BMJ Open

Incidence and risk factors for capecitabine-induced cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012798
Article Type:	Research
Date Submitted by the Author:	24-May-2016
Complete List of Authors:	Polk, Anne; Oncology and cardiology Shahmarvand, Nahid; Herlev Hospital, oncology Vistisen, Kirsten; Herlev Hospital, oncology Vaage-Nilsen, Merete; Herlev Hospital, cardiology Larsen, Finn; Herlev Hospital, Oncology Schou, Morten; Herlev Hospital, Cardiology Nielsen, Dorte; Herlev Hospital, Oncology
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	capecitabine, cardiotoxicity, risk factors, chest pain, breast cancer

BMJ Open

3
4
5
5
5 6 7
1
8
9
10
11
12
12
13
10 11 12 13 14 15 16 17 18 19
15
16
17
18
19
20
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23
24
25
26
27
21
28
29
30
31
32
33
24
34
35
36
37
38
39 40
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
50
57
58
59
60

	1	Incidence and risk factors for capecitabine-induced cardiotoxicity: a retrospective study of 452
	2	consecutive patients with metastatic breast cancer
	3	Anne Polk ^{1,2} , Nahid Shahmarvand ¹ , Kirsten Vistisen ¹ , Merete Vaage-Nilsen ² , Finn Ole Larsen ¹ ,
	4	Morten Schou ² , Dorte Lisbeth Nielsen ¹
	5	¹ Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev
	6	Ringvej 75, DK-2730 Herlev, Denmark
	7	² Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev
	8	Ringvej 75, DK-2730 Herlev, Denmark
	9	E-mail addresses:
1	.0	Nahid Shahmarvand: nahid_doost@hotmail.com
1	.1	Kirsten Vistisen: kirsten.vistisen@regionh.dk
1	.2	Merete Vaage-Nilsen: merete.vaage-nilsen@regionh.dk
1	.3	Finn Ole Larsen: finn.ole.larsen@regionh.dk
1	.4	Morten Schou: morten.schou.04@regionh.dk Dorte Lisbeth Nielsen: dorte.nielsen.01@regionh.dk
1	.5	Dorte Lisbeth Nielsen: dorte.nielsen.01@regionh.dk
1	.6	Correspondence:
1	.7	Anne Polk
1	.8	Department of Oncology and Department of Cardiology, Herlev and Gentofte Hospital, University
1	.9	of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
2	20	Telephone: +45 28 49 75 98
2	1	e-mail: anne.polk@hotmail.com
2	22	Keywords: capecitabine, cardiotoxicity, risk factors, chest pain, breast cancer
2	23	Word count: 3840 incl. tables and statements but excl. references

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

24	ABSTRACT
25	Objectives: Case-reports of capecitabine cardiotoxicity resemble those seen with intravenous 5-
26	fluorouracil with chest pain as the predominant manifestation, but few studies of capecitabine
27	cardiotoxixcity are available. We aimed to determine the incidence of symptomatic cardiotoxicity
28	from capecitabine in breast cancer patients and to identify risk factors.
29	Methods: We reviewed medical records of consecutive women with breast cancer treated with
30	capecitabine (1000 mg/m ² twice daily) from 2002 to 2012 at one institution.
31	Results: Twenty-two of 452 patients (4.9%) (95%CI: 2.9%-6.9%) had symptoms of cardiotoxicity
32	(chest pain: $n = 13$, dyspnea: $n = 9$, palpitations: $n = 2$). Eleven patients had changes on ECG (atrial
33	fibrillation: $n = 5$, ST deviations: $n = 3$, T-wave abnormalities: $n = 2$, and QTc prolongation: $n = 1$).
34	Two patients (0.4%) sustained acute myocardial infarction. One patient (0.2%) developed cardiac
35	arrest with lethal outcome. Four of six patients (66%) retreated with capecitabine had recurrent
36	symptoms at retreatment. Cardiac comorbidity ($p = 0.001$), hypercholesterolemia ($p = 0.005$) and
37	current smoking ($p = 0.023$) were risk factors for cardiotoxicity in univariate analyses and remained
38	significant when adjusted for age. Patients with cardiac co-morbidity were 5.5 times (95% CI: 2.0-
39	14.8) more likely to develop cardiotoxicity. In the subgroup of patients with apparently no cardiac
40	co-morbidity the incidence of cardiotoxicity was lower (3.7%) and hypercholesterolemia (p =
41	0.035) and current smoking ($p = 0.020$) were risk factors of cardiotoxicity.
42	Conclusion: The incidence of cardiotoxicity from capecitabine resembles that of intravenous 5-
43	fluorouracil (\approx 5 %). Cardiac co-morbidity, hypercholesterolemia and current smoking were
44	associated with development of cardiotoxicity.

BMJ Open

46	Str	rengths and limitations of this study	J Open: first
47	•	Our study is a large single center study including all patients with breast cancer treated with	publisł
48		capecitabine over a 10-year period.	ned as
49	•	The primary end-point, cardiotoxicity, is mainly diagnosed on the basis of subjective symptoms	10.113
50		(chest pain, dyspnea, palpitations) which may cause information bias.	6/bmjoj
51	•	In spite of a relatively large sample size, the number of events is low which limit the power of	pen-20
52		the logistic regression analyses used to analyse for risk factors.	16-012
53	•	Our study is a retrospective clinical study. The patients' history records are incomplete with	2798 or
54		respect to information on risk factors for cardiovascular disease (hypertension,	ים 19 ס
55		hypercholesterolemia, diabetes and smoking) and baseline electrocardiograms.	ctober :
		a To peer review only - http://bmjopen.bmj.com/site/about/guidelines.sthenl	J Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
	47 48 49 50 51 52 53 54	 47 48 49 50 51 52 53 54 	

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

56 INTRODUCTION

57 Capecitabine is an oral pro-drug of 5-fluorouracil (5-FU) that is converted to 5-FU in a three-stage 58 process involving several enzymes.¹ The last step is catalyzed by thymidine phosphorylase.¹ Many 59 tissues throughout the body express thymidine phosphorylase, but some human carcinomas express 60 this enzyme in higher concentrations than surrounding normal tissues.¹ This, in theory should 61 increase the concentration of 5-FU at the tumour site and decrease the concentration of 5-FU in 62 healthy tissues resulting in less side effects.¹

63 Capecitabine is licensed for adjuvant treatment in patients with colon cancer stage III and for the
64 treatment of metastatic colorectal cancer, metastatic breast cancer and advanced gastric cancer

65 (combination therapy). The main side effects from capecitabine are hand-and-foot syndrome,

66 diarrhea, stomatitis, fatigue, anorexia, nausea and vomiting, abdominal pain, myelosuppression,

67 hyperbilirubinemia and cardiotoxicity.²⁻⁵

Case reports of cardiotoxicity after administration of capecitabine are similar to those seen with
intravenous 5-FU treatment with chest pain as the predominant manifestatio.⁶⁻¹⁴ Other less frequent
clinical manifestations are arrhythmias, myocardial infarction, heart failure, cardiogenic shock and
sudden death.¹⁵ Cardiotoxicity from 5-FU occurs with an incidence of 0.55% to 19.9%.¹⁵ There are
few studies of capecitabine cardiotoxicity with incidences ranging from 3% to 35%.¹⁶⁻²⁰

Patients with breast cancer may have increased risk for cardiotoxicity from capecitabine compared
to other cancer patients because of treatment with other carditotoxic therapies such as radiotherapy
of the chest, trastuzumab and anthracyclines. We aimed to study the pattern and incidence of

- cardiotoxicity in women with metastatic breast cancer treated with capecitabine and to identify
- 77 potential risk factors for capecitabine-induced cardiotoxicity.

79 MATERIAL AND METHODS

80 Selection of patients

We included patients with metastatic breast cancer consecutively treated with capecitabine from
first of January 2002 to 31. December 2012. Inclusion criteria were female, metastatic breast cancer
and capecitabine treatment (+/- trastuzumab). The chemotherapy regimen was capecitabine 2000
mg/m² divided in two daily doses for 14 days followed by one week off.

85 Data collection

Approval from the Danish Data Protection Agency was obtained. We collected data from medical records on age, height, weight, body surface area, capecitabine dose, cardiotoxicity, cardiac comorbidity (previous acute myocardial infarction, ischemic heart disease, arrhythmias, heart failure or reduced ejection fraction), hypertension, smoking status, hypercholesterolemia, diabetes, electrocardiogram (ECG) (before treatment start and if symptoms), hemoglobin levels, creatinine levels and previous treatment with anthracyclines, trastuzumab, breast- and thoracic radiotherapy. Renal function (estimated glomerular filtrationrate, eGFR) was estimated by the Chronic Kidney Disease Epidemiology Collaboration equation for Caucasian women incorporating age and plasma creatinine concentrations. All the collected data were prospectively defined.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

95 End point: cardiotoxicity

96 Cardiotoxicity was defined as significant symptoms of likely cardiac origin or changes on ECG that 97 started during treatment with capecitabine and was not present before treatment start. Medical 98 records were reviewed by one of the authors. Cases with suspected cardiotoxicity were further 99 reviewed by one cardiologist (MVN) who made the final decision to classify the case as 100 cardiotoxicity or not. All patients were followed to cessation of capecitabine. Endpoints were 101 evaluated unblinded and the investigators had access to patients' medical record.

102 Statistics

Mann-Whitney U test was used to compare differences in age between patients with cardiotoxicity and patients without cardiotoxicity. Fisher's exact test and chi squared test were used to analyze differences in numeric variables between the two groups. Chi squared test for trend were used to analyze differences for ordinal variables. Possible risk factors for cardiotoxicity were tested using univariate binomial logistic regression and adjusted for age with multivariate binomial logistic regression. In order to test the robustness of the data and due to missing data, sensitivity analyses were performed for variables that tended to be significant or were significant in univariate analyses. Sensitivity analyses were performed both with multiple imputation and as worst- and best case scenarios for one variable at a time. Due to the low number of events (=22), the potential risk of over fitting of the statistical models and the risk of collinearity among the covariates, we only adjusted for age in the multivariate logistic regression analyses. C statistics were performed for variables that were significant in univariate logistic regression analyses. P-values below 0.05 were regarded significant. IBM SPSS software version 21 was used for all analysis.

RESULTS

118 Study population

A total of 452 consecutive women with metastatic breast cancer were eligible for analysis (Figure 1). Patient characteristics are listed in table 1. Median age was 63 years, 333 patients initially (74%) received 100% dose, while 84 patients (19%) were treated with 75% dose and 26 patients (6%) were treated with 50% dose, respectively. Totally, 242 patients (54%) had previously received treatment with anthracyclines, 54 patients (12%) were treated previously or concurrent with trastuzumab, while 132 patients (29%) had a history of left-sided breast irradiation. Radiotherapy was given approximately 3 months after the primary diagnosis of breast cancer and mean time from diagnosis to start of capecitabine was 4 years (0.9-58 years). Forty-two patients (9.3%) had cardiac

127	comorbidities prior to initiation of treatment. Of these 6 (1%) had a history of ischemic heart
128	disease while 37 (8%) had other types of cardiac disease including atrial fibrillation ($n = 13$),
129	supraventricular tachyarrhythmia (n = 3), pericardial exudatives (n = 3), epirubicin-induced
130	cardiomyopathy ($n = 3$), atrio-ventricular blocks ($n = 1$), aortic valve disease ($n = 1$) and reduced

131 left ventricular ejection fraction of unknown cause (n = 4).

132 Table 1: Patient characteristics

Characteristic	All	Patients with	Patients without	Р-
	patients (n	Cardiotoxicity (n =	Cardiotoxicity (n =	value ^b
	= 452)	22)	430)	
	No. (%)	No. (%)	No. (%)	_
Age (n = 452)		6		
Median	63	63	63	0.742
Range	28 - 88	36 - 82	28 - 88	
Capecitabine dose $(n = 443)$		4		
50%	26 (6)	1 (5)	25 (6)	0.636
75%	84 (19)	6 (27)	78 (18)	
100%	333 (74)	15 (68)	318 (74)	
IHD (incl. previous ACS) (n =	6 (1)	0	6 (1)	1.000
436)				
Other cardiac diseases (n =	37 (8)	7 (32)	30 (7)	0.000
436)				
ECG at treatment start ^d (n =				

161)				
Normal	132 (29)	9 (41)	123 (29)	0.454
Abnormal	29 (6)	3 (14)	26 (6)	
Hypertension $(n = 442)$	126 (28)	9 (41)	117 (27)	0.186
Hypercholesterolemia (n =	53 (12)	7 (32)	46 (11)	0.002
390)				
Diabetes mellitus (n = 435)	21 (5)	1 (5)	20 (5)	1.000
Smoking status (n = 371)				
Current smoker	105 (23)	9 (41)	96 (22)	0.264
Former smoker	66 (15)	4 (18)	62 (14)	
Never smoked	200 (44)	5 (23)	195 (45)	
BMI (n = 382)				
Underweight (BMI <18.5)	21 (5)	3 (14)	18 (4)	0.337
Normal (BMI 18.5-24.9)	208 (46)	8 (36)	200 (47)	
Overweight (BMI 25.0-	109 (24)	9 (41)	100 (23)	
29.9)		2		
Obese (BMI > 29.9)	44 (10)	0	44 (10)	
Number of risk factors for			2/	
$IHD^{c} (n = 452)$				
0	131 (29)	3 (14)	128 (30)	0.005
1	182 (40)	8 (36)	174 (41)	
2	90 (20)	5 (23)	85 (20)	
3	32 (7)	3 (14)	29 (7)	

BMJ Open

4	17 (4)	3 (14)	14 (3)	
5	0	0	0	
Previous treatment with	242 (54)	9 (41)	233 (54)	0.
anthracyclines ($n = 444$)				
Previous or concurrent	54 (12)	3 (14)	51 (12)	0.
treatment with trastuzumab (n				
= 403)				
Previous breast irradiation (n =	275 (61)	8 (36)	267 (62)	0.
431)				
Left side	132 (29)	5 (23)	127 (30)	0.
Right side	115 (25)	1 (5)	114 (27)	
Bilateral	25 (6)	2 (9)	23 (5)	
Side unknown	3 (1)	0	3 (1)	
Previous thoracic irradiation (n	96 (21)	4 (18)	92 (21)	1.
= 407)		Ċ,		
Anemia ^a (n = 437)	126 (28)	3 (14)	123 (29)	0.
eGFR (n = 429)			0.	
Low (< 60 mL/min/1.73m ²)	71 (17)	6 (27)	65 (15)	0.
Normal (≥ 60	358 (79)	13 (59)	345 (80)	
mL/min/1.73m ²)				

^bP-value for the statistical tests of differences between patients with cardiotoxicity and patients

135 without cardiotoxicity.

^cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, smoking, and

^dAll patients do routinely have ECG taken before treatment start and all ECGs are routinely seen by doctors, but not all ECGs were available in the medical records.

ACS = acute coronary syndrome; BMI = body mass index; ECG = electrocardiogram; eGFR =

estimated glomerular filtration rate; IHD = ischemic heart disease.

Cardiotoxicity

Twenty-two cases of cardiotoxicity (4.9%) (95% Confidence interval (CI): 2.91%-6.89%) were identified from medical records (Supplementary table). The most common complaints were chest pain (13 patients) followed by dyspnea (9 patients) and palpitations (2 patients) (Figure 2). Eleven of these 22 patients (50%) had changes on ECG. Five patients had atrial fibrillation (1 paroxysmal and 4 new onset), while three patients had ST deviations and two patients developed negative or fluctuating T-waves. Of the 13 patients with chest pain two (0.4%) had elevated troponins and were classified as acute myocardial infarctions. One patient (0.2%) with dyspnea and progressing chestpain developed cardiac arrest with lethal outcome. First occurrence of cardiotoxicity was in first cycle for 11 patients (50%), second cycle for four patients (18%), third cycle for 3 patients (14%) and fourth cycle for 1 patient (4.5%), while three patients (14%) had late occurrence of cardiotoxicity (8th, 9th and 12th cycle). Cardiac therapy was initiated in 10 of the 22 patients with cardiotoxicity (Supplementary table), while 6 were retreated with capecitabine. Three patients were retreated at the same dose intensity without initiation of cardiac therapy, two were retreated at the same dose intensity, but received cardiac therapy with verapamil, and one patient were treated at reduced dose. The three patients treated with full dose and no initiation of cardiac therapy all had recurrent symptoms at retreatment, while one patient treated with verapamil had recurrent symptoms. The other two patients, one

treated with verapamil and one treated at reduced dose intensity, did not have symptoms atretreatment.

Seven events of cardiotoxicity occurred in the sub-group of patients with cardiac co-morbidity (n = 42) (16.7 %), while 15 patients in the sub-group of patients with apparently no cardiac co-morbidity (n = 410) developed cardiotoxicity (3.7 %).

165 Risk factors for cardiotoxicity

In univariate logistic regression analyses cardiac comorbidity (p = 0.001), hypercholesterolemia (p = 0.005) and current smoking (p = 0.023) were risk factors for cardiotoxicity (Table 2) and they remained significant after adjustment for age with multivariate logistic regression. Patients with cardiac co-morbidity were 5.5 times (95% CI: 2.0-14.8) more likely to develop cardiotoxicity than patients without cardiac co-morbidity. In the subgroup of patients with apparently no cardiac comorbidity hypercholesterolemia (p = 0.035) and current smoking (p = 0.020) were significant risk factors in univariate analyses and remained significant after adjustment for age (Table 2).

Sensitivity analyses were performed for variables significant in the univariate analyses. In the entire study group, hypercholesterolemia, cardiac co-morbidity and current smoking remained significant risk factors after multiple imputation of missing values (p = 0.008, p = 0.001 and p = 0.023, BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

176 respectively) and after imputation with worst- and best-case scenarios (hypercholesterolemia p =

177 0.005 (best-case), p = 0.032 (worst-case); cardiac co-morbidity p = 0.007 (worst-case), p = 0.001

178 (best-case); current smoking p = 0.045 (worst-case), p = 0.032 (best-case)). In the subgroup of

179 patients with apparently no cardiac co-morbidity current smoking remained significant after both

multiple imputation analyses (p = 0.021) and worst- and best-case analyses (p = 0.025 and p = 0.025

0.042, respectively), while hypercholesterolemia was unaffected by multiple imputation (p = 0.043)

182 but susceptible to worst- and best-case analyses. The p-value for the univariate regression analysis

183 was significant (p = 0.035) when cases with missing data were imputed with best case scenario

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

184 (none having hypercholesterolemia), but became insignificant (p = 0.132) in worst case scenario (all 185 having hypercholesterolemia).

186 Table 2: Univariate and bivariate logistic regression models of risk factors for cardiotoxicity. Bold

187 P-values indicate a significant difference (P < 0.05).

Variable	Beta	Odds ratio	Р-	Beta	Odds ratio	P-
	coefficient	(95%-CI)	valu	coefficient	(95%-CI)	valu
	(95%-CI)		e	(95%-CI)		e
	Univariate			Bivariate: Adju	isted for age	
All patients (N =	0					
452) (events = 22)						
Age ^a	0.01 (-0.03-	1.01 (0.97-	0.78	-	-	-
	0.04)	1.05)	9			
Hypercholesterolemi	1.42 (0.43-	4.12 (1.54-	0.00	1.42 (0.38-	4.14 (1.46-	0.00
a ^b	2.40)	11.00)	5	2.46)	11.75)	8
Hypertension ^b	0.58 (-0.29-	1.79 (0.75-	0.19	0.60 (-0.33-	1.82 (0.72-	0.20
	1.46)	4.31)	2	1.52)	4.57)	6
Diabetes ^b	-0.07 (-2.12-	0.94 (0.12-	0.94	-0.11 (-2.17-	0.90 (0.11-	0.92
	1.99)	7.32)	9	1.96)	7.13)	1
Smoking ^b						
Current smoker	1.30 (0.17-	3.66 (1.19-	0.02	1.30 (0.18-	3.66 (1.19-	0.02
Former smoker	2.42)	11.21)	3	2.42)	11.22)	3
	0.92 (-0.42-	2.52 (0.66-	0.17	0.92 (-0.43-	2.51 (0.65-	0.18
	2.27)	9.66)	9	2.27)	9.67)	1

BMJ Open

BMIª	-0.05 (-0.16-	0.95 (0.85-	0.38	-0.05 (-0.16-	0.96 (0.85-	0.4
	0.06)	1.06)	0	0.07)	1.07)	3
Previous irradiation	-0.14 (-1.05-	0.87 (0.35-	0.76	-0.13 (-1.05-	0.88 (0.35-	0.7
of left breast ^b	0.78)	2.18)	3	0.80)	2.22)	5
"Cardiac co-	1.63 (0.67-	5.12 (1.96-	0.00	1.70 (0.70-	5.47 (2.02-	0.0
morbidity" ^b	2.59)	13.39)	1	2.69)	14.80)	1
Anemia ^b	-0.86 (-2.12-	0.42 (0.12-	0.17	-0.86 (-2.12-	0.42 (0.12-	0.1
	0.39)	1.47)	6	0.39)	1.47)	6
eGFR ^a	-0.01 (-0.03-	0.99 (0.97-	0.48	-0.01 (-0.03-	0.99 (0.97-	0.6
	0.02)	1.02)	7	0.02)	1.02)	8
Previous	-0.58 (-1.43-	0.56 (0.24-	0.19	-0.73 (-1.77-	0.48 (0.17-	0.1
anthracyclines ^b	0.29)	1.34)	4	0.31)	1.36)	1
Previous or	0.08 (-1.17-	1.08 (0.31-	0.90	0.11 (-1.17-	1.12 (0.31-	0.8
concurrent	1.34)	3.80)	3	1.41)	4.09)	4
trastuzumab ^b						
Dose of	-0.01 (-0.03-	1.00 (0.97-	0.66	-0.01 (-0.03-	1.00 (0.97-	0.6
capecitabineª	0.02)	1.02)	6	0.02)	1.02)	2
Previous thoracic	0.08 (-1.08-	1.08 (0.34-	0.89	0.12 (-1.05-	1.12 (0.35-	0.8
irradiation ^b	1.24)	3.44)	2	1.28)	3.60)	7
Patients with no						
history of heart						
disease (n = 399)						
(events = 15)						
Age ^a	0.001 (-0.04-	1.00 (0.96-	0.94	-	-	-

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	0.05)	1.05)	9			
Hypercholesterolemi	1.32 (0.01-	3.75 (1.10-	0.03	1.34 (0.04-	3.81 (1.04-	0.04
• •						
a ^b	2.55)	12.81)	5	2.63)	13.94)	3
Hypertension ^b	0.05 (-1.11-	1.05 (0.33-	0.92	0.04 (-1.17-	1.04 (0.31-	0.94
	1.22)	3.38)	9	1.25)	3.51)	7
Diabetes ^b	0.48 (-1.61-	1.62 (0.20-	0.65	0.48 (-1.63-	1.61 (0.20-	0.65
	2.57)	13.10)	1	2.58)	13.26)	8
Smoking ^b						
Current smoker	1.64 (0.26-	5.13 (1.30-	0.02	1.63 (0.25-	5.09 (1.28-	0.02
Former smoker	3.01)	20.33)	0	3.00)	20.18)	1
	0.18 (-2.10-	1.20 (0.12-	0.87	0.19 (-2.10-	1.21 (0.12-	0.87
	2.46)	11.76)	6	2.47)	11.85)	2
BMI ^a	-0.04 (-0.18-	0.96 (0.84-	0.53	-0.04 (-0.17-	0.96 (0.84-	0.57
	0.09)	1.09)	0	0.10)	1.10)	8
Previous irradiation	-0.41 (-1.56-	0.67 (0.21-	0.49	-0.41 (-1.56-	0.67 (0.21-	0.49
of left breast ^b	0.76)	2.13)	5	0.77)	2.15)	7
Anemia ^b	-1.62 (-3.51-	0.20 (0.03-	0.12	-1.62 (-3.51-	0.20 (0.03-	0.12
	0.43)	1.54)	1	0.43)	1.54)	1
eGFRª	0.00 (-0.03-	1.00 (0.97-	0.87	0.01 (-0.03-	1.01 (0.97-	0.66
	0.03)	1.03)	6	0.05)	1.05)	8
Previous	0.67 (-0.39-	1.96 (0.68-	0.21	0.92 (-0.33-	2.52 (0.72-	0.15
anthracyclines ^b	1.72)	5.60)	2	2.18)	8.86)	0

BMJ Open

Previous or	0.42 (-0.87-	1.53 (0.42-	0.52	0.48 (-0.87-	1.62 (0.42-	0.48
	0.12 (0.07	1.55 (0.12	0.02	0.10 (0.07	1.02 (0.12	0.1
concurrent	1.72)	5.60)	5	1.83)	6.26)	4
trastuzumab ^b						
Dose of	-0.01 (-0.04-	0.99 (0.96-	0.57	-0.01 (-0.04-	0.99 (0.96-	0.5
capecitabine ^a	0.02)	1.02)	3	0.02)	1.02)	9
Previous thoracic	0.35 (-1.02-	1.42 (0.36-	0.62	0.40 (-0.99-	1.48 (0.37-	0.5
irradiation ^b	1.72)	5.59)	1	1.79)	5.96)	7

189	"Cardiac co-morbidity" = all types	of heart disease; eGFR = estimated glomerular filtration rate.

190 C Statistics: Predictors of cardiotoxicity

The ability of the variables, cardiac co-morbidity, hypercholesterolemia and current smoking, to discriminate between patients that will develop cardiotoxicity and those who will not was tested with c-statistics. In unselected patients the presence of cardiac co-morbidity was a poor predictor of cardiotoxicity (c = 0.617 (95%CI 0.483-0.754), p = 0.061), as was the presence of hypercholesterolemia (c = 0.662 (95%CI 0.478-0.766), p = 0.072) and smoking status (c = 0.651(95%CI 0.523-0.779), p = 0.031). In the subgroup of patients with apparently no cardiac co-morbidity the presence of hypercholesterolemia (c = 0.601 (95%CI 0.427-0.775), p = 0.216) and smoking status (c = 0.691 (95%CI 0.526-0.857), p = 0.031) were poor factors to discriminate between patients who will develop cardiotoxicity and those who will not. DISCUSSION **Incidence of cardiotoxicity**

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

We observed an incidence of cardiotoxicity from capecitabine at $\approx 5\%$ in women with metastatic breast cancer which is similar to incidences reported in previous studies of both men and women treated with capecitabine,¹⁸⁻²⁰ although some studies have reported lower¹⁶ or higher incidences.¹⁷ The difference in incidences in-between studies may be due to different risk profiles in the study populations. Moreover, prospective studies with regular cardiac assessments may detect more cardiotoxicity since they may identify asymptomatic patients and patients with mild symptoms. The incidence of cardiotoxicity in our study and other studies of capecitabine cardiotoxicity is within the range of incidences of cardiotoxicity in studies with 5-FU^{15, 17, 20-22} and a large study found similar incidences for the two treatments.²⁰ However, a prospective study with 644 patients reported similar incidences of cardiotoxicity for capecitabine and continuous 5-FU infusion schedules, but a lower incidence for short (bolus) 5-FU infusion schedules.¹⁸

214 Pattern of cardiotoxicity

The most common event of cardiotoxicity was chest pain, which was the main symptom in 59% of the 22 cases. Most of the patients with chest pain had normal ECG and normal coronary enzymes and severe events, such as acute myocardial infarction and cardiac arrest with lethal outcome, was rare. This pattern is in concordance with other studies¹⁵ and the sudden onset of chest pain and the rare occurrence of life-threatening complications correspond well to the theory of fluoropyrimidine induced vasospastic angina. Furthermore, the angiographically normal arteries reported in several case reports^{6-8, 11} and the presence of silent ischemic episodes on Holter recordings²³ supports this theory.

223 Retreatment of patients with cardiotoxicity

Retreatment with capecitabine after occurrence of cardiotoxicity was attempted in 6 of 22 patients
with little success. Four patients had recurrent cardiac symptoms, suggesting that retreatment should

BMJ Open

be done with great precaution. However, a retrospective study of 668 patients¹⁶ and a prospective study of 644 patients¹⁸ treated with 5-FU or capecitabine reported a benefit from dose-reduction and initiation of anti-angina therapy that prevented symptoms at retreatment in 9 of 12 patients and 12 of 15 patients, respectively. Their findings suggest that retreatment at reduced dose and with appropriate anti-angina therapy are feasible, however close cardiac monitoring is crucial. Furthermore, nitroglycerin was effective to abolish symptoms of cardiotoxicity.¹⁶ In contrast, a small and non-randomized study could not demonstrate an prophylactic effect of calcium channel blockers on occurrence of cardiotoxicity.²⁴ Larger studies with systematic, predefined strategies for dose reduction and initiation of anti-angina therapy are needed.

235 Risk factors for cardiotoxicity

Patients with cardiac comorbidity were at increased risk of cardiotoxicity, which is in accordance with four previous studies of 5-FU or capecitabine cardiotoxicity,^{17, 21, 23, 25} while four other studies found no increased risk for patients with pre-existing heart disease.^{19, 26-28} While heart disease may be a risk marker for cardiotoxicity, it is not a prerequisite for cardiotoxicity to occur. The patient who sustained cardiac arrest and died in our study had no cardiac co-morbidities and no risk factors for ischemic heart disease. Likewise, severe cardiotoxicity has been reported for several patients without cardiac co-morbidity.^{11, 29-32} Also, we found that a history of heart disease was a poor predictor of cardiotoxicity.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

In the present study hypercholesterolemia and current smoking were risk factors for cardiotoxicity both in the entire study group and in the subgroup of patients with no apparent cardiac comorbidity. Similarly, a larger prospective study of 644 patients without cardiac co-morbidities reported that smoking was associated with ECG changes in bivariate analyses.¹⁸ However, they

- found no association between ECG changes and hyperlipidaemia.¹⁸ While Kosmas et al.¹⁸
- prospectively measured cholesterol and triglyceride levels in blood; our study is based on medical

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

recordings. Thus incomplete data with risk of information bias is a limitation of the present study. Both studies have a low number of events limiting the statistical power and multiple testing increases the risk of false positive results. Previous treatment with potentially cardiotoxic therapy with anthracyclines or previous or current treatment with trastuzumab did not increase the risk of cardiotoxicity. However, two of three patients with epirubicin-induced cardiomyopathy developed cardiotoxicity during treatment with capecitabine suggesting that the degree of pre-existing heart damage may be relevant. Patients with previous left-sided breast irradiation were not at increased risk of cardiotoxicity in our study. Similarly, a large prospective study of 5-FU cardiotoxicity found that previous breast irradiation was not a risk factor.²¹ The lack of association between other cardiotoxic therapies and capecitabine-induced cardiotoxicity suggests that the mechanisms behind these cardiotoxicities are different. Moreover, radiation-induced cardiovascular disease may be a late event.³³ In our study the

262 mean time from chest irradiation to capecitabine start was 4 years.

263 Methodological considerations

The predominant manifestation of cardiotoxicity from fluoropyrimidines is chest pain followed by other subjective symptoms. Only approximately 50% of the patients have objective signs (mostly ECG changes) of cardiotoxicity. Thus, the event (cardiotoxicity) is based mainly on subjective symptoms and is therefore affected by the patient's own perception and reaction to the symptoms and the physician's assessment of the patient's symptoms. Both patients and physicians may pay more attention to cardiac symptoms if the patient has heart disease before treatment start. These factors may explain some of the difference in incidence in-between studies. Research in new and sensitive cardiac biomarkers like e.g. copeptin to detect myocardial ischemia is needed.³⁴ In spite of a relatively large sample size, the number of events is low (22 events) which cause statistical difficulties. Due to the limited number of events, the statistical power is low and the risk

BMJ Open

of type II statistical errors increases. With respect to the logistic regression analyses, the low number of events limits the number of covariates allowed in the model. The low number of events and multiple testing (increasing the risk of false positive results) are weaknesses of most studies analysing risk factors and it makes the conclusions that can be drawn from these studies less valid. Like most other large studies on this subject our study is retrospective which may results in incomplete data. Missing data affects power and if not missing at random, they may cause bias. We dealt with the missing data by sensitivity analyses with worst and best case scenarios and with multiple imputation. The sensitivity analyses showed that missing data had little influence on our study results. A major limitation is that baseline ECGs was only preserved for 36% of the patients. Among the 11 patients with ECG changes during capecitabine treatment, 2 had missing baseline ECGs. Conclusion The incidence of cardiotoxicity from capecitabine of $\approx 5\%$ is close to that of 5-FU with incidences of 1%-5% in larger studies. Our study results suggest that cardiac co-morbidity and current smoking are risk factors for cardiotoxicity. Whether smoking cessation can prevent some cases of cardiotoxicity deserves further investigations. All the identified risk factors were poor predictors of cardiotoxicity and initial optimal cardiac treatment, information about the risk and follow-up if symptoms present are the options today.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

293 Contributors:

AP: Data collection, data processing, statistics, writing of the paper and incorporation of input from the other authors. NS and KV: Conception and design of the study, data collection and review of the manuscript. MVN: Review of cases with suspected cardiotoxicity and review of the manuscript.

FOL: Conception and design of the study and review of the manuscript. MS: Interpretation of study results and statistics and review of the manuscript. DN: Conception and design of the study, data collection, data interpretation, input to the manuscript and review of the manuscript. Acknowledgements: The authors would like to thank Professor Stig Egil Bojesen and the Department of Clinical Biochemistry at Herlev and Gentofte University Hospitals for providing data on creatinine levels and hemoglobin levels. Further, we would like to thank Hanne Michelsen and Sofie Seit Jespersen for data entry and Anne Birgitte Christiansen for help with review of medical records. Funding: This research received no specific grant from any funding agency in the public, commercial or non-profit sectors. Competing interests: None declared. Ethics: Approval from the Danish Data Protection Agency was obtained. Data sharing statement: No additional data are available.

1		
2		
3		REPERENCES
4 5	310	REFERENCES
6	311	1. Malet-Martino M, Jolimaitre P, Martino R. The prodrugs of 5-fluorouracil. Curr. Med. Chem. Anticancer
7	312	Agents 2002;2(2):267-310
8	313	2. Hoff PM, Ansari R, Batist G, et al. Comparison of oral capecitabine versus intravenous fluorouracil plus
9 10	314	leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a
10	315	randomized phase III study. J. Clin. Oncol 2001;19(8):2282-92
12	316	3. Walko CM, Lindley C. Capecitabine: a review. <i>Clin. Ther</i> 2005;27(1):23-44 doi: S0149-2918(05)00006-8
13	317	[pii];10.1016/j.clinthera.2005.01.005.
14	318	4. Van CE, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus
15	319	leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J. Clin.
16	320	Oncol 2001;19(21):4097-106
17	321	5. Cassidy J, Twelves C, Van CE, et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a
18	322	favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann. Oncol
19	323	2002;13(4):566-75
20 21	324	6. Cardinale D, Colombo A, Colombo N. Acute coronary syndrome induced by oral capecitabine. Can. J.
21	325	Cardiol 2006;22(3):251-53
23	326	7. Coughlin S, Das S, Lee J, Cooper J. Capecitabine induced vasospastic angina. Int. J. Cardiol
24	327	2008;130(1):e34-e36 doi: S0167-5273(07)01500-8 [pii];10.1016/j.ijcard.2007.06.152.
25	328	8. Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M. Capecitabine can induce acute coronary
26	329	syndrome similar to 5-fluorouracil. Ann. Oncol 2002;13(5):797-801
27	330	9. Guvenc TS, Celiker E, Ozcan KS, Ilhan E, Eren M. Acute myocardial infarction after capecitabine
28	331	treatment: not always vasospasm is responsible. Chin Med. J. (Engl.) 2012;125(18):3349-51
29	332	10. Schnetzler B, Popova N, Collao LC, Sappino AP. Coronary spasm induced by capecitabine. Ann. Oncol
30 31	333	2001;12(5):723-24
31	334	11. Shah NR, Shah A, Rather A. Ventricular fibrillation as a likely consequence of capecitabine-induced
33	335	coronary vasospasm. J. Oncol. Pharm. Pract 2012;18(1):132-35 doi: 1078155211399164
34	336	[pii];10.1177/1078155211399164.
35	337 338	12. Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: more than just vasospastic angina. <i>Intern. Med. J</i> 2010;40(4):303-07 doi: IMJ2144 [pii];10.1111/j.1445-
36	339	5994.2009.02144.x.
37	339	13. Tsiamis E, Synetos A, Stefanadis C. Capecitabine may induce coronary artery vasospasm. <i>Hellenic. J.</i>
38	340 341	Cardiol 2012;53(4):320-23
39	341	14. Yung LT, McCrea WA. Capecitabine induced acute coronary syndrome. <i>BMJ Case. Rep</i> 2009;2009 doi:
40 41	343	10.1136/bcr.09.2008.0964 [doi];bcr09.2008.0964 [pii]published Online First: Epub Date]].
42	344	15. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-
43	345	fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing
44	346	factors. Cancer Treat. Rev 2013;39(8):974-84 doi: S0305-7372(13)00068-6
45	347	[pii];10.1016/j.ctrv.2013.03.005.
46	348	16. Jensen SA, Sorensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or
47	349	capecitabine. Cancer Chemother. Pharmacol 2006;58(4):487-93 doi: 10.1007/s00280-005-0178-1.
48	350	17. Koca D, Salman T, Unek I, et al. Clinical and Electrocardiography Changes in Patients Treated with
49 50	351	Capecitabine. Chemotherapy 2011;57 (5):381-87
50 51	352	18. Kosmas C, Kallistratos MS, Kopterides P, et al. Cardiotoxicity of fluoropyrimidines in different schedules
52	353	of administration: a prospective study. J. Cancer Res. Clin. Oncol 2008;134(1):75-82 doi:
53	354	10.1007/s00432-007-0250-9.
54	355	19. Ng M, Cunningham D, Norman AR. The frequency and pattern of cardiotoxicity observed with
55	356	capecitabine used in conjunction with oxaliplatin in patients treated for advanced colorectal cancer
56		
57		
58 59		
59 60		21
50		21

Page 22 of 31

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

(CRC). Eur. J. Cancer 2005;41(11):1542-46 doi: S0959-8049(05)00346-1

20. Van CE, Hoff PM, Blum JL, Abt M, Osterwalder B. Incidence of cardiotoxicity with the oral

fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann. Oncol

21. Meyer CC, Calis KA, Burke LB, Walawander CA, Grasela TH. Symptomatic cardiotoxicity associated with

22. Tsibiribi P, Descotes J, Lombard-Bohas C, et al. Cardiotoxicity of 5-fluorouracil in 1350 patients with no

24. Eskilsson J, Albertsson M. Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment

25. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on

26. Jensen SA, Hasbak P, Mortensen J, Sorensen JB. Fluorouracil induces myocardial ischemia with increases

of plasma brain natriuretic peptide and lactic acid but without dysfunction of left ventricle. J. Clin.

induced by 5-fluouracil (5-FU) and 5-FU based chemotherapy regimens in Pakistani adult cancer

patients at Shaukat Khanum Memorial Cancer Hospital & Research Center. J. Pak. Med. Assoc

23. Rezkalla S, Kloner RA, Ensley J, et al. Continuous ambulatory ECG monitoring during fluorouracil

with verapamil. Acta Oncol 1990;29(8):1001-03 doi: 10.3109/02841869009091790.

Oncol 2010;28(36):5280-86 doi: JCO.2009.27.3953 [pii];10.1200/JCO.2009.27.3953.

27. Khan MA, Masood N, Husain N, Ahmad B, Aziz T, Naeem A. A retrospective study of cardiotoxicities

28. Meydan N, Kundak I, Yavuzsen T, et al. Cardiotoxicity of de Gramont's regimen: incidence, clinical

29. Atar A, Korkmaz ME, Ozin B. Two cases of coronary vasospasm induced by 5-fluorouracil. Anadolu.

31. Calik AN, Celiker E, Velibey Y, Cagdas M, Guzelburc O. Initial dose effect of 5-fluorouracil: rapidly

32. Yildirim M, Parlak C, Sezer C, Eryilmaz R, Kaya C, Yildiz M. Coronary vasospasm secondary to 5-

breast cancer. N. Engl. J Med 2013;368(11):987-98 doi: 10.1056/NEJMoa1209825.

study. Eur. Heart J 2015;36(6):369-76 doi: ehu178 [pii];10.1093/eurheartj/ehu178.

Fluorouracil and its management: case report. Eurasian. J Med 2011;43(1):54-56 doi:

33. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for

34. Mockel M, Searle J, Hamm C, et al. Early discharge using single cardiac troponin and copeptin testing in

patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process

improving severe, acute toxic myopericarditis. Am. J. Emerg. Med 2012;30(1):257-3 doi: S0735-

30. Basselin C, Fontanges T, Descotes J, et al. 5-Fluorouracil-induced Tako-Tsubo-like syndrome.

Pharmacotherapy 2011;31(2):226 doi: 10.1592/phco.31.2.226.

6757(10)00531-0 [pii];10.1016/j.ajem.2010.10.025.

characteristics and long-term follow-up. Jpn. J. Clin. Oncol 2005;35(5):265-70 doi: hyi071

[pii];10.1016/j.ejca.2005.03.027.

5-fluorouracil. Pharmacotherapy 1997;17(4):729-36

1083 patients. Tumori 1982;68(6):505-10

prior history of heart disease. Bull. Cancer 2006;93(3):E27-E30

therapy: a prospective study. J. Clin. Oncol 1989;7(4):509-14

2002;13(3):484-85

2012;62(5):430-34

[pii];10.1093/jjco/hyi071.

10.5152/eajm.2011.11.

Kardiyol. Derg 2010;10(5):461-62

~
2
3
4
4
5
ĉ
0
7
Q
0
9
10
10
11
12
10
13
14
15
10
16
17
13456789101123145678900112222222222222222222222222222222222
18
19
20
20
21
22
22
23
21
24
25
26
20
27
28
20
29
30
21
51
32
33
00
34
35
20
30
37
20
30
39
40
44
41
42
43
43
44
45
40
46
<u>4</u> 7
47 48
48
49
50
50 51
51
50
52 53
53
54
54
55

1

357

358

359

360

361

362

363

364

365

366

367 368

369

370

371

372

373

374

375

376

377

378

379

380

381

382 383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

40
47
48
49
50
51
52
53
54
55
56

- 57 58 59
- 60

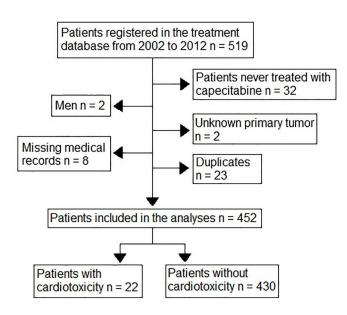
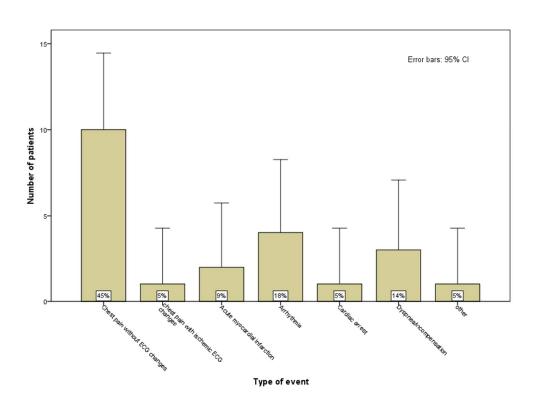



Figure 1: Flow diagram

179x135mm (300 x 300 DPI)

Figure 2: The distribution of the different manifestations of cardiotoxicity

Explaining text: Proportion of patients with chest pain without ECG changes (n = 10), chest pain with ECG changes but not acute myocardial infarction (n = 1), acute myocardial infarction (n = 2), arrhythmia (n = 4), cardiac arrest (n = 1), dyspnea/incompensation (n = 3) and other (n = 1), with QT prolongation and right bundle branch block). Patients with more than one of the manifestations (n = 2) are classified according to their primary complaint. The percentages showed on each bar reflect the distribution of symptoms among the 22 patients with cardiotoxicity.

232x186mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Subseque

treatment

nt

Sympto

retreatme

ms at

Case

			ons et	onset				s?		with capecitabi ne, dose	nt
1	Liver, lung, abdomen	No	1	100%	Chest pain	Oppressive chest pain	-	-	No	Yes, 100%	Yes, oppressiv e chest pain
2	Right lung, pleura, mediastinal lymph nodes, adrenal glands, abdominal carcinosis, columna and pelvis	Atrial fibrillation, NYHA 3, moderate pulmonary hypertension, LVEF = 53% after 1. cycle, hypertension	2	75%	Incompensat ion, dyspnea	Dyspnea and peripheral edema	ST- depressions in V5-V6	-	-	No	-
3	Liver	No	1	100%	Chest pain	Exertional chest pain radiating to the neck	No changes from pretreatmen t ECG (inverted T- waves in V1-V2)	-	-	No	-
4	Liver, bone Th3 + Th7, lymph nodes in left axilla	No	2	75%	Cardiac arrest	Chest pain and progressing dyspnea, cardiac arrest, death	Asystole	-	Adrenalin and amiodaron	-	-
5	Mediastinal lymph nodes,	Hypertension , hyperlipidem	1	75%	QTc prolongation , right	Asymptomatic	QTc prolongatio n, right	-	-	No	-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	thyroid gland, bone Th1 + Th5	ia			bundle branch block		bundle branch block				
6	Neck, sternal and left axillary lymph nodes	No		100%	Chest pain	Intermittent, retrosternal, oppressive chest pain radiating to both arms, LVEF 60% at echocardiography	Normal	No	No	No	_
7	Mediastinal lymph nodes	No	4	75%	Chest pain	Chest pain, dyspnea and malaise	Normal	No	No	No	-
8	Pleura, bone	No	1	100%	Chest pain	Compressive chest pain	No changes, ST- depression in V2-V4	-	Metoprolol and Isosorbidm ononitrate	No	-
9	Pleura	No	1	100%	Arrhythmia	Dyspnea	Atrial fibrillation/ atrial flutter, 170 bpm.	-	Adenosine, metoprolol and amiodaron	No	-
10	Liver, lung, bone	No	2	75%	Chest pain, Arrhythmia	Chest pain and palpitations	Atrial fibrillation, 119 bpm	5	Verapamil	Yes, 75%	Palpitations, dyspnea, atrial fibrillation
11	Liver, lungs, neck and right supraclavic ular lymph nodes	SVT, previous pulmonary embolism, hyperlipidem ia	1	100%	AMI	Oppressive chest pain radiating to right side, dyspnea. Effect of nitroglycerin iv. Normal coronary angiography and normal	Initially ST- elevation in V1-V3, AVF and V6. Negative T- waves in	Marginal raised TnI (52 ng/l) and raised CK-MB (4.4 µg/l)	Nitroglyceri n iv, Acetylsalic ylic Acid and Magnesium Hydroxide, clopidogrel,	No	_

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						echocardiography	lead II-III		fondaparinu x		
12	Lungs, mediastinal lymph nodes	Hypertension , diabetes, hyperlipidem ia	3	50%	Dyspnea	Dyspnea and light chest pain	Normal	No	No	Yes, 50%	No
13	Bone	Epirubicin- induced cardiomyopa thy	9	100%	Chest pain, arrhythmia	Compressive chest pain	Atrial fibrillation and non- sustained VT	-	-	No	-
14	Bone, skin, liver and left axillary lymph nodes	Hypertension , NYHA 2-3 Echo: LVEF 50-55%, mitral valve insufficiency , discrete pulmonary, hypertension	3	75%	Incompensat io, dyspnea	Progressing dyspnea, NYHA 3, peripheral edema, cardiomegaly Echo: LVEF unchanged, moderate to severe pulmonary hypertension, tricuspid insufficiency	Bundle branch block	-	Furosemide and potassium- chloride	No	-
15	Neck and infraclavicu lar lymph nodes	Atrial fibrillation, COPD	3	100%	Arrhythmia, pulmonary congestion	Dyspnea, dizziness, malaise X-ray: pulmonary congestion and pericardial exudate	Atrial fibrillation 117 bpm	-	Digoxin, Centyl Mite with potassium- chloride	No	-
16	Brain	No	8	100%	Chest pain	Oppressive chest pain radiating to the neck	Normal	-	-	Yes, 100%	Recurre t episode with chestpai

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	28	of	31
------	----	----	----

17	Mediastinal lymph nodes Sternum	No	2	100%	Chest pain Chest pain	Oppressive chestpain radiating to neck and arm, dyspnea	Sinus rhythm, supraventri cular extra systoles, no ST- deviations Normal	No	Verapamil	Yes, 75%	No
10	and sacroiliac bone	mia	D			chest pain radiating to the back and both arms. Echo: normal	Tionna				
19	CNS, liver, right axillary lymph nodes	Hypertension , hyperlipidem ia	12	75%	AMI	Chest pain radiating to head, neck and jaw. LVEF = 40 %.	Normal	Raised troponins (400 ng/l), CK- MB unknown	Acetylsalic ylic Acid with magnesium hydroxide (magnyl), clopidogrel, fondaparinu x, metoprolol, ACE- inhibitor, Statin	No	-
20	Pelvis bone, right axillary lymph nodes	Hypertension , hyperlipidem ia	1	100%	Chest pain	Oppressive chest pain Echo: normal	-		-	No	-
21	Lung, bone	Epirubicin- induced cardiomyopa thy, LVEF = 34-40%	1	100%	Arrhythmia	Dizziness and palpitations.	Telemetry: Atrial flutter 150 bpm, neg. T-waves in I and AVL	-	Metoprolol, ACE- inhibitor	No	-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

⊿0 **BMJ Open**

22	Pelvic and	Atrial	1	100%	Chest pain	Chest pain	Fluctuating	-	No	Yes,	Episodes
	columnar	fibrillation,			_	_	negative T-			100%	with pain
	bone	hypertension,					waves in				located
		hyperlipidem					lead II, III,				to jaw
		ia					aVF and				and chest
							V1-V5				

COPD = chronic obstructive pulmonary disease, bpm = beats per minute, NYHA = New York Heart association functional classification, LVEF = left ventricular function, TnI = cardiac troponin I, SVT = supraventricular tachycardia, LMWH = low molecule weight heparin, CK-MB = creatine kinase cardia appending MB, CNS = central nerve system

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	Not relevant
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	Not applicable
		(e) Describe any sensitivity analyses	6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6 + Figure 1
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	16-18
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	16-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16-19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012798.R1
Article Type:	Research
Date Submitted by the Author:	01-Aug-2016
Complete List of Authors:	Polk, Anne; Oncology and cardiology Shahmarvand, Nahid; Herlev Hospital, oncology Vistisen, Kirsten; Herlev Hospital, oncology Vaage-Nilsen, Merete; Herlev Hospital, cardiology Larsen, Finn; Herlev Hospital, Oncology Schou, Morten; Herlev Hospital, Cardiology Nielsen, Dorte; Herlev Hospital, Oncology
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	capecitabine, cardiotoxicity, risk factors, chest pain, breast cancer

BMJ Open

2		
3 4 5	1	Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective
6 7	2	study of 452 consecutive patients with metastatic breast cancer
8 9 10	3	Anne Polk ^{1,2} , Nahid Shahmarvand ¹ , Kirsten Vistisen ¹ , Merete Vaage-Nilsen ² , Finn Ole Larsen ¹ ,
11 12 13	4	Morten Schou ² , Dorte Lisbeth Nielsen ¹
14 15	5	¹ Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev
16 17 18	6	Ringvej 75, DK-2730 Herlev, Denmark
19 20 21	7	² Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev
22 23	8	Ringvej 75, DK-2730 Herlev, Denmark
24 25 26	9	E-mail addresses:
27 28	10	Nahid Shahmarvand: nahid_doost@hotmail.com
29 30	11	Kirsten Vistisen: kirsten.vistisen@regionh.dk
31 32 33	12	Merete Vaage-Nilsen: merete.vaage-nilsen@regionh.dk
34 35	13	Finn Ole Larsen: finn.ole.larsen@regionh.dk
36 37	14	Morten Schou: morten.schou.04@regionh.dk
38 39	15	Dorte Lisbeth Nielsen: dorte.nielsen.01@regionh.dk
40 41 42	16	Correspondence:
43 44	17	Anne Polk
45 46	18	Department of Oncology and Department of Cardiology, Herlev and Gentofte Hospital, University
47 48	19	of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
49 50 51	20	Telephone: +45 28 49 75 98
52 53	21	e-mail: anne.polk@hotmail.com
54 55	22	Keywords: capecitabine, cardiotoxicity, risk factors, chest pain, breast cancer
56 57 58	23	Word count: 3840 incl. tables and statements but excl. references
59 60		1

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

ABSTRACT **Objectives:** Case-reports of capecitabine cardiotoxicity resemble those seen with intravenous 5-fluorouracil with chest pain as the predominant manifestation, but few studies of capecitabine cardiotoxixcity are available. We aimed to determine the incidence of symptomatic cardiotoxicity from capecitabine in breast cancer patients and to identify risk factors. Methods: We reviewed medical records of consecutive women with breast cancer treated with capecitabine (1000 mg/m^2 twice daily) from 2002 to 2012 at one institution. **Results:** Twenty-two of 452 patients (4.9%) (95%CI: 2.9%-6.9%) had symptoms of cardiotoxicity (chest pain: n = 13, dyspnea: n = 9, palpitations: n = 2). Eleven patients had changes on ECG (atrial fibrillation: n = 5, ST deviations: n = 3, T-wave abnormalities: n = 2, and QTc prolongation: n = 1). Two patients (0.4%) sustained acute myocardial infarction. One patient (0.2%) developed cardiac arrest with lethal outcome. Four of six patients (66%) retreated with capecitabine had recurrent symptoms at retreatment. Cardiac comorbidity (p = 0.001), hypercholesterolemia (p = 0.005) and current smoking (p = 0.023) were risk factors for cardiotoxicity in univariate analyses and remained significant when adjusted for age. Patients with cardiac co-morbidity were 5.5 times (95% CI: 2.0-14.8) more likely to develop cardiotoxicity. In the subgroup of patients with apparently no cardiac co-morbidity the incidence of cardiotoxicity was lower (3.7 %) and hypercholesterolemia (p = (0.035) and current smoking (p = 0.020) were risk factors of cardiotoxicity. **Conclusion:** The incidence of cardiotoxicity from capecitabine resembles that of intravenous 5-fluorouracil (≈ 5 %). Cardiac co-morbidity, hypercholesterolemia and current smoking were associated with development of cardiotoxicity.

BMJ Open

5	Str	engths and limitations of this study	J Open: first
6 7 47 8	•	Our study is a large single center study including all patients with breast cancer treated with	publish
9 48 10		capecitabine over a 10-year period.	led as
11 12 49	•	The primary end-point, cardiotoxicity, is mainly diagnosed on the basis of subjective symptoms	10.113
13 14 50 15		(chest pain, dyspnea, palpitations) which may cause information bias.	6/bmjo
16 51 17	•	In spite of a relatively large sample size, the number of events is low which limit the power of	pen-20
18 52 19		the logistic regression analyses used to analyse for risk factors.	16-012
20 21 53 22	•	Our study is a retrospective clinical study. The patients' history records are incomplete with	2798 01
23 54 24		respect to information on risk factors for cardiovascular disease (hypertension,	יס 19 סי
25 ₅₅ 26 27		hypercholesterolemia, diabetes and smoking) and baseline electrocardiograms.	ctober
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		a To peer review only - thety://bmjopen.bmj.com/site/about/guidelines.thmi	J Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

INTRODUCTION Capecitabine is an oral pro-drug of 5-fluorouracil (5-FU) that is converted to 5-FU in a three-stage process involving several enzymes.¹ The last step is catalyzed by thymidine phosphorylase.¹ Many tissues throughout the body express thymidine phosphorylase, but some human carcinomas express this enzyme in higher concentrations than surrounding normal tissues.¹ This, in theory should increase the concentration of 5-FU at the tumour site and decrease the concentration of 5-FU in healthy tissues resulting in less side effects.¹ Capecitabine is licensed for adjuvant treatment in patients with colon cancer stage III and for the treatment of metastatic colorectal cancer, metastatic breast cancer and advanced gastric cancer (combination therapy). The main side effects from capecitabine are hand-and-foot syndrome, diarrhea, stomatitis, fatigue, anorexia, nausea and vomiting, abdominal pain, myelosuppression, hyperbilirubinemia and cardiotoxicity.²⁻⁵ Case reports of cardiotoxicity after administration of capecitabine are similar to those seen with intravenous 5-FU treatment with chest pain as the predominant manifestatio.⁶⁻¹⁴ Other less frequent clinical manifestations are arrhythmias, myocardial infarction, heart failure, cardiogenic shock and sudden death.¹⁵⁻¹⁹ Cardiotoxicity from 5-FU occurs with an incidence of 0.55% to 19.9%.¹⁵ There are few studies of capecitabine cardiotoxicity with incidences ranging from 3% to 35%.²⁰⁻²⁴ We aimed to study the pattern and incidence of symptomatic cardiotoxicity in women with metastatic breast cancer treated with capecitabine and to identify potential risk factors for capecitabine-induced cardiotoxicity. MATERIAL AND METHODS

78 Selection of patients

Page 5 of 32

BMJ Open

We included patients with metastatic breast cancer consecutively treated with capecitabine from
first of January 2002 to 31. December 2012. Inclusion criteria were female, metastatic breast cancer
and capecitabine treatment (+/- trastuzumab). The chemotherapy regimen was capecitabine 2000
mg/m² divided in two daily doses for 14 days followed by one week off.

83 Data collection

Approval from the Danish Data Protection Agency was obtained. We collected data from medical records on age, height, weight, body surface area, capecitabine dose, cardiotoxicity, cardiac comorbidity (a history of previous acute myocardial infarction, ischemic heart disease, arrhythmias, heart failure or reduced ejection fraction), risk factors for ischemic heart disease (a history of hypertension or intake of antihypertensive drugs, smoking status, a history of hypercholesterolemia or intake of lipid lowering drugs, a history of diabetes or intake of antidiabetics), electrocardiogram (ECG) (before treatment start and if symptoms), hemoglobin levels, creatinine levels and previous treatment with anthracyclines, trastuzumab, breast- and thoracic radiotherapy. Renal function (estimated glomerular filtrationrate, eGFR) was estimated by the Chronic Kidney Disease Epidemiology Collaboration equation for Caucasian women incorporating age and plasma creatinine concentrations. All the collected data were prospectively selected.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

95 Registration of symptoms and identification of cases with cardiotoxicity

Before start of chemotherapy and before each cycle adverse events were scored according to
NCI/CTCAE V. 3.0. ECGs were performed before first cycle of capecitabine and at clinical
suspicion of cardiotoxicity. Medical records were reviewed by one of the authors. Cardiotoxicity
was defined as significant symptoms of likely cardiac origin (chest pain or acute myocardial
infarction (confirmed with elevation in troponins over the cut-off point), palpitations, dyspnea of
likely cardiac origin and incompensation) and/or changes on ECG that started during treatment with

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

capecitabine and was not present before treatment start. Cases with suspected cardiotoxicity were
further reviewed by one cardiologist (MVN) who made the final decision to classify the case as
cardiotoxicity or not. All patients were followed to cessation of capecitabine. Endpoints were
evaluated unblinded and the investigators had access to patients' medical record.

106 Statistics

Mann-Whitney U test was used to compare differences in age between patients with cardiotoxicity and patients without cardiotoxicity. Fisher's exact test and chi squared test were used to analyze differences in numeric variables between the two groups. Chi squared test for trend were used to analyze differences for ordinal variables. Possible risk factors for cardiotoxicity were tested using univariate binomial logistic regression and adjusted for age with multivariate binomial logistic regression. In order to test the robustness of the data and due to missing data, sensitivity analyses were performed for variables that tended to be significant or were significant in univariate analyses. Sensitivity analyses were performed both with multiple imputation and as worst- and best case scenarios for one variable at a time. Due to the low number of events (=22), the potential risk of over fitting of the statistical models and the risk of collinearity among the covariates, we only adjusted for age in the multivariate logistic regression analyses. C statistics were performed for variables that were significant in univariate logistic regression analyses. P-values below 0.05 were regarded significant. IBM SPSS software version 21 was used for all analysis.

RESULTS

122 Study population

A total of 452 consecutive women with metastatic breast cancer were eligible for analysis (Figure
1). Patient characteristics are listed in table 1. Median age was 63 years, 333 patients initially (74%)
received 100% dose, while 84 patients (19%) were treated with 75% dose and 26 patients (6%)

were treated with 50% dose, respectively. Totally, 242 patients (54%) had previously received treatment with anthracyclines, 54 patients (12%) were treated previously or concurrent with trastuzumab, while 132 patients (29%) had a history of left-sided breast irradiation. Radiotherapy was given approximately 3 months after the primary diagnosis of breast cancer and mean time from diagnosis to start of capecitabine was 4 years (0.9-58 years). Forty-two patients (9.3%) had cardiac comorbidities prior to initiation of treatment. Of these 6 (1%) had a history of ischemic heart disease while 37 (8%) had other types of cardiac disease including atrial fibrillation (n = 13), supraventricular tachyarrhythmia (n = 3), pericardial exudatives (n = 3), epirubicin-induced cardiomyopathy (n = 3), atrio-ventricular blocks (n = 1), aortic valve disease (n = 1) and reduced left ventricular ejection fraction of unknown cause (n = 4).

136 Table 1: Patient characteristics

			1	
Characteristic	All	Patients with	Patients without	P-
				value ^b
	patients (n	Cardiotoxicity (n =	Cardiotoxicity (n =	value
	= 452)	22)	430)	
	No. (%)	No. (%)	No. (%)	
$A \approx (n - 452)$				
Age $(n = 452)$				
Median	63	63	63	0.742
Range	28 - 88	36 - 82	28 - 88	
Capecitabine dose $(n = 443)$				
50%	26 (6)	1 (5)	25 (6)	0.636
5070	20(0)	1 (3)	25 (0)	0.050
75%	84 (19)	6 (27)	78 (18)	-
100%	333 (74)	15 (68)	318 (74)	

IHD (incl. previous ACS) (n =	6(1)	0	6(1)	1.000
436)				
Other cardiac diseases (n =	37 (8)	7 (32)	30 (7)	0.000
436)				
ECG at treatment start ^d (n =				
161)				
Normal	132 (29)	9 (41)	123 (29)	0.454
Abnormal	29 (6)	3 (14)	26 (6)	
Hypertension (n = 442)	126 (28)	9 (41)	117 (27)	0.186
Hypercholesterolemia (n =	53 (12)	7 (32)	46 (11)	0.002
390)				
Diabetes mellitus ($n = 435$)	21 (5)	1 (5)	20 (5)	1.000
Smoking status (n = 371)		Q		
Current smoker	105 (23)	9 (41)	96 (22)	0.264
Former smoker	66 (15)	4 (18)	62 (14)	
Never smoked	200 (44)	5 (23)	195 (45)	
BMI (n = 382)			0.	
Underweight (BMI <18.5)	21 (5)	3 (14)	18 (4)	0.337
Normal (BMI 18.5-24.9)	208 (46)	8 (36)	200 (47)	
Overweight (BMI 25.0-	109 (24)	9 (41)	100 (23)	
29.9)				
Obese (BMI > 29.9)	44 (10)	0	44 (10)	
Number of risk factors for				

IHD ^c ($n = 452$)				
0	131 (29)	3 (14)	128 (30)	0.005
1	182 (40)	8 (36)	174 (41)	
2	90 (20)	5 (23)	85 (20)	
3	32 (7)	3 (14)	29 (7)	
4	17 (4)	3 (14)	14 (3)	_
5	0	0	0	_
Previous treatment with	242 (54)	9 (41)	233 (54)	0.189
anthracyclines (n = 444)				
Previous or concurrent	54 (12)	3 (14)	51 (12)	0.752
treatment with trastuzumab (n				
= 403)				
Previous breast irradiation (n =	275 (61)	8 (36)	267 (62)	0.052
431)				
Left side	132 (29)	5 (23)	127 (30)	0.218
Right side	115 (25)	1 (5)	114 (27)	_
Bilateral	25 (6)	2 (9)	23 (5)	_
Side unknown	3 (1)	0	3 (1)	
Previous thoracic irradiation (n	96 (21)	4 (18)	92 (21)	1.000
= 407)				
Anemia ^a (n = 437)	126 (28)	3 (14)	123 (29)	0.164
eGFR (n = 429)				
Low (< 60 mL/min/1.73m ²)	71 (17)	6 (27)	65 (15)	0.105

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

1 2
3 4
5 6
7 8
2 3 4 5 6 7 8 9 10
11 12 13
14 15
16 17
18 19
20 21 22
22 23 24
25 26
27 28
29 30 31
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38
34 35
36 37
38 39 40
41 42
43 44
45 46 47
48 49
50 51
52 53 54
55 56
57 58
59 60

Normal (≥ 60 358 (79) 13 (59) 345 (80) mL/min/1.73m ²) adefined according to the World Health Organization: Hgb < 7.4 mmol/L for non-pregnation below of the statistical tests of differences between patients with cardiotoxicity and patients with cardiotoxicity. 139 without cardiotoxicity. 140 cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, sn 141 BMI.	tients toking, and
 ^adefined according to the World Health Organization: Hgb < 7.4 mmol/L for non-pregnative provide the statistical tests of differences between patients with cardiotoxicity and patients without cardiotoxicity. ^cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, sm BMI. 	tients toking, and
 ^bP-value for the statistical tests of differences between patients with cardiotoxicity and pa without cardiotoxicity. ^cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, sn BMI. 	tients toking, and
 139 without cardiotoxicity. 140 ^cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, sn 141 BMI. 	ooking, and
 ¹⁴⁰ ^cRisk factors for IHD includes: hypertension, hypercholesterolemia, diabetes mellitus, sn ¹⁴¹ BMI. 	-
141 BMI.	-
	ly seen by
	ly seen by
^d All patients do routinely have ECG taken before treatment start and all ECGs are routine	
143 doctors, but not all ECGs were available in the medical records.	
144 ACS = acute coronary syndrome; BMI = body mass index; ECG = electrocardiogram; eC	FR =
145 estimated glomerular filtration rate; IHD = ischemic heart disease.	
146 Cardiotoxicity	
147 Twenty-two cases of symptomatic cardiotoxicity (4.9%) (95% Confidence interval (CI):	2.91%-
148 6.89%) were identified from medical records (Supplementary table). The most common	omplaints
149 were chest pain (13 patients) followed by dyspnea (9 patients) and palpitations (2 patient	s) (Figure
150 2). Eleven of these 22 patients (50%) had changes on ECG. Five patients had atrial fibrill	ation (1
151 paroxysmal and 4 new onset), while three patients had ST deviations and two patients de	veloped
negative or fluctuating T-waves. Of the 13 patients with chest pain two (0.4%) had eleva	ed
troponins and were classified as acute myocardial infarctions. One patient (0.2%) with dy	spnea and
154 progressing chestpain developed cardiac arrest with lethal outcome.	
155 First occurrence of cardiotoxicity was in first cycle for 11 patients (50%), second cycle for	or four
patients (18%), third cycle for 3 patients (14%) and fourth cycle for 1 patient (4.5%), wh	le three
patients (14%) had late occurrence of cardiotoxicity (8^{th} , 9^{th} and 12^{th} cycle).	

BMJ Open

Cardiac therapy was initiated in 10 of the 22 patients with cardiotoxicity (Supplementary table), while 6 were retreated with capecitabine. Three patients were retreated at the same dose intensity without initiation of cardiac therapy, two were retreated at the same dose intensity, but received cardiac therapy with verapamil, and one patient were treated at reduced dose. The three patients treated with full dose and no initiation of cardiac therapy all had recurrent symptoms at retreatment, while one patient treated with verapamil had recurrent symptoms. The other two patients, one treated with verapamil and one treated at reduced dose intensity, did not have symptoms at retreatment.

Seven events of cardiotoxicity occurred in the sub-group of patients with cardiac co-morbidity (n =42) (16.7 %), while 15 patients in the sub-group of patients with apparently no cardiac co-morbidity (n = 410) developed cardiotoxicity (3.7 %).

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Risk factors for symptomatic cardiotoxicity

In univariate logistic regression analyses cardiac comorbidity (p = 0.001), hypercholesterolemia (p = 0.005) and current smoking (p = 0.023) were risk factors for cardiotoxicity (Table 2) and they remained significant after adjustment for age with multivariate logistic regression. Patients with cardiac co-morbidity were 5.5 times (95% CI: 2.0-14.8) more likely to develop cardiotoxicity than patients without cardiac co-morbidity. In the subgroup of patients with apparently no cardiac comorbidity hypercholesterolemia (p = 0.035) and current smoking (p = 0.020) were significant risk factors in univariate analyses and remained significant after adjustment for age (Table 2). Sensitivity analyses were performed for variables significant in the univariate analyses. In the entire study group, hypercholesterolemia, cardiac co-morbidity and current smoking remained significant risk factors after multiple imputation of missing values (p = 0.008, p = 0.001 and p = 0.023,

respectively) and after imputation with worst- and best-case scenarios (hypercholesterolemia p =

0.005 (best-case), p = 0.032 (worst-case); cardiac co-morbidity p = 0.007 (worst-case), p = 0.001

(best-case); current smoking p = 0.045 (worst-case), p = 0.032 (best-case)). In the subgroup of patients with apparently no cardiac co-morbidity current smoking remained significant after both multiple imputation analyses (p = 0.021) and worst- and best-case analyses (p = 0.025 and p =0.042, respectively), while hypercholesterolemia was unaffected by multiple imputation (p = 0.043) but susceptible to worst- and best-case analyses. The p-value for the univariate regression analysis was significant (p = 0.035) when cases with missing data were imputed with best case scenario (none having hypercholesterolemia), but became insignificant (p = 0.132) in worst case scenario (all having hypercholesterolemia).

190 Table 2: Univariate and bivariate logistic regression models of risk factors for symptomatic

191	cardiotoxicity. Bold P-values indicate a significant difference ($P < 0.05$).

			1			1
Variable	Beta	Odds ratio	P-	Beta	Odds ratio	P-
	coefficient	(95%-CI)	valu	coefficient	(95%-CI)	valu
	•••••	(30,001)		•••••	() () () () ()	
	(95%-CI)		e	(95%-CI)		e
	(9370-01)		C	(95/0-01)		e
	Univariate			Bivariate: Adju	isted for age	
All patients ($N =$						
(452) (events = 22)						
Age ^a	0.01 (-0.03-	1.01 (0.97-	0.78			
Age	0.01 (-0.03-	1.01 (0.97-	0.78	-	-	-
	0.04)	1.05)	9			
Hypercholesterolemi	1.42 (0.43-	4.12 (1.54-	0.00	1.42 (0.38-	4.14 (1.46-	0.00
	,	,			,	
a ^b	2.40)	11.00)	5	2.46)	11.75)	8
a	2.40)	11.00)	5	2.40)	11.75)	0
I I and a start and a sub	0.59 (0.20	1 70 (0 75	0.10	0 (0 (0 22	1.02 (0.72	0.20
Hypertension ^b	0.58 (-0.29-	1.79 (0.75-	0.19	0.60 (-0.33-	1.82 (0.72-	0.20
			_			
	1.46)	4.31)	2	1.52)	4.57)	6
Diabetes ^b	-0.07 (-2.12-	0.94 (0.12-	0.94	-0.11 (-2.17-	0.90 (0.11-	0.92
L						

Page 13 of 32

BMJ Open

	1.99)	7.32)	9	1.96)	7.13)	1
Smoking ^b						
Current smoker	1.30 (0.17-	3.66 (1.19-	0.02	1.30 (0.18-	3.66 (1.19-	0.02
Former smoker	2.42)	11.21)	3	2.42)	11.22)	3
	0.92 (-0.42-	2.52 (0.66-	0.17	0.92 (-0.43-	2.51 (0.65-	0.18
	2.27)	9.66)	9	2.27)	9.67)	1
BMIª	-0.05 (-0.16-	0.95 (0.85-	0.38	-0.05 (-0.16-	0.96 (0.85-	0.41
Divil						
	0.06)	1.06)	0	0.07)	1.07)	3
Previous irradiation	-0.14 (-1.05-	0.87 (0.35-	0.76	-0.13 (-1.05-	0.88 (0.35-	0.78
of left breast ^b	0.78)	2.18)	3	0.80)	2.22)	5
"Cardiac co-	1.63 (0.67-	5.12 (1.96-	0.00	1.70 (0.70-	5.47 (2.02-	0.00
morbidity" ^b	2.59)	13.39)	1	2.69)	14.80)	1
Anemia ^b	-0.86 (-2.12-	0.42 (0.12-	0.17	-0.86 (-2.12-	0.42 (0.12-	0.17
	0.39)	1.47)	6	0.39)	1.47)	6
eGFRª	-0.01 (-0.03-	0.99 (0.97-	0.48	-0.01 (-0.03-	0.99 (0.97-	0.63
	0.02)	1.02)	7	0.02)	1.02)	8
Previous	-0.58 (-1.43-	0.56 (0.24-	0.19	-0.73 (-1.77-	0.48 (0.17-	0.17
anthracyclines ^b	0.29)	1.34)	4	0.31)	1.36)	1
Previous or	0.08 (-1.17-	1.08 (0.31-	0.90	0.11 (-1.17-	1.12 (0.31-	0.86
concurrent	1.34)	3.80)	3	1.41)	4.09)	4
trastuzumab ^b						
Dose of	-0.01 (-0.03-	1.00 (0.97-	0.66	-0.01 (-0.03-	1.00 (0.97-	0.68
capecitabineª	0.02)	1.02)	6	0.02)	1.02)	2
Previous thoracic	0.08 (-1.08-	1.08 (0.34-	0.89	0.12 (-1.05-	1.12 (0.35-	0.84

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

irradiation ^b	1.24)	3.44)	2	1.28)	3.60)	7
Patients with no						
history of heart						
disease ($n = 399$)						
(events = 15)						
Age ^a	0.001 (-0.04-	1.00 (0.96-	0.94	-	-	-
	0.05)	1.05)	9			
Hypercholesterolemi	1.32 (0.01-	3.75 (1.10-	0.03	1.34 (0.04-	3.81 (1.04-	0.04
a ^b	2.55)	12.81)	5	2.63)	13.94)	3
Hypertension ^b	0.05 (-1.11-	1.05 (0.33-	0.92	0.04 (-1.17-	1.04 (0.31-	0.94
11)percension	1.22)	3.38)	9	1.25)	3.51)	7
	1.22)	5.50)	,	1.23)	5.51)	,
Diabetes ^b	0.48 (-1.61-	1.62 (0.20-	0.65	0.48 (-1.63-	1.61 (0.20-	0.65
	2.57)	13.10)	1	2.58)	13.26)	8
Smoking ^b						
Current smoker	1.64 (0.26-	5.13 (1.30-	0.02	1.63 (0.25-	5.09 (1.28-	0.02
Former smoker	3.01)	20.33)	0	3.00)	20.18)	1
	0.18 (-2.10-	1.20 (0.12-	0.87	0.19 (-2.10-	1.21 (0.12-	0.87
	2.46)	11.76)	6	2.47)	11.85)	2
BMIª	-0.04 (-0.18-	0.96 (0.84-	0.53	-0.04 (-0.17-	0.96 (0.84-	0.57
	0.09)	1.09)	0	0.10)	1.10)	8
Previous irradiation	-0.41 (-1.56-	0.67 (0.21-	0.49	-0.41 (-1.56-	0.67 (0.21-	0.49
of left breast ^b	0.76)	2.13)	5	0.77)	2.15)	7

Ρ	a
1	
2 3 4	
4	
5 6	
78	
1	0
1	1
1	2
1	ა 4
1	5
1	6
1	234567890123456789
1	9
2	0 1
2	1 2
2	3
2	4 5
2	5 6
2	7
2	8 0
2	9 0 1 2
3	1
3	2 3
3	0 1 2 3 4
3	5
	6 7
3	
	9
4	0
4	2
4	3
	4 5
4	6
4	
4 4	
5	0
5	1
5 5	2 3
5	4
5	
5 5	6 7
5	'n

58 59 60

Anemia ^b	-1.62 (-3.51-	0.20 (0.03-	0.12	-1.62 (-3.51-	0.20 (0.03-	0.12
	0.43)	1.54)	1	0.43)	1.54)	1
eGFRª	0.00 (-0.03-	1.00 (0.97-	0.87	0.01 (-0.03-	1.01 (0.97-	0.66
	0.03)	1.03)	6	0.05)	1.05)	8
Previous	0.67 (-0.39-	1.96 (0.68-	0.21	0.92 (-0.33-	2.52 (0.72-	0.15
anthracyclines ^b	1.72)	5.60)	2	2.18)	8.86)	0
Previous or	0.42 (-0.87-	1.53 (0.42-	0.52	0.48 (-0.87-	1.62 (0.42-	0.48
concurrent	1.72)	5.60)	5	1.83)	6.26)	4
trastuzumab ^b	0					
Dose of	-0.01 (-0.04-	0.99 (0.96-	0.57	-0.01 (-0.04-	0.99 (0.96-	0.57
capecitabine ^a	0.02)	1.02)	3	0.02)	1.02)	9
Previous thoracic	0.35 (-1.02-	1.42 (0.36-	0.62	0.40 (-0.99-	1.48 (0.37-	0.57
irradiation ^b	1.72)	5.59)	1	1.79)	5.96)	7

^ascale variable. ^bcategorical variable. 95%-CI = 95% confidence interval; BMI = body mass index;

193 "Cardiac co-morbidity" = all types of heart disease; eGFR = estimated glomerular filtration rate.

194 C Statistics: Predictors of symptomatic cardiotoxicity

The ability of the variables, cardiac co-morbidity, hypercholesterolemia and current smoking, to discriminate between patients that will develop symptomatic cardiotoxicity and those who will not was tested with c-statistics. In unselected patients the presence of cardiac co-morbidity was a poor predictor of symptomatic cardiotoxicity (c = 0,617 (95%CI 0.483-0.754), p = 0.061), as was the presence of hypercholesterolemia (c = 0.662 (95%CI 0.478-0.766), p = 0.072) and smoking status (c = 0.651 (95%CI 0.523-0.779), p = 0.031). In the subgroup of patients with apparently no cardiac co-morbidity the presence of hypercholesterolemia (c = 0.601 (95%CI 0.427-0.775), p = 0.216) and

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

smoking status (c = 0.691 (95%CI 0.526-0.857), p = 0.031) were poor factors to discriminate between patients who will develop cardiotoxicity and those who will not.

205 DISCUSSION

206 Incidence of symptomatic cardiotoxicity

We observed an incidence of symptomatic cardiotoxicity from capecitabine at $\approx 5\%$ in women with metastatic breast cancer which is similar to incidences reported in previous studies of both men and women treated with capecitabine,²²⁻²⁴ although some studies have reported lower²⁰ or higher incidences.²¹ The difference in incidences in-between studies may be due to different risk profiles in the study populations. Moreover, prospective studies with regular cardiac assessments may detect more cardiotoxicity since they may identify asymptomatic patients and patients with mild symptoms. The incidence of symptomatic cardiotoxicity in our study and other studies of capecitabine cardiotoxicity is within the range of incidences of symptomatic cardiotoxicity in studies with 5-FU^{15, 21, 24-26} and a large study found similar incidences for the two treatments.²⁴ However, a prospective study with 644 patients reported similar incidences of cardiotoxicity for capecitabine and continuous 5-FU infusion schedules, but a lower incidence for short (bolus) 5-FU infusion schedules.22

220 Pattern of symptomatic cardiotoxicity

The most common event of symptomatic cardiotoxicity was chest pain, which was the main
symptom in 59% of the 22 cases. Most of the patients with chest pain had normal ECG and normal
coronary enzymes and severe events, such as acute myocardial infarction and cardiac arrest with
lethal outcome, was rare. This pattern is in concordance with other studies¹⁵ and the sudden onset of

chest pain and the rare occurrence of life-threatening complications correspond well to the theory of fluoropyrimidine induced vasospastic angina. Furthermore, the angiographically normal arteries reported in several case reports^{6-8, 11} and the presence of silent ischemic episodes on Holter recordings²⁷ supports this theory.

Retreatment of patients with symptomatic cardiotoxicity

Retreatment with capecitabine after occurrence of cardiotoxicity was attempted in 6 of 22 patients with little success. Four patients had recurrent cardiac symptoms, suggesting that retreatment should be done with great precaution. However, a retrospective study of 668 patients²⁰ and a prospective study of 644 patients²² treated with 5-FU or capecitabine reported a benefit from dose-reduction and initiation of anti-angina therapy that prevented symptoms at retreatment in 9 of 12 patients and 12 of 15 patients, respectively. Their findings suggest that retreatment at reduced dose and with appropriate anti-angina therapy are feasible, however close cardiac monitoring is crucial. Furthermore, nitro-glycerine was effective to abolish symptoms of cardiotoxicity.²⁰ In contrast. a small and non-randomized study could not demonstrate an prophylactic effect of calcium channel blockers on occurrence of cardiotoxicity.²⁸ Larger studies with systematic, predefined strategies for dose reduction and initiation of anti-angina therapy are needed.

Risk factors for symptomatic cardiotoxicity

Patients with cardiac comorbidity were at increased risk of symptomatic cardiotoxicity, which is in accordance with four previous studies of 5-FU or capecitabine cardiotoxicity,^{21, 25, 27, 29} while other studies found no increased risk for patients with pre-existing heart disease.^{23, 30-33} While heart disease may be a risk marker for cardiotoxicity, it is not a prerequisite for cardiotoxicity to occur. The patient who sustained cardiac arrest and died in our study had no cardiac co-morbidities and no risk factors for ischemic heart disease. Likewise, severe cardiotoxicity has been reported for several

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

patients without cardiac co-morbidity.^{11, 34-37} Also, we found that a history of heart disease was a
poor predictor of cardiotoxicity.

In the present study hypercholesterolemia and current smoking were risk factors for symptomatic cardiotoxicity both in the entire study group and in the subgroup of patients with no apparent cardiac co-morbidity. Similarly, a larger prospective study of 644 patients without cardiac co-morbidities reported that smoking was associated with ECG changes in bivariate analyses.²² However, they found no association between ECG changes and hyperlipidaemia.²² While Kosmas et al.²² prospectively measured cholesterol and triglyceride levels in blood; our study is based on medical recordings. Thus incomplete data with risk of information bias is a limitation of the present study. Both studies have a low number of events limiting the statistical power and multiple testing increases the risk of false positive results.

Previous treatment with potentially cardiotoxic therapy with anthracyclines or previous or current treatment with trastuzumab did not increase the risk of symptomatic cardiotoxicity. However, two of three patients with epirubicin-induced cardiomyopathy developed symptomatic cardiotoxicity during treatment with capecitabine suggesting that the degree of pre-existing heart damage may be relevant. Patients with previous left-sided breast irradiation were not at increased risk of cardiotoxicity in our study. Similarly, a large prospective study of 5-FU cardiotoxicity found that previous breast irradiation was not a risk factor.²⁵ The lack of association between other cardiotoxic therapies and capecitabine-induced cardiotoxicity suggests that the mechanisms behind these cardiotoxicities are different. Moreover, radiation-induced cardiovascular disease may be a late event.³⁸ In our study the mean time from chest irradiation to capecitabine start was 4 years.

269 Methodological considerations

The predominant manifestation of symptomatic cardiotoxicity from fluoropyrimidines is chest painfollowed by other subjective symptoms and ECG changes or other objective signs of cardiotoxicity

BMJ Open

are not always present. In our study, only approximately 50% of the patients had objective signs (mostly ECG changes) of cardiotoxicity. Thus, the event (cardiotoxicity) was based mainly on subjective symptoms and is therefore affected by the patient's own perception and reaction to the symptoms and the physician's assessment of the patient's symptoms. Both patients and physicians may pay more attention to cardiac symptoms if the patient has heart disease before treatment start. These factors may explain some of the difference in incidence in-between studies. Research in new and sensitive cardiac biomarkers like e.g. copeptin to detect myocardial ischemia is needed.³⁹ In spite of a relatively large sample size, the number of events is low (22 events) leading to wide confidence intervals, low statistical power and increased risk of type II statistical errors. With respect to the logistic regression analyses, the low number of events limits the number of covariates allowed in the model. The low number of events and multiple testing (increasing the risk of false positive results) are weaknesses of most studies analysing risk factors and it makes the conclusions that can be drawn from these studies less valid. Like most other large studies on this subject our study is retrospective which may results in underestimation of the incidence of cardiotoxicity due to incomplete data and overlooking patients with mild symptoms and asymptomatic patients. Missing data affects power and if not missing at random, they may cause bias. We dealt with the missing data by sensitivity analyses with worst and BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

best case scenarios and with multiple imputation. The sensitivity analyses showed that missing data
had little influence on our study results.

A major limitation is that baseline ECGs was only preserved for 36% of the patients. Among the 11
patients with ECG changes during capecitabine treatment, 2 had missing baseline ECGs.

293 Conclusion

The incidence of symptomatic cardiotoxicity from capecitabine of \approx 5% is close to that of 5-FU

with incidences of 1%-5% in larger studies. Our study results suggest that cardiac co-morbidity and

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

current smoking are risk factors for symptomatic cardiotoxicity. Whether smoking cessation can prevent some cases of symptomatic cardiotoxicity deserves further investigations. All the identified risk factors were poor predictors of symptomatic cardiotoxicity and initial optimal cardiac treatment, information about the risk and follow-up if symptoms present are the options today. Contributors: AP: Data collection, data processing, statistics, writing of the paper and incorporation of input from the other authors. NS and KV: Conception and design of the study, data collection and review of the manuscript. MVN: Review of cases with suspected cardiotoxicity and review of the manuscript. FOL: Conception and design of the study and review of the manuscript. MS: Interpretation of study results and statistics and review of the manuscript. DN: Conception and design of the study, data collection, data interpretation, input to the manuscript and review of the manuscript. Acknowledgements: The authors would like to thank Professor Stig Egil Bojesen and the Department of Clinical Biochemistry at Herlev and Gentofte University Hospitals for providing data on creatinine levels and hemoglobin levels. Further, we would like to thank Hanne Michelsen and Sofie Seit Jespersen for data entry and Anne Birgitte Christiansen for help with review of medical records. Funding: This research received no specific grant from any funding agency in the public, commercial or non-profit sectors. Competing interests: None declared. Ethics: Approval from the Danish Data Protection Agency was obtained. Data sharing statement: No additional data are available.

1		
2 3		
4 5	318	REFERENCES
6	319	1. Malet-Martino M, Jolimaitre P, Martino R. The prodrugs of 5-fluorouracil. Curr. Med. Chem. Anticancer
7 8	320	Agents 2002;2(2):267-310
8 9	321	2. Hoff PM, Ansari R, Batist G, et al. Comparison of oral capecitabine versus intravenous fluorouracil plus
10	322	leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a
11	323	randomized phase III study. J. Clin. Oncol 2001;19(8):2282-92
12	324	3. Walko CM, Lindley C. Capecitabine: a review. <i>Clin. Ther</i> 2005;27(1):23-44 doi: S0149-2918(05)00006-8
13	325	[pii];10.1016/j.clinthera.2005.01.005 [doi]published Online First: Epub Date]].
14	326	4. Van CE, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus
15 16	327 328	leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J. Clin.
17	328 329	Oncol 2001;19(21):4097-106 5. Cassidy J, Twelves C, Van CE, et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a
18	329	favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann. Oncol
19	331	2002;13(4):566-75
20	332	6. Cardinale D, Colombo A, Colombo N. Acute coronary syndrome induced by oral capecitabine. <i>Can. J.</i>
21	333	Cardiol 2006;22(3):251-53
22	334	7. Coughlin S, Das S, Lee J, Cooper J. Capecitabine induced vasospastic angina. Int. J. Cardiol
23 24	335	2008;130(1):e34-e36 doi: S0167-5273(07)01500-8 [pii];10.1016/j.ijcard.2007.06.152 [doi]published
24 25	336	Online First: Epub Date] .
26	337	8. Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M. Capecitabine can induce acute coronary
27	338	syndrome similar to 5-fluorouracil. Ann. Oncol 2002;13(5):797-801
28	339	9. Guvenc TS, Celiker E, Ozcan KS, Ilhan E, Eren M. Acute myocardial infarction after capecitabine
29	340	treatment: not always vasospasm is responsible. Chin Med. J. (Engl.) 2012;125(18):3349-51
30	341	10. Schnetzler B, Popova N, Collao LC, Sappino AP. Coronary spasm induced by capecitabine. Ann. Oncol
31	342	2001;12(5):723-24
32 33	343	11. Shah NR, Shah A, Rather A. Ventricular fibrillation as a likely consequence of capecitabine-induced
33	344	coronary vasospasm. J. Oncol. Pharm. Pract 2012;18(1):132-35 doi: 1078155211399164
35	345	[pii];10.1177/1078155211399164 [doi]published Online First: Epub Date] .
36	346	12. Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: more than just
37	347	vasospastic angina. Intern. Med. J 2010;40(4):303-07 doi: IMJ2144 [pii];10.1111/j.1445-
38	348 349	5994.2009.02144.x [doi]published Online First: Epub Date] . 13. Tsiamis E, Synetos A, Stefanadis C. Capecitabine may induce coronary artery vasospasm. <i>Hellenic. J.</i>
39	350	Cardiol 2012;53(4):320-23
40 41	351	14. Yung LT, McCrea WA. Capecitabine induced acute coronary syndrome. <i>BMJ Case. Rep</i> 2009;2009 doi:
41	352	10.1136/bcr.09.2008.0964 [doi];bcr09.2008.0964 [pii]published Online First: Epub Date]].
43	353	15. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-
44	354	fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing
45	355	factors. Cancer Treat. Rev 2013;39(8):974-84 doi: S0305-7372(13)00068-6
46	356	[pii];10.1016/j.ctrv.2013.03.005 [doi]published Online First: Epub Date]].
47	357	16. Kelly C, Bhuva N, Harrison M, Buckley A, Saunders M. Use of raltitrexed as an alternative to 5-
48	358	fluorouracil and capecitabine in cancer patients with cardiac history. Eur. J. Cancer
49 50	359	2013;49(10):2303-10 doi: \$0959-8049(13)00189-5 [pii];10.1016/j.ejca.2013.03.004 [doi]published
51	360	Online First: Epub Date] .
52	361	17. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert. Opin. Drug
53	362	Saf 2009;8(2):191-202 doi: 10.1517/14740330902733961 [doi]published Online First: Epub Date].
54	363	18. Robben NC, Pippas AW, Moore JO. The syndrome of 5-fluorouracil cardiotoxicity. An elusive
55	364	cardiopathy. <i>Cancer</i> 1993;71(2):493-509
56		
57 58		
58 59		
60		21

Page 22 of 32

BMJ Open

1

60

2		
3 4	365	19. Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the
5	366	literature. Cardiology journal 2012;19(5):453-8
6	367	20. Jensen SA, Sorensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or
7	368	capecitabine. <i>Cancer Chemother. Pharmacol</i> 2006;58(4):487-93 doi: 10.1007/s00280-005-0178-1
8	369	[doi]published Online First: Epub Date] .
9	370	21. Koca D, Salman T, Unek I, et al. Clinical and Electrocardiography Changes in Patients Treated with
10	371	Capecitabine. Chemotherapy 2011;57 (5):381-87
11 12	372	22. Kosmas C, Kallistratos MS, Kopterides P, et al. Cardiotoxicity of fluoropyrimidines in different schedules
13	373	of administration: a prospective study. J. Cancer Res. Clin. Oncol 2008;134(1):75-82 doi:
14	374	10.1007/s00432-007-0250-9 [doi]published Online First: Epub Date] .
15	375	23. Ng M, Cunningham D, Norman AR. The frequency and pattern of cardiotoxicity observed with
16	376	capecitabine used in conjunction with oxaliplatin in patients treated for advanced colorectal cancer
17	377	(CRC). <i>Eur. J. Cancer</i> 2005;41(11):1542-46 doi: S0959-8049(05)00346-1
18	378	[pii];10.1016/j.ejca.2005.03.027 [doi]published Online First: Epub Date] .
19	379	24. Van CE, Hoff PM, Blum JL, Abt M, Osterwalder B. Incidence of cardiotoxicity with the oral
20	380	fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann. Oncol
21 22	381	2002;13(3):484-85
23	382	25. Meyer CC, Calis KA, Burke LB, Walawander CA, Grasela TH. Symptomatic cardiotoxicity associated with
24	383	5-fluorouracil. Pharmacotherapy 1997;17(4):729-36
25	384	26. Tsibiribi P, Descotes J, Lombard-Bohas C, et al. Cardiotoxicity of 5-fluorouracil in 1350 patients with no
26	385	prior history of heart disease. Bull. Cancer 2006;93(3):E27-E30
27	386	27. Rezkalla S, Kloner RA, Ensley J, et al. Continuous ambulatory ECG monitoring during fluorouracil
28	387	therapy: a prospective study. J. Clin. Oncol 1989;7(4):509-14
29	388	28. Eskilsson J, Albertsson M. Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment
30	389	with verapamil. Acta Oncol 1990;29(8):1001-03 doi: 10.3109/02841869009091790 [doi]published
31 32	390	Online First: Epub Date] .
33	391	29. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on
34	392 393	1083 patients. <i>Tumori</i> 1982;68(6):505-10 30. Jensen SA, Hasbak P, Mortensen J, Sorensen JB. Fluorouracil induces myocardial ischemia with increases
35	393 394	of plasma brain natriuretic peptide and lactic acid but without dysfunction of left ventricle. J. Clin.
36	394 395	Oncol 2010;28(36):5280-86 doi: JCO.2009.27.3953 [pii];10.1200/JCO.2009.27.3953 [doi]published
37	396	Online First: Epub Date] .
38	397	31. Lestuzzi C, Vaccher E, Talamini R, et al. Effort myocardial ischemia during chemotherapy with 5-
39	398	fluorouracil: an underestimated risk. Annals of oncology : official journal of the European Society for
40 41	399	Medical Oncology / ESMO 2014;25(5):1059-64 doi: 10.1093/annonc/mdu055published Online First:
42	400	Epub Date]].
43	401	32. Khan MA, Masood N, Husain N, Ahmad B, Aziz T, Naeem A. A retrospective study of cardiotoxicities
44	402	induced by 5-fluouracil (5-FU) and 5-FU based chemotherapy regimens in Pakistani adult cancer
45	403	patients at Shaukat Khanum Memorial Cancer Hospital & Research Center. J. Pak. Med. Assoc
46	404	2012;62(5):430-34
47	405	33. Meydan N, Kundak I, Yavuzsen T, et al. Cardiotoxicity of de Gramont's regimen: incidence, clinical
48	406	characteristics and long-term follow-up. Jpn. J. Clin. Oncol 2005;35(5):265-70 doi: hyi071
49 50	407	[pii];10.1093/jjco/hyi071 [doi]published Online First: Epub Date] .
50 51	408	34. Atar A, Korkmaz ME, Ozin B. Two cases of coronary vasospasm induced by 5-fluorouracil. Anadolu.
52	409	Kardiyol. Derg 2010;10(5):461-62
53	410	35. Basselin C, Fontanges T, Descotes J, et al. 5-Fluorouracil-induced Tako-Tsubo-like syndrome.
54	411	Pharmacotherapy 2011;31(2):226 doi: 10.1592/phco.31.2.226 [doi];10.1592/phco.31.2.226
55	412	[pii]published Online First: Epub Date] .
56		
57		
58 59		
59		

BMJ Open

1 2		
3		
4	413	36. Calik AN, Celiker E, Velibey Y, Cagdas M, Guzelburc O. Initial dose effect of 5-fluorouracil: rapidly
5	414	improving severe, acute toxic myopericarditis. Am. J. Emerg. Med 2012;30(1):257-3 doi: S0735-
6	415	6757(10)00531-0 [pii];10.1016/j.ajem.2010.10.025 [doi]published Online First: Epub Date] .
7	416	37. Yildirim M, Parlak C, Sezer C, Eryilmaz R, Kaya C, Yildiz M. Coronary vasospasm secondary to 5-
8	417	Fluorouracil and its management: case report. <i>Eurasian. J Med</i> 2011;43(1):54-56 doi:
9	418	10.5152/eajm.2011.11 [doi];eajm-43-1-54 [pii]published Online First: Epub Date] .
10 11	419	38. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for
12	420	breast cancer. N. Engl. J Med 2013;368(11):987-98 doi: 10.1056/NEJMoa1209825 [doi]published
13	421	Online First: Epub Date] .
14	422	39. Mockel M, Searle J, Hamm C, et al. Early discharge using single cardiac troponin and copeptin testing in
15	423	patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process
16	424	study. <i>Eur. Heart J</i> 2015;36(6):369-76 doi: ehu178 [pii];10.1093/eurheartj/ehu178 [doi]published
17	425	Online First: Epub Date] .
18		
19	426	
20		
21		
22		

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

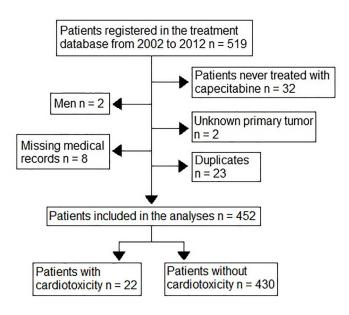


Figure 1: Flow diagram

179x135mm (300 x 300 DPI)

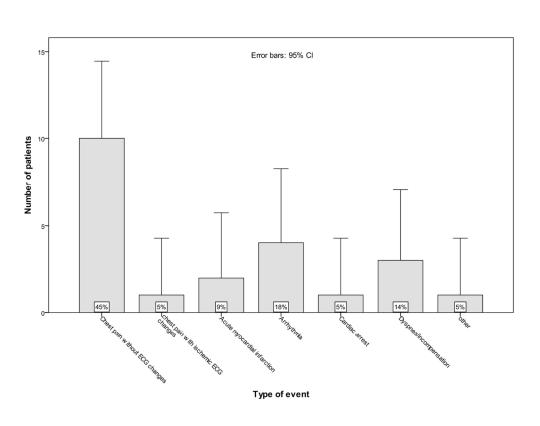


Figure 2: The distribution of the different manifestations of cardiotoxicity.

The percentages showed on each bar reflect the distribution of symptoms among the 22 patients with cardiotoxicity. Proportion of patients with chest pain without ECG changes (n = 10), chest pain with ECG changes but not acute myocardial infarction (n = 1), acute myocardial infarction (n = 2), arrhythmia (n = 4), cardiac arrest (n = 1), dyspnea/incompensation (n = 3) and other (n = 1, with QT prolongation and right bundle branch block). Patients with more than one of the manifestations (n = 2) are classified according to their primary complaint.

119x94mm (300 x 300 DPI)

						BMJ Open					F
Suppl	lementary tab	le: Details abou	ıt patio	ents with	cardiotoxicity	and initiated therap	У		046-013		
Case	Location of metastases	Pre-existing cardiovascul ar disease	Cy cle of ons et	Dose intensi ty at onset	Type of event	Description	ECG changes	Raised cardiac biomarker s?	Cardiac therapy	Subseque nt treatment with capecitabi ne, dose	Sympto ms at retreatme nt
1	Liver, lung, abdomen	No	1	100%	Chest pain	Oppressive chest pain	-		No	Yes, 100%	Yes, oppressiv e chest pain
2	Right lung, pleura, mediastinal lymph nodes, adrenal glands, abdominal carcinosis, columna and pelvis	Atrial fibrillation, NYHA 3, moderate pulmonary hypertension, LVEF = 53% after 1. cycle, hypertension	2	75%	Incompensat ion, dyspnea	Dyspnea and peripheral edema	ST- depressions in V5-V6			No	-
3	Liver	No	1	100%	Chest pain	Exertional chest pain radiating to the neck	No changes from pretreatmen t ECG (inverted T- waves in V1-V2)			No	-
4	Liver, bone Th3 + Th7, lymph nodes in left axilla	No	2	75%	Cardiac arrest	Chest pain and progressing dyspnea, cardiac arrest, death	Asystole	- -	Adrenalin and amiodaron	-	-
5	Mediastinal lymph nodes,	Hypertension , hyperlipidem	1	75%	QTc prolongation , right	Asymptomatic	QTc prolongatio n, right		-	No	-

Page 27 of 32

						BMJ Open		mjopen			
	oid 1, bone + Th5	ia			bundle branch block		bundle branch block	pmJobeu-Zn. e-n.1 Z. AR			
6 Neck sterna	al and xillary h	No	1	100%	Chest pain	Intermittent, retrosternal, oppressive chest pain radiating to both arms, LVEF 60% at echocardiography	Normal	No 19 October 2016.	No	No	-
7 Medi lymp nodes		No	4	75%	Chest pain	Chest pain, dyspnea and malaise	Normal	No which	No	No	-
8 Pleur bone		No	1	100%	Chest pain	Compressive chest pain	No changes, ST- depression in V2-V4	a nom nup://om	Metoprolol and Isosorbidm ononitrate	No	-
9 Pleur	ra	No	1	100%	Arrhythmia	Dyspnea	Atrial fibrillation/ atrial flutter, 170 bpm.		Adenosine, metoprolol and amiodaron	No	-
10 Liver bone	r, lung,	No	2	75%	Chest pain, Arrhythmia	Chest pain and palpitations	Atrial fibrillation, 119 bpm	on April 19, 2024 b)		Yes, 75%	Palpitati ns, dyspnea atrial fibrillation
and r supra	s, neck ight aclavic lymph	SVT, previous pulmonary embolism, hyperlipidem ia	1	100%	AMI	Oppressive chest pain radiating to right side, dyspnea. Effect of nitroglycerin iv. Normal coronary angiography and normal	Initially ST- elevation in V1-V3, AVF and V6. Negative T- waves in	(52 ng/l) and raised	Nitroglyceri n iv, Acetylsalic ylic Acid and Magnesium Hydroxide, clopidogrel,	No	-

bmjopen-20

by copyright.

									2		
						echocardiography	lead II-III		fondaparinu x		
12	Lungs, mediastinal lymph nodes	Hypertension , diabetes, hyperlipidem ia	3	50%	Dyspnea	Dyspnea and light chest pain	Normal	No or		Yes, 50%	No
13	Bone	Epirubicin- induced cardiomyopa thy	9	100%	Chest pain, arrhythmia	Compressive chest pain	Atrial fibrillation and non- sustained VT			No	-
14	Bone, skin, liver and left axillary lymph nodes	Hypertension , NYHA 2-3 Echo: LVEF 50-55%, mitral valve insufficiency , discrete pulmonary, hypertension	3	75%	Incompensat io, dyspnea	Progressing dyspnea, NYHA 3, peripheral edema, cardiomegaly Echo: LVEF unchanged, moderate to severe pulmonary hypertension, tricuspid insufficiency	Bundle branch block	-	potassium- chloride	No	-
15	Neck and infraclavicu lar lymph nodes	Atrial fibrillation, COPD	3	100%	Arrhythmia, pulmonary congestion	Dyspnea, dizziness, malaise X-ray: pulmonary congestion and pericardial exudate	Atrial fibrillation 117 bpm		potassiiim-	No	-
16	Brain	No	8	100%	Chest pain	Oppressive chest pain radiating to the neck	Normal	- Guesi		Yes, 100%	Recurre t episode with chestpa

Page 29 of 32

BMJ Open

						BMJ Open			bmionen-201		
17	Mediastinal lymph nodes	No	2	100%	Chest pain	Oppressive chestpain radiating to neck and arm, dyspnea	Sinus rhythm, supraventri cular extra systoles, no ST- deviations	No	Verapamil	Yes, 75%	No
18	Sternum and sacroiliac bone	Hyperlipide mia		100%	Chest pain	Compressive chest pain radiating to the back and both arms. Echo: normal	Normal		No No	No	-
19	CNS, liver, right axillary lymph nodes	Hypertension , hyperlipidem ia	12	75%	AMI	Chest pain radiating to head, neck and jaw. LVEF = 40 %.	Normal	Raised troponins (400 ng/l), CK- MB unknown	with magnesium hydroxide (magnyl), clopidogrel, fondaparinu x, metoprolol, ACE- inhibitor, Statin	No	-
20	Pelvis bone, right axillary lymph nodes	Hypertension , hyperlipidem ia	1	100%	Chest pain	Oppressive chest pain Echo: normal	_	-		No	-
21	Lung, bone	Epirubicin- induced cardiomyopa thy, LVEF = 34-40%	1	100%	Arrhythmia	Dizziness and palpitations.	Telemetry: Atrial flutter 150 bpm, neg. T-waves in I and AVL	-	Metoprolol, ACE- inhibitor	No	-

bmjopen-20

22								~			
	Pelvic and	Atrial	1	100%	Chest pain	Chest pain	Fluctuating	- C	No	Yes,	Episodes
	columnar	fibrillation,					negative T-		2	100%	with pair
	bone	hypertension,					waves in		ð		located
		hyperlipidem					lead II, III,	-	5		to jaw
		ia					aVF and		2		and ches
							V1-V5				
COPD	$\mathbf{O} = $ chronic ob	structive pulmon	ary di	sease, bpn	n = beats per m	inute, NYHA = N	ew York Heart ass	sociation fun	tional classif	fication, LVE	F = left
ventri	cular function	, TnI = cardiac tr	oponii	n I, SVT =	supraventricul	ar tachycardia, LN	AWH = low molection	cule weight	eparin, CK-M	IB = creatine	kinase
MB, C	CNS = central	nerve system									
									<i>יי</i> כ		
								Č			
									5		
								au	2		
									2		
								Ģ			
								-	5		
								Ę	;		
								ļ	3		
								ġ	2		
									3		
							AWH = low molec				

COPD = chronic obstructive pulmonary disease, bpm = beats per minute, NYHA = New York Heart association furgetional classification, LVEF = left ventricular function, TnI = cardiac troponin I, SVT = supraventricular tachycardia, LMWH = low molecule weight keparin, CK-MB = creatine kinase MB, CNS = central nerve system6. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cohort studies</i>

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	Not relevant
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	5
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	Not applicable
		(e) Describe any sensitivity analyses	6
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page	32	of	32
------	----	----	----

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6 + Figure 1
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	16-18
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	16-19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012798 on 19 October 2016. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.