BMJ Open

Prognostic Role of Neutrophil-Lymphocyte Ratio in Renal Cell Carcinoma: A Meta-Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006404
Article Type:	Research
Date Submitted by the Author:	20-Aug-2014
Complete List of Authors:	Hu, Kaimin; Cancer Institute, College of Medicine Lou, Lixia; Department of Ophthalmology, College of Medicine Ye, Juan; Department of Ophthalmology, College of Medicine Zhang, Suzhan; Cancer Institute,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Urology
Keywords:	Kidney tumours < ONCOLOGY, Urological tumours < ONCOLOGY, Cell biology < TROPICAL MEDICINE

BMJ Open

1	Title page
2	Prognostic Role of Neutrophil-Lymphocyte Ratio in Renal Cell Carcinoma: A Meta-Analysis
3	
4	KaiMin Hu, M.D. ¹ , Lixia Lou, M.D. ² , Juan Ye, M.D., Ph.D. ² , Suzhan Zhang, M.D., Ph.D. ¹
5	¹ Cancer Institute, the Second Affiliated Hospital of Zhejiang University, College of Medicine,
6	Hangzhou, Zhejiang, China.
7	² Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University,
8	College of Medicine, Hangzhou, Zhejiang, China.
9	Correspondence: Suzhan Zhang, M.D., Ph.D., Cancer Institute, the Second Affiliated Hospital
10	of Zhejiang University, College of Medicine, Jiefang Road 88, Hangzhou, 310009, China.
11	zhangsuzhan@126.com
12	Telephone: +86-5718778-4501 Fax: +86-5718721-4404
13	Kaimin Hu: minkaihu@163.com
14	Kaimin Hu: <u>minkaihu@163.com</u> Lixia Lou: <u>loulixia110@zju.edu.cn</u> Juan Ye: 11218303@ziu edu.cn
15	Juan Ye: <u>11218303@zju.edu.cn</u>
16	
17	
18	
19	
20	
21	
22	
	1

23 Abstract

24	Objective: Increasing evidence suggests that cancer-associated inflammation is associated with
25	poor prognosis in cancer patients. The role of neutrophil-lymphocyte ratio (NLR) as a predictor in
26	renal cell carcinoma (RCC) remains controversial. We conducted the meta-analysis to determine
27	the association between NLR and clinical outcome of RCC patients.
28	Methods and materials: Studies were identified from PubMed and EMBASE databases in March
29	2014. Meta-analysis was performed to generate combined hazard ratios (HRs) with 95%
30	confidence intervals (95% CIs) for overall survival (OS) and recurrence/progress-free survival
31	(RFS/PFS).
32	Results: Fifteen cohorts containing 3357 patients were included. Our analysis results indicated that
33	elevated NLR predicted poorer OS (HR: 1.82, 95%CI: 1.51-2.19) and RFS/PFS (HR: 2.18, 95%
34	CI: 1.75-2.71) in RCC patients. These findings were robust when stratified by study region,
35	sample size, therapeutic intervention, types of RCC and study quality. However, it significantly
36	differed by assessment of the cut-off value defining "elevated NLR" in RFS/PFS ($p = 0.004$). The
37	heterogeneity in our meta-analysis was mild to moderate.
38	Conclusions: Elevated NLR indicates poorer prognosis for patients with RCC. NLR should be
39	monitored in RCC patients for rational risk stratification and adjusting the management
40	accordingly.
41	Keywords: neutrophil-lymphocyte ratio, renal cell carcinoma, prognosis, meta-analysis
42	
43	Strengths and limitations of this study
44	Our study is the first systematic meta-analysis evaluating the relationship between elevated NLR

BMJ Open

and prognosis in RCC patients. Our analysis provides substantial evidence that elevated NLR is significantly associated with poorer outcomes of RCC patients. However, there were some limitations in our study. The enrolled studies were retrospective cohort studies, publication bias inevitably existed. We conducted "trim and fill" analysis to show our conclusion was robust. There was some heterogeneity in the included patient populations, so we confirmed the prognostic role of NLR in patients with different disease stage, therapeutic intervention and types of RCC by subgroup analysis. We only searched limited databases, which might weaken the estimating power of the pooled estimate. Introduction Renal cell carcinoma (RCC) accounts for 2–3% of all malignant diseases in adults. It's the seventh most common cancer in men and the ninth in women worldwide^{1,2}. The incidence of this cancer varies geographically and has increased over past decades owing to changes in life style and environment¹. Despite a rapid development in surgical resection, immunotherapy and targeted therapy in RCC management, the long-term outcome is still not promising mainly due to common local recurrence, distal metastasis and limited drug response³. Hence, it is important to identify significant biomarkers, which can help clinicians to stratify patients in terms of prognosis and

62 possibility of metastatic recurrence together with tumor staging system, *i.e.* the TNM staging

63 system and Robson's staging system, and then set the most appropriate therapeutic strategy.

It is well recognized that the heterogeneity in clinical outcomes is determined by both oncological characteristics of tumor itself and host's response to the progressing malignancy⁴. The complicated mechanisms by which cancer and inflammation intersect have been gradually

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

67	revealed. Inflammation impacts every single step of tumorigenesis, from tumor initiation to
68	promotion and metastatic progression ⁵ . Recently, several serum biomarkers and haematological
69	indices representative of inflammatory response, notably C-reactive protein (CRP),
70	neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR), have been demonstrated
71	to be closely related to poor prognosis of RCC patients ^{6,7} .
72	Generally speaking, lymphopenia well reflects impaired cell-mediated immunity, while
73	neutrophilia represents a response to systematic inflammation ⁵ . So the NLR, defined as neutrophil
74	counts divided by lymphocyte counts, is particularly noteworthy. Emerging evidences have shown
75	that NLR gained its prognostic value in patients with colorectal cancer ⁸ and hepatocellular
76	carcinoma9. RCC patients with elevated level of pre-treatment NLR may be more likely to gain a
77	poorer clinical outcome ¹⁰ . But the exact role of NLR in RCC patients is not consistent in different
78	studies due to the variance in study design, sample size and other factors. Some concluded
79	significant relationship between higher NLR and poorer prognosis, while others did not. Therefore,
80	it is necessary to perform a meta-analysis to systematically and comprehensively understand the
81	prognostic value of NLR in RCC patients.
82	In this study, we aimed to assess the prognostic significance of high NLR for overall survival
83	(OS) and recurrence-free survival (RFS) / progress-free survival (PFS) in RCC patients by pooling
84	outcomes from available data.
85	
86	Material and Methods
87	Search strategy
88	A comprehensive literature search of PubMed and EMBASE databases (Up to March 2014) was

BMJ Open

conducted to identify relevant studies. The search strategy included terms for: "NLR" (e.g., "neutrophil to lymphocyte ratio", "neutrophil lymphocyte ratio" and "neutrophil-lymphocyte ratio"), "RCC" (e.g., "renal cancer", "renal carcinoma", "kidney cancer", clear cell carcinoma", "non-clear cell carcinoma", and "renal papillary carcinoma") and "prognosis" (e.g., "recurrence", "survival" and "outcome"). Abstracts and information from conferences were collected independently. The reference list was also checked for additional articles. Only studies published in English were included. Study inclusion criteria and definitions Two independent authors (Hu KM and Lou LX) reviewed the retrieved studies and extracted data from each included study. Discrepancies were resolved by discussion. Studies included in our meta-analysis must meet the following criteria: (1) The diagnosis of RCC was based on the current clinical guidelines; (2) NLR was measured by serum-based methods before formal treatment; (3) Studies reported hazard ratios (HRs) and 95% confidence intervals (95% CIs) for pre-treatment NLR in OS and (or) RFS/PFS, or allowed for calculation from raw data contained in the article; (4) Only primary data or data superseded earlier work were included, and articles were superior to conference abstracts. NLR was defined as the serum absolute neutrophil count divided by lymphocyte count in peripheral blood¹¹. OS was defined as the interval between the medical treatment and the death or the last follow-up of patients. RFS (disease free survival / metastasis free survival, DFS/MFS) was measured from the date of curative treatment until the detection of tumor recurrence. PFS was calculated from the date of treatment until progressing of disease. If all the patients in the

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

2
3
4 5
5
6
6 7
0
8
9 10
10
11 12
12
13 14 15 16 17
1/
14
10
16
17
18
19
~~
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33
22
23
24
25
26
27
28
20
29
30
31
32 33 34 35
33
34
35
20
36 37 38 39 40
37
38
39
40
41
42 43
43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
58
59
60

1

individual study only received curative nephrectomy, the study was classified into nephrectomy
only subgroup, and the studies in which patients were mainly treated by non-surgical intervention
were classified into mixed therapies subgroup.

114

115 Data extraction

We extracted data including: (1) study information including name of first author, year of
publication, study region, sample size, time of research; (2) patient characters including age,
gender, follow-up period and treatment methods; (3) data about RCC including type, size, stage
and distal metastasis; (4) NLR data and cut-off value of NLR; (5) survival data including OS and
RFS/PFS.

121

122 Quality assessment of primary studies

123 Quality assessment of included studies was evaluated with the Newcastle-Ottawa quality 124 assessment scale (NOS) range from 0 to 8 by two independent investigators (Hu KM and Lou LX). 125 Studies with NOS score of ≥ 6 were assigned as high-quality ones. Studies from conference 126 abstracts were defined as low-quality studies. Any inconsistencies were resolved by joint 127 discussion.

128

129 Statistical analysis

HR abstracted in each study greater than one favored that elevated NLR indicated a poor
prognosis. Multivariate analysis for HR was superior to univariate analysis unless adjustment
variables in multivariable analysis significantly interacting with NLR level. As heterogeneity was

BMJ Open

133	detected among primary studies, meta-analysis was pooled using the random effects models with
134	DerSimonian Laird method ¹² . Between-study heterogeneity was assessed using Cochran Q test
135	and I^2 statistic. $P < .10$ was considered statistically significant for Cochran Q test, $I^2 > 50\%$
136	indicating substantial heterogeneity between studies. Potential sources of heterogeneity were then
137	investigated using subgroup analyses and meta-regression. All statistical tests were two-sided and
138	the significance level was set at 0.05. The possibility of publication bias was assessed using the
139	Begg test and visual insection of a funnel plot ¹³ . We also performed the Duval and Tweedie
140	nonparametric "trim and fill" procedure to further assess the possible effect of publication bias in
141	our meta-analysis ¹⁴ . All statistical manipulations were undertaken using the program STATA
142	version 12.0 (Stata Corporation, College Station, TX).
143	
144	Results
145	Study characteristics
146	The initial search algorithm retrieved a total of 403 studies. After the title and abstract reviewed,

The initial search algorithm retrieved a total of 403 studies. After the title and abstract reviewed, only 30 records were identified regarding the association of NLR and RCC (Figure 1). After full-text review, a total of 14 retrospective studies^{10,15-27} (15 cohorts) with 3357 RCCs were included in our meta-analysis. The study by Hatakeyama et al²⁷ reported the HR and 95% CI of two different cohorts separately. If the patients were overlapping or partially overlapping in several studies, only the study with the most complete data was included.

The basic features of the 14 studies were summarized in Table 1. Median quality score of the
involved studies was 6 (range: 4-8). Eight studies were from western countries, including the USA,
Italy, Belgium, Austria, Canada, and Australia. The rest studies were from Turkey and Japan.

1
2
2 3 4 5 6 7 8 9 10
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 23 34 35 36 37 38 39
19
20
20
21
22
23
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
39
40
40
41
42 43
44
45
46
47
48
49
50
51
52
52 53
55
54 55
55
56
57 58
58
59
60

155	Seven of these cohorts enrolled more than 200 patients and eight had less than 200 patients.
156	Radical and partial nephrectomy as only initial treatment for non-metastatic RCC was reported in
157	four studies. Others were treated with mixed therapies, including nephrectomy, immunotherapy,
158	targeted therapy and others. NLR was calculated using the white blood cell differentiated counts in
159	all studies. In the study by Certin et al. ²⁰ , some of the adjustment variables used in multivariate
160	analysis was significantly associated with NLR value, so HR and 95% CI from univariate analysis
161	for both PFS and OS were used in our meta-analysis.
162	
163	NLR and OS in RCC
164	There were 13 cohorts presenting the data of pre-treatment NLR and OS in RCC patients.
165	Elevated NLR was significantly associated with shorter OS (HR = 1.82; 95% CI: 1.51-2.19; $p <$
166	0.001; Figure 2), but there was evidence of moderate heterogeneity between studies ($I^2 = 52.8\%$; p
167	= 0.013).
168	= 0.013).
169	NLR and RFS/PFS in RCC
170	There were 10 cohorts presenting the data of pre-treatment NLR and RFS/PFS in RCC patients. A
171	significant relationship between elevated pre-treatment NLR and shorter RFS/PFS (HR = 2.18;
172	95% CI: 1.75-2.71; $p < 0.001$; Figure 3) with non-significant heterogeneity ($I^2 = 25.0\%$; $p =$
173	0.214) was detected according to our pooled estimates.
174	
175	Subgroup analysis and meta-regression
176	To explore the heterogeneity, subgroup analysis and meta-regression were performed by study
	8

BMJ Open

2
3
1
-
3 4 5 6 7
6
7
8
0
9
10
11
12
12
13
14
15
16
17
10
8 9 10 11 12 13 14 15 16 17 18
19
20
21
22
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
23
24
25
26
20
21
28
29
30
24
31
30 31 32 33 34 35 36 37 38 39
33
34
25
30
36
37
38
30
40
41
42
43
44
44
45
46
47
48
49
49
50
51
52
53
54
55
56
57
58
59
60

177	region (eastern vs. western countries), sample size (\geq 200 vs. <200), cut-off value defining
178	"elevated NLR" (>3 vs. \leq 3), therapeutic intervention (nephrectomy only vs. mixed therapies),
179	type of RCC (clear cell RCC vs. non-clear cell RCC/NA; If the majority of patients were clear cell
180	RCC in one study, the study was assigned to clear cell RCC subgroup; NA: not mentioned) and
181	NOS score (≥ 6 vs. < 6). Subgroup analysis did not alter the prognostic role of NLR in OS or
182	RFS/PFS substantially (Table 2), except for stratified analysis ²⁸ by cut-off of NLR in PFS/RFS.
183	Meta-regression showed consistent results with subgroup analysis.
184	
185	Sensitivity analyses
186	Each single cohort included in our meta-analysis was deleted every time to investigate the

187 influence of individual data set on the pooled HR. Results of sensitivity analyses indicated the188 robustness of our findings (data not shown).

189

190 Publication bias

Visual inspection of the Begg funnel plot revealed asymmetry (p = 0.001 in OS and p = 0.003 in 191 192 RFS/PFS) (Figure 4A), which raised the possibility of publication bias. Because of this, we 193 undertook sensitivity analysis using the trim and fill method, which conservatively imputes 194 hypothetical negative unpublished studies to mirror the positive studies that cause funnel plot 195 asymmetry. The imputed studies produced a symmetrical funnel plot (Figure 4B). The pooled 196 analysis incorporating the hypothetical studies continued to show a statistically significant 197 association between elevated NLR and prognosis of RCC patients (HR: 1.54, 95% CI: 1.25-1.88; *p*<0.001 in OS and HR: 1.85, 95% CI, 1.45-2.36; *p*<0.001 in RFS/PFS). 198

199	
200	Discussion
201	The TNM staging and Robson's staging system cannot estimate the outcomes of RCC patients
202	precisely or guide the clinical practice appropriately, lots of patients in the same stage turned out
203	to be quite different in prognosis. Therefore, introduction of new laboratory index as a
204	supplementary item to current RCC risk stratification system which mainly focuses on the
205	biological characteristics of tumor itself is really urgent for personalizing the optimal treatment
206	strategy.
207	As hematological tests are routinely conducted in RCC patients before medical intervention,
208	NLR acts as a simple, robust and convenient parameter of the inflammatory response. To our
209	knowledge, the present study is the first meta-analysis systemically and comprehensively
210	determining the exact relationship between elevated NLR and clinical outcomes of RCC patients.
211	We found that increased NLR has an unfavorable effect on both OS and RFS/PFS in RCC patients.
212	As there was heterogeneity existing among included studies, we also conducted subgroup analyses
213	based on study region, sample size, cut-off value of NLR, therapeutic intervention, type of RCC
214	and NOS score. No significant change was found according to subgroups. From the results above,
215	NLR is a promising prognostic biomarker to help make better clinical decision on RCC treatment
216	and outcomes.
217	We tried to figure out the source of heterogeneity observed among included studies by
218	meta-regression and interaction revisited between subgroup estimates analyses. Though
219	meta-regression did not find any possible reasons for heterogeneity in our meta-analysis for OS,
220	sample size ($p = 0.132$) and NOS score ($p = 0.083$) according to results of interaction revisited

BMJ Open

221	between subgroup estimates may partially explain the inter-study heterogeneity. In the same way,
222	we found NLR cut-off value ($p = 0.004$) and tumor type ($p = 0.151$) were responsible for the mild
223	heterogeneity in RFS/PFS. It is inevitable that studies with smaller sample size or lower NOS
224	score are more likely to gain statistic heterogeneity. Authors of included studies defined the cut-off
225	value of NLR, which best discriminated between good and poor survival, on the basis of different
226	methods. And pooled analysis of studies with cut-off value no more than 3 indicated a superior
227	prognostic role in RCC patients than studies with cut-off value higher than 3. We suppose the
228	variance of NLR between high and low risk groups is larger when cut-off value is small, which
229	may more veritably reflect the role of NLR in outcome of RCC patients.
230	Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting
231	the possibility of publication bias, the trim and fill sensitivity analysis did not change the general
232	result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients
233	is not an artifact of unpublished negative studies.
234	In our analysis, subgroup defined as Nephrectomy only also represented patients group with
235	clinically localized disease, while patients with metastatic disease were stratified to the mixed
236	therapies subgroup. According to our results, elevated NLR was associated with both increased
237	risk of future recurrence in localized disease and accelerated disease progression as well as
238	shortened overall survival in advanced disease. Therefore, we should take a more active attitude in
239	RCC patient treatment, for example, consolidation and maintenance therapy, cytoreductive
240	nephrectomy, especially in patients with elevated NLR before treatment.
241	Owing to limited data from available studies, we did not conduct pooled analysis on the
242	correlation between elevated NLR and the clinicopathological parameters of RCC. As reported in

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

243	several studies ^{20,22,25} , high NLR was closely correlated with a more malignant tumor
244	characteristics, as well as changed blood and biologic indexes. Taken all these into consideration,
245	there may be a significant association between NLR and pathologic features and other known risk
246	factors of RCC, but more clinical studies focusing on these relationships are still needed to help us
247	better understand how NLR influences prognosis of RCC patients.
248	There are other laboratory markers of systemic inflammation reaction besides NLR, such as
249	C-reactive protein ²⁹ and modified Glasgow prognostic score ^{30,31} , playing a prognostic role in RCC
250	patients. What's more, gene polymorphisms ³² and biological markers ^{33,34} are also suggested to be
251	predictors of prognosis in RCC patients. However, factoring in cost-effective analysis and
252	accessibility, NLR stands out for its low economic costs and widely availableness even in primary
253	hospitals. The results of our meta-analysis encourage routinely monitoring of NLR to predict
254	recurrence, progress and survival outcomes in RCC patients, irrespective of the detailed
254 255	recurrence, progress and survival outcomes in RCC patients, irrespective of the detailed therapeutic intervention, stage and type of tumor and geographic region.
255	therapeutic intervention, stage and type of tumor and geographic region.
255 256	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory
255 256 257	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory response to tumor, which provids a favorable microenvironment for tumor invasion and
255 256 257 258	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory response to tumor, which provids a favorable microenvironment for tumor invasion and metastasis ⁵ . As traditional chemotherapy and immunotherapy are with limited benefit in metastatic
255 256 257 258 259	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory response to tumor, which provids a favorable microenvironment for tumor invasion and metastasis ⁵ . As traditional chemotherapy and immunotherapy are with limited benefit in metastatic RCC, treatment remains quite a challenge for clinicians. Now targeted therapy on vascular
255 256 257 258 259 260	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory response to tumor, which provids a favorable microenvironment for tumor invasion and metastasis ⁵ . As traditional chemotherapy and immunotherapy are with limited benefit in metastatic RCC, treatment remains quite a challenge for clinicians. Now targeted therapy on vascular endothelial growth factor (VEGF) is generally recognized as first choice for metastatic patients ³⁵ .
255 256 257 258 259 260 261	therapeutic intervention, stage and type of tumor and geographic region. NLR is an inflammation marker. High NLR represents systemic and local inflammatory response to tumor, which provids a favorable microenvironment for tumor invasion and metastasis ⁵ . As traditional chemotherapy and immunotherapy are with limited benefit in metastatic RCC, treatment remains quite a challenge for clinicians. Now targeted therapy on vascular endothelial growth factor (VEGF) is generally recognized as first choice for metastatic patients ³⁵ . A major difficulty in developing anti-VEGF therapies is tumor intrinsic refractoriness and the

On the other hand, tumor can produce immunosuppressive cytokines and reduce cytotoxic T
lymphocyte infiltration³⁹. Thus NLR not only reflects system immune status but also tumor
microenvironment which favors tumor invasion and suppresses the host immune surveillance.
Hence, NLR acts as an effective prognostic predictor for VEGF-targeted therapy in metastatic
patients.
In conclusion, the present meta-analysis demonstrates that elevated NLR is closely associated

with poorer prognostic outcome of RCC patients in different stages. NLR is a widely available, robust and convenient predictor. It helps to figure out patients with high risk and not sensitive to targeted therapy, for whom clinician are urged to adjust the management accordingly. Further research on the best therapeutic schedule fitted with patients of high NLR is needed in the near future.

277 Contributorship Statement

Study concept and design: All authors. Acquisition, analysis, or interpretation of data: Hu, Lou.
Drafting of the manuscript: Hu. Critical revision of the manuscript for important intellectual
content: All authors. Statistical analysis: Hu, Lou. Obtained funding: Zhang. Administrative,
technical, ormaterial support: Zhang. Study supervision: Zhang, Ye.

283 Competing Interests

284 There were no competing interests.

286 Funding

- 287 This work was supported by Natural Science Foundation of Zhejiang Province (Y13H140006),
- and the National Natural Science Foundation of China (Grant Number: 30471987).

290 Data Sharing

291 There was no additional unpublished data.

293 References

- 294
 1
 Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. Lancet **373**, 1119-1132,

 295
 doi:10.1016/S0140-6736(09)60229-4 (2009).

 296
 2
 Chow, W. H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer.
- 297 Nature reviews. Urology 7, 245-257, doi:10.1038/nrurol.2010.46 (2010).
- 298
 3
 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA: a cancer journal for

 299
 clinicians 63, 11-30, doi:10.3322/caac.21166 (2013).
- 3004MacDonald, N. Cancer cachexia and targeting chronic inflammation: a unified approach to301cancer treatment and palliative/supportive care. The journal of supportive oncology 5,302157-162; discussion 164-156, 183 (2007).
- Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. *Cell* 140, 883-899, doi:10.1016/j.cell.2010.01.025 (2010).
- 3056Roxburgh, C. S. & McMillan, D. C. Role of systemic inflammatory response in predicting306survival in patients with primary operable cancer. Future Oncol 6, 149-163,307doi:10.2217/fon.09.136 (2010).
- 3087Proctor, M. J. et al. A comparison of inflammation-based prognostic scores in patients with309cancer. A Glasgow Inflammation Outcome Study. Eur J Cancer 47, 2633-2641,310doi:10.1016/j.ejca.2011.03.028 (2011).
- Li, M. X. *et al.* Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: A
 systematic review and meta-analysis. *International journal of cancer. Journal international du cancer* 134, 2403-2413, doi:10.1002/ijc.28536 (2014).
- 3149Xiao, W. K. *et al.* Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular315carcinoma: a meta-analysis. *BMC cancer* 14, 117-126, doi:10.1186/1471-2407-14-117 (2014).
 - 31610Ohno, Y. et al. Clinical variables for predicting metastatic renal cell carcinoma patients who317might not benefit from cytoreductive nephrectomy: neutrophil-to-lymphocyte ratio and318performance status. International journal of clinical oncology 19, 139-145,319doi:10.1007/s10147-012-0514-5 (2014).
- 32011Proctor, M. J. *et al.* A comparison of inflammation-based prognostic scores in patients with321cancer. A Glasgow Inflammation Outcome Study. *Eur J Cancer* **47**, 2633-2641, doi:DOI32210.1016/j.ejca.2011.03.028 (2011).
 - 323 12 DerSimonian, R. & Kacker, R. Random-effects model for meta-analysis of clinical trials: an

BMJ Open

2			
3	324		update. Contemporary clinical trials 28, 105-114, doi:10.1016/j.cct.2006.04.004 (2007).
4	325	13	Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for
5	326		publication bias. <i>Biometrics</i> 50 , 1088-1101 (1994).
6 7	327	14	Duval, S. & Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and
8	328		adjusting for publication bias in meta-analysis. <i>Biometrics</i> 56 , 455-463 (2000).
9	329	15	De Martino, M. <i>et al.</i> Prognostic impact of preoperative neutrophil-to-lymphocyte ratio in
10	330	15	localized nonclear cell renal cell carcinoma. <i>Journal of Urology</i> 190 , 1999-2004 (2013).
11		10	
12	331	16	Ohno, Y. <i>et al.</i> Followup of neutrophil-to-lymphocyte ratio and recurrence of clear cell renal
13 14	332		cell carcinoma. Journal of Urology 187, 411-417 (2012).
15	333	17	Dirican, A. et al. Prognostic and predictive value of hematologic parameters in patients with
16	334		metastatic renal cell carcinoma: second line sunitinib treatment following IFN-alpha. Asian
17	335		Pacific journal of cancer prevention : APJCP 14, 2101-2105 (2013).
18	336	18	Keizman, D. et al. Active smoking may negatively affect response rate, progression-free
19	337		survival, and overall survival of patients with metastatic renal cell carcinoma treated with
20	338		sunitinib. <i>The oncologist</i> 19 , 51-60, doi:10.1634/theoncologist.2012-0335 (2014).
21 22	339	19	Santoni, M. <i>et al.</i> Pre-treatment neutrophil-to-lymphocyte ratio may be associated with the
23	340	15	outcome in patients treated with everolimus for metastatic renal cell carcinoma. <i>British</i>
24			
25	341		<i>journal of cancer</i> 109 , 1755-1759, doi:10.1038/bjc.2013.522 (2013).
26	342	20	Cetin, B. et al. Is the pretreatment neutrophil to lymphocyte ratio an important prognostic
27	343		parameter in patients with metastatic renal cell carcinoma? <i>Clinical genitourinary cancer</i> 11 ,
28	344		141-148, doi:10.1016/j.clgc.2012.09.001 (2013).
29 30	345	21	Forget, P. et al. Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or diclofenac
31	346		are prognostic factors in different cohorts of patients undergoing breast, lung, and kidney
32	347		cancer surgery. Annals of surgical oncology 20 Suppl 3, S650-660,
33	348		doi:10.1245/s10434-013-3136-x (2013).
34	349	22	Pichler, M. <i>et al.</i> Validation of the pre-treatment neutrophil-lymphocyte ratio as a prognostic
35	350	22	factor in a large European cohort of renal cell carcinoma patients. <i>British journal of cancer</i>
36			
37 38	351		108 , 901-907, doi:10.1038/bjc.2013.28 (2013).
39	352	23	Kobayashi, M. et al. Changes in peripheral blood immune cells: their prognostic significance
40	353		in metastatic renal cell carcinoma patients treated with molecular targeted therapy. Medical
41	354		oncology (Northwood, London, England) 30 , 556, doi:10.1007/s12032-013-0556-1 (2013).
42	355	24	Templeton, A. J. et al. Neutrophil to lymphocyte ratio (NLR) and its effect on the prognostic
43	356		value of the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC)
44 45	357		model for patients treated with targeted therapy (TT). <i>Journal of Clinical Oncology</i> 32 (2014).
46	358	25	Fox, P. et al. Markers of systemic inflammation predict survival in patients with advanced
47	359		renal cell cancer. British journal of cancer 109 , 147-153, doi:10.1038/bjc.2013.300 (2013).
48	360	26	Huang, P. <i>et al.</i> The association of pretreatment (pre-tx) neutrophil to lymphocyte ratio (NLR)
49	361	20	with outcome of sunitinib tx in patients (pts) with metastatic renal cell carcinoma (mRCC).
50			
51	362		Journal of Clinical Oncology 29 (2011).
52 53	363	27	Hatakeyama, S. et al. Prognostic benefit of surgical management in renal cell carcinoma
53	364		patients with thrombus extending to the renal vein and inferior vena cava: 17-year
55	365		experience at a single center. BMC urology 13, 47, doi:10.1186/1471-2490-13-47 (2013).
56	366	28	Altman, D. G. & Bland, J. M. Interaction revisited: the difference between two estimates. BMJ
57	367		326 , 219 (2003).
58			
59			15

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

2
2
3 4 5 6 7 8 9 10
4
5
6
7
8
å
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
24
25
26
20
21
28
26 27 28 29 30 31 32 33 34 35 36 37 38
30
31
32
33
3/
25
30
36
37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52
52 53
53
54
55
56
57
58
59
59

60

368	29	Jagdev, S. P. et al. Improving the accuracy of pre-operative survival prediction in renal cell
369		carcinoma with C-reactive protein. British journal of cancer 103, 1649-1656,
370		doi:10.1038/sj.bjc.6605973 (2010).
371	30	Lamb, G. W., Aitchison, M., Ramsey, S., Housley, S. L. & McMillan, D. C. Clinical utility of the
372		Glasgow Prognostic Score in patients undergoing curative nephrectomy for renal clear cell
373		cancer: basis of new prognostic scoring systems. <i>British journal of cancer</i> 106 , 279-283,
374		doi:10.1038/bjc.2011.556 (2012).
375	31	Tai, C. G. <i>et al.</i> External validation of the modified Glasgow prognostic score for renal cancer.
376	51	Indian journal of urology : IJU : journal of the Urological Society of India 30 , 33-37,
377		doi:10.4103/0970-1591.124203 (2014).
378	32	de Martino, M., Haitel, A., Schatzl, G. & Klatte, T. The protease activated receptor 1 gene
379	52	variation IVSn -14 A>T is associated with distant metastasis and cancer specific survival in
380		renal cell carcinoma. <i>The Journal of urology</i> 190 , 1392-1397, doi:10.1016/j.juro.2013.03.041
381		(2013).
382	33	Vilella-Arias, S. A. <i>et al.</i> Loss of caspase 7 expression is associated with poor prognosis in
	22	
383		
384 285	24	doi:10.1016/j.urology.2013.06.026 (2013).
385	34	Shi, X. <i>et al.</i> Prognostic prediction and diagnostic role of intercellular adhesion molecule-1
386		(ICAM1) expression in clear cell renal cell carcinoma. <i>Journal of molecular histology</i> , 1-8,
387		doi:10.1007/s10735-014-9568-1 (2014).
388	35	Diamond, E., Riches, J., Faltas, B., Tagawa, S. T. & Nanus, D. M. Immunologics and
389		Chemotherapeutics for Renal Cell Carcinoma. Seminars in interventional radiology 31 , 91-97,
390		doi:10.1055/s-0033-1363848 (2014).
391	36	Gerber, H. P., Olazoglu, E. & Grewal, I. S. Targeting inflammatory cells to improve anti-VEGF
392		therapies in oncology. Recent results in cancer research. Fortschritte der Krebsforschung.
393		Progres dans les recherches sur le cancer 180, 185-200, doi:10.1007/978-3-540-78281-0_11
394		(2010).
395	37	Santoni, M. et al. Emerging role of tumor-associated macrophages as therapeutic targets in
396		patients with metastatic renal cell carcinoma. Cancer immunology, immunotherapy : Cll 62,
397		1757-1768, doi:10.1007/s00262-013-1487-6 (2013).
398	38	Mano, Y. et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after
399		hepatectomy for hepatocellular carcinoma: a retrospective analysis. Annals of surgery 258,
400		301-305, doi:10.1097/SLA.0b013e318297ad6b (2013).
401	39	Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles
402		in cancer suppression and promotion. Science 331, 1565-1570, doi:10.1126/science.1203486
403		(2011).
404		
40E		
405		
406		
400		
407		
407		

408 Tables

409 Table 1. Main characteristics of included studies in the meta-analysis.

	T			Γ		1		Ι	
Study cohort	Year	Study	Research time	Follow-up	Treatment	No. (M/F)	Age (years)	Tumor type	No. of dista
		region		(month)					metastasis
Martino et	2013	USA	1995-2012	Mean:49; IQR:	Radical and partial nephrectomy	202/79	Mean: 63; IQR: (54-72)	nonclear cell RCC	0
al[13]				(15-71)					
Ohno et	2012	Japan	1990-2008	Mean±SD:	Radical and partial nephrectomy	186/64	Mean±SD:(61±12)	clear cell RCC	0
al[14]				(75±54)					
Ohno et	2014	Japan	1990-2008	Mean (range):	Cytoreductive nephrectomy: Yes	61/12	Cytoreductive nephrectomy	mRCC	73
al[10]				20.6(1-114)	48; No 25		[Median (range)]: Yes:		
							63(38-79); No: 65(34-88)		
Dirican et	2013	Turkey	2006-2011	Median:13.43;	Nephrectomy, INF-α,sunitinib	17/6	Median (range): 59(43-76)	clear cell RCC:18;	23
al[16]				Range:				Non-clear cell RCC: 5	
				(1.97-40.91)					
Keizman et	2014	USA,	2004-2013	NA	Sunitinib	186/92	Median: 63	mRCC	278
al[17]		Israel							
Santoni et	2013	Italy	2005-2013	Median:46.9;	Past nephrectomy: 91; second-line	70/27	Median:64; 95% CI:	mRCC	97
al[18]				95% CI:	everolimus: 65; third-line		(44-82)		
				(39.9-53.9)	everolimus: 32				
Cetin et	2013	Turkey	2008-2011	Median:15;	First line therapy with IFN-α;	76/24	Median (range): 58(24-80)	mRCC: clear cell 73;	100: liver
al[19]				Range: (1-53)	second line therapy with VEGF			non-clear cell 24;	17; bone 24
					targeted TKIs			unknown 3	lung 65
Forget et	2013	Belgium	1993-2005	Median:74.5;	Radical nephrectomy	71/156	Mean±SD: (63±12)	Clear cell 166;	0
al[20]				IQR: (31-112)				tubulo-papillary 29;	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
9 10 11 12 13	
14 15	
15	
16	
17	
18	
18 10	
19	
20 21	
21	
22	
22 23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	

al[23]Image: Second processing of the second p									chromophobe 4;	
al[21]Image: al[2]Ad(0-130)nephrectomynephrectomyAd(14;Median (range): 64(53-81)mRCC26Kobayashi et al[22]Japan2008-2012Median:12; Range: (1.1-48.9)Radical nephrectomy, cytokine therapy and sorafenib, sunitinib or mTORi44/14;Median (range): 64(53-81)mRCC26Templeton et al[23]2014CanadaNANATargeted therapyTotal: 859NARCCNAFox et al[24]2013Australia2002-2005NAAs in EGF20001268/94Median (range): 62(19-84)mRCC362Huang et al[25]2011USA2004-2011Median: 35Sunitinib rinibTotal: 109NAmRCC109Altakeyama et al[26]2013Japan1995-2013Surgery: 26: immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30;Mean±SD: (62±12)RCC with tumor thrombus14									others 28	
Kobayashi et al[22]2013Japan2008-2012Median:12; Range: (1.1-48.9)Radical nephrectomy, cytokine therapy and sorafenib, sunitinib or mTORi44/14;Median (range): 64(53-81)mRCC26Templeton et al[23]2014CanadaNANATargeted therapyTotal: 859NARCCNAImage: (1.1-48.9)NANAAs in EGF20001268/94Median (range): 62(19-84)mRCC362Fox et al[24]2013Australia2002-2005NAAs in EGF20001268/94Median (range): 62(19-84)mRCC362Huang et al[25]2011USA2004-2011Median: 35SunitinibTotal: 109NAmRCC109Hatakeyama et al[26]2013Japan1995-2013Surgery: 26; immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30; Sol;Mean±SD: (62±12)RCC with tumor thrombus14	Pichler et	2013	Austria	2000-2010	Mean (range):	Curative radical or partial	Total: 678	Mean±SD: (63.7±11.9)	clear cell RCC	0
al[22]Image: constraint of the constraint	al[21]				44(0-130)	nephrectomy				
Image: constraint of the second sec	Kobayashi et	2013	Japan	2008-2012	Median:12;	Radical nephrectomy, cytokine	44/14;	Median (range): 64(53-81)	mRCC	26
Templeton et al[23]2014CanadaNANATargeted therapyTotal: 859NARCCNAal[23]2013Australia2002-2005NAAs in EGF20001268/94Median (range): 62(19-84)mRCC362Huang et al[25]2011USA2004-2011Median: 35SunitinibTotal: 109NAmRCC109Hatakeyama et al[26]2013Japan1995-2013Surgery: 26; immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30;Mean±SD: (62±12)RCC with tumor thrombus14	al[22]				Range:	therapy and sorafenib, sunitinib or				
al[23]Image: Second procession of the second p					(1.1-48.9)	mTORi				
Fox et al[24]2013Australia2002-2005NAAs in EGF20001268/94Median (range): 62(19-84)mRCC362Huang et al[25]2011USA2004-2011Median: 35SunitinibTotal: 109NAmRCC109Hatakeyama et al[26]2013Japan1995-2013Surgery: 26; immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30;Mean±SD: (62±12)RCC with tumor thrombus14	Templeton et	2014	Canada	NA	NA	Targeted therapy T		NA	RCC	NA
Huang et al[25]2011USA2004-2011Median: 35SunitinibTotal: 109NAmRCC109Hatakeyama et al[26]2013Japan1995-2013Surgery: 26; immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30;Mean±SD: (62±12)RCC with tumor thrombus14	al[23]									
al[25]Image: Second	Fox et al[24]	2013	Australia	2002-2005	NA	As in EGF20001	268/94	Median (range): 62(19-84)	mRCC	362
Hatakeyama et al[26]2013Japan1995-2013Surgery: 26; immunotherapyRadical nephrectomy with thrombectomy, immunotherapy or55/30;Mean±SD: (62±12)RCC with tumor thrombus14	Huang et	2011	USA	2004-2011	Median: 35	Sunitinib	Total: 109	: 109 NA	mRCC	109
et al[26] immunotherapy thrombectomy, immunotherapy or thrombus	al[25]									
	Hatakeyama	yama 2013 Japan 1995-2013 Surgery: 26;		Radical nephrectomy with	55/30;	Mean±SD: (62±12)	RCC with tumor	14		
or IFN- α : 5 IFN- α	et al[26]				immunotherapy	thrombectomy, immunotherapy or			thrombus	
					or IFN-a: 5	IFN-α				
		1								
	Study aphort	NI D T	1110	Cut of	No of alguated	I Survival analyzia LID	Adjustmon	t variables		N

411

,	412
`	

Study cohort	NLR value	Cut-off	No. of elevated	Survival analysis	HR	Adjustment variables	NOS score
			NLR				
Martino et	Median (IQR): 2.6(1.9-3.6)	3.6	NA	RFS (DFS)	R(M)	Age, gender, ECOG performance score, pT stage, TNM group, grade,	7
al[13]						MVI, subtype, ANC, ALC	
Ohno et	Mean \pm SD: 2.62 \pm 1.44	2.7	84	RFS	R(M)	Age, presentation, nephrectomy, tumor size, pT, grade, MVI, eastern	8
al[14]						Cooperative Oncology Group, neutriphil, lymphocytes	
Ohno et	$Mean \pm SD: 3.98 \pm 2.27$	4	NA	OS	R(M)	Age, presentation mode, T stage, ECOG PS, Charlson comorbidity	5
al[10]						index, hemoglobin, LDH, corrected calcium, CRP, neutrophils,	
						Lymphocytes	

18

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 27

Dirican et al[16]	NA	3	NA	OS,PFS	E(U)		4
Keizman et al[17]	NA	3	NA	OS,PFS	R(M)	unclear	5
Santoni et al[18]	Median: 2.2	3	38	OS,PFS	R(M)	Gender, age, Motzer prognostic group, PFS on first-line therapy, neutrophilia	6
Cetin et al[19]	Median: 3.04	3.04	50	OS,PFS	R(U)	Age, tumor history, sex, hemoglobin level, red cell distribution width, albumin level, alkaline phosphatase level, PFS, site and number of metastatic orgen, MSKCC score, dose reduction, second-line mTOR inhibitors	5
Forget et al[20]	Median (IQR): 3.01(1.97-4.49)	5	52	OS,RFS	R(U)	Age, sex, node status, histological grade, stage	8
Pichler et al[21]	Mean \pm SD: 3.51 \pm 2.49	3.3	398	OS,RFS(MFS),CSS	R(M)	Age, gender, T stage, tumor grade, presence of tumor necrosis	7
Kobayashi et al[22]	Mean±SD: sorafenib: 4.25±3.01; sunitinib: 4.50±3.43; mTORi: 4.26±2.87	4.41	sorafenib: 8; sunitinib: 23; mTORi: 16	OS,PFS	R(M) in OS, E(U) in PFS	Karnofsky PS, metastasis at presentation, number of metastasis, prior nephrectomy, prior cytokine therapy, initial targeted agent, Heng's risk classification, pre-treatment level of hemoglobin, platelet count, albumin, CRP, corrected calcium	5
Templeton et al[23]	Mean: 4.98; Median(95%CI): 3.51(1.42-14.0)	2.5	622	OS	R(M), E(U)	6 international metastatic renal cell carcinoma database consortium(IMDC)	/
Fox et al[24]	NA	3	188	OS	R(M)	MSKCC and systemic inflammation markers	7
Huang et al[25]	NA	3	57	OS,PFS	R(U)	/	/
Hatakeyama et al[26]	$Mean \pm SD: 3.1 \pm 1.5$	NA	NA	OS	R(U,M)	Age, ECOG-performance status, gender, thrombus level, distant metastasis, underwent surgy, hemoglobin, serum albumin, eGFR,	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7	
8	
9 10	413
11	414
12 13	415
13	416
15 16	417
17	418
18 19	419
$\begin{array}{c} 20\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ \end{array}$	

									choline est	erase, serum sodium, correlat	ted calciu	m, LDH, CRP,	
									Charison c	comorbidity index, molecular	targeted a	agents	
•													
,	NLR: neutro	phil-lymphoo	cyte ratio; m	RCC: metast	atic renal cell c	arcinoma;	OS: overa	ll survival; RF	S: recurr	ence free survival; DFS:	disease	free survival; PFS	S :
	progress free	survival; MI	FS: metastasi	is free surviv	al; IQR: interqu	artile range	e; HR: haz	ard ratio, obtain	ned by re	porting in text (R), or est	imating	(E). "M" means th	ne
	HR comes fr	om multivari	ate analysis,	"U" means t	he HR comes fro	om univaria	ate analysi	s; NA: not avai	lable; NO	DS: Newcastle-Ottawa Qu	uality Sc	ale.	
	Table 2. Sun	nmary of sul	bgroup anal	yses results.									
	Analysis		Ν		Rane	Random-effects model		Heterogeneity		Interaction revisited		Meta-regression	
				References	HR(95%CI)	p	I ²	p	Ratio of Hazard ratio (RHR) (95%CI)	р	р	
									1				

Analysis		Ν		Random-effects model		Heterogeneity		Interaction revisited		Meta-regression
			References	HR(95%CI)	p	I ²	р	Ratio of Hazard ratio (RHR) (95%CI)	р	р
Overal surviv	ral (OS)	12(13)	10,17-27	1.82(1.51-2.19)	< 0.001	52.80%				
Subgroup 1: Study region	Western countries	7	10,17,19,20,22-24	1.73(1.39-2.14)	< 0.001	39.80%	0.126			
	Eastern countries	5(6)	18,21,25-27	2.06(1.41-3.02)	< 0.001	67.70%	0.013	0.84(0.54-1.30)	0.434	0.680
Subgroup 2: Sample size	≥200	5	18,21,22,24,25	1.60(1.30-1.96)	< 0.001	34.60%	0.190			
	<200	7(8)	10,17,19,20,23,26,27	2.16(1.55-3.01)	< 0.001	62.80%	0.013	0.74(0.50-1.09)	0.132	0.305
Subgroup 3: Cut-off value	>3	5	10,20-23	2.04(1.47-2.82)	< 0.001	28.20%	0.234			

20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 27

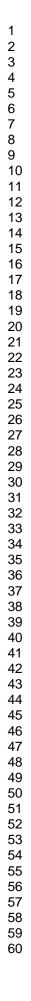
1 2 3 4 5	
5 6 7 8 9 10	
12 13 14 15 16	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
22 23 24 25 26 27	
20 29 30 31	
32 33 34 35 36 37 38	
39 40 41 42	
43 44 45 46 47	
48 ⊿q	

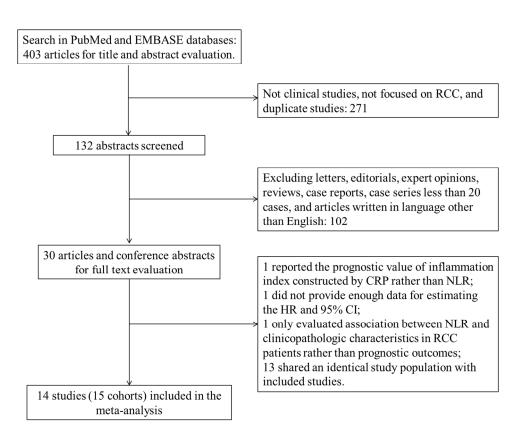
	≤3	6	17-19,24-26	2.07(1.51-2.83)	< 0.001	63.60%	0.017	0.99(0.63-1.55)	0.950	0.959
Subgroup 4: Therapeutic intervention	Nephrectomy only	2	21,22	1.52(1.06-2.17)	0.022	0	0.615			
	Mixed therapies	10(11)	10,17-20,23-27	1.92(1.54-2.38)	< 0.001	60.10%	0.005	0.79(0.52-1.20)	0.275	0.424
Subgroup 5: NOS score	≥6	4	19,21,22,25	1.51(1.24-1.84)	< 0.001	0	0.594			
	<6	8(9)	10,17,18,20,23,24,26,27	2.06(1.51-2.70)	< 0.001	65.10%	0.003	0.73(0.51-1.04)	0.083	0.313
Subgroup 6: Tumor type	Non-clear cell RCC/NA	7(8)	10,18,19,23,24,26,27	1.87(1.45-2.42)	< 0.001	58.20%	0.065			
	Clear cell RCC	5	17,20-22,25	1.82(1.32-2.50)	< 0.001	53.70%	0.067	1.03(0.68-1.55)	0.891	0.859
Progress f (PFS)/Recurre survival (RFS		10	14,15,17-23,26	2.18(1.75-2.71)	< 0.001	25%				
Subgroup 1: Study region	Western countries	6	14,18,19,21,22,26	2.20(1.64-2.96)	< 0.001	35.70%	0.169	1		
	Eastern countries	4	15,17,20,23	2.23(1.51-3.28)	< 0.001	28.60%	0.241	0.99(0.61-1.61)	0.957	0.958
Subgroup 2: Sample	≥200	5	14,15,18,21,22	2.25(1.56-3.24)	< 0.001	51.30%	0.084			

21

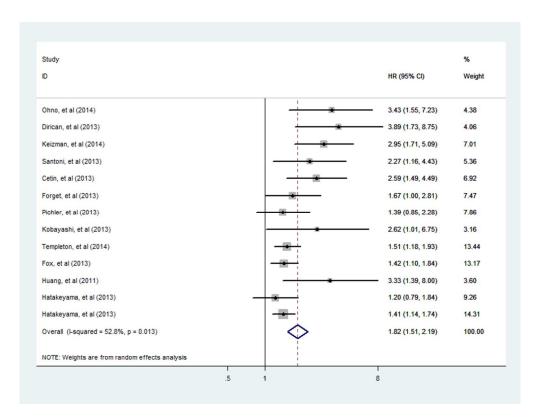
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

size										
	<200	5	17,19,20,23,26	2.15(1.62-2.85)	< 0.001	0	0.444	1.05(0.66-1.66)	0.847	0.950
Subgroup	>3	5	14,20-23	1.74(1.39-2.17)	< 0.001	0	0.675			
3: Cut-off value										
	≤3	5	15,17-19,26	3.08(2.24-4.24)	< 0.001	0	0.867	0.56(0.38-0.83)	0.004	0.020
Subgroup 4:	Nephrectomy only	4	14,15,21,22	2.00(1.40-2.85)	< 0.001	39.90%	0.172			
Therapeutic intervention				0						
	Mixed therapies	6	17-20,21,26	2.36(1.79-3.12)	< 0.001	11.40%	0.342	0.85(0.54-1.33)	0.472	0.404
Subgroup 5: NOS score	≥6	5	14,15,19,21,22	2.08(1.53-2.84)	<0.001	33.60%	0.197			
	<6	5	17,18,20,23,26	2.35(1.67-3.32)	< 0.001	26.50%	0.245	0.89(0.56-1.41)	0.605	0.622
Subgroup 6: Tumor type	Non-clear cell RCC/NA	5	14,18,19,23,26	2.62(1.94-3.53)	< 0.001	0	0.644			
	Clear cell RCC	5	15,17,20-22	1.92(1.42-2.59)	< 0.001	34.10%	0.194	1.36(0.89-2.09)	0.151	0.112

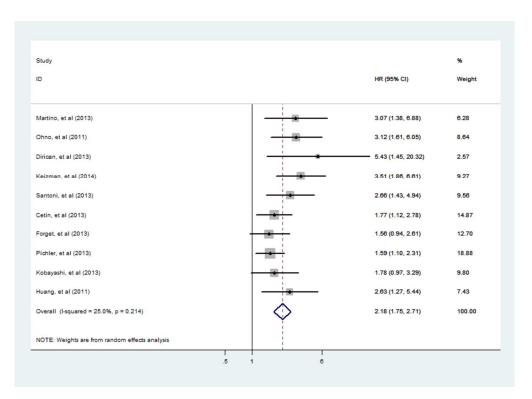

34 420 35 421


> N: number of studies (cohorts); HR: hazard ratio; 95%CI: 95% confidence interval; Subgroup analyses for OS and RFS/PFS were performed by study region (eastern vs. western countries), sample size (\geq 200 vs. <200), cut-off value (>3 vs. \leq 3), therapeutic intervention (nephrectomy only vs. mixed therapies), type of RCC (Clear cell RCC vs. Non-clear cell RCC/NA) and NOS score (\geq 6 vs. <6). Interaction revisited of estimates between subgroups and meta-regression were also applied to figure out heterogeneity among studies.

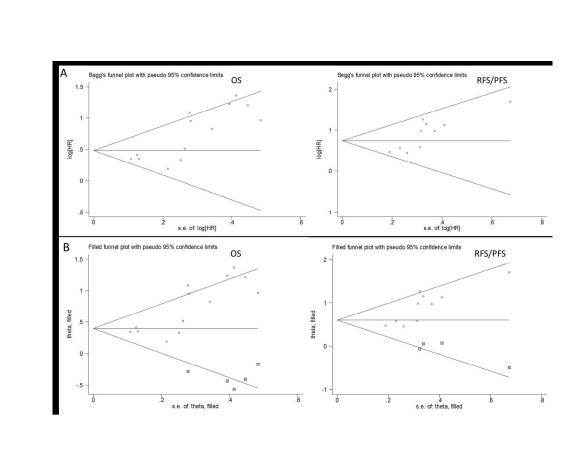
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open

425	Figure Legends
426	Figure 1. Flow chart of study selection process.
427	
428	RCC: renal cell carcinoma; CRP: C-reactive protein; NLR: neutrophil-lymphocyte ratio; HR
429	hazard ratio; CI: confidence interval.
430	
431	
432	Figure 2. Meta-analysis of the association between elevated NLR and OS of RCC. Results an
433	presented as individual and pooled hazard ratio (HR) and 95% confidence interval (CI).
434	
435	
436	Figure 3. Meta-analysis of the association between elevated NLR and RFS/PFS of RCC
437	Results are presented as individual and pooled hazard ratio (HR) and 95% confidence interva-
438	(CI).
439	
440	
441	Figure 4. Funnel plots without and with trim and fill.
442	
443	The pseudo 95% confidence interval (CI) is computed as part of the analysis that produces the
444	funnel plot, and corresponds to the expected 95% CI for a given standard error (SE). HR indicate
445	hazard ratio.
446	
	hazard ratio.



Flow chart of study selection process. 264x219mm (150 x 150 DPI)


287x219mm (72 x 72 DPI)

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

299x219mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

352x249mm (150 x 150 DPI)

BMJ Open

Prognostic Role of Neutrophil-Lymphocyte Ratio in Renal Cell Carcinoma: A Meta-Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006404.R1
Article Type:	Research
Date Submitted by the Author:	02-Feb-2015
Complete List of Authors:	Hu, Kaimin; Cancer Institute, College of Medicine Lou, Lixia; Department of Ophthalmology, College of Medicine Ye, Juan; Department of Ophthalmology, College of Medicine Zhang, Suzhan; Cancer Institute,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Urology
Keywords:	Kidney tumours < ONCOLOGY, Urological tumours < UROLOGY, Kidney tumours < NEPHROLOGY

BMJ Open

1	Title page
2	Prognostic Role of Neutrophil-Lymphocyte Ratio in Renal Cell Carcinoma: A Meta-Analysis
3	
4	KaiMin Hu, M.D. ¹ , Lixia Lou, M.D. ² , Juan Ye, M.D., Ph.D. ² , Suzhan Zhang, M.D., Ph.D. ¹
5	¹ Cancer Institute, the Second Affiliated Hospital of Zhejiang University, College of Medicine,
6	Hangzhou, Zhejiang, China.
7	² Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University,
8	College of Medicine, Hangzhou, Zhejiang, China.
9	Correspondence: Suzhan Zhang, M.D., Ph.D., Cancer Institute, the Second Affiliated Hospital
10	of Zhejiang University, College of Medicine, Jiefang Road 88, Hangzhou, 310009, China.
11	zhangsuzhan@126.com
12	Telephone: +86-5718778-4501 Fax: +86-5718721-4404
13	Kaimin Hu: minkaihu@163.com
14	Kaimin Hu: <u>minkaihu@163.com</u> Lixia Lou: <u>loulixia110@zju.edu.cn</u> Juan Ye: 11218303@ziu edu.cn
15	Juan Ye: <u>11218303@zju.edu.cn</u>
16	
17	
18	
19	
20	
21	
22	
	1

23 Abstract

24	Objective: Increasing evidence suggests that cancer-associated inflammation is associated with
25	poor prognosis in cancer patients. The role of neutrophil-lymphocyte ratio (NLR) as a predictor in
26	renal cell carcinoma (RCC) remains controversial. We conducted the meta-analysis to determine
27	the association between NLR and clinical outcome of RCC patients.
28	Methods and materials: Studies were identified from PubMed and EMBASE databases in March
29	2014. Meta-analysis was performed to generate combined hazard ratios (HRs) with 95%
30	confidence intervals (95% CIs) for overall survival (OS) and recurrence/progress-free survival
31	(RFS/PFS).
32	Results: Fifteen cohorts containing 3357 patients were included. Our analysis results indicated that
33	elevated NLR predicted poorer OS (HR: 1.82, 95%CI: 1.51-2.19) and RFS/PFS (HR: 2.18, 95%
34	CI: 1.75-2.71) in RCC patients. These findings were robust when stratified by study region,
35	sample size, therapeutic intervention, types of RCC and study quality. However, it significantly
36	differed by assessment of the cut-off value defining "elevated NLR" in RFS/PFS ($p = 0.004$). The
37	heterogeneity in our meta-analysis was mild to moderate.
38	Conclusions: Elevated NLR indicates poorer prognosis for patients with RCC. NLR should be
39	monitored in RCC patients for rational risk stratification and adjusting the management
40	accordingly.
41	Keywords: neutrophil-lymphocyte ratio, renal cell carcinoma, prognosis, meta-analysis
42	
43	Strengths and limitations of this study
44	Our study is the first systematic meta-analysis evaluating the relationship between elevated NLR

BMJ Open

and prognosis in RCC patients. Our analysis provides substantial evidence that elevated NLR is significantly associated with poorer outcomes of RCC patients. However, there were some limitations in our study. The enrolled studies were retrospective cohort studies, publication bias inevitably existed. We conducted "trim and fill" analysis to show our conclusion was robust. There was some heterogeneity in the included patient populations, so we confirmed the prognostic role of NLR in patients with different disease stage, therapeutic intervention and types of RCC by subgroup analysis. We only searched limited databases (PubMed and EMBASE), which might weaken the estimating power of the pooled estimate.

54 Introduction

Renal cell carcinoma (RCC) accounts for 2-3% of all malignant diseases in adults. It's the seventh most common cancer in men and the ninth in women worldwide^{1,2}. The incidence of this cancer varies geographically and has increased over past decades owing to changes in life style and environment¹. Despite a rapid development in surgical resection, immunotherapy and targeted therapy in RCC management, the long-term outcome is still not promising mainly due to common local recurrence, distal metastasis and limited drug response³. Hence, it is important to identify significant biomarkers, which can help clinicians to stratify patients in terms of prognosis and possibility of metastatic recurrence together with tumor staging system, *i.e.* the TNM staging system and Robson's staging system, and then set the most appropriate therapeutic strategy.

It is well recognized that the heterogeneity in clinical outcomes is determined by both oncological characteristics of tumor itself and host's response to the progressing malignancy⁴. The complicated mechanisms by which cancer and inflammation intersect have been gradually

67	revealed. Inflammation impacts every single step of tumorigenesis, from tumor initiation to
68	promotion and metastatic progression ⁵ . Recently, several serum biomarkers and haematological
69	indices representative of inflammatory response, notably C-reactive protein (CRP), fibrinogen,
70	lymphocyte-monocyte ratio (LMR), neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte
71	ratio (PLR), have been demonstrated to be closely related to poor prognosis of RCC patients ⁶⁻⁹ .
72	Generally speaking, lymphopenia well reflects impaired cell-mediated immunity, while
73	neutrophilia represents a response to systematic inflammation ⁵ . So the NLR, defined as neutrophil
74	counts divided by lymphocyte counts, is particularly noteworthy. Emerging evidences have shown
75	that NLR gained its prognostic value in patients with colorectal cancer ¹⁰ and hepatocellular
76	carcinoma ¹¹ . RCC patients with elevated level of pre-treatment NLR may be more likely to gain a
77	poorer clinical outcome ¹² . But the exact role of NLR in RCC patients is not consistent in different
78	studies due to the variance in study design, sample size and other factors. Some concluded
79	significant relationship between higher NLR and poorer prognosis, while others did not. Therefore,
80	it is necessary to perform a meta-analysis to systematically and comprehensively understand the
81	prognostic value of NLR in RCC patients.
82	In this study, we aimed to assess the prognostic significance of high NLR for overall survival
83	(OS) and recurrence-free survival (RFS) / progress-free survival (PFS) in RCC patients by pooling
84	outcomes from available data.
85	
86	Material and Methods
87	Search strategy
88	A comprehensive literature search of PubMed and EMBASE databases (Up to March 2014) was
	4

BMJ Open

conducted to identify relevant studies. The search strategy included terms for: "NLR" (e.g., "neutrophil to lymphocyte ratio", "neutrophil lymphocyte ratio" and "neutrophil-lymphocyte ratio"), "RCC" (e.g., "renal cancer", "renal carcinoma", "kidney cancer", clear cell carcinoma", "non-clear cell carcinoma", and "renal papillary carcinoma") and "prognosis" (e.g., "recurrence", "survival" and "outcome"). Abstracts and information from conferences were collected independently. The reference list was also checked for additional articles. Only studies published in English were included. Study inclusion criteria and definitions Two independent authors (Hu KM and Lou LX) reviewed the retrieved studies and extracted data from each included study. Discrepancies were resolved by discussion. Studies included in our meta-analysis must meet the following criteria: (1) The diagnosis of RCC was based on the current clinical guidelines; (2) NLR was measured by serum-based methods before formal treatment; (3) Studies reported hazard ratios (HRs) and 95% confidence intervals (95% CIs) for pre-treatment NLR in OS and (or) RFS/PFS, or allowed for calculation from raw data contained in the article; (4) Only primary data or data superseded earlier work were included, and articles were superior to conference abstracts. NLR was defined as the serum absolute neutrophil count divided by lymphocyte count in peripheral blood¹³. OS was defined as the interval between the medical treatment and the death or the last follow-up of patients. RFS (disease free survival / metastasis free survival, DFS/MFS) was measured from the date of curative treatment until the detection of tumor recurrence. PFS was calculated from the date of treatment until progressing of disease. If all the patients in the

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

2
3
4
5
6
6 7
8
0
9
10
11
12
13
9 10 11 12 13 14 15 16 17
15
10
10
17
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 20
23
23
24
25
26
27
28
29
30
31
22
3Z 20
33
34
35
36 37
37
38
38 39 40
10
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
58
59
60

1

individual study only received curative nephrectomy, the study was classified into nephrectomy only subgroup, and the studies in which patients were mainly treated by non-surgical intervention were classified into mixed therapies subgroup.

114

115 Data extraction

We extracted data including: (1) study information including name of first author, year of publication, study region, sample size, time of research; (2) patient characters including age, gender, follow-up period and treatment methods; (3) data about RCC including type, size, stage and distal metastasis; (4) NLR data and cut-off value of NLR; (5) survival data including OS and RFS/PFS.

121

122 Quality assessment of primary studies

123 Quality assessment of included studies was evaluated with the Newcastle-Ottawa quality 124 assessment scale (NOS) range from 0 to 8 by two independent investigators (Hu KM and Lou LX). 125 Studies with NOS score of ≥ 6 were assigned as high-quality ones. Studies from conference 126 abstracts were defined as low-quality studies. Any inconsistencies were resolved by joint 127 discussion.

128

129 Statistical analysis

HR abstracted in each study greater than one favored that elevated NLR indicated a poor
prognosis. Multivariate analysis for HR was superior to univariate analysis unless adjustment
variables in multivariable analysis significantly interacting with NLR level. As heterogeneity was

BMJ Open

133	detected among primary studies, meta-analysis was pooled using the random effects models with
134	DerSimonian Laird method ¹⁴ . Between-study heterogeneity was assessed using Cochran Q test
135	and I^2 statistic. $P < .10$ was considered statistically significant for Cochran Q test, $I^2 > 50\%$
136	indicating substantial heterogeneity between studies. Potential sources of heterogeneity were then
137	investigated using subgroup analyses and meta-regression. All statistical tests were two-sided and
138	the significance level was set at 0.05. The possibility of publication bias was assessed using the
139	Begg test and visual insection of a funnel plot ¹⁵ . We also performed the Duval and Tweedie
140	nonparametric "trim and fill" procedure to further assess the possible effect of publication bias in
141	our meta-analysis ¹⁶ . All statistical manipulations were undertaken using the program STATA
142	version 12.0 (Stata Corporation, College Station, TX).
143	
144	Results Study characteristics
145	Study characteristics
146	The initial search algorithm retrieved a total of 403 studies. After the title and abstract reviewed,
147	only 30 records were identified regarding the association of NLR and RCC (Figure 1). After
148	full-text review, a total of 14 retrospective studies ^{12,17-29} (15 cohorts) with 3357 RCCs were

included in our meta-analysis. The study by Hatakeyama et al²⁹ reported the HR and 95% CI of

two different cohorts separately. If the patients were overlapping or partially overlapping in

several studies, only the study with the most complete data was included.

The basic features of the 14 studies were summarized in Table 1. Median quality score of the involved studies was 6 (range: 4-8). Eight studies were from western countries, including the USA, Italy, Belgium, Austria, Canada, and Australia. The rest studies were from Turkey and Japan.

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

2
~
3
4
5
ĉ
6
7
8
0
9
10
11
10
12
13
14
15
10
16
17
10
10
19
20
21
21
22
23
2 3 4 5 6 7 8 9 10 11 21 31 4 15 6 17 8 9 10 11 21 31 4 15 6 17 8 9 10 11 21 31 4 15 6 17 8 19 20 12 22 32 4 25 6 27 28 29 30 11 32 33 34 35 6 37 8 39 0
24 05
25
26
27
21
28
29
30
00
31
32
33
0.0
34
35
36
00
31
38
39
40
40
41
42
43
40
44
45
46
40
47
48
49
73
50
51
52
52
53
54
55
50
56
57
58
59
99
60

155	Seven of these cohorts enrolled more than 200 patients and eight had less than 200 patients.
156	Radical and partial nephrectomy as only initial treatment for non-metastatic RCC was reported in
157	four studies. Others were treated with mixed therapies, including nephrectomy, immunotherapy,
158	targeted therapy and others. NLR was calculated using the white blood cell differentiated counts in
159	all studies. In the study by Cetin et al. ²² , some of the adjustment variables used in multivariate
160	analysis was significantly associated with NLR value, so HR and 95% CI from univariate analysis
161	for both PFS and OS were used in our meta-analysis.
162	
163	NLR and OS in RCC
164	There were 13 cohorts presenting the data of pre-treatment NLR and OS in RCC patients.
165	Elevated NLR was significantly associated with shorter OS (HR = 1.82; 95% CI: 1.51-2.19; $p <$
166	0.001; Figure 2), but there was evidence of moderate heterogeneity between studies ($I^2 = 52.8\%$; p
167	= 0.013).
168	= 0.013). NLR and RES/PES in RCC
169	NLR and RFS/PFS in RCC
170	There were 10 cohorts presenting the data of pre-treatment NLR and RFS/PFS in RCC patients. A
171	significant relationship between elevated pre-treatment NLR and shorter RFS/PFS (HR = 2.18;
172	95% CI: 1.75-2.71; $p < 0.001$; Figure 3) with non-significant heterogeneity ($I^2 = 25.0\%$; $p = 0.214$)
173	was detected according to our pooled estimates.
174	
175	Subgroup analysis and meta-regression
176	To explore the heterogeneity, subgroup analysis and meta-regression were performed by study
	8

BMJ Open

region (eastern vs. western countries), sample size (≥200 vs. <200), cut-off value defining "elevated NLR" (>3 vs. <3), therapeutic intervention (nephrectomy only vs. mixed therapies), type of RCC (clear cell RCC vs. non-clear cell RCC/NA; If the majority of patients were clear cell RCC in one study, the study was assigned to clear cell RCC subgroup; NA: not mentioned) and NOS score (≥ 6 vs. < 6). Subgroup analysis did not alter the prognostic role of NLR in OS or RFS/PFS substantially (Table 2), except for stratified analysis³⁰ by cut-off of NLR in PFS/RFS. Meta-regression showed consistent results with subgroup analysis. Sensitivity analyses Each single cohort included in our meta-analysis was deleted every time to investigate the influence of individual data set on the pooled HR. Results of sensitivity analyses indicated the robustness of our findings (data not shown). Publication bias Visual inspection of the Begg funnel plot revealed asymmetry (p = 0.001 in OS and p = 0.003 in RFS/PFS) (Figure 4A), which raised the possibility of publication bias. Because of this, we undertook sensitivity analysis using the trim and fill method, which conservatively imputes hypothetical negative unpublished studies to mirror the positive studies that cause funnel plot asymmetry. The imputed studies produced a symmetrical funnel plot (Figure 4B). The pooled

- association between elevated NLR and prognosis of RCC patients (HR: 1.54, 95% CI: 1.25-1.88;
- *p*<0.001 in OS and HR: 1.85, 95% CI, 1.45-2.36; *p*<0.001 in RFS/PFS).

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

analysis incorporating the hypothetical studies continued to show a statistically significant

199	
200	Discussion
201	The TNM staging and Robson's staging system cannot estimate the outcomes of RCC patients
202	precisely or guide the clinical practice appropriately, lots of patients in the same stage turned out
203	to be quite different in prognosis. Therefore, introduction of new laboratory index as a
204	supplementary item to current RCC risk stratification system which mainly focuses on the
205	biological characteristics of tumor itself is really urgent for personalizing the optimal treatment
206	strategy.
207	As hematological tests are routinely conducted in RCC patients before medical intervention,
208	NLR acts as a simple, robust and convenient parameter of the inflammatory response. To our
209	knowledge, the present study is the first meta-analysis systemically and comprehensively
210	determining the exact relationship between elevated NLR and clinical outcomes of RCC patients.
211	We found that increased NLR has an unfavorable effect on both OS and RFS/PFS in RCC patients.
212	As there was heterogeneity existing among included studies, we also conducted subgroup analyses
213	based on study region, sample size, cut-off value of NLR, therapeutic intervention, type of RCC
214	and NOS score. No significant change was found according to subgroups. From the results above,
215	NLR is a promising prognostic biomarker to help make better clinical decision on RCC treatment
216	and outcomes.
217	We tried to figure out the source of heterogeneity observed among included studies by
218	meta-regression and interaction revisited between subgroup estimates analyses. Though
219	meta-regression did not find any possible reasons for heterogeneity in our meta-analysis for OS,
220	sample size ($p = 0.132$) and NOS score ($p = 0.083$) according to results of interaction revisited

BMJ Open

221	between subgroup estimates may partially explain the inter-study heterogeneity. In the same way,
222	we found NLR cut-off value ($p = 0.004$) and tumor type ($p = 0.151$) were responsible for the mild
223	heterogeneity in RFS/PFS. It is inevitable that studies with smaller sample size or lower NOS
224	score are more likely to gain statistic heterogeneity. Authors of included studies defined the cut-off
225	value of NLR, which best discriminated between good and poor survival, on the basis of different
226	methods. Pooled analysis of studies with cut-off value no more than 3 indicated a superior
227	prognostic role in RCC patients than studies with cut-off value higher than 3. We suppose that
228	some patients with poor outcomes were wrongly classified into the low risk group if the cut-off is
229	too large, which leads to an underestimate of the role of NLR in outcomes of RCC patients.
230	Although NLR is a sensitive prognostic indicator in retrospective researches, prospective clinical
231	trials are still warranted to evaluate the exact value of NLR in predicting the prognosis of RCC
201	and the sum warranted to evaluate the shart value of value of value and prognosis of rece
232	patients.
232	patients.
232 233	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting
232 233 234	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general
232 233 234 235	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients
232 233 234 235 236	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients is not an artifact of unpublished negative studies.
232 233 234 235 236 237	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients is not an artifact of unpublished negative studies. In our analysis, subgroup defined as Nephrectomy only also represented patients group with
232 233 234 235 236 237 238	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients is not an artifact of unpublished negative studies. In our analysis, subgroup defined as Nephrectomy only also represented patients group with clinically localized disease, while patients with metastatic disease were stratified to the mixed
232 233 234 235 236 237 238 239	patients. Although the funnel plot analysis showed some asymmetry in our meta-analysis suggesting the possibility of publication bias, the trim and fill sensitivity analysis did not change the general result, suggesting that the association of higher NLR value and poorer prognosis of RCC patients is not an artifact of unpublished negative studies. In our analysis, subgroup defined as Nephrectomy only also represented patients group with clinically localized disease, while patients with metastatic disease were stratified to the mixed therapies subgroup. According to our results, elevated NLR was associated with both increased

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

243	nephrectomy, especially in patients with elevated NLR before treatment.
244	Owing to limited data from available studies, we did not conduct pooled analysis on the
245	correlation between elevated NLR and the clinicopathological parameters of RCC. As reported in
246	several studies ^{22,24,27} , high NLR was closely correlated with a more malignant tumor
247	characteristics, as well as changed blood and biologic indexes. Taken all these into consideration,
248	there may be a significant association between NLR and pathologic features and other known risk
249	factors of RCC, but more clinical studies focusing on these relationships are still needed to help us
250	better understand how NLR influences prognosis of RCC patients.
251	There are other laboratory markers of systemic inflammation reaction besides NLR, such as
252	C-reactive protein ³¹ and modified Glasgow prognostic score ^{32,33} , playing a prognostic role in RCC
253	patients. What's more, gene polymorphisms ³⁴ and biological markers ^{35,36} are also suggested to be
254	predictors of prognosis in RCC patients. However, factoring in cost-effective analysis and
255	accessibility, NLR stands out for its low economic costs and widely availableness even in primary
256	hospitals. The results of our meta-analysis encourage routinely monitoring of NLR to predict
257	recurrence, progress and survival outcomes in RCC patients, irrespective of the detailed
258	therapeutic intervention, stage and type of tumor and geographic region.
259	NLR is an inflammation marker. High NLR represents systemic and local inflammatory
260	response to tumor, which provids a favorable microenvironment for tumor invasion and

response to tumor, which provids a favorable microenvironment for tumor invasion and
metastasis⁵. As traditional chemotherapy and immunotherapy are with limited benefit in metastatic
RCC, treatment remains quite a challenge for clinicians. Now targeted therapy on vascular
endothelial growth factor (VEGF) is generally recognized as first choice for metastatic patients³⁷.
A major difficulty in developing anti-VEGF therapies is tumor intrinsic refractoriness and the

BMJ Open

265	emergence of treatment-induced resistance. Tumor-associated macrophages (TAMs) are identified
266	to mediate refractoriness to anti-VEGF treatment recently ³⁸ . TAMs promote systemic neutrophilia
267	via secreting cytokines such as $IL-6^{39}$, so high NLR is associated with high infiltration of TAMs ⁴⁰ .
268	On the other hand, tumor can produce immunosuppressive cytokines and reduce cytotoxic T
269	lymphocyte infiltration ⁴¹ . Thus NLR not only reflects system immune status but also tumor
270	microenvironment which favors tumor invasion and suppresses the host immune surveillance.
271	Hence, NLR acts as an effective prognostic predictor for VEGF-targeted therapy in metastatic
272	patients.
273	In conclusion, the present meta-analysis demonstrates that elevated NLR is closely associated
274	with poorer prognostic outcome of RCC patients in different stages. NLR is a widely available,
275	robust and convenient predictor. It helps to figure out patients with high risk and not sensitive to
276	targeted therapy, for whom clinician are urged to adjust the management accordingly. Further
277	research on the best therapeutic schedule fitted with patients of high NLR is needed in the near
278	future.
279	
280	Contributorship Statement
281	Study concept and design: All authors. Acquisition, analysis, or interpretation of data: Hu, Lou.
282	Drafting of the manuscript: Hu. Critical revision of the manuscript for important intellectual
283	content: All authors. Statistical analysis: Hu, Lou. Obtained funding: Zhang. Administrative,
284	technical, ormaterial support: Zhang. Study supervision: Zhang, Ye.
285	
286	Competing Interests

BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

2	
3	
1	
4	
5	
6	
7	
ß	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
40	
10	
19	
20	
21	
22	
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 22\\ 24\\ 25\\ 26\\ 27\\ 22\\ 26\\ 27\\ 22\\ 26\\ 27\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26$	
23	
24	
25	
26	
20	
27	
28	
29	
30	
20	
27 28 29 30 31 32 33 34	
32	
33	
33 34 35	
34 35 36 37 38 39	
30	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
-	
53	
54	
55	
56	
57	
58	
59	
60	
00	

287	There w	vere no competing interests.
288		
289	Fundin	g
290	This wo	ork was supported by Natural Science Foundation of Zhejiang Province (Y13H140006),
291	and the	National Natural Science Foundation of China (Grant Number: 30471987).
292		
293	Data S	haring
294	There w	vas no additional unpublished data.
295		
296	Refere	nces
297	1	Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. <i>Lancet</i> 373 , 1119-1132,
298	2	doi:10.1016/S0140-6736(09)60229-4 (2009).
299	2	Chow, W. H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer.
300 301	3	Nature reviews. Urology 7 , 245-257, doi:10.1038/nrurol.2010.46 (2010). Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. <i>CA: a cancer journal for</i>
301	5	<i>clinicians</i> 63 , 11-30, doi:10.3322/caac.21166 (2013).
303	4	MacDonald, N. Cancer cachexia and targeting chronic inflammation: a unified approach to
304	-	cancer treatment and palliative/supportive care. The journal of supportive oncology 5,
305		157-162; discussion 164-156, 183 (2007).
306	5	Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. <i>Cell</i> 140 ,
307	-	883-899, doi:10.1016/j.cell.2010.01.025 (2010).
308	6	Hutterer, G. C. et al. Low preoperative lymphocyte-monocyte ratio (LMR) represents a
309		potentially poor prognostic factor in nonmetastatic clear cell renal cell carcinoma. Urologic
310		oncology 32 , 1041-1048, doi:10.1016/j.urolonc.2014.04.001 (2014).
311	7	Roxburgh, C. S. & McMillan, D. C. Role of systemic inflammatory response in predicting
312		survival in patients with primary operable cancer. Future Oncol 6, 149-163,
313		doi:10.2217/fon.09.136 (2010).
314	8	Proctor, M. J. et al. A comparison of inflammation-based prognostic scores in patients with
315		cancer. A Glasgow Inflammation Outcome Study. Eur J Cancer 47, 2633-2641,
316		doi:10.1016/j.ejca.2011.03.028 (2011).
317	9	Pichler, M. et al. High plasma fibrinogen level represents an independent negative prognostic
318		factor regarding cancer-specific, metastasis-free, as well as overall survival in a European
319		cohort of non-metastatic renal cell carcinoma patients. British journal of cancer 109,
320		1123-1129, doi:10.1038/bjc.2013.443 (2013).
		14

BMJ Open

2			
3	321	10	Li, M. X. et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: A
4	322		systematic review and meta-analysis. International journal of cancer. Journal international du
5	323		<i>cancer</i> 134 , 2403-2413, doi:10.1002/ijc.28536 (2014).
6	324	11	Xiao, W. K. <i>et al.</i> Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular
7 8		11	
9	325	10	carcinoma: a meta-analysis. <i>BMC cancer</i> 14 , 117-126, doi:10.1186/1471-2407-14-117 (2014).
10	326	12	Ohno, Y. et al. Clinical variables for predicting metastatic renal cell carcinoma patients who
11	327		might not benefit from cytoreductive nephrectomy: neutrophil-to-lymphocyte ratio and
12	328		performance status. International journal of clinical oncology 19, 139-145,
13	329		doi:10.1007/s10147-012-0514-5 (2014).
14 15	330	13	Proctor, M. J. et al. A comparison of inflammation-based prognostic scores in patients with
16	331		cancer. A Glasgow Inflammation Outcome Study. Eur J Cancer 47, 2633-2641, doi:DOI
17	332		10.1016/j.ejca.2011.03.028 (2011).
18	333	14	DerSimonian, R. & Kacker, R. Random-effects model for meta-analysis of clinical trials: an
19	334		update. Contemporary clinical trials 28, 105-114, doi:10.1016/j.cct.2006.04.004 (2007).
20	335	15	Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for
21 22	336	-	publication bias. <i>Biometrics</i> 50 , 1088-1101 (1994).
23	337	16	Duval, S. & Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and
24	338	10	adjusting for publication bias in meta-analysis. <i>Biometrics</i> 56 , 455-463 (2000).
25		17	
26	339	17	De Martino, M. <i>et al.</i> Prognostic impact of preoperative neutrophil-to-lymphocyte ratio in
27	340		localized nonclear cell renal cell carcinoma. <i>Journal of Urology</i> 190 , 1999-2004 (2013).
28 29	341	18	Ohno, Y. et al. Followup of neutrophil-to-lymphocyte ratio and recurrence of clear cell renal
30	342		cell carcinoma. <i>Journal of Urology</i> 187 , 411-417 (2012).
31	343	19	Dirican, A. et al. Prognostic and predictive value of hematologic parameters in patients with
32	344		metastatic renal cell carcinoma: second line sunitinib treatment following IFN-alpha. Asian
33	345		Pacific journal of cancer prevention : APJCP 14 , 2101-2105 (2013).
34 35	346	20	Keizman, D. et al. Active smoking may negatively affect response rate, progression-free
36	347		survival, and overall survival of patients with metastatic renal cell carcinoma treated with
37	348		sunitinib. <i>The oncologist</i> 19 , 51-60, doi:10.1634/theoncologist.2012-0335 (2014).
38	349	21	Santoni, M. et al. Pre-treatment neutrophil-to-lymphocyte ratio may be associated with the
39	350		outcome in patients treated with everolimus for metastatic renal cell carcinoma. British
40	351		journal of cancer 109 , 1755-1759, doi:10.1038/bjc.2013.522 (2013).
41 42	352	22	Cetin, B. <i>et al.</i> Is the pretreatment neutrophil to lymphocyte ratio an important prognostic
43		22	
44	353		parameter in patients with metastatic renal cell carcinoma? <i>Clinical genitourinary cancer</i> 11 ,
45	354		141-148, doi:10.1016/j.clgc.2012.09.001 (2013).
46	355	23	Forget, P. et al. Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or diclofenac
47	356		are prognostic factors in different cohorts of patients undergoing breast, lung, and kidney
48 49	357		cancer surgery. Annals of surgical oncology 20 Suppl 3 , S650-660,
49 50	358		doi:10.1245/s10434-013-3136-x (2013).
51	359	24	Pichler, M. et al. Validation of the pre-treatment neutrophil-lymphocyte ratio as a prognostic
52	360		factor in a large European cohort of renal cell carcinoma patients. British journal of cancer
53	361		108 , 901-907, doi:10.1038/bjc.2013.28 (2013).
54 55	362	25	Kobayashi, M. et al. Changes in peripheral blood immune cells: their prognostic significance
55 56	363		in metastatic renal cell carcinoma patients treated with molecular targeted therapy. <i>Medical</i>
57	364		oncology (Northwood, London, England) 30 , 556, doi:10.1007/s12032-013-0556-1 (2013).
58	504		
59			15
60			

365	26	Templeton, A. J. et al. Neutrophil to lymphocyte ratio (NLR) and its effect on the prognostic
366		value of the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC)
367		model for patients treated with targeted therapy (TT). <i>Journal of Clinical Oncology</i> 32 (2014).
368	27	Fox, P. et al. Markers of systemic inflammation predict survival in patients with advanced
369		renal cell cancer. British journal of cancer 109 , 147-153, doi:10.1038/bjc.2013.300 (2013).
370	28	Huang, P. et al. The association of pretreatment (pre-tx) neutrophil to lymphocyte ratio (NLR)
371		with outcome of sunitinib tx in patients (pts) with metastatic renal cell carcinoma (mRCC).
372		Journal of Clinical Oncology 29 (2011).
373	29	Hatakeyama, S. et al. Prognostic benefit of surgical management in renal cell carcinoma
374		patients with thrombus extending to the renal vein and inferior vena cava: 17-year
375		experience at a single center. BMC urology 13 , 47, doi:10.1186/1471-2490-13-47 (2013).
376	30	Altman, D. G. & Bland, J. M. Interaction revisited: the difference between two estimates. BMJ
377		326 , 219 (2003).
378	31	Jagdev, S. P. et al. Improving the accuracy of pre-operative survival prediction in renal cell
379		carcinoma with C-reactive protein. British journal of cancer 103, 1649-1656,
380		doi:10.1038/sj.bjc.6605973 (2010).
381	32	Lamb, G. W., Aitchison, M., Ramsey, S., Housley, S. L. & McMillan, D. C. Clinical utility of the
382		Glasgow Prognostic Score in patients undergoing curative nephrectomy for renal clear cell
383		cancer: basis of new prognostic scoring systems. British journal of cancer 106, 279-283,
384		doi:10.1038/bjc.2011.556 (2012).
385	33	Tai, C. G. et al. External validation of the modified Glasgow prognostic score for renal cancer.
386		Indian journal of urology : IJU : journal of the Urological Society of India 30 , 33-37,
387		doi:10.4103/0970-1591.124203 (2014).
388	34	de Martino, M., Haitel, A., Schatzl, G. & Klatte, T. The protease activated receptor 1 gene
389		variation IVSn -14 A>T is associated with distant metastasis and cancer specific survival in
390 391		renal cell carcinoma. <i>The Journal of urology</i> 190 , 1392-1397, doi:10.1016/j.juro.2013.03.041
391	35	(2013). Vilella-Arias, S. A. <i>et al.</i> Loss of caspase 7 expression is associated with poor prognosis in
392	30	renal cell carcinoma clear cell subtype. Urology 82 , 974 e971-977,
393		doi:10.1016/j.urology.2013.06.026 (2013).
395	36	Shi, X. <i>et al.</i> Prognostic prediction and diagnostic role of intercellular adhesion molecule-1
396	50	(ICAM1) expression in clear cell renal cell carcinoma. <i>Journal of molecular histology</i> , 1-8,
397		doi:10.1007/s10735-014-9568-1 (2014).
398	37	Diamond, E., Riches, J., Faltas, B., Tagawa, S. T. & Nanus, D. M. Immunologics and
399		Chemotherapeutics for Renal Cell Carcinoma. Seminars in interventional radiology 31 , 91-97,
400		doi:10.1055/s-0033-1363848 (2014).
401	38	Gerber, H. P., Olazoglu, E. & Grewal, I. S. Targeting inflammatory cells to improve anti-VEGF
402		therapies in oncology. Recent results in cancer research. Fortschritte der Krebsforschung.
403		Progres dans les recherches sur le cancer 180 , 185-200, doi:10.1007/978-3-540-78281-0_11
404		(2010).
405	39	Santoni, M. et al. Emerging role of tumor-associated macrophages as therapeutic targets in
406		patients with metastatic renal cell carcinoma. Cancer immunology, immunotherapy : CII 62,
407		1757-1768, doi:10.1007/s00262-013-1487-6 (2013).
408	40	Mano, Y. et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after
		16

1			
2			
3 4	409		hepatectomy for hepatocellular carcinoma: a retrospective analysis. Annals of surgery 258,
5	410		301-305, doi:10.1097/SLA.0b013e318297ad6b (2013).
6	411	41	Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles
7	412		in cancer suppression and promotion. Science 331 , 1565-1570, doi:10.1126/science.1203486
8 9	413		(2011).
10	414		
11	415		
12			
13 14	416		
14	110		
16	417		
17	,		
18			
19 20			
21			
22			
23			
24 25			
26			
27			
28			
29 30			
31			
32			
33			
34 35			
36			
37			
38			
39 40			
41			
41 42 43			
43			
44 45			
45			
47			
48			
49 50			
51			
52 53 54			
53			
54 55			
56			
57			
55 56 57 58 59			
59 60			17

418 Tables

419 Table 1. Main characteristics of included studies in the meta-analysis.

	1			ſ	1	I	1	Γ	1
Study cohort	Year	Study	Research time	Follow-up	Treatment	No. (M/F)	Age (years)	Tumor type	No. of dista
		region		(month)					metastasis
Martino et	2013	USA	1995-2012	Mean:49; IQR:	Radical and partial nephrectomy	202/79	Mean: 63; IQR: (54-72)	nonclear cell RCC	0
<i>al</i> [17]				(15-71)					
Ohno et	2012	Japan	1990-2008	Mean±SD:	Radical and partial nephrectomy	186/64	Mean±SD:(61±12)	clear cell RCC	0
<i>al</i> [18]				(75±54)					
Ohno et	2014	Japan	1990-2008	Mean (range):	Cytoreductive nephrectomy: Yes	61/12	Cytoreductive nephrectomy	mRCC	73
<i>al</i> [12]				20.6(1-114)	48; No 25		[Median (range)]: Yes:		
							63(38-79); No: 65(34-88)		
Dirican et	2013	Turkey	2006-2011	Median:13.43;	Nephrectomy, INF-α, sunitinib	17/6	Median (range): 59(43-76)	clear cell RCC:18;	23
<i>al</i> [19]				Range:				Non-clear cell RCC: 5	
				(1.97-40.91)					
Keizman et	2014	USA,	2004-2013	NA	Sunitinib	186/92	Median: 63	mRCC	278
<i>al</i> [20]		Israel							
Santoni et	2013	Italy	2005-2013	Median:46.9;	Past nephrectomy: 91; second-line	70/27	Median:64; 95% CI:	mRCC	97
<i>al</i> [21]				95% CI:	everolimus: 65; third-line		(44-82)		
				(39.9-53.9)	everolimus: 32				
Cetin et	2013	Turkey	2008-2011	Median:15;	First line therapy with IFN-α;	76/24	Median (range): 58(24-80)	mRCC: clear cell 73;	100: liver
<i>al</i> [22]				Range: (1-53)	second line therapy with VEGF			non-clear cell 24;	17; bone 24
					targeted TKIs			unknown 3	lung 65
Forget et	2013	Belgium	1993-2005	Median:74.5;	Radical nephrectomy	71/156	Mean±SD: (63±12)	Clear cell 166;	0
al[23]				IQR: (31-112)				tubulo-papillary 29;	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8 9 10	
11 12 13 14 15 16 17 18 19	
20 21 22 23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37 38 39	
40 41 42 43 44 45 46 47 48 49	

Pichler et 20 al[24]	013 Austria						others 28	
		2000-2010	Mean (range): 44(0-130)	Curative radical or partial nephrectomy	Total: 678	Mean±SD: (63.7±11.9)	clear cell RCC	0
Kobayashi et 20 al[25]	013 Japan	2008-2012	Median:12; Range: (1.1-48.9)	Radical nephrectomy, cytokine therapy and sorafenib, sunitinib or mTORi	44/14;	Median (range): 64(53-81)	mRCC	26
Templeton <i>et</i> 20 <i>al</i> [26]	014 Canada	NA	NA	Targeted therapy	Total: 859	NA	RCC	NA
Fox <i>et al</i> [27] 20	013 Austral	a 2002-2005	NA	As in EGF20001	268/94	Median (range): 62(19-84)	mRCC	362
Huang <i>et</i> 20 <i>al</i> [28]	011 USA	2004-2011	Median: 35	Sunitinib	Total: 109	NA	mRCC	109
Hatakeyama 20 et al[29]	013 Japan	1995-2013	Surgery: 26; immunotherapy or IFN-α: 5	Radical nephrectomy with thrombectomy, immunotherapy or IFN- α	55/30;	Mean±SD: (62±12)	RCC with tumor thrombus	14

421

-								
	Study cohort NLR value		Cut-off	No. of elevated	No. of elevated Survival analysis		Adjustment variables	NOS score
				NLR				
	Martino et	Median (IQR): 2.6(1.9-3.6)	3.6	NA	RFS (DFS)	R(M)	Age, gender, ECOG performance score, pT stage, TNM group, grade,	7
	<i>al</i> [17]						MVI, subtype, ANC, ALC	
	Ohno et	Mean \pm SD: 2.62 \pm 1.44	2.7	84	RFS	R(M)	Age, presentation, nephrectomy, tumor size, pT, grade, MVI, eastern	8
	<i>al</i> [18]						Cooperative Oncology Group, neutriphil, lymphocytes	
	Ohno et	Mean±SD: 3.98 ± 2.27	4	NA	OS	R(M)	Age, presentation mode, T stage, ECOG PS, Charlson comorbidity	5
	<i>al</i> [12]						index, hemoglobin, LDH, corrected calcium, CRP, neutrophils,	
							Lymphocytes	

19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
2 3 4 5 7	
8	
9 10	
12 13	
14 15 16	
17 18 19	
20 21	
22 23 24	
25 26 27	
28 29 30	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 44 35 36 37 38	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46	
47 48 49	

Dirican al[19]	et	NA	3	NA	OS,PFS	E(U)	/	4
	et	NA	3	NA	OS,PFS	R(M)	unclear	5
Santoni <i>al</i> [21]	et	Median: 2.2	3	38	OS,PFS	R(M)	Gender, age, Motzer prognostic group, PFS on first-line therapy, neutrophilia	6
Cetin <i>al</i> [22]	et	Median: 3.04	3.04	50	OS,PFS	R(U)	Age, tumor history, sex, hemoglobin level, red cell distribution width, albumin level, alkaline phosphatase level, PFS, site and number of metastatic organ, MSKCC score, dose reduction, second-line mTOR inhibitors	5
Forget <i>al</i> [23]	et	Median (IQR): 3.01(1.97-4.49)	5	52	OS,RFS	R(U)	Age, sex, node status, histological grade, stage	8
Pichler al[24]	et	Mean±SD: 3.51 ± 2.49	3.3	398	OS,RFS(MFS),CSS	R(M)	Age, gender, T stage, tumor grade, presence of tumor necrosis	7
Kobayashi <i>al</i> [25]	et	Mean±SD: sorafenib: 4.25±3.01; sunitinib: 4.50±3.43; mTORi: 4.26±2.87	4.41	sorafenib: 8; sunitinib: 23; mTORi: 16	OS,PFS	R(M) in OS, E(U) in PFS	Karnofsky PS, metastasis at presentation, number of metastasis, prior nephrectomy, prior cytokine therapy, initial targeted agent, Heng's risk classification, pre-treatment level of hemoglobin, platelet count, albumin, CRP, corrected calcium	5
Templeton al[26]	et	Mean: 4.98; Median(95%CI): 3.51(1.42-14.0)	2.5	622	OS	R(M), E(U)	6 international metastatic renal cell carcinoma database consortium(IMDC)	/
Fox et al[27	7]	NA	3	188	OS	R(M)	MSKCC and systemic inflammation markers	7
Huang <i>al</i> [28]	et	NA	3	57	OS,PFS	R(U)		/
Hatakeyama et al[29]	a	Mean±SD: 3.1 ± 1.5	NA	NA	OS	R(U,M)	Age, ECOG-performance status, gender, thrombus level, distant metastasis, underwent surgy, hemoglobin, serum albumin, eGFR,	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

								esterase, serum sodium, correlated calcium, LDH, CRP, n comorbidity index, molecular targeted agents				
progress fro HR comes	ee survival; N from multiva	AFS: metasta riate analysi	asis free survival; IQR:	interquartile rar	nge; HR: ł	nazard ratio, ol	otained by	urrence free survival; DF reporting in text (R), or NOS: Newcastle-Ottawa	estimatir	ng (E). "M" means th		
Analysis		N		Random-effects model		Heterogeneity		Interaction revisited		Meta-regression		
-			References	HR(95%CI)	p	I ²	р	Ratio of Hazard ratio (RHR) (95%CI)	р	p		
Overal surviv	al (OS)	12(13)	12,19-29	1.82(1.51-2.19)	< 0.001	52.80%						
	Western	7	20,21,23,24,26-28	1.73(1.39-2.14)	< 0.001	39.80%	0.126					
Subgroup 1: Study region	countries											
1: Study		5(6)	12,19,22,25,29	2.06(1.41-3.02)	<0.001	67.70%	0.013	0.84(0.54-1.30)	0.434	0.680		
1: Study	countries Eastern	5(6)	20,23,24,26,27	2.06(1.41-3.02) 1.60(1.30-1.96)	<0.001	67.70% 34.60%	0.013	0.84(0.54-1.30)	0.434	0.680		
l : Study region Subgroup 2: Sample	countries Eastern countries						(0.84(0.54-1.30)	0.434	0.680		

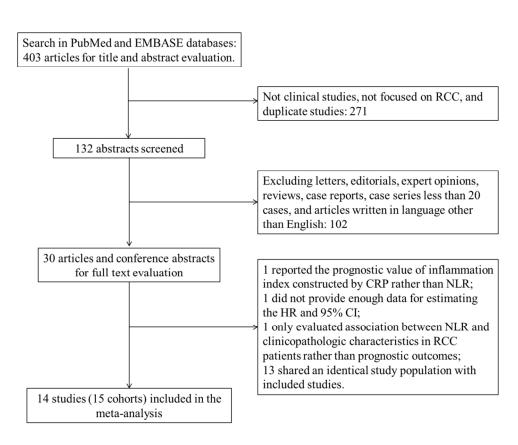
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	≤3	6	19-21,26-28	2.07(1.51-2.83)	< 0.001	63.60%	0.017	0.99(0.63-1.55)	0.950	0.959
Subgroup	Nephrectomy	2	23,24	1.52(1.06-2.17)	0.022	0	0.615			
4:	only									
Therapeutic										
intervention										
	Mixed	10(11)	12,19-22,25-29	1.92(1.54-2.38)	< 0.001	60.10%	0.005	0.79(0.52-1.20)	0.275	0.424
	therapies									
Subgroup	≥6	4	21,23,24,27	1.51(1.24-1.84)	< 0.001	0	0.594			
5: NOS										
score										
	<6	8(9)	12,19,20,22,25,28,29	2.06(1.51-2.70)	< 0.001	65.10%	0.003	0.73(0.51-1.04)	0.083	0.313
Subgroup	Non-clear	7(8)	12,20,21,25,26,28,29	1.87(1.45-2.42)	< 0.001	58.20%	0.065			
6: Tumor	cell RCC/NA									
type										
	Clear cell	5	19,22-24,27	1.82(1.32-2.50)	< 0.001	53.70%	0.067	1.03(0.68-1.55)	0.891	0.859
	RCC									
Progress f	ree survival	10	17,18,19-25,28	2.18(1.75-2.71)	< 0.001	25%				
(PFS)/Recurr	ence free									
survival (RFS	5)									
Subgroup	Western	6	17,20,21,23,24,28	2.20(1.64-2.96)	< 0.001	35.70%	0.169			
1: Study	countries									
region										
	Eastern	4	18,19,22,25	2.23(1.51-3.28)	< 0.001	28.60%	0.241	0.99(0.61-1.61)	0.957	0.958
	countries			, , ,				. ,		
Subgroup	≥200	5	17,18,20,23,24	2.25(1.56-3.24)	< 0.001	51.30%	0.084			
2: Sample										

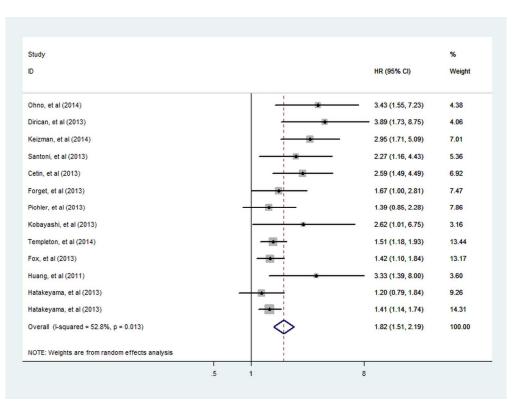
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

size										
	<200	5	19,21,22,25,28	2.15(1.62-2.85)	< 0.001	0	0.444	1.05(0.66-1.66)	0.847	0.950
Subgroup	>3	5	17,22-25	1.74(1.39-2.17)	< 0.001	0	0.675			
3: Cut-off										
value										
	≤3	5	18,19-21,28	3.08(2.24-4.24)	< 0.001	0	0.867	0.56(0.38-0.83)	0.004	0.020
Subgroup	Nephrectomy	4	17,18,23,24	2.00(1.40-2.85)	< 0.001	39.90%	0.172			
4:	only									
Therapeutic										
intervention										
	Mixed	6	19-22,25,28	2.36(1.79-3.12)	< 0.001	11.40%	0.342	0.85(0.54-1.33)	0.472	0.404
	therapies									
Subgroup	≥6	5	17,18,21,23,24	2.08(1.53-2.84)	< 0.001	33.60%	0.197			
5: NOS										
score										
	<6	5	19,20,22,15,28	2.35(1.67-3.32)	< 0.001	26.50%	0.245	0.89(0.56-1.41)	0.605	0.622
Subgroup	Non-clear	5	17,20,21,25,28	2.62(1.94-3.53)	< 0.001	0	0.644			
6: Tumor	cell RCC/NA									
type										
	Clear cell	5	18,19,22-24	1.92(1.42-2.59)	< 0.001	34.10%	0.194	1.36(0.89-2.09)	0.151	0.112
	RCC									

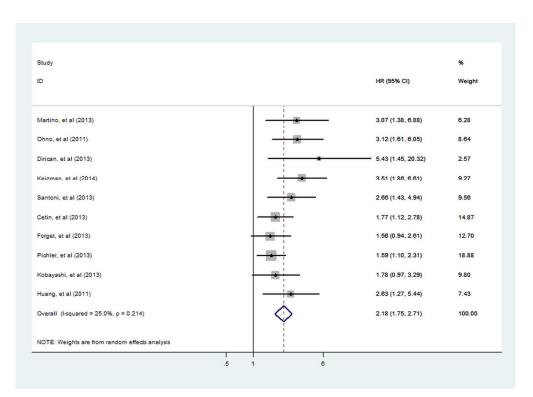
34 ⁴³⁰


 N: number of studies (cohorts); HR: hazard ratio; 95%CI: 95% confidence interval; Subgroup analyses for OS and RFS/PFS were performed by study region (eastern vs. western countries), sample size (\geq 200 vs. <200), cut-off value (>3 vs. \leq 3), therapeutic intervention (nephrectomy only vs. mixed therapies), type of RCC (Clear cell RCC vs. Non-clear cell RCC/NA) and NOS score (\geq 6 vs. <6). Interaction revisited of estimates between subgroups and meta-regression were also applied to figure out heterogeneity among studies.

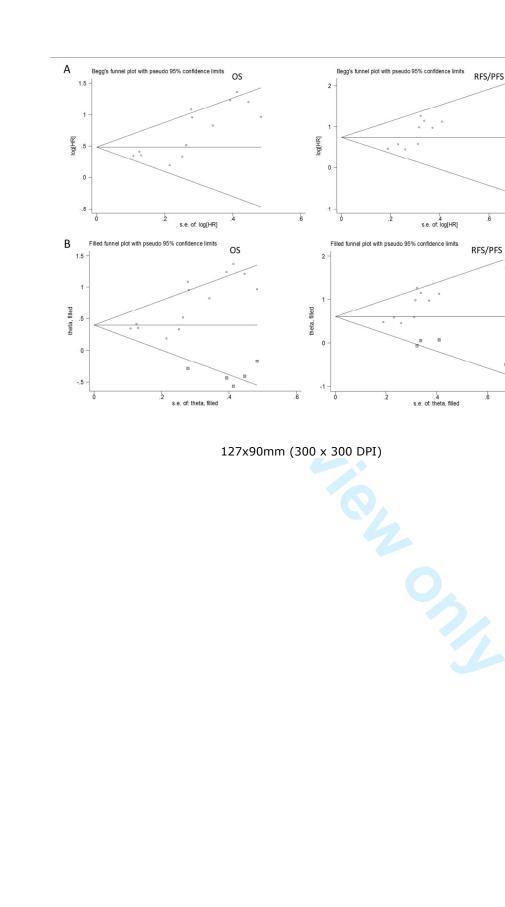
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2014-006404 on 8 April 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open


435	Figure Legends
436	Figure 1. Flow chart of study selection process.
437	
438	RCC: renal cell carcinoma; CRP: C-reactive protein; NLR: neutrophil-lymphocyte ratio; HR:
439	hazard ratio; CI: confidence interval.
440 441	
441	Figure 2. Meta-analysis of the association between elevated NLR and OS of RCC. Results are
442 443	presented as individual and pooled hazard ratio (HR) and 95% confidence interval (CI).
444	presented as individual and pooled nazard ratio (Tite) and 95% confidence interval (Cf).
445	
446	Figure 3. Meta-analysis of the association between elevated NLR and RFS/PFS of RCC.
447	Results are presented as individual and pooled hazard ratio (HR) and 95% confidence interval
448	(CI).
449	
450	
451	Figure 4. Funnel plots without and with trim and fill.
452	
453	The pseudo 95% confidence interval (CI) is computed as part of the analysis that produces the
454	funnel plot, and corresponds to the expected 95% CI for a given standard error (SE). HR indicates
455	hazard ratio.
456	
	funnel plot, and corresponds to the expected 95% CI for a given standard error (SE). HR indicates hazard ratio.

Flow chart of study selection process. 108x90mm (300 x 300 DPI)


118x90mm (300 x 300 DPI)

123x90mm (300 x 300 DPI)

.8

.8

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page
TITLE	<u> </u>		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	#1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	#2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	#3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	#4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	#4
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	#5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	#4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	#4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	#5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	#5
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	#5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	#5
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	#5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	#6

48 10

PRISMA 2009 Checklist

Page 1 of 2			
Section/topic	#	Checklist item	Reporte on page
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	#6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	#6
RESULTS	- -		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	#7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	#7
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	#8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	#8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	#8
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	#9
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	#9
DISCUSSION	<u> </u>		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	#10-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	#2-3
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	#13
FUNDING	<u> </u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	#14
<i>From:</i> Moher D, Liberati A, Tetzlaff doi:10.1371/journal.pmed1000097	J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(6): e10000
		For more information, visit: <u>www.prisma-statement.org</u> .	
		Page 2 of 2	
3		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	