
BMJ Open

BMJ Open

ATMOSPHERIC FINE PARTICULATE MATTER AND BREAST CANCER MORTALITY: A POPULATION-BASED COHORT STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012580
Article Type:	Research
Date Submitted by the Author:	10-May-2016
Complete List of Authors:	Tagliabue, Giovanna; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Borgini, Alessandro; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Tittarelli, Andrea; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine van Donkelaar, Aaron; Dalhousie University, Department of Physics and Atmospheric Science Martin, Randall V; Dalhousie University, Department of Physics and Atmospheric Science; Harvard-Smithsonian Center for Astrophysics Bertoldi, Martina; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Fabiano, Sabrina; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Maghini, Anna; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Favia, Immacolata; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Gau, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Cau, Alessandro; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Barigelletti, Giulio; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Barigelletti, Giulio; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Barigelletti, Giulio; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Tessandori, Roberto; Retired Contiero, Paolo; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Oncology, Epidemiology
Keywords:	Breast tumours < ONCOLOGY, particulate matter, environment, prognosis survival, cancer registry

ATMOSPHERIC FINE PARTICULATE MATTER AND BREAST CANCER **MORTALITY: A POPULATION-BASED COHORT STUDY** Giovanna Tagliabue¹, Alessandro Borgini², Andrea Tittarelli¹, Aaron van Donkelaar³, Randall V. Martin^{3,4}, Martina Bertoldi², Fabiano Sabrina¹, Anna Maghini¹, Tiziana Codazzi¹, Alessandra Scaburri², Imma Favia², Alessandro Cau², Giulio Barigelletti¹, Roberto Tessandori⁵ and Paolo Contiero² ¹ Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy ² Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy ³ Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada ⁴ Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA ⁵ Retired Corresponding author: Dr. Paolo Contiero National Cancer Institute, Via Venezian 1, 20133 Milano Tel: +39 0223903538; E-mail: paolo.contiero@istitutotumori.mi.it Keywords: Breast cancer, particulate matter, prognosis, survival, cancer registry **Word count**: 2.676

BMJ Open

ABSTRACT Objectives Atmospheric fine particulate matter (PM_{2.5}) has multiple adverse effects on human health. Global atmospheric levels of PM_{2.5} increased by 0.55 µg/m³/year (2.1%/year) from 1998 through 2012. There is evidence of a causal relationship between atmospheric PM_{2.5} and breast cancer (BC) incidence but few studies have investigated BC mortality and atmospheric

PM_{2.5}. We investigated BC mortality in relation to atmospheric PM_{2.5} levels
among patients living in Varese Province, northern Italy.

34 Methods

We selected female BC cases, archived in the local population-based cancer registry, diagnosed at age 50-69 years, between 2003 and 2009. The geographic coordinates of each woman's place of residence were identified and individual PM_{2.5} exposures were assessed from satellite data. Grade, stage, age at diagnosis, period of diagnosis, and participation in BC screening were potential confounders. Kaplan-Meir and Nelson-Aalen methods were used to test for mortality differences in relation to PM_{2.5} quartiles. Multivariable Cox proportional hazards modeling estimated hazard ratios (HR) and 95% confidence intervals (CI) of BC death in relation to $PM_{2.5}$ exposure.

Results

Of 2021 BC cases, 325 died during follow-up to 31/12/2013, 246 for breast
cancer. Risk of BC death was significantly higher for all three upper guartiles

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

 BMJ Open

of PM exposure compared to the lowest, with HRs of death: 1.82 (95%CI 1.15-2.89), 1.73 (95%CI 1.12-2.67), and 1.72 (95%CI 1.08-2.75). Conclusions Our study indicates that the risk of BC mortality increases with PM_{2.5} exposure. Although further studies are required to confirm these findings, they are further evidence that $PM_{2.5}$ exposure increases mortality and indicate an urgent need to improve global air quality. STRENGTHS AND LIMITATIONS OF THE STUDY These is one of few studies to address the relation between atmospheric PM_{2.5} and breast cancer mortality. PM_{2.5} exposure was assessed using a new but validated method based on satellite data, overcoming the major limitation of the usual method of measuring PM_{2.5} at thinly and irregularly distributed ground stations. We controlled for the usual confounding factors and also for participation in screening that may have introduced length-time and lead-time biases. We used high quality population-based cancer registry data to identify all breast cancer cases in the study area over the study period, and assess patient mortality. A limitation is that exposure was assessed for the 10x10 km square containing the woman's residence at diagnosis: this is an imperfect assessment of exposure since time spent outside this square is unknown.

BMJ Open

INTRODUCTION

Atmospheric particulate matter (PM) may be natural or anthropogenic. In industrial and urban areas, PM is mainly anthropogenic in origin.¹ PM of diameter up to 10 μ m (PM₁₀) and fine PM, up to 2.5 μ m (PM_{2.5}), are documented to have multiple adverse effects on human health², and are classified by the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) as group 1 carcinogens (carcinogenic to humans).³

A recent prospective meta-analysis of 17 cohort studies from nine European countries found a significant association between increasing levels of both PM₁₀ and PM_{2.5} and increasing lung cancer risk. The study concluded that PM air pollution contributed to lung cancer incidence in Europe.⁴

Notwithstanding the known toxicity of PM_{2.5}, global population-weighted concentrations increased by $0.55 \,\mu g/m 3/y ear$ (2.1%/year) from 1998 through 2012.⁵ It is noteworthy that the incidence of breast cancer is also increasing worldwide: It is the most now common female cancer worldwide.⁶ In 2012 an estimated 1.67 million new cases were diagnosed across the alobe: 749,000 in developed countries and 883,000 in developing countries.⁶ Reasonable hypotheses are that the global increase in breast cancer incidence might be linked to increasing in PM concentrations, and that high PM might also worsen breast cancer survival. This is supported by the findings of a population-based study in California⁷ which found that exposure to higher PM_{10} (HR 1.13, 95%CI 1.02-1.25, per 10 μ g/m³) and $PM_{2.5}$ (HR 1.86, 95%CI 1.12-3.10, per 5 μ g/m³) was significantly associated with early

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

mortality among women with breast cancer after adjusting for numerous
 covariates.⁷

There are other reasons to suspect an association between breast cancer survival and PM levels in the atmosphere. A Canadian study which assessed NO₂ levels as a proxy of traffic-related air pollution found that breast cancer incidence increased with increasing NO₂ exposure.⁸ A Japanese study found that PM_{2.5} levels estimated from measured PM₁₀ levels were significantly associated with mortality for breast, endometrial and ovarian cancers after adjusting for smoking, population density, and hormone-related factors.⁹ A 2007 cohort study in Western New York State also found that high exposure to traffic emissions at the time of menarche was associated with increased risk of pre-menopausal breast cancer (OR 2.05, 95% CI 0.92–4.54, p trend 0.03); and that high exposure at time of first birth increased the risk of postmenopausal disease (OR 2.57, 95% CI 1.16–5.69, p trend 0.19).¹⁰

To further investigate the association of atmospheric PM with breast cancer mortality, we carried out a study in Varese Province, northern Italy. This area is characterized by high breast cancer incidence (world age standardized rate 89.3/100,000)⁶, the highest PM_{2.5} levels in Europe⁵, and a high quality cancer registry that is likely to have registered essentially all breast cancer cases occurring over any relatively recent period.¹¹⁻¹²

To estimate PM_{2.5} exposure we used satellite-based data that infers nearsurface PM_{2.5} concentrations from the satellite-observed total column aerosol loading using a chemical transport model.⁵ This dataset has been shown to represent and correlate well with levels determined with ground-based PM_{2.5} Page 7 of 29

BMJ Open

detectors. ⁵ Data from satellite observations have the advantage that they
make available data at 10x10 km resolution, while ground-based observation
stations are generally few and irregularly spaced. In Varese Province only
four ground-based sites measure $PM_{2.5}$.
MATERIALS AND METHODS
Breast cancer cases
We performed a retrospective study on a cohort of women diagnosed with
primary breast cancer. The cases were archived by the Varese Province
section of the Lombardy Cancer Registry. A search using site code C50 and
malignant epithelial morphology codes M8010-M8575 of the International
Classification of Disease for Oncology (ICDO-3) retrieved a total of 2021
primary breast cancers cases diagnosed in the predetermined study period
(2003-2009) and conforming to our selection criteria (50-69 years at
diagnosis, no other cancer diagnosed previously). ¹³ Disease stage was as
specified by TNM (6th edition, 2002). ¹⁴
Study endpoint
Study endpoint was breast cancer mortality. Mortality data are routinely
collected by the cancer registry by linkage to the Varese Province mortality
database. Other sources of mortality information are used routinely to ensure
completeness.
Estimation of PM _{2.5}
The procedure for estimating $PM_{2.5}$ exposure involved first retrieving each
woman's address at diagnosis from the cancer registry (obtained from
6
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

electronic sources and manual checks) and then determining the geographic coordinates (latitude and longitude) of each address using the ArcGis 10.0 software.¹⁵ Ground level PM_{2.5} exposure at each address was then estimated from satellite observations and was considered a proxy of total exposure, so that exposure variations arising from daily or periodic movements away from home were not considered. The method described by van Donkelaar et al.⁵ was used to estimate ground level PM_{2.5} exposure. This approach combined total column aerosol optical depth retrievals from the NASA Moderate Imaging Spectroradiometer (MODIS), Multiangle Imaging Resolution Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor (SeaWIFS) satellite instruments, with vertical aerosol profile and scattering properties as estimated by the GEOS-Chem chemical transport model.⁵ Total column aerosol optical depth is a measure of the total light extinction due to scattering and absorption by atmospheric aerosols.

A three-year running median of PM_{2.5} concentration was used to reduce noise in the annual satellite-derived values. The ground-level PM_{2.5} estimates were available at a resolution of 10x10 km, and breast cancer case exposure was estimated as the PM_{2.5} concentration in the 10x10 km area containing each case's residence.

Statistical methods

First, factors known or thought to influence breast cancer prognosis were analyzed by univariate Cox proportional hazard modeling to verify their effect on breast cancer mortality in our cohort. Factors analyzed were diagnosis period (2003-2006; 2007-2009), stage (I-IV), grade (I-III, unknown), age

BMJ Open

at diagnosis (two categories,50-59 years and 60-69 years), and participation in a breast cancer screening program (Yes, No). Year of diagnosis was included since, over time, treatment may have improved and diagnosis may have occurred earlier. Cancers diagnosed in the screening context are affected by length-time and lead-time bias and may also be less aggressive than those diagnosed outside of screening.¹⁶

We next ran univariate and multivariate Cox proportional hazard models to estimate hazard ratios (HRs) with 95% confidence intervals (CI) of breast cancer death according to quartiles of PM_{2.5} exposure. The multivariate model was stratified (separate baseline hazard functions for each variable category within the Cox model) by age, grade, stage, diagnosis period and participation in screening.

Time to event or end of follow-up was calculated from date of diagnosis. Cases that died causes other than breast cancer were censored at date of death. Patients alive at study end were censored at that time (31/12/2013). Patients lost to follow-up were censored at date of loss to follow-up. The proportional hazards assumption was tested by analysis of scaled Schoenfeld residuals, estimating P values for each variable, adopting the method suggested by Therneau et al.¹⁷

186 Missing data were handled using a separate "not specified" category for 187 unavailable disease stage and a separate "not specified" category for 188 unavailable tumor grade when performing data analysis.

189 We also used the Kaplan–Meier method to produce survival curves for 190 quartiles of PM_{2.5} exposure, testing the significance of differences between BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

> 191 curves with the stratified log-rank test. We also used the Nelson-Aalen 192 estimator to plot the cumulative hazard of breast cancer death for PM_{2.5} 193 exposure categories. The analyses were performed using the R statistical 194 package.¹⁸

195 Italian legislation identifies cancer registries as collectors of personal data for 196 research and public health purposes and does not consider that specific 197 approval by an ethics committee is required to use this data for research and 198 public health purposes. Although our study was an observational one based 199 on individual data, all such data were anonymized prior to analysis.

RESULTS

Disease and other characteristics of the 2021 breast cancer patients are shown in Table 1. Eleven women moved outside the study area during follow-up and were censored at the date of leaving.

A total of 325 (16.1%) women died in the period up to 31 December 2013, 246 (12.2%) of these of breast cancer. Table 1 also shows HRs for breast cancer death according to categories of prognostic variables: HR of death increased significantly with advancing stage and grade, while participation in screening was associated with considerably reduced risk of death, at least over the study period. These findings are as expected.

212	Table 1. Patient (n=2021) and disease characteristics with univariate
213	hazard ratios (HR) and 95% confidence intervals (CI) for breast
214	cancer death

Variable		Breast cancer	Breast cancer	HR (95% CI) for
Van		cases (N)	deaths (N)	breast cancer death
Period of				
diagnosis				
	2003-2006	1199	163	1
	2007-2009	822	83	1.08 (0.82 1.42)
Disease stage	Q			
	I	887	25	1
	II	550	48	3.21 (1.98-5.21)
	III	292	93	13.31 (8.56-20.70)
	IV	35	27	75.94 (43.94-131.24)
	Not specified	257	53	8.26 (5.14-13.3)
Participation in				
screening				
	Νο	1341	213	1
	Yes	680	33	0.29 (0.20-0.41)
Tumor grade				
	I	193	3	1
	II	1132	97	5.43 (1.72-17.13)
	III	513	104	14.06 (4.46-44.33)
	Not specified	183	42	16.93 (5.25-54.63)
Age at diagnosis				
	50-59	923	110	1
	60-69	1098	136	1.05 (0.82-1.35)

BMJ Open

Table 2 shows univariate and multivariate HRs with 95% CIs for breast cancer death according to quartiles of $PM_{2.5}$ exposure. By the univariate model, breast cancer patients living in an area with $PM_{2.5}$ levels above the lowest quartile had significantly greater risk of breast cancer death than those living in areas with lowest quartile of $PM_{2.5}$ (<21.10 µg/m³). The increased risk of death ranged from 72% (fourth quartile) to 82% (second quartile). In the multivariate model, which controlled for confounding factors, risks of breast cancer death were numerically greater and still significant for all exposure quartiles above the lowest.

Table 2. Hazard ratios (HR) and 95% confidence intervals (CI) for breast cancer death in relation to PM_{2.5} exposure.

PM _{2.5} quartiles (μg/m ³)	Cases (N)	Deaths (N)	HR (95%CI), bre Univariate	east cancer death Multivariate *
I (<21.10)	504	40	1	1
II (21.10-24.20)	462	56	1.56 (1.04-2.34)	1.82 (1.15-2.89)
III (24.20-26.50)	530	71	1.55 (1.06-2.29)	1.73 (1.12-2.67)
IV (≥26.50)	525	79	1.49 (1.02-2.19)	1.72 (1.08-2.75)

* Multivariate stratified by age, stage, grade, diagnosis and participation in screening.

Analysis of scaled Schoenfeld residuals showed that P values for increasing PM_{2.5} quartiles were 0.93, 0.40, 0.38 and 0.32, indicating that the null

BMJ Open

hypothesis of no variation of hazard with time could not be rejected,
suggesting that the prognostic effect PM_{2.5} remained constant over the entire
follow-up.

Fig 1 shows Kaplan-Meir survival curves by $PM_{2.5}$ quartiles. Fig 2 shows Nelson-Aalen estimates of the cumulative hazard of breast cancer death by PM_{2.5} quartiles. Figs 1 and 2 both indicate that breast cancer patients exposed to the three upper $PM_{2.5}$ levels ($\geq 21.100 \ \mu g/m^3$) had a significantly (P=0.04, stratified log-rank test) greater risk of breast cancer death than those living in an area with the lowest quartile of $PM_{2.5}$.

Yearly (2003-2009) averages of PM_{2.5} exposure for all study women were:
240 26.57, 26.65, 26.43, 23.73, 21.78, 21.44, and 20.71 μg/m³.

DISCUSSION

We have shown that high exposure to PM_{2.5} is associated with increased mortality for breast cancer after correcting for a range of factors considered to influence breast cancer survival. As regards possible mechanisms mediating this association, little evidence is available. A recent study collected airborne particles in Taiwan and investigated their effects on breast cancer cell lines.¹⁹ The particles themselves and their solvent extracts had a variety of effects on the cell lines, including in particular increased generation of reactive oxygen species (ROS), increased numbers of DNA strand breaks, and both estrogenic and anti-estrogenic activity (concentration dependent). It is noteworthy that particle-induced ROS generation was blocked by treatment with aryl hydrocarbon receptor antagonist suggesting that the aryl

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

hydrocarbon receptor mediated the particle-induced toxicity. This is
consistent with the positive association between exposure to polycyclic
aromatic hydrocarbons from car traffic and breast cancer incidence, reported
by the Long Island Breast Cancer Study.²⁰ The authors of the Taiwan study
concluded that particle-induced ROS formation contributed to oxidative DNA
damage that may mediate particle-induced carcinogenesis.¹⁹

The finding that particles have both estrogenic and DNA-damaging effects suggests a potential mechanism for an effect on breast cancer: if inhaled PM entered the circulatory system from the lungs, estrogenic particles might find their way to breast tissue. However to our knowledge no data are available to indicate whether PM can reach breast tissue and further research is required in this area.²¹ Most of the toxic effects of PM have been attributed either to direct damage to lung tissue or release of inflammatory mediators from airway cells into the circulatory system.²² Notwithstanding these considerations the biological mechanisms by which PM_{2.5} exposure increases to breast cancer mortality remain unknown.

Our study has several strengths. We used a population-based cancer registry to identify virtually all the breast cancer cases in the study area over the study period, in turn linking them to local and regional mortality databases to obtain accurate and complete survival information. Another strength is our use of satellite derived $PM_{2.5}$ data produced by van Donkelaar et al.⁵ Traditional ground-based PM measurement methods may be accurate, but because measurement sites are thinly and irregularly distributed, their data cannot be used to assess the exposure of individuals over a wide geographic

Page 15 of 29

BMJ Open

area. The satellite data made it possible to estimate exposure in the 10x10 km area that included each woman's home. We consider that this 10x10 km area is particularly apt for our study purposes as it comprises the area where the woman is likely to have walked, visited friends, done her shopping, worked, and carried out other daily activities. Of course some women may have spent a considerable fraction of their time outside this area, perhaps at work, and this is a study weakness. Importantly, none of the women had missing values for $PM_{2.5}$ exposure.

Another study strength is that we controlled for factors (e.g. stage, grade, and participation in screening) known or suspected to influence breast cancer mortality. However we did not control for lifestyle factors, including diet and alcohol consumption, that may also influence breast cancer mortality.²³⁻²⁴

The Californian study⁷ – the only other published study on breast cancer mortality in relation to $PM_{2.5}$ exposure – also found a strong association between breast cancer mortality and PM_{2.5} exposure. However PM_{2.5} exposure for people living in California was much lower than in Varese Province – which is among the highest in the world.⁵ The lowest exposure category for California was $PM_{2.5} < 11.64 \ \mu g/m^3$: only three patients in our dataset had such a low exposure. However, the California researchers reported an HR for the upper category of 1.76 that is similar to the HRs for our three upper categories (1.82, 1.73 and 1.72 respectively).

A report of ongoing research in northern China on the link between PM₁₀ and breast cancer survival also indicated increased risk with increasing PM exposure, and also that survival was lower in women with estrogen receptor BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

positive disease.²⁶ The authors suggested that PM may act as a xenoestrogen, in line with the data from the study on effects of PM on breast cancer cell lines.²⁵

305 It is important to emphasize that the first quartile of exposure in our study is 306 not a risk zero category, but only the reference category for the other 307 quartiles.

309 CONCLUSIONS

Although our study has limitations, its findings are consistent with those of the California study and the report of a study in China indicating a strong association between breast cancer death and atmospheric PM exposure.

313 Clearly further studies are justified to further explore this association, 314 particularly in view of the increasing worldwide incidence of breast cancer 315 and increasing worldwide PM concentrations.⁵⁻⁶ Our data add to the wealth of 316 evidence that atmospheric PM has multiple adverse effects on human health, 317 and increase pressure to lower PM levels worldwide.

319 Acknowledgements

320 The authors thank Don Ward for help with the English and for critically 321 reading the manuscript.

323 Competing interests

324 All authors declare they have no competing interests.

1 2		
2 3 4	326	Data sharing statement
5 6	327	No additional data are available
7 8 0	328	
9 10 11	329	Funding
12 13	330	This research received no specific grant from any funding agency in the
14 15 16	331	public, commercial or not-for-profit sectors.
16 17 18	332	
19 20	333	Authors' contributions
21 22	334	P. Contiero contributed to study conception, designed the study, performed
23 24 25	335	the statistical analysis and wrote the first draft of the paper.
26 27	336	G. Tagliabue contributed to study conception, coordinated the clinical section
28 29	337	of the study and contributed to writing the paper.
30 31 32	338	R. Tessandori and G. Barigelletti contributed to practical aspects of study
33 34	339	design.
35 36 37	340	A. Borgini, M. Bertoldi and A Tittarelli were responsible for the exposure
38 39	341	assessment.
40 41	342	A. van Donkelaar and R. V. Martin were responsible for developing the model
42 43 44	343	deriving PM data from satellite data.
45 46	344	A Tittarelli, S Fabiano, A Scaburri and G Barigelletti developed the
47 48	345	information system to archive and manage the data and performed the
49 50 51	346	descriptive statistics.
52 53	347	A Maghini and T Codazzi retrieved the clinical information and performed the
54 55	348	record linkage between the sources.
56 57 58	349	I Favia and A Cau transferred the clinical data into the study database.
59 60		16

Page 18 of 29

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

d th All authors read and approved the final manuscript.

REFERENCES 1. IARC Scientific Publication No. 161: AIR POLLUTION AND CANCER. http://www.iarc.fr/en/publications/books/sp161/AirPollutionandCancer 161.pdf Barman SC, Kumar N, Singh R, et al. Assessment of urban air pollution 2. and it's probable health impact. J Environ Biol. 2010 Nov;31(6):913-20 3. IARC MONOGRAPHS: Volume 109: OUTDOOR AIR POLLUTION. http://monographs.iarc.fr/ENG/Monographs/vol109/mono109.pdf Raaschou-Nielsen O1, Andersen ZJ, Beelen R, et al. Air pollution and 4. lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013;14(9):813-22. Van Donkelaar A, Martin RV, Brauer M, et al. Use of satellite 5. observations for long-term alobal exposure assessment of concentrations of fine particulate matter. Environ Health Perspect. 2015 Feb;123(2):135-43. 6. IARC: GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan.iarc.fr/Pages/fact sheets cancer.aspx 7. Hu H, Dailey AB, Kan H, et al. The effect of atmospheric particulate matter on survival of breast cancer among US females. Breast Cancer Res Treat. 2013 May;139(1):217-26.

- 374 8. Hystad P, Villeneuve PJ, Goldberg MS, et al. Canadian Cancer
 375 Registries Epidemiology Research Group. Exposure to traffic-related air
 38

BMJ Open

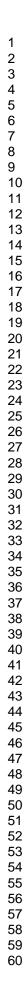
- 2 376 pollution and the risk of developing breast cancer among women in 4 5 377 eight Canadian provinces: a case-control study. Environ Int. 2015 7 378 Jan;74:240-8.
 - Iwai K, Mizuno S, Miyasaka Y, et al. Correlation between suspended
 particles in the environmental air and causes of disease among
 inhabitants: cross-sectional studies using the vital statistics and air
 pollution data in Japan. Environ Res. 2005 Sep;99(1):106-17.
- 10. Nie J, Beyea J, Bonner MR, et al. Exposure to traffic emissions throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study. Cancer Causes Control. 2007 Nov;18(9):947-55.
- 387 11. Tagliabue G, Maghini A, Fabiano S, et al Consistency and accuracy of
 31 388 diagnostic cancer codes generated by automated registration:
 33 389 comparison with manual registration. Popul Health Metr 4:10
- 12. Contiero P, Tittarelli A, Maghini A, et al. Comparison with manual registration reveals satisfactory completeness and efficiency of a computerized cancer registration system. J Biomed Inform. 2008 Feb;41(1):24-32
- 45 394 13. International Classification of Diseases for Oncology, Third Edition, First
 47 48 395 Revision. Geneva: World Health Organization, 2013
- 5039614. Sobin LH, Wittekind C. International Union Against Cancer (UICC) TNM5152397Classification Of Malignant Tumors. 6th ed. New York, NY: Wiley-Liss;53543982002.
 - 399 15. ESRI: ArcGIS. http://www.esri.com/software/arcgis

Page 21 of 29

BMJ Open

16. Berry DA. Failure of researchers, reviewers, editors, and the media to understand flaws in cancer screening studies: application to an article in Cancer. Cancer. 2014 Sep 15;120(18):2784-91 17. Therneau TM, Grambsch PM (2000) Testing proportional hazards. In: Modeling survival data: extending the Cox model. Springer, New York 18. R Development Core Team (2007), R: a language and environment for statistical computing. http://www.r-project.org 19. Chen ST, Lin CC, Liu YS, et al. Airborne particulate collected from central Taiwan induces DNA strand breaks, Poly(ADP-ribose) polymerase-1 activation, and estrogen-disrupting activity in human breast carcinoma cell lines. Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(2):173-81. 20. Mordukhovich I, Beyea J, Herring AH, Hatch M, et al. Vehicular Traffic-Related Polycyclic Aromatic Hydrocarbon Exposure and Breast Cancer Incidence: The Long Island Breast Cancer Study Project (LIBCSP). Environ Health Perspect. 2015 May 22. 21. Sutton P, Kavanaugh-Lynch MH, et al. California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention.

⁴⁵ 418 Reprod Toxicol. 2015 Jul;54:11-8.


47
48
419
419
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
<l

421 23. Romieu I, Scoccianti C, Chajès V, et al. Alcohol intake and breast
422 cancer in the European prospective investigation into cancer and
423 nutrition. Int J Cancer. 2015 Oct 15;137(8):1921-30

BMJ Open

2 3	424	24.	McKenzie F, Ferrari P, Freisling H, et al. Healthy lifestyle and risk of
4 5 6	425		breast cancer among postmenopausal women in the European
7 8	426		Prospective Investigation into Cancer and Nutrition cohort study. Int J
9 10	427		Cancer. 2015 Jun 1;136(11):2640-8
11 12 13	428	25.	Huo Q, Cai C, Yang Q. Atmospheric particulate matter and breast
14 15	429		cancer survival: estrogen receptor triggered? Tumour Biol. 2015
16 17 18	430		May;36(5):3191-3
19 20	431		
21 22			
23 24 25			
26			
27 28			
29			
30 31			
32			
33			
34 25			
35 36			
37			
38			
39 40			
40 41			
42			
43 44			
44 45			
46			
47			
48 49			
50			
51			
52			
53 54			
55			
56			
57 59			
58 59			
60			21

1		
2 3 4	432	Fig 1. Survival of breast cancer cases, diagnosed 2003-2009 and
5 6	433	resident in Varese Province, northern Italy according to exposure to
7 8	434	PM _{2.5} (quartiles)
9 10 11	435	
12 13	436	Fig 2. Cumulative hazard of breast cancer death in cases diagnosed
14 15	437	2003-2009 and resident in Varese Province, according to exposure to
16 17	438	PM _{2.5} (quartiles)
18 19		
20		
21 22		
23		
24		
25		
26 27		
28		
29		
30 31		
32		
33		
34 25		
35 36		
37		
38		
39 40		
41		
42		
43 44		
45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
56 57		
58		
59 60		22
00		22

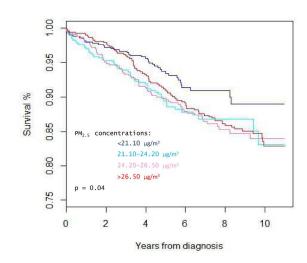


Fig 1. Survival of breast cancer cases, diagnosed 2003-2009 and resident in Varese Province, northern Italy according to exposure to PM2.5 (quartiles)

297x209mm (300 x 300 DPI)

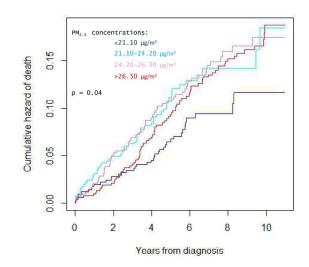


Fig 2. Cumulative hazard of breast cancer death in cases diagnosed 2003-2009 and resident in Varese Province, according to exposure to PM2.5 (quartiles) BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

297x209mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1: Title: "A population-based cohort study"
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	Pages 2-3: "Our study indicates that the risk of BC mortality increases with PM _{2.5} exposure."
Introduction		6	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Pages 4-5: "PM2.5 [has] multiple adverse effects on human health, and is classified by WHO and IARC as carcinogenic to humans." "global PM2.5 concentrations increased by 2.1%/year from 1998 through 2012." "breast cancer incidence is also
			increasing worldwide".
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5: "To investigate the association of atmospheric PM with breast cancer mortality ." Hypothesis:"the global increase in breast cancer incidence might be linked to increasing in PM concentrations and high PM might also worsen breast cancer survival ".
Methods			
Study design	4	Present key elements of study design early in the paper	Pages 6, Methods: "a retrospective study [of breast cancer mortality] on a cohort of women diagnosed with primary breast cancer".
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Pages 6-7, Methods: "cases archived by Lombard Cancer Registry.[] A total of 2021 primary breast cancers cases diagnosed in predetermined study period (2003-2009)". Page 2: "Of 2021 BC cases, 325 died during follow-up

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

			to 31/12/2013."
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Page 6 Methods – Breast cancer cases: "conforming to selection criteria (50-69 years at diagnosis, no other cancer diagnosed previously)"[were selected] Disease stage was as specified by TNM. "Mortality data are routinely collected by the cancer registry by linkage to the Varese Province mortality database. Other sources of mortality information are used routinely to ensure completeness."
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A, it is not a matched study.
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6 : "Study endpoint was breast cancer mortality." Pages 7-8 Statistical methods: [potential confounders] "were diagnosis, stage, grade, age at diagnosis and participation in a breast cancer screening program. [and] year of diagnosis."
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Pages 6-8 Methods - Breast cancer cases from Varese cancer registry. "Mortality data [] collected by the cancer registry by linkage to the Varese Province mortality database. Other sources of mortality information used to ensure completeness", Estimation of PM2.5, Statistical methods: "To estimate PM _{2.5} exposure we used satellite-based data that infers near-surface PM _{2.5} concentrations from the satellite-observed total column aerosol loading using a chemical transport model."
Bias	9	Describe any efforts to address potential sources of bias	Page 8 Methods – Statistical methods: "Cancers diagnosed in the screening context are affected by length-time and lead-time bias and may also be less aggressive than those diagnosed outside of screening"

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Study size	10	Explain how the study size was arrived at	Page 6 Methods – Breast cancer cases: The cancer
			database was searched "using site code C50 and
			malignant epithelial morphology codes M8010-M8575
			of the ICDO-3." "A total of 2021 primary breast
			cancers cases diagnosed in the predetermined study
			period (2003-2009) and conforming to selection
			criteria (50-69 years at diagnosis, no other cancer
			diagnosed previously)" were used.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe	Pages 7-8 Methods – Statistical methods: "Factors
		which groupings were chosen and why	analyzed were diagnosis period (2003-2006; 2007-
			2009), stage (I-IV) , grade (I-III, unknown), age at
			diagnosis (two categories,50-59 years and 60-69
			years), and participation in a breast cancer screening
			program (Yes, No)"
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 8 Methods – Statistical methods: "We ran
			univariate and multivariate Cox proportional hazard
			models to estimate HRs with 95% CI of breast cancer
			death according to quartiles of PM2.5 exposure. The
			multivariate model was stratified by age, grade, stage,
			diagnosis period and participation in screening."
		(b) Describe any methods used to examine subgroups and interactions	We did not analyse subgroup and we did not study
			interactions.
		(c) Explain how missing data were addressed	Page 8 - Missing data were handled using a separate
			"not specified" category for unavailable disease stage and a separate "not specified" category for
			unavailable tumor grade when performing data
			analysis.
		(d) If applicable, explain how loss to follow-up was addressed	Page 8 – loss of follow-up was addressed by censoring
			at date of loss of follow-up
		(e) Describe any sensitivity analyses	Not performed
Results	1	1	Ι
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	N/A
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Pages 10-11 Results – Table1
		(b) Indicate number of participants with missing data for each variable of interest	Pages 10-11. Table 1 and above
		(c) Summarise follow-up time (eg, average and total amount)	Page 9, Results: Followed up to 31 December 2013
Outcome data	15*	Report numbers of outcome events or summary measures over time	Page 9 – "A total of 325 (16.1%) women died in the period up to 31 December 2013, 246 (12.2%) of thes of breast cancer." Pages 10-11 Results – Table1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 11 Results – Table2 Page 11: "By the univariate model, breast can patients living in an area with $PM_{2.5}$ levels above to lowest quartile had significantly greater risk of breact cancer death than those living in areas with lowed quartile of $PM_{2.5}$ (<21.10 µg/m ³). The increased risk death ranged from 72% (fourth quartile) to 8% (second quartile). In the multivariate model, whi controlled for confounding factors, risks of breact cancer death were numerically greater and so significant for all exposure quartiles above to lowest."
		(b) Report category boundaries when continuous variables were categorized	Pages 10-11 Results – Table1; Table2 PM _{2.5} was categorised into: I (<21.10); II (21.10-24.2 III(24.20-26.50) , IV (≥26.50) Page 11 Results – Table2
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12 Discussion: "We have shown that high

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

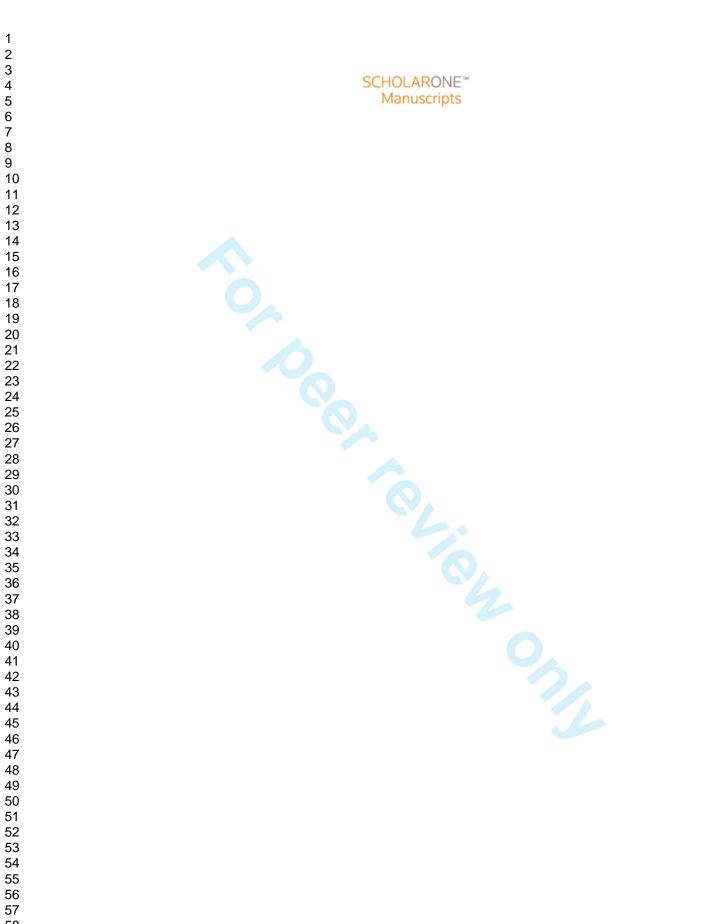
BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

			our course to DM2. F is accessibled with increased
			exposure to PM2.5 is associated with increased
			mortality for breast cancer after correcting for a range
			of factors considered to influence breast cancer
			survival."
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	Page 14 Discussion: "some women may have spent a
		imprecision. Discuss both direction and magnitude of any potential bias	considerable fraction of their time outside this area,
		0	perhaps at work, and this is a study weakness". "we did not control for lifestyle factors, including diet and alcohol consumption, that may also influence breast cancer mortality."
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	Pages 13-14 Discussion
		multiplicity of analyses, results from similar studies, and other relevant evidence	Page 15 Conclusions: "Our data add to the wealth of
			evidence that atmospheric PM has multiple adverse
			effects on human health".
Generalisability	21	Discuss the generalisability (external validity) of the study results	This is a preliminary study.
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	Page 16: "This research received no specific grant from
		applicable, for the original study on which the present article is based	any funding agency in the public, commercial or not-
			for-profit sectors."

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

BMJ Open

ATMOSPHERIC FINE PARTICULATE MATTER AND BREAST CANCER MORTALITY: A POPULATION-BASED COHORT STUDY

Journal:	BMJ Open	
Manuscript ID	bmjopen-2016-012580.R1	
Article Type:	Research	
Date Submitted by the Author:	15-Sep-2016	
Complete List of Authors:	Tagliabue, Giovanna; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Borgini, Alessandro; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Tittarelli, Andrea; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine van Donkelaar, Aaron; Dalhousie University, Department of Physics and Atmospheric Science Martin, Randall V; Dalhousie University, Department of Physics and Atmospheric Science; Harvard-Smithsonian Center for Astrophysics Bertoldi, Martina; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Fabiano, Sabrina; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Maghini, Anna; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Scaburri, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Gua, Alessandra; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Cau, Alessandro; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Barigelletti, Giulio; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Barigelletti, Giulio; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine Tessandori, Roberto; Retired Contiero, Paolo; Fondazione IRCCS Istituto Nazionale dei Tumori, Preventive and Predictive Medicine	
Primary Subject Heading :	Occupational and environmental medicine	
Secondary Subject Heading:	Oncology, Epidemiology	
Keywords:	Breast tumours < ONCOLOGY, particulate matter, environment, prognosis survival, cancer registry	

ATMOSPHERIC FINE PARTICULATE MATTER AND BREAST CANCER **MORTALITY: A POPULATION-BASED COHORT STUDY** Giovanna Tagliabue¹, Alessandro Borgini², Andrea Tittarelli¹, Aaron van Donkelaar³, Randall V. Martin^{3,4}, Martina Bertoldi², Fabiano Sabrina¹, Anna Maghini¹, Tiziana Codazzi¹, Alessandra Scaburri², Imma Favia², Alessandro Cau², Giulio Barigelletti¹, Roberto Tessandori⁵ and Paolo Contiero² ¹ Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy ² Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy ³ Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada ⁴ Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA ⁵ Retired Corresponding author: Dr. Paolo Contiero National Cancer Institute, Via Venezian 1, 20133 Milano Tel: +39 0223903538; E-mail: paolo.contiero@istitutotumori.mi.it Keywords: Breast cancer, particulate matter, prognosis, survival, cancer registry **Word count**: 2.676

BMJ Open

ABSTRACT

Objectives

Atmospheric fine particulate matter ($PM_{2.5}$) has multiple adverse effects on human health. Global atmospheric levels of $PM_{2.5}$ increased by 0.55 $\mu g/m^3/year$ (2.1%/year) from 1998 through 2012. There is evidence of a causal relationship between atmospheric $PM_{2.5}$ and breast cancer (BC) incidence but few studies have investigated BC mortality and atmospheric $PM_{2.5}$. We investigated BC mortality in relation to atmospheric $PM_{2.5}$ levels among patients living in Varese Province, northern Italy.

34 Methods

We selected female BC cases, archived in the local population-based cancer registry, diagnosed at age 50-69 years, between 2003 and 2009. The geographic coordinates of each woman's place of residence were identified and individual PM_{2.5} exposures were assessed from satellite data. Grade, stage, age at diagnosis, period of diagnosis, and participation in BC screening were potential confounders. Kaplan-Meir and Nelson-Aalen methods were used to test for mortality differences in relation to PM_{2.5} quartiles. Multivariable Cox proportional hazards modeling estimated hazard ratios (HR) and 95% confidence intervals (CI) of BC death in relation to $PM_{2.5}$ exposure.

Results

46 Of 2021 BC cases, 325 died during follow-up to 31/12/2013, 246 for breast
47 cancer. Risk of BC death was significantly higher for all three upper guartiles

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

of PM exposure compared to the lowest, with HRs of death: 1.82 (95%CI
1.15-2.89), 1.73 (95%CI 1.12-2.67), and 1.72 (95%CI 1.08-2.75).

Conclusions

Our study indicates that the risk of BC mortality increases with $PM_{2.5}$ exposure. Although additional research is required to confirm these findings, they are further evidence that $PM_{2.5}$ exposure is harmful and indicate an urgent need to improve global air quality.

STRENGTHS AND LIMITATIONS OF THE STUDY

- These is one of few studies to address the relation between atmospheric PM_{2.5} and breast cancer mortality.
- PM_{2.5} exposure was assessed using a new but validated method based
 on satellite data, overcoming the major limitation of measuring PM_{2.5} at
 thinly and irregularly distributed ground stations.
- We used high quality population-based cancer registry data to identify
 breast cancer cases, and assess patient mortality.
- We controlled for confounding factors and also for participation in screening that may have introduced length-time and lead-time biases.
 - Limitations are that lifestyle factors and comorbidities were not considered, and that exposure was assessed in the 10x10 km square containing the woman's residence, while time spent outside this square is unknown.

72 INTRODUCTION

Atmospheric particulate matter (PM) may be emitted or formed from natural or anthropogenic sources. In industrial and urban areas, PM is mainly anthropogenic.¹ PM of diameter up to 10 μ m (PM₁₀) and fine PM, up to 2.5 μ m (PM_{2.5}), are documented to have multiple adverse effects on human health^{2,3}, and are classified by the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) as group 1 carcinogens (carcinogenic to humans).⁴

A recent prospective meta-analysis of 17 cohort studies from nine European countries found a significant association between increasing levels of both PM₁₀ and PM_{2.5} and increasing lung cancer risk. The study concluded that PM air pollution contributed to lung cancer incidence in Europe.⁵

Notwithstanding the known toxicity of PM_{2.5}, global population-weighted concentrations increased by 0.55 μ g/m3/year (2.1%/year) from 1998 through 2012, largely driven by increases in developing countries such as China and India.⁶ It is noteworthy that the incidence of breast cancer is also increasing worldwide and it is now the most common female cancer worldwide.⁷ In 2012 an estimated 1.67 million new cases were diagnosed across the globe: 749,000 in developed countries and 883,000 in developing countries.⁷

92 Reasonable hypotheses are that the global increase in breast cancer 93 incidence might be linked to increasing in PM concentrations, and that high 94 PM might also worsen breast cancer survival. This is supported by the 95 findings of a population-based study in California⁸ which found that exposure BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

to higher PM_{10} (HR 1.13, 95%CI 1.02-1.25, per 10 µg/m³) and $PM_{2.5}$ (HR 1.86, 95%CI 1.12-3.10, per 5 µg/m³) was significantly associated with early mortality among women with breast cancer after adjusting for numerous covariates.

There are other reasons to suspect an association between breast cancer survival and PM levels in the atmosphere. A Canadian study which assessed NO₂ levels as a proxy of traffic-related air pollution found that breast cancer incidence increased with increasing NO₂ exposure.⁹ A Japanese study found that $PM_{2,5}$ levels estimated from measured PM_{10} levels were significantly associated with mortality for breast, endometrial and ovarian cancers after adjusting for smoking, population density, and hormone-related factors.¹⁰ A 2007 cohort study in Western New York State also found that high exposure to traffic emissions at the time of menarche was associated with increased risk of pre-menopausal breast cancer (OR 2.05, 95% CI 0.92–4.54, p trend 0.03); and that high exposure at time of first birth increased the risk of postmenopausal disease (OR 2.57, 95% CI 1.16-5.69, p trend 0.19).¹¹

To further probe the association of atmospheric PM with breast cancer, we carried out the present study in Varese Province, northern Italy. We investigated breast cancer mortality (primary study endpoint) in relation to residential exposure to atmospheric PM_{2.5} as determined by a satellite-based method.

- 117 MATERIALS AND METHODS
 - 118 Study area

BMJ Open

Varese Province, Region of Lombardy, northern Italy (Fig 1) has a population of
877 000 and population density of 731.4/km². PM_{2.5} comes from mainly from
non-industrial emissions (e.g. heating) (30-42%) and road traffic (30-32%).¹² As Fig.
1 shows, Varese Province is situated in an area (the plain of the river Po)
enclosed by mountains which block atmospheric circulation. As a result
atmospheric pollution tends to build up. In fact atmospheric PM_{2.5} levels in
the plain of the Po are among the highest in the world.⁶

Varese Province is also characterized by high breast cancer incidence (world age standardized rate 89.3/100,000)⁷ and a high quality cancer registry that is likely to have registered essentially all breast cancer cases occurring over any relatively recent period. ¹³⁻¹⁴

130 Breast cancer cases

We performed a retrospective study on a cohort of women diagnosed with primary breast cancer. The cases were archived by the Varese section of the Lombardy Cancer Registry. A search using site code C50 and malignant epithelial morphology codes M8010-M8575 of the International Classification of Disease for Oncology (ICDO-3) retrieved a total of 2021 primary breast cancer cases diagnosed in the predetermined study period (2003-2009) and conforming to our selection criteria (50-69 years at diagnosis, no other cancer diagnosed previously).¹⁵ All 2021 breast cancer cases were used in the analysis. Disease stage was as specified by TNM (6th edition, 2002).¹⁶

140 Mortality ascertainment

141 Mortality data from the Varese Province mortality database are routinely 142 collected by the cancer registry and linked to cancer cases by the Epilink

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

software, which achieved 98.8% specificity and 96.5% sensitivity for linking in a published study.¹⁷ Epilink flags problematic cases for manual checking to enhance linkage accuracy. Each cancer case identified as deceased is checked against the Social Security List of all persons who receive health caser in the Region of Lombardy (essentially the entire population). The vital status field for each person in the Social Security List is updated frequently and serves as an independent check of the vital status of cancer cases archived by the registry.

151 Estimation of PM_{2.5}

The procedure for estimating $PM_{2.5}$ exposure involved first retrieving each patient's address at the date of diagnosis (reference date) from the cancer registry and then determining the geographic coordinates (latitude and longitude) of each address using the ArcGis 10.0 software.¹⁸ Ground level PM_{2.5} exposure at each address was then estimated from satellite observations. The actual PM_{2.5} value used as exposure proxy was the median of ground level PM_{2.5} concentrations over the three years around the diagnosis date (so as to reduce noise in the annual satellite-derived values). Thus if a woman was diagnosed in 2006, the $PM_{2.5}$ concentration used was the median of annual concentrations for the years 2005, 2006 and 2007. The method described by van Donkelaar et al.⁶ was used to estimate ground level PM_{2.5} exposure. This approach combined daily total column aerosol optical depth data from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor (SeaWIFS) satellite instruments, with coincident

BMJ Open

vertical aerosol profile and scattering properties estimated by the GEOS Chem chemical transport model, so as to produce longer-term means. ⁶ Total
 column aerosol optical depth is a measure of the total light extinction due to
 scattering and absorption by atmospheric aerosols.

171 The ground-level PM_{2.5} estimates were available at a resolution of 10x10 km, 172 and breast cancer case exposure was estimated as median PM_{2.5} 173 concentration over three years in the 10x10 km area containing each case's 174 residence. Exposure variations arising from daily or periodic movements 175 away from home are not considered by this method.

Data produced by this method have been shown to correlate well with levels determined by ground-based PM_{2.5} detectors,⁶ and have the advantage that they are available over an entire territory, while ground-based observation stations are generally few and irregularly spaced. In Varese Province only four ground-based sites measure PM_{2.5}.

181 Statistical methods

The analyses we performed are based on the Cox proportional hazard model which specifies the hazard as $\lambda(t) = \lambda_0(t) \exp(\beta X)$ where $\lambda(t)$ is the hazard function for the event in question (death). X is a vector of covariates, and β is a vector of coefficients to be estimated. The hazards for two subjects with fixed covariate vectors X_i e X_i are respectively λ_i (t) = λ_0 (t)exp(β X_i) and λ_i (t) $= \lambda_0(t) \exp(\beta X_i)$. The hazard ratio (HR) is $\lambda_i(t)/\lambda_i(t) = \exp(\beta(X_i - X_i))$. To test the null hypothesis H_0 that $\beta = 0$ we used the likelihood ratio test. Because the Cox model assumes proportional hazards, this was tested by analysis of scaled Schoenfeld residuals, with associated p values. When the hazard was

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

suspected to be non-proportional over time, we performed additional analyses, substituting the conventional Cox β coefficient (for a given variable) with a time-dependent function $\beta(t)$ obtained by adding the smoothed scaled Schoenfeld residuals to the conventional β coefficient.^{19,20,21} Factors known or thought to influence breast cancer prognosis were initially analyzed by univariate Cox proportional hazard modeling to verify their effect on breast cancer mortality in our cohort. Factors analyzed were diagnosis period (2003-2006; 2007-2009), stage (I-IV), grade (I-III, unknown), age at diagnosis (two categories, 50-59 years and 60-69 years), and participation in a breast cancer screening program (Yes, No). Year of diagnosis was included since, over time, treatment may have improved and diagnosis may have occurred earlier. Cancers diagnosed in the screening context are affected by length-time and lead-time bias and may also be less aggressive than those diagnosed outside of screening.²²

We next ran univariate and multivariate Cox proportional hazard models to estimate HRs with 95% confidence intervals (CI) of breast cancer death according to quartiles of $PM_{2.5}$ exposure. The multivariate model was stratified (separate baseline hazard functions for each variable category within the model) by age, grade, stage, diagnosis period and participation in screening.by age, grade, stage, diagnosis period and participation in screening to control for the possible confounding effects of these variables on mortality.

213 Time to event or end of follow-up was calculated from date of diagnosis.214 Cases that died of causes other than breast cancer were censored at the date

BMJ Open

of death. Patients alive at study end were censored at that time (31/12/2013). Patients lost to follow-up were censored at the date of loss to follow-up. Cases with missing data (missing disease stage and tumor grade) were assigned to "not specified" categories in the analyses.

We also used the Kaplan-Meier method to produce survival curves for quartiles of PM_{2.5} exposure, testing the significance of differences between curves with the stratified log-rank test. We also used the Nelson-Aalen estimator to plot the cumulative hazard of breast cancer death for PM_{2.5} exposure categories. The analyses were performed using the R statistical package.²³

Italian legislation identifies cancer registries as collectors of personal data for research and public health purposes and does not consider that specific approval by an ethics committee is required to use this data for research and public health purposes. Although our study was an observational one based on individual data, all such data were anonymized prior to analysis.

RESULTS

Disease and other characteristics of the 2021 breast cancer patients are shown in Table 1. One hundred and one (5%) women changed address during the study period: 90 of these moved from one part of the Province to another (and may have changed PM_{2.5} exposure), while 11 moved outside the study area and were censored at the date of leaving. A total of 325 (16.1%) women died in the period up to 31 December 2013, 246 (12.2%) of these of breast cancer. Table 1 also shows HRs for breast cancer death

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

according to categories of prognostic variables: HR of death increased significantly with advancing stage and grade, while participation in screening was associated with considerably reduced risk of death, at least over the study period. These findings are as expected.

Table 1. Patient (n=2021) and disease characteristics with univariate hazard ratios (HR) and 95% confidence intervals (CI) for breast cancer death

Variable		Breast cancer cases (N)	Breast cancer deaths (N)	HR (95% CI) for breast cancer death
Period of diagnosis				
	2003-2006	1199	163	1
	2007-2009	822	83	1.08 (0.82 1.42)
Disease stage	0			
	I	887	25	1
	II	550	48	3.21 (1.98-5.21)
	III	292	93	13.31 (8.56-20.70)
	IV	35	27	75.94 (43.94-131.24)
	Not specified	257	53	8.26 (5.14-13.3)
Participation in screening			0	
	No	1341	213	1
	Yes	680	33	0.29 (0.20-0.41)
Tumor grade				
	I	193	3	1
	II	1132	97	5.43 (1.72-17.13)
	III	513	104	14.06 (4.46-44.33)
	Not specified	183	42	16.93 (5.25-54.63)
Age at diagnosis				
	50-59	923	110	1
	60-69	1098	136	1.05 (0.82-1.35)

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Table 2 shows the results of the univariate and multivariate analyses, presented as HRs with 95% CIs for breast cancer death according to quartiles of $PM_{2.5}$ exposure. By the univariate model, breast cancer patients living in an area with $PM_{2.5}$ levels above the lowest quartile had significantly greater risk of breast cancer death than those living in areas with lowest quartile of $PM_{2.5}$ (<21.10 μ g/m³). The increased risk of death ranged from 72% (fourth quartile) to 82% (second quartile). For the multivariate model, which controlled for confounding factors, the likelihood ratio test gave p =0.029, indicating that the null hypothesis of no association between breast cancer mortality and $PM_{2.5}$ could be rejected. In detail: HRs of breast cancer death were numerically greater than those produced by the univariate analyses and significant for all exposure guartiles above the lowest.

Table 2. Hazard ratios (HR) and 95% confidence intervals (CI) for
 breast cancer death in relation to PM_{2.5} exposure.

PM _{2.5} quartiles (μg/m³)	Cases (N)	Deaths (N)	HR (95%CI), bre	CI), breast cancer death	
(F3/)	()	()	Univariate	Multivariate *	
I (<21.10)	504	40	1	1	
II (21.10-24.20)	462	56	1.56 (1.04-2.34)	1.82 (1.15-2.89)	
III (24.20-26.50)	530	71	1.55 (1.06-2.29)	1.73 (1.12-2.67)	
IV (≥26.50)	525	79	1.49 (1.02-2.19)	1.72 (1.08-2.75)	

* Multivariate stratified by age, stage, grade, diagnosis and participation in screening.

1	
2 3 262 4	
5 263 6	Analysis of scaled Schoenfeld residuals showed that P values for increasing
7 8 264 9	$PM_{2.5}$ quartiles were 0.93, 0.40, 0.38 and 0.32, indicating that the null
9 10 265 11	hypothesis of no variation of hazard with time could not be rejected,
12 266 13	suggesting that the prognostic effect $PM_{2.5}$ remained constant over the entire
14 15 267	follow-up.
16 17 268 18	Fig 2 shows Kaplan-Meir survival curves by $PM_{2.5}$ quartiles. Fig 2 shows
19 20 269	Nelson-Aalen estimates of the cumulative hazard of breast cancer death by
21 22 270	$PM_{2.5}$ quartiles. Figs 2 and 3 both indicate that breast cancer patients
23 24 271 25	exposed to the three upper $PM_{2.5}$ levels ($\geq 21.100 \ \mu g/m^3$) had a significantly
26 27 272	(P=0.04, stratified log-rank test) greater risk of breast cancer death than
28 29 273	those living in an area with the lowest quartile of $PM_{2.5}$.
30 31 274 32	Yearly (2003-2009) averages of $PM_{2.5}$ exposure for all study women were:
33 34 275	26.57, 26.65, 26.43, 23.73, 21.78, 21.44, and 20.71 μg/006D ³ .
35 36 276	
37 38 277 39	DISCUSSION
40 41 278	We have shown that high exposure to $PM_{2.5}$ is associated with increased
42 43 279	mortality for breast cancer after correcting for a range of factors considered
44 45 280 46	to influence breast cancer survival. As regards possible mechanisms
40 47 48 281	mediating this association, little evidence is available. A recent study
49 50 282	collected airborne particles in Taiwan and investigated their effects on breast
51 52 283	cancer cell lines. ²⁴ The particles themselves and their solvent extracts had a
53 54 55 284	variety of effects on the cell lines, including in particular increased generation
56 57 285	of reactive oxygen species (ROS), increased numbers of DNA strand breaks,
58 59 60	14

BMJ Open

and both estrogenic and anti-estrogenic activity (concentration dependent). It is noteworthy that particle-induced ROS generation was blocked by treatment with aryl hydrocarbon receptor antagonist suggesting that the aryl hydrocarbon receptor mediated the particle-induced toxicity. This is consistent with the positive association between exposure to polycyclic aromatic hydrocarbons from car traffic and breast cancer incidence, reported by the Long Island Breast Cancer Study.²⁵ The authors of the Taiwan study concluded that particle-induced ROS formation contributed to oxidative DNA damage that may mediate particle-induced carcinogenesis.²⁴

The finding that particles have both estrogenic and DNA-damaging effects suggests a potential mechanism for an effect on breast cancer: if inhaled PM entered the circulatory system from the lungs, estrogenic particles might find their way to breast tissue. However to our knowledge no data are available to indicate whether PM can reach breast tissue and further research is required in this area.²⁶ Most of the toxic effects of PM have been attributed either to direct damage to lung tissue or release of inflammatory mediators from airway cells into the circulatory system.²⁷ Notwithstanding these considerations, the biological mechanisms by which PM_{2.5} exposure increases to breast cancer mortality remain unknown.

305 Our study has several strengths. We used a population-based cancer registry 306 to identify virtually all the breast cancer cases in the study area over the 307 study period, in turn linking them to mortality databases to obtain accurate 308 and complete survival information. Another strength is our use of satellite 309 derived PM_{2.5}. Traditional ground-based PM measurement methods are Page 17 of 33

BMJ Open

locally accurate, but are sparsely and irregularly distributed, adding considerable uncertainty to individual exposure assignments over a wide geographic area. The satellite data made it possible to estimate the exposure in each 10x10 km area containing each woman's home. We consider that this area is particularly apt for our purposes as it comprises the area where the woman is likely to have carried out most of her daily activities. Of course some women may have spent a considerable fraction of their time outside this area, perhaps at work, and this is a study weakness. Importantly, none of the women had missing values for $PM_{2.5}$ exposure.

Another study strength is that we controlled for factors (e.g. stage, grade, and participation in screening) known or suspected to influence breast cancer mortality. However we did not control for lifestyle factors, including diet and alcohol consumption, or comorbidities, that may also influence breast cancer mortality.^{28,29,30}

The Californian study – the only other published study on breast cancer mortality in relation to $PM_{2.5}$ exposure – also found a strong association between breast cancer mortality and $PM_{2.5}$ exposure. However $PM_{2.5}$ exposure for people living in California was much lower than in Varese Province – which is among the highest in the world.⁶ The lowest exposure category for California was $PM_{2.5} < 11.64 \ \mu g/m^3$: only three patients in our dataset had such a low exposure. However, the California researchers reported an HR for the upper category of 1.76 that is similar to the HRs for our three upper categories (1.82, 1.73 and 1.72 respectively).

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

A report of ongoing research in northern China on the link between PM₁₀ and breast cancer survival also indicated increased risk with increasing PM exposure, and also that survival was lower in women with estrogen receptor positive disease.³¹ The authors suggested that PM may act as a xenoestrogen, in line with the data from the study on effects of PM on breast cancer cell lines.²⁴

339 It is important to emphasize that the first quartile of exposure in our study is 340 not a risk zero category, but only the reference category for the other 341 quartiles.

In conclusion, although our study has limitations, its findings are consistent with those of the California study. 5and the report of a study in China indicating a strong association between breast cancer death and atmospheric PM exposure. Clearly more research is justified to further explore this association, particularly in view of the increasing worldwide incidence of breast cancer and worldwide increases in PM concentrations.⁶⁻⁷ Our data add to the wealth of evidence that atmospheric PM has multiple adverse effects on human health, and speak to the urgent need to lower atmospheric PM levels worldwide.

352 Acknowledgements

353 The authors thank Don Ward for help with the English and for critically 354 reading the manuscript.

Competing interests

2 3	357	All authors declare they have no competing interests.
4 5 6	358	
7 8	359	Data sharing statement
9 10 11	360	No additional data are available
12 13	361	
14 15 16	362	Funding
17 18	363	This research received no specific grant from any funding agency in the
19 20	364	public, commercial or not-for-profit sectors.
21 22 23	365	
23 24 25	366	Authors' contributions
26 27	367	P. Contiero contributed to study conception, designed the study, performed
28 29 30	368	the statistical analysis and wrote the first draft of the paper.
31 32	369	G. Tagliabue contributed to study conception, coordinated the clinical section
33 34	370	of the study and contributed to writing the paper.
35 36 37	371	R. Tessandori and G. Barigelletti contributed to practical aspects of study
38 39	372	design.
40 41	373	A. Borgini, M. Bertoldi and A Tittarelli were responsible for the exposure
42 43 44	374	assessment.
45 46	375	A. van Donkelaar and R. V. Martin were responsible for developing the model
47 48	376	deriving PM data from satellite data.
49 50 51	377	A Tittarelli, S Fabiano, A Scaburri and G Barigelletti developed the
52 53	378	information system to archive and manage the data and performed the
54 55	379	descriptive statistics.
56 57 58		
59 60		18

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- A Maghini and T Codazzi retrieved the clinical information and performed the
 - record linkage between the sources.
 - I Favia and A Cau transferred the clinical data into the study database.
- All authors read and approved the final manuscript.

1		
2 3 4	385	REFERENCES
5 6 7	386	1. IARC Scientific Publication No. 161: AIR POLLUTION AND CANCER.
8	387	http://www.iarc.fr/en/publications/books/sp161/AirPollutionandCanc
9 10 11	388	er161.pdf
12 13	389	2. Barman SC, Kumar N, Singh R, et al. Assessment of urban air
14 15	390	pollution and it's probable health impact. J Environ Biol. 2010
16 17 18	391	Nov;31(6):913-20
19 20	392	3. Fantke P, Jolliet O, Evans JS, et al. Health effects of fine particulate
21 22	393	matter in life cycle impact assessment: findings from the Basel
23 24 25	394	Guidance Workshop. The Int J Life Cycle Assess. 2015 Feb; 20(2):
26 27	395	276-288
28 29	396	4. IARC MONOGRAPHS: Volume 109: OUTDOOR AIR POLLUTION.
30 31 32	397	http://monographs.iarc.fr/ENG/Monographs/vol109/mono109.pdf
33 34	398	5. Raaschou-Nielsen O1, Andersen ZJ, Beelen R, et al. Air pollution and
35 36 37	399	lung cancer incidence in 17 European cohorts: prospective analyses
38 39	400	from the European Study of Cohorts for Air Pollution Effects
40 41	401	(ESCAPE). Lancet Oncol. 2013;14(9):813-22.
42 43 44	402	6. Van Donkelaar A, Martin RV, Brauer M, et al. Use of satellite
44 45 46	403	observations for long-term exposure assessment of global
47 48	404	concentrations of fine particulate matter. Environ Health Perspect.
49 50 51	405	2015 Feb;123(2):135-43.
52 53	406	7. IARC: GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and
54 55	407	Prevalence Worldwide in 2012.
56 57 58	408	http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
59 60		20

BMJ Open

- 409
 409
 8. Hu H, Dailey AB, Kan H, et al. The effect of atmospheric particulate
 410
 410
 410
 410
 411
 Cancer Res Treat. 2013 May;139(1):217-26.
- 9. Hystad P, Villeneuve PJ, Goldberg MS, et al. Canadian Cancer Registries Epidemiology Research Group. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case-control study. Environ Int. 2015 Jan;74:240-8.
- 10. Iwai K, Mizuno S, Miyasaka Y, et al. Correlation between suspended particles in the environmental air and causes of disease among inhabitants: cross-sectional studies using the vital statistics and air pollution data in Japan. Environ Res. 2005 Sep;99(1):106-17.

Nie J, Beyea J, Bonner MR, et al. Exposure to traffic emissions 11. throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study. Cancer Causes Control. 2007 Nov;18(9):947-55.

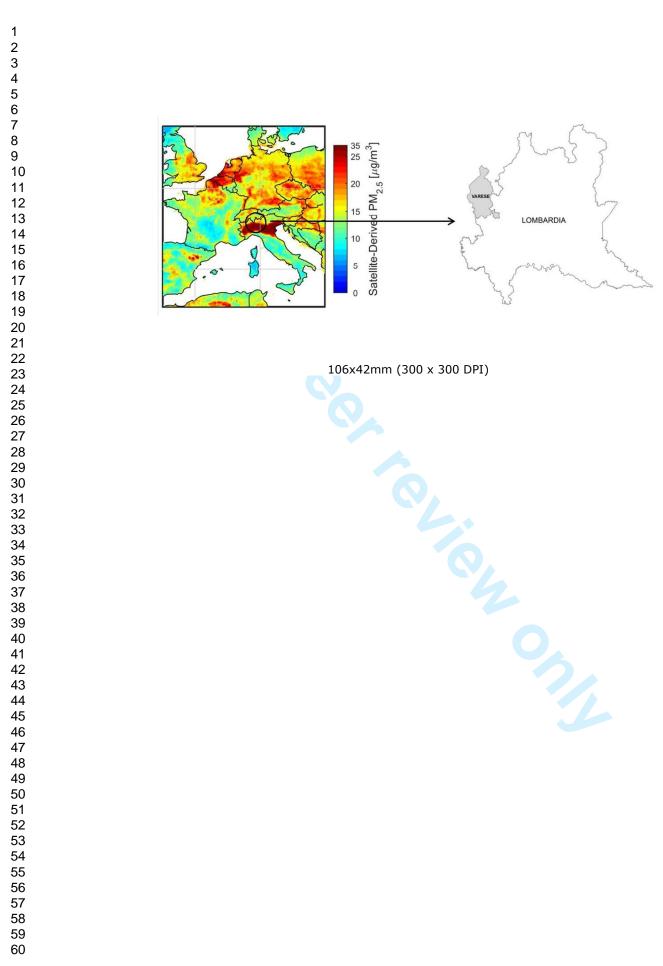
- 426 12. http://www.inemar.eu/xwiki/bin/view/Inemar/
- 13. Tagliabue G, Maghini A, Fabiano S, et al Consistency and accuracy of diagnostic cancer codes generated by automated registration: comparison with manual registration. Popul Health Metr 4:10
- 431
 55
 431
 56
 57
 432
 58
 58

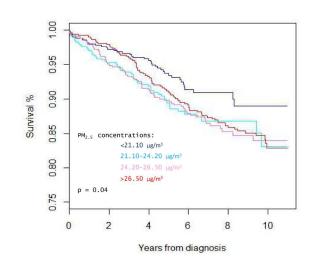
1		
2 3 4	433	computerized cancer registration system. J Biomed Inform. 2008
5 6	434	Feb;41(1):24-32
7 8	435	15. International Classification of Diseases for Oncology, Third
9 10 11	436	Edition, First Revision. Geneva: World Health Organization, 2013
12 13	437	16. Sobin LH, Wittekind C. International Union Against Cancer (UICC)
14 15	438	TNM Classification Of Malignant Tumors. 6th ed. New York, NY:
16 17 18	439	Wiley-Liss; 2002
19 20	440	17. Contiero P, Tittarelli A, Tagliabue G, et al. The EpiLink record
21 22	441	linkage software: presentation and results of linkage test on cancer
23 24 25	442	registry files. Methods Inf Med. 2005;44(1):66-71.
26 27	443	18. ESRI: ArcGIS. http://www.esri.com/software/arcgis
28 29	444	19. Therneau TM, Grambsch PM. Testing proportional hazards. In:
30 31 32	445	Modeling survival data: extending the Cox model. 2000. Springer,
32 33 34	446	New York
35 36	447	20. Bellera CA, MacGrogan G, Debled M, et al. Variables with time-
37 38 39	448	varying effects and the Cox model: some statistical concepts
39 40 41	449	illustrated with a prognostic factor study in breast cancer. BMC Med
42 43	450	Res Methodol. 2010; 10-20
44 45	451	21. Harrell F. Regression Modeling Strategies. 2001. Springer
46 47 48	452	22. Berry DA. Failure of researchers, reviewers, editors, and the
49 50	453	media to understand flaws in cancer screening studies: application
51 52	454	to an article in Cancer. Cancer. 2014 Sep 15;120(18):2784-91
53 54 55	455	23. R Development Core Team (2007), R: a language and
56 57	456	environment for statistical computing. http://www.r-project.org
58 59 60		22
60		22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 24 of 33

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright


BMJ Open


- Chen ST, Lin CC, Liu YS, et al. Airborne particulate collected from 24. central Taiwan induces DNA strand breaks, Poly(ADP-ribose) polymerase-1 activation, and estrogen-disrupting activity in human breast carcinoma cell lines. Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(2):173-81.
- Mordukhovich I, Beyea J, Herring AH, Hatch M, et al. Vehicular 25. Traffic-Related Polycyclic Aromatic Hydrocarbon Exposure and Breast Cancer Incidence: The Long Island Breast Cancer Study Project (LIBCSP). Environ Health Perspect. 2015 May 22.
- 24
2546626. Sutton P, Kavanaugh-Lynch MH, et al. California Breast Cancer25
26
27
27467Prevention Initiatives: Setting a research agenda for prevention.28
29468Reprod Toxicol. 2015 Jul;54:11-8.
- 31
32
33
3446927. Rundell KW. Effect of air pollution on athlete health and
performance. Br J Sports Med. 2012 May;46(6):407-12
- 35
3647128. Romieu I, Scoccianti C, Chajès V, et al. Alcohol intake and breast37
38
39472cancer in the European prospective investigation into cancer and40
41473nutrition. Int J Cancer. 2015 Oct 15;137(8):1921-30
- 29. McKenzie F, Ferrari P, Freisling H, et al. Healthy lifestyle and risk of breast cancer among postmenopausal women in the European Prospective Investigation into Cancer and Nutrition cohort study. Int J Cancer. 2015 Jun 1;136(11):2640-8
- 52
53
54
5547830. Søgaard M, Thomsen RW, Bossen KS, et al. The impact of
comorbidity on cancer survival: a review. Clin Epidemiol. 2013 Nov56
57
584801;5(1):3-29

1		
2 3 4	481	31. Huo Q, Cai C, Yang Q. Atmospheric particulate matter and breast
5 6	482	cancer survival: estrogen receptor triggered? Tumour Biol. 2015
7 8	483	May;36(5):3191-3
9 10 11	484	
12 13		
14 15		
16 17 18		
19 20		
21 22		
23 24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55 56		
57 58		
59 60		24

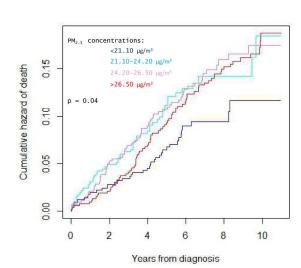

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Fig 1. Map of the study area and satellite – derived PM_{2.5} Fig 2. Survival of breast cancer cases, diagnosed 2003-2009 and resident in Varese Province, northern Italy according to exposure to PM_{2.5} (quartiles) Fig 3. Cumulative hazard of breast cancer death in cases diagnosed 2003-2009 and resident in Varese Province, according to exposure to PM_{2.5} (quartiles)

297x209mm (300 x 300 DPI)

297x209mm (300 x 300 DPI)

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1: Title: "A population-based cohort study"
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	Pages 2-3: "Our study indicates that the risk of BC mortality increases with PM _{2.5} exposure."
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Pages 4-5: "PM2.5 [has] multiple adverse effects on human health, and is classified by WHO and IARC as carcinogenic to humans." "global PM2.5 concentrations increased by 2.1%/year from 1998 through 2012." "breast cancer incidence is also increasing worldwide".
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5: "To investigate the association of atmosphere PM with breast cancer mortality ." Hypothesis:"the global increase in breast cancer incidence might be linked to increasing in PM concentrations and high PM might also worsen breast cancer survival ".
Methods			
Study design	4	Present key elements of study design early in the paper	Pages 6, Methods: "a retrospective study [of breast cancer mortality] on a cohort of women diagnosed with primary breast cancer".
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Pages 6-7, Methods: "cases archived by Lombard Cancer Registry.[] A total of 2021 primary breast cancers cases diagnosed in predetermined study period (2003-2009)". Page 2: "Of 2021 BC cases, 325 died during follow-up

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

			to 31/12/2013."
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Page 6 Methods – Breast cancer cases: "conforming to selection criteria (50-69 years at diagnosis, no other cancer diagnosed previously)" [were selected] Disease stage was as specified by TNM. "Mortality data are routinely collected by the cancer registry by linkage to the Varese Province mortality database. Other sources of mortality information are
		(b) For matched studies, give matching criteria and number of exposed and unexposed	used routinely to ensure completeness." N/A, it is not a matched study.
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6 : "Study endpoint was breast cancer mortality." Pages 7-8 Statistical methods: [potential confounders] "were diagnosis, stage, grade, age at diagnosis and participation in a breast cancer screening program. [and] year of diagnosis."
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Pages 6-8 Methods - Breast cancer cases from Varese cancer registry. "Mortality data [] collected by the cancer registry by linkage to the Varese Province mortality database. Other sources of mortality information used to ensure completeness", Estimation of PM2.5, Statistical methods: "To estimate PM _{2.5} exposure we used satellite-based data that infers near-surface PM _{2.5} concentrations from the satellite-observed total column aerosol loading using a chemical transport model."
Bias	9	Describe any efforts to address potential sources of bias	Page 8 Methods – Statistical methods: "Cancers diagnosed in the screening context are affected by length-time and lead-time bias and may also be less aggressive than those diagnosed outside of screening"

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Study size	10	Explain how the study size was arrived at	Page 6 Methods – Breast cancer cases: The cancer
			database was searched "using site code C50 and
			malignant epithelial morphology codes M8010-M8575
			of the ICDO-3." "A total of 2021 primary breast
			cancers cases diagnosed in the predetermined study
			period (2003-2009) and conforming to selection
			criteria (50-69 years at diagnosis, no other cancer
			diagnosed previously)" were used.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe	Pages 7-8 Methods – Statistical methods: "Factors
		which groupings were chosen and why	analyzed were diagnosis period (2003-2006; 2007-
			2009), stage (I-IV) , grade (I-III, unknown), age at
			diagnosis (two categories,50-59 years and 60-69
			years), and participation in a breast cancer screening
			program (Yes, No)"
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 8 Methods – Statistical methods: "We ran
			univariate and multivariate Cox proportional hazard
			models to estimate HRs with 95% CI of breast cancer
			death according to quartiles of PM2.5 exposure. The
			multivariate model was stratified by age, grade, stage,
			diagnosis period and participation in screening."
		(b) Describe any methods used to examine subgroups and interactions	We did not analyse subgroup and we did not study
			interactions.
		(c) Explain how missing data were addressed	Page 8 - Missing data were handled using a separate
			"not specified" category for unavailable disease stage and a separate "not specified" category for
			unavailable tumor grade when performing data
			analysis.
		(d) If applicable, explain how loss to follow-up was addressed	Page 8 – loss of follow-up was addressed by censoring
			at date of loss of follow-up
		(e) Describe any sensitivity analyses	Not performed
Results	1		I
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	N/A
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Pages 10-11 Results – Table1
		(b) Indicate number of participants with missing data for each variable of interest	Pages 10-11. Table 1 and above
		(c) Summarise follow-up time (eg, average and total amount)	Page 9, Results: Followed up to 31 December 2013
Outcome data	15*	Report numbers of outcome events or summary measures over time	Page 9 – "A total of 325 (16.1%) women died in the period up to 31 December 2013, 246 (12.2%) of these of breast cancer." Pages 10-11 Results – Table1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 11 Results – Table2 Page 11: "By the univariate model, breast cancer patients living in an area with $PM_{2.5}$ levels above the lowest quartile had significantly greater risk of breas cancer death than those living in areas with lower quartile of $PM_{2.5}$ (<21.10 µg/m ³). The increased risk of death ranged from 72% (fourth quartile) to 82 (second quartile). In the multivariate model, while controlled for confounding factors, risks of breas cancer death were numerically greater and st significant for all exposure quartiles above the lowest."
		(b) Report category boundaries when continuous variables were categorized	Pages 10-11 Results – Table1; Table2 $PM_{2.5}$ was categorised into: I (<21.10); II (21.10-24.20) III(24.20-26.50), IV (≥26.50) Page 11 Results – Table2
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12 Discussion: "We have shown that high

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	- T		
			exposure to PM2.5 is associated with increased
			mortality for breast cancer after correcting for a range
			of factors considered to influence breast cancer
			survival."
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	Page 14 Discussion: "some women may have spent a
		imprecision. Discuss both direction and magnitude of any potential bias	considerable fraction of their time outside this area,
			perhaps at work, and this is a study weakness". "we did not control for lifestyle factors, including diet and alcohol consumption, that may also influence breast cancer mortality."
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	Pages 13-14 Discussion
		multiplicity of analyses, results from similar studies, and other relevant evidence	Page 15 Conclusions: "Our data add to the wealth of
			evidence that atmospheric PM has multiple adverse
			effects on human health".
Generalisability	21	Discuss the generalisability (external validity) of the study results	This is a preliminary study.
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	Page 16: "This research received no specific grant from
		applicable, for the original study on which the present article is based	any funding agency in the public, commercial or not-
			for-profit sectors."

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2012580 on 14 November 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.