction bleed concomitant use of oral antiplatelet agents is a risk factor for post-extraction bleeding was no post-extraction bleeding that required more than localized hemostatic procedu However, because this was a retrospective study conducted at a single institution, we a large-scale prospective cohort study, including outpatient tooth extraction cases, wi

necessary in the future.

3 Strengths and limitations of this study

• This is the first study to verify the usefulness of the HAS-BLED score for predicting postextraction bleeding risk.

• We investigated all cases of tooth extraction, including wisdom tooth and impacted tooth extractions.

- No previous reports have investigated the effects of each individual tooth extracted,
 extraction procedure, and effects of concomitant antiplatelet agents on post-extraction
 bleeding using statistical analyses and demonstrated a high level of evidence for correlations.
- In this study, we think need to prospective cohort studies, including a large-scale outpatient
 in the future. Because it is a retrospective cohort study conducted at a single institution.

14 INTRODUTION

Patients undergoing anticoagulant therapy and who are scheduled to undergo tooth extraction are typically advised to undergo extraction while continuing anticoagulant therapy ¹⁻⁴⁾. Although post-extraction bleeding is often experienced in our clinical unexpectedly. In the past, a number of studies have investigated tooth extraction while continuing anticoagulant therapy, with the frequency of post-extraction bleeding reported to range from 0% to $26\%^{5-16}$. Recently, the HAS-BLED score¹⁷⁻¹⁹⁾ has been used as an index for evaluating the risk of bleeding complications in patients undergoing anticoagulant therapy. The HAS-BLED score evaluates nine risk factors for bleeding. The European Society of Cardiology guidelines²⁰⁾ has stated that patients who score three points or higher are at a high risk of bleeding complications. No reports to date have investigated whether the HAS-BLED score is useful in predicting the risk of post-extraction bleeding. The preoperative identification of patients with a high risk of post-extraction bleeding could facilitate appropriate preparations prior to performing tooth extraction. Therefore, we examined whether the HAS-BLED score is useful in predicting post-extraction

52 28 bleeding in patients undergoing warfarin therapy.
53

29 MATERIAL AND METHODS

56 30 Study design 57 21 51

31 This was a retrospective cohort study.

60

BMJ Open

1 2		
3	1	
4 5	2	Study population and eligibility criteria
6 7	3	This study subject included 258 sequential cases that were hospitalized at the Department of
8 9	4	Oral and Maxillofacial Surgery, Tokyo Women's Medical University and who had undergone
10 11	5	tooth extraction between January 1, 2010 and December 31, 2012 while receiving a maintenance
12 13	6	dose of warfarin therapy. As a rule, tooth extraction for patients undergoing warfarin therapy
14	7	shall be performed after the patient is admitted to the hospital. Antiplatelet agents, which were
15 16	8	being concomitantly taken, were continued to be administered at the maintenance dose.
17 18	9	Exclusion criteria were as follows: 1) patients younger than 20 years at the time of hospital
19 20	10	admission; 2) presence of comorbid blood disease; and 3) a PT-INR level of \geq 3.1 as indicated by
21 22	11	the results of the blood tests performed on the day of tooth extraction. Patients underwent follow-
23	12	up examinations for 1 month after discharge. The doctors and nurse records obtained from
24 25	13	medical examination records were registered in a database along with the results of the clinical
26 27	14	tests. When the same patient was hospitalized and underwent tooth extraction more than once
28 29	15	during the study period, all instances were registered.
30	16	
31 32	17	Tooth extraction procedure
33 34	18	The primary physician for the underlying disease of each patient was preoperatively consulted
35 36	19	regarding the general medical status of the patient, including their use of anticoagulants. When
37 38	20	acute symptoms, such as periodontal abscesses, apical periodontitis, or pericoronitis were present
39	21	around the tooth that was determined to be eligible for tooth extraction, antibiotics were
40 41	22	administered at least three days and anti-inflammation procedures, such as incision and drainage,
42 43	23	were performed as necessary. During tooth extraction, electrocardiograms, blood pressure, pulse
44 45	24	rate, and percutaneous oxygen saturation levels were monitored. For local anesthesia, 1.8–3.6 ml
46	25	of 2% lidocaine containing 1/80000 epinephrine was administered. Tooth extraction was
47 48	26	performed with minimal invasion. When multiple teeth were indicated for extraction and
49 50	27	comprised within 1/3 of the jaw area, all the teeth were extracted in one procedure. When the
51 52	28	teeth comprised over 1/3 of the total jaw area, multiple teeth were extracted in one procedure if
53 54	29	the procedure was expected to take <30 min while considering the age and any comorbid
55	30	diseases of the patient. After extraction, a curettage of the inflammatory granulation tissue
56 57 58 59	31	around the wound border was performed, hemostatic gelatin sponge was inserted into the socket

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

(product name: Spongel, Astellas Pharma Inc.), and suturing was performed to reduce the size of the wound border. The patient was requested to bite down on the absorbent cotton for 20 min after completing tooth extraction to achieve pressure hemostasis. At 30 min after tooth extraction, the patient was examined to confirm that the bleeding had stopped. After extraction, patients were instructed to avoid strong or frequent gargling and to rest as much as possible. Postextraction meals comprised rice gruel. In the patient group with a high risk of adverse effects due to infective endocarditis onset ²¹⁾, antibiotics were administered before surgery intravenously, after tooth extraction was prescribed to oral antibiotics for three days. For patients with a heart disease that did not necessarily require IE prophylaxis for dental procedures or patients receiving anticoagulant therapy, oral antibacterial drugs were administered for 3 days following tooth extraction. Five doses of analgesics comprising loxoprofen sodium or acetaminophen were prescribed as a potion when pain was experienced.

14 Post-extraction Bleeding

For cases in which the patient complained of bleeding and was examined but hemostatic procedures were not deemed necessary, patients were instructed to adequately rest and refrain from excessive gargling; regular follow-up examinations were performed. In mild bleeding as oozing, the patient was requested to bite down on a gauze or absorbent cotton for twenty minutes placed on the tooth extraction wound to achieve pressure hemostasis. Patients who did not require treatments, such as those outlined above for post-extractive bleeding, were placed into the non post-extraction bleeding group.

Patients who complained of bleeding since the examination after tooth extraction and who underwent some medical hemostatic procedures were categorized in the post-extraction bleeding group. Hemostatic procedures performed in accordance with the decisions by the examining oral surgeon are described below. For cases of moderate or higher bleeding in which there was a large amount of bleeding that was determined to be difficult to resolve using primary hemostasis, we aimed to utilize the local vasoconstrictive effects of the local dental anesthetic epinephrine and administered a dose of 1.0–1.8 ml to achieve infiltration anesthesia around the tooth extraction wound. Pressure was then applied to the wound by requesting the patient to bite down on gauze or absorbent cotton. When it was determined that the bleeding could not sufficiently be halted by pressure hemostasis alone, the area was additionally filled with local hemostatic agents Page 5 of 29

BMJ Open

or additional or repeat suturing of the wound was performed as necessary. For cases of repeated bleeding or prolonged exudative bleeding after hemostatic procedures, a hemostatic splint was fabricated to cover of wound. This was fitted after applying a cavity lining with a periodontal pack or denture base tissue conditioner.

Bleeding risk factors for tooth extraction

Details of extracted teeth, surgical procedure, bleeding tendency, and concomitant antiplatelet agents were investigated as possible factors affecting post-extraction bleeding. With respect to details noted regarding extracted teeth, the extraction site (maxilla/mandible), type of teeth (incisor/premolar/molar/wisdom), and stability of teeth were examined. Regarding the stability of teeth, teeth exhibiting alveolar bone resorption of at least 2/3 of the tooth root length as determined by preoperative X-rays or teeth found to have clinical grade III instability were defined to have poor stability. Other teeth were considered to have good tooth stability. The surgical procedure was classified into simple and surgical extractions. For surgical extraction, the strategy followed was to make an incision in the gingiva, detach and turn the mucoperiosteal flap over, and extract the tooth after cutting off the alveolar bone or root separation. All extractions other than that defined above were simple extractions. With regard to bleeding tendency, PT-INR value and platelet count were investigated.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

HAS-BLED score

The HAS-BLED score was evaluated according to the European Society of Cardiology guidelines ²⁰⁾ (Table 1) and is described below. Patients with systolic blood pressure of \geq 160 mmHg, which was measured on arrival at the hospital, were categorized as having "hypertension." Patients receiving hemodialysis or those who had a kidney transplant; patients with a serum creatinine level of ≥ 2.26 mg/dl in the most recent blood test; patients exhibiting chronic liver disease, such as liver cirrhosis, and bilirubin levels of at least two times the normal upper limit; and patients having at least three times the normal upper limit of either alanine transaminase, aspartate aminotransferase, or alkaline phosphatase levels were categorized as having "abnormal renal and liver function." "Stroke" or "bleeding" was determined according to the information of patients obtained from medical interviews on admission to the hospital. "Labile INRs" were described to unstable/high INRs or poor time in therapeutic range (e.g.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

<60%). The "elderly" categorization was defined as a patient age ≥65 years at the time of tooth extraction. Patients with long-term administration of antiplatelet agents or non-steroidal anti-inflammatory drug (NSAIDs) or patients with alcohol dependence were categorized as "drug and alcohol." One point was allocated for each of these categories if a patient was applicable. Thus, patients were scored according to a possible full score of nine points.</p>

7 Selection of representative teeth

8 Since the subject is sequential cases in this study, the same patient will duplicate where the tooth 9 extraction was done in other period, but age and PT-INR value and tooth extraction site is 10 different. There is a case that extraction of multiple teeth in the same patient. Therefore, it was an 11 independent data for each period by selected representative teeth following procedure. The most 12 posterior tooth was selected as the representative tooth, and in cases of multiple posterior teeth, 13 the upper tooth or the tooth showing good stability was selected.

15 Statistical analyses

Statistical analysis was processing the data of the patient with a representative tooth. Univariate and multivariate logistic analysis were applied to analyze the bleeding risk factor for tooth extraction data with the presence/absence of post-extraction bleeding as the response variable and bleeding risk factor as the explanatory variable. The two variable values were used to describe tooth extraction site (maxilla/mandible), four variable values were used to describe the type of teeth (incisor/premolar/molar/wisdom), two variable values were used to describe stability of teeth (good/poor), and two variable values were used to describe the surgical procedure (simple /surgical extraction). For the PT-INR value and platelet count, the actual measured values were analyzed as continuous variables, and the HAS-BLED score was used in analysis with both a continuous and nominal variable. Concomitant antiplatelet agents were evaluated as two variable values (yes/no). During logistic analysis, we calculated the risk ratio, 95% confidence interval (CI), and p value. The risk ratio was calculated as the ratio of maxilla to mandible for a site, the tooth type within anterior teeth for type of teeth, good to poor for the condition of the periodontium, and from surgical to simple for the surgical procedure. The risk ratio for the HAS-BLED score was calculated for each level. For concomitant antiplatelet agents, the risk ratio of "yes" to "no" was calculated. In multivariate analysis, risk factors were

BMJ Open

2 3		
4	1	combined to create post-extraction bleeding analysis models. For each model, we plotted the
5 6	2	receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) in
7 8	3	addition to the p value and 95% CI for the C-statistic model overall. Many screening tools used a
9	4	C-statistic value of ≥ 0.70 . We used C-statistic to compare between each model. Model 1 was
10 11	5	constructed from extracted tooth state, surgical procedure, and bleeding tendency. Model 2 was
12 13	6	constructed from the HAS-BLED score only. Model 3 was constructed by adding the HAS-
14	7	BLED score to Model 1. Model 4 was constructed by adding concomitant antiplatelet agents as
15 16	8	an explanatory variable to Model 1. Data were analyzed with the use of JMP Pro 11 software
17 18	9	(2014 SAS Institute Inc., US) with a two-tailed alpha level of 0.05.
19 20	10	
21 22 23	11	Ethics
	12	This study was approved by the ethical review board of the Tokyo Women's Medical University
24 25	13	(approval number: 3079). The first and second authors take complete responsibility for the
26 27	14	integrity of the data and the accuracy of the data analysis.
28	15	
29 30	16	RESULTS
31 32	17	A total of 462 extracted teeth in 258 patients (males: 157, females: 101, mean age: 66.4 years)
33 34	18	were analyzed. Post-extraction bleeding was observed in 21 patients (8.1%). Whole post-
35 36	19	extraction bleeding was hemostasis in localized hemostatic procedure, and none died patients
37	20	due to hemorrhage.
38 39	21	
40 41	22	Patient characteristics
42 43	23	Post-extraction bleeding was noted in 21 patients (males: 14, females: 7, mean age: $63.4 \pm$
44	24	13.2 years). Table 2 shows the underlying diseases for anticoagulant therapy. Mean warfarin
45 46	25	dosage was 3.9 ± 1.4 mg, and median (25 percentile, 75 percentile) of PT-INR was 2.1 (1.8,2.5).
47 48	26	Mean platelet count was $16.8 \pm 5.3 \times 10^4/\mu$ l. Eleven patients were taking only warfarin, whereas
49 50	27	10 were taking an antiplatelet agent in addition to warfarin. Aspirin was administered as the
51	28	antiplatelet agent to all cases.
52 53	29	The non post-extraction bleeding group included 237 patients (males: 143, females: 94, mean
54 55	30	age: 66.6 ± 13.7 years). Underlying diseases for anticoagulant therapy are shown in Table 2.
56 57	31	Mean warfarin dosage was 3.2 ± 1.3 mg. The mean (25 percentile, 75 percentile) of PT-INR was
58		
59 60		7

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

2.0 (1.8, 2.3). Mean platelet count was $18.2 \pm 5.8 \times 10^4/\mu$ l. A total of 174 patients were taking warfarin only, whereas 63 patients were taking warfarin and an antiplatelet agent. Table 2 shows a breakdown of the antiplatelet agents. Seven patients who were taking two types of antiplatelet agents were all included in the non post-extraction bleeding group. A statistically significant difference was noted for warfarin dosage; however, no difference was noted for PT-INR. No differences were noted for age, sex, platelet count, or concomitant antiplatelet agents use.

8 Details of extracted tooth

9 In the post-extraction bleeding group, the tooth extraction site in 14 and seven cases was the 10 maxilla and mandible, respectively. For the non post-extraction bleeding group, it was the 11 maxilla and mandible in 122 and 115 cases, respectively. Thus, no differences were noted 12 between the two groups (P = 0.254, Fisher's exact test; table 3).

13 Results for teeth type

14 Numbers of incisor:premolar:molar:wisdom teeth were 1:2:9:9, respectively, in the post-

15 extraction bleeding group and 36:65:89:47, respectively, in the non post-extraction bleeding

16 group. Thus, a statistically significant difference was noted between the two groups (P = 0.039,

Fisher's exact test; table 3).

18 In the post-extraction bleeding group, the stability of teeth was good in 17 cases and poor in four.

19 In the non post-extraction bleeding group, stability was good in 158 cases and poor in 79. No

20 statistically significant difference was noted between the two groups (P = 0.227, Fisher's exact

test; table 3).

22 Extraction procedure

23 In the post-extraction bleeding group, the extraction procedure selected was simple extraction in

⁴ 24 17 cases and surgical extraction in four cases. In the non post-extraction bleeding group, the

procedure selected was simple extraction in 165 cases and surgical extraction in 72 cases. No

differences were noted between the two groups (P = 0.328, Fisher's exact test; table 3).

27 Number of teeth extracted per operation

28 The number of teeth extracted per operation was 1.7 ± 0.6 in the post-extraction bleeding group

and 1.8 ± 1.1 in the non post-extraction bleeding group. There were no cases of multiple

30 extractions of four or more teeth in the post-extraction bleeding group. No differences were

31 noted between the two groups with regards to the number of teeth extracted per operation

BMJ Open

(P = 0.576, Student's t-test; table 3).**HAS-BLED** score The highest HAS-BLED score obtained was three points. The mean score was 1.3 ± 0.9 in the post-extraction bleeding group and 1.2 ± 0.8 in the non post-extraction bleeding group. No statistically significant differences were noted between the two groups (P = 0.467, Student's t-test; table 4). In both the post-extraction and non post-extraction bleeding groups, scores were highest for the "elderly" group, followed by the "drug and alcohol" group, and then the "stroke" group. Statistical examination Univariate analysis demonstrated statistically significant differences between the wisdom teeth and incisor (RR = 8.894, P = 0.027) and for between concomitant antiplatelet agents (yes/no) (RR = 2.511, P = 0.500). RR was <1 for surgical procedure and platelet count. No statistically significant difference was noted for a HAS-BLED score of \geq 3 compared with a HAS-BLED score of ≤ 2 (RR = 1.362, P = 0.7033) (table 5). No statistically significant differences were noted within multivariate analysis for any of the parameters in the models 1, 2, or 3. In Model 4, a statistically significant difference was noted for antiplatelet agents (yes) in the non post-extraction bleeding group (RR = 2.881, P = 0.035) (table 6). AUCs for models 1, 3, and 4 were 0.7, with a statistically significant difference noted in Model 4 only. AUC for Model 2 was the lowest at 0.5, and a statistically significant difference was noted between models 2 and 3 (P = 0.004) (table 7). Discussion Our investigation of 258 tooth extraction patients indicated that post-extraction bleeding occurred in 21 patients (8%) or in 39 of the total 462 extracted teeth (8%). Whole post-extraction bleeding was possible hemostasis in localized hemostatic procedure. The HAS-BLED score

alone it was not possible to predict post-extraction bleeding. As a result of considering the risk factors for post-extraction bleeding statistically, the concomitant antiplatelet agents use were risk factors. It has reported that the incidence of bleeding in the anticoagulation group is the same (about 6-7%) as in the anticoagulation withdrawal group²²). The post-extraction bleeding in this

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

1 study was in accordance with their report.

Many cases of tooth extraction performed while continuing anticoagulant therapy have been reported²³⁻²⁵⁾. However, in clinical settings, it is not uncommon to encounter post-extraction bleeding during tooth extraction in cases of optimal INR value range. Iwabuchi et al.²⁶⁾ reported through a multicenter, large-scale study that risk factors for post-extraction bleeding in patients taking warfarin were age, PT-INR, and inflammation at the extraction site. Although many reports to date have not included cases of surgical extraction, such as the extraction of wisdom teeth and impacted teeth, these types of surgical extraction are often performed within clinical settings. Therefore, this study targeted cases that were managed according to the optimal treatment range and investigated all cases of tooth extraction, including the extraction of wisdom teeth, impacted teeth, and multiple teeth concurrently.

Various methods of hemostasis have been reported for cases of tooth extraction performed while continuing warfarin therapy. These include pressure hemostasis only, wound suturing, and the application of local hemostatic agents $^{27-30)}$. To implement hemostasis, we placed a hemostatic gelatin sponge in the extraction socket and routinely conducted pressure hemostasis using absorbent cotton with suturing of the wound. Patients were examined 30 min after tooth extraction to confirm whether the bleeding had stopped. Hemostasis was determined to have been sufficient for all cases. As all patients underwent tooth extraction on an inpatient basis, the patient could rapidly be examined by a physician or nurse and could receive early diagnosis and appropriate treatment if post-extraction bleeding was suspected. However, although patients were examined, many did not require hemostatic treatment. Of the patients who exhibited post-extraction bleeding, no systemic hemostatic treatment, such as blood transfusion, was required in any case.

The HAS-BLED score is used in the field of cardiology to evaluate the risk of hemorrhaging in patients showing good anticoagulation. As it would be highly significant if the HAS-BLED score could be additionally used for predicting the risk of post-extraction hemorrhaging, we evaluated its use in this study. In our study, the highest HAS-BLED score was three points. A score of one point was the most commonly achieved among the 137 patients (53%). The most common risk factor was found to be age (174 patients; 67%). No difference was noted for the mean HAS-BLED score between the post-extraction hemorrhaging and non-post-extraction hemorrhaging groups. The European Society of Cardiology has proposed that a score of HAS-BLED ≥ 3

Page 11 of 29

BMJ Open

indicates a high risk of hemorrhagic complications. In cases of post-extraction hemorrhaging, we compared patients with a HAS-BLED score of three or higher and those with a score of two or lower but did not detect any statistically significant difference (univariate analysis; RR = 1.362, P = 0.703). Multivariate analysis indicated that there was little risk associated with the score increasing by one (Table 6). AUC for HAS-BLED score alone (Model 2) was 0.55, which was the lowest for all of the models we constructed. In Model 3, to which the details of extracted teeth were added to the HAS-BLED score, AUC was 0.745, suggesting that this model is useful for predicting post-extraction bleeding. However, a statistically significant difference was noted for Model 2 versus Model 3 (P = 0.004), indicating that the HAS-BLED score alone was insufficient for predicting post-extraction bleeding.

As a bleeding risk factors for tooth extraction, investigation of conditions of the individual teeth extracted indicated that post-extraction bleeding risk was five to six times higher for wisdom teeth compared with that for anterior teeth. Extraction site and stability had little effect. Although no differences were observed for the number of teeth extracted in one treatment, there were no cases of multiple extractions of four teeth or more in the post-extraction hemorrhaging group. Although we had predicted Surgical extraction as a risk factor of post-extraction bleeding, results indicated that surgical extraction hardly had any effect on post-extraction bleeding (RR = 0.539, P = 0.256).

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

The effects of warfarin are easily influenced by factors, such as interaction with meals and/or drugs, and additionally by the general state of the patient. In this study, to accurately determine the anticoagulation state directly before tooth extraction, all blood tests were performed before breakfast on the tooth extraction day or the first tooth extraction day if tooth extraction was planned on consecutive days. Although post-extraction bleeding cases were being administered high doses of warfarin, no difference was observed for PT-INR. There were no cases classified as labile INRs. Accordingly, the PT-INR value was investigated using actual measured values as the continuous variable. There were no statistically significant differences noted for PT-INR values by either univariate or multivariate analysis ($P \ge 0.1$), suggesting that the PT-INR value had little effect on post-extraction bleeding in patients undergoing anticoagulant therapy while being managed within the optimal treatment range.

30 No fixed consensus has been reached regarding the concomitant use of warfarin and antiplatelet
 31 agents because some reports have indicated that this increases the risk of post-extraction

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

bleeding^{1,31}, whereas other reports have suggested that antiplatelet agents have little effect ^{14,32}. In this study, incidence of 13.7% of post-extraction bleeding in concomitant antiplatelet drugs, in the warfarin alone was 5.9%. Both of our univariate and multivariate analyses results indicated that the use of concomitant antiplatelet agents was a significant factor affecting post-extraction bleeding. It has been reported that the concomitant use of two antiplatelet agents significantly increases the frequency of intracranial hemorrhaging³³⁾. Furthermore, a prospective observational study of hemorrhagic complications in Japanese cerebral infarction patients³⁴⁾ found that compared with patients taking one antiplatelet agent only; those taking two or three antiplatelet agents along with warfarin clearly exhibited higher annual onset rates of intracranial hemorrhaging. We believe that these results suggest that concomitant antiplatelet agents are a risk factor for post-extraction bleeding.

The limitations of this study included the fact that data were obtained only at a single facility and that outpatients were not included in the subjects investigated. In our facility were many cardiovascular disease patients (especially post-operative valve replacement patients was about 50%). Furthermore, because our study excluded patients who exhibited PT-INR of \geq 3.1 during the blood testing performed on the day of tooth extraction, the current study included patients whose anticoagulant therapy was being well managed. Thus, our subjects did not exactly constitute generalized cases of tooth extraction patients taking warfarin. Moreover, because this was a retrospective study, we believe that a large-scale, prospective, cohort study including outpatient tooth extraction cases required to be conducted in the future.

Moreover, we could not examine the drug interaction effects because our subjects included both patients who intravenously received antibacterial agents and those who received oral

administration. Warfarin use results in a number of drug interactions. Holbrook et al.³⁵⁾ has stated to enhance anti-infective agents, lipid-lowering drugs, NSAIDs including COX-2 selective NSAIDs, selective serotonin reuptake inhibitors, amiodarone, omeprazole, fluorouracil, a and cimetidine of warfarin anticoagulant effects. In these drugs suggest to consider changes to the small alternative agent of interaction with warfarin. However, some reports have stated that in most stable anticoagulant therapy patients, exposure to antibacterial agents causes no clinical problems ³⁶; furthermore, other reports have found that NSAIDs and antibacterial agents often increased warfarin effects in cases of long-term administration ¹⁶. We also believe that the short-term or low-dose administration of NSAIDs or antibacterial agents does not cause any

Page 13 of 29

BMJ Open

1
2
3
4
5
0
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 5 6 7 8 9 10 11 2 5 6 7 8 9 10 11 2 5 6 7 8 9 10 11 2 11 2 11 2 11 11 11 2 11 11 11 11 1
20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 83 9
21
22
23
21
24
25
26
27
28
29
30
21
31 00
32
33
34
35
36
37
20
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 prolongation of clinically problematic PT-INR.

2 Of the models that we created in this study, Model 4 exhibited the highest predictive ability for 3 post-extraction bleeding (AUC = 0.76, P = 0.0309). However, because there were no significant 4 differences observed between Model 1 or 3 versus Model 4, we were unable to construct an 5 optimal model for predicting post-extraction bleeding. To increase model precision, it may be 6 optimal to add factors demonstrating surgeon skill (e.g. years of surgeon experience or time 7 required for one tooth extraction), which were not included in our current investigation. 8 Furthermore, it will be necessary to put all extraction data from outpatients into analysis set to 9 conduct a multilevel analysis.

10 Finally, all the patients had post-extraction bleeding be hemostasis in localized hemostatic 11 procedure, there was no systemic hemostatic treatment was required cases. There was no case that was extended hospitalization period by post-extraction bleeding. Wahl et al.²²⁾ has stated that 12 13 bleeding complications requiring more than local hemostatic measures after dental surgery are 14 exceedingly rare. It was also our results. In order to not cause the onset of fatal severe thromboembolism³⁷), there is no need of warfarin interruption or pause for tooth extraction. The 15 16 special environment to the post-extraction bleeding procedure is not necessary. If condition are 17 prepared, we believe extraction of warfarin therapy patient is possible in a private office.

18 CONCLUSIONS

We investigated post-extraction bleeding risk factors for all types of tooth extraction, including
 wisdom teeth and impacted teeth in patients taking warfarin. Post-extraction bleeding requiring
 hemostatic treatment was observed in 8% patients.

22 2. Whole post-extraction bleeding was hemostasis in localized hemostatic procedure. There was
23 no systemic hemostatic treatment was required cases, and none died patients due to hemorrhage.

3. The HAS-BLED score alone could not be predict post-extraction bleeding in patients takingwarfarin.

4. Concomitant antiplatelet agents use is a risk factor for post-extraction bleeding. More care
must be taken regarding post-extraction bleeding within these cases than in cases with the
administration of warfarin alone.

60

29

30

31 Acknowledgments

We would like to extend our gratitude and thanks to the professors at the Department of Oral and Maxillofacial Surgery at Tokyo Women's Medical University who offered their kind cooperation in this study. **Contributors** TA and TK were involved in the planning of the study concept and design. TK wrote the drafting of the manuscript. KH and TK were involved in the statistical analysis. TA and TK reviewed and revised the manuscript. All authors read and approved the final manuscript. Funding This research received no specific grant from any funding agency in the public. **Conflicts of interest** The authors have no conflicts of interest to declare regarding this study. Data sharing statement No additional data are available. **Provenance and peer review** Not commissioned; externally peer reviewed. **Open access** This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ References 1) Scully C, Wolff A. Oral surgery in patients on anticoagulant therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:57-64. 2) Perry DJ, Noakes TJ, Helliwell PS. Guideline for the management of patients on oral anticoagulants requiring dental surgery. Br Dent J 2007;203:389-93. 3) Guidelines for Diagnosis and Treatment of Cardiovascular Diseasea (2008 Joint Working Groups Report). Guidelines for management of anticoagulant and antiplatelet therapy in cardiovascular disease(JCS 2009). http://www.j-circ.or.jp/guideline/pdf/JCS2009 hori h.pdf (available in December 2015, in japanese)

Page 15 of 29

BMJ Open

1 2		
- 3 4	1	4) JCS Joint Working Group. Guidelines for Pharmacotherapy of Atrial Fibrillation (JCS 2013).
5 6	2	Circ J. 2014;78:1997-2021
7	3	5) Devani P, Lavery KM, Howell CJ. Dental extractions in patients on warfarin: is alteration of
8 9	4	anticoagulant regime necessary? Br I Oral Maxillofac Surg 1998:36107-11
10 11	5	6)Campbell JH, Alvarado F, Murray RA. Anticoagulation and minor oral surgery: should the
12 13	6	anticoagulation regimen be altered? J Oral Maxillofac surg 2000;58: 131-5.
14 15	7	7) Blinder D, Manor Y, Martinowitz U, et al. Dental extraction in patients maintained on oral
16	8	anticoagulant therapy: comparison of INR value with occurrence of postoperative bleeding. J
17 18	9	Oral Maxillofac Surg 2001;30: 518-21.
19 20	10	8)Evans IL, Sayers MS, Gibbons AJ, et al. Can warfarin be continued during dental extraction?
21 22	11	Results of randomized controlled trial. Br J Oral Maxillofac Surg 2002;40:248-52.
23 24	12	9)Zanon E, Martinelli F, Bacci C, et al. Safety of dental extraction among consecutive patients on
25 26	13	oral anticoagulant treatment managed using a specific dental management protocol. Blood
27	14	Coagul Fibrinolysis 2003;14:27-30.
28 29	15	10)Cannon PD, Dharmar VT. Minor oral surgical procedures in patients on oral anticoagulants-a
30 31	16	controlled study. Aust Dent J 2003;48:115-8.
32 33	17	11)Salam S, Yusuf H, Milosevic A. Bleeding after dental extactions in patients taking warfarin.
34 35	18	Br J Oral Maxillofac Surg 2007;45:463-6.
36	19	12)Sacco R, Sacco M, Carpenedo M, et al. Oral surgery in patients on oral anticoagulant
37 38	20	therapy: a randomized comparison of different intensity targets. Oral Surg Oral Med Oral Pathol
39 40	21	Oral Radiol Endod 2007;104:e18-21.
41 42	22	13) Ferrieri GR, Castiglioni S, Carmagnola D, et al : Oral Surgery in patients on anticoagulant
43 44	23	treatment without therapy interruption. J Oral Maxillofac Surg 2007;65:1149-54.
45	24	14) Morimoto Y, Niwa H, Minematsu K. Hemostatic management of tooth extractions in patients
46 47	25	on oral antithrombotic therapy. J Oral Maxillofac Surg 2008;66:51-7.
48 49	26	15) Fujimori M, Nishimura T, Tani K, et al. Clinical evaluatuion of Postoperative bleeding in
50 51	27	patients undergoing antithrombotic therapy. Japan Stomatological Society 2010;59:113-122.
52 53	28	16)Shigeta T, Umeda M, Yoshitake M, et al. A clinical atudy of hemorrhagic complications in
54	29	patients with antithrombotic therapy who underwent dental extraction without discontinuation of
55 56	30	antithrombotic drugs: 282patients receiving administration of warfarin. Japan Stomatological
57 58	31	Society 2012;61:1-7.
59 60		15

y KM, Howell CJ. Dental extractions in patients on warfarin: is alteration of e necessary? Br I Oral Maxillofac Surg 1998:36107-11 varado F, Murray RA. Anticoagulation and minor oral surgery: should the men be altered? J Oral Maxillofac surg 2000;58: 131-5. or Y, Martinowitz U, et al. Dental extraction in patients maintained on oral py: comparison of INR value with occurrence of postoperative bleeding. J rg 2001;30: 518-21. MS, Gibbons AJ, et al. Can warfarin be continued during dental extraction? ed controlled trial. Br J Oral Maxillofac Surg 2002;40:248-52. lli F, Bacci C, et al. Safety of dental extraction among consecutive patients on treatment managed using a specific dental management protocol. Blood 2003;14:27-30. armar VT. Minor oral surgical procedures in patients on oral anticoagulants-a ist Dent J 2003;48:115-8. H, Milosevic A. Bleeding after dental extactions in patients taking warfarin. c Surg 2007;45:463-6. M, Carpenedo M, et al. Oral surgery in patients on oral anticoagulant red comparison of different intensity targets. Oral Surg Oral Med Oral Pathol 2007;104:e18-21. astiglioni S, Carmagnola D, et al : Oral Surgery in patients on anticoagulant herapy interruption. J Oral Maxillofac Surg 2007;65:1149-54. iwa H, Minematsu K. Hemostatic management of tooth extractions in patients tic therapy. J Oral Maxillofac Surg 2008;66:51-7. shimura T, Tani K, et al. Clinical evaluatuion of Postoperative bleeding in antithrombotic therapy. Japan Stomatological Society 2010;59:113-122. da M, Yoshitake M, et al. A clinical atudy of hemorrhagic complications in rombotic therapy who underwent dental extraction without discontinuation of gs: 282patients receiving administration of warfarin. Japan Stomatological

17) Hughes M, Lip GY. Guideline Development Group for the NICE national clinical guideline for management of atrial fibrillation in primary and secondary care. : Risk factors for anticoagulation-related bleeding complications in patients with atrial fibrillation: a systematic review. QJM 2007;100:599-607. 18)Palareti G, Cosmi B. Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients. Thromb Haemost 2009;102:268-78. 19)Pisters R, Lane DA, Nieuwlaat R, et al. A novel user-friendly score(HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093-100. 20)European Heart Rhythm Association. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology(ESC). Eur Heart J 2010;31:2369-429. 21)Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease in the Yong, and the Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736-54. 22)Wahl MJ, Pinto A, Kilham J, et al. Dental surgery in anticoagulated patients – stop the interruption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2015;119:136-157 23) Herman WW, Konzelman JL, Sutley SH. Current perspectives dental patients receiving coumarin anticoagulant therapy. JADA 1997;128:327-35. 24) Scully C, Wolff A. Oral Surgery in patients on anticoagulant therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:57-64. 25) Little JW, Falace DA, et al: Bleeding disorder dental management of the medically compromised patients. 6th ed, Mosby, St Louis, 2002, p.332-364 26) Iwabuchi H, Imai Y, Asanami S, et al. Evaluation of postextraction bleeding incidence to compare patients receiving and not receiving warfarin therapy: across-sectional, multicenter, observational study. BMJ open 2014;4:e005777 27) Shikimori M. Clinical and hemostatic studies on dental extractions of patients undergoing oral anticoagulant therapy. Japanese Society of Oral Maxillofacial Surgeons 1982;28:1629-42.

Page 17 of 29

BMJ Open

28)Halfpenny W, fraser JS, Adlam DM. Comparison of 2 hemostatic agents for the prevention of
 postextraction hemorrhage in patients on anticoagulants. Oral Surg Oral Med Oral Pathol Oral
 Radiol Endod 2001;92:257-9.
 29)Carter G, Goss A, Lloyd J, et al. Tranexamic acid mouthwash versus autologous fibrin glue

in patients taking warfarin undergoing dental extractions : a randomized prospective clinical
 study. J Oral Maxillofac Surg 2003;61:1432-5.

7 30)Perry DJ, Noakes TJ, Helliwell PS, et al. Guideline for the management of patients on oral
8 anticoagulants requiring dental surgery. Br Dent J 2007;203:389-93.

9 31)Hong C, Napenas JJ, Brennan M, et al. Risk of postoperative bleeding after dental procedures
 10 in patients on warfarin: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol
 11 2012;114:464-8.

32) Morimoto Y, Niwa H, Yoneda T, et al. Hemostatic management of tooth extraction in patients
 undergoing antithrombotic therapy. Japan Stomatological Society 2004;53:74-80.

14 33)Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with 15 clopidogrel alone after recent ischaemic stroke or transient aschaemic attack in high-risk patients 16 (MATCH) : randomized, double-blind, placebo-controlled trial. Lancet 2004;364:331-7. BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

17 34)Toyoda T, Yasaka M, Iwade K, et al. Dual antithrombotic therapy increases severe bleeding
18 events in patients with stroke and cardiovascular disease: a prospective, multicenter,
observational study. Stroke 2008;39:1740-5.

20 35) Holbrook AM, Pereira JA, Labiris R, et al. Systemic overview of warfarin and its drug and

food interactions. Arch Intern Med 2005;165:1095-106.

22 36)Clark NP, Delate T, Riggs CS, et al. Warfarin interactions with antibiotics in the ambulatory

care setting. JAMA Intern Med 2014;174:409-16.

24 37) Wahl MJ. Myths of dental surgery in patients on anticoagulant therapy. JADA 2000;131:77-

25 81

	risk factor	clinical characteristics
Н	Hypertension	uncontrolled, >160mmHg systolic
А	Abnomal renal and liver function	presence of chonic dialysis, renal pramsplantation or serum creatinine
	(1point each)	$\geq 200 \mu \text{mol/L}$
		chornic hepatic disease(eg, cirrhosis), bilirubin >2X upper limit of
		nomal,
		AST/ALT/ALP >3X upper limit of nomal
S	Stroke	previous history
В	Bleeding	bleeding history or predisposition
L	Labile INRs	unstable/high INRs or poor time in therapeutic range (e.g. 60%)
Е	Elderly	>65 years
D	Drugs or alcohol	concomitantly antiplatelet agents and NSAIDs,
	(1point each)	alcohol excess

Table 1 HAS-BLED bleeding risk score

2 Criteria from the European Society of Cardiology²⁰⁾ were used. AST=aspartate

3 aminotransferase, ; table 3 ALT=alanine aminotransferase, ALP=alkaline phosphatase,

4 NSAIDs=nonsteroidal antiinflammatory drugs

1	
2	
3	
4	
5	01234567890123456789
6	
7	
1	
8	
9	
1	0
1	1
1	2
1	2
1	٦ ١
	4
1	5
1	6
1	7
1	8
1	9
י ר	ñ
2	4
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	1
2	8
2	9
3	9012345678
3	1
3	2
2	2
ວ າ	1
3	4
3	5
3	6
3	7
3	8
3	9
1	0
4	1
	2
4	
4	4
4	5
4	
4	
4	
4	9
5	0
5	1
5	
-0	2
	2 3
5	3
5 5	3 4
5 5 5	3 4 5
5 5 5 5	3 4 5 6
5 5 5 5 5 5	3 4 5 6 7
5 5 5 5 5 5	3 4 5 6

	post-	non		significant	
	extraction	post	p value	difference	$\chi^2 va$
	bleeding	extraction	-		
	group	bleeding			
		group	_		
	N=21	N=237			
	number	number			
	of patients	of patients	0.00448		
Age (mean \pm SD)	63.4±13.2	66.6±13.7	0.2944 ^a		
Gender(Male/Female)	14/7	143/94	0.6463 ^c		0.
Primary disease					
post Heart Valve	17	120			
Prosthesis Implantation					
atrial fibrillation	2	76			
cerebral infarction	2	13			
dilated cardiomyopathy	1	9			
myocardial infarction	0	23			
deep vein thrombosis	0	11			
arteriosclerosis obliterans	0	3			
intracardiac thrombus	0	2			
Anticoagulation			11		1
warfarin dose(mg) (mean ± SD)	3.9±1.4	3.2±1.3	0.0241 ^a	*	
PT-INR value	2.1[1.8, 2.5]	2.0[1.8, 2.3]	0.3296 ^b		
(mean[25%tile, 75tile])					
Platelet count($\times 10^4/\mu l$)	16.8±5.3	18.2±5.8	0.2978 ^a		
Concomitant antiplatelet age	ents				
yes	10	63	0.0732 ^c		4.2
aspirin	10	52		4	
ticlopidine	0	8			
ethyl icosapentate	0	6	1		
cilostazol	0	2	1		
limaprost	0	1	-		
dipyridamole	0	1	-		

3 table 3using two types of antiplatelet agents were included in the non post-extraction bleeding

group. A;Student's t-test, b;Mann-Whitney U test, c;Fisher's exact test, *:p (0.05 was 4

5 considered significant.

6

59

Table 3 Details of extracted teeth

	post-extraction bleeding group	non post-extraction bleeding group	p value	significant difference	χ^2 value
	N=21	N=237			
	number of patients	number of patients			
	or mean ± SD	or mean ± SD			
Extraction site					
maxilla	14	122	0.254 ^c		1.79
mandibula	7	115			
Teeth type					
incisor	1	36	0.039 ^c	*	8.70
premolar	2	65			
molar	9	89			
wisdom	9	47			
Stability of teeth					
good	17	158	0.227 ^c		1.80
poor	4	79			
Extraction proce	dure				
simple	17	165	0.328 ^c		1.19
surgical	4	72			
Number of	1.7 ± 0.6	1.8 ± 1.1	0.576 ^a		
teeth extracted					
in operation					
One tooth	8	125	0.188 ^c		9.12
Two tooth	12	65			
Three tooth	1	24			
Four tooth	0	18			
Five tooth	0	3			
Six tooth	0	1			
Seven tooth	0	1			

2 SD:standard deviation, a; Student's t-test, c;fisher's exact test, ; table 3

*: $p \langle 0.05 was considered significant.$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
1
2
3
2 3 4 5 6 7
5
5
6
7
8
à
8 9 10 11 12
10
11
12
13
10
14
15
16
17
12 13 14 15 16 17 18 19
IŎ
19
20
21
20
22
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
40
43
44
45
46
40
47
48
49
50
50 51
51
52
52 53
54
55
55
56 57 58
57
58
50

60

3

4

5

	post-extraction	non post-extraction	р	significant	χ^2
	bleeding group	bleeding group	value	difference	value
	N=21	N=237			
	mean \pm SD	mean ± SD			
	or number of patients	or number of patients			
HAS-BLED	1.3±0.9	1.2±0.8	0.467		
score	<u> </u>		a		
0	3	41	0.804		0.75
1	10	127	с		
2	6	52			
3	2	17			
4	0	0			
5	0	0			
6	0	0			
7	0	0			
8	0	0			
9	0	0			
risk factor					
Н	1	3			
А	1	11			
S	2	38			
В	0	5			
L	0	0			
E	13	161			
D	11	63			

SD:standard deviation, a; Student's t-test, c; Fisher's exact test; table 3 2

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	Tabl

		95	%CI		significant difference
	RR	lower	upper	p value	
Extraction site					
maxilla/mandibula	1.885	0.756	5.128	0.177	
Teeth type					
premolar/incisor	1.108	0.103	24.300	0.934	
molar/incisor	3.640	0.649	68.346	0.160	
wisdom/incisor	6.894	1.213	130.039	0.027	*
Stability of teeth					
good/poor	2.125	0.756	7.572	0.161	
Extraction procedure				•	
surgical/simple	0.539	0.151	1.518	0.256	
PT-INR value	1.782	0.597	5.387	0.300	
Platelet count($\times 10^4/\mu l$)	0.959	0.887	1.037	0.296	
HAS-BLED score	I.				
1/0	1.076	0.312	4.968	0.914	
2/0	1.577	0.391	7.825	0.529	
3/0	1.608	0.199	10.551	0.626	
2/1	1.465	0.477	4.157	0.487	
3/1	1.494	0.218	6.305	0.636	
3/2	1.020	0.140	4.922	0.982	
3/ less than 2	1.362	0.206	5.255	0.703	
Concomitant antiplatele	t agents	use	-		
yes/no	2.511	1.001	6.238	0.050	*

Table 5 Univariate analysis of bleeding risk factor in teeth extraction

Criteria from the European Society of Cardiology²⁰⁾ were used. ;

RR:risk ratio *:p(0.05 was considerred significant.)

model 1

1 Table 6 Multivariate analysis of postextraction hemorrhage

		95	%CI		
	risk ratio	lower	upper	p value	significant difference
Extraction site					
maxilla/mandibula	1.855	0.7	5.286	0.216	
Teeth type					
premolar/incisor	1.118	0.102	24.727	0.928	
molar/incisor	3.468	0.594	65.974	0.188	
wisdom/incisor	5.228	0.85	101.628	0.078	
Stability of teeth					
good/poor	1.790	0.551	6.994	0.344	
Extraction procedure					
surgical/simple	0.624	0.166	1.915	0.425	
PT-INR value	2.078	0.681	6.606	0.204	
Platelet count($x10^4/ul$)	0.970	0.892	1.053	0.461	
HAS-BLED score				1	
1/0	—	—	—	—	
2/0	—			_	
3/0		—		—	
2/1		_	ſ	_	
3/1		_		<u> </u>	
3/2	—	—	_	+	
Concomitant antiplatele	et agents us	e			
yes/no	_	_		e.	

2	
3	
4	
5 6	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
8 9 10 11 12 13 14 15 16	
16	
17	
18	
16 17 18 19	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32 33 34 35 36 37 38 39	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54 55 56	
55	
56	
57 58	
58	
59	

2

3 4 5

1

2

1

Table 6 continuation

	model 2				
		95	%CI		
	risk ratio	lower	upper	p value	significant difference
Extraction site					
maxilla/mandibula	—	—		_	
Teeth type					
premolar/incisor	—	—	_	—	
molar/incisor	—	—			
wisdom/incisor	_	_			
Stability of teeth					
good/poor					
Extraction procedure					
surgical/simple		_	_	_	
PT-INR value	4	—	_	_	
Platelet count($x10^4/ul$)	- (—	_	—	
HAS-BLED score					
1/0	1.076	0.312	4.968	0.914	
2/0	1.577	0.391	7.825	0.529	
3/0	1.608	0.199	10.551	0.626	
2/1	1.465	0.477	4.157	0.487	
3/1	1.494	0.218	6.305	0.636	
3/2	1.020	0.14	4.922	0.982	
Concomitant antiplatele	et agents us	e			
yes/no		_			

Criteria from the European Society of Cardiology²⁰⁾ were used. •*:p(0.05)

4
1
2
3
1
- 3 4 5 6
5
7
Ω.
0
9
10
11
12
12
13
14
15
7 8 9 10 11 12 13 14 15 16 17 18 20
10
17
18
19
20
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
24
25
26
27
20
20
29
30
31
22
32
33
34
35
200
30
37
38
39
40
41
42
43
44
44
45
46
47
48
40
49
50
51
52
52
53
E /

1	Table 6	continuation

	model 3				
		95	%CI		
	risk ratio	lower	upper	p value	significant difference
Extraction site					
maxilla/mandibula	1.914	0.716	5.494	0.198	
Teeth type					
premolar/incisor	1.045	0.095	23.222	0.972	
molar/incisor	3.388	0.579	64.544	0.199	
wisdom/incisor	5.380	0.860	105.301	0.075	
Stability of teeth					
good/poor	1.961	0.588	7.893	0.283	
Extraction procedure					
surgical/simple	0.674	0.177	2.125	0.515	
PT-INR value	2.288	0.727	7.543	0.162	
Platelet count($x10^4/ul$)	0.968	0.889	1.053	0.443	
HAS-BLED score					L
1/0	1.197	0.325	5.777	0.798	
2/0	2.271	0.515	12.242	0.284	
3/0	2.338	0.269	16.989	0.410	
2/1	1.897	0.580	5.871	0.279	
3/1	1.954	0.266	9.403	0.463	
3/2	1.030	0.130	5.605	0.975	
Concomitant antiplatele	et agents us	e			
yes/no	_	_	_	e	

2 Criteria from the European Society of Cardiology²⁰⁾ were used. $*:p\langle 0.05$

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

2 3 4 5 6 7 8 9 10 11 12
J ⊿
4
5
6
7
8
9
10
11
12
13
1/
14
12 13 14 15 16 17 18 19
16
17
18
19
20 21 22 23
21
22
23
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
24
20
26
27
28
29
30
31
32
22
24
34
35
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
53 54
54
55
56
57
58
59
<u></u>

60

2

3 4

1

2

			model 4	1	•
		95	%CI		
	risk ratio	lower	upper	p value	significant difference
Extraction site					
maxilla/mandibula	1.936	0.722	5.585	0.192	
Teeth type					
premolar/incisor	1.159	0.104	25.901	0.906	
molar/incisor	3.730	0.630	71.468	0.164	
wisdom/incisor	5.113	0.804	100.719	0.804	
Stability of teeth					
good/poor	1.916	0.568	7.780	0.304	
Extraction procedure					
surgical/simple	0.670	0.175	2.117	0.509	
PT-INR value	2.687	0.831	9.349	0.107	
Platelet count($x10^4/ul$)	0.970	0.894	1.052	0.465	
HAS-BLED score					
1/0	_	_	_	_	
2/0	_		_		
3/0	_		-	_	
2/1	_			_	
3/1	_	_	_		
3/2	_	—	_		
Concomitant antiplatele	et agents us	e			
yes/no	2.881	1.079	7.740	0.035	*

1 Table 6 continuation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
4
5
5
6
7
8
9
3
10
11
11
12
13
13
14
15
15
16
17
16 17
10
19
19
20
21 22 23 24
21
22
22
23
24
25 26 27 28 29 30
25
26
27
21
28
20
29
30
31 32
31
32
22
33
34
25
30
36
07
33 34 35 36 37 38
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
53
54
с. ЕЕ

Table 7 Comparison of the model

		95%	ώCI			
	AUC	lower	upper	p value	significant difference	
model 1	0.738	0.630	0.824	0.083		
model 2	0.548	0.425	0.666	0.867		
model 3	0.745	0.632	0.832	0.148		
model 4	0.763	0.650	0.847	0.031	*	
model 1vs3				0.727		
model 1vs4				0.441		
model 2vs3				0.004	*	
model 3vs4				0.398		
*:p<0.05, A	UC;area	a under	the cur	ve		

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

No 1 2 3	Recommendation (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found Explain the scientific background and rationale for the investigation being reported	<i>v</i> <i>v</i>
2	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	V V
	and what was found	~
	Explain the scientific background and rationale for the investigation being reported	
	Explain the scientific background and rationale for the investigation being reported	
3		~
	State specific objectives, including any prespecified hypotheses	~
4	Present key elements of study design early in the paper	~
5	Describe the setting, locations, and relevant dates, including periods of recruitment,	~
	exposure, follow-up, and data collection	
6	(a) Give the eligibility criteria, and the sources and methods of selection of	~
	participants. Describe methods of follow-up	
	(b) For matched studies, give matching criteria and number of exposed and	
	unexposed	
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	~
	modifiers. Give diagnostic criteria, if applicable	
8*		~
		<u> </u>
		~
11		~
10		
12		~
	(<u>e</u>) Describe any sensitivity analyses	V
13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	~
	eligible, examined for eligibility, confirmed eligible, included in the study,	
	completing follow-up, and analysed	
	(b) Give reasons for non-participation at each stage	
	(c) Consider use of a flow diagram	
14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	~
	information on exposures and potential confounders	
15*	* *	~
16		~
		~
	5 6 7 8* 9 10 11 12 12 13* 14* 14*	5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias 10 Explain how the study size was arrived at 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why 12 (a) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed (a) I applicable, explain how loss to follow-up was addressed (e) Describe any sensitivity analyses 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c)

Ρ

	(c) If relevant, meaningful tir	, consider translating estimates of relative risk into absolute risk for a ne period
Other analyses	17 Report other a sensitivity ana	nalyses done—eg analyses of subgroups and interactions, and lyses
Discussion		
Key results	18 Summarise ke	y results with reference to study objectives
Limitations		tions of the study, taking into account sources of potential bias or Discuss both direction and magnitude of any potential bias
Interpretation		s overall interpretation of results considering objectives, limitations, sanalyses, results from similar studies, and other relevant evidence
Generalisability	21 Discuss the ge	eneralisability (external validity) of the study results
Other information		
Funding	applicable for	e of funding and the role of the funders for the present study and, if the original study on which the present article is based

BMJ Open

Is the HAS-BLED score useful in predicting post-extraction bleeding in patients taking warfarin?: a retrospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010471.R2
Article Type:	Research
Date Submitted by the Author:	23-Jan-2016
Complete List of Authors:	Kataoka, Toshiyuki; Tokyo women's medical university, Oral and maxillofacial surgery Hoshi, Keika; Kitasato University School of Medicine, Department of Hygiene Ando, Tomohiro; Tokyo women's medical university, Oral and maxillofacial surgery
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Medical management
Keywords:	post-extraction bleeding, warfarin, HAS-BLED score, concomitant antiplatelet agents

SCHOLARONE[™] Manuscripts

BMJ Open

Is the HAS-BLED score useful in predicting post-extraction bleeding in patients taking warfarin? a retrospective cohort study Toshiyuki KATAOKA¹⁾, Keika HOSHI²⁾, Tomohiro ANDO¹⁾ 1)Department of Oral and Maxillofacial Surgery, Tokyo Women's medical university 2)Department of Hygiene, School of medicine, Kitasato University Correspondence to Toshiyuki KATAOKA;kataoka@oms.twmu.ac.jp ABSTRACT Objective: Unexpected post-extraction bleeding is often experienced in clinical practice. Therefore, determining the risk of post-extraction bleeding in patients receiving anticoagulant therapy prior to surgery is beneficial. This study aimed to verify whether the HAS-BLED score was useful in predicting post-extraction bleeding in patients taking warfarin. Design: Retrospective cohort study. Setting: Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University. Participants: Subjects 258 sequential cases (462 teeth) who had undergone tooth extraction between January 1, 2010 and December 31, 2012 while continuing warfarin therapy. Main outcome measure: Post-extraction risk factors for bleeding. The following data were collected as the predicting variables for multivariate logistic analysis: the HAS-BLED score, extraction site, tooth type, stability of teeth, extraction procedure, prothrombin time-international normalized ratio value, platelet count, and the use of concomitant antiplatelet agents. Results: Post-extraction bleeding was noted in 21 (8.1%) of the 258 cases. Hemostasis was achieved with localized hemostatic procedures in all the cases of post-extraction bleeding. The HAS-BLED score was found to be insufficient in predicting post-extraction bleeding (area under the curve = 0.548, P = 0.867, multivariate analysis). The risk of post-extraction bleeding was approximately three time greater in patients taking concomitant oral antiplatelet agents (risk ratio= 2.881, P = 0.035, multivariate analysis). Conclusions: The HAS-BLED score alone could not predict post-extraction bleeding. The concomitant use of oral antiplatelet agents was a risk factor for post-extraction bleeding. No episodes of post-extraction bleeding required more than local measures for hemostasis. However, because this was a retrospective study conducted at a single institution, large-scale prospective cohort studies, which include cases of outpatient tooth extraction, will be necessary in the future.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

2 Strengths and limitations of this study

- This is the first study to investigate the usefulness of the HAS-BLED score for predicting the risk of post-extraction bleeding. We investigated all cases of tooth extraction, including wisdom teeth and impacted tooth extractions.

No previous reports have investigated the effects of each individual tooth extracted, the
extraction procedure, and the effects of concomitant antiplatelet agents on post-extraction
bleeding using statistical analyses or demonstrated a high level of evidence for these correlations.
As this study was a retrospective cohort study conducted at a single institution, large-scale
prospective cohort studies, including outpatients, are needed in the future.

12 INTRODUTION

Patients on anticoagulant therapy who are scheduled to undergo tooth extraction are typically advised continue anticoagulant therapy 1-4. Unexpected post-extraction bleeding is often experienced in clinical practice; however, the Development of thromboembolism after tooth extraction because of the discontinuation or reduction of anticoagulant therapy has been reported^{5, 6)}. Although fatal adverse events must be prevented, there is the additional risk of bleeding because of invasive treatment in these patients, and sufficient measures must be taken to prevent and limit excessive post-extraction bleeding. In the past, a number of studies have investigated tooth extraction with continued anticoagulant therapy and have reported that the frequency of post-extraction bleeding was in the range of $0\%-26\%^{7-18}$. Blinder et al.⁹⁾ and Evans et al.¹⁰⁾ reported that there were no differences in the incidences of post-extraction bleeding between a group of patients who had discontinued anticoagulant therapy and a group of those who had continued anticoagulant therapy. Even if the uniform consensus was to perform tooth extraction with continued anticoagulant therapy, the risk of post-extraction bleeding remains. Morimoto et al.¹⁹⁾ suggested that post-extraction bleeding was strongly affected by local inflammatory conditions. However, there are few reports on the systemic factors contributing to post-extraction bleeding. Recently, the HAS-BLED score²⁰⁻²²⁾ has been used as an index for evaluating the risk of bleeding complications in patients taking anticoagulant therapy. The HAS-BLED score evaluates nine risk factors for bleeding. The European Society of Cardiology guidelines²³⁾ has stated that patients who score three points or higher are at a high risk of

Page 3 of 29

BMJ Open

bleeding complications. However, to date, no reports have examined the relationship between
 post-extraction bleeding and the HAS-BLED score.
 Preoperative identification of patients at high risk of post-extraction bleeding could facilitate
 appropriate preparations prior to performing tooth extraction. Therefore, we examined whether
 the HAS-BLED score was useful in predicting post-extraction bleeding in patients on warfarin
 therapy.

8 MATERIAL AND METHODS

9 Study design

10 This was a retrospective cohort study.

12 Study population and eligibility criteria

The study subjects were included from 258 sequential inpatient cases at the Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, who underwent tooth extraction between January 1, 2010 and December 31, 2012, while receiving a maintenance dose of warfarin. As a general rule, we performed inpatient tooth extraction in patients taking warfarin. Concomitant antiplatelet agents were continued at the maintenance dose. The exclusion criteria were as follows: 1) patients younger than 20 years in age at the time of hospital admission; 2) the presence of comorbid blood diseases; and 3) a prothrombin time-international normalized ratio (PT-INR) level of ≥ 3.1 , as indicated by blood tests performed on the day of the tooth extraction. Patients underwent follow-up examinations for 1 month after discharge. The doctors' and nurses' records obtained from the medical examination records were registered in a database along with the results of the clinical tests. When the same patient was hospitalized and underwent tooth extraction more than once during the study period, all instances were included in the analysis.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

26 Tooth extraction procedure

Each patient's primary physician was consulted preoperatively regarding the general medical
status and the use of anticoagulants. When acute symptoms, such as periodontal abscesses, apical
periodontitis, or pericoronitis were present around the tooth to be extracted, antibiotics were
administered for at least 3 days and anti-inflammation procedures, such as incision and drainage,
were performed as necessary. During the tooth extraction, electrocardiograms, blood pressure,

pulse rate, and percutaneous oxygen saturation levels were monitored. For local anesthesia, 1.8– 3.6 ml of 2% lidocaine containing 1/80,000 units of epinephrine was administered. Tooth extraction was performed with minimal invasion. When multiple teeth were indicated for extraction and comprised within 1/3 of the jaw area, all the teeth were extracted in one procedure. When the teeth comprised over 1/3 of the total jaw area, multiple teeth were extracted in one procedure if the procedure was expected to take <30 min, while at the same time considering the age of the patient and any comorbid diseases. After extraction, curettage of inflammatory granulation tissue around the wound border was performed, a hemostatic gelatin sponge was inserted into the socket (Spongel, Astellas Pharma Inc.), and suturing was performed to reduce the size of the wound border. The patient was requested to bite down on a piece of absorbent cotton for 20 min after completion of the tooth extraction in order to achieve pressure hemostasis. At 30 min after the tooth extraction, the patient was examined to confirm that the bleeding had stopped. After extraction, patients were instructed to avoid strong or frequent gargling and to rest as much as possible. Post-extraction meals were comprised of rice gruel. In patients with a high risk of developing infective endocarditis²⁴⁾, intravenous antibiotics were administered before surgery and oral antibiotics were administered for 3 days after the tooth extraction. For patients with heart disease on anticoagulant therapy who did not require infectious endocarditis prophylaxis, oral antibiotics were administered for 3 days following tooth extraction. Five doses of analgesics, which comprised loxoprofen sodium or acetaminophen, were prescribed as a medication when pain was experienced. Post-extraction Bleeding Patients who had bleeding but in whom hemostatic procedures were not deemed necessary were instructed to get adequate rest and refrain from excessive gargling. Regular follow-up examinations were performed. When patients had mild bleeding and oozing, the patient was requested to bite down for 20 min on a piece of gauze or absorbent cotton placed on the tooth extraction wound in order to achieve pressure hemostasis. These patients who did not require medical treatment for post-extraction bleeding were categorized into the non-post-extraction bleeding group. Patients who had bleeding on examination after the tooth extraction and who underwent some form of medical hemostatic procedure were categorized into the post-extraction bleeding group.

The hemostatic procedures that were performed in accordance with the decision of the examining oral surgeon are described below. In cases of moderate to severe bleeding, which were difficult to resolve using primary hemostasis alone, the local dental anesthetic epinephrine, which has vasoconstrictive effects, was infiltrated at a dose of 1.0–1.8 ml around the tooth extraction wound. Pressure was then applied to the wound by asking the patient to bite down on a piece of gauze or absorbent cotton. When it was determined that the bleeding could not sufficiently be halted by pressure hemostasis alone, the area was additionally filled with local hemostatic agents or additional suturing of the wound was performed as necessary. For cases of repeated bleeding or prolonged exudative bleeding after hemostatic procedures, a hemostatic splint was fabricated to cover the wound. This was fitted after applying a cavity lining with a periodontal pack or denture-based tissue conditioner.

13 Bleeding risk factors for tooth extraction

The details of extracted teeth, surgical procedure, bleeding tendency, and the use of concomitant antiplatelet agents were investigated as possible factors affecting post-extraction bleeding. Details regarding the extracted teeth, extraction site (maxilla/mandible), type of teeth (incisor/premolar/molar/wisdom), and stability of teeth were examined. Teeth exhibiting alveolar bone resorption of at least 2/3 of the tooth root length, as determined by preoperative X-rays, or teeth found to have clinical grade III instability were defined as having poor stability. The surgical procedure was classified into simple extraction and surgical extraction. For surgical extraction, the strategy followed was to make an incision into the gingiva, detach and turn over the muco-periosteal flap, and extract the tooth after cutting off the alveolar bone or root separation. All other extractions were defined as simple extractions. With respect to the bleeding tendency, the PT-INR value and platelet count were examined.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

26 HAS-BLED score

The HAS-BLED score was evaluated according to the European Society of Cardiology
guidelines²³⁾ (Table 1) and is described below. Patients with a systolic blood pressure of
≥160 mmHg, which was measured on arrival at the hospital, were categorized as having
"hypertension." Patients were categorized as having "abnormal renal or liver function" based on

 $\mathbf{5}$

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

the following conditions: 1) patients receiving hemodialysis or those who had a kidney transplant; 2) patients with a serum creatinine level of ≥ 2.26 mg/dl in the most recent blood test; 3) patients exhibiting chronic liver disease, such as liver cirrhosis, and bilirubin levels of at least two times the normal upper limit; and 4) patients with at least three times the normal upper limit of either alanine transaminase, aspartate aminotransferase, or alkaline phosphatase levels. Patients were categorized as having "stroke" or "bleeding" based on the information obtained from the medical interviews on admission to the hospital. "Labile INRs" were described as unstable/high INRs or poor time in the rapeutic range (e.g., <60%). Patients who were ≥ 65 years in age at the time of tooth extraction were categorized as "elderly." Patients with long-term administration of antiplatelet agents or non-steroidal anti-inflammatory drugs (NSAIDs) or patients with alcohol dependency were categorized into "drug and alcohol" group. One point was allocated for each of these categories with a possible full score of nine points.

14 Selection of representative teeth

Of the sequential cases in this study, some patients had duplicate tooth extractions at different time periods; however, the age of the patient, PT-INR values, and the tooth extraction site were different for each extraction. In cases of extraction of multiple teeth in the same patient, each period was treated as independent data with the representative tooth following the procedure. The most posterior tooth was selected as the representative tooth, and in cases of multiple posterior teeth, the upper tooth or the tooth showing the best stability was selected.

22 Statistical analyses

Statistical analysis involved processing the data of the patient with the representative tooth. Univariate and multivariate logistic analyses were applied to analyze the bleeding risk factors for the tooth extraction data with the presence/absence of post-extraction bleeding as the response variable and the bleeding risk factor as the explanatory variable. Two variable values were used to describe the tooth extraction site (maxilla/mandible), four variable values were used to describe the type of teeth (incisor/premolar/molar/wisdom), two variable values were used to describe the stability of teeth (good/poor), and two variable values were used to describe the surgical procedure (simple/surgical extraction). For the PT-INR value and platelet count, the actual measured values were analyzed as continuous variables, and the HAS-BLED score was

Page 7 of 29

BMJ Open

1	used in the analysis as both a continuous and a nominal variable. Concomitant antiplatelet agents
2	were evaluated as two variable values (yes/no). During logistic analysis, we calculated the risk
3	ratio (RR), 95% confidence interval (CI), and P value. The RR was calculated as the ratio of
4	"maxilla" to "mandible" for the site, the tooth type within the anterior teeth for the type of teeth,
5	"good" to "poor" for the condition of the periodontium, and from "surgical" to "simple" for the
6	surgical procedure. The RR for the HAS-BLED score was calculated for each level. For
7	concomitant antiplatelet agents, the RR of "yes" to "no" was calculated. In the multivariate
8	analysis, RRs were combined to create post-extraction bleeding analysis models. For each model,
9	we plotted the receiver operating characteristic (ROC) curve and calculated the area under the
10	curve (AUC) in addition to the P value and 95% CI for the C-statistical model overall. Many
11	screening tools have used a C-statistical value of ≥ 0.70 . We used the C-statistic for comparisons
12	between each model. Model 1 was constructed from the extracted tooth state, surgical procedure,
13	and bleeding tendency. Model 2 was constructed from the HAS-BLED score only. Model 3 was
14	constructed by adding the HAS-BLED score to Model 1. Model 4 was constructed by adding
15	concomitant antiplatelet agents as an explanatory variable to Model 1. Data were analyzed with
16	the use of JMP Pro 11 software (2014 SAS Institute Inc., US) with a two-tailed alpha level of
17	0.05.
18	Ethios
19	Ethics
20	This study was approved by the ethical review board of the Tokyo Women's Medical University
21	(approval number: 3079). The first and second authors take complete responsibility for the
22	integrity of the data and the accuracy of the data analysis.
23	
24	RESULTS
25	A total of 462 extracted teeth in 258 patients (males: 157, females: 101) were analyzed. Post-
26	extraction bleeding was observed in 21 patients (8.1%). Hemostasis with a localized hemostatic
27	procedure was performed in all the cases of post-extraction bleeding and no patients died
28	because of hemorrhage.
29	
30	Patient characteristics

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

31 Post-extraction bleeding was noted in 21 patients (males: 14, females: 7; mean age: $63.4 \pm$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

13.2 years). Table 2 shows the underlying diseases for which anticoagulant therapy was prescribed. The mean warfarin dosage was 3.9 ± 1.4 mg, and the median (25th percentile, 75th percentile) PT-INR was 2.1 (1.8, 2.5). The mean platelet count was $16.8 \pm 5.3 \times 10^4/\mu$ l. Eleven patients were taking only warfarin, and 10 patients were taking an antiplatelet agent in addition to warfarin. Aspirin was administered as the antiplatelet agent in all cases. The non-post-extraction bleeding group included 237 patients (males: 143, females: 94; mean age: 66.6 ± 13.7 years). The underlying diseases for which anticoagulant therapy was prescribed are shown in Table 2. The mean warfarin dosage was 3.2 ± 1.3 mg. The median (25th percentile, 75th percentile) PT-INR was 2.0 (1.8, 2.3). The mean platelet count was $18.2 \pm 5.8 \times 10^4$ /µl. A total of 174 patients were taking only warfarin, and 63 patients were taking warfarin and an antiplatelet agent. Table 2 shows a breakdown of the antiplatelet agents. Seven patients who were taking two types of antiplatelet agents were all categorized into the non-post-extraction bleeding group. Between the two groups, a statistically significant difference was noted for the warfarin dosage; however, no significant difference was noted for PT-INR. In addition, no significant differences were noted for age, sex, platelet count, or concomitant antiplatelet agent use. **Details of the extracted tooth** In the post-extraction bleeding group, the maxilla was the tooth extraction site in 14 cases and the mandible was that in 7 cases. For the non-post-extraction bleeding group, the maxilla was the tooth extraction site in 122 cases and the mandible was that in 115 cases. No significant differences were noted between the two groups (P = 0.254, Fisher's exact test; Table 3). Results for tooth type The numbers of incisor, premolar, molar, and wisdom teeth were 1, 2, 9, and 9, respectively, for the post-extraction bleeding group, and 36, 65, 89, and 47, respectively, for the non-post-extraction bleeding group. A statistically significant difference was noted between the two groups (P = 0.039, Fisher's exact test; Table 3). In the post-extraction bleeding group, 17 cases showed good stability of teeth, whereas 4 cases showed poor stability. In the non-post-extraction bleeding group, 158 cases showed good

29 stability, whereas 79 cases showed poor stability. No statistically significant difference was

noted between the two groups (P = 0.227, Fisher's exact test; Table 3).

31 Extraction procedure

Page 9 of 29

1

BMJ Open

1 2 3		
3 4 5 6 7 8 9 10 1 12 13 14 5 6 7 18 9 20 1 22 3 24 5 6 7 8 9 3 3 3 3 5 3 6 7 8 9 10 1 12 13 14 5 6 7 18 9 20 1 22 3 24 5 26 7 8 9 30 1 32 3 3 4 5 6 7 8 9 40 1 42 3 4 4 5 6 7 8 9 50 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1	1	In the post-extraction bleeding group, the selected extraction procedure was simple extraction in
	2	17 cases and surgical extraction in 4 cases. In the non-post-extraction bleeding group, the
	3	selected extraction procedure was simple extraction in 165 cases and surgical extraction in 72
	4	cases. No significant differences were noted between the two groups ($P = 0.328$, Fisher's exact
	5	test; Table 3).
	6	Number of teeth extracted per operation
	7	The number of teeth extracted per operation was 1.7 ± 0.6 in the post-extraction bleeding group
	8	and 1.8 ± 1.1 in the non-post-extraction bleeding group. There were no cases of multiple
	9	extractions of four or more teeth in the post-extraction bleeding group. No significant difference
	10	was noted between the two groups with respect to the number of teeth extracted per operation
	11	(P = 0.576, Student's t-test; Table 3).
	12	
	13	HAS-BLED score
	14	The highest HAS-BLED score obtained was three points. The mean score was 1.3 ± 0.9 in the
	15	post-extraction bleeding group and 1.2 ± 0.8 in the non-post-extraction bleeding group. No
	16	statistically significant difference was noted between the two groups ($P = 0.467$, Student's t-test;
	17	Table 4).
	18	
	19	Statistical examination
	20	Univariate analysis demonstrated statistically significant differences between the wisdom teeth
	21	and incisors (RR = 8.894, $P = 0.027$) and between concomitant antiplatelet agents (yes/no) (RR
	22	= 2.511, $P = 0.500$). RR was ≤ 1 for the surgical procedure and platelet count. No statistically
	23	significant difference was noted between a HAS-BLED score of ≥ 3 and a HAS-BLED score of
	24	≤ 2 (RR = 1.362, $P = 0.7033$; Table 5).
	25	No statistically significant differences were noted within multivariate analysis for any of the
	26	parameters in Models 1, 2, or 3. In Model 4, a statistically significant difference was noted for
	27	antiplatelet agents (yes) in the non-post-extraction bleeding group (RR = 2.881 , $P = 0.035$; Table
51	28	6). The AUCs for Models 1, 3, and 4 were 0.7, with a statistically significant difference noted
52 53 54 55 56 57	29	only in Model 4. The AUC for Model 2 was the lowest at 0.5, and a statistically significant
	30	difference was noted between Models 2 and 3 ($P = 0.004$; Table 7).
	31	
58 59		
60		9

Discussion

Our investigation of 258 tooth extraction patients indicated that post-extraction bleeding occurred in 21 patients (8%), in 39 of the total 462 extracted teeth (8%). In all the cases of postextraction bleeding, hemostasis was possible with localized hemostatic procedures. The HAS-BLED score alone could not predict post-extraction bleeding. On considering all the risk factors for post-extraction bleeding statistically, concomitant antiplatelet agent use was a risk factor. It has been reported that the incidence of bleeding in an anticoagulation group was the same (approximately 6%-7%) as in an anticoagulation withdrawal group²⁵⁾. The post-extraction bleeding in this study was in accordance with this report.

Many cases of tooth extraction that have been performed while continuing anticoagulant therapy have been reported^{1, 7-18, 26, 27}). However, in the clinical setting, it is not uncommon to encounter post-extraction bleeding during tooth extraction in cases with an optimal INR value range. In a multicenter large-scale study, Iwabuchi et al.²⁸⁾ reported that the risk factors for post-extraction bleeding in patients taking warfarin were age, PT-INR, and inflammation at the extraction site. To date, although many reports did not include cases of surgical extraction, such as the extraction of wisdom teeth and impacted teeth, these types of surgical extraction are often performed in the clinical setting. Therefore, this study targeted cases that were managed in the optimal treatment range and concurrently investigated all cases of tooth extraction, including the extraction of wisdom teeth, impacted teeth, and multiple teeth.

Various methods of hemostasis have been reported for cases of tooth extraction performed while continuing warfarin therapy. These include pressure hemostasis alone, wound suturing, and the application of local hemostatic agents^{2, 29-31}). To implement hemostasis, we placed a hemostatic gelatin sponge in the extraction socket and routinely conducted pressure hemostasis using absorbent cotton with suturing of the wound. Patients were examined 30 min after tooth extraction to confirm whether the bleeding had stopped. Hemostasis was determined to have been sufficient in all cases. As all patients underwent tooth extraction on an inpatient basis, the patient could rapidly be examined by an oral surgeon or a nurse and could receive early diagnosis and appropriate treatment if post-extraction bleeding was suspected. However, although the patients were examined, many did not require hemostatic treatment. Of the patients who exhibited post-extraction bleeding, no systemic hemostatic treatment, such as blood transfusion, was required in any of the cases.

Page 11 of 29

BMJ Open

The HAS-BLED score is used in cardiology to evaluate the risk of hemorrhage in patients with adequate anticoagulation. It would be highly significant if the HAS-BLED score could be used to predict the risk of post-extraction bleeding, and therefore, we evaluated its use in this study. We found that the highest HAS-BLED score was three points. A score of one point was the most commonly achieved score among the 137 patients (53%). The commonest risk factor was age (174 patients; 67%). No significant difference was noted for the mean HAS-BLED score between the post-extraction bleeding and non-post-extraction bleeding groups. The European Society of Cardiology has proposed that a HAS-BLED score ≥ 3 indicates a high risk of hemorrhagic complications. In the cases of post-extraction bleeding, we compared patients with a HAS-BLED score of three or higher with those having a score of two or lower but did not detect any statistically significant difference (univariate analysis; RR = 1.362, P = 0.703). Multivariate analysis indicated that there was little risk associated with the score increasing by one (Table 6). The AUC for the HAS-BLED score alone (Model 2) was 0.55, which was the lowest for all of the models that we constructed. In Model 3, to which the details of extracted teeth were added to the HAS-BLED score, AUC was 0.745, suggesting that this model is useful for predicting post-extraction bleeding. However, a statistically significant difference was noted for Model 2 versus Model 3 (P = 0.004), indicating that the HAS-BLED score alone was insufficient for predicting post-extraction bleeding.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

As bleeding risk factors for tooth extraction, investigation of the conditions of the individual teeth extracted indicated that the post-extraction bleeding risk was five to six times higher for wisdom teeth compared with that for anterior teeth. The extraction site and stability had little effect. Although no differences were observed for the number of teeth extracted in one treatment, there were no cases of multiple extractions of four or more teeth in the post-extraction bleeding group. Although we predicted that surgical extraction was a risk factor for post-extraction bleeding, the results indicated that surgical extraction hardly had any effect on post-extraction bleeding (RR = 0.539, P = 0.256).

Effects of warfarin can be possibly affected by the interactions between meals and medicine and by the general state of the patient. Therefore, in this study, to accurately determine the anticoagulation state directly before tooth extraction, all blood tests were performed before breakfast on the tooth extraction day or the first tooth extraction day if tooth extraction was planned on consecutive days. Although post-extraction bleeding cases were receiving high doses

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

of warfarin, no difference was observed in PT-INR values. There were no cases classified as having labile INRs. Accordingly, the PT-INR value was investigated using actual measured values as the continuous variable. There were no statistically significant differences noted for PT-INR values by either univariate or multivariate analyses ($P \ge 0.1$), suggesting that the PT-INR value had little effect on post-extraction bleeding in patients on anticoagulant therapy while being managed within the optimal treatment range.

There has been no fixed consensus regarding the concomitant use of warfarin and antiplatelet agents because some reports have indicated that these increase the risk of post-extraction bleeding^{1,32)}, whereas other reports have suggested that antiplatelet agents have little effect^{16,19)}. In this study, the incidence of post-extraction bleeding was 13.7% with concomitant antiplatelet drugs and 5.9% with warfarin alone. Both the univariate and multivariate analyses indicated that the use of concomitant antiplatelet agents was a significant factor affecting post-extraction bleeding. It has been reported that the concomitant use of two antiplatelet agents significantly increases the frequency of intracranial hemorrhaging³³⁾. Furthermore, a prospective observational study of hemorrhagic complications in Japanese cerebral infarction patients³⁴⁾ found that compared with patients taking only one antiplatelet agent, those taking two or three antiplatelet agents along with warfarin clearly exhibited higher annual onset rates of intracranial hemorrhaging. These results suggest that concomitant antiplatelet agents are a risk factor for post-extraction bleeding.

The limitations of the present study include the fact that the data were obtained only at a single facility and that outpatients were not included in the subjects that we investigated. In our facility, there were many patients with cardiovascular diseases, particularly post-operative valve replacement patients at approximately 50%. Furthermore, because patients with a PT-INR of \geq 3.1 during the blood testing performed on the day of tooth extraction were excluded, the current study included patients whose anticoagulant therapy was well managed. Therefore, our subjects were not exactly representative of generalized cases of tooth extraction patients taking warfarin. Moreover, because this was a retrospective study, we believe that a large-scale, prospective, cohort study, including outpatient tooth extraction cases, needs to be conducted in the future.

29 Moreover, we could not examine drug interaction effects because our subjects included patients

30 who received intravenous antibacterial agents and patients who received oral antibacterial agents.

31 Warfarin has a number of drug interactions. Holbrook et al.³⁵⁾ stated that anti-infective agents,

Page 13 of 29

BMJ Open

lipid-lowering drugs, NSAIDs, including COX-2 selective NSAIDs, selective serotonin reuptake inhibitors, amiodarone, omeprazole, fluorouracil, and cimetidine enhance the anticoagualtion effects of warfarin. It has been suggested that changing to alternative drugs that have a smaller interactive effect with warfarin should be considered. However, some reports have stated that in most stable anticoagulant therapy patients, exposure to antibacterial agents did not cause clinical problems³⁶; furthermore, other reports have found that NSAIDs and antibacterial agents often increased warfarin effects only in cases of long-term administration¹⁸⁾. We also believe that the short-term or low-dose administration of NSAIDs or antibacterial agents does not cause any prolongation of clinically problematic PT-INR.

Of the models that we created in this study, Model 4 exhibited the highest predictive ability for post-extraction bleeding (AUC = 0.76, P = 0.0309). However, because there were no significant differences observed between Models 1 or 3 versus Model 4, we were unable to construct an optimal model for predicting post-extraction bleeding. To increase model precision, it may be beneficial to add other factors, such as the surgeon's skill (e.g., years of experience or time required for one tooth extraction), which were not included in our current investigation. Furthermore, the addition of all extraction data from outpatients to the analysis set is necessary to conduct a multilevel analysis.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Finally, all the patients who had post-extraction bleeding achieved hemostasis with localized hemostatic procedures, and no systemic hemostatic treatment was required. There was no case that warranted extended hospitalization because of post-extraction bleeding. In agreement with our results. Wahl et al.²⁵⁾ stated that bleeding complications requiring more than local hemostatic measures after dental surgery were exceedingly rare. To avoid the onset of fatal thromboembolism⁶, there is no need to pause or interrupt warfarin therapy for tooth extraction. A special environment for the post-extraction bleeding procedure is not necessary. If the conditions are adequately prepared, we believe that tooth extraction in a patient on warfarin therapy is possible in a private office.

28 CONCLUSIONS

1. We investigated post-extraction bleeding for all types of tooth extractions, including impacted
teeth, in patients taking warfarin. Minor post-extraction bleeding was observed in 8% of patients;
however, no patients required more than local measures for hemostasis.

2. The HAS-BLED score alone could not predict post-extraction bleeding in patients taking warfarin. 3. The use of concomitant antiplatelet agents was a risk factor for post-extraction bleeding. More care must be taken regarding post-extraction bleeding in cases undergoing concomitant use of antiplatelet drugs than in those on warfarin alone. Acknowledgments We would like to extend our gratitude and thanks to the professors at the Department of Oral and Maxillofacial Surgery at Tokyo Women's Medical University who offered their kind cooperation during this study. **Contributors** TA and TK were involved in the planning of the study concept and design. TK wrote the draft of the manuscript. KH and TK were involved in the statistical analysis. TA and TK reviewed and revised the manuscript. All authors have read and approved the final manuscript. Funding This research received no specific grant from any public funding agency. **Conflicts of interest** The authors have no competing interest to declare regarding this study. Data sharing statement No additional data are available. **Provenance and peer review** Not commissioned; externally peer reviewed. **Open access** This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ References 1) Scully C, Wolff A. Oral surgery in patients on anticoagulant therapy. Oral Surg Oral Med Oral For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 00 1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3	1	Pathol Oral Radiol Endod 2002;94:57-64.
	2	2) Perry DJ, Noakes TJ, Helliwell PS. Guideline for the management of patients on oral
	2	anticoagulants requiring dental surgery. Br Dent J 2007;203:389-93.
	4	3) Guidelines for Diagnosis and Treatment of Cardiovascular Disease(2008 Joint Working
	5	Groups Report). Guidelines for management of anticoagulant and antiplatelet therapy in
	6	cardiovascular disease(JCS 2009). http://www.j-circ.or.jp/guideline/pdf/JCS2009_hori_h.pdf
	7	(available in December 2015, in Japanese)
	8	4) JCS Joint Working Group. Guidelines for Pharmacotherapy of Atrial Fibrillation (JCS 2013).
	9	Circ J. 2014;78:1997-2021
	10	5)Ogiuchi H, Ando T, Tanaka M, et al. Clinical reports on dental extraction from patients
	11	undergoing oral anticoagulant therapy. Bull Tokyo Dent Coll. 1985; 26:205-12
	12	6)Wahl MJ. Myths of dental surgery in patients on anticoagulant therapy. JADA. 2000;131:77-
	13	81.
	14	7)Devani P, Lavery KM, Howell CJ. Dental extractions in patients on warfarin: is alteration of
	15	anticoagulant regime necessary? Br I Oral Maxillofac Surg 1998:36107-11
	16	8)Campbell JH, Alvarado F, Murray RA. Anticoagulation and minor oral surgery: should the
	17	anticoagulation regimen be altered? J Oral Maxillofac surg 2000;58: 131-5.
	18	9) Blinder D, Manor Y, Martinowitz U, et al. Dental extraction in patients maintained on oral
	19	anticoagulant therapy: comparison of INR value with occurrence of postoperative bleeding. J
	20	Oral Maxillofac Surg 2001;30: 518-21.
	21	10)Evans IL, Sayers MS, Gibbons AJ, et al. Can warfarin be continued during dental extraction?
	22	Results of randomized controlled trial. Br J Oral Maxillofac Surg 2002;40:248-52.
	23	11)Zanon E, Martinelli F, Bacci C, et al. Safety of dental extraction among consecutive patients
	24	on oral anticoagulant treatment managed using a specific dental management protocol. Blood
	25	Coagul Fibrinolysis 2003;14:27-30.
	26	12)Cannon PD, Dharmar VT. Minor oral surgical procedures in patients on oral anticoagulants-a
	27	controlled study. Aust Dent J 2003;48:115-8.
	28	13)Salam S, Yusuf H, Milosevic A. Bleeding after dental extactions in patients taking warfarin.
	29	Br J Oral Maxillofac Surg 2007;45:463-6.
	30	14)Sacco R, Sacco M, Carpenedo M, et al. Oral surgery in patients on oral anticoagulant
	31	therapy: a randomized comparison of different intensity targets. Oral Surg Oral Med Oral Pathol
		15

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

Oral Radiol Endod 2007;104:e18-21. 15) Ferrieri GR, Castiglioni S, Carmagnola D, et al : Oral Surgery in patients on anticoagulant treatment without therapy interruption. J Oral Maxillofac Surg 2007;65:1149-54. 16) Morimoto Y, Niwa H, Minematsu K. Hemostatic management of tooth extractions in patients on oral antithrombotic therapy. J Oral Maxillofac Surg 2008;66:51-7. 17) Fujimori M, Nishimura T, Tani K, et al. Clinical evaluation of Postoperative bleeding in patients undergoing antithrombotic therapy. Japan Stomatological Society 2010;59:113-122. 18)Shigeta T, Umeda M, Yoshitake M, et al. A clinical study of hemorrhagic complications in patients with antithrombotic therapy who underwent dental extraction without discontinuation of antithrombotic drugs: 282patients receiving administration of warfarin. Japan Stomatological Society 2012;61:1-7. 19) Morimoto Y, Niwa H, Yoneda T, et al. Hemostatic management of tooth extraction in patients undergoing antithrombotic therapy. Japan Stomatological Society 2004;53:74-80. 20) Hughes M, Lip GY. Guideline Development Group for the NICE national clinical guideline for management of atrial fibrillation in primary and secondary care. : Risk factors for anticoagulation-related bleeding complications in patients with atrial fibrillation: a systematic review. QJM 2007;100:599-607. 21)Palareti G, Cosmi B. Bleeding with anticoagulation therapy - who is at risk, and how best to identify such patients. Thromb Haemost 2009;102:268-78. 22)Pisters R, Lane DA, Nieuwlaat R, et al. A novel user-friendly score(HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093-100. 23)European Heart Rhythm Association. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology(ESC). Eur Heart J 2010;31:2369-429. 24)Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease in the Yong, and the Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736-54.

25)Wahl MJ, Pinto A, Kilham J, et al. Dental surgery in anticoagulated patients - stop the

BMJ Open

2 3										
4	1	interruption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2015;119:136-157								
5 6	2	26) Herman WW, Konzelman JL, Sutley SH. Current perspectives dental patients receiving								
7 8	3	coumarin anticoagulant therapy. JADA 1997;128:327-35.								
9	4	27) Little JW, Falace DA, et al: Bleeding disorder dental management of the medic								
10 11 12 13 14 15	5	compromised patients. 6 th ed, Mosby, St Louis, 2002, p.332-364								
	6	28) Iwabuchi H, Imai Y, Asanami S, et al. Evaluation of postextraction bleeding incidence to								
	7	compare patients receiving and not receiving warfarin therapy: across-sectional, multicenter,								
16 17	8	observational study. BMJ open 2014;4:e005777								
18 19	9	29) Shikimori M. Clinical and hemostatic studies on dental extractions of patients undergoing								
20 21	10	oral anticoagulant therapy. Japanese Society of Oral Maxillofacial Surgeons 1982;28:1629-42.								
22 23	11	30)Halfpenny W, fraser JS, Adlam DM. Comparison of 2 hemostatic agents for the prevention of								
24	12	postextraction hemorrhage in patients on anticoagulants. Oral Surg Oral Med Oral Pathol Oral								
25 26 27 28 29 30 31 32 33	13	Radiol Endod 2001;92:257-9.								
	14	31)Carter G, Goss A, Lloyd J, et al. Tranexamic acid mouthwash versus autologous fibrin glue								
	15	in patients taking warfarin undergoing dental extractions : a randomized prospective clinical								
	16	study. J Oral Maxillofac Surg 2003;61:1432-5.								
	17	32)Hong C, Napenas JJ, Brennan M, et al. Risk of postoperative bleeding after dental procedures								
34 35	18	in patients on warfarin: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol								
36 37	19	2012;114:464-8.								
38 39 40 41 42	20	33)Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with								
	21	clopidogrel alone after recent ischaemic stroke or transient ischemic attack in high-risk patients								
	22	(MATCH) : randomized, double-blind, placebo-controlled trial. Lancet 2004;364:331-7.								
43 44	23	34)Toyoda T, Yasaka M, Iwade K, et al. Dual antithrombotic therapy increases severe bleeding								
45 46	24	events in patients with stroke and cardiovascular disease: a prospective, multicenter,								
47	25	observational study. Stroke 2008;39:1740-5.								
48 49 50 51 52	26	35) Holbrook AM, Pereira JA, Labiris R, et al. Systemic overview of warfarin and its drug and								
	27	food interactions. Arch Intern Med 2005;165:1095-106.								
53	28	36)Clark NP, Delate T, Riggs CS, et al. Warfarin interactions with antibiotics in the ambulatory								
54 55	29	care setting. JAMA Intern Med 2014;174:409-16.								
56 57										
58 59										
60		17								

Table 1 HAS-BLED bleeding risk score

	risk factor	clinical characteristics
Н	Hypertension	uncontrolled, >160mmHg systolic
A	Abnomal renal and liver function	presence of chonic dialysis, renal pramsplantation or serum creatinine $\geq 200 \mu mol/L$
	(1point each)	chornic hepatic disease(eg, cirrhosis), bilirubin >2X upper limit of nomal,
		AST/ALT/ALP >3X upper limit of nomal
S	Stroke	previous history
В	Bleeding	bleeding history or predisposition
L	Labile INRs	unstable/high INRs or poor time in therapeutic range (e.g. <60%)
Е	Elderly	>65 years
D	Drugs or alcohol	concomitantly antiplatelet agents and NSAIDs,
	(1point each)	alcohol excess

2 Criteria from the European Society of Cardiology²³⁾ were used., AST=aspartate

3 aminotransferase, ALT=alanine aminotransferase, ALP=alkaline phosphatase,

4 NSAIDs=nonsteroidal antiinflammatory drugs

Table 2 Patient characteristics

	post-	non post-	p value	Significant	χ^2 value
	extraction	extraction		difference	
	bleeding	bleeding			
	group	group			
	N=21	N=237			
	number of	number of			
	patients	patients			
Age (mean ± SD)	63.4±13.2	66.6±13.7	0.294 ^a		
Gender(Male/Female)	14/7	143/94	0.646 ^c		0.32
Primary disease					
post Heart Valve	17	120			
Prosthesis Implantation					
atrial fibrillation	2	76			
cerebral infarction	2	13			
dilated cardiomyopathy	1	9	-		
myocardial infarction	0	23	-		
deep vein thrombosis	0	11			
arteriosclerosis obliterans	0	3			
intracardiac thrombus	0	2	-		
Anticoagulation					
warfarin dose(mg) (mean ± SD)	3.9±1.4	3.2±1.3	0.024 ^a	*	
PT-INR value (mean [25%	2.1[1.8, 2.5]	2.0[1.8, 2.3]	0.330 ^b		
tile, 75%tile])					
Platelet count($\times 10^4/\mu l$)	16.8±5.3	18.2±5.8	0.298 ^a		
Concomitant antiplatelet agents					
Yes	10	63	0.073 ^c		4.21
Aspirin	10	52			
Ticlopidine	0	8		6	
ethyl icosapentate	0	6			
Cilostazol	0	2			
Limaprost	0	1	1		
Dipyridamole	0	1]		

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

SD: standard deviation, Multiple factors possible for underlying disease, All seven patients using two types of antiplatelet agents were included in the non post-extraction bleeding group. a; Student's t-test,

b;Mann-Whitney U test, c;Fisher's exact test, *:p<0.05

Table 3 Details of extracted teeth

	post-extraction bleeding group	non post-extraction bleeding group	p value	Significant difference	χ^2 value
	N=21	N=237	-		
	number of patients	number of patients			
	or mean \pm SD	or mean \pm SD			
Extraction site		·		·	•
maxilla	14	122	0.254 ^c		1.79
mandibula	7	115			
Tooth type		•	·		
Incisor	1	36	0.039 ^c	*	8.70
premolar	2	65			
molar	9	89			
wisdom	9	47			
Stability of teeth					•
good	17	158	0.227 ^c		1.80
poor	4	79			
Extraction proceed	lure			·	
simple	17	165	0.328 ^c		1.19
surgical	4	72			
Number of teeth	1.7 ±0.6	1.8 ± 1.1	0.576 ^a		
extracted in					
operation	0	125	0.188 ^c		0.12
One tooth	8		0.188		9.12
Two tooth	12	65			
Three tooth	1	24			
Four tooth Five tooth	0	18			
	0	3			
Six tooth	0	1			
Seven tooth	0	1			

2 SD: standard deviation, a; Student's t-test, c; Fisher's exact test, $*:p\langle 0.05 \rangle$

1	
2	
2	
3 4 5	
4	
5	
6	
7	
1	
8	
9	
1	ი
1	2
1	1
1	2
1	3
1	Δ
1	5
1	0 1 2 3 4 5 6
1	ю
1	7
1	6 7 8 9 0 1 2 3
1	q
	~
2	U
2	1
2	2
2	3
2	4 5 6
2	4
2	5
2	6
2	6 7 8 9
2	0
2	0
2	9
3	0
3	1
2	2
5	2
3	3
3	4
3	5
ર	6
2	7
3	1
3	890123456780
0	Э
4	0
4	
	2
4	
4	
4	5
4	
4	1
	8
	9
5	
5	1
5	1
5	2
5	3

	post-extraction	non post-extraction	p value	Significant	χ^2 valu
	bleeding group	bleeding group		difference	
	N=21	N=237			
	mean \pm SD or	mean \pm SD			
	number of patients	or number of patients			
HAS-BLED	1.3±0.9	1.2±0.8	0.467 ^a		
score					
0	3	41	0.804 ^c		0.7
1	10	127			
2	6	52			
3	2	17			
4	0	0			
5	0	0			
6	0	0			
7	0	0			
8	0	0			
9	0	0			
risk factor					
Н	1	3			
А	1	11			
S	2	38			
В	0	5			
L	0	0			
E	13	161			
D	11	63			

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

	DD	95	5%CI		significa
	RR	lower	Upper	p value	differenc
Extraction site					
maxilla/mandible	1.885	0.756	5.128	0.177	
Tooth type					
premolar/incisor	1.108	0.103	24.300	0.934	
molar/incisor	3.640	0.649	68.346	0.160	
wisdom/incisor	6.894	1.213	130.039	0.027	*
Stability of teeth					
good/poor	2.125	0.756	7.572	0.161	
Extraction procedure					
surgical/simple	0.539	0.151	1.518	0.256	
PT-INR value	1.782	0.597	5.387	0.300	
Platelet count($\times 10^4/\mu l$)	0.959	0.887	1.037	0.296	
HAS-BLED score					
1/0	1.076	0.312	4.968	0.914	
2/0	1.577	0.391	7.825	0.529	
3/0	1.608	0.199	10.551	0.626	
2/1	1.465	0.477	4.157	0.487	
3/1	1.494	0.218	6.305	0.636	
3/2	1.020	0.140	4.922	0.982	
3/ less than 2	1.362	0.206	5.255	0.703	
Concomitant antiplatelet agent	s use				
yes/no	2.511	1.001	6.238	0.050	*

	Table 5	Univariate analy	vsis of bleed	ing risk factor	in teeth extraction
		Univariate anal	ysis of blecu	mg msk laciol	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7 8 9 10
5 6 7
8 9
11
12 13 14 15
15 16
17 18 19
20 21
22 23
24 25 26
27 28
29 30 31
32 33
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
37 38
39 40 41
42 43
44 45 46
47 48
49 50 51
52 53
54 55 56
50 57 58

60

			model 1					
		95	%CI					
	risk ratio lower	upper	p value	significa differen				
Extraction site		1						
maxilla/mandible	1.855	0.700	5.286	0.216				
Tooth type		•	•					
premolar/incisor	1.118	0.102	24.727	0.928				
molar/incisor	3.468	0.594	65.974	0.188				
wisdom/incisor	5.228	0.850	101.628	0.078				
Stability of teeth								
good/poor	1.790	0.551	6.994	0.344				
Extraction procedure								
surgical/simple	0.624	0.166	1.915	0.425				
PT-INR value	2.078	0.681	6.606	0.204				
Platelet count(x10 ⁴ /ul)	0.970	0.892	1.053	0.461				
HAS-BLED score								
1/0	-		_					
2/0	_		_	-				
3/0	—	—	—					
2/1	—		-					
3/1	_	_ (_				
3/2		_						
Concomitant antiplatelet a	Concomitant antiplatelet agents use							

2 Criteria from the European Society of Cardiology²³⁾ were used ,*:p(0.05)

	model 2								
		95%	бСI		.::C				
	risk ratio	Lower	upper	p value	significant difference				
Extraction site	L		l .		I				
maxilla/mandible	—	—	—						
Tooth type									
premolar/incisor	—	—	—						
molar/incisor	—	_		_					
wisdom/incisor	—	_		_					
Stability of teeth									
good/poor	_		_	-					
Extraction procedure									
surgical/simple		—	—						
PT-INR value		—	—	-					
Platelet count(x10 ⁴ /ul)		_	_						
HAS-BLED score									
1/0	1.076	0.312	4.968	0.914					
2/0	1.577	0.391	7.825	0.529					
3/0	1.608	0.199	10.551	0.626					
2/1	1.465	0.477	4.157	0.487					
3/1	1.494	0.218	6.305	0.636					
3/2	1.020	0.140	4.922	0.982					
Concomitant antiplatelet ag	gents use								
yes/no	—	—	—						
Criteria from the European	Society of Car	aiology	were usea.	,*:p{0.05					

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	
2	
2	
ۍ ۸	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1 1	3
1	4
1	5
1	4 5 6
1	7
1	7 8
1	0456789012
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	23456789012345678
2	7
2	'n
2	0
2	3
3	U A
3	1
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	
4	
4	
4	
	-
4	
4	
4	6
4	7
4	
4	
5	0
5	0 1 2
5	2
5	3
5	Δ
5	5
5	С С

60

Table 6	continuation

	model 3				
		95%CI			aionificant
	risk ratio	lower	upper	p value	significant difference
Extraction site				1	
maxilla/mandible	1.914	0.716	5.494	0.198	
Tooth type					
premolar/incisor	1.045	0.095	23.222	0.972	
molar/incisor	3.388	0.579	64.544	0.199	
wisdom/incisor	5.380	0.860	105.301	0.075	
Stability of teeth		- -			
good/poor	1.961	0.588	7.893	0.283	
Extraction procedure					
surgical/simple	0.674	0.177	2.125	0.515	
PT-INR value	2.288	0.727	7.543	0.162	
Platelet count($x10^{4}/ul$)	0.968	0.889	1.053	0.443	
HAS-BLED score					
1/0	1.197	0.325	5.777	0.798	
2/0	2.271	0.515	12.242	0.284	
3/0	2.338	0.269	16.989	0.410	
2/1	1.897	0.580	5.871	0.279	
3/1	1.954	0.266	9.403	0.463	
3/2	1.030	0.130	5.605	0.975	
Concomitant antiplatelet a	gents use				
yes/no	—	—	-	—	

2 Criteria from the European Society of Cardiology²³⁾ were used. $*:p\langle 0.05 \rangle$

			model 4		
		95%	%CI		significar differenc
	risk ratio	lower	upper	p value	
Extraction site				1	
maxilla/mandible	1.936	0.722	5.585	0.192	
Tooth type		•	•		
premolar/incisor	1.159	0.104	25.901	0.906	
molar/incisor	3.730	0.630	71.468	0.164	
wisdom/incisor	5.113	0.804	100.719	0.804	
Stability of teeth					
good/poor	1.916	0.568	7.780	0.304	
Extraction procedure					
surgical/simple	0.670	0.175	2.117	0.509	
PT-INR value	2.687	0.831	9.349	0.107	
Platelet count($x10^4/ul$)	0.970	0.894	1.052	0.465	
HAS-BLED score			•		
1/0	_			—	
2/0	_	-	_	—	
3/0	_	_	_	—	
2/1		_	—	—	
3/1	_			—	
3/2		_		—	
Concomitant antiplatelet a	gents use				
yes/no	2.881	1.079	7.740	0.035	*

2 Criteria from the European Society of Cardiology²³⁾ were used., *:p(0.05

Table 7 Comparison of the model

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item		Chec
	No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page
		(b) Provide in the abstract an informative and balanced summary of what was done	Page
		and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page
			2,3
Objectives	3	State specific objectives, including any prespecified hypotheses	Page
			2,3
Methods			
Study design	4	Present key elements of study design early in the paper	Page
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	Page
		exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	Page
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	n/a
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	Page
		modifiers. Give diagnostic criteria, if applicable	3-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Page
measurement		assessment (measurement). Describe comparability of assessment methods if there	3-7
D'	0	is more than one group	D
Bias	9	Describe any efforts to address potential sources of bias	Page
Study size	10	Explain how the study size was arrived at	Page
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 3-7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Page
Statistical methods	12	(<i>b</i>) Describe any methods used to examine subgroups and interactions	n/a
		(c) Explain how missing data were addressed	n/a
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(<i>e</i>) Describe any sensitivity analyses	Page
		(c) Deserved any sensitivity analyses	Tuge
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	Page
		eligible, examined for eligibility, confirmed eligible, included in the study,	7-9
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	n/a
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	Page
		information on exposures and potential confounders	7-9
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	Page
			7-9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	Page

BMJ Open

		their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7-9
		(b) Report category boundaries when continuous variables were categorized	Page 7-9
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Page 7-9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 7-9
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 1
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 10-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 1
Other information			0
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page

BMJ Open: first published as 10.1136/bmjopen-2015-010471 on 2 March 2016. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml