Acute myocardial infarction or acute myocarditis? Discharge registry-based study of likelihood and associated features in hospitalised patients

Ville Kytö,1,2,3 Jussi Sipilä,4,5 Päivi Rautava6,7

ABSTRACT
Objective: To evaluate the likelihood of and patient features associated with acute myocardial infarction (AMI) versus acute myocarditis in different population segments.

Design: Nationwide, multihospital observational retrospective registry study of 9.6 years in Finland.

Participants: All consecutive patients aged ≥18 years hospitalised with a primary diagnosis of AMI (n=89 399) or acute myocarditis (n=2131) in 22 hospitals with a coronary catheterisation laboratory.

Primary outcome measures: Likelihood of AMI versus acute myocarditis and associated patient features.

Results: Men were over-represented in patients with AMI (59.8%) and in patients with acute myocarditis (76.1%). Age distributions of AMI and acute myocarditis were opposite as a majority of patients with myocarditis were aged 18–29 years, while the number of patients with AMI increased gradually up to 80 years of age. Patients aged 18–29 years were more likely to have acute myocarditis as the cause of hospitalisation (relative risk (RR)=11.4; 95% CI 7.6 to 16.1 for myocarditis, p<0.0001), but after 30 years of age the likelihood of infarction was higher with exponentially increasing RR for AMI. In youngest patients (18–29 years), the likelihood of AMI was higher in women, but men had higher odds for AMI after 40 years of age. Overall, men had OR of 1.97 (95% CI 1.74 to 2.23, p<0.0001) for AMI versus myocarditis when compared with women. Hypercholesterolaemia, chronic coronary artery disease, diabetes and hypertension predicted AMI in multivariate analysis. Odds for myocarditis were significantly higher if the patient had an otolaryngeal infection (OR 18.13; 95% CI 8.96 to 36.67, p<0.0001).

Conclusions: Acute myocarditis is more common than AMI in hospitalised patients aged 18–29 years, but the risk of AMI increases exponentially thereafter. Hypercholesterolaemia, diabetes and hypertension predict AMI regardless of age and gender.

INTRODUCTION
Acute myocardial infarction (AMI) and acute myocarditis have commonly similar clinical presentations.1 As changes in ECG2 and troponin levels3 are also alike, differential diagnosis may be very challenging and frequently requires invasive assessment of coronary arteries.4 Culprit-free coronary angiography is found in 5–13% of patients with suspected AMI,5 and a majority of patients with culprit-free angiography actually have myocarditis.6 Although epidemiology of AMI has been described in large patient series,7–12 epidemiology of acute myocarditis is less well established.13 Furthermore, there are currently no large-scale studies reporting on the risk of AMI versus acute myocarditis in different population segments. Therefore, we sought to estimate the likelihood of AMI versus acute myocarditis and associated patient features at the population level.

METHODS
Study patients and data collection
We included all consecutive patients aged ≥18 years who were admitted to a participating hospital between 29 April 2000 and 29 November 2009 with an AMI (ICD-10 code I21.0) or an acute myocarditis (ICD-10 code I40.x or I01.2) as the primary discharge diagnosis. Diagnoses were made by treating physicians. Confirmatory data of performed diagnostic tests were not available. Data were collected from all Finnish hospitals equipped with a coronary catheterisation laboratory.

Strengths and limitations of this study
- Characterises the likelihood of acute myocardial infarction (AMI) versus acute myocarditis in different segments of the general population.
- Large-scale nationwide study using obligatory and controlled registry data from hospitals with a coronary catheterisation laboratory.
- Diagnoses of AMI and acute myocarditis were carried out by treating physicians.
(n=22) by using the Finnish National Institute for Health and Welfare maintained Finnish Hospital Discharge Register (FHDR) database. The study was approved by the National Institute for Health and Welfare (permission no THL/1576/5.05.00/2010).

Statistical analysis
Categorical variables are presented as counts or percentages with 95% CIs (95% CI) as appropriate. Scale variables are presented as mean±SD. Count variables were analysed using negative binomial regression. Differences in dichotomous variables were analysed using logistic regression analysis with Firths correction and adjusted for study year. Results of regression analyses are given as OR or relative risk (RR) as appropriate. Multivariate analysis of patient features associated with the likelihood of myocardial infarction/myocarditis included features associated at p<0.05 in univariate analysis. CIs were calculated assuming Poisson distribution. The p values <0.05 were considered statistically significant. Statistical analyses were performed with SAS system V.9.3 (SAS Institute, Cary, North Carolina, USA).

RESULTS
Patient characteristics
During the study period, AMI resulted in 89,399 admissions, and acute myocarditis numbered 2131. Men were over-represented both in patients with AMI (59.8%) and in patients with acute myocarditis (76.1%). Patients with AMI were significantly older than those with myocarditis (71.2±12.7 vs 38.0±16.9 years, p<0.0001). Diabetes, hypertension, hypercholesterolaemia, chronic pulmonary disease, neurovascular disease, malignancy and renal insufficiency, in addition to atrial fibrillation, heart failure and known atherosclerotic disease of coronary, cerebral or peripheral arteries were more common in patients hospitalised for AMI (table 1). By contrast, infections of the otolaryngeal tract and inflammatory bowel disease were more common in patients with myocarditis (table 1). The average duration of admission for AMI lasted, 6.9±5.7 days, while admission due to acute myocarditis was shorter (5.3±4.3 days, p<0.0001). Of patients with AMI, 0.03% had a co-diagnosis of myocarditis, while 0.37% of patients with myocarditis were also diagnosed with AMI.

Age distribution
Age distribution of patients with AMI and acute myocarditis were opposite (figure 1). The majority of patients with myocarditis were aged 18–29 years, after which the number of patients decreased (figure 1A). The number of patients with AMI increased gradually up to 80 years of age (figure 1B). Patients aged 18–29 years were more likely to have acute myocarditis as the cause of hospitalisation (RR=11.4; 95% CI 7.6 to 16.1 for myocarditis, p<0.0001), but after 30 years of age the likelihood of infarction was higher with exponentially increasing RR

<table>
<thead>
<tr>
<th>Co-diagnosis</th>
<th>Prevalence Acute myocardial infarction % (95% CI)</th>
<th>Acute myocarditis % (95% CI)</th>
<th>Difference Univariate analysis (infarction vs myocarditis) OR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic coronary artery disease</td>
<td>15.36 (15.10 to 15.62)</td>
<td>1.55 (1.07 to 2.17)</td>
<td>11.52 (8.19 to 16.21)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>13.12 (12.89 to 13.36)</td>
<td>4.04 (3.23 to 4.98)</td>
<td>3.59 (2.89 to 4.45)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Heart failure</td>
<td>11.57 (11.35 to 11.79)</td>
<td>2.25 (1.66 to 2.99)</td>
<td>5.63 (4.23 to 7.49)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>7.84 (7.66 to 8.03)</td>
<td>1.13 (0.72 to 1.68)</td>
<td>7.32 (4.91 to 10.90)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>6.64 (6.5 to 6.8)</td>
<td>1.55 (1.07 to 2.17)</td>
<td>4.44 (3.16 to 6.25)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>6.52 (6.35 to 6.69)</td>
<td>1.03 (0.65 to 1.56)</td>
<td>6.51 (4.30 to 9.86)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3.12 (3.00 to 3.23)</td>
<td>3.33 (2.60 to 4.20)</td>
<td>0.92 (0.73 to 1.17)</td>
<td>0.50</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>2.18 (2.08 to 2.28)</td>
<td>1.27 (0.83 to 1.84)</td>
<td>1.70 (1.17 to 2.49)</td>
<td>0.0059</td>
</tr>
<tr>
<td>Neurovascular disease</td>
<td>1.34 (1.27 to 1.42)</td>
<td>0.14 (0.03 to 0.41)</td>
<td>8.32 (2.91 to 23.77)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ventricular arrhythmia or resuscitation</td>
<td>1.13 (1.07 to 1.21)</td>
<td>0.99 (0.61 to 1.51)</td>
<td>1.13 (0.73 to 1.73)</td>
<td>0.59</td>
</tr>
<tr>
<td>Malignancy</td>
<td>1.04 (0.98 to 1.11)</td>
<td>0.42 (0.19 to 0.80)</td>
<td>2.35 (1.24 to 4.46)</td>
<td>0.0089</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>0.86 (0.8 to 0.9)</td>
<td>0.05 (0.01 to 0.26)</td>
<td>12.39 (2.50 to 61.46)</td>
<td>0.0021</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>0.83 (0.77 to 0.89)</td>
<td>0.09 (0.01 to 0.34)</td>
<td>4.15 (2.07 to 24.72)</td>
<td>0.0019</td>
</tr>
<tr>
<td>II or III degree AV block</td>
<td>0.59 (0.54 to 0.64)</td>
<td>0.89 (0.54 to 1.39)</td>
<td>0.65 (0.41 to 1.02)</td>
<td>0.060</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>0.44 (0.39 to 0.48)</td>
<td>0.52 (0.26 to 0.92)</td>
<td>0.81 (0.45 to 1.46)</td>
<td>0.50</td>
</tr>
<tr>
<td>Gastroenteral infection</td>
<td>0.38 (0.34 to 0.43)</td>
<td>0.38 (0.16 to 0.74)</td>
<td>0.96 (0.48 to 1.89)</td>
<td>0.89</td>
</tr>
<tr>
<td>Septicaemia</td>
<td>0.36 (0.32 to 0.40)</td>
<td>0.23 (0.08 to 0.55)</td>
<td>1.39 (0.60 to 2.33)</td>
<td>0.44</td>
</tr>
<tr>
<td>Systemic connective tissue disease</td>
<td>0.18 (0.16 to 0.21)</td>
<td>0.23 (0.08 to 0.55)</td>
<td>0.70 (0.30 to 1.64)</td>
<td>0.41</td>
</tr>
<tr>
<td>Otolaryngeal infection</td>
<td>0.12 (0.10 to 0.15)</td>
<td>2.49 (1.86 to 3.25)</td>
<td>0.05 (0.04 to 0.07)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Liver dysfunction</td>
<td>0.11 (0.09 to 0.13)</td>
<td>0.14 (0.03 to 0.41)</td>
<td>0.66 (0.23 to 1.93)</td>
<td>0.50</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>0.10 (0.08 to 0.12)</td>
<td>0.38 (0.16 to 0.74)</td>
<td>0.26 (0.13 to 0.52)</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
for AMI (figure 2). In the total study population, the age-adjusted and gender-adjusted RR for AMI was 60.4 (95% CI 39.3 to 92.8, p<0.0001).

Patient features associated with AMI
The likelihood of AMI increased significantly with increasing age. In the total population, comorbidity adjusted OR for AMI was 4.69 (95% CI 4.48 to 4.91, p<0.0001) per 10-year increase in age. The gender-based difference in likelihood of AMI compared with myocarditis varied significantly by age (figure 3). In the youngest patients (18–29 years), the likelihood of AMI was higher in women, but men had higher odds for AMI after 40 years of age. Overall, men had significantly higher odds for AMI versus myocarditis when compared with women (OR 1.97; 95% CI 1.74 to 2.23, p<0.0001). Comorbidities predicting AMI in multivariate analysis included hypercholesterolaemia, chronic coronary artery disease, diabetes and hypertension (table 2). The odds for myocarditis were significantly higher if the patient had an otolaryngeal infection (OR 18.13; 95% CI 8.96 to 36.67, p<0.0001). In addition, atrial fibrillation and chronic pulmonary disease were more common among patients with acute myocarditis when adjusted for other comorbidities and patient features (table 2).

DISCUSSION
This multicentre study describes the likelihood and predictors of AMI versus acute myocarditis in hospitalised...
patients at the population level. Differential diagnosis between AMI and acute myocarditis is critical, as timely invasive treatment significantly improves outcomes in AMI. As clinical, ECG and biomarker presentations of AMI and acute myocarditis may be highly similar, the assumed probability of AMI or myocarditis is likely to act as a significant gatekeeper for coronary angiography and treatment. Although epidemiology of AMI has been described previously in large patient series, studies on epidemiology of myocarditis are scarce, and there are no estimations available for likelihood of AMI versus acute myocarditis in different population segments.

We found the youngest (18–29 years) patients to have an 11-fold risk for myocarditis compared with AMI, but AMI was more common in the population older than 30 years. This compares to a previous study of emergency department patients with chest pain that found 33% of patients aged 18–40 years positive for troponin to have AMI while myocarditis was present in 59%. Age distributions of patients with AMI and acute myocarditis were opposite in our data, resulting in the exponentially increasing likelihood of AMI with increasing age. AMI and myocarditis are more common in men than in women, but the current study is, to the best of our knowledge, the first to report on gender differences in the likelihood of AMI versus acute myocarditis. The gender bias in the occurrence of myocarditis is highest in young adults. Accordingly, we found women aged 18–29 years to have higher odds for AMI than equally aged men. High incidence of acute myocarditis in young men is most likely associated with effects of testosterone, as testosterone treatment aggravates myocarditis in experimental myocarditis, while gonadectomy reduces cardiac inflammation. In the population aged over 40 years, the odds for AMI were, however, higher in men, and in the total study population men had twofold odds for AMI when compared with women.

Classical risk factors for coronary artery disease, hypertension, hypercholesterolaemia and diabetes predicted AMI rather than acute myocarditis in our data regardless of age and gender. Although our data do not report on risk factors reported directly on patients’ smoking status, the association of chronic pulmonary disease with AMI is most likely to reflect the effects of smoking. Coronary angiography should also be considered in young patients with troponin-positive chest pain, especially if risk factors are present. However, of patients with suspected AMI, 5–13% have no detectable culprit lesion, and these findings are consistent regardless of whether ST-segment elevation AMI (STEMI) or non-ST-segment elevation AMI (NSTEMI) is suspected. Of culprit-free patients, myocarditis is detectable by cardiac MRI (CMR) or scintigraphy in 50–78%. Since there are no effective special treatments available for common uncomplicated acute viral myocarditis, usage of imaging studies beyond echocardiography in suspected acute myocarditis is controversial and currently uncommon in clinical reality. CMR is an evolving entity for detection of myocarditis. It is, however, not feasible as the first-line diagnostic modality in suspected STEMI when diagnosis of AMI must be made immediately in order to enable efficient reperfusion therapy. Routine use of CMR in patients with suspected NSTEMI is currently under investigation. Novel, clinically easy and rapidly applicable methods to differentiate between AMI and acute myocarditis are thus warranted.

The major limitation of our study is the retrospective nature of observational discharge registry data. The diagnoses were made by the treating physician and the nature of data does not allow us to report on used diagnostic tests or patient’s risk-factor behaviour such as smoking. To optimise the balance between representation of all-comer real-life patients and diagnostic accuracy, only patients admitted to hospitals with a coronary catheterisation laboratory were included. Study data were collected from the FHDR registry that has proved to be a valuable source of information on acute cardiovascular disorders and has been previously validated. Diagnostic inaccuracies are, however, possible, especially in recognition of comorbidities. Confirmatory diagnosis of myocarditis requires endomyocardial biopsy, which is rarely indicated in a clinical setting of acute myocarditis. If biopsy is not obtained, myocarditis may be classified as clinically suspected or probable if cardiac symptoms are associated with changes in troponin, ECG or cardiac imaging studies in the absence of an acute coronary syndrome or other reasons. The majority of patients with acute myocarditis in our study probably belong to this category.

Table 2 Predictors of acute myocardial infarction in multivariate analysis

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>Multivariate analysis (infarction vs myocarditis)</th>
<th>OR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 10-year increase)</td>
<td>4.69 (4.48 to 4.91)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td>1.97 (1.74 to 2.24)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>6.10 (4.28 to 8.69)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Chronic coronary artery disease</td>
<td>4.85 (3.18 to 7.42)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.42 (1.12 to 1.80)</td>
<td>0.0035</td>
<td></td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>0.61 (0.38 to 0.98)</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>0.55 (0.38 to 0.80)</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>Otolaryngeal infection</td>
<td>0.06 (0.03 to 0.11)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Neurovascular disease</td>
<td>2.77 (0.89 to 8.61)</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>2.70 (0.48 to 15.25)</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>2.44 (0.66 to 9.04)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>1.28 (0.93 to 1.76)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>0.62 (0.19 to 1.96)</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Malignancy</td>
<td>0.56 (0.28 to 1.14)</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>
It is a common misbelief that acute myocarditis presents only with ST-segment elevations in ECG. Recent studies of CMR-detected acute/viral myocarditis have found 34–57% of patients to have ST-segment elevations, while ECG was normal at the presentation in approximately 30% of patients.42 43 Depressions of ST-segment are reported in 6–18% of patients.4 42 Thus, the need for differentiation between myocarditis and AMI includes all patients with suspected AMI regardless of ECG presentation.

In conclusion, acute myocarditis is more common than AMI in hospitalised patients aged 18–29 years, but the risk of AMI increases exponentially thereafter. Men aged ≥40 years are more likely to have AMI than myocarditis when compared with women. Hypercholesterolaemia, diabetes and hypertension predict AMI regardless of age and gender.

Author affiliations
1 Heart Center, Turku University Hospital, Turku, Finland
2 PET Center, University of Turku, Turku, Finland
3 Department of Medicine, University of Turku, Turku, Finland
4 Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
5 Department of Neurology, University of Turku, Turku, Finland
6 Clinical Research Center, Turku University Hospital, Turku, Finland
7 Department of Public Health, University of Turku, Turku, Finland

Contributors VK, JS and PR designed the study. VK and JS collected the data. VK conducted the analyses, all contributed to the interpretation of the results and VK drafted the manuscript. All authors accepted the final version of the manuscript.

Funding This study was supported by the grants of the Clinical Research Foundation of the Turku University Hospital and the Finnish Cardiac Society.

Competing interests None declared.

Ethics approval Finnish National Institute for Health and Welfare.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

