BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Journal:	BMJ Open
Manuscript ID:	bmjopen-2015-009553
Article Type:	Research
Date Submitted by the Author:	28-Jul-2015
Complete List of Authors:	Mebrahtu, Teumzghi; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Feltbower, Richard; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Parslow, Roger; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Paediatrics, Research methods
Keywords:	Paediatric thoracic medicine < PAEDIATRICS, Asthma < THORACIC MEDICINE, Allergy < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Teumzghi F Mebrahtu^{1*}, Richard G. Feltbower¹, Roger C. Parslow¹

¹ Division of Epidemiology and Biostatistics, School of Medicine, University of Leeds, Leeds, United Kingdom

* Corresponding author. Address: Division of Epidemiology and Biostatistics, School of medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom. E-mail: <u>mt09tfm@leeds.ac.uk</u>

Abstract:

Background: the effect of birthweight on childhood wheezing disorders has been examined extensively with a consensus that there is a positive association between the two although with substantial heterogeneity in the results. The effect of childhood growth on childhood wheezing disorders has received less attention, however, and there has been limited application of the sophisticated statistical techniques required this issue.

Methods: We used data on children from the Born in Bradford birth cohort to analyse the effects of birthweight (N=13,734) and growth (N=1,598) on childhood wheezing disorders. We classified birthweight into three categories using World Health Organization (WHO) and Centres for Disease prevention and Control (CDC) guidelines. We derived driven weight Standardized Scores (SDS) using WHO growth standards.

Results: The adjusted RRs of wheezing disorders (diagnosed as asthma or had wheezing symptom) for the low and high birthweight children were 1.29 (95% CI: 1.12 to 1.50; p=0.001) and 0.91 (95% CI: 0.79 to 1.04; p=0.17) respectively. According to age based weight SDS, the adjusted RRs of wheezing disorders diagnosis were 1.30 (95% CI: 0.56 to 3.06; p=0.54) and 0.60 (95% CI: 0.16 to 2.18; p=0.44) respectively for the "fast" and "slow" growers as compared to the "normal" growers group. According to visits based weight SDS, the adjusted RRs for wheezing disorders diagnosis was

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

1.38 (95% CI: 0.90 to 2.12; p=0.14) for the "inconsistent" growers as compared with the "consistent" growers group.

Conclusion: Low birthweight children have an increased risk of wheezing disorders whereas high birthweight children have a reduced risk in this birth cohort. Low birthweight coupled with a decelerated growth until 3 months and a sharp growth between 3 and 12 months has an increased risk of wheezing disorders.

INTRODUCTION

Asthma is defined as a chronic disease of the passage of airways, characterized by smooth muscle contraction, accumulation of mucous and debris in the lumen, vascular congestion and airway wall oedema which leads to breathlessness and wheezing.¹ Although it is claimed to be the most common childhood disease,² there is, however, a lack of consistency in its diagnosis in clinical practice ³. This is due to the difficulty in diagnosing asthma in children, especially those of pre-school age, in whom wheezing, which is the main symptom for asthma, can be caused by other illnesses.⁴ In addition, although there are various asthma confirmatory tests available,⁵ young children can be less cooperative in participating in such tests leading to an under-diagnosis of true asthma cases. Therefore, the word "asthma" may not be an adequate term for what can be described as a spectrum of respiratory problems. As a result, some researchers have tended to use more inclusive terms such as "wheezing disorders".⁶⁻⁹

The effect of birthweight on wheezing disorders has been studied extensively with more than 40 observational epidemiological studies carried out to date. In our recent meta-analysis and systematic review of these studies, we reported that low birth weight children (<2.5 kg) have a 60% (OR: 1.60; 95% CI 1.39 to 1.85) and 37% (OR=1.37 95% CI 1.05 to 1.79) higher risk of wheezing disorders when compared with \geq 2.5kg and 2.5–4.0kg birth weight children, respectively.¹⁰ We also found a modest increased risk in high birth weight children (>4 kg) when compared with normal birth weight (2.5–4.0 kg) children (OR: 1.02; 95% CI 0.99 to 1.04). However, we acknowledged there was substantial heterogeneity among the risk estimates of the studies included which was not accounted for by study characteristics.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The effect of early childhood growth on wheezing disorders has not been widely studied. Results from a handful of previous studies are inconsistent with some suggesting fast growth predisposes to wheezing disorders¹¹⁻²¹ and others reporting reduced risk of wheezing disorders.^{20 22-24} In addition to that, all of these studies, with the exception of one,¹⁹ assumed homogenous growth among children, either used statistical techniques that can now be improved upon or a non-standard growth data

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

analysis that makes comparison and replication of results very difficult. For example, three ^{11 17 21} used data driven standardised scores (SDS), three ^{12 20 23 24} used country specific SDS and another one ¹⁵ used non-standardized weight measurements.

The aim of the study was twofold: a) further investigation of the effects of birthweight on wheezing disorders; and b) investigation of the effects of early growth on wheezing disorders using a birth to beer to tion only cohort data.

METHODS

Study participants

The Born in Bradford study is a prospective mainly bi-ethnic, cohort that examines the impact of environmental, genetic and social factors on health of the population of Bradford ²⁵. The methods of recruitment are explained in detail elsewhere. ^{25 26} In brief: recruitment of participants started in March 2007 and ended in December 2010; a total of 13,776 pregnant mothers were recruited that resulted in 13,857 births. Out of the total births, 123 died before the age of one week which resulted in a total of 13,734 children to be included in the birthweight and childhood wheezing disorders analyses.

At the same time, a sub cohort (BiB1000) of 1,735 mothers and 1,763 babies were also recruited for follow-up examinations. After excluding multiple births, preterm births and death before the age of one week, a total of 1,598 children were included in growth pattern and wheezing disorder analyses.

Ethics statement

Ethics approval was granted to the Born in Bradford project by Bradford Research Ethics Committee

(Ref 07/H1302/112.).

Data collection

We have used five data sources. (1) Hospital maternity records for information on birth weight, gestational age, gender of a child, and number of live births; (2) BiB1000 cohort records for weight at 6, 12, 18, 24 and 36 months of age; and, for weight at 1-5 visits from birth; (3) Community health records for weight at 1 and 3 months of age; (4) Baseline questionnaire data collected from the mothers on recruitment about their ethnicity, smoking and socio-economic status and (5) Linked primary care data about outcome variables (wheezing disorder diagnosis terms and treatment) recorded as Read Codes (http://systems.hscic.gov.uk/data/uktc/readcodes).

Case definition and ascertainment

We drew up four disease definitions based on diagnostic codes and prescribed medication details entered by general practitioners onto the primary care database. By "asthma" diagnosis and "wheezing" symptoms, we refer to the presence of asthma and wheezing diagnosis codes in the record

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

respectively. By "wheezing disorder" based on diagnosis, we refer to the presence of "asthma" or "wheezing" diagnosis codes in the record and by "wheezing disorder" based on treatment, we refer to the existence of at least two drug prescriptions indicated for the treatment of asthma a minimum of one week and maximum of one year apart. Drug and disease terms and codes used to confirm "wheezing disorders" are listed in supplementary tables 1&2.

Variables for analysis

Primary variables:

Where regression modelling was carried out, exposure variables were birthweight and growth; outcome variables were wheezing disorders (i.e. "asthma", "wheezing" and "wheezing disorders").

Two types of growth variables were used: age based and visits based. For the age based growth, age of a child when the measurement of weight occurred was used as a time score. In visit based, the visit number was used as a time score. The aim of using the age based and visits based time scores was to explore the effects of growth in terms of latent growth factors (i.e. intercept and slope) and weight status at every visit, respectively. In the age based approach, the age of the children at each time point were identical or weight values were constrained to be missing. In the visits based approach, however, the age of the children at each time point did not need to be identical and no constraint was imposed.

Confounding variables

Selection of variables was carried out based on the criteria that confounding variable must have an effect on the exposure and outcome variables, and should not be on the causal pathway.²⁷⁻²⁹ In order to minimise bias due to confounding and over-adjustment, Direct Acyclic Graphs (DAGs) were used ^{28 30} and models were tested using DAGitty software.²⁹ Drawing of a relationship between variables of interest (i.e. confounding and main variables) was guided by epidemiological, biologic and clinical knowledge. Figures S1 & S2 illustrate the schematic view of adjustment and output for the list of "minimally sufficient" confounding sets using DAGitty software.

In assessing the effect of birthweight on wheezing disorders: ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, and SES were selected as "minimally sufficient" set of confounding variables. In assessing the effect of childhood growth on wheezing

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

disorders: birthweight, ethnicity, family asthma, gender, maternal smoking, parity, and SES were selected as "minimally sufficient" set of confounding variables.

However, note that selection among sets of confounding variables was carried out retrospectively, that is, after collection of data was already carried out by the BiB project. Hence, availability of information on variables was also a factor during the selection process. As such, although the selected sets were better than the other candidate sets, no data was available for the variable "family asthma". Therefore, both birthweight and childhood growth models were not adjusted for family asthma.

Missing data estimation variables

Where imputations were carried out, missing data were estimated under MAR assumption that the missingness on outcome variables does not depend on the outcome variables themselves but can be explained by (or related to) other variables included in the imputation models (also known as *auxiliary* variables).³¹ The *auxiliary* variables included in the imputation process were: exposure variable, cofounding variables, and correlate variables that can be related to the missingness. The first two types of variables were those included in the analysis models whereas the third types of variables (maternal hypertension and diabetes) were included only in the imputation models.

A brief check on the variables before carrying out of imputations showed that birthweight, gestational age and outcome variables (i.e. asthma diagnosis, wheezing symptoms, wheezing disorder treatment and wheezing disorder diagnosis) were completely observed. To further explore if imputations were necessary or beneficial, dummy variables (i.e. yes or no) were created as missing data indicator for each covariate with missing observations. When the missingness indicator variables and outcome variables were tested for correlations, the results consistently showed that there were no significant associations which also indicate that complete cases analysis could produce unbiased, albeit less precise, parameter estimates.³² However, there were consistent significant associations between the missing indicator variables and other confounding variables which also suggest that imputations with inclusion of these covariates may improve the precision of the parameter estimates.^{31 32}

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Statistical analysis and software

Birth weight was classified according to the CDC ³³ and WHO methods ³⁴ where <2.5kg=Low, 2.5-4.0kg=Normal and >4.0kg=High. Age-specific and sex-specific standardised scores (SDS) of weight were derived according to World Health Organisation (WHO) growth standards ³⁵ in LMSgrowth Microsoft excel add-in software.³⁶ The WHO growth standards population that we used to derive the SDS scores was made up of singleton term births. Hence, multiple births and preterm births were excluded from the growth patterns and wheezing disorders analyses.

In identifying the best fitting growth patterns, growth mixture models (GMM) were fitted,^{37 38} and, in selecting the optimal number of classes, and best growth model we used model classification quality and model fit statistics. In addition, interpretability was also considered where we rejected models that consist of a class with less $\leq 1\%$ of the total population. When comparing growth patterns of children in our GMM, we used WHO growth standards charts ³⁵ as a point of reference. In converting weight SDS into percentiles, we used a one-sided normal standard distribution. For example, weight SDS of -1.64, 0, 1.04 and 1.64 are equivalent to the 5th, 50th, 85th and 95th percentiles respectively.

Missing data on covariates were estimated using Multiple Imputations by Chained Equation (MICE) models under Missing data at Random (MAR) assumptions.^{39 40} In deciding how many datasets to be imputed, we took the number of imputations (**n**) to be greater than the percentage or fraction of incomplete cases.^{39 41} Missing growth data were estimated using a Full Information Maximum Likelihood (FIML) method in which parameters are estimated using all available observations in the dataset, under MAR assumption.^{42 43}

GMM was carried out in Mplus version. 7.11, and covariates' missing data estimation and regression modelling were carried out in Stata version 12. 5% significance levels and 95% confidence intervals were adopted throughout.

RESULTS

Birthweight and wheezing disorders

The cohort was made up of 13,734 children that yielded 74,940 person years of follow-up. 37.3% and 32.8% were Pakistani and white British origin respectively; 12.6% were minority and 17.3% with missing ethnicity data. 50.4% and 47.3% were male and female respectively, and, 2.3% of children had missing information on sex. 82.6%, 9.1% and 8.3% of the cohort were "normal", "high" and "low" birthweight children respectively (table 1). Out of 13,734 children, 841 were diagnosed as asthmatic, 1994 had wheezing symptoms, 2347 were either diagnosed for asthma or had wheezing symptoms, and 3035 children were treated with asthma drugs based on primary care data available up to November 2014 (table 1).

Low birthweight

There was a significant increased risk of wheezing disorders in all four disease definitions. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 1.53 (95% CI: 1.20 to 1.96), 1.29 (95% CI: 1.10 to 1.52), 1.29 (95% CI: 1.12 to 1.50) and 1.25 (1.10 to 1.42) respectively (table 2). The unadjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 1.55 (95% CI: 1.27 to 1.89), 1.29 (95% CI: 1.13 to 1.46), 1.28 (95% CI: 1.14 to 1.45) and 1.27 (95% CI: 1.15 to 1.40), see table 2.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

High birthweight

There was a consistent but non-significant reduction of wheezing disorders risk for those children who were classified as being of high birthweight. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.95 (95% CI: 0.74 to 1.22), 0.90 (95% CI: 0.77 to 1.04), 0.91 (95% CI: 0.79 to 1.04) and 0.99 (95% CI: 0.89 to1.11) respectively (table 2). The respective unadjusted RRs of high birthweight for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.93 (95% CI: 0.73 to 1.19), 0.91 (95% CI: 0.78 to 1.06), 0.92 (95% CI: 0.80 to 1.05) and 1.04 (95% CI: 0.93 to 1.16), see table 2.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2
2 3
3 4 5 6 7
5
6
7
8
9
10
11
12
14
15
9 10 11 12 13 14 15 16 17 18
17
18
19 20
20 21 22 23 24 25 26 27 28 29 30 31 22
22
23
24
25
26
27
28
29
30
31 32 33 34 35 36 37 38 39
33
34
35
36
37
38
39 40
41
42
43
44
45
46
47 48
40 49
4 3 50
51
52
53
54
55 56
56 57
57 58
59
60

1

	n covariates		-		-		-	
	Wheezing disorder treatment		Asthma diagnosis		Wheezing symptoms		Wheezing disorder diagnosis	
	Yes/ No	Yes %	Yes/ No	Yes %	Yes/No	Yes %	Yes/ No	Yes %
Birthweight			-	-	-		-	-
Normal (2.5-4.0kg)	2,444/8,897	21.6%	668/10,673	5.9%	1,622/9,719	14.3%	1,907/9,434	16.8%
Low (<2.5kg)	311/828	27.3%	104/1,035	9.1%	209/930	18.3%	246/893	21.6%
High (>4.0kg)	280/974	22.3%	69/1,185	5.5%	163/1,091	13.0%	194/1,060	15.5%
Ethnicity								
White British	1,074/3,427	23.9%	217/4,284	4.8%	586/3,915	13.1%	706/3,795	15.7%
Pakistani	1,150/3,967	22.5%	382/4,735	7.5%	857/4,260	16.7%	985/4,132	19.2%
Others	308/1,425	17.8%	86/1,647	5.0%	207/1,526	11.9%	243/1,490	14.0%
Gender								
Male	1,775/5,142	25.7%	502/6,415	7.3%	1,220/5,697	17.6%	1,416/5,501	20.5%
Female	1,190/5,300	18.3%	318/6,172	4.9%	742/5,748	11.4%	890/5,600	13.7%
Gestational age								
Term	2,792/10,077	21.7%	769/12,100	6.0%	1,841/11,028	14.3%	2,166/10,703	16.8%
Pre-term	243/622	28.1%	72/793	8.3%	153/712	17.7%	181/684	20.9%
Number of births								
Singleton	2,911/10,173	22.2%	803/12,281	6.1%	1,923/11,161	14.7%	2,262/10,822	17.3%
Twins	52/262	16.6%	17/297	5.4%	38/276	12.1%	43/271	13.7%
Triplets	2/7	22.2%	0/9	0%	1/8	11.1%	1/8	11.1%
Maternal smoking								
No	1,710/6,181	21.7%	520/7,371	6.6%	1,162/6,729	14.7%	1,359/6,532	17.2%
Yes	823/2,639	23.8%	167/3,295	4.8%	490/2,972	14.2%	578/2,884	16.7%
Parity								
primiparous	1,128/3,987	22.1%	292/4,823	5.7%	686/4,429	13.4%	821/4,294	16.1%
multiparous	1,728/6,072	22.2%	489/7,311	6.3%	1,210/6,590	15.5%	1,401/6,399	18.0%
IMD 2010 Quintile so	core							
1	1,721/5,814	22.8%	487/7,048	6.5%	1,182/6,353	15.7%	1,372/6,163	18.2%
2	435/1,619	21.2%	115/1,939	5.6%	253/1,801	12.3%	304/1,750	14.8%
3	247/1,008	19.7%	59/1,196	4.7%	148/1,107	11.8%	177/1,078	14.1%
4	84/251	25.1%	18/317	5.4%	41/294	12.2%	53/282	15.8%
5	49/143	25.5%	8/184	4.2%	30/162	15.6%	33/159	17.2%

Table 1 Characteristics of 13,734 children given wheezing disorders of complete cases on covariates

IMD=Index of multiple deprivation with 1 and 5 indicating the least deprived and most deprived scores respectively.

	Asthma diagnosis	Wheezing	Wheezing disorder	Wheezing disorder
		symptoms	diagnosis	treatment
Birthweight			-	
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	0.95 (0.75 to 1.22)	0.90 (0.77 to 1.04)	0.91(0.79 to 1.04)	0.99 (0.89 to1.11)
Low (<2.5kg)	1.53 (1.20 to 1.96)	1.29 (1.10 to 1.52)	1.29 (1.12 to 1.50)	1.25(1.10 to 1.42)
Ethnicity				
White British	1	1	1	1
Pakistani	1.36 (1.11 to 1.66)	1.26(1.12 to 1.42)	1.21(1.08 to 1.35)	0.95 (0.87 to 1.05)
Others	0.96 (0.74 to 1.25)	0.93 (0.79 to 1.08)	0.90 (0.78 to 1.04)	0.76 (0.67 to 0.85)
Gender				
Male	1	1	1	1
Female	0.67(0.58 to 0.76)	0.64 (0.59 to 0.70)	0.66 (0.61 to 0.72)	0.71 (0.67 to 0.76)
Gestational age				
Term	1	1	1	1
Pre-term	1.11(0.83 to 1.48)	1.08 (0.90 to 1.30)	1.09 (0.92 to 1.29)	1.16 (1.01 to 1.34)
Number of births				
Singleton	1	1	1	1
Twins	0.68(0.42 to 1.10)	0.71 (0.52 to 0.97)	0.68 (0.51 to 0.90)	0.63 (0.49 to 0.81)
Triplets	-	0.57 (0.09 to 3.60)	0.48 (0.08 to 3.03)	0.75 (0.22 to 2.56)
Maternal smoking				
No	1	1	1	1
Yes	0.86(0.70 to 1.05)	1.10 (0.98 to 1.24)	1.07 (0.97 to 1.19)	1.05 (0.97 to 1.15)
Parity				
primiparous	1	1	1	1
multiparous	1.04 (0.91 to 1.20)	1.14 (1.04 to 1.24)	1.10 (1.02 to 1.19)	1.02 (0.95 to 1.08)
IMD 2010 Quintile	0.96 (0.88 to 1.05)	0.95 (0.90 to 1.00)	0.95 (0.91 to 1.00)	0.97 (0.93 to 1.00)
score				

Table 2Adjusted relative risks and 95% confidence intervals of covariates from
multiple imputed data; 40 datasets

Growth and wheezing disorders

The BiB1000 follow-up cohort consisted of 1,598 children that contributed a total of 8,683 person years of follow-up. The total number of children who had "asthma" diagnosis, "wheezing" symptoms, "wheezing disorders" diagnosis and "wheezing disorders" treatment were 113 (7.1%) , 252 (15.8%), 300 (18.8%) and 369 (23.1%) respectively, slightly higher than the whole BiB cohort. Fewer than 2% and 10% the BiB1000 children were diagnosed with or treated for wheezing disorders during the first three months and the first six months respectively (table S3).

Age based weight patterns

According to the optimal number of class determination results, a four class model was best (table S4). However, a three class model was preferred on an interpretability basis (table 3 & figure S3A). Class 1 (95.8%) was composed of children whose mean birthweight was at the 46th percentile and

were just over the 60th percentile at the age of 1 year and stayed around 60th percentile afterwards according to WHO growth standards.³⁵ Class 2 (2.2%) was composed of children whose mean weight at birth was on the 28th percentile then increased to the 96th percentile at one year of age and persisted to be overweight until the age of three. Class 3 (2.0%) were a group of children whose mean birthweight was on the 29th percentile, who subsequently showed very slow growth, their mean weight reaching the 3rd percentile at 1 year of age, followed by moderate acceleration to reach the 56th percentile by the age of three. Class 1, class 2 and class 3, could be characterised as "normal", "fast" and "slow" growers respectively. Table S5 gives estimated means of the growth model parameters.

		Growth classes	
	Class 1	Class 2	Class 3
Age based weight SDS		<u> </u>	-
Birth	46 th (-0.11 SDS)	28 th (-0.59 SDS)	29 th (-0.56 SDS)
1 month	43 rd (-0.18 SDS)	19 th (-0.89 SDS)	23 rd (-0.75 SDS)
3 months	38 th (-0.31 SDS)	7 th (-1.48 SDS)	13 th (-1.13 SDS)
6 months	45 th (-0.12 SDS)	34^{th} (-0.40 SDS)	8 th (-1.39 SDS)
12 months	61 st (0.27 SDS)	96 th (1.75 SDS)	3 rd (-1.91 SDS)
18 months	60 th (0.25 SDS)	94 th (1.57 SDS)	8 th (-1.40 SDS)
24 months	59 th (0.23 SDS)	92 nd (1.39 SDS)	19 th (-0.88 SDS)
36 months	58 th (0.20 SDS)	85 th (1.02 SDS)	56 th (0.14 SDS)
Visits based weight SDS			
Birth	47 th (-0.08 SDS)	40 th (-0.26 SDS)	-
1 st Visit	53 rd (0.04 SDS)	56 th (0.16 SDS)	-
2 nd visit	55 th (0.13 SDS)	71 rd (0.54 SDS)	-
3 rd visit	57 th (0.18 SDS)	81 st (0.89 SDS)	-
4 th visit	57 th (0.19 SDS)	88 th (1.20 SDS)	-
5 th visit	53 rd (0.09 SDS)	96 th (1.70 SDS)	-

ble 3	Estimated mean and	percentiles of 1,598 children by	growth classes
-------	--------------------	----------------------------------	----------------

The associated adjusted RRs of the "fast" compared to the "normal" growers group for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment were 0.81 (95% CI: 0.12 to 5.46), 1.59 (95% CI: 0.67 to 3.71), 1.30 (95% CI: 0.56 to 3.06) and 0.77 (95% CI: 0.20 to 2.51) respectively (table 4). The adjusted RRs of the "slow" as compared to the "normal" growers group for "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing

Tak

BMJ Open

disorders" treatment were 0.72 (95% CI: 0.20 to 2.62), 0.60 (95% CI: 0.16 to 1.95) and 0.81 (95% CI: 0.29 to 2.25) respectively. The respective unadjusted relative risks for both growth groups remained similar (table 4).

Visits based growth patterns

The age ranges of the children during their first, second, third, fourth, and fifth visits after birth were 4.9 to 9.4, 10.7 to 18.3, 15.2 to 22.8, 23.4 to 28.5 and 35.4 to 40.6 months respectively. Although the determination of the optimal number of classes favoured a model with four classes, the two class model was selected on a model interpretability basis (table S4). Class 1 (92.7%) comprised those children who were around the 46th percentile at birth and 52nd percentile during the first visit after birth and remained around the 60th percentile during the next four visits according to the WHO growth standards chart; ³⁵ class 2 (7.3%) comprised children who were, on average, at the 29nd percentile at birth and 57th percentile during the first visit after birth then consistently accelerated to reach the 95th percentile during the last visit (figure S3B & table 3). Class 1 and class 2 could be characterised as "inconsistent" and "consistent" growers respectively.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

-	Wheezing di	isorder	Asthma dia	agnosis	Wheezing	symptoms	Wheezing	disorder
	treatment						diagnosis	
-	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %
Birthweight		_	-	-			-	
Normal (2.5-4.0kg)	321/ 1,094	22.7%	101/1,314	7.1%	221/1,194	15.6%	264/1,151	18.7%
Low (<2.5kg)	20/50	28.6%	6/64	8.6%	14/56	20.0%	16/54	22.9%
High (>4.0kg)	28/85	24.8%	6/107	5.3%	17/96	15.0%	20/93	17.7%
Ethnicity								
White British	141/461	23.4%	24/578	4.0%	82/520	13.6%	95/507	15.8%
Pakistani	175/587	23.0%	73/689	9.6%	134/628	17.6%	164/598	21.5%
Others	53/179	22.8%	16/216	6.9%	36/196	15.5%	41/191	17.7%
Gender								
Male	212/566	27.2%	70/708	9.0%	159/619	20.4%	185/593	23.8%
Female	157/663	19.1%	43/777	5.2%	93/727	11.3%	115/705	14.0%
Maternal smoking								
No	256/885	22.4%	90/1,051	7.9%	177/964	15.5%	213/928	18.7%
Yes	112/344	24.6%	23/433	5.0%	74/382	16.2%	86/370	18.9%
Parity								
primiparous	144/468	23.5%	41/571	6.7%	87/ 525	14.2%	106/ 506	17.3%
multiparous	218/744	22.7%	70/ 892	7.3%	163/ 799	16.9%	191/ 771	19.9%
IMD 2010 Quintile score								
1	255/826	23.6%	83/ 998	7.7%	183/898	16.9%	217/864	20.1%
2	64/226	22.1%	19/271	6.6%	37/253	12.8%	45/245	15.5%
3	36/132	21.4%	10/158	6.0%	23/145	13.7%	28/140	16.7%
4	6/29	17.1%	1/34	2.9%	3/32	8.6%	4/31	11.4%
5	8/16	33.3%	0/24	0%	6/18	25.0%	6/18	25.0%

Table 4	Characteristics of 1,598 children given wheezing disorders of complete cases
	on covariates

When two growth classes were compared in terms of wheezing disorders, the adjusted RRs of "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment for the "inconsistent" growers were 1.47 (95% CI: 0.71 to 3.01), 1.13 (0.66 to 1.95), 1.38 (0.90 to 2.12) and 1.17 (0.76 to 1.81) respectively, when compared to the "consistent" growers class. The respective unadjusted relative risks remained similar (table 4).

		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight SDS		-	
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growers)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growers)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weight SDS	5		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent growers)	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)
	Wheezing disorder diagnosis	1.42 (0.92 to 2.19; 0.11)	1.38 (0.90 to 2.12; 0.14)
	Wheezing disorder treatment	1.14 (0.74 to 1.76; 0.55)	1.17 (0.76 to 1.81; 0.47)

Table 5 adjusted and unadjusted relative risks and 95% CI for growth patterns and

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a reference group in both models.

Complete cases versus imputed dataset results

The complete cases analysis for birthweight and wheezing disorders retained 10,623 out of 13,734 children. The complete case analyses for weight growth patterns based on age and visits retained 1,572 of the 1,598 children. The results of complete cases analyses were very close to the imputed data analyses as expected given that all the outcome variables were completely observed and the missing indicator variables for the incomplete covariates did not have strong relationship with the outcome variables (tables S6 & S7).

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Discussion

In this prospective cohort study, we found that low birthweight was strongly associated with wheezing disorders and there was consistent, albeit non-significant, evidence that high birthweight was associated with reduced risk of wheezing disorders during the pre-school period. Our findings for the effects of low birthweight on wheezing disorder diagnosis and treatment are in line with the findings of our recent meta-analysis and systematic review, showing a 37% increase in wheezing disorders risk for low birthweight (OR=1.37; 95% CI: 1.05 to 1.79), ¹⁰ although the results here are slightly attenuated due to our use of relative risk as a measure of association. However, our finding of the effect of high birthweight on wheezing disorders is slightly different to that of the reported odds ratio in the meta-analysis (OR=1.02; 95% CI: 0.99 to 1.04) with both wheezing disorders diagnosis and treatment showing that there was a non-significant reduction of risk.

Analysis of our age based weight growth patterns have shown inconsistent results for the group classified as "fast" growers. While there was a non-significant increased risk of wheezing disorders according to diagnosis, there was a non-significant reduced risk of wheezing disorders treatment (table 5). However, the results showed that the "slow" growers group did have a non-significant reduction for both wheezing disorders diagnosis and treatment when compared to the "normal" growers group (table 5). Furthermore, in our attempt to further analyse the effects of visits based weight SDS on wheezing disorders, there was a non-significant increase of wheezing disorders diagnosis and treatment for the group of children who grew "inconsistently" and were seen to be obese by the last visit.

The findings of the effects of growth on wheezing disorders analyses may not be directly comparable with the previous studies ^{11 13-15 17 18 20-24} as they assumed a homogenous growth among the respective study population and investigated the effect of overall mean change on wheezing disorders. However, Rzehak et al ¹⁹ who used GMM reported hazard ratios of 1.22 (95% CI: 1.08 to 1.39) and 1.43 (95% CI: 0.90 to 2.27) for groups of children exhibiting rapid growth until 2 years (class 2) and persistent rapid growth (class 3), respectively. The authors' growth pattern and risk estimates were similar to the age based SDS class 2 and visits based class 2 respectively. Another two studies that investigated the

BMJ Open

effects of weight status changes at different age points reported an insignificant increase in wheezing disorders risk which are similar to our 'inconsistent growers' group's of the 'visits-based' growth patterns risk estimates.¹²¹⁶

In our previous meta-analyses and systematic reviews we found that low birthweight and high BMI were associated with wheezing disorders. ^{10 44} However, we also acknowledged that it may not be apparent whether high BMI is causing wheezing disorders or otherwise from the findings. This is because children with wheezing disorders may become less active which can lead to obesity or obese children may experience wheezing symptoms due to narrowing of airways. In our growth patterns and wheezing disorders analyses, we noted that, on average, the children with lower birthweight SDS showed significant growth changes during the first 6 months and were more likely to have experienced wheezing disorder conditions (table 3&5). We also noted that children with the lowest birthweight SDS were more likely to be obese and to have experienced wheezing disorder conditions (table 3&5). Given that a very small proportion of wheezing disorders or treatment cases were identified in the first three and six months (table S3), during which changes in growth occurred, it may strongly suggest that low birthweight coupled with rapid change in growth during the first six months is a risk factor for wheezing disorders. The temporal relationship between obesity and wheezing disorders in this study remains difficult to disentangle, however, in a recent Mendelian Randomization study by Granell et al, it has been reported that obesity precedes childhood wheezing disorders. 45

Our work has certain weakness so that the results need to be interpreted carefully. Firstly, although the sample size for birthweight and wheezing disorders was sufficiently large, study participants were those who were born at a single centre: the Bradford Royal Infirmary (BRI) maternity hospital. Births in the regional tertiary centre, home births and births in smaller hospitals outside Bradford will have been excluded. Secondly, participation in the sub-cohort (BiB1000) of growth patterns was mainly driven by the mothers' willingness to participate and so there is likely to be selection bias. Third, some of the classes identified by our GMM contained a small proportion of children that resulted in having less precise risk estimates. Fourth, missing levels of growth data at some ages and visits was

substantial although we applied missing data handling techniques to address this limitation. Fifth, information on maternal asthma was missing so our models were not adjusted for this potential confounding variable.

Nonetheless, there are particular strengths of our analysis. Firstly, in our birthweight and wheezing disorders analyses, our sample size was reasonably large. Secondly, we were able to implement techniques to reduce potential bias due to confounding variables such as the use of DAGs to inform the modelling process. Thirdly, we were able to implement missing data techniques to minimize bias and presented both the complete cases and imputed datasets results to give more insight. Fourthly, although we had small size for growth patterns analysis, we are able to implement advanced statistical techniques to account for potential heterogeneity of growth between and within groups. Finally, we were also able to use age-specific and sex-specific standardised weight scores which have the advantage of clearly depicting the growth patterns of children in comparison to the standard growth reference.³⁵ The standard scores are convertible to percentiles ³⁶ which can then be compared with the growth charts used by clinicians or growth monitoring workers in their daily practice.

In conclusion, in this large prospective cohort data analysis, we have confirmed that low birthweight children have a moderate associated risk of wheezing disorders whereas high birthweight children have a non-significant reduced risk. There is weak evidence to suggest "fast" or "inconsistent" growth predispose to wheezing disorders, and "slow" growth reduces the risk which needs further investigation using larger datasets. However, the results may indicate that maintaining optimal prenatal and postnatal growths reduce a risk of childhood wheezing disorders.

Acknowledgments: Born in Bradford is only possible because of the enthusiasm and commitment of the Children and Parents in BiB. We are grateful to all the participants, health professionals and researchers who have made Born in Bradford happen.

Funding: TFM is funded by the Hall Dorman Research PhD Scholarship. Data collection was funded by the National Institute for Health Research (NIHR) under the Collaborations for Leadership in

Applied Health Research and Care (CLAHRC) programme for Leeds, York and Bradford and the Programme Grants for Applied Research funding scheme.

Contributors: TFM, RGF and RCP conceived the idea. TFM performed all the statistical analyses, interpretation of results and drafted the manuscript. RGF and RCP revised and commented on the manuscript. All authors approved the final version of the manuscript.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Competing interests: none declared.

Data Sharing Statement ; This research has no additional unpublished data to share.

References

- 1. Roche R, Jeffery R. Remodelling and inflammation. In: Silverman M, editor. *Childhood Asthma and other Wheezing Disorders*. Second ed. Great Britain: Arnold, 2002.
- World Health Organization (WHO). Asthma Fact Sheet Number 307.2013; [online], available: <u>http://www.who.int/mediacentre/factsheets/fs307/en/</u> [accessed February 20, 2015].
- Masoli M, Fabian D, Holt S, et al. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. *Allergy* 2004;59(5):469-78.
- Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. *Eur Respir J* 2008;31(1):143-78.

5. Bush A, Fleming L. Diagnosis and management of asthma in children. 2015; 10.1136/bmj.h996.

- 6. Brand PL, Baraldi E, Bisgaard H, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. *Eur Respir J* 2008;32(4):1096-110.
- 7. Pike KC, Crozier SR, Lucas JS, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;10.1136/thx.2010.134742 thx. 2010.134742.
- Been JV, Lugtenberg MJ, Smets E, et al. Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. *PLoS Med* 2014;11(1):e1001596.
- 9. Rothenbacher D, Weyermann M, Fantuzzi G, et al. Adipokines in cord blood and risk of wheezing disorders within the first two years of life. *Clin Exp Allergy* 2007;37(8):1143-49.
- Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Birth weight and childhood wheezing disorders: a systematic review and meta-analysis. *J Epidemiol Community Health* 2014;doi:10.1136/jech-2014-204783.
- Mamun AA, Lawlor DA, Alati R, et al. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study. *Int J Obes* 2007;31(4):578-83.
- Scholtens S, Wijga AH, Seidell JC, et al. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. *J Allergy Clin Immunol* 2009;123(6):1312-18.e2.
- 13. Pike KC, Crozier SR, Lucas JSA, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;65(12):1099-106.
- 14. Zhang Z, Lai HJ, Roberg KA, et al. Early childhood weight status in relation to asthma development in high-risk children. *J Allergy Clin Immunol* 2010;126(6):1157-62.
- 15. Flexeder C, Thiering E, Bruske I, et al. Growth velocity during infancy and onset of asthma in school-aged children. *Allergy* 2012;67(2):257-64.
- Magnusson JO, Kull I, Mai XM, et al. Early childhood overweight and asthma and allergic sensitization at 8 years of age. *Pediatrics* 2012;129(1):70-76.

BMJ Open

2	
<u> </u>	
pe	
en	
S	
÷	
Ĕ	
⊡	
sh	
ē	
0	
ິ	
10	
10.1136/bmjopen-	
õ	
þ	
<u>_</u>	
융	
ě	
ょう	
ö	
5	
6	
Ő	
ğ	
3	
0	
pen-2015-009553 on 26 November 20	
26	
z	
2	
ē	
<u> </u>	
ĕ	
Ň	
ber 201	
5	
ğ	
₹	
ы П	
ã	
Ð	
led i	
led fro	
led from	
led from ht	
led from http	
om http:	
led from http://bn	
led from http://bmjc	
led from http://bmjopu	
led from http://bmjopen	
led from http://bmjopen.b	
led from http://bmjopen.bmj	
led from http://bmjopen.bmj.cv	
led from http://bmjopen.bmj.com	
led from http://bmjopen.bmj.com/	
led from http://bmjopen.bmj.com/ on	
led from http://bmjopen.bmj.com/ on A	
led from http://bmjopen.bmj.com/ on Apr	
led from http://bmjopen.bmj.com/ on April 2	
led from http://bmjopen.bmj.com/ on April 23.	
led from http://bmjopen.bmj.com/ on April 23, 2	
led from http://bmjopen.bmj.com/ on April 23, 202	
led from http://bmjopen.bmj.com/ on April 23, 2024	
led from http://bmjopen.bmj.com/ on April 23, 2024 by	
led from http://bmjopen.bmj.com/ on April 23, 2024 by g	
led from http://bmjopen.bmj.com/ on April 23, 2024 by gue	
led from http://bmjopen.bmj.com/ on April 23, 2024 by gues:	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
led from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Pro	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	
bmjopen.bmj.com/ on April 23, 2024 by guest.	

17. 1	an der Gugten AC, Koopman M, Evelein AMV, et al. Rapid early weight gain is associated v
	wheeze and reduced lung function in childhood. <i>Eur Respir J</i> 2012;39(2):403-10.
18. A	nderson EL, Fraser A, Martin RM, et al. Associations of postnatal growth with asthma and atopy: The PROBIT Study. <i>Pediatr Allergy Immunol</i> 2013;24(2):122-30.
19. R	zehak P, Wijga AH, Keil T, et al. Body mass index trajectory classes and incident asthma in childhood: Results from 8 European Birth Cohorts—a Global Allergy and Asthma Europ
	Network initiative. J Allergy Clin Immunol 2013;131(6):1528-36.
20. S	onnenschein-van der Voort AM, Howe LD, Granell R, et al. Influence of childhood growth o asthma and lung function in adolescence. <i>J Allergy Clin Immunol</i> 2014;doi:
	10.1016/j.jaci.2014.10.046.
21. N	agnus MC, Stigum H, Haberg SE, et al. Peak weight and height velocity to age 36 months a
	asthma development: the norwegian mother and child cohort study. <i>PLoS One</i> . 2015;doi:10.1371/journal.pone.0116362.
22. N	fai X-M, Gaddlin P-O, Nilsson L, et al. Early rapid weight gain and current overweight in
	relation to asthma in adolescents born with very low birth weight. Pediatr Allergy Immun
	2005;16(5):380-5.
23. S	onnenschein-van der Voort AMM, Jaddoe VWV, Raat H, et al. Fetal and Infant Growth and
	Asthma Symptoms in Preschool Children. Am J Respir Crit Care Med 2012;185(7):731-3
24. D	e Korte-De Boer D, Mommers M, Thijs C, et al. Early life growth and the development of
	preschool wheeze, independent from overweight: The LucKi Birth Cohort Study. <i>J Pedia</i> 2015;166(2):343-49.e1.
25. W	Vright J, Small N, Raynor P, et al. Cohort Profile: The Born in Bradford multi-ethnic family cohort study. <i>Int J Epidemiol</i> 2013;42(4):978-91.
26. R	aynor P, Group BiBC. Born in Bradford, a cohort study of babies born in Bradford, and thei parents: Protocol for the recruitment phase. <i>BMC Public Health</i> 2008;8(1):327.
27. T	u Y-K, West R, Ellison GTH, et al. Why Evidence for the Fetal Origins of Adult Disease Mi
	Be a Statistical Artifact: The "Reversal Paradox" for the Relation between Birth Weight a
	Blood Pressure in Later Life. Am J Epidemiol 2005;161(1):27-32.
28. G	reenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. <i>Epidemiology</i> 1999;10(1):37-48.
29. T	extor J, Hardt J, Knuppel S. DAGitty: a graphical tool for analyzing causal diagrams. <i>Epidemiology</i> 2011;22(5):745.
30. S	chisterman EF, Cole SR, Platt RW. Overadjustment Bias and Unnecessary Adjustment in
	Epidemiologic Studies. Journal of Epidemilogy 2009;20(4):488-95.
21 0	ollins LM, Schafer JL, Kam C-M. A comparison of inclusive and restrictive strategies in mo
31. C	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 32. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. *BMJ* 2009;338.
 - 33. Center for Diseases prevention and Control (CDC). Pediatric and Pregnancy Nutrition Surveillance System: PedNSS Health Indicators.2009; [online], available: <u>http://www.cdc.gov/pednss/what_is/pednss_health_indicators.htm</u> [accessed February 04, 2015].
- World Health Organization (WHO). International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-2014-WHO Version for ;2014:Disorders related to length of gestation and fetal growth (P05-P08) 2014; [online], available: <u>http://apps.who.int/classifications/icd10/browse/2014/en#/P05-P08</u> [accessed February 03, 2015].
- 35. World Health Organization (WHO). WHO Child Growth Standards: Methods and development: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. *Child growth standards*,2006; [online], available: <u>http://www.who.int/childgrowth/publications/technical_report_pub/en/index.html</u> [accessed February 04, 2015].
- 36. Pan H, Cole T. LMSgrowth, a Microsoft Excel add-in to access growth references based on the LMS method. Version 2.77.2012; [online], available: http://www.healthforallchildren.com/?product=Imsgrowth [accessed February 20, 2015].
- 37. Duncan TE, Duncan SC, Strycker LA. Growth Mixture Modeling. In: G.A. M, editor. An introduction to Latent Growth Curve Modeling. 2nd ed. New Jersy, : Lawrence Erlbaum associates, 2006:125-49.
- 38. Muthén B. Latent variable analysis:Growth Mixture Modeling and Related Techniques for Longitudinal Data. In: Kaplan BA, editor. *The handbook of quantitative methodology for the social sciences* Thousand Oaks, CA: Sage Publications, 2004:345-68.
- 39. Royston P, White IR. Multiple imputation by chained equations (MICE): implementation in Stata. *Journal of Statistical Software* 2011;45(4):1-20.
- 40. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. *Stat Med* 2011;30(4):377-99.
- 41. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. *Prevention Science* 2007;8(3):206-13.
- 42. Schafer JL, Graham JW. Missing Data: Our View of the State of the Art. *Psychological Methods* 2002;7(2):147-77.
- 43. Enders CK, Bandalos DL. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. *Structural Equation Modeling* 2001;8(3):430-57.

1	
2	
3	
4	
5	
5 6	
6	
7	
8	
9	
9 10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
33 34 35 36 37 38 39	
34	
25	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

- 44. Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Childhood body mass index and wheezing disorders: a systematic review and meta-analysis. *Pediatr Allergy Immunol* 2015;doi:10.1111/pai.12321.
- 45. Granell R, Henderson AJ, Evans DM, et al. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study. PLoS medicine .jon. 2014;doi:10.1371/journal.pmed.1001669.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Supplementary:

Drug class names	Drug family names	
Antimuscarinic bronchodilators		
	IPRATROPIUM BROMIDE	
selective beta-2 agonists		
	FORMOTEROL FUMARATE	
	SALBUTAMOL	
	SALMETEROL	
	TERBUTALINE SULPHATE	
Leukotriene receptor antagonist		
	MONTELUKAST	
	ZAFIRLUKAST	
Nasal Corticosteroids		
	BECLOMETASONE DIPROPIONATE	
	BUDESONIDE	
	CICLESONIDE	
	FLUTICASONE PROPIONATE	
	MOMETASONE FURATE	
	SODIUM CROMOGLICATE	

Page 25 of 35

Table S2: list of terms to confirm diagnosis of wheezing disorders

Name	List of terms	Read Code	Term ID	
Wheezing				
	Expiratory polyphonic wheeze	Xa83N	YaVc1	
	Expiratory wheeze	Xa7uu	YaVQZ	
	Expiratory wheezing	Xa7vA	YaVQt	
	Inspiratory wheeze	Xa7ut	YaVQY	
	Inspiratory wheezing	Xa7v9	YaVQs	
	Mild wheeze	XaX5K	Yaty9	
	Moderate wheeze	XaX5L	YatyA	
	Nocturnal wheeze/cough	173B.	YM1gs	
	Severe wheeze	XaX5M	YatyC	
	Very severe wheeze	XaX5N	YatyE	
	Viral wheeze	XaMe7	YapfP	
	Wheeze - rhonchi	X76If	Y7DxZ	
	Wheezing	XE0qs	Y7DuF	
	Wheezing symptom	XM0Ci	YM1is	
	Wheezy	XE0qs	Y7DuF	
Asthma				
	Acute asthma	Xa9zf	YaYk2	
	Allergic asthma	XE0YT	Y108G	
	Asthma	Н33	Y107p	
	Asthma NOS	XE0YX	Y1080	
	Asthma unspecified	H33z.	Y107y	
	Asthmatic bronchitis	Xa01Z	Y108e	
	Brittle asthma	UalAX	YMFVN	
	Childhood asthma	X101t	Y107w	
	Chronic asthmatic bronchitis	H3120	Y108g	
	Mild asthma	663V1	YaY1o	
	Moderate asthma	663V2	YaY1p	
	Nocturnal asthma	XaLPE	Y1084	
	Non-allergic asthma	XE0YT	Y108G	
	Occasional asthma	663V0	YaYln	

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

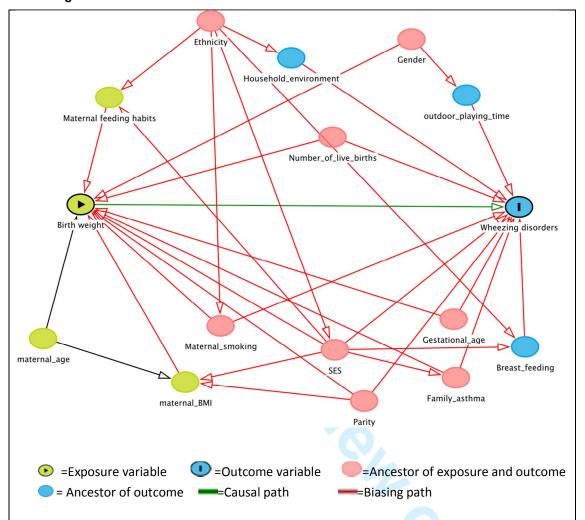
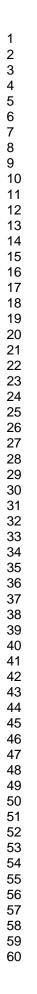
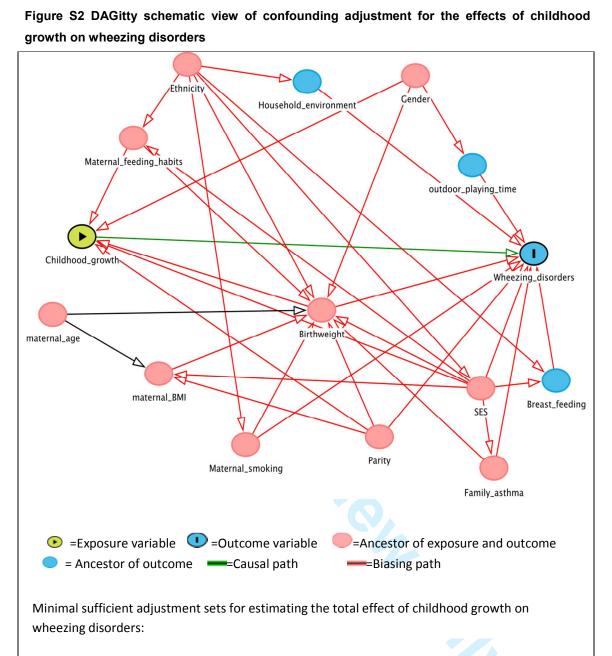




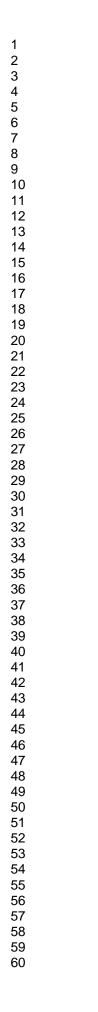
Figure S1 DAGitty schematic view of confounding adjustment for the effects of birthweight on wheezing disorders

Minimal sufficient adjustment sets for estimating the total effect of birthweight on wheezing disorders:

- {Breast feeding, family asthma, gender, gestational age, household environment, maternal smoking, number of live births, parity, SES}
- {Breast feeding, family asthma, gestational age, household environment, maternal smoking, number of live births, parity, SES, outdoor playing time}
- {Ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, SES}
- {Ethnicity, family asthma, gestational age, maternal smoking, number of live births, parity, SES, outdoor playing time}
- {Family asthma, gender, gestational age, maternal feeding habits, maternal smoking, number of live births, parity, SES}
- {Family asthma, gestational age, maternal feeding habits, maternal smoking, number of live births, parity, SES, outdoor playing time}

- {Birthweight, breast feeding, family asthma, gender, household environment, maternal smoking, parity, SES}
- {Birthweight, breast feeding, family asthma, household environment, maternal smoking, parity, SES, outdoor playing time}
- {Birthweight, ethnicity, family asthma, gender, maternal smoking, parity, SES}
- {Birthweight, ethnicity, family asthma, maternal smoking, parity, SES, outdoor playing time}
- {Birthweight, gender, maternal feeding habits, parity, SES}

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright


	Period in months			
	First 3 months	First 6 months	First 9 months	First 12 months
Wheezing disorders diagnosis	1.3%	8.3%	17.0%	27.7%
Wheezing disorders treatment	2.1%	16.8%	33.1%	46.1%
Asthma diagnosis	0%	1.8%	2.7%	4.4%
Wheezing symptoms	1.59	7.9%	19.8%	31.8%

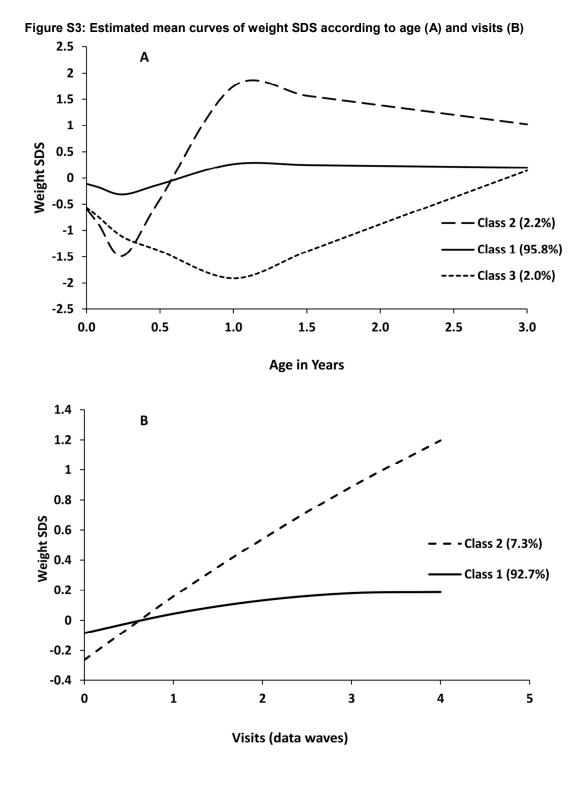

Number of classes	Μ	lodel fit C	riterion		Classification quality	Likelihood ratio test
	-2LL	AIC	ABIC	df	Entropy	BLRT (-2LL diff; df diff; and P-values)
Age based weight SI	DS	-	-		-	
1 class	13,794	13,836	13,883	21	N/A	N/A
2 classes	13,752	13,805	13,862	26	0.94	42; 5; <0.01
3 classes	13,724	13,785	13,853	31	0.90	29; 5; <0.01
4 classes	13,698	13,770	13,849	36	0.88	24; 5; 0.02
5 classes	13,680	13,763	13,853	41	0.88	17; 5; 0.70
Visits based weight	SDS					
1 class	14,100	14,129	14,159	14	N/A	N/A
2 classes	14,034	14, 069	14,109	18	0.79	67; 4; <0.01
3 classes	14,006	14,052	14,099	22	0.85	26; 4; <0.01
4 classes	13,992	14,044	14,102	26	0.79	15; 4; 0.03
5 classes	13,980	14,041	14,107	30	0.72	11; 4; 0.25

Table S4: Model fit results for selection of optimal number of classes

LL= Log-likelihood; AIC=Akaike Information Criterion; ABIC= sample size adjusted Bayesian Information Criterion;

BLRT=Bootstrapped likelihood Ratio Test; -2LL diff=2 times the Log-likelihood difference, df=degrees of freedom (number of free parameters); df diff= difference in the degree of freedom or number of free parameters.

BMJ Open

	Parameter	Estimate and 95% CI	P-value
Age based GMM model			
Class 1 ('Normal growers')	Birthweight	-0.111 (-0.170 to -0.053)	< 0.01
	Velocity ₀₋₃	-0.671 (-0.903 to -0.439)	< 0.01
	Velocity ₃₋₁₂	0.645 (0.578 to 0.712)	< 0.01
	Velocity ₁₂₋₃₆	-0.028 (-0.053, -0.003)	0.03
Class 2('Fast growers')	Birthweight	-0.594 (-1.305 to 0.117)	0.10
	Velocity ₀₋₃	-2.956 (-7.838 to 1.925)	0.24
	Velocity 3-12	3.588 (2.850 to 4.326)	< 0.01
	Velocity ₁₂₋₃₆	-0.302 (-0.993 to 0.390)	0.39
Class 3('Slow growers')	Birthweight	-0.564 (-1.146 to 0.018)	0.06
	Velocity ₀₋₃	-1.878 (-3.980 to 0.225)	0.08
	Velocity 3-12	-0.871 (-1.950 to 0.208)	0.11
	Velocity ₁₂₋₃₆	0.856 (0.266 to 1.446)	< 0.01
Visits based GMM model			
Class 1 ('consistent growers')	Birthweight	-0.084 (-0.138 to -0.030)	< 0.01
	Velocity	0.246 (0.196 to 0.297)	< 0.01
	Acceleration	-0.056 (-0.067 to -0.045)	< 0.01
Class 2 ('inconsistent growers')	Birthweight	-0.263 (-0.577 to 0.051)	0.10
	Velocity	0.732 (0.335 to 1.129)	< 0.01
	Acceleration	-0.051 (-0.132 to 0.029)	0.21

Table S5: Mean estimates of the latent classes of Growth Mixture Model parameters

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1	
2	
3 4 5 6 7 8	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
27	
28	
29	
30 21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
00	

1

Table S6: Adjusted relative risks and 95% confidence intervals of complete cases analysis
(10,623 children)

	Wheezing disorders	Asthma	Wheezing	wheezing disorder
	treatment	diagnosis	symptoms	diagnosis
Birthweight				-
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	1.03(0.90 to1.18)	0.88 (0.63 to 1.22)	1.01 (0.84 to 1.21)	0.97 (0.82 to 1.14)
Low (<2.5kg)	1.22 (1.06 to 1.41)	1.63 (1.24 to 2.14)	1.26 (1.05 to 1.51)	1.30 (1.10 to 1.53)
Ethnicity				
White British	1	1	1	1
Pakistani	0.96 (0.87 to 1.05)	1.39 (1.12 to 1.71)	1.26 (1.11 to 1.43)	1.22 (1.09 to 1.36)
Others	0.76 (0.68 to 0.86)	1.00 (0.76 to 1.30)	0.93 (0.79 to 1.09)	0.91 (0.78 to 1.05)
Gender				
Male	1	1	1	1
Female	0.73 (0.67 to 0.78)	0.64 (0.55 to 0.75)	0.64 (0.59to0.71)	0.65 (0.60 to 0.72)
Gestational age				
Term	1	1	1	1
Pre-term	1.21 (1.04 to 1.42)	1.13 (0.81 to 1.56)	1.10 (0.89 to 1.35)	1.11 (0.92 to 1.33)
Number of births				
Singleton	1	1	1	1
Twins	0.67 (0.51 to 0.88)	0.71 (0.43 to 1.19)	0.70 (0.50 to 0.99)	0.66 (0.48 to 0.91)
Triplets	1.18 (0.39 to 3.61)	-	0.83 (0.14 to 4.91)	0.69 (0.12 to 4.09)
Maternal smoking				
No	1	1	1	1
Yes	1.04 (0.96 to 1.14)	0.83 (0.68 to 1.03)	1.09 (0.96 to 1.22)	1.07 (0.96 to 1.19)
Parity				
primiparous	1	1	1	1
multiparous	1.01 (0.94 to 1.09)	1.06 (0.90 to 1.24)	1.12 (1.02 to 1.23)	1.09 (1.00 to 1.19)
IMD 2010 Quintile score	0.98 (0.94 to 1.02)	0.97 (0.88 to 1.07)	0.94 (0.89 to 1.00)	0.95 (0.91 to 1.01)

Table S7 Adjusted and unadjusted relative risks and 95% CI for growth patterns and wheezing disorders from complete cases analysis (1,572 children)

		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight S	SDS	-	-
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growers)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growers)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weight	SDS		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)
growers)	Wheezing disorder diagnosis	1.42 (0.92 to 2.19; 0.11)	1.38 (0.90 to 2.12; 0.14)
	Wheezing disorder treatment	1.14 (0.74 to 1.76; 0.55)	1.17 (0.76 to 1.81; 0.47)

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a nichy, p-

reference group in both models.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		[Methods section of the abstract page 1]
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found [Results section of abstract page 1]
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Buoilgiounia, iunonare	-	[Page 3]
Objectives	3	State specific objectives, including any prespecified hypotheses [Page 4]
Methods		
Study design	4	Present key elements of study design early in the paper [Methodology page 5]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
-		exposure, follow-up, and data collection [Pages 5-6]
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
1		participants. Describe methods of follow-up [Pages 5-6]
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed [N/A]
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable [Page 6]
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group [Pages 5-6]
Bias	9	Describe any efforts to address potential sources of bias [Page 6-7]
Study size	10	Explain how the study size was arrived at [Page 5]
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why [Pages 5-6]
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		[Pages 6-7]
		(b) Describe any methods used to examine subgroups and interactions [N/A]
		(c) Explain how missing data were addressed [Page 7]
		(d) If applicable, explain how loss to follow-up was addressed
		(<u>e</u>) Describe any sensitivity analyses [N/A]
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
i wivelpunds	10	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed [Page 5]
		(b) Give reasons for non-participation at each stage [Page 5]
		(c) Consider use of a flow diagram [N/A]
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
2 compare data	17	information on exposures and potential confounders [Page 8]
		(b) Indicate number of participants with missing data for each variable of interest
		[Page 9]
		(c) Summarise follow-up time (eg, average and total amount) [Page 8]
		(0) summarise renew-up time (02, average and total differential if age of
Outcome data	15*	
Outcome data Main results	15* 16	Report numbers of outcome events or summary measures over time [Page 8] (<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		adjusted for and why they were included [Pages 10 &13]
		(<i>b</i>) Report category boundaries when continuous variables were categorized [Page 6]
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period [N/A]
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses $[N/A]$
Discussion		
Key results	18	Summarise key results with reference to study objectives [Page 14]
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias [Page 15]
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		[Pages 14-15]
Generalisability	21	Discuss the generalisability (external validity) of the study results [Page 14-15]
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based [within
		acknowledgments and funding]

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-009553.R1
Article Type:	Research
Date Submitted by the Author:	16-Sep-2015
Complete List of Authors:	Mebrahtu, Teumzghi; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Feltbower, Richard; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Parslow, Roger; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Paediatrics, Research methods
Keywords:	Paediatric thoracic medicine < PAEDIATRICS, Asthma < THORACIC MEDICINE, Allergy < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Teumzghi F Mebrahtu^{1*}, Richard G. Feltbower¹, Roger C. Parslow¹

¹ Division of Epidemiology and Biostatistics, School of Medicine, University of Leeds, Leeds, United Kingdom

* Corresponding author. Address: Division of Epidemiology and Biostatistics, School of medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom. E-mail: <u>mt09tfm@leeds.ac.uk</u>

Abstract:

Objectives: To examine the effects of birthweight and childhood growth on childhood wheezing disorders. We hypothesised that low birthweight and fast growth during early age would increase the risk of wheezing disorders.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Setting: Observational secondary analysis of data from the Born in Bradford cohort.

Participants: All children who were born at the Bradford Royal Infirmary hospital between March 2007 and December 2010 were eligible for the study. A total of 13,734 and 1,598 children participated in the analyses of the effects of birthweight and growth on wheezing disorders, respectively.

Primary and secondary outcome measures: wheezing disorders diagnosis (diagnosed as asthma or had wheezing symptom) and treatment during the ages of 0 to 7 years were the primary outcome measures. Diagnosis of asthma and occurrence of wheezing during the same period were secondary outcome measures.

Results: The adjusted RRs of wheezing disorders diagnosis for the low and high birthweight children were 1.29 (95% CI: 1.12 to 1.50; p=0.001) and 0.91 (95% CI: 0.79 to 1.04; p=0.17) respectively. The respective RRs of wheezing disorders treatment were 1.27 (95% CI: 1.15 to 1.40) and 0.99 (95% CI: 0.89 to1.11). The adjusted RRs of wheezing disorders diagnosis were 1.30 (95% CI: 0.56 to 3.06;

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

p=0.54) and 0.60 (95% CI: 0.16 to 2.18; p=0.44) respectively for the "fast" and "slow" growth as compared to the "normal" growth. The respective RRs of wheezing disorders treatment were 0.77 (95% CI: 0.28 to 2.17; p=0.63) and 0.81 (95% CI: 0.29 to 2.25; p=0.69).

Conclusion: Low birthweight children have an increased risk of wheezing disorders whereas high birthweight children have a reduced risk in this birth cohort. Low birthweight coupled with a decelerated growth until 3 months and a sharp growth between 3 and 12 months has an increased risk of wheezing disorders diagnosis, but not wheezing disorders treatment.

Key study strengths:

- A large sample, contemporary birth cohort data was used
- DAGs were used to minimize bias potential bias due to confounding
- Multiple Imputation by chained equations was used to minimize bias due to missing data
- Age and sex specific standardised scores and growth percentiles were used to illustrate the growth of cohort children in reference to standard growth charts

Key study weaknesses:

- Selection of participants was not random
- Number of individuals in some of the growth classes was small so the risk estimates were not robust
- There was a substantial missing growth data at some follow up periods although missing data estimation models were used to minimise bias
- Information on potential confounding (i.e. family asthma and breast feeding) was missing

INTRODUCTION

Asthma is defined as a chronic disease of the passage of airways, characterized by smooth muscle contraction, accumulation of mucous and debris in the lumen, vascular congestion and airway wall oedema which leads to breathlessness and wheezing.¹ Although it is claimed to be the most common childhood disease,² there is, however, a lack of consistency in its diagnosis in clinical practice ³. This is due to the difficulty in diagnosing asthma in children, especially those of pre-school age, in whom wheezing, which is the main symptom for asthma, can be caused by other illnesses.⁴ In addition, although there are various asthma confirmatory tests available,⁵ young children can be less cooperative in participating in such tests leading to an under-diagnosis of true asthma cases. Therefore, the word "asthma" may not be an adequate term for what can be described as a spectrum of respiratory problems. As a result, some researchers have tended to use more inclusive terms such as "wheezing disorders".⁶⁻⁹

The effect of birthweight on wheezing disorders has been studied extensively with more than 40 observational epidemiological studies carried out to date. In our recent meta-analysis and systematic review of these studies, we reported that low birth weight children (<2.5 kg) have a 60% (OR: 1.60; 95% CI 1.39 to 1.85) and 37% (OR=1.37 95% CI 1.05 to 1.79) higher risk of wheezing disorders when compared with \geq 2.5kg and 2.5–4.0kg birth weight children, respectively.¹⁰ We also found a modest increased risk in high birth weight children (>4 kg) when compared with normal birth weight (2.5–4.0 kg) children (OR: 1.02; 95% CI 0.99 to 1.04). However, we acknowledged there was substantial heterogeneity among the risk estimates of the studies included which was not accounted for by study characteristics.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The effect of early childhood growth on wheezing disorders has not been widely studied. Results from a handful of previous studies are inconsistent with some suggesting fast growth predisposes to wheezing disorders¹¹⁻²¹ and others reporting reduced risk of wheezing disorders.^{20 22-24} In addition to that, all of these studies, with the exception of one,¹⁹ assumed homogenous growth among children, either used statistical techniques that can now be improved upon or a non-standard growth data

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

analysis that makes comparison and replication of results very difficult. For example, three ^{11 17 21} used data driven standardised scores (SDS), three ^{12 20 23 24} used country specific SDS and another one ¹⁵ used non-standardized weight measurements.

The aim of the study was twofold: a) further investigation of the effects of birthweight on wheezing disorders; and b) investigation of the effects of early growth on wheezing disorders using a birth to been to the work cohort data.

METHODS

Study participants

The Born in Bradford study is a prospective mainly bi-ethnic, cohort that examines the impact of environmental, genetic and social factors on health of the population of Bradford ²⁵. The methods of recruitment are explained in detail elsewhere. ^{25 26} In brief: recruitment of participants started in March 2007 and ended in December 2010; a total of 13,776 pregnant mothers were recruited that resulted in 13,857 births. Out of the total births, 123 died before the age of one week which resulted in a total of 13,734 children to be included in the birthweight and childhood wheezing disorders analyses.

At the same time, a sub cohort (BiB1000) of 1,735 mothers and 1,763 babies were also recruited for follow-up examinations. After excluding multiple births, preterm births and death before the age of one week, a total of 1,598 children were included in growth pattern and wheezing disorder analyses.

Ethics statement

Ethics approval was granted to the Born in Bradford project by Bradford Research Ethics Committee (Ref 07/H1302/112.).

Data collection

We have used five data sources. (1) Hospital maternity records for information on birth weight, gestational age, gender of a child, and number of live births; (2) BiB1000 cohort records for weight at 6, 12, 18, 24 and 36 months of age, that is, during the first, second, third, fourth, and fifth visit after birth, respectively; (3) Community health records for weight at 1 and 3 months of age; (4) Baseline questionnaire data collected from the mothers on recruitment about their ethnicity, smoking and socio-economic status and (5) Linked primary care data about outcome variables (wheezing disorder diagnosis terms and treatment) recorded as Read Codes (http://systems.hscic.gov.uk/data/uktc/readcodes).

Case definition and ascertainment

We drew up four disease definitions based on diagnostic codes and prescribed medication details entered by general practitioners onto the primary care database.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- 1. Asthma diagnosis: presence of asthma codes in the record
- 2. Wheezing symptoms: presence of asthma and wheezing diagnosis codes in the record
- Wheezing disorder based on diagnosis (*wheezing disorder diagnosis*): presence of asthma or wheezing diagnosis codes in the record
- 4. Wheezing disorder based on treatment (*wheezing disorder treatment*), existence of at least two drug prescriptions indicated for the treatment of asthma a minimum of one week and maximum of one year apart.

Drug and disease terms and codes used to confirm occurrences of wheezing disorders any time between 0 and 7 years of age are listed in supplementary tables 1&2.

Variables for analysis

Primary variables:

Where regression modelling was carried out, exposure variables were birthweight and growth; outcome variables were wheezing disorders (i.e. *asthma diagnosis*, *wheezing symptoms*, *wheezing disorders diagnosis* and *wheezing disorders treatment*).

Two types of growth variables were used: age based and visits based. For the age based growth, age of a child when the measurement of weight occurred was used as a time score. The data was collected through maternity records, BiB1000 questionnaire, and the community health records so the time points: 0, 1,3,6,12,18, 24 and 36 months were used as time scores. In the visit based, however, only maternity records and the BiB1000 questionnaire data were considered. Therefore, 0, 1, 2, 3, 4, and 5 were used as times scores. Note that 0 stands for time when birthweight was measured (i.e. birth), and 1, 2, 3, 4, and 5 represent for 6, 12, 18, 24, and 36 months of BiB1000 questionnaires, respectively.

The aim of using the age based and visits based time scores was to explore the effects of growth in terms of latent growth factors (i.e. intercept and slope) and weight status (i.e. underweight, normal, overweight or obese based on the weight percentiles) at every visit, respectively. In the age based approach, the age of the children at each time point needed to be identical or weight values were constrained to be missing if the recorded weight measurement did not reflect the time points. In the

visits based approach, however, the age of the children at each time point did not need to be identical and no constraint was imposed. The main difference between these two approaches was that in the age based, group classification was based on how fast or slow the children grow as their age was identical or constrained to be identical. On the visits based, however, although the group classification was similar to the age based, the outputted intercept and slope were artificial and were not used to characterise how fast or slow the children grew between two times points as the age of children was not constrained to be identical. In addition, the age based data had more missing value than the visits based due to the constraint of age to be identical during the respective time points.

Confounding variables

Selection of variables was carried out based on the criteria that confounding variable must have an effect on the exposure and outcome variables, and should not be on the causal pathway.²⁷⁻²⁹ In order to minimise bias due to confounding and over-adjustment, Direct Acyclic Graphs (DAGs) were used ^{28 30} and models were tested using DAGitty software.²⁹ Drawing of a relationship between variables of interest (i.e. confounding and main variables) was guided by epidemiological, biologic and clinical knowledge. Figures S1 & S2 illustrate the schematic view of adjustment and output for the list of "minimally sufficient" confounding sets using DAGitty software.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

In assessing the effect of birthweight on wheezing disorders: ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, and SES were selected as "minimally sufficient" set of confounding variables. In assessing the effect of childhood growth on wheezing disorders: birthweight, ethnicity, family asthma, breast feeding, gender, maternal smoking, parity, and SES were selected as "minimally sufficient" set of confounding variables.

However, note that selection among sets of confounding variables was carried out retrospectively, that is, after collection of data was already carried out by the BiB project. Hence, availability of information on variables was also a factor during the selection process. As such, although the selected sets were better than the other candidate sets, no data was available for the variable "family asthma" and "breast feeding".

Missing data estimation variables

 Where imputations were carried out, missing data were estimated under MAR assumption that the missingness on outcome variables does not depend on the outcome variables themselves but can be explained by (or related to) other variables included in the imputation models (also known as *auxiliary* variables).³¹ The *auxiliary* variables included in the imputation process were: exposure variable, confounding variables, and variables that can be related to the missingness. The first two types of variables were those included in the analysis models whereas the third types of variables (maternal hypertension and diabetes) were included only in the imputation models.

A brief check on the variables before carrying out of imputations showed that birthweight, gestational age and outcome variables (i.e. asthma diagnosis, wheezing symptoms, wheezing disorder treatment and wheezing disorder diagnosis) were completely observed. To further explore if imputations were necessary or beneficial, dummy variables (i.e. yes or no) were created as missing data indicator for each covariate with missing observations. When the missingness indicator variables and outcome variables were tested for correlations, the results consistently showed that there were no significant associations which also indicate that complete cases analysis could produce unbiased, albeit less precise, parameter estimates.³² However, there were consistent significant associations between the missing indicator variables and other confounding variables which also suggest that imputations with inclusion of these covariates may improve the precision of the parameter estimates.^{31 32}

Statistical analysis and software

Birth weight was classified according to the Centre of Diseases prevention and Control (CDC) 33 and World Health Organisation (WHO) methods 34 where <2.5kg=Low, 2.5-4.0kg=Normal and >4.0kg=High. Age-specific and sex-specific standardised scores (SDS) of weight were derived

according to World Health Organisation (WHO) growth standards ³⁵ in LMSgrowth Microsoft excel add-in software.³⁶ The WHO growth standards population that we used to derive the SDS scores was made up of singleton term births. Hence, multiple births and preterm births were excluded from the growth patterns and wheezing disorders analyses.

In identifying the best fitting growth patterns, growth mixture models (GMM) were fitted,^{37 38} and, in selecting the optimal number of classes, and best growth model we used model classification quality and model fit statistics. In addition, interpretability was also considered where we rejected models that consist of a class with less \leq 1% of the total population. When comparing growth patterns of children in our GMM, we used WHO growth standards charts ³⁵ as a point of reference. In converting weight SDS into percentiles, we used a one-sided normal standard distribution. For example, weight SDS of -1.64, 0, 1.04 and 1.64 are equivalent to the 5th, 50th, 85th and 95th percentiles respectively.

Missing data on covariates were estimated using Multiple Imputations by Chained Equation (MICE) models under Missing data at Random (MAR) assumptions. ^{39 40} In deciding how many datasets to be imputed, we took the number of imputations (**n**) to be greater than the percentage or fraction of incomplete cases. ^{39 41} Missing growth data were estimated using a Full Information Maximum Likelihood (FIML) method in which parameters are estimated using all available observations in the dataset, under MAR assumption.^{42 43}

GMM was carried out in Mplus version. 7.11, and covariates' missing data estimation and regression modelling were carried out in Stata version 12. 5% significance levels and 95% confidence intervals were adopted throughout.

RESULTS

Birthweight and wheezing disorders

The cohort was made up of 13,734 children that yielded 74,940 person years of follow-up. 37.3% and 32.8% were Pakistani and white British origin respectively; 12.6% were minority and 17.3% with missing ethnicity data. 50.4% and 47.3% were male and female respectively, and, 2.3% of children had missing information on sex. 82.6%, 9.1% and 8.3% of the cohort were "normal", "high" and "low" birthweight children respectively (table 1). Out of 13,734 children, 6.1% were diagnosed as asthmatic, 14.5% had wheezing symptoms, 17.1% were either diagnosed for asthma or had wheezing symptoms, and 22.1% children were treated with asthma drugs based on primary care data available up to November 2014 (table 1).

Low birthweight

Low birthweight was associated with all four disease definitions. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 1.53 (95% CI: 1.20 to 1.96), 1.29 (95% CI: 1.10 to 1.52), 1.29 (95% CI: 1.12 to 1.50) and 1.25 (1.10 to 1.42) respectively (table 2). The respective unadjusted RRs were 1.55 (95% CI: 1.27 to 1.89), 1.29 (95% CI: 1.13 to 1.46), 1.28 (95% CI: 1.14 to 1.45) and 1.27 (95% CI: 1.15 to 1.40).

High birthweight

There was a consistent but weak evidence for a reduction of wheezing disorders risk for those children who were classified as being of high birthweight. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.95 (95% CI: 0.74 to 1.22), 0.90 (95% CI: 0.77 to 1.04), 0.91 (95% CI: 0.79 to 1.04) and 0.99 (95% CI: 0.89 to1.11) respectively (table 2). The respective unadjusted RRs of high birthweight for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.93 (95% CI: 0.73 to 1.19), 0.91 (95% CI: 0.78 to 1.06), 0.92 (95% CI: 0.80 to 1.05) and 1.04 (95% CI: 0.93 to 1.16).

	Asthma d	iagnosis	Wheez	ing	Wheezing d	lisorder	Wheezing d	isorder
			sympto	oms	diagno	sis	treatme	ent
	Yes/ No	Yes %	Yes/ No	Yes %	Yes/No	Yes %	Yes/ No	Yes %
Birthweight	-		_	-	-		-	-
Normal (2.5-4.0kg)	668/10,673	5.9%	1,622/9,719	14.3%	1,907/9,434	16.8%	2,444/8,897	21.6%
Low (<2.5kg)	104/1,035	9.1%	209/930	18.3%	246/893	21.6%	311/828	27.3%
High (>4.0kg)	69/1,185	5.5%	163/1,091	13.0%	194/1,060	15.5%	280/974	22.3%
Ethnicity								
White British	217/4,284	4.8%	586/3,915	13.1%	706/3,795	15.7%	1,074/3,427	23.9%
Pakistani	382/4,735	7.5%	857/4,260	16.7%	985/4,132	19.2%	1,150/3,967	22.5%
Others	86/1,647	5.0%	207/1,526	11.9%	243/1,490	14.0%	308/1,425	17.8%
Gender								
Male	502/6,415	7.3%	1,220/5,697	17.6%	1,416/5,501	20.5%	1,775/5,142	25.7%
Female	318/6,172	4.9%	742/5,748	11.4%	890/5,600	13.7%	1,190/5,300	18.3%
Gestational age								
Term	769/12,100	6.0%	1,841/11,028	14.3%	2,166/10,703	16.8%	2,792/10,077	21.7%
Pre-term	72/793	8.3%	153/712	17.7%	181/684	20.9%	243/622	28.1%
Number of births								
Singleton	803/12,281	6.1%	1,923/11,161	14.7%	2,262/10,822	17.3%	2,911/10,173	22.2%
Twins	17/297	5.4%	38/276	12.1%	43/271	13.7%	52/262	16.6%
Triplets	0/9	0%	1/8	11.1%	1/8	11.1%	2/7	22.2%
Maternal smoking								
No	520/7,371	6.6%	1,162/6,729	14.7%	1,359/6,532	17.2%	1,710/6,181	21.7%
Yes	167/3,295	4.8%	490/2,972	14.2%	578/2,884	16.7%	823/2,639	23.8%
Parity								
primiparous	292/4,823	5.7%	686/4,429	13.4%	821/4,294	16.1%	1,128/3,987	22.1%
multiparous	489/7,311	6.3%	1,210/6,590	15.5%	1,401/6,399	18.0%	1,728/6,072	22.2%
IMD 2010 Quintile sc	ore							
1	487/7,048	6.5%	1,182/6,353	15.7%	1,372/6,163	18.2%	1,721/5,814	22.8%
2	115/1,939	5.6%	253/1,801	12.3%	304/1,750	14.8%	435/1,619	21.2%
3	59/1,196	4.7%	148/1,107	11.8%	177/1,078	14.1%	247/1,008	19.7%
4	18/317	5.4%	41/294	12.2%	53/282	15.8%	84/251	25.1%
5	8/184	4.2%	30/162	15.6%	33/159	17.2%	49/143	25.5%

IMD=Index of multiple deprivation with 1 and 5 indicating the least deprived and most deprived scores respectively.

	Asthma diagnosis	Wheezing symptoms	Wheezing disorder diagnosis	Wheezing disorder treatment
Birthweight			-	-
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	0.95 (0.75 to 1.22)	0.90 (0.77 to 1.04)	0.91(0.79 to 1.04)	0.99 (0.89 to1.11)
Low (<2.5kg)	1.53 (1.20 to 1.96)	1.29 (1.10 to 1.52)	1.29 (1.12 to 1.50)	1.25(1.10 to 1.42)
Ethnicity				
White British	1	1	1	1
Pakistani	1.36 (1.11 to 1.66)	1.26(1.12 to 1.42)	1.21(1.08 to 1.35)	0.95 (0.87 to 1.05)
Others	0.96 (0.74 to 1.25)	0.93 (0.79 to 1.08)	0.90 (0.78 to 1.04)	0.76 (0.67 to 0.85)
Gender				
Male	1	1	1	1
Female	0.67(0.58 to 0.76)	0.64 (0.59 to 0.70)	0.66 (0.61 to 0.72)	0.71 (0.67 to 0.76)
Gestational age				
Term	1	1	1	1
Pre-term	1.11(0.83 to 1.48)	1.08 (0.90 to 1.30)	1.09 (0.92 to 1.29)	1.16 (1.01 to 1.34)
Number of births				
Singleton	1	1	1	1
Twins	0.68(0.42 to 1.10)	0.71 (0.52 to 0.97)	0.68 (0.51 to 0.90)	0.63 (0.49 to 0.81)
Triplets	-	0.57 (0.09 to 3.60)	0.48 (0.08 to 3.03)	0.75 (0.22 to 2.56)
Maternal smoking				
No	1	1	1	1
Yes	0.86(0.70 to 1.05)	1.10 (0.98 to 1.24)	1.07 (0.97 to 1.19)	1.05 (0.97 to 1.15)
Parity				
primiparous	1	1	1	1
multiparous	1.04 (0.91 to 1.20)	1.14 (1.04 to 1.24)	1.10 (1.02 to 1.19)	1.02 (0.95 to 1.08)
IMD 2010 Quintile	0.96 (0.88 to 1.05)	0.95 (0.90 to 1.00)	0.95 (0.91 to 1.00)	0.97 (0.93 to 1.00)
score				

Table 2Adjusted relative risks and 95% confidence intervals of covariates using 40
imputed datasets

Note: model adjusted for ethnicity, gender, gestational age, number of births, maternal smoking, parity and IMD score.

Growth and wheezing disorders

The BiB1000 follow-up cohort consisted of 1,598 children that contributed a total of 8,683 person years of follow-up. The total number of children who had "asthma" diagnosis, "wheezing" symptoms, "wheezing disorders" diagnosis and "wheezing disorders" treatment were 113 (7.1%) , 252 (15.8%), 300 (18.8%) and 369 (23.1%) respectively, slightly higher than the whole BiB cohort. Fewer than 2% and 10% of the BiB1000 children were diagnosed with or treated for wheezing disorders during the first three months and the first six months respectively (supplementary table S3).

Age based weight patterns

According to the optimal number of class determination results, a four class model was best (supplementary table S4). However, a three class model was preferred on an interpretability basis

BMJ Open

(table 3 & figure S3A). Class 1 (95.8%) was composed of children whose mean birthweight was at the 46th percentile and were just over the 60th percentile at the age of 1 year and stayed around 60th percentile afterwards according to WHO growth standards.³⁵ Class 2 (2.2%) was composed of children whose mean weight at birth was on the 28th percentile then increased to the 96th percentile at one year of age and persisted to be overweight until the age of three. Class 3 (2.0%) were a group of children whose mean birthweight was on the 29th percentile, who subsequently showed very slow growth, their mean weight reaching the 3rd percentile at 1 year of age, followed by moderate acceleration to reach the 56th percentile by the age of three. Class 1, class 2 and class 3, could be characterised as "normal", "fast" and "slow" growth groups respectively. Supplementary Table S5 gives estimated means of the growth model parameters.

		Growth classes	
	Class 1	Class 2	Class 3
Age based weight SDS			
Birth	46 th (-0.11 SDS)	28 th (-0.59 SDS)	29 th (-0.56 SDS)
1 month	43 rd (-0.18 SDS)	19 th (-0.89 SDS)	23 rd (-0.75 SDS)
3 months	38 th (-0.31 SDS)	7 th (-1.48 SDS)	13 th (-1.13 SDS)
6 months	45 th (-0.12 SDS)	34 th (-0.40 SDS)	8 th (-1.39 SDS)
12 month	s 61 st (0.27 SDS)	96 th (1.75 SDS)	3 rd (-1.91 SDS)
18 month	s $60^{\text{th}} (0.25 \text{ SDS})$	94 th (1.57 SDS)	8 th (-1.40 SDS)
24 month	s 59 th (0.23 SDS)	92 nd (1.39 SDS)	19 th (-0.88 SDS)
36 month	s 58 th (0.20 SDS)	85 th (1.02 SDS)	56 th (0.14 SDS)
Visits based weight SD	DS		
Birth	47 th (-0.08 SDS)	40 th (-0.26 SDS)	-
1 st Visit	53 rd (0.04 SDS)	56 th (0.16 SDS)	-
2 nd visit	55 th (0.13 SDS)	71 rd (0.54 SDS)	-
3 rd visit	57 th (0.18 SDS)	81 st (0.89 SDS)	-
4 th visit	57 th (0.19 SDS)	88 th (1.20 SDS)	-
5 th visit	53 rd (0.09 SDS)	96 th (1.70 SDS)	-

Table 3 Estimated mean and percentiles of 1,598 children by growth classes

The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment for fast growth group were 0.81 (95% CI: 0.12 to 5.46), 1.59 (95% CI: 0.67 to 3.71), 1.30 (95% CI: 0.56 to 3.06) and 0.77 (95% CI: 0.20 to 2.51) respectively, when

compared the "normal" growth group (table 4). The adjusted RRs of the "slow" as compared to the "normal" growth group for "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment were 0.72 (95% CI: 0.20 to 2.62), 0.60 (95% CI: 0.16 to 1.95) and 0.81 (95% CI: 0.29 to 2.25) respectively. The respective unadjusted relative risks for both growth groups remained similar (table 4).

Visits based growth patterns

The age ranges of the children during their first, second, third, fourth, and fifth visits after birth were 4.9 to 9.4, 10.7 to 18.3, 15.2 to 22.8, 23.4 to 28.5 and 35.4 to 40.6 months respectively. Although the determination of the optimal number of classes favoured a model with four classes, the two class model was selected on a model interpretability basis (supplementary table S4). Class 1 (92.7%) comprised those children who were around the 46th percentile at birth and 52nd percentile during the first visit after birth and remained around the 60th percentile during the next four visits according to the WHO growth standards chart; ³⁵ class 2 (7.3%) comprised children who were, on average, at the 29nd percentile at birth and 57th percentile during the first visit after birth then consistently accelerated to reach the 95th percentile during the last visit (figure S3B & table 3). Class 1 and class 2 could be characterised as "inconsistent" and "consistent" growth groups respectively.

	Asthma dia	gnosis	Wheez	ing	Wheezing	g disorder	Wheezing	disorder
			sympto	oms	diag	nosis	treatr	nent
_	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %
Birthweight			-	-				
Normal (2.5-4.0kg)	101/1,314	7.1%	221/1,194	15.6%	264/1,151	18.7%	321/ 1,094	22.7%
Low (<2.5kg)	6/64	8.6%	14/56	20.0%	16/54	22.9%	20/50	28.6%
High (>4.0kg)	6/107	5.3%	17/96	15.0%	20/93	17.7%	28/85	24.8%
Ethnicity								
White British	24/578	4.0%	82/520	13.6%	95/507	15.8%	141/461	23.4%
Pakistani	73/689	9.6%	134/628	17.6%	164/598	21.5%	175/587	23.0%
Others	16/216	6.9%	36/196	15.5%	41/191	17.7%	53/179	22.8%
Gender								
Male	70/708	9.0%	159/619	20.4%	185/593	23.8%	212/566	27.2%
Female	43/777	5.2%	93/727	11.3%	115/705	14.0%	157/663	19.1%
Maternal smoking								
No	90/1,051	7.9%	177/964	15.5%	213/928	18.7%	256/885	22.4%
Yes	23/433	5.0%	74/382	16.2%	86/370	18.9%	112/344	24.6%
Parity								
primiparous	41/571	6.7%	87/ 525	14.2%	106/ 506	17.3%	144/468	23.5%
multiparous	70/ 892	7.3%	163/ 799	16.9%	191/ 771	19.9%	218/744	22.7%
IMD 2010 Quintile score								
1	83/998	7.7%	183/898	16.9%	217/864	20.1%	255/826	23.6%
2	19/271	6.6%	37/253	12.8%	45/245	15.5%	64/226	22.1%
3	10/158	6.0%	23/145	13.7%	28/140	16.7%	36/132	21.4%
4	1/34	2.9%	3/32	8.6%	4/31	11.4%	6/29	17.1%
5	0/24	0%	6/18	25.0%	6/18	25.0%	8/16	33.3%

Table 4	Characteristics of 1,598 children with complete data on wheezing disorders and
	covariates

The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment for the "inconsistent" growth group were 1.47 (95% CI: 0.71 to 3.01), 1.13 (0.66 to 1.95), 1.38 (0.90 to 2.12) and 1.17 (0.76 to 1.81) respectively, when compared to the "consistent" growth group. The respective unadjusted relative risks remained similar (table 5).

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

-		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight SDS			
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growth)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growth)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weight SD	S		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent growth)	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)
	Wheezing disorder diagnosis	1.42 (0.92 to 2.19; 0.11)	1.38 (0.90 to 2.12; 0.14)
	Wheezing disorder treatment	1.14 (0.74 to 1.76; 0.55)	1.17 (0.76 to 1.81; 0.47)

Table 5adjusted and unadjusted relative risks and 95% CI for growth patterns and
wheezing disorders in the BiB1000 cohort

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a reference group in both models.

Complete cases versus imputed dataset results

The complete cases analysis for birthweight and wheezing disorders retained 10,623 out of 13,734 children. The complete case analyses for weight growth patterns based on age and visits retained 1,572 of the 1,598 children. The results of complete cases analyses were very close to the imputed data analyses as expected given that all the outcome variables were completely observed and the missing indicator variables for the incomplete covariates did not have strong relationship with the outcome variables (supplementary tables S6 & S7).

Discussion

In this prospective cohort study, we found that low birthweight was strongly associated with wheezing disorders and there was consistent, albeit weak, evidence that high birthweight was associated with reduced risk of wheezing disorders during the pre-school period. Our findings for the effects of low birthweight on wheezing disorder diagnosis and treatment are in line with the findings of our recent meta-analysis and systematic review, showing a 37% increase in wheezing disorders risk for low birthweight (OR=1.37; 95% CI: 1.05 to 1.79) compared to normal birthweight, ¹⁰ although the results here are slightly attenuated due to our use of relative risk as a measure of association. However, our finding of the effect of high birthweight on wheezing disorders is slightly different to that of the reported odds ratio in the meta-analysis (OR=1.02; 95% CI: 0.99 to 1.04) with both wheezing disorders diagnosis and treatment showing that there was a non-significant reduction of risk.

Analysis of our age based weight growth patterns have shown inconsistent results for the group classified as "fast" growth group. While there was a weak evidence for an increased risk of wheezing disorders according to diagnosis, there was a weak evidence for a reduced risk of wheezing disorders treatment (table 5). However, the results showed that the "slow" growth group did have a reduced risk for both wheezing disorders diagnosis and treatment, albeit weak evidence, when compared to the "normal" growth group (table 5). Furthermore, in our attempt to further analyse the effects of visits based weight SDS on wheezing disorders, there was a weak evidence for an increase risk of wheezing disorders diagnosis and treatment for the group of children who grew "inconsistently" and were seen to be obese by the last visit.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The findings of the effects of growth on wheezing disorders analyses may not be directly comparable with the previous studies ^{11 13-15 17 18 20-24} as they assumed a homogenous growth among the respective study population and investigated the effect of overall mean change on wheezing disorders. However, Rzehak et al ¹⁹ who used GMM reported hazard ratios of 1.22 (95% CI: 1.08 to 1.39) and 1.43 (95% CI: 0.90 to 2.27) for groups of children exhibited rapid growth only until 2 years and persistent rapid growth, respectively. The authors' growth pattern and risk estimates were similar to our age based fast growth group and visits based inconsistent growth group, respectively. Another two studies that

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

investigated the effects of weight status changes at different age points reported an insignificant increase in wheezing disorders risk which are similar to our 'inconsistent growth' group's of the 'visits-based' growth patterns risk estimates.¹²¹⁶

In our previous meta-analyses and systematic reviews we found that low birthweight and high BMI were associated with wheezing disorders. ^{10 44} However, we also acknowledged that it may not be apparent whether high BMI is causing wheezing disorders or otherwise from the findings. This is because children with wheezing disorders may become less active which can lead to obesity or obese children may experience wheezing symptoms due to narrowing of airways. In our growth patterns and wheezing disorders analyses, we noted that, on average, the children with lower birthweight SDS showed significant growth changes during the first 6 months and were more likely to have experienced wheezing disorder conditions (table 3&5). We also noted that children with the lowest birthweight SDS were more likely to be obese and to have experienced wheezing disorder conditions (table 3&5). Given that a very small proportion of wheezing disorders or treatment cases were identified in the first three and six months (table S3), during which changes in growth occurred, it may strongly suggest that low birthweight coupled with rapid change in growth during the first six months is a risk factor for wheezing disorders. The temporal relationship between obesity and wheezing disorders in this study remains difficult to disentangle, however, in a recent Mendelian Randomization study by Granell et al, it has been reported that obesity precedes childhood wheezing disorders.45

Our work has certain weakness so that the results need to be interpreted carefully. Firstly, although the sample size for birthweight and wheezing disorders was sufficiently large, study participants were those who were born at a single centre: the Bradford Royal Infirmary (BRI) maternity hospital. Births in the regional tertiary centre, home births and births in smaller hospitals outside Bradford would have been excluded. Secondly, participation in the sub-cohort (BiB1000) of growth patterns was mainly driven by the mothers' willingness to participate and so there is likely to be selection bias. Third, some of the classes identified by our GMM contained a small proportion of children that resulted in having less precise risk estimates. Fourth, missing levels of growth data at some ages and visits was

substantial although we applied missing data handling techniques to address this limitation. Fifth, information on family asthma and breast feeding was missing so our models were not adjusted for these potential confounding variables. However, the lack of adjustment may not have had a drastic effect on our birthweight risk estimates as there was no difference between the studies that adjusted for family asthma and those did not.¹⁰ Likewise, Rzehak et al ¹⁹ also reported that there was no significant difference between adjusted and unadjusted (i.e. for breast feeding and family asthma) model results which may show that lack of adjustment for only two potential confounding variables may have minimal effect into our growth and wheezing disorders model results.

Nonetheless, there are particular strengths of our analysis. Firstly, in our birthweight and wheezing disorders analyses, our sample size was reasonably large. Secondly, we were able to implement techniques to reduce potential bias due to confounding variables such as the use of DAGs to inform the modelling process. Thirdly, we were able to implement missing data techniques to minimize bias and presented both the complete cases and imputed datasets results to give more insight. Fourthly, although we had small size for growth patterns analysis, we are able to implement advanced statistical techniques to account for potential heterogeneity of growth between and within groups. Finally, we were also able to use age-specific and sex-specific standardised weight scores which have the advantage of clearly depicting the growth patterns of children in comparison to the standard growth reference.³⁵ The standard scores are convertible to percentiles ³⁶ which can then be compared with the growth charts used by clinicians or growth monitoring workers in their daily practice.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

In conclusion, in this large prospective cohort data analysis, we have confirmed that low birthweight children have a moderate associated risk of wheezing disorders whereas high birthweight children have a non-significant reduced risk. There is weak evidence to suggest "fast" or "inconsistent" growth predispose to wheezing disorders, and "slow" growth reduces the risk which needs further investigation using larger datasets. However, the results may indicate that maintaining optimal prenatal and postnatal growths reduce a risk of childhood wheezing disorders.

Acknowledgments: Born in Bradford is only possible because of the enthusiasm and commitment of the Children and Parents in BiB. We are grateful to all the participants, health professionals and researchers who have made Born in Bradford happen.

Funding: TFM is funded by the Hall Dorman Research PhD Scholarship. Data collection was funded by the National Institute for Health Research (NIHR) under the Collaborations for Leadership in Applied Health Research and Care (CLAHRC) programme for Leeds, York and Bradford and the Programme Grants for Applied Research funding scheme.

Contributors: TFM, RGF and RCP conceived the idea. TFM performed all the statistical analyses, interpretation of results and drafted the manuscript. RGF and RCP revised and commented on the manuscript. All authors approved the final version of the manuscript.

Competing interests: No, there are no competing interests.

Data sharing: This research has no additional unpublished data to share.

BMJ Open

References

1. Roche R, Jeffery R. Remodelling and inflammation. In: Silverman M, edited	or. Childhood Asthma
and other Wheezing Disorders. Second ed. Great Britain: Arnold, 20	02.

- World Health Organization (WHO). Asthma Fact Sheet Number 307.2013; [online], available: <u>http://www.who.int/mediacentre/factsheets/fs307/en/</u> [accessed February 20, 2015].
- Masoli M, Fabian D, Holt S, et al. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. *Allergy* 2004;59(5):469-78.
- Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. *Eur Respir J* 2008;31(1):143-78.

5. Bush A, Fleming L. Diagnosis and management of asthma in children. 2015; 10.1136/bmj.h996.

- 6. Brand PL, Baraldi E, Bisgaard H, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. *Eur Respir J* 2008;32(4):1096-110.
- 7. Pike KC, Crozier SR, Lucas JS, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;10.1136/thx.2010.134742 thx. 2010.134742.
- Been JV, Lugtenberg MJ, Smets E, et al. Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. *PLoS Med* 2014;11(1):e1001596.
- 9. Rothenbacher D, Weyermann M, Fantuzzi G, et al. Adipokines in cord blood and risk of wheezing disorders within the first two years of life. *Clin Exp Allergy* 2007;37(8):1143-49.
- Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Birth weight and childhood wheezing disorders: a systematic review and meta-analysis. *J Epidemiol Community Health* 2014;doi:10.1136/jech-2014-204783.
- Mamun AA, Lawlor DA, Alati R, et al. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study. *Int J Obes* 2007;31(4):578-83.
- Scholtens S, Wijga AH, Seidell JC, et al. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. J Allergy Clin Immunol 2009;123(6):1312-18.e2.
- 13. Pike KC, Crozier SR, Lucas JSA, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;65(12):1099-106.
- 14. Zhang Z, Lai HJ, Roberg KA, et al. Early childhood weight status in relation to asthma development in high-risk children. *J Allergy Clin Immunol* 2010;126(6):1157-62.
- 15. Flexeder C, Thiering E, Bruske I, et al. Growth velocity during infancy and onset of asthma in school-aged children. *Allergy* 2012;67(2):257-64.
- Magnusson JO, Kull I, Mai XM, et al. Early childhood overweight and asthma and allergic sensitization at 8 years of age. *Pediatrics* 2012;129(1):70-76.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

17. van der Gugten AC, Koopman M, Evelein AMV, et al. Rapid early weight gain is associated with wheeze and reduced lung function in childhood. *Eur Respir J* 2012;39(2):403-10.

 Anderson EL, Fraser A, Martin RM, et al. Associations of postnatal growth with asthma and atopy: The PROBIT Study. *Pediatr Allergy Immunol* 2013;24(2):122-30.

- Rzehak P, Wijga AH, Keil T, et al. Body mass index trajectory classes and incident asthma in childhood: Results from 8 European Birth Cohorts—a Global Allergy and Asthma European Network initiative. J Allergy Clin Immunol 2013;131(6):1528-36.
- Sonnenschein-van der Voort AM, Howe LD, Granell R, et al. Influence of childhood growth on asthma and lung function in adolescence. *J Allergy Clin Immunol* 2014;doi: 10.1016/j.jaci.2014.10.046.
- Magnus MC, Stigum H, Haberg SE, et al. Peak weight and height velocity to age 36 months and asthma development: the norwegian mother and child cohort study. *PLoS One*. 2015;doi:10.1371/journal.pone.0116362.
- 22. Mai X-M, Gaddlin P-O, Nilsson L, et al. Early rapid weight gain and current overweight in relation to asthma in adolescents born with very low birth weight. *Pediatr Allergy Immunol* 2005;16(5):380-5.
- 23. Sonnenschein-van der Voort AMM, Jaddoe VWV, Raat H, et al. Fetal and Infant Growth and Asthma Symptoms in Preschool Children. *Am J Respir Crit Care Med* 2012;185(7):731-37.
- 24. De Korte-De Boer D, Mommers M, Thijs C, et al. Early life growth and the development of preschool wheeze, independent from overweight: The LucKi Birth Cohort Study. *J Pediatr* 2015;166(2):343-49.e1.
- 25. Wright J, Small N, Raynor P, et al. Cohort Profile: The Born in Bradford multi-ethnic family cohort study. *Int J Epidemiol* 2013;42(4):978-91.
- Raynor P, Group BiBC. Born in Bradford, a cohort study of babies born in Bradford, and their parents: Protocol for the recruitment phase. *BMC Public Health* 2008;8(1):327.
- 27. Tu Y-K, West R, Ellison GTH, et al. Why Evidence for the Fetal Origins of Adult Disease Might Be a Statistical Artifact: The "Reversal Paradox" for the Relation between Birth Weight and Blood Pressure in Later Life. *Am J Epidemiol* 2005;161(1):27-32.
- Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. *Epidemiology* 1999;10(1):37-48.
- 29. Textor J, Hardt J, Knuppel S. DAGitty: a graphical tool for analyzing causal diagrams. *Epidemiology* 2011;22(5):745.
- Schisterman EF, Cole SR, Platt RW. Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies. *Journal of Epidemilogy* 2009;20(4):488-95.
- Collins LM, Schafer JL, Kam C-M. A comparison of inclusive and restrictive strategies in modern missing data procedures. *Psychological Methods* 2001;6(4):330.

BMJ Open

32. Ste	erne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and
	clinical research: potential and pitfalls. <i>BMJ</i> 2009;338.
33. Ce	nter for Diseases prevention and Control (CDC). Pediatric and Pregnancy Nutrition
	Surveillance System: PedNSS Health Indicators.2009; [online], available:
	http://www.cdc.gov/pednss/what_is/pednss_health_indicators.htm [accessed February 04, 2015].
34. W	orld Health Organization (WHO). International Statistical Classification of Diseases and
	Related Health Problems 10th Revision (ICD-10)-2014-WHO Version for ;2014:Disorders
	related to length of gestation and fetal growth (P05-P08) 2014; [online], available:
	http://apps.who.int/classifications/icd10/browse/2014/en#/P05-P08 [accessed February 03,
	2015].
35. W	orld Health Organization (WHO). WHO Child Growth Standards: Methods and development:
	Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass
	index-for-age. Child growth standards, 2006; [online], available:
	http://www.who.int/childgrowth/publications/technical_report_pub/en/index.html [accessed
	February 04, 2015].
86. Pa	n H, Cole T. LMSgrowth, a Microsoft Excel add-in to access growth references based on the
	LMS method. Version 2.77.2012; [online], available:
	http://www.healthforallchildren.com/?product=lmsgrowth [accessed February 20, 2015].
7. Di	ncan TE, Duncan SC, Strycker LA. Growth Mixture Modeling. In: G.A. M, editor. An
	introduction to Latent Growth Curve Modeling. 2nd ed. New Jersy, : Lawrence Erlbaum
	associates, 2006:125-49.
38. M	thén B. Latent variable analysis:Growth Mixture Modeling and Related Techniques for
	Longitudinal Data. In: Kaplan BA, editor. The handbook of quantitative methodology for the
	social sciences Thousand Oaks, CA: Sage Publications, 2004:345-68.
39. Ro	yston P, White IR. Multiple imputation by chained equations (MICE): implementation in Stata.
	Journal of Statistical Software 2011;45(4):1-20.
40. W	nite IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and
	guidance for practice. <i>Stat Med</i> 2011;30(4):377-99.
41. Gr	aham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some
	practical clarifications of multiple imputation theory. <i>Prevention Science</i> 2007;8(3):206-13.
42. Sc	hafer JL, Graham JW. Missing Data: Our View of the State of the Art. Psychological Methods
	2002;7(2):147-77.
43. En	ders CK, Bandalos DL. The relative performance of full information maximum likelihood
	estimation for missing data in structural equation models. Structural Equation Modeling
	2001;8(3):430-57.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

- 44. Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Childhood body mass index and wheezing disorders: a systematic review and meta-analysis. *Pediatr Allergy Immunol* 2015;doi:10.1111/pai.12321.
- 45. Granell R, Henderson AJ, Evans DM, et al. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study. *PLoS medicine* 2014;doi:10.1371/journal.pmed.1001669.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

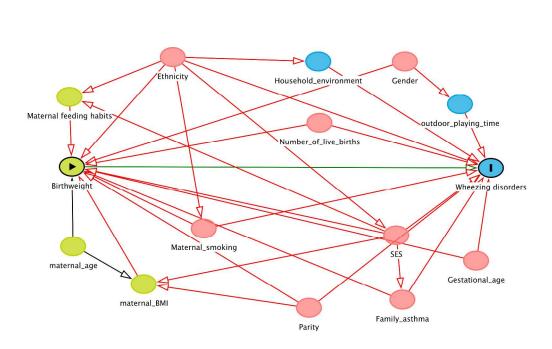


Figure S1: DAGitty schematic view of confounding adjustment for the effects of birthweight on wheezing disorders.

Minimal sufficient adjustment sets for estimating the total effect of birthweight on wheezing disorders:
Ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, SES
Ethnicity, family asthma, gestational age, maternal smoking, number of live births, parity, SES, outdoor playing time

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

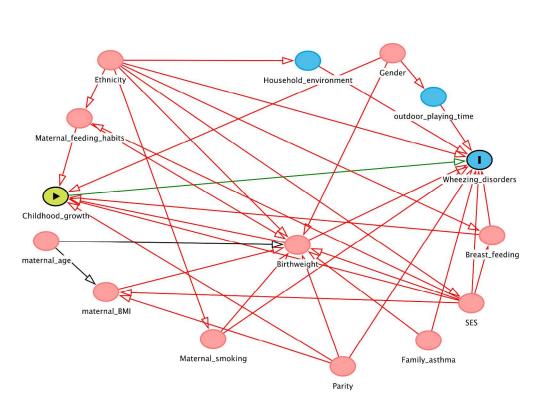
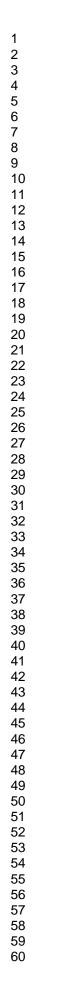



Figure S2: DAGitty schematic view of confounding adjustment for the effects of childhood growth on wheezing disorders.

Minimal sufficient adjustment sets for estimating the total effect of childhood growth on wheezing disorders:

 Birthweight, breast feeding, ethnicity, family asthma, gender, maternal smoking, parity, SES
 Birthweight, breast feeding, ethnicity, family asthma, maternal smoking, parity, SES, outdoor playing time
 Birthweight, breast feeding, gender, maternal feeding habits, parity, SES

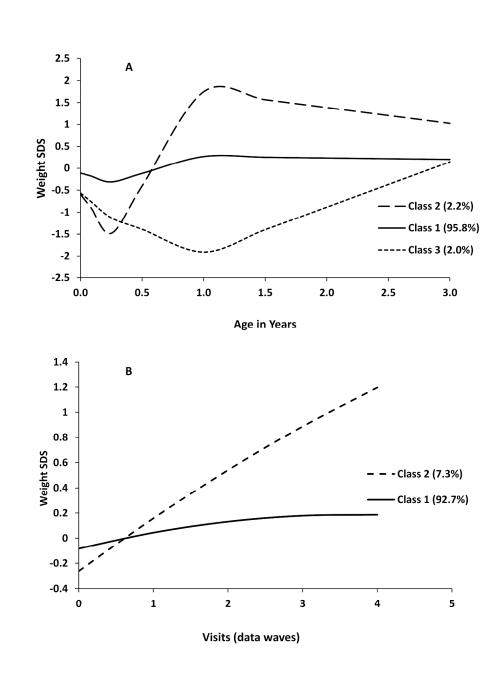


Figure S3 Estimated mean curves of weight SDS according to age (A) and visits (B)

Supplementary:

Drug class names	Drug family names
Antimuscarinic bronchodilators	
	IPRATROPIUM BROMIDE
selective beta-2 agonists	
	FORMOTEROL FUMARATE
	SALBUTAMOL
	SALMETEROL
	TERBUTALINE SULPHATE
Leukotriene receptor antagonist	
	MONTELUKAST
	ZAFIRLUKAST
Nasal Corticosteroids	
	BECLOMETASONE DIPROPIONATE
	BUDESONIDE
	CICLESONIDE
	FLUTICASONE PROPIONATE
	MOMETASONE FURATE
	SODIUM CROMOGLICATE

Page 29 of 36

Table S2: list of terms to confirm diagnosis of wheezing disorders

Name	List of terms	Read Code	Term ID
Wheezing			
	Expiratory polyphonic wheeze	Xa83N	YaVc1
	Expiratory wheeze	Xa7uu	YaVQZ
	Expiratory wheezing	Xa7vA	YaVQt
	Inspiratory wheeze	Xa7ut	YaVQY
	Inspiratory wheezing	Xa7v9	YaVQs
	Mild wheeze	XaX5K	Yaty9
	Moderate wheeze	XaX5L	YatyA
	Nocturnal wheeze/cough	173B.	YM1gs
	Severe wheeze	XaX5M	YatyC
	Very severe wheeze	XaX5N	YatyE
	Viral wheeze	XaMe7	YapfP
	Wheeze - rhonchi	X76If	Y7DxZ
	Wheezing	XE0qs	Y7DuF
	Wheezing symptom	XM0Ci	YM1is
	Wheezy	XE0qs	Y7DuF
Asthma			
	Acute asthma	Xa9zf	YaYk2
	Allergic asthma	XE0YT	Y108G
	Asthma	Н33	Y107p
	Asthma NOS	XE0YX	Y1080
	Asthma unspecified	H33z.	Y107y
	Asthmatic bronchitis	Xa01Z	Y108e
	Brittle asthma	UalAX	YMFVN
	Childhood asthma	X101t	Y107w
	Chronic asthmatic bronchitis	H3120	Y108g
	Mild asthma	663V1	YaYlo
	Moderate asthma	663V2	YaY1p
	Nocturnal asthma	XaLPE	Y1084
	Non-allergic asthma	XE0YT	Y108G
	Occasional asthma	663V0	YaYln

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Table S3 Period of diagnosis or treatment initiation for BiB1000 children

BMJ Open

Number of classes	Model fit Criterion				Classification quality	Likelihood ratio test
	-2LL	AIC	ABIC	df	Entropy	BLRT (-2LL diff; df diff; and P-values)
Age based weight SI	DS	-	-	-	-	-
1 class	13,794	13,836	13,883	21	N/A	N/A
2 classes	13,752	13,805	13,862	26	0.94	42; 5; <0.01
3 classes	13,724	13,785	13,853	31	0.90	29; 5; <0.01
4 classes	13,698	13,770	13,849	36	0.88	24; 5; 0.02
5 classes	13,680	13,763	13,853	41	0.88	17; 5; 0.70
Visits based weight S	SDS					
1 class	14,100	14,129	14,159	14	N/A	N/A
2 classes	14,034	14, 069	14,109	18	0.79	67; 4; <0.01
3 classes	14,006	14,052	14,099	22	0.85	26; 4; <0.01
4 classes	13,992	14,044	14,102	26	0.79	15; 4; 0.03
5 classes	13,980	14,041	14,107	30	0.72	11; 4; 0.25

 Table S4
 Model fit results for selection of optimal number of classes

LL= Log-likelihood; AIC=Akaike Information Criterion; ABIC= sample size adjusted Bayesian Information Criterion;

BLRT=Bootstrapped likelihood Ratio Test; -2LL diff=2 times the Log-likelihood difference, df=degrees of freedom (number of free parameters); df diff= difference in the degree of freedom or number of free parameters.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Birthweight Velocity ₀₋₃ Velocity ₃₋₁₂ Velocity ₁₂₋₃₆ Birthweight Velocity ₀₋₃	-0.111 (-0.170 to -0.053) -0.671 (-0.903 to -0.439) 0.645 (0.578 to 0.712) -0.028 (-0.053, -0.003) -0.594 (-1.305 to 0.117)	<0.0 <0.0 <0.0 0.03 0.10
Velocity ₀₋₃ Velocity ₃₋₁₂ Velocity ₁₂₋₃₆ Birthweight	-0.671 (-0.903 to -0.439) 0.645 (0.578 to 0.712) -0.028 (-0.053, -0.003)	<0.0 <0.0 0.03
Velocity ₃₋₁₂ Velocity ₁₂₋₃₆ Birthweight	0.645 (0.578 to 0.712) -0.028 (-0.053, -0.003)	<0.0 0.03
Velocity ₁₂₋₃₆ Birthweight	-0.028 (-0.053, -0.003)	0.03
Birthweight		
-	-0.594 (-1.305 to 0.117)	0.10
Velocity		
, crocity 0-3	-2.956 (-7.838 to 1.925)	0.24
Velocity 3-12	3.588 (2.850 to 4.326)	<0.0
Velocity ₁₂₋₃₆	-0.302 (-0.993 to 0.390)	0.39
Birthweight	-0.564 (-1.146 to 0.018)	0.06
Velocity ₀₋₃	-1.878 (-3.980 to 0.225)	0.08
Velocity 3-12	-0.871 (-1.950 to 0.208)	0.11
Velocity ₁₂₋₃₆	0.856 (0.266 to 1.446)	<0.0
Birthweight	-0.084 (-0.138 to -0.030)	<0.0
Velocity	0.246 (0.196 to 0.297)	<0.0
Acceleration	-0.056 (-0.067 to -0.045)	<0.0
Birthweight	-0.263 (-0.577 to 0.051)	0.10
Velocity	0.732 (0.335 to 1.129)	<0.0
-	· · · · · ·	0.21
	Velocity 12-36 Birthweight Velocity 0-3 Velocity 3-12 Velocity 12-36 Birthweight Velocity Acceleration	Velocity $-0.302 (-0.993 to 0.390)$ Birthweight $-0.564 (-1.146 to 0.018)$ Velocity $-1.878 (-3.980 to 0.225)$ Velocity $-0.871 (-1.950 to 0.208)$ Velocity 12.36 0.856 (0.266 to 1.446)Birthweight $-0.084 (-0.138 to -0.030)$ Velocity $0.246 (0.196 to 0.297)$ Acceleration $-0.056 (-0.067 to -0.045)$ Birthweight $-0.263 (-0.577 to 0.051)$ Velocity $0.732 (0.335 to 1.129)$

able S5	Mean estimates of the latent classes of Growth Mixture Model parameters

	Wheezing disorders	Asthma	Wheezing	wheezing disorder
	treatment	diagnosis	symptoms	diagnosis
Birthweight	-	-	-	-
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	1.03(0.90 to1.18)	0.88 (0.63 to 1.22)	1.01 (0.84 to 1.21)	0.97 (0.82 to 1.14)
Low (<2.5kg)	1.22 (1.06 to 1.41)	1.63 (1.24 to 2.14)	1.26 (1.05 to 1.51)	1.30 (1.10 to 1.53)
Ethnicity				
White British	1	1	1	1
Pakistani	0.96 (0.87 to 1.05)	1.39 (1.12 to 1.71)	1.26 (1.11 to 1.43)	1.22 (1.09 to 1.36)
Others	0.76 (0.68 to 0.86)	1.00 (0.76 to 1.30)	0.93 (0.79 to 1.09)	0.91 (0.78 to 1.05)
Gender				
Male	1	1	1	1
Female	0.73 (0.67 to 0.78)	0.64 (0.55 to 0.75)	0.64 (0.59to0.71)	0.65 (0.60 to 0.72)
Gestational age				
Term	1	1	1	1
Pre-term	1.21 (1.04 to 1.42)	1.13 (0.81 to 1.56)	1.10 (0.89 to 1.35)	1.11 (0.92 to 1.33)
Number of births				
Singleton	1	1	1	1
Twins	0.67 (0.51 to 0.88)	0.71 (0.43 to 1.19)	0.70 (0.50 to 0.99)	0.66 (0.48 to 0.91)
Triplets	1.18 (0.39 to 3.61)	-	0.83 (0.14 to 4.91)	0.69 (0.12 to 4.09)
Maternal smoking				
No	1	1	1	1
Yes	1.04 (0.96 to 1.14)	0.83 (0.68 to 1.03)	1.09 (0.96 to 1.22)	1.07 (0.96 to 1.19)
Parity				
primiparous	1	1	1	1
multiparous	1.01 (0.94 to 1.09)	1.06 (0.90 to 1.24)	1.12 (1.02 to 1.23)	1.09 (1.00 to 1.19)
IMD 2010 Quintile score	0.98 (0.94 to 1.02)	0.97 (0.88 to 1.07)	0.94 (0.89 to 1.00)	0.95 (0.91 to 1.01)

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight	SDS	-	-
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growers)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growers)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weigh	t SDS		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)

Table S7 Adjusted and unadjusted relative risks and 95% CI for growth patterns and

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a

1.42 (0.92 to 2.19; 0.11)

1.14 (0.74 to 1.76; 0.55)

1.38 (0.90 to 2.12; 0.14)

1.17 (0.76 to 1.81; 0.47)

Wheezing disorder diagnosis

Wheezing disorder treatment

reference group in both models.

growers)

BMJ Open

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstra
		[Methods section of the abstract page 1]
		(b) Provide in the abstract an informative and balanced summary of what was do
		and what was found [Results section of abstract page 1]
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being report
		[Page 3]
Objectives	3	State specific objectives, including any prespecified hypotheses [Page 4]
Methods		
Study design	4	Present key elements of study design early in the paper [Methodology page 5]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitme
		exposure, follow-up, and data collection [Pages 5-6]
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants. Describe methods of follow-up [Pages 5-6]
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed [N/A]
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and ef
		modifiers. Give diagnostic criteria, if applicable [Page 6]
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if the
		more than one group [Pages 5-6]
Bias	9	Describe any efforts to address potential sources of bias [Page 6-7]
Study size	10	Explain how the study size was arrived at [Page 5]
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why [Pages 5-6]
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confoundi
		[Pages 6-7]
		(b) Describe any methods used to examine subgroups and interactions [N/A]
		(c) Explain how missing data were addressed [Page 7]
		(d) If applicable, explain how loss to follow-up was addressed
		(e) Describe any sensitivity analyses [N/A]
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
1	-	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed [Page 5]
		(b) Give reasons for non-participation at each stage [Page 5]
		(c) Consider use of a flow diagram [N/A]
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) an
T. T		information on exposures and potential confounders [Page 8
		(b) Indicate number of participants with missing data for each variable of interest
		[Page 9]
		(c) Summarise follow-up time (eg, average and total amount) [Page 8]
Outcome data	15*	Report numbers of outcome events or summary measures over time [Page 8]
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates a
1114111 1050115	10	(a) one unadjusted estimates and, it appreaded, combunder-adjusted estimates a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		adjusted for and why they were included [Pages 10 &13]
		(b) Report category boundaries when continuous variables were categorized [Page
		6]
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period [N/A]
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses [N/A]
Discussion		
Key results	18	Summarise key results with reference to study objectives [Page 14]
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias [Page 15]
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		[Pages 14-15]
Generalisability	21	Discuss the generalisability (external validity) of the study results [Page 14-15]
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based [within
		acknowledgments and funding

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-009553.R2
Article Type:	Research
Date Submitted by the Author:	23-Oct-2015
Complete List of Authors:	Mebrahtu, Teumzghi; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Feltbower, Richard; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds Parslow, Roger; Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Paediatrics, Research methods, Respiratory medicine
Keywords:	Paediatric thoracic medicine < PAEDIATRICS, Asthma < THORACIC MEDICINE, Allergy < THORACIC MEDICINE
	·

SCHOLARONE[™] Manuscripts

BMJ Open

The effects of birthweight and growth on childhood wheezing disorders: findings from the Born in Bradford Cohort

Teumzghi F Mebrahtu^{1*}, Richard G. Feltbower¹, Roger C. Parslow¹

¹ Division of Epidemiology and Biostatistics, School of Medicine, University of Leeds, Leeds, United Kingdom

* Corresponding author. Address: Division of Epidemiology and Biostatistics, School of medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom. E-mail: <u>mt09tfm@leeds.ac.uk</u>

Abstract:

Objectives: To examine the effects of birthweight and childhood growth on childhood wheezing disorders. We hypothesised that low birthweight and fast growth during early age would increase the risk of wheezing disorders.

Setting: Observational secondary analysis of data from the Born in Bradford cohort.

Participants: All children who were born at the Bradford Royal Infirmary hospital between March 2007 and December 2010 were eligible for the study. A total of 13,734 and 1,598 children participated in the analyses of the effects of birthweight and growth on wheezing disorders, respectively.

Primary and secondary outcome measures: wheezing disorders diagnosis (diagnosed as asthma or had wheezing symptom) during the ages of 0 to 7 years were the primary outcome measures. Diagnosis of asthma and occurrence of wheezing during the same period were secondary outcome measures. Birthweight was classified as normal (2.5-4.0kg), low (<2.5kg) and high (>4.0kg). Growth mixture models were used to drive growth pattern outcomes which were classified as 'normal', 'fast' and 'slow' growth based on their velocities between birth and 36 months.

Results: The adjusted RRs of wheezing disorders diagnosis for the low and high birthweight children were 1.29 (95% CI: 1.12 to 1.50; p=0.001) and 0.91 (95% CI: 0.79 to 1.04; p=0.17) respectively. The

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

adjusted RRs of wheezing disorders diagnosis were 1.30 (95% CI: 0.56 to 3.06; p=0.54) and 0.60 (95% CI: 0.16 to 2.18; p=0.44) respectively for the "fast" and "slow" growth as compared to the "normal" growth.

Conclusion: Low birthweight is associated with an increased risk of wheezing disorders, however, there is a weak evidence that suggests high birthweight children have a reduced risk in this birth cohort. Low birthweight coupled with a slower growth until 3 months and a sharp growth between 3 and 12 months has an increased risk of wheezing disorders diagnosis.

Key study strengths:

- A large sample, contemporary birth cohort data was used
- DAGs were used to minimize bias potential bias due to confounding
- Multiple Imputation by chained equations was used to minimize bias due to missing data
- Age and sex specific standardised scores and growth percentiles were used to illustrate the growth of cohort children in reference to standard growth charts

Key study weaknesses:

- Selection of participants was not random
- Number of individuals in some of the growth classes was small so the risk estimates were not robust
- There was a substantial missing growth data at some follow up periods although missing data estimation models were used to minimise bias
- Information on potential confounding (i.e. family asthma and breast feeding) was missing

INTRODUCTION

Asthma is defined as a chronic disease of the passage of airways, characterized by smooth muscle contraction, accumulation of mucous and debris in the lumen, vascular congestion and airway wall oedema which leads to breathlessness and wheezing.¹ Although it is claimed to be the most common childhood disease,² there is, however, a lack of consistency in its diagnosis in clinical practice ³. This is due to the difficulty in diagnosing asthma in children, especially those of pre-school age, in whom wheezing, which is the main symptom for asthma, can be caused by other illnesses.⁴ In addition, although there are various asthma confirmatory tests available,⁵ young children can be less cooperative in participating in such tests leading to an under-diagnosis of true asthma cases. Therefore, the word "asthma" may not be an adequate term for what can be described as a spectrum of respiratory problems. As a result, some researchers have tended to use more inclusive terms such as "wheezing disorders".⁶⁻⁹

The effect of birthweight on wheezing disorders has been studied extensively with more than 40 observational epidemiological studies carried out to date. In our recent meta-analysis and systematic review of these studies, we reported that low birth weight children (<2.5 kg) have a 60% (OR: 1.60; 95% CI 1.39 to 1.85) and 37% (OR=1.37 95% CI 1.05 to 1.79) higher risk of wheezing disorders when compared with \geq 2.5kg and 2.5–4.0kg birth weight children, respectively.¹⁰ We also found a modest increased risk in high birth weight children (>4 kg) when compared with normal birth weight (2.5–4.0 kg) children (OR: 1.02; 95% CI 0.99 to 1.04). However, we acknowledged there was substantial heterogeneity among the low birthweight risk estimates which was not accounted for by study characteristics.

The effect of early childhood growth on wheezing disorders has not been widely studied. Results from a handful of previous studies are inconsistent with some suggesting fast growth predisposes to wheezing disorders¹¹⁻²¹ and others reporting reduced risk of wheezing disorders.^{20 22-24} In addition to that, all of these studies, with the exception of one,¹⁹ assumed homogenous growth among children, either used statistical techniques that can now be improved upon or a non-standard growth data

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

analysis that makes comparison and replication of results very difficult. For example, three ^{11 17 21} used data driven standardised scores (SDS), three ^{12 20 23 24} used country specific SDS and another one ¹⁵ used non-standardized weight measurements.

The aim of the study was twofold: a) further investigation of the effects of birthweight on wheezing disorders; and b) investigation of the effects of early growth on wheezing disorders using a birth to been to the work cohort data.

METHODS

Study participants

The Born in Bradford study is a prospective mainly bi-ethnic, cohort that examines the impact of environmental, genetic and social factors on health of the population of Bradford ²⁵. The methods of recruitment are explained in detail elsewhere. ^{25 26} In brief: recruitment of participants started in March 2007 and ended in December 2010; a total of 13,776 pregnant mothers were recruited that resulted in 13,857 births. Out of the total births, 123 died before the age of one week which resulted in a total of 13,734 children to be included in the birthweight and childhood wheezing disorders analyses.

At the same time, a sub cohort (BiB1000) of 1,735 mothers and 1,763 babies were also recruited for follow-up examinations. After excluding multiple births, preterm births and death before the age of one week, a total of 1,598 children were included in growth pattern and wheezing disorder analyses.

Ethics statement

Ethics approval was granted to the Born in Bradford project by Bradford Research Ethics Committee (Ref 07/H1302/112.).

Data collection

We have used five data sources. (1) Hospital maternity records for information on birth weight, gestational age, gender of a child, and number of live births; (2) BiB1000 cohort records for weight at 6, 12, 18, 24 and 36 months of age, that is, during the first, second, third, fourth, and fifth visit after birth, respectively; (3) Community health records for weight at 1 and 3 months of age; (4) Baseline questionnaire data collected from the mothers on recruitment about their ethnicity, smoking and socio-economic status and (5) Linked primary care data about outcome variables (wheezing disorder diagnosis terms and treatment) recorded as Read Codes (http://systems.hscic.gov.uk/data/uktc/readcodes).

Case definition and ascertainment

We drew up four disease definitions based on diagnostic codes and prescribed medication details entered by general practitioners onto the primary care database.

- 1. Asthma diagnosis: presence of asthma codes in the record
- 2. Wheezing symptoms: presence of wheezing diagnosis codes in the record
- Wheezing disorder based on diagnosis (*wheezing disorder diagnosis*): presence of asthma or wheezing diagnosis codes in the record
- 4. Wheezing disorder based on treatment (*wheezing disorder treatment*), existence of at least two drug prescriptions indicated for the treatment of asthma a minimum of one week and maximum of 12 months apart.

Drug and disease terms and codes used to confirm occurrences of wheezing disorders any time between 0 and 7 years of age are listed in supplementary tables 1&2.

Variables for analysis

Primary variables:

Where regression modelling was carried out, exposure variables were birthweight and growth; outcome variables were wheezing disorders (i.e. *asthma diagnosis*, *wheezing symptoms*, *wheezing disorders diagnosis* and *wheezing disorders treatment*).

Two types of growth variables were used: age based and visits based. For the age based growth, age of a child when the measurement of weight occurred was used as a time score. The data was collected through maternity records, BiB1000 questionnaire, and the community health records so the time points: 0, 1,3,6,12,18, 24 and 36 months were used as time scores. In the visit based, however, only maternity records and the BiB1000 questionnaire data were considered. Therefore, 0, 1, 2, 3, 4, and 5 were used as times scores. Note that 0 stands for time when birthweight was measured (i.e. birth), and 1, 2, 3, 4, and 5 represent for 6, 12, 18, 24, and 36 months of BiB1000 questionnaires, respectively.

The aim of using the age based and visits based time scores was to explore the effects of growth in terms of latent growth factors (i.e. intercept and slope) and weight status (i.e. underweight, normal, overweight or obese based on the weight percentiles) at every visit, respectively. In the age based approach, the age of the children at each time point needed to be identical or weight values were constrained to be missing if the recorded weight measurement did not reflect the time points. In the

visits based approach, however, the age of the children at each time point did not need to be identical and no constraint was imposed. The main difference between these two approaches was that in the age based, group classification was based on how fast or slow the children grow as their age was identical or constrained to be identical. On the visits based, however, although the group classification was similar to the age based, the outputted intercept and slope were artificial and were not used to characterise how fast or slow the children grew between two times points as the age of children was not constrained to be identical. In addition, the age based data had more missing value than the visits based due to the constraint of age to be identical during the respective time points.

Confounding variables

Selection of variables was carried out based on the criteria that confounding variable must have an effect on the exposure and outcome variables, and should not be on the causal pathway.²⁷⁻²⁹ In order to minimise bias due to confounding and over-adjustment, Direct Acyclic Graphs (DAGs) were used ^{28 30} and models were tested using DAGitty software.²⁹ Drawing of a relationship between variables of interest (i.e. confounding and main variables) was guided by epidemiological, biologic and clinical knowledge. Figures S1 & S2 illustrate the schematic view of adjustment and output for the list of "minimally sufficient" confounding sets using DAGitty software.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

In assessing the effect of birthweight on wheezing disorders: ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, and SES were selected as "minimally sufficient" set of confounding variables. In assessing the effect of childhood growth on wheezing disorders: birthweight, ethnicity, family asthma, breast feeding, gender, maternal smoking, parity, and SES were selected as "minimally sufficient" set of confounding variables.

However, note that selection among sets of confounding variables was carried out retrospectively. Hence, availability of information on variables was also a factor during the selection process. As such, although the selected sets were better than the other candidate sets, no data was available for the variables "family asthma" and "breast feeding".

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Missing data estimation variables

Where imputations were carried out, missing data were estimated under MAR assumption that the missingness on outcome variables does not depend on the outcome variables themselves but can be explained by (or related to) other variables included in the imputation models (also known as *auxiliary* variables).³¹ The *auxiliary* variables included in the imputation process were: exposure variable, confounding variables, and variables that can be related to the missingness. The first two types of variables were those included in the analysis models whereas the third types of variables (maternal hypertension and diabetes) were included only in the imputation models.

A brief check on the variables before carrying out of imputations showed that birthweight, gestational age and outcome variables (i.e. asthma diagnosis, wheezing symptoms, wheezing disorder treatment and wheezing disorder diagnosis) were completely observed. To further explore if imputations were necessary or beneficial, dummy variables (i.e. yes or no) were created as missing data indicator for each covariate with missing observations. When the missingness indicator variables and outcome variables were tested for correlations, the results consistently showed that there were no significant associations which also indicate that complete cases analysis could produce unbiased, albeit less precise, parameter estimates.³² However, there were consistent significant associations between the missing indicator variables and other confounding variables which also suggest that imputations with inclusion of these covariates may improve the precision of the parameter estimates.^{31 32}

Statistical analysis and software

Birth weight was classified according to the Centre of Diseases prevention and Control (CDC)³³ and World Health Organisation (WHO) methods ³⁴ where <2.5kg=Low, 2.5-4.0kg=Normal and >4.0kg=High. Age-specific and sex-specific standardised scores (SDS) of weight were derived according to World Health Organisation (WHO) growth standards ³⁵ in LMSgrowth Microsoft excel add-in software.³⁶ The WHO growth standards population that we used to derive the SDS scores was made up of singleton term births. Hence, multiple births and preterm births were excluded from the growth patterns and wheezing disorders analyses.

In identifying the best fitting growth patterns, growth mixture models (GMM) were fitted,^{37 38} and, in selecting the optimal number of classes and best growth model we used model classification quality and model fit statistics. In addition, interpretability was also considered where we rejected models that consist of a class with less $\leq 1\%$ of the total population. When comparing growth patterns of children in our GMM, we used WHO growth standards charts ³⁵ as a point of reference. In converting weight SDS into percentiles, we used a one-sided normal standard distribution. For example, weight SDS of -1.64, 0, 1.04 and 1.64 are equivalent to the 5th, 50th, 85th and 95th percentiles respectively.

Missing data on covariates were estimated using Multiple Imputations by Chained Equation (MICE) models under Missing data at Random (MAR) assumptions. ^{39 40} In deciding how many datasets to be imputed, we took the number of imputations (**n**) to be greater than the percentage or fraction of incomplete cases. ^{39 41} Missing growth data were estimated using a Full Information Maximum Likelihood (FIML) method in which parameters are estimated using all available observations in the dataset, under MAR assumption.^{42 43}

GMM was carried out in Mplus version. 7.11, and covariates' missing data estimation and regression modelling were carried out in Stata version 12. 5% significance levels and 95% confidence intervals were adopted throughout.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

RESULTS

Birthweight and wheezing disorders

The cohort was made up of 13,734 children that yielded 74,940 person years of follow-up. 37.3% and 32.8% were Pakistani and white British origin respectively; 12.6% were minority and 17.3% with missing ethnicity data. 50.4% and 47.3% were male and female respectively, and, 2.3% of children had missing information on sex. 82.6%, 9.1% and 8.3% of the cohort were "normal", "high" and "low" birthweight children respectively (table 1). Out of 13,734 children, 6.1% were diagnosed as asthmatic, 14.5% had wheezing symptoms, 17.1% were either diagnosed for asthma or had wheezing symptoms, and 22.1% children were treated with asthma drugs based on primary care data available up to November 2014 (table 1).

Low birthweight

Low birthweight was associated with all four disease definitions. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 1.53 (95% CI: 1.20 to 1.96), 1.29 (95% CI: 1.10 to 1.52), 1.29 (95% CI: 1.12 to 1.50) and 1.25 (1.10 to 1.42) respectively (table 2). The respective unadjusted RRs were 1.55 (95% CI: 1.27 to 1.89), 1.29 (95% CI: 1.13 to 1.46), 1.28 (95% CI: 1.14 to 1.45) and 1.27 (95% CI: 1.15 to 1.40).

High birthweight

There was a consistent but weak evidence for a reduction of wheezing disorders risk for those children who were classified as being of high birthweight. The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.95 (95% CI: 0.74 to 1.22), 0.90 (95% CI: 0.77 to 1.04), 0.91 (95% CI: 0.79 to 1.04) and 0.99 (95% CI: 0.89 to1.11) respectively (table 2). The respective unadjusted RRs of high birthweight for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorder" treatment were 0.93 (95% CI: 0.73 to 1.19), 0.91 (95% CI: 0.78 to 1.06), 0.92 (95% CI: 0.80 to 1.05) and 1.04 (95% CI: 0.93 to 1.16).

	Asthma d	iagnosis	Wheez	ing	Wheezing d	lisorder	Wheezing d	isorder
			sympto	oms	diagno	sis	treatme	ent
	Yes/ No	Yes %	Yes/ No	Yes %	Yes/No	Yes %	Yes/ No	Yes %
Birthweight	-		_	-	-		-	-
Normal (2.5-4.0kg)	668/10,673	5.9%	1,622/9,719	14.3%	1,907/9,434	16.8%	2,444/8,897	21.6%
Low (<2.5kg)	104/1,035	9.1%	209/930	18.3%	246/893	21.6%	311/828	27.3%
High (>4.0kg)	69/1,185	5.5%	163/1,091	13.0%	194/1,060	15.5%	280/974	22.3%
Ethnicity								
White British	217/4,284	4.8%	586/3,915	13.1%	706/3,795	15.7%	1,074/3,427	23.9%
Pakistani	382/4,735	7.5%	857/4,260	16.7%	985/4,132	19.2%	1,150/3,967	22.5%
Others	86/1,647	5.0%	207/1,526	11.9%	243/1,490	14.0%	308/1,425	17.8%
Gender								
Male	502/6,415	7.3%	1,220/5,697	17.6%	1,416/5,501	20.5%	1,775/5,142	25.7%
Female	318/6,172	4.9%	742/5,748	11.4%	890/5,600	13.7%	1,190/5,300	18.3%
Gestational age								
Term	769/12,100	6.0%	1,841/11,028	14.3%	2,166/10,703	16.8%	2,792/10,077	21.7%
Pre-term	72/793	8.3%	153/712	17.7%	181/684	20.9%	243/622	28.1%
Number of births								
Singleton	803/12,281	6.1%	1,923/11,161	14.7%	2,262/10,822	17.3%	2,911/10,173	22.2%
Twins	17/297	5.4%	38/276	12.1%	43/271	13.7%	52/262	16.6%
Triplets	0/9	0%	1/8	11.1%	1/8	11.1%	2/7	22.2%
Maternal smoking								
No	520/7,371	6.6%	1,162/6,729	14.7%	1,359/6,532	17.2%	1,710/6,181	21.7%
Yes	167/3,295	4.8%	490/2,972	14.2%	578/2,884	16.7%	823/2,639	23.8%
Parity								
primiparous	292/4,823	5.7%	686/4,429	13.4%	821/4,294	16.1%	1,128/3,987	22.1%
multiparous	489/7,311	6.3%	1,210/6,590	15.5%	1,401/6,399	18.0%	1,728/6,072	22.2%
IMD 2010 Quintile sc	ore							
1	487/7,048	6.5%	1,182/6,353	15.7%	1,372/6,163	18.2%	1,721/5,814	22.8%
2	115/1,939	5.6%	253/1,801	12.3%	304/1,750	14.8%	435/1,619	21.2%
3	59/1,196	4.7%	148/1,107	11.8%	177/1,078	14.1%	247/1,008	19.7%
4	18/317	5.4%	41/294	12.2%	53/282	15.8%	84/251	25.1%
5	8/184	4.2%	30/162	15.6%	33/159	17.2%	49/143	25.5%

IMD=Index of multiple deprivation with 1 and 5 indicating the least deprived and most deprived scores respectively.

	Asthma diagnosis	Wheezing symptoms	Wheezing disorder diagnosis	Wheezing disorder treatment
Birthweight	-		-	-
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	0.95 (0.75 to 1.22)	0.90 (0.77 to 1.04)	0.91(0.79 to 1.04)	0.99 (0.89 to1.11)
Low (<2.5kg)	1.53 (1.20 to 1.96)	1.29 (1.10 to 1.52)	1.29 (1.12 to 1.50)	1.25(1.10 to 1.42)
Ethnicity				
White British	1	1	1	1
Pakistani	1.36 (1.11 to 1.66)	1.26(1.12 to 1.42)	1.21(1.08 to 1.35)	0.95 (0.87 to 1.05)
Others	0.96 (0.74 to 1.25)	0.93 (0.79 to 1.08)	0.90 (0.78 to 1.04)	0.76 (0.67 to 0.85)
Gender				
Male	1	1	1	1
Female	0.67(0.58 to 0.76)	0.64 (0.59 to 0.70)	0.66 (0.61 to 0.72)	0.71 (0.67 to 0.76)
Gestational age				
Term	1	1	1	1
Pre-term	1.11(0.83 to 1.48)	1.08 (0.90 to 1.30)	1.09 (0.92 to 1.29)	1.16 (1.01 to 1.34)
Number of births				
Singleton	1	1	1	1
Twins	0.68(0.42 to 1.10)	0.71 (0.52 to 0.97)	0.68 (0.51 to 0.90)	0.63 (0.49 to 0.81)
Triplets	-	0.57 (0.09 to 3.60)	0.48 (0.08 to 3.03)	0.75 (0.22 to 2.56)
Maternal smoking				
No	1	1	1	1
Yes	0.86(0.70 to 1.05)	1.10 (0.98 to 1.24)	1.07 (0.97 to 1.19)	1.05 (0.97 to 1.15)
Parity				
primiparous	1	1	1	1
multiparous	1.04 (0.91 to 1.20)	1.14 (1.04 to 1.24)	1.10 (1.02 to 1.19)	1.02 (0.95 to 1.08)
IMD 2010 Quintile	0.96 (0.88 to 1.05)	0.95 (0.90 to 1.00)	0.95 (0.91 to 1.00)	0.97 (0.93 to 1.00)
score				

Table 2Adjusted relative risks and 95% confidence intervals of covariates using 40
imputed datasets

Note: model adjusted for ethnicity, gender, gestational age, number of births, maternal smoking, parity and IMD score.

Growth and wheezing disorders

The BiB1000 follow-up cohort consisted of 1,598 children that contributed a total of 8,683 person years of follow-up. The total number of children who had "asthma" diagnosis, "wheezing" symptoms, "wheezing disorders" diagnosis and "wheezing disorders" treatment were 113 (7.1%) , 252 (15.8%), 300 (18.8%) and 369 (23.1%) respectively, slightly higher than the whole BiB cohort. Fewer than 2% and 10% of the BiB1000 children were diagnosed with or treated for wheezing disorders during the first three months and the first six months respectively (table S3).

Age based weight patterns

According to the optimal number of class determination results, a four class model was best (table S4). However, a three class model was preferred on an interpretability basis (table 3 & figure S3A).

Class 1 (95.8%) was composed of children whose mean birthweight was at the 46th percentile and were just over the 60th percentile at the age of 1 year and stayed around 60th percentile afterwards according to WHO growth standards.³⁵ Class 2 (2.2%) was composed of children whose mean weight at birth was on the 28th percentile then increased to the 96th percentile at one year of age and persisted to be overweight until the age of three. Class 3 (2.0%) were a group of children whose mean birthweight was on the 29th percentile, who subsequently showed very slow growth, their mean weight reaching the 3rd percentile at 1 year of age, followed by moderate acceleration to reach the 56th percentile by the age of three. Class 1, class 2 and class 3, could be characterised as "normal", "fast" and "slow" growth groups respectively. Table S5 gives estimated means of the growth model parameters.

	-		Growth classes	
			Growth classes	
		Class 1	Class 2	Class 3
Age based weig	ht SDS			
Bi	rth	46 th (-0.11 SDS)	28 th (-0.59 SDS)	29 th (-0.56 SDS)
1 r	nonth	43 rd (-0.18 SDS)	19^{th} (-0.89 SDS)	23 rd (-0.75 SDS)
3 r	nonths	38 th (-0.31 SDS)	7 th (-1.48 SDS)	13 th (-1.13 SDS)
6 r	nonths	45 th (-0.12 SDS)	34 th (-0.40 SDS)	8 th (-1.39 SDS)
12	months	61 st (0.27 SDS)	96 th (1.75 SDS)	3 rd (-1.91 SDS)
18	months	60 th (0.25 SDS)	94 th (1.57 SDS)	8 th (-1.40 SDS)
24	months	59 th (0.23 SDS)	92 nd (1.39 SDS)	19 th (-0.88 SDS)
36	months	58 th (0.20 SDS)	85 th (1.02 SDS)	56 th (0.14 SDS)
Visits based wei	ght SDS			
Bi	rth	47 th (-0.08 SDS)	40^{th} (-0.26 SDS)	-
1^{st}	Visit	53 rd (0.04 SDS)	56 th (0.16 SDS)	-
2 nd	visit	55 th (0.13 SDS)	71 rd (0.54 SDS)	-
3 rd	visit	57 th (0.18 SDS)	81 st (0.89 SDS)	-
4^{th}	visit	57 th (0.19 SDS)	88 th (1.20 SDS)	-
5 th	visit	53 rd (0.09 SDS)	96 th (1.70 SDS)	-

Table 3 Estimated mean and percentiles of 1,598 children by growth classes

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment for fast growth group were 0.81 (95% CI: 0.12 to 5.46), 1.59 (95% CI: 0.67 to 3.71), 1.30 (95% CI: 0.56 to 3.06) and 0.77 (95% CI: 0.20 to 2.51) respectively, when

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

compared the "normal" growth group (table 4). The adjusted RRs of the "slow" as compared to the "normal" growth group for "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment were 0.72 (95% CI: 0.20 to 2.62), 0.60 (95% CI: 0.16 to 1.95) and 0.81 (95% CI: 0.29 to 2.25) respectively. The respective unadjusted relative risks for both growth groups remained similar (table 4).

Visits based growth patterns

The age ranges of the children during their first, second, third, fourth, and fifth visits after birth were 4.9 to 9.4, 10.7 to 18.3, 15.2 to 22.8, 23.4 to 28.5 and 35.4 to 40.6 months respectively. Although the determination of the optimal number of classes favoured a model with four classes, the two class model was selected on a model interpretability basis (table S4). Class 1 (92.7%) comprised those children who were around the 46th percentile at birth and 52nd percentile during the first visit after birth and remained around the 60th percentile during the next four visits according to the WHO growth standards chart; ³⁵ class 2 (7.3%) comprised children who were, on average, at the 29nd percentile at birth and 57th percentile during the first visit after birth then consistently accelerated to reach the 95th percentile during the last visit (figure S3B & table 3). Class 1 and class 2 could be characterised as "inconsistent" and "consistent" growth groups respectively.

<u> </u>	Asthma dia	gnosis	Wheez	ing	Wheezing	g disorder	Wheezing	disorde
			sympto	ms	diag	nosis	treatr	nent
_	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %	Yes/ No	Yes %
Birthweight		-	-	-				
Normal (2.5-4.0kg)	101/1,314	7.1%	221/1,194	15.6%	264/1,151	18.7%	321/ 1,094	22.7%
Low (<2.5kg)	6/64	8.6%	14/56	20.0%	16/54	22.9%	20/50	28.6%
High (>4.0kg)	6/107	5.3%	17/96	15.0%	20/93	17.7%	28/85	24.8%
Ethnicity								
White British	24/578	4.0%	82/520	13.6%	95/507	15.8%	141/461	23.4%
Pakistani	73/689	9.6%	134/628	17.6%	164/598	21.5%	175/587	23.0%
Others	16/216	6.9%	36/196	15.5%	41/191	17.7%	53/179	22.8%
Gender								
Male	70/708	9.0%	159/619	20.4%	185/593	23.8%	212/566	27.2%
Female	43/777	5.2%	93/727	11.3%	115/705	14.0%	157/663	19.1%
Maternal smoking								
No	90/1,051	7.9%	177/964	15.5%	213/928	18.7%	256/885	22.4%
Yes	23/433	5.0%	74/382	16.2%	86/370	18.9%	112/344	24.6%
Parity								
primiparous	41/571	6.7%	87/ 525	14.2%	106/ 506	17.3%	144/468	23.5%
multiparous	70/ 892	7.3%	163/ 799	16.9%	191/ 771	19.9%	218/744	22.7%
IMD 2010 Quintile score								
1	83/998	7.7%	183/898	16.9%	217/864	20.1%	255/826	23.6%
2	19/271	6.6%	37/253	12.8%	45/245	15.5%	64/226	22.1%
3	10/158	6.0%	23/145	13.7%	28/140	16.7%	36/132	21.4%
4	1/34	2.9%	3/32	8.6%	4/31	11.4%	6/29	17.1%
5	0/24	0%	6/18	25.0%	6/18	25.0%	8/16	33.3%

Table 4	Characteristics of 1,598 children with complete data on wheezing disorders and
	covariates

The adjusted RRs for "asthma" diagnosis, "wheezing" symptoms, "wheezing disorder" diagnosis and "wheezing disorders" treatment for the "inconsistent" growth group were 1.47 (95% CI: 0.71 to 3.01), 1.13 (0.66 to 1.95), 1.38 (0.90 to 2.12) and 1.17 (0.76 to 1.81) respectively, when compared to the "consistent" growth group. The respective unadjusted relative risks remained similar (table 5).

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight SDS		-	
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growth)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growth)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weight SD	S		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent growth)	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)
	Wheezing disorder diagnosis	1.42 (0.92 to 2.19; 0.11)	1.38 (0.90 to 2.12; 0.14)
	Wheezing disorder treatment	1.14 (0.74 to 1.76; 0.55)	1.17 (0.76 to 1.81; 0.47)

Table 5adjusted and unadjusted relative risks and 95% CI for growth patterns and
wheezing disorders in the BiB1000 cohort

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a reference group in both models.

Complete cases versus imputed dataset results

The complete cases analysis for birthweight and wheezing disorders retained 10,623 out of 13,734 children. The complete case analyses for weight growth patterns based on age and visits retained 1,572 of the 1,598 children. The results of complete cases analyses were very close to the imputed data analyses as expected given that all the outcome variables were completely observed and the missing indicator variables for the incomplete covariates did not have strong relationship with the outcome variables (tables S6 & S7).

Discussion

In this prospective cohort study, we found that low birthweight was strongly associated with wheezing disorders and there was consistent, albeit weak, evidence that high birthweight was associated with reduced risk of wheezing disorders during the pre-school period. Our findings for the effects of low birthweight on wheezing disorder diagnosis and treatment are in line with the findings of our recent meta-analysis and systematic review, showing a 37% increase in wheezing disorders risk for low birthweight (OR=1.37; 95% CI: 1.05 to 1.79) compared to normal birthweight, ¹⁰ although the results here are slightly attenuated due to our use of relative risk as a measure of association. However, our finding of the effect of high birthweight on wheezing disorders is slightly different to that of the reported odds ratio in the meta-analysis (OR=1.02; 95% CI: 0.99 to 1.04) with both wheezing disorders diagnosis and treatment showing that there was a non-significant reduction of risk.

Analysis of our age based weight growth patterns have shown inconsistent results for the group classified as "fast" growth group. While there was a weak evidence for an increased risk of wheezing disorders according to diagnosis, there was a weak evidence for a reduced risk of wheezing disorders treatment (table 5). However, the results showed that the "slow" growth group did have a reduced risk for both wheezing disorders diagnosis and treatment, albeit weak evidence, when compared to the "normal" growth group (table 5). Furthermore, in our attempt to further analyse the effects of visits based weight SDS on wheezing disorders, there was a weak evidence for an increase risk of wheezing disorders diagnosis and treatment for the group of children who grew "inconsistently" and were seen to be obese by the last visit.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The findings of the effects of growth on wheezing disorders analyses may not be directly comparable with the previous studies ^{11 13-15 17 18 20-24} as they assumed a homogenous growth among the respective study population and investigated the effect of overall mean change on wheezing disorders. However, Rzehak et al ¹⁹ who used GMM reported hazard ratios of 1.22 (95% CI: 1.08 to 1.39) and 1.43 (95% CI: 0.90 to 2.27) for groups of children exhibited rapid growth only until 2 years and persistent rapid growth, respectively. The authors' growth pattern and risk estimates were similar to our age based fast growth group and visits based inconsistent growth group, respectively. Another two studies that

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

investigated the effects of weight status changes at different age points reported an insignificant increase in wheezing disorders risk which are similar to our 'inconsistent growth' group's of the 'visits-based' growth patterns risk estimates.¹²¹⁶

In our previous meta-analyses and systematic reviews we found that low birthweight and high BMI were associated with wheezing disorders. ^{10 44} However, we also acknowledged that it may not be apparent whether high BMI is causing wheezing disorders or otherwise from the findings. This is because children with wheezing disorders may become less active which can lead to obesity or obese children may experience wheezing symptoms due to narrowing of airways. In our growth patterns and wheezing disorders analyses, we noted that, on average, the children with lower birthweight SDS showed significant growth changes during the first 6 months and were more likely to have experienced wheezing disorder conditions (table 3&5). We also noted that children with the lowest birthweight SDS were more likely to be obese and to have experienced wheezing disorder conditions (table 3&5). Given that a very small proportion of wheezing disorders or treatment cases were identified in the first three and six months (table S3), during which changes in growth occurred, it may strongly suggest that low birthweight coupled with rapid change in growth during the first six months is a risk factor for wheezing disorders. The temporal relationship between obesity and wheezing disorders in this study remains difficult to disentangle, however, in a recent Mendelian Randomization study by Granell et al, it has been reported that obesity precedes childhood wheezing disorders.45

Our work has certain weakness so that the results need to be interpreted carefully. Firstly, although the sample size for birthweight and wheezing disorders was sufficiently large, study participants were those who were born at a single centre: the Bradford Royal Infirmary (BRI) maternity hospital. Births in the regional tertiary centre, home births and births in smaller hospitals outside Bradford would have been excluded. Secondly, participation in the sub-cohort (BiB1000) of growth patterns was mainly driven by the mothers' willingness to participate and so there is likely to be selection bias. Third, some of the classes identified by our GMM contained a small proportion of children that resulted in having less precise risk estimates. Fourth, missing levels of growth data at some ages and visits was

substantial although we applied missing data handling techniques to address this limitation. Fifth, information on family asthma and breast feeding was missing so our models were not adjusted for these potential confounding variables. However, the lack of adjustment may not have had a drastic effect on our birthweight risk estimates as there was no difference between the studies that adjusted for family asthma and those did not.¹⁰ Likewise, Rzehak et al ¹⁹ also reported that there was no significant difference between unadjusted and adjusted (i.e. for breast feeding and family asthma) model results.

Nonetheless, there are particular strengths of our analysis. Firstly, in our birthweight and wheezing disorders analyses, our sample size was reasonably large. Secondly, we were able to implement techniques to reduce potential bias due to confounding variables such as the use of DAGs to inform the modelling process. Thirdly, we were able to implement missing data techniques to minimize bias and presented both the complete cases and imputed datasets results to give more insight. Fourthly, although we had small size for growth patterns analysis, we are able to implement advanced statistical techniques to account for potential heterogeneity of growth between and within groups. Finally, we were also able to use age-specific and sex-specific standardised weight scores which have the advantage of clearly depicting the growth patterns of children in comparison to the standard growth reference.³⁵ The standard scores are convertible to percentiles ³⁶ which can then be compared with the growth charts used by clinicians or growth monitoring workers in their daily practice.

In conclusion, in this large prospective cohort data analysis, we have confirmed that low birthweight children have a moderate associated risk of wheezing disorders whereas high birthweight children have a non-significant reduced risk. There is a weak evidence that suggests "fast" or "inconsistent" growth predispose to wheezing disorders, and "slow" growth reduces the risk which needs further investigation using larger datasets. However, the results may indicate that maintaining optimal prenatal and postnatal growths reduce a risk of childhood wheezing disorders.

Acknowledgments: Born in Bradford is only possible because of the enthusiasm and commitment of the Children and Parents in BiB. We are grateful to all the participants, health professionals and researchers who have made Born in Bradford happen.

Funding: TFM is funded by the Hall Dorman Research PhD Scholarship. Data collection was funded by the National Institute for Health Research (NIHR) under the Collaborations for Leadership in Applied Health Research and Care (CLAHRC) programme for Leeds, York and Bradford and the Programme Grants for Applied Research funding scheme.

Contributors: TFM, RGF and RCP conceived the idea. TFM performed all the statistical analyses, interpretation of results and drafted the manuscript. RGF and RCP revised and commented on the manuscript. All authors approved the final version of the manuscript.

Competing interests: No, there are no competing interests.

Data sharing: No additional data available.

References

1. Roche R, Je	effery R.	Remodelling a	nd inflammation	n. In: Sil	verman M,	editor.	Childhood	Asthma
and of	ther Whe	ezing Disorder	s. Second ed. G	reat Brit	tain: Arnold	l, 2002.		

- World Health Organization (WHO). Asthma Fact Sheet Number 307.2013; [online], available: <u>http://www.who.int/mediacentre/factsheets/fs307/en/</u> [accessed February 20, 2015].
- Masoli M, Fabian D, Holt S, et al. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. *Allergy* 2004;59(5):469-78.

 Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. *Eur Respir J* 2008;31(1):143-78.

5. Bush A, Fleming L. Diagnosis and management of asthma in children. 2015; 10.1136/bmj.h996.

- 6. Brand PL, Baraldi E, Bisgaard H, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. *Eur Respir J* 2008;32(4):1096-110.
- 7. Pike KC, Crozier SR, Lucas JS, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;10.1136/thx.2010.134742 thx. 2010.134742.
- Been JV, Lugtenberg MJ, Smets E, et al. Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. *PLoS Med* 2014;11(1):e1001596.
- 9. Rothenbacher D, Weyermann M, Fantuzzi G, et al. Adipokines in cord blood and risk of wheezing disorders within the first two years of life. *Clin Exp Allergy* 2007;37(8):1143-49.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Birth weight and childhood wheezing disorders: a systematic review and meta-analysis. *J Epidemiol Community Health* 2014;doi:10.1136/jech-2014-204783.
- Mamun AA, Lawlor DA, Alati R, et al. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study. *Int J Obes* 2007;31(4):578-83.
- Scholtens S, Wijga AH, Seidell JC, et al. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. *J Allergy Clin Immunol* 2009;123(6):1312-18.e2.
- 13. Pike KC, Crozier SR, Lucas JSA, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. *Thorax* 2010;65(12):1099-106.
- 14. Zhang Z, Lai HJ, Roberg KA, et al. Early childhood weight status in relation to asthma development in high-risk children. *J Allergy Clin Immunol* 2010;126(6):1157-62.
- 15. Flexeder C, Thiering E, Bruske I, et al. Growth velocity during infancy and onset of asthma in school-aged children. *Allergy* 2012;67(2):257-64.
- Magnusson JO, Kull I, Mai XM, et al. Early childhood overweight and asthma and allergic sensitization at 8 years of age. *Pediatrics* 2012;129(1):70-76.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

17. van der Gugten AC, Koopman M, Evelein AMV, et al. Rapid early weight gain is associated with wheeze and reduced lung function in childhood. *Eur Respir J* 2012;39(2):403-10.

 Anderson EL, Fraser A, Martin RM, et al. Associations of postnatal growth with asthma and atopy: The PROBIT Study. *Pediatr Allergy Immunol* 2013;24(2):122-30.

- Rzehak P, Wijga AH, Keil T, et al. Body mass index trajectory classes and incident asthma in childhood: Results from 8 European Birth Cohorts—a Global Allergy and Asthma European Network initiative. J Allergy Clin Immunol 2013;131(6):1528-36.
- Sonnenschein-van der Voort AM, Howe LD, Granell R, et al. Influence of childhood growth on asthma and lung function in adolescence. *J Allergy Clin Immunol* 2014;doi: 10.1016/j.jaci.2014.10.046.
- Magnus MC, Stigum H, Haberg SE, et al. Peak weight and height velocity to age 36 months and asthma development: the norwegian mother and child cohort study. *PLoS One*. 2015;doi:10.1371/journal.pone.0116362.
- 22. Mai X-M, Gaddlin P-O, Nilsson L, et al. Early rapid weight gain and current overweight in relation to asthma in adolescents born with very low birth weight. *Pediatr Allergy Immunol* 2005;16(5):380-5.
- 23. Sonnenschein-van der Voort AMM, Jaddoe VWV, Raat H, et al. Fetal and Infant Growth and Asthma Symptoms in Preschool Children. *Am J Respir Crit Care Med* 2012;185(7):731-37.
- 24. De Korte-De Boer D, Mommers M, Thijs C, et al. Early life growth and the development of preschool wheeze, independent from overweight: The LucKi Birth Cohort Study. *J Pediatr* 2015;166(2):343-49.e1.
- 25. Wright J, Small N, Raynor P, et al. Cohort Profile: The Born in Bradford multi-ethnic family cohort study. *Int J Epidemiol* 2013;42(4):978-91.
- 26. Raynor P, Group BiBC. Born in Bradford, a cohort study of babies born in Bradford, and their parents: Protocol for the recruitment phase. *BMC Public Health* 2008;8(1):327.
- 27. Tu Y-K, West R, Ellison GTH, et al. Why Evidence for the Fetal Origins of Adult Disease Might Be a Statistical Artifact: The "Reversal Paradox" for the Relation between Birth Weight and Blood Pressure in Later Life. *Am J Epidemiol* 2005;161(1):27-32.
- Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. *Epidemiology* 1999;10(1):37-48.
- 29. Textor J, Hardt J, Knuppel S. DAGitty: a graphical tool for analyzing causal diagrams. *Epidemiology* 2011;22(5):745.
- Schisterman EF, Cole SR, Platt RW. Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies. *Journal of Epidemilogy* 2009;20(4):488-95.
- Collins LM, Schafer JL, Kam C-M. A comparison of inclusive and restrictive strategies in modern missing data procedures. *Psychological Methods* 2001;6(4):330.

BMJ Open

ω
\leq
C
Ο
ð
Open:
ŧ
Ľ.
÷
2
₽
Ē
ŝ
Ð
0
g
S
1
.0
~
3
õ
5
ă.
<u>ج</u> .
8
ŏ
Ļ
Ň
ò
5
Ľ.
2
б
ŭ
Ωī
ω
Q
2
22
5
Z
2
è
Ĥ,
Ð
Φ
~
5
Ξ
ςī
2
ž
~
published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Down
vnlo
BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Download
ao
ao
ao
ao
aded fror
ao
aded fror

	clinical research: potential and pitfalls. <i>BMJ</i> 2009;338.
33. Ce	enter for Diseases prevention and Control (CDC). Pediatric and Pregnancy Nutrition
	Surveillance System: PedNSS Health Indicators.2009; [online], available:
	http://www.cdc.gov/pednss/what_is/pednss_health_indicators.htm [accessed February 04,
	2015].
34. W	orld Health Organization (WHO). International Statistical Classification of Diseases and
	Related Health Problems 10th Revision (ICD-10)-2014-WHO Version for ;2014:Disorders
	related to length of gestation and fetal growth (P05-P08) 2014; [online], available:
	http://apps.who.int/classifications/icd10/browse/2014/en#/P05-P08 [accessed February 03]
	2015].
35. W	orld Health Organization (WHO). WHO Child Growth Standards: Methods and developmen
	Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mas
	index-for-age. Child growth standards, 2006; [online], available:
	http://www.who.int/childgrowth/publications/technical_report_pub/en/index.html [accessed
	February 04, 2015].
36. Pa	n H, Cole T. LMSgrowth, a Microsoft Excel add-in to access growth references based on the
	LMS method. Version 2.77.2012; [online], available:
	http://www.healthforallchildren.com/?product=lmsgrowth [accessed February 20, 2015].
37. Di	uncan TE, Duncan SC, Strycker LA. Growth Mixture Modeling. In: G.A. M, editor. An
	introduction to Latent Growth Curve Modeling. 2nd ed. New Jersy, : Lawrence Erlbaum
	associates, 2006:125-49.
38. M	uthén B. Latent variable analysis:Growth Mixture Modeling and Related Techniques for
	Longitudinal Data. In: Kaplan BA, editor. The handbook of quantitative methodology for a
	social sciences Thousand Oaks, CA: Sage Publications, 2004:345-68.
39. Ro	pyston P, White IR. Multiple imputation by chained equations (MICE): implementation in St
	Journal of Statistical Software 2011;45(4):1-20.
40. W	hite IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and
	guidance for practice. Stat Med 2011;30(4):377-99.
41. Gi	raham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some
	practical clarifications of multiple imputation theory. Prevention Science 2007;8(3):206-1
42. Sc	hafer JL, Graham JW. Missing Data: Our View of the State of the Art. Psychological Metho
	2002;7(2):147-77.
43. Er	nders CK, Bandalos DL. The relative performance of full information maximum likelihood
	estimation for missing data in structural equation models. Structural Equation Modeling
	2001;8(3):430-57.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

- 44. Mebrahtu TF, Feltbower RG, Greenwood DC, et al. Childhood body mass index and wheezing disorders: a systematic review and meta-analysis. *Pediatr Allergy Immunol* 2015;doi:10.1111/pai.12321.
- 45. Granell R, Henderson AJ, Evans DM, et al. Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study. *PLoS medicine* 2014;doi:10.1371/journal.pmed.1001669.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary:

Table S1: list of drugs used to confirm diagnosis of wheezing disorders

Drug class names	Drug family names
Antimuscarinic bronchodilators	
	IPRATROPIUM BROMIDE
selective beta-2 agonists	
	FORMOTEROL FUMARATE
	SALBUTAMOL
	SALMETEROL
	TERBUTALINE SULPHATE
Leukotriene receptor antagonist	
	MONTELUKAST
	ZAFIRLUKAST
Nasal Corticosteroids	
	BECLOMETASONE DIPROPIONATE
	BUDESONIDE
	CICLESONIDE
	FLUTICASONE PROPIONATE
	MOMETASONE FURATE
	SODIUM CROMOGLICATE

1
2
2
3 4 5 6 7 8
4
5
ĉ
o
7
8
o
9 10 11
10
11
12
40
13
14
15
10
10
17
18
10
12 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 132 33 435 637 82
20
21
22
22
23
24
25
20
26
27
28
20
29
30
31
22
32
33
34
35
00
36
37
38
20
39
40
41
42
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
59
011

Name	List of terms	Read Code	Term ID	
Wheezing			-	
	Expiratory polyphonic wheeze	Xa83N	YaVc1	
	Expiratory wheeze	Xa7uu	YaVQZ	
	Expiratory wheezing	Xa7vA	YaVQt	
	Inspiratory wheeze	Xa7ut	YaVQY	
	Inspiratory wheezing	Xa7v9	YaVQs	
	Mild wheeze	XaX5K	Yaty9	
	Moderate wheeze	XaX5L	YatyA	
	Nocturnal wheeze/cough	173B.	YM1gs	
	Severe wheeze	XaX5M	YatyC	
	Very severe wheeze	XaX5N	YatyE	
	Viral wheeze	XaMe7	YapfP	
	Wheeze - rhonchi	X76If	Y7DxZ	
	Wheezing	XE0qs	Y7DuF	
	Wheezing symptom	XM0Ci	YM1is	
	Wheezy	XE0qs	Y7DuF	
Asthma				
	Acute asthma	Xa9zf	YaYk2	
	Allergic asthma	XE0YT	Y108G	
	Asthma	Н33	Y107p	
	Asthma NOS	XE0YX	Y1080	
	Asthma unspecified	H33z.	Y107y	
	Asthmatic bronchitis	Xa0lZ	Y108e	
	Brittle asthma	Ua1AX	YMFVN	
	Childhood asthma	X101t	Y107w	
	Chronic asthmatic bronchitis	H3120	Y108g	
	Mild asthma	663V1	YaY1o	
	Moderate asthma	663V2	YaY1p	
	Nocturnal asthma	XaLPE	Y1084	
	Non-allergic asthma	XE0YT	Y108G	
	Occasional asthma	663V0	YaY1n	

Table S2: list of terms to confirm diagnosis of wheezing disorders

Table S3 Period of o	Period of diagnosis or treatment initiation for BiB1000 children						
	Period in months						
	First 3 months	First 6 months	First 9 months	First 12 months			
Wheezing disorders diagnosis	1.3%	8.3%	17.0%	27.7%			
Wheezing disorders treatment	2.1%	16.8%	33.1%	46.1%			
Asthma diagnosis	0%	1.8%	2.7%	4.4%			
Wheezing symptoms	1.59	7.9%	19.8%	31.8%			

To been to wiew only

Number of classes	Μ	lodel fit C	Criterion		Classification quality	Likelihood ratio test
	-2LL	AIC	ABIC	df	Entropy	BLRT (-2LL diff; df diff; and P-values)
Age based weight SI	DS					
1 class	13,794	13,836	13,883	21	N/A	N/A
2 classes	13,752	13,805	13,862	26	0.94	42; 5; <0.01
3 classes	13,724	13,785	13,853	31	0.90	29; 5; <0.01
4 classes	13,698	13,770	13,849	36	0.88	24; 5; 0.02
5 classes	13,680	13,763	13,853	41	0.88	17; 5; 0.70
Visits based weight S	SDS					
1 class	14,100	14,129	14,159	14	N/A	N/A
2 classes	14,034	14, 069	14,109	18	0.79	67; 4; <0.01
3 classes	14,006	14,052	14,099	22	0.85	26; 4; <0.01
4 classes	13,992	14,044	14,102	26	0.79	15; 4; 0.03
5 classes	13,980	14,041	14,107	30	0.72	11; 4; 0.25

Table S4 Model fit results for selection of optimal number of classes

LL= Log-likelihood; AIC=Akaike Information Criterion; ABIC= sample size adjusted Bayesian Information Criterion;

BLRT=Bootstrapped likelihood Ratio Test; -2LL diff=2 times the Log-likelihood difference, df=degrees of freedom (number of free parameters); df diff= difference in the degree of freedom or number of free parameters.

	Parameter	Estimate and 95% CI	P-value
Age based GMM model			
Class 1 ('Normal growers')	Birthweight	-0.111 (-0.170 to -0.053)	< 0.01
	Velocity ₀₋₃	-0.671 (-0.903 to -0.439)	< 0.01
	Velocity ₃₋₁₂	0.645 (0.578 to 0.712)	< 0.01
	Velocity ₁₂₋₃₆	-0.028 (-0.053, -0.003)	0.03
Class 2('Fast growers')	Birthweight	-0.594 (-1.305 to 0.117)	0.10
	Velocity 0-3	-2.956 (-7.838 to 1.925)	0.24
	Velocity 3-12	3.588 (2.850 to 4.326)	< 0.01
	Velocity 12-36	-0.302 (-0.993 to 0.390)	0.39
Class 3('Slow growers')	Birthweight	-0.564 (-1.146 to 0.018)	0.06
	Velocity 0-3	-1.878 (-3.980 to 0.225)	0.08
	Velocity 3-12	-0.871 (-1.950 to 0.208)	0.11
	Velocity 12-36	0.856 (0.266 to 1.446)	< 0.01
Visits based GMM model			
Class 1 ('consistent growers')	Birthweight	-0.084 (-0.138 to -0.030)	< 0.01
	Velocity	0.246 (0.196 to 0.297)	< 0.01
	Acceleration	-0.056 (-0.067 to -0.045)	< 0.01
Class 2 ('inconsistent growers')	Birthweight	-0.263 (-0.577 to 0.051)	0.10
	Velocity	0.732 (0.335 to 1.129)	< 0.01
	Acceleration	-0.051 (-0.132 to 0.029)	0.21

Table S5	Mean estimates of the latent classes of Growth Mixture Model parameters
----------	---

	Wheezing disorders	Asthma	Wheezing	wheezing disorde
	treatment	diagnosis	symptoms	diagnosis
Birthweight	-	-	-	-
Normal (2.5-4.0kg)	1	1	1	1
High (>4.0kg)	1.03(0.90 to1.18)	0.88 (0.63 to 1.22)	1.01 (0.84 to 1.21)	0.97 (0.82 to 1.14)
Low (<2.5kg)	1.22 (1.06 to 1.41)	1.63 (1.24 to 2.14)	1.26 (1.05 to 1.51)	1.30 (1.10 to 1.53)
Ethnicity				
White British	1	1	1	1
Pakistani	0.96 (0.87 to 1.05)	1.39 (1.12 to 1.71)	1.26 (1.11 to 1.43)	1.22 (1.09 to 1.36)
Others	0.76 (0.68 to 0.86)	1.00 (0.76 to 1.30)	0.93 (0.79 to 1.09)	0.91 (0.78 to 1.05)
Gender				
Male	1	1	1	1
Female	0.73 (0.67 to 0.78)	0.64 (0.55 to 0.75)	0.64 (0.59to0.71)	0.65 (0.60 to 0.72)
Gestational age				
Term	1	1	1	1
Pre-term	1.21 (1.04 to 1.42)	1.13 (0.81 to 1.56)	1.10 (0.89 to 1.35)	1.11 (0.92 to 1.33)
Number of births				
Singleton	1	1	1	1
Twins	0.67 (0.51 to 0.88)	0.71 (0.43 to 1.19)	0.70 (0.50 to 0.99)	0.66 (0.48 to 0.91)
Triplets	1.18 (0.39 to 3.61)	-	0.83 (0.14 to 4.91)	0.69 (0.12 to 4.09)
Maternal smoking				
No	1	1	1	1
Yes	1.04 (0.96 to 1.14)	0.83 (0.68 to 1.03)	1.09 (0.96 to 1.22)	1.07 (0.96 to 1.19)
Parity				
primiparous	1	1	1	1
multinonous	1.01 (0.94 to 1.09)	1.06 (0.90 to 1.24)	1.12 (1.02 to 1.23)	1.09 (1.00 to 1.19)
multiparous	0.98 (0.94 to 1.02)	$0.07(0.99 \pm 1.07)$	0.94 (0.89 to 1.00)	0.95 (0.91 to 1.01)

Table S6	Adjusted relative risks and 95% confidence intervals of complete cases
	analysis (10,623 children)

Table S7Adjusted and unadjusted relative risks and 95% CI for growth patterns and
wheezing disorders from complete cases analysis (1,572 children)

		Unadjusted RR (95%	Adjusted RR (95% CI;
		CI; p-value)	p-value)
Age based weight	SDS		
Class 2	Asthma diagnosis	0.82 (0.12 to 5.56; 0.84)	0.81 (0.12 to 5.46; 0.83)
(fast growers)	Wheezing symptom	1.50 (0.62 to 3.56; 0.36)	1.59 (0.68 to 3.71; 0.29)
	Wheezing disorder diagnosis	1.25 (0.53 to 2.97; 0.61)	1.30 (0.56 to 3.06; 0.54)
	Wheezing disorder treatment	0.76 (0.27 to 2.14; 0.60)	0.77 (0.28 to 2.17; 0.63)
Class 3	Asthma diagnosis	1	1
(slow growers)	Wheezing symptom	0.80 (0.21 to 2.93;0.73)	0.72 (0.20 to 2.63; 0.29)
	Wheezing disorder diagnosis	0.67 (0.18 to 2.45; 0.54)	0.60 (0.16 to 2.18; 0.44)
	Wheezing disorder treatment	0.81 (0.29 to 2.25; 0.68)	0.81 (0.29 to 2.25; 0.69)
Visits based weigh	t SDS		
Class 2	Asthma diagnosis	1.66 (0.81 to 3.42; 0.17)	1.47 (0.71 to 3.01; 0.30)
(inconsistent	Wheezing symptom	1.15 (0.66 to 1.99; 0.62)	1.13 (0.66 to 1.95; 0.65)
growers)	Wheezing disorder diagnosis	1.42 (0.92 to 2.19; 0.11)	1.38 (0.90 to 2.12; 0.14)
	Wheezing disorder treatment	1.14 (0.74 to 1.76; 0.55)	1.17 (0.76 to 1.81; 0.47)

* = both models were adjusted for birthweight, ethnicity, gender, maternal smoking, parity and maternal SES; class 1 was a reference group in both models.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

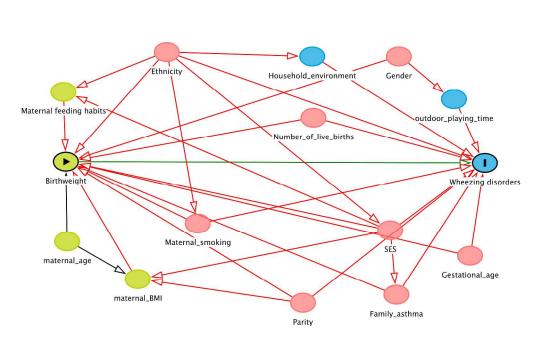


Figure S1: DAGitty schematic view of confounding adjustment for the effects of birthweight on wheezing disorders.

Minimal sufficient adjustment sets for estimating the total effect of birthweight on wheezing disorders:
Ethnicity, family asthma, gender, gestational age, maternal smoking, number of live births, parity, SES
Ethnicity, family asthma, gestational age, maternal smoking, number of live births, parity, SES, outdoor playing time

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

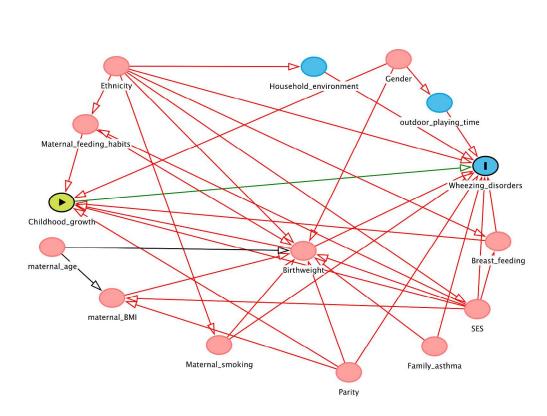
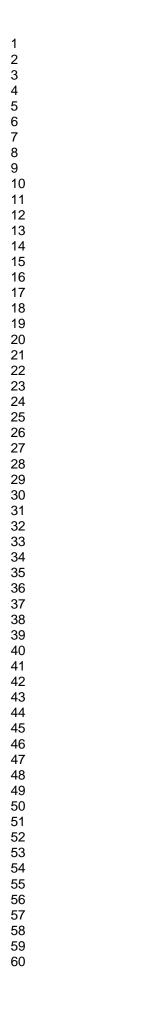



Figure S2: DAGitty schematic view of confounding adjustment for the effects of childhood growth on wheezing disorders.

BMJ Open: first published as 10.1136/bmjopen-2015-009553 on 26 November 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Minimal sufficient adjustment sets for estimating the total effect of childhood growth on wheezing disorders:

 Birthweight, breast feeding, ethnicity, family asthma, gender, maternal smoking, parity, SES
 Birthweight, breast feeding, ethnicity, family asthma, maternal smoking, parity, SES, outdoor playing time
 Birthweight, breast feeding, gender, maternal feeding habits, parity, SES

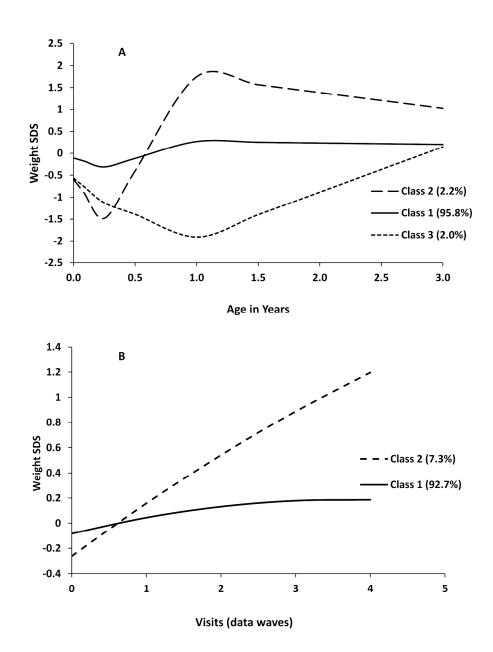


Figure S3 Estimated mean curves of weight SDS according to age (A) and visits (B)

BMJ Open

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstra
		[Methods section of the abstract page 1]
		(b) Provide in the abstract an informative and balanced summary of what was do
		and what was found [Results section of abstract page 1]
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being report
		[Page 3]
Objectives	3	State specific objectives, including any prespecified hypotheses [Page 4]
Methods		
Study design	4	Present key elements of study design early in the paper [Methodology page 5]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitme
		exposure, follow-up, and data collection [Pages 5-6]
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants. Describe methods of follow-up [Pages 5-6]
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed [N/A]
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and ef
		modifiers. Give diagnostic criteria, if applicable [Page 6]
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if the
		more than one group [Pages 5-6]
Bias	9	Describe any efforts to address potential sources of bias [Page 6-7]
Study size	10	Explain how the study size was arrived at [Page 5]
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why [Pages 5-6]
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confoundi
		[Pages 6-7]
		(b) Describe any methods used to examine subgroups and interactions [N/A]
		(c) Explain how missing data were addressed [Page 7]
		(d) If applicable, explain how loss to follow-up was addressed
		(e) Describe any sensitivity analyses [N/A]
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
1	-	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed [Page 5]
		(b) Give reasons for non-participation at each stage [Page 5]
		(c) Consider use of a flow diagram [N/A]
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) ar
T. T		information on exposures and potential confounders [Page 8
		(b) Indicate number of participants with missing data for each variable of interest
		[Page 9]
		(c) Summarise follow-up time (eg, average and total amount) [Page 8]
Outcome data	15*	Report numbers of outcome events or summary measures over time [Page 8]
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates a
1114111 1050115	10	(a) one unadjusted estimates and, it appreaded, combunder-adjusted estimates a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		adjusted for and why they were included [Pages 10 &13]
		(b) Report category boundaries when continuous variables were categorized [Page
		6]
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period [N/A]
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses [N/A]
Discussion		
Key results	18	Summarise key results with reference to study objectives [Page 14]
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias [Page 15]
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		[Pages 14-15]
Generalisability	21	Discuss the generalisability (external validity) of the study results [Page 14-15]
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based [within
		acknowledgments and funding

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.