BMJ Open

Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease

Journal:	BMJ Open
Journal.	
Manuscript ID:	bmjopen-2015-008295
Article Type:	Research
Date Submitted by the Author:	26-Mar-2015
Complete List of Authors:	guo, jian; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test zheng, cong; Shanghai Changning District Central Hospital, Department of Respiratory Diseases xiao, qiang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test gong, sugang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation zhao, qinhua; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation wang, lan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation wang, lan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation he, jing; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation yang, wenlan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test shi, xue; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test sun, xinguo; Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center liu, jinming; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test sun, xinguo; Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center liu, jinming; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test and Pulmonary Circulation
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	anemia, chronic obstructive pulmonary disease, cardiopulmonary exercise test, hemoglobin

SCHOLARONE[™] Manuscripts

Impact of anaemia on lung function and exercise capacity in patients

with stable severe chronic obstructive pulmonary disease

Jian Guo^{1*}, Cong Zheng^{3*}, Qiang Xiao^{1*}, Sugang Gong², Qinhua Zhao², Lan Wang², Jing He², Wenlan Yang¹, Xue Shi¹, Xingguo Sun⁴, Jinming Liu^{1,2}

¹Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China

²Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China

³Department of Respiratory Diseases, Shanghai Changning District Central Hospital, Shanghai 200336

⁴State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China

Correspondence to Jin-Ming Liu, PhD, Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zheng Min Road, Shanghai, 200433, China. E-mail: jinmingliu2013@126.com Tel: 086-021-30311561; Fax: 086-021-30311525 BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

* This three authors contributed equally to this work

[Abstract]

Objective: This study intended to search for potential correlations between anaemia in patients with severe COPD (GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as ventilatory efficiency, utilizing pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET).

Setting: Study was undertaken at Shanghai pulmonary hospital, a tertiary level centre affiliated to Tongji University. It caters to a large population base within shanghai and referrals from centers in other cities as well.

Participants: 155 Chinese patients with stable severe COPD were divided into two groups: anemia group [hemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for females (n=46)] and non-anemia group (n=109).

Primary and secondary outcome measures: Arterial blood gas (ABG), PFT and CPET were tested in all patients.

Results: (1) Diffusing capacity for carbon monoxide (DLco) corrected by Hb was significantly lower in anemia group [(15.3±1.9) ml/min/mmHg] than in non-anemia group [(17.1±2.1) ml/min/mmHg] (P<0.05). Significant difference did not exist in the level of forced expiratory volume in 1 second (FEV₁), FEV₁%pred, FEV₁/ forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (P>0.05). (3) Peak Load, Peak oxygen uptake (\dot{V} O₂), Peak \dot{V} O₂%pred, Peak \dot{V} O₂/Kg, Peak O₂ pulse and the ratio of \dot{V} O₂ increase to WR increase ($\Delta \dot{V}$ O₂/ Δ WR) were significantly lower in anemia group(P<0.05), however, Peak minute ventilation (VE), Lowest \dot{V} E/ carbon dioxide output (\dot{V} CO₂), Peak dead space/tidal volume ratio (VD/VT) were similar between the two groups (P>0.05). (4) A strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients. (r=0.702, P<0.01).

Conclusion: Anemia has a negative impact on gas exchange and exercise tolerance during exercise in severe COPD patients. The decrease amplitude of Hb levels is related to the quantity of oxygen uptake.

[Key words] anemia; chronic obstructive pulmonary disease; cardiopulmonary exercise test; hemoglobin

Article summary

BMJ Open

Heading: Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease

This study searched for potential correlations between anaemia in patients with severe COPD (GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as ventilatory efficiency. Our results show that anemia has a negative impact on gas exchange and exercise capacity in severe COPD patients. The decrease amplitude of Hb levels is related to the quantity of oxygen uptake. Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise, all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia. The limitations of the study is that the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients.

Introduction

Chronic obstructive pulmonary disease (COPD) affects various functional and structural domains of the lungs and is recognized as a systemic disease, frequently present in addition to other diseases.¹ Polycythemia, traditionally thought to be highly prevalent in COPD, is less frequent nowadays with more rigorous correction of hypoxaemia.² Reversely, recent research show that anaemia is highly prevalent in patients with COPD.^{3,4}

Anemia, which is a well recognized comorbidity in many chronic illnesses occurs in 10-30% of COPD patients.³⁻¹² Anemia has been related with increased mortality and morbidity including increased health care costs and hospitalization.³⁻¹² Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise,¹³ all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia.

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Based on the aforementioned situation, the aims of our study were to (1) investigate the prevalence of anemia in stable severe COPD patients and (2) evaluate the impact of anemia on pulmonary function at rest, ventilatory efficiency and exercise capacity in COPD patients, utilizing PFT and CPET.

MATERIALS AND METHODS

Study subjects

The relevant population consisted of consecutive, clinically stable patients with a diagnosis of severe COPD (GOLD stage III)¹⁴, who visited the Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between December 2011 and November 2013. Patients were diagnosed as clinically stable if they had had no hospital admission, exacerbation, respiratory infection or change in medication three months prior to entering the study. Exclusion criteria included: (1) a history of bronchiectasis, asthma or other concomitant respiratory diseases; (2) a diagnosis of malignancy; 3) inability to complete CPET according to the American Thoracic Society/American College of Chest Physicians guidelines,¹⁵ such as unstable angina, acute myocardial infarction, uncontrolled arrhythmias causing symptoms and orthopedic impairment; and 4) any disease that could affect haemoglobin levels (thyroid disease, liver disease, chronic renal failure, chronic heart failure, previous history of gastrointestinal bleeding and chronic inflammatory rheumatic disease). Anaemia was defined as the presence of haemoglobin levels <12 g/dL in males and <11 g/dL in females according to China-specific criteria¹⁶. The study was approved by the hospital Ethics Committee. Informed consent was obtained from all patients before undergoing any study procedure.

Study Procedures

During the initial visit, all the patients with a potential or known diagnosis of COPD underwent physical examination, arterial blood gas analysis (ABG) and lung function testing. All stable severe COPD patients (if $30\% \le \text{FEV1} \le 50\%$ predicted) underwent peripheral venous blood sampling to determine full blood count, liver transaminase, total protein (albumin and globulin), thyroid hormone, serum levels of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

urea and creatinine. Patients who were subsequently presented with abnormal thyroid hormone values (either high or low), glomerular filtration rate (GFR) below 60mL/min¹⁷ and increased liver enzymes twice the upper limit of normal were excluded. The included patients in the study visited the outpatient clinic within two weeks from the initial visit and performed CPET.

Arterial blood gas analysis and resting pulmonary function measurements

ABG measurements such as PH, partial pressure of oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂) and arterial oxygen saturation (SaO₂) were taken just after 10 minutes of rest. Each subject underwent resting PFT of forced vital capacity (FVC), forced expiratory volume in 1second (FEV₁), inspiratory capacity (IC), diffusing capacity for carbon monoxide (DLco) corrected by Hb, residual volume (RV) and total lung capacity (TLC) using standard methodology12 and equipment (Jaeger Corp., Hoechberg, Germany). All resting lung function values were reported in absolute terms and normalized to percent of predicted (% pred). Predicted spirometry values were calculated using accepted equations for Chinese adults.¹⁸

Cardiopulmonary exercise test measurements

All the patients and controls performed on a cycle ergometer using a breath-by-breath system according to the American Thoracic Society/American College of Chest Physicians Statement on CPET.¹⁵ The equipment was calibrated in accordance with manufacturer's specifications using reference and calibration gases before each test. Standard 12 lead electrocardiograms (ECGs) and pulse oximetry were continuously monitored. Arterial blood pressure (BP) was measured every two minutes with an automatic cuff. The protocol was comprised of three minutes of rest, three minutes of unloaded cycling at 55-65 revolutions per minute (rpm), followed by a progressively increasing work rate of 5 to 15 watts (W)/min for PH patients, 20 to 25 W/min for the normal subjects to the maximum tolerance, and four minutes of recovery.¹⁸

Most CPET values were reported in absolute terms and normalized to percentage of predicted (% pred). Predicted values were calculated using accepted equations.¹⁹

CPET variables including oxygen uptake (VO2), minute ventilation (VE), carbon dioxide output (VCO₂), workload (WR) and dead space/tidal volume ratio (VD/VT) were calculated at peak exercise. PeakVO2 was defined as the highest 30-second average of oxygen uptake in the last minute of exercise and other peak parameters were calculated at the same time. Lowest $\dot{V}E/\dot{V}CO_2$ was determined by averaging the lowest consecutive 90 sec data points.²⁰

Statistical analysis

Statistical analysis was performed using SPSS (version 16, SPSS, Chicago). Parameters were expressed as mean SD. Most PFT and CPET values are expressed in absolute terms and % pred. Unpaired Student t test was used to identify differences between groups, whereas χ^2 test was used to assess differences in categorical variables between groups. Correlations between CPET parameters and Hb levels were determined by Pearson's correlation test. P value of < 0.05 was considered significant.

Results

Baseline clinical and demographic characteristics

One hundred and fifty-five patients diagnosed with severe COPD (GOLD stage III) in outpatients were included. The vast majority (93%) of patients in the dataset were males. The mean age was 61 years. The characteristics of the anemic and non anemic COPD patients are presented in Table 1. Forty-eight (31%) patients from this population fulfilled both laboratory and clinical criteria for anemia, therefore, the prevalence of anemia among stable COPD (GOLD stage III) outpatients in our study was 31%. The Hb level for anemic patients was 10.6 ± 0.8 g/dl. No difference was noted in BMI, ages, pack-years of smoking and arterial blood gas analysis parameters $(PH_{\sim} PaO_{2} \sim PaCO_{2} \text{ or } SaO_{2})$ between anemic and non anemic patients.

Resting pulmonary function measurements

The PFT parameters of the anemic and non anemic patients are presented in Tables 2. There was no statistical significance in FEV_1 , FEV_1 % pred, FEV_1 /FVC, IC, RV, TLC, RV/TLC between the two groups, indicating resting pulmonary ventilation

BMJ Open

Cardiopulmonary exercise testing

All individuals completed their CPET studies without incident. Nearly all patients stopped exercise because of leg fatigue and/or acute shortness of breath. All subjects achieved a respiratory exchange ratio (RER) >1.10, indicating sufficient metabolic stress. Because the anaerobic threshod (AT) may not be determined by V-slope method²¹ or the interpreter may feel that the AT is unreliable after reviewing an exercise test in a substantial number of severe COPD patients, CPET variables including $\dot{V}O_2$, $\dot{V}E$, $\dot{V}CO_2$, workload, and VD/VT were calculated at peak exercise without AT. Exercise responses of all the COPD patients at peak are presented in Table 3. Overall, there was a negative impact of anemia on exercise capacity. PeakLoad, Peak $\dot{V}O_2$, Peak $\dot{V}O_2/Kg$, Peak $\dot{V}O_2$ pulse, and the ratio of $\dot{V}O_2$ increase to WR increase ($\Delta\dot{V}O_2/\Delta WR$ slope) were significantly lower among anemic patients compared with non anemic patients. None of the exercise parameters indicative of respiratory limitation and ventilatory efficiency (Peak \dot{V} E, Lowest \dot{V} E/ \dot{V} CO₂, Peak VD/VT) differed between the two groups.

Correlations

PeakVO₂ is frequently used as the most reliable measure of overall exercise capacity, so we choose Peak \dot{VO}_2 as the typical CPET parameters to investigate for potential associations between Hb levels and exercise capacity. The correlations between Hb concentration and Peak \dot{VO}_2 for the anemic and non anemic COPD patients are shown in Figure 1. A strong positive correlation was found between Hb concentration and Peak \dot{VO}_2 in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant correlation was found with non anemic patients (r=0.055, P>0.05) (figure1B).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Discussions

 There is increasing evidence regarding the impact of systemic inflammation on COPD. In theory, it has been postulated that the pathophysiology of COPD-associated anaemia might be an inflammatory and immunological response, mediated by IL-1, IL-6, TNF- α and interferon gamma, which could make variations in iron metabolism, reducing iron absorption thereby altering normal haematopoiesis.^{22,23} These mediators increase in patients with COPD and could be regarded as factors related to the onset of anaemia.²⁴ One previous study has reported that anaemia in COPD is at least in part, on account of inflammation and resistance to elevated levels of serum erythropoietin.²⁵

In the current study, anaemia was present in 31% of severe COPD patients. The result confirms that anaemia is a common phenomenon in patients with severe COPD. The main aim of the present study was to search for potential correlations between anaemic severe COPD patients and resting pulmonary function, exercise capacity, as well as ventilatory efficiency based on PFT and CPET.

The usual PFT parameters like FEV_1 , $FEV_1\%$ pred, FEV_1/FVC , IC, RV, TLC and RV/TLC of the two groups were similar to each other except for DLco corrected by Hb. A severe obstructive pattern characterized the population studied. The finding that patients in the anaemia group had significant lower DLco values (corrected by Hb) (P<0.05) indicates that the decreased level of haemoglobin may affect the rate of oxygen uptake across the alveolar-capillary bed and reduce the diffusing capacity of the lungs, without having obvious influence on the pulmonary ventilation function.

Although anaemia has been associated with dyspnoea and reduced exercise tolerance in patients with chronic kidney disease, heart failure and cancer,²⁶⁻²⁸ few studies have been published concerning the effect of anaemia on exercise capacity in COPD patients. Cote et al studied patients with stable COPD, observed that the presence of anaemia affects the general feeling of dyspnoea measured in the MRC scale and concluded that anaemia decreases exercise tolerance measured in 6MWT.²⁹ However, the present study is the first to investigate the impact of anaemia on exercise capacity and ventilatory efficiency of severe COPD patients utilizing CPET.

BMJ Open

On the one hand, the present study showed that anemic patients with severe COPD had lower PeakLoad, Peak $\dot{V} O_2$ (%pred), Peak $\dot{V} O_2/Kg$, $\Delta O_2/\Delta WR$ slope and Peak oxygen pulse (O_2 pulse) compared with the non anemic ones, demonstrating the negative effect of anemia on exercise capacity. Peak $\dot{V}O_2$ is frequently used as the most reliable measure of overall exercise capacity. By Fick's principle^{20,30-32}, $\dot{V} O_2 =$ cardiac output*arteriovenous O_2 difference, the arteriovenous O_2 difference is dependent on the availability of hemoglobin, blood oxygenation in the lung, and extraction of oxygen in the periphery. For a given increase in cardiac output, the anemic patient, who has decreased level of haemoglobin and arterial O_2 concentration,

will have a lower Peak \dot{V} O₂. O₂ pulse is the quotient of the \dot{V} O₂ and heart rate. $\Delta \dot{V}$ O₂/ ΔWR slope is an important measurement to evaluate exercise capacity in patients with heart disease. The decreased $\Delta VO_2/\Delta WR$ slope is a marker of decreased aerobic exercise capacity caused by decreased oxygen transport.³³ In our study, we found that COPD patients with anemia had a lower $\Delta VO_2/\Delta WR$ slope than those without anemia. This result further confirmed that anemic patients may have a more serious limitation in exercise capacity than non anemic patients.

On the other hand, there were no differences in CPET parameters as Peak V E, Lowest \dot{V} E/ \dot{V} CO₂, Peak VD/VT (%) between the two groups. Both Peak VD/VT and Lowest \dot{V} E/ \dot{V} CO₂ indicate the ventilatory efficiency of oxygen uptake and carbon dioxide elimination in patients, mainly due to the limitation of blood flow perfusion, i.e. Q/VA mismatch. Therefore, anaemia may have a negative effect on exercise capacity of patients with severe COPD, while its influence on ventilatory efficiency is little.

Apart from that, a strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients (r=0.702, P<0.01), but no statistical significant correlation was found with non anemic patients. All these results strongly indicate that oxygen carrying capacity may depend upon the level of haemoglobin for

the anemic patients and oxygen delivery is crucial for the maintenance of oxidative metabolism. Previous study showed that in normal individuals, 15 g/dl of Hb carry approximately 21 ml of oxygen per 100 ml of blood and a 3g/dl decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 ml.³⁴ Moreover, anaemia may result in limited oxygen supply with the consequent increase in ventilatory drive. Among patients with COPD whose ventilatory reserve were decreased, the accompanying increased ventilatory demand may result in dyspnoea.

Our study is not free of limitations. The proportion of female patients was small. The significantly lower prevalence of COPD in females is the possible explanations for this phenomenon. Moreover, the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients. The reason why we choose severe (GOLD stage III) COPD patients as our object of study is that patients with anaemia had a tendency to have more severe COPD^{35,36}, while very severe COPD patients may not manage to complete CPET. Efforts should be made to further assess the prevalence of anaemia in other stages of COPD.

Conclusions:

 Our study demonstrated that COPD can be accompanied by anemia and implied the potential correlations between anaemia in patients with COPD and respiratory physiology utilizing PFT and CPET. The results indicated that both the function of gas exchange and exercise capacity decreased in the severe COPD patients with anaemia compared with the patients without anaemia, while the influence of anaemia on pulmonary ventilation function and ventilatory efficiency was little. Future studies are needed in order to evaluate the possible therapeutic approaches in COPD patients with anaemia.

contributorship statement

Conceived and designed the experiments: JML XGS JG CZ. Performed the experiments: JG CZ QX WLY. Analyzed the data: JML JG CZ QX GGS QHZ.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Contributed reagents/materials/analysis tools: JML JG LW JH XS.
Wrote the paper: JML JG CZ QX.
competing interests
All of the authors have declared that no competing interests exist.
funding
There is no specific funding for our work.
data sharing statement
All the primary data were obtained at Shanghai pulmonary hospital. They are both
secure and available anytime through the medical records section of the hospital, both
in print and digital formats. We the authors are aware about sensitivity of data security.
And with regards to data used from other sources due permission has been obtained
and cited accordingly. We are ready to answer to any queries that may arise in the
future.
and cited accordingly. We are ready to answer to any queries that may arise in the future.

References Section:

1.Antonelli-Incalzi R., Fuso L., De Rosa M. et al. Co-morbidity con- tributes to predict mortality of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 1997; 10:2794–2800.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2.Zielinski J. Effects of long-term oxygen therapy in patients with chronic obstructive pulmonary disease. Curr Opin Pulm Med 1999; 5: 81–87.

 3.John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in COPD. Chest 2005; 127: 825–829.

4.Chambellan A, Chailleux E, Similowski T, ANTADIR Observatory Group. Prognostic value of hematocrit in patients with severe COPD receiving long-term oxygen therapy. Chest 2005; 128: 1201–1208.

5. John M, Lange A, Hoernig S, Witt C, Anker SD: Prevalence of anemia in chronic obstructive pulmonary disease: comparison to other chronic diseases. Int J Cardiol 2006, 111:365–370.

6. Martinez FJ, Foster G, Curtis JL, Criner G, Weinmann G, Fishman A, DeCamp MM, Benditt J, Sciurba F, Make B, Mohsenifar Z, Diaz P, Hoffman E, Wise R, NETT Research Group: Predictors of mortality in patients with emphysema and severe airflow obstruction. Am J Resp Crit Care Med 2006, 173:1326–1334.

7. Shorr AF, Doyle J, Stern L, Dolgister M, Zilberberg MD: Anemia in chronic pulmonary disease: epidemiology and economic implications. Curr Med Res Opin 2008, 24:1123–1130.

 Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD.Eur Resp J 2009, 33:1165–1185.

 Cosio MG, Saetta M, Agusti A: Immunologic aspects of chronic obstructive pulmonary disease. NEJM 2009, 360:2445–2454.

10. Kollert F, Müller C, Tippelt A, Jörres RA, Heidinger D, Probst C, Pfeifer M,Budweiser S: Anaemia in chronic respiratory failure. Int J Clin Pract 2011,65:479–486.

11. Kollert F, Tippelt A, Müller C, Jörres RA, Porzelius C, Pfeifer M, Budweiser S:Hemoglobin levels above anemia thresholds are maximally predictive for long-term survival in COPD with chronic respiratory failure. RespirCare 2013 Jul;58(7):1204-12

12. Boutou AK, Karrar S, Hopkinson NS, Polkey MI: Anemia and survival in chronic obstructive pulmonary disease: a dichotomous rather than a continuous predictor. Respiration 2013, 85:126–131.

Ferrazza AM, Martolini D, Valli G, Palange P: Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 2009; 77: 3–17.

14. Spirometry for Health Care Providers: Quick Guide. Global Initiative for Chronic Obstructive Lung Disease (GOLD). http://www.goldcopd.org. Accessed February 1, 2013.

15, ATS/ACCP: Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003;167: 211–277.

 Wenbin C, Youchi W, Hongda W: Diagnostics. 5th edition. Peking: People's Health Publishing House; 2002

17.Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anaemia associated with chronic renal insufficiency among adults in the United States: results from the Triad National Health and Nutrition Examination Survey. J Am Soc Nephrol.2002;13:504–10.

Mu K, Liu S (1990) Summary of Chinese pulmonary function normal values.
 Beijing Medical University and Peking Union Medical College Press 2:83-86.

19. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (2011) Principles of Exercise Testing and Interpretation, 5th ed. Philadelphia: Lippincott, Williams & Wilkins 568.

20. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002) Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med 166:1443-1448.

21 Beaver WL, Wasserman K, WHIPP BJ, et al. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020-2027.

22.Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33:1165–85.

23. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

24. Tassiopoulos S, Kontos A, Konstantopoulos K, Hadzistavrou C, Vaiopoulos G, Aessopos A, et al. Erythropoietic response to hypoxaemia in diffuse idiopathic pulmonary fibrosis, as opposed to chronic obstructive pulmonary disease. Respir Med. 2001;95:471–5.

25. John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in COPD. Chest 2005;127: 825–829.

26.Lim VS, DeGowin RL, Zavala D, et al. Recombinant human erythropoietin treatment in pre-dialysis patients. A double-blind placebo-controlled trial. Ann Intern Med 1989; 110: 108–114.
27 Dudgeon DJ, Lertzman M, Askew GR. Physiological changes and clinical correlations of dyspnea in cancer outpatients. J Pain Symptom Manage 2001; 21: 373–379.

28 Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of

erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation 2003; 107: 294–299.

 29. Cote C., Zilberberg M.D., Mody S.H., Dordelly L.J., Celli B. Ha- emoglobin level and its clinical impact in a cohort of patients with COPD. Eur. Respir. J. 2007; 29: 923–929.

30 Wasserman K. Cardiopulmonary Exercise Testing and Cardiovascular Health . Armonk, NY: Future. 2002.

31 Sun XG, Hansen JE, Ting H, et al. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide. Chest. 2000;118:631-640.

32 Stringer WW, Hansen JE, Wasserman K. Cardiac output estimated noninvasively from oxygen uptake during exercise. J Appl Physiol. 1997;82:908–912.

33. Rehabilitation and Prevention. Official document on cardiop ul-monary exercise testing in chronic hear t failure due to left ventricular dysfunction recommen dations for per formance and interpretation. Monaldi Arch Che st Dis 2007; 68:6–12.

34. Culver BH: Physiology; in Albert RK, Spiro SG, Jett JR (eds): Comprehensive Respiratory Medicine, ed 1. St Louis, Mosby Inc, 1999, pp89–150.

35 Watz H, Waschki B, Boehme C, Claussen M, Meyer T, Magnussen H. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity. Am J Respir Crit Care Med. 2008;177:743–51.

36 Boutou AK, Stanopoulos I, Pitsiou GG, Kontakiotis T, Kyriazis G, Sichletidis L, et al. Anemia of chronic disease in chronic obstructive pulmonary disease. Respiration. 2011;82:237–45.

Figure captions

Figure 1. Figure 1A and 1B show the correlation between Peak \dot{V} O₂ and Hb concentration in COPD patients with and without anaemia respectively.

BMJ Open

Significant positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant correlation was found with nonanemic patients (r=0.055, P>0.05) (Figure1B).

 Table 1. Demographic and clinical characteristics of patients included in the study

Variable	Patients with low haemoglobin	Patients with normal haemoglobin
	Concentration (%)	concentration (%)
Number of patients (n = 207) (%)	48 (31%)	109(69%)
Sex	Men (M) 45(94%)	Men (M)99 (91%)
Age (years)	61.32±6.03	60.82±7.13
BMI (kg/m ²)	21.72±2.93	22.18±2.15
Haemoglobin concentration (g/dL)	10.6 ± 0.8*	12.9± 1.1*
Smoking index (Pack-years)	43.58±7.70	45.56±4.63
РН	7.39±0.017	7.38±0.023
PaCO ₂ (mm Hg)	44.67±1.32	44.31±1.28
PaO ₂ (mm Hg)	68.11±3.01	67.33.±3.62
SaO ₂ (%)	94.44 ± 0.94	94.77±1.13

PaO₂= oxygen partial pressure; PaCO₂ = carbon dioxide partial pressure;

values represent numbers of patients or means+SD, as appropriate.

*p < 0.05, COPD patients with anaemia versus patients without anaemia using unpaired t test

 Table 2. The comparison of pulmonary function indices in COPD patients with and without anaemia

Variable	Patients with low haemoglobin	Patients with normal haemoglobin
	concentration(n = 48)	concentration (n = 109)
FEV ₁ (L)	1.33±0.27	1.41±0.13
FEV ₁ (% predicted)	42.15±7.53	43.28±5.72
FEV ₁ /FVC (%)	41.32±2.19	43.36±1.38
RV (L)	3.98±1.55	4.11 ± 1.24
TLC (L)	7.82±0.93	7.11 ± 1.78
RV/TLC (%)	60.12±6.78	53.27±6.79
IC (L)	1.52 ± 0.47	1.61 ± 0.43
DLco (L)	15.31±1.94*	17.10±2.05*

FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; TLC, total lung capacity; RV, residual volume; IC, inspiratory capacity; DLco, carbon monoxide diffusion capacity corrected for Hb

concentration

values represent numbers of patients or means+SD, as appropriate

*p < 0.05, COPD patients with anaemia versus patients without anaemia using unpaired t test

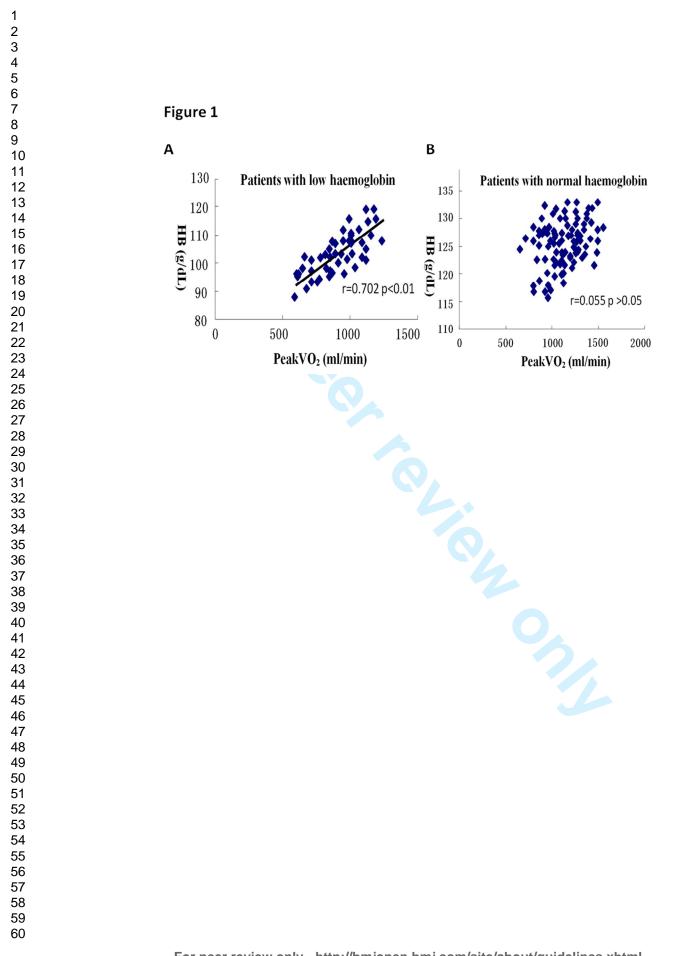
BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

0	
2	
3	
4	
-	
5	
6	
7	
'	
8	
a	
3	~
1	0
1	1
	÷
1	2
1	3
1	1
1	4
1	5
1	6
1	2
1	1
1	8
4	0
I	ฮ
2	0
23456789111111111222222222233333333333	1
2	1
2	2
2	3
~	4
2	4
2	5
2	č
2	o
2	7
2	o
2	0
2	9
ર	0
2	2
3	1
3	2
5	2
3	3
3	4
2	Б
3	5
3	6
ર	7
2	2
3	8
3	9
4	~
4	0
4	1
4	2
4	2
4	3
4	4
T A	E
4	Э
4	6
	-
4 4 4	1
4	8
Δ	a
+	5
55	υ
5	1
г	
Э	2
5	3
F	Л
5	-
5 5 5 5 5	5
5	6
2	2
5	1
5	8
5 5 5 5 5	õ
5	Э
6	0
-	

1

Variable	Patients with low haemoglobin	Patients with normal haemoglobin
with and without anaemia		
Table 3. The comparison of cardiopulmonary exercise testing parameters in COPD patients		

v al lable	I attents with low hachlogiobin	i attents with normal nacinogroun
	concentration	concentration
PeakLoad (W)	66.36±16.62*	69.46±28.18*
Peak VO ₂ (ml/min)	866.28±274.32**	1180.42±319.18**
· Peak VO ₂ (% pred)	56.21±14.79**	69.11±18.72**
Peak VO ₂ /Kg (mL/min/kg)	14.88±3.92*	18.72±3.86*
Peak VE (L/min)	37.89±6.33	36.71±5.42
△O ₂ /△WR slope (ml/min/watt)	8.02±1.03*	9.20±1.42*
Peak O ₂ pulse (mL/beat)	7.88±2.63*	11.3±2.19*
Lowest VE/ VCO ₂	32.15±1.28	31.28±2.90
Peak VD/VT (%)	33.2±7.2	34.9±6.1


%pred = percent of predicted; VO2 = peak oxygen uptake; VE = minute ventilation; VCO2 =

carbon dioxide output; $\Delta O2/\Delta WR$ slope =the ratio of VO2 increase to WR increase;

VD/VT=dead space/tidal volume ratio

values represent numbers of patients or means+SD, as appropriate.

*P<0.05, **P<0.01, COPD patients with anaemia versus patients without anaemia using unpaired t test

BMJ Open

Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease

Journal:	BMJ Open
Manuscript ID:	bmjopen-2015-008295.R1
Article Type:	Research
Date Submitted by the Author:	01-Jul-2015
Complete List of Authors:	guo, jian; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test zheng, cong; Shanghai Changning District Central Hospital, Department of Respiratory Diseases xiao, qiang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test gong, sugang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation zhao, qinhua; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation wang, lan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation he, jing; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation yang, wenlan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test shi, xue; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test sun, xinguo; Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center liu, jinming; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test and Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test and Pulmonary Circulation
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	anemia, chronic obstructive pulmonary disease, cardiopulmonary exercise test, hemoglobin

SCHOLARONE[™] Manuscripts

BMJ Open

1	Impact of anaemia on lung function and exercise capacity in patients
2	with stable severe chronic obstructive pulmonary disease
3	Jian Guo ^{1*} , Cong Zheng ^{3*} , Qiang Xiao ^{1*} , Sugang Gong ² , Qinhua Zhao ² , Lan
4	Wang ² , Jing He ² , Wenlan Yang ¹ , Xue Shi ¹ , Xingguo Sun ⁴ , Jinming Liu ^{1,2}
5	¹ Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji
6	University School of Medicine, Shanghai, 200433, China
7	² Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji
8	University School of Medicine, Shanghai 200433, China
9	³ Department of Respiratory Diseases, Shanghai Changning District Central Hospital,
10	Shanghai 200336
11	⁴ State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing
12	Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese
13	Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037,
14	China
15	Correspondence to Jin-Ming Liu, PhD, Department of Pulmonary Circulation,
16	Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zheng Min
17	Road, Shanghai, 200433, China. E-mail: jinmingliu2013@126.com Tel:
18	086-021-30311561; Fax: 086-021-30311525
19	* This three authors contributed equally to this work
20	[Abstract]
21	Objective: This study intended to search for potential correlations between anaemia
22	in patients with severe COPD (GOLD stage 3) and pulmonary function at rest,
23	exercise capacity, as well as ventilatory efficiency, utilizing pulmonary function test
24	(PFT) and cardiopulmonary exercise testing (CPET).
25	Setting: Study was undertaken at Shanghai pulmonary hospital, a tertiary level centre
26	affiliated to Tongji University. It caters to a large population base within shanghai and

27 referrals from centers in other cities as well.

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Participants: 157 Chinese patients with stable severe COPD were divided into two
groups: anemia group [hemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for
females (n=48)] and non-anemia group (n=109).

Primary and secondary outcome measures: Arterial blood gas (ABG), PFT and
CPET were tested in all patients.

Results: (1) Diffusing capacity for carbon monoxide (DLco) corrected by Hb was significantly lower in anemia group $[(15.3\pm1.9) \text{ ml/min/mmHg}]$ than in non-anemia group [(17.1±2.1) ml/min/mmHg] (P<0.05). Significant difference did not exist in the level of forced expiratory volume in 1 second (FEV₁), FEV₁%pred, FEV₁/ forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (P>0.05). (2) Peak Load, Peak oxygen uptake ($\dot{V}O_2$), Peak \dot{V} O_2 %pred, Peak \dot{V} O_2/Kg , Peak O_2 pulse and the ratio of \dot{V} O_2 increase to WR increase $(\Delta V O_2/\Delta WR)$ were significantly lower in anemia group(P<0.05), however, Peak minute ventilation (VE), Lowest \dot{V} E/ carbon dioxide output (\dot{V} CO₂), Peak dead space/tidal volume ratio (VD/VT) were similar between the two groups (P>0.05). (3) A strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients. (r=0.702, P<0.01).

45 Conclusion: Anemia has a negative impact on gas exchange and exercise tolerance
46 during exercise in severe COPD patients. The decrease amplitude of Hb levels is
47 related to the quantity of oxygen uptake.

48 [Key words] anemia; chronic obstructive pulmonary disease; cardiopulmonary
49 exercise test; hemoglobin
50

51 Article summary

Heading: Impact of anaemia on lung function and exercise capacity in patients withstable severe chronic obstructive pulmonary disease

This study searched for potential correlations between anaemia in patients with severe COPD (GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as ventilatory efficiency. Our results show that anemia has a negative impact on gas exchange and exercise capacity in severe COPD patients. The decrease amplitude of Hb levels is related to the quantity of oxygen uptake. Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise, all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia. The limitations of the study is that the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients.

66 Introduction

67 Chronic obstructive pulmonary disease (COPD) affects various functional and 68 structural domains of the lungs and is recognized as a systemic disease, frequently 69 present in addition to other diseases.¹ Polycythemia, traditionally thought to be highly 70 prevalent in COPD, is less frequent nowadays with more rigorous correction of 71 hypoxaemia.² Reversely, recent research show that anaemia is highly prevalent in 72 patients with COPD.^{3,4}

Anemia, which is a well recognized comorbidity in many chronic illnesses occurs in 10-30% of COPD patients.³⁻¹² Anemia has been related with increased mortality and morbidity including increased health care costs and hospitalization.³⁻¹² Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise,¹³ all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia.

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Based on the aforementioned situation, the aims of our study were to (1) investigate the prevalence of anemia in stable severe COPD patients and (2) evaluate the impact of anemia on pulmonary function at rest, ventilatory efficiency and exercise capacity in COPD patients, utilizing PFT and CPET.

86 MATERIALS AND METHODS

87 Study subjects

The relevant population consisted of consecutive, clinically stable patients with a diagnosis of severe COPD (GOLD stage III)¹⁴, who visited the Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between December 2011 and November 2013. Patients were diagnosed as clinically stable if they had had no hospital admission, exacerbation, respiratory infection or change in medication three months prior to entering the study. Exclusion criteria included: (1) a history of bronchiectasis, asthma or other concomitant respiratory diseases; (2) a diagnosis of malignancy; 3) inability to complete CPET according to the American Thoracic Society/American College of Chest Physicians guidelines,¹⁵ such as unstable angina, acute myocardial infarction, uncontrolled arrhythmias causing symptoms and orthopedic impairment; and 4) any disease that could affect haemoglobin levels (thyroid disease, liver disease, chronic renal failure, chronic heart failure, previous history of gastrointestinal bleeding and chronic inflammatory rheumatic disease). Anaemia was defined as the presence of haemoglobin levels <12 g/dL in males and <11 g/dL in females according to China-specific criteria¹⁶. The study was approved by the hospital Ethics Committee. Informed consent was obtained from all patients before undergoing any study procedure.

Study Procedures

During the initial visit, all the patients with a potential or known diagnosis of COPD underwent physical examination, arterial blood gas analysis (ABG) and lung function testing. All stable severe COPD patients (if $30\% \le FEV1 \le 50\%$ predicted) underwent peripheral venous blood sampling to determine full blood count, liver transaminase, total protein (albumin and globulin), thyroid hormone, serum levels of

urea and creatinine. Patients who were subsequently presented with abnormal thyroid hormone values (either high or low), glomerular filtration rate (GFR) below 60mL/min¹⁷ and increased liver enzymes twice the upper limit of normal were excluded. The included patients in the study visited the outpatient clinic within two weeks from the initial visit and performed CPET.

116 Arterial blood gas analysis and resting pulmonary function measurements

ABG measurements such as PH, partial pressure of oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂) and arterial oxygen saturation (SaO₂) were taken just after 10 minutes of rest. Each subject underwent resting PFT of forced vital capacity (FVC), forced expiratory volume in 1second (FEV₁), inspiratory capacity (IC), diffusing capacity for carbon monoxide (DLco) corrected by Hb, residual volume (RV) and total lung capacity (TLC) using standard methodology12 and equipment (Jaeger Corp., Hoechberg, Germany). All resting lung function values were reported in absolute terms and normalized to percent of predicted (% pred). Predicted spirometry values were calculated using accepted equations for Chinese adults.¹⁸

126 Cardiopulmonary exercise test measurements

All the patients performed on a cycle ergometer using a breath-by-breath system according to the American Thoracic Society/American College of Chest Physicians Statement on CPET.¹⁵ The equipment was calibrated in accordance with manufacturer's specifications using reference and calibration gases before each test. Standard 12 lead electrocardiograms (ECGs) and pulse oximetry were continuously monitored. Arterial blood pressure (BP) was measured every two minutes with an automatic cuff. The protocol was comprised of three minutes of rest, three minutes of unloaded cycling at 55-65 revolutions per minute (rpm), followed by a progressively increasing work rate of 5 to 15 watts (W)/min for the COPD patients, and four minutes of recovery.¹⁸

Most CPET values were reported in absolute terms and normalized to percentage
 of predicted (% pred). Predicted values were calculated using accepted equations.¹⁹
 CPET variables including oxygen uptake (VO₂), minute ventilation (VE), carbon

dioxide output (VCO₂), workload (WR) and dead space/tidal volume ratio (VD/VT)
were calculated at peak exercise. PeakVO₂ was defined as the highest 30-second
average of oxygen uptake in the last minute of exercise and other peak parameters
were calculated at the same time. Lowest VE/VCO₂ was determined by averaging the
lowest consecutive 90 sec data points.²⁰

145 Statistical analysis

 Statistical analysis was performed using SPSS (version 16, SPSS, Chicago). Parameters were expressed as mean \pm SD. Most PFT and CPET values are expressed in absolute terms and % pred. Unpaired Student t test was used to identify differences between groups, whereas χ^2 test was used to assess differences in categorical variables between groups. Correlations between CPET parameters and Hb levels were determined by Pearson's correlation test. P value of < 0.05 was considered significant.

Results

153 Baseline clinical and demographic characteristics

One hundred and fifty-seven patients diagnosed with severe COPD (GOLD stage III) in outpatients were included. The vast majority (93%) of patients in the dataset were males. The mean age was 61 years. The characteristics of the anemic and non anemic COPD patients are presented in Table 1. Forty-eight (31%) patients from this population fulfilled both laboratory and clinical criteria for anemia, therefore, the prevalence of anemia among stable COPD (GOLD stage III) outpatients in our study was 31%. The Hb level for anemic patients was 10.6 ± 0.8 g/dl. No difference was noted in BMI, ages, pack-years of smoking and arterial blood gas analysis parameters $(PH, PaO_2, PaCO_2 \text{ or } SaO_2)$ between anemic and non anemic patients.

Resting pulmonary function measurements

The PFT parameters of the anemic and non anemic patients are presented in Tables 2. There was no statistical significance in FEV_1 , FEV_1 % pred, FEV_1/FVC , IC, RV, TLC, RV/TLC between the two groups, indicating resting pulmonary ventilation function was similar to each other. However, DLco corrected by Hb was significantly lower among anemic patients compared to nonanemic patients.

169	Cardiopulmonary exercise testing
170	All individuals completed their CPET studies without incident. Nearly all
171	patients stopped exercise because of leg fatigue and/or acute shortness of breath. All
172	subjects achieved a respiratory exchange ratio (RER) >1.10, indicating sufficient
173	metabolic stress. Because the anaerobic threshod (AT) may not be determined by
174	V-slope method ²¹ or the interpreter may feel that the AT is unreliable after reviewing
175	an exercise test in a substantial number of severe COPD patients, CPET variables
176	including VO ₂ , VE, VCO ₂ , workload, and VD/VT were calculated at peak exercise
177	without AT. Exercise responses of all the COPD patients at peak are presented in
178	Table 3. Overall, there was a negative impact of anemia on exercise capacity.
179	PeakLoad, Peak \dot{V} O ₂ , Peak \dot{V} O ₂ /Kg, Peak \dot{V} O ₂ pulse, and the ratio of \dot{V} O ₂ increase
180	to WR increase (ΔVO_2 / ΔWR slope) were significantly lower among anemic patients
181	compared with non anemic patients. None of the exercise parameters indicative of
182	respiratory limitation and ventilatory efficiency (Peak \dot{V} E, Lowest \dot{V} E/ \dot{V} CO ₂ , Peak
183	VD/VT) differed between the two groups.
184	Correlations
185	$PeakVO_2$ is frequently used as the most reliable measure of overall exercise
186	capacity, so we choose Peak \dot{VO}_2 as the typical CPET parameters to investigate for
187	potential associations between Hb levels and exercise capacity. The correlations
188	between Hb concentration and Peak $\dot{V}O_2$ for the anemic and non anemic COPD
189	patients are shown in Figure 1. A strong positive correlation was found between Hb
190	concentration and Peak $\dot{V}~O_2$ in anemic patients (r=0.702, P<0.01) (Figure1A) , but
191	no statistical significant correlation was found with non anemic patients (r=0.055,

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

192 P>0.05) (figure1B).

194 Discussions

195 In the current study, anaemia was present in 31% of severe COPD patients. The

result confirms that anaemia is a common phenomenon in patients with severe COPD.
The main aim of the present study was to search for potential correlations between
anaemic severe COPD patients and resting pulmonary function, exercise capacity, as
well as ventilatory efficiency based on PFT and CPET.

The usual PFT parameters like FEV_1 , FEV_1 % pred, FEV_1/FVC , IC, RV, TLC and RV/TLC of the two groups were similar to each other except for DLco corrected by Hb. A severe obstructive pattern characterized the population studied. The finding that patients in the anaemia group had significant lower DLco values (corrected by Hb) (P<0.05) indicates that the decreased level of haemoglobin may affect the rate of oxygen uptake across the alveolar-capillary bed and reduce the diffusing capacity of the lungs, without having obvious influence on the pulmonary ventilation function.

Although anaemia has been associated with dyspnoea and reduced exercise tolerance in patients with chronic kidney disease, heart failure and cancer,²²⁻²⁴⁻ few studies have been published concerning the effect of anaemia on exercise capacity in COPD patients. Cote et al studied patients with stable COPD, observed that the presence of anaemia affects the general feeling of dyspnoea measured in the MRC scale and concluded that anaemia decreases exercise tolerance measured in 6MWT.²⁵ However, the present study is the first to investigate the impact of anaemia on exercise capacity and ventilatory efficiency of severe COPD patients utilizing CPET in Chinese population.

On the one hand, the present study showed that anemic patients with severe COPD had lower PeakLoad, Peak \dot{V} O₂ (%pred), Peak \dot{V} O₂/Kg, $\Delta O_2/\Delta WR$ slope and Peak oxygen pulse (O₂ pulse) compared with the non anemic ones, demonstrating the negative effect of anemia on exercise capacity. Peak VO2 is frequently used as the most reliable measure of overall exercise capacity. By Fick's principle^{20,26-28}, $\dot{V} O_2 =$ cardiac output*arteriovenous O2 difference, the arteriovenous O2 difference is dependent on the availability of hemoglobin, blood oxygenation in the lung, and extraction of oxygen in the periphery. For a given increase in cardiac output, the anemic patient, who has decreased level of haemoglobin and arterial O₂ concentration,

will have a lower Peak \dot{V} O₂. O₂ pulse is the quotient of the \dot{V} O₂ and heart rate. $\Delta \dot{V}$ $O_2/\Delta WR$ slope is an important measurement to evaluate exercise capacity in patients with heart disease. The decreased $\Delta VO_2/\Delta WR$ slope is a marker of decreased aerobic exercise capacity caused by decreased oxygen transport.²⁹ In our study, we found that COPD patients with anemia had a lower $\Delta VO_2/\Delta WR$ slope than those without anemia. This result further confirmed that anemic patients may have a more serious limitation in exercise capacity than non anemic patients, which corroborate with the study by Boutou et al.³⁰ However, we have just included subjects with GOLD III rather than theirs which included other groups as well. This study also differs in the fact that we have a larger sample size and the anemia cut off values were pertinent to the Chinese population rather than WHO defined general cut off values for anemia. The study by Rutten et al showed the 6MWD and the BODE score were not different among the patients with and without anemia which contradicts our finding.³¹ However, the patient profiles in our study is fundamentally different form that of Rutten et al as we have taken a lower Hb cut off value to define anemia. Nevertheless the patients in our study have much lower Hb levels on average indicating the degree of anemia was more severe.

On the other hand, there were no differences in CPET parameters as Peak \dot{V} E, Lowest \dot{V} E/ \dot{V} CO₂, Peak VD/VT (%) between the two groups. Both Peak VD/VT and Lowest \dot{V} E/ \dot{V} CO₂ indicate the ventilatory efficiency of oxygen uptake and carbon dioxide elimination in patients, mainly due to the limitation of blood flow perfusion, i.e. Q/VA mismatch. Therefore, anaemia may have a negative effect on exercise capacity of patients with severe COPD, while its influence on ventilatory efficiency is little.

Apart from that, a strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients (r=0.702, P<0.01), but no statistical significant correlation was found with non anemic patients. All these results strongly indicate that oxygen carrying capacity may depend upon the level of haemoglobin for

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

the anemic patients and oxygen delivery is crucial for the maintenance of oxidative metabolism. Previous study showed that in normal individuals, 15 g/dl of Hb carry approximately 21 ml of oxygen per 100 ml of blood and a 3g/dl decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 ml.³² Moreover, anaemia may result in limited oxygen supply with the consequent increase in ventilatory drive. Among patients with COPD whose ventilatory reserve were decreased, the accompanying increased ventilatory demand may result in dyspnoea.

There is increasing evidence regarding the impact of systemic inflammation on COPD. In theory, it has been postulated that the pathophysiology of COPD-associated anaemia might be an inflammatory and immunological response, mediated by IL-1, IL-6, TNF- α and interferon gamma, which could make variations in iron metabolism, reducing iron absorption thereby altering normal haematopoiesis.^{33,34} These mediators increase in patients with COPD and could be regarded as factors related to the onset of anaemia.³⁵ One previous study has reported that anaemia in COPD is at least in part, on account of inflammation and resistance to elevated levels of serum ervthropoietin.36

Our study is not free of limitations. The proportion of female patients was small. The significantly lower prevalence of COPD in females is the possible explanations for this phenomenon. Moreover, the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients. The reason why we choose severe (GOLD stage III) COPD patients as our object of study is that patients with anaemia had a tendency to have more severe COPD^{30,37}, while very severe COPD patients may not manage to complete CPET. Efforts should be made to further assess the prevalence of anaemia in other stages of COPD.

Conclusions:

Our study demonstrated that COPD can be accompanied by anemia and implied the potential correlations between anaemia in patients with COPD and respiratory physiology utilizing PFT and CPET. The results indicated that both the function of gas exchange and exercise capacity decreased in the severe COPD patients with anaemia

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

283	compared with the patients without anaemia, while the influence of anaemia on
284	pulmonary ventilation function and ventilatory efficiency was little. Future studies are
285	needed in order to evaluate the possible therapeutic approaches in COPD patients with
286	anaemia.
287	
288	contributorship statement
289	Conceived and designed the experiments: JML XGS JG CZ.
290	Performed the experiments: JG CZ QX WLY.
291	Analyzed the data: JML JG CZ QX GGS QHZ.
292	Contributed reagents/materials/analysis tools: JML JG LW JH XS.
293	Wrote the paper: JML JG CZ QX.
294	
295	competing interests
296	All of the authors have declared that no competing interests exist.
297	funding
298	There is no specific funding for our work.
299	data sharing statement
300	All the primary data were obtained at Shanghai pulmonary hospital. They are both
301	secure and available anytime through the medical records section of the hospital, both
302	in print and digital formats. We the authors are aware about sensitivity of data security.
303	And with regards to data used from other sources due permission has been obtained
304	and cited accordingly. We are ready to answer to any queries that may arise in the
305	future.
306	
307	
308	
309	
505	
310	

311	
312	
313	
314	
315	References Section:
316	
317	1. Antonelli-Incalzi R., Fuso L., De Rosa M. et al. Co-morbidity con- tributes to predict mortality
18	of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 1997; 10:2794-2800.
19	2.Zielinski J. Effects of long-term oxygen therapy in patients with chronic obstructive pulmonary
320	disease. Curr Opin Pulm Med 1999; 5: 81–87.
321	3.John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in
322	COPD. Chest 2005; 127: 825–829.
23	4.Chambellan A, Chailleux E, Similowski T, ANTADIR Observatory Group. Prognostic value of
24	hematocrit in patients with severe COPD receiving long-term oxygen therapy. Chest 2005; 128:
25	1201–1208.
26	5. John M, Lange A, Hoernig S, Witt C, Anker SD: Prevalence of anemia in chronic obstructive
27	pulmonary disease: comparison to other chronic diseases. Int J Cardiol 2006, 111:365-370.
28	6. Martinez FJ, Foster G, Curtis JL, Criner G, Weinmann G, Fishman A, DeCamp MM, Benditt J,
29	Sciurba F, Make B, Mohsenifar Z, Diaz P, Hoffman E, Wise R, NETT Research Group: Predictors
30	of mortality in patients with emphysema and severe airflow obstruction. Am J Resp Crit Care Med
31	2006, 173:1326–1334.
332	7. Shorr AF, Doyle J, Stern L, Dolgister M, Zilberberg MD: Anemia in chronic pulmonary disease:
333	epidemiology and economic implications. Curr Med Res Opin 2008, 24:1123-1130.
34	8. Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD.Eur Resp J 2009,
35	33:1165–1185.
36	9. Cosio MG, Saetta M, Agusti A: Immunologic aspects of chronic obstructive pulmonary disease.
337	NEJM 2009, 360:2445–2454.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

ΒM
j Obe
n: fir
st pu
blish
ed a
s 10.
1136
/bmj
open
-2015
300-0
295
on 8
Octo
ber 2
015.
Dow
BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen
ded fr
om h
ttp://
omjol
pen.b
mj.cc
o /mc
n Api
ʻil 23,
3, 2024 by g
by g
juest. i
Prote
cted
by cc
pyric
ĭht.

339	Anaemia in chronic respiratory failure. Int J Clin Pract 2011,65:479-486.
340	11. Kollert F, Tippelt A, Müller C, Jörres RA, Porzelius C, Pfeifer M, Budweiser S:Hemoglobin
341	levels above anemia thresholds are maximally predictivefor long-term survival in COPD with
342	chronic respiratory failure. RespirCare 2013 Jul;58(7):1204-12
343	12. Boutou AK, Karrar S, Hopkinson NS, Polkey MI: Anemia and survival in chronic obstructive
344	pulmonary disease: a dichotomous rather than a continuous predictor. Respiration 2013,
345	85:126–131.
346	13. Ferrazza AM, Martolini D, Valli G, Palange P: Cardiopulmonary exercise testing in the
347	functional and prognostic evaluation of patients with pulmonary diseases. Respiration 2009; 77:
348	3–17.
349	14. Spirometry for Health Care Providers: Quick Guide. Global Initiative for Chronic Obstructive
350	Lung Disease (GOLD). http://www.goldcopd.org. Accessed February 1, 2013.
351	15, ATS/ACCP: Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003;
352	167: 211–277.
353	16. Wenbin C, Youchi W, Hongda W: Diagnostics. 5th edition. Peking: People's Health Publishing
354	House; 2002
355	17.Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anaemia associated with chronic renal
356	insufficiency among adults in the United States: results from the Triad National Health and
357	Nutrition Examination Survey. J Am Soc Nephrol.2002;13:504–10.
358	18. Mu K, Liu S (1990) Summary of Chinese pulmonary function normal values.
359	Beijing Medical University and Peking Union Medical College Press 2:83-86.
360	19. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (2011) Principles of Exercise
361	Testing and Interpretation, 5th ed. Philadelphia: Lippincott, Williams & Wilkins 568.
362	20. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002) Ventilatory efficiency
363	during exercise in healthy subjects. Am J Respir Crit Care Med 166:1443-1448.
364	21 Beaver WL, Wasserman K, WHIPP BJ, et al. A new method for detecting anaerobic threshold
365	by gas exchange. J Appl Physiol. 1986;60:2020-2027.
366	22.Lim VS, DeGowin RL, Zavala D, et al. Recombinant human erythropoietin treatment in
367	pre-dialysis patients. A double-blind placebo-controlled trial. Ann Intern Med 1989; 110: 108–114.
368	23 Dudgeon DJ, Lertzman M, Askew GR. Physiological changes and clinical correlations of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

369	dyspnea in cancer outpatients. J Pain Symptom Manage 2001; 21: 373-379.
370	24 Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of
371	erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure.
372	Circulation 2003; 107: 294–299.
373	25. Cote C., Zilberberg M.D., Mody S.H., Dordelly L.J., Celli B. Ha- emoglobin level and its
374	clinical impact in a cohort of patients with COPD. Eur. Respir. J. 2007; 29: 923-929.
375	26 Wasserman K. Cardiopulmonary Exercise Testing and Cardiovascular Health . Armonk, NY:
376	Future. 2002.
377	27 Sun XG, Hansen JE, Ting H, et al. Comparison of exercise cardiac output by the Fick
378	principle using oxygen and carbon dioxide. Chest. 2000;118:631-640.
379	28 Stringer WW, Hansen JE, Wasserman K. Cardiac output estimated noninvasively from oxygen
380	uptake during exercise. J Appl Physiol. 1997;82:908–912.
381	29. Rehabilitation and Prevention. Official document on cardiop ul-monary exercise testing in
382	chronic hear t failure due to left ventricular dysfunction recommen dations for per formance and
383	interpretation. Monaldi Arch Che st Dis 2007; 68:6–12.
384	30. Boutou AK, Stanopoulos I, Pitsiou GG, Kontakiotis T, Kyriazis G, Sichletidis L, et al. Anemia
385	of Chronic Disease in Chronic Obstructive Pulmonary Disease: A Case-Control Study of
386	Cardiopulmonary Exercise Responses. Respiration 2011;82:237–245
387	31. Erica P.A. Rutten, Frits M.E. Franssen, Martijn A. Spruit, Emiel F.M. Wouters Anemia is
388	Associated with Bone Mineral Density in Chronic Obstructive Pulmonary Disease COPD 2013
389	Jun;10(3):286–92,
390	32. Culver BH: Physiology; in Albert RK, Spiro SG, Jett JR (eds): Comprehensive Respiratory
391	Medicine, ed 1. St Louis, Mosby Inc, 1999, pp89–150.
392	33.Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J.
393	2009;33:1165–85.
394	34. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.
395	35. Tassiopoulos S, Kontos A, Konstantopoulos K, Hadzistavrou C, Vaiopoulos G, Aessopos A, et
396	al. Erythropoietic response to hypoxaemia in diffuse idiopathic pulmonary fibrosis, as opposed to
397	chronic obstructive pulmonary disease. Respir Med. 2001;95:471-5.

BMJ Open

398	36. John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in
399	COPD. Chest 2005;127: 825–829.
400	37 Watz H, Waschki B, Boehme C, Claussen M, Meyer T, Magnussen H. Extrapulmonary effects
401	of chronic obstructive pulmonary disease on physical activity. Am J Respir Crit Care Med.
402	2008;177:743–51.
403	
404	
405	
406	Figure captions
407	
408	Figure 1. Figure 1A and 1B show the correlation between Peak \dot{V} O ₂ and Hb
409	concentration in COPD patients with and without anaemia respectively.
410	Significant positive correlation was found between Hb concentration and Peak \dot{V} O ₂
411	in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant
412	correlation was found with nonanemic patients (r=0.055, P >0.05) (Figure1B).
413	
414	
415	
416	
417	
418	
419	
420	
421	
422 423	
425 424	
425	
426	
427	
428	
429	
430	
431	
432	
433	

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

~	
2	
3	
4	
5	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
10	
10	
19	
20	
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 7 & 18 & 19 & 20 & 12 & 22 & 32 & 22 & 22 & 23 & 33 & 33$	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
50	
31	
32	
33	
3/	
04	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
46	
47	
47 48	
47 48 49	
47 48 49	
47 48 49 50	
47 48 49 50 51	
47 48 49 50 51 52	
47 48 49 50 51 52 53	
47 48 49 50 51 52 53	
47 48 49 50 51 52 53 54	
47 48 49 50 51 52 53 54 55	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55	

60

434
435

1

436

437

438

439

440

441 Table 1. Demographic and clinical characteristics of patients included in the study

Variable	Patients with low haemoglobin	Patients with normal haemoglobin
	Concentration (%)	concentration (%)
Number of patients (n = 157) (%)	48 (31%)	109(69%)
Sex	Men (M) 45(94%)	Men (M)99 (91%)
Age (years)	61.32±6.03	60.82±7.13
BMI (kg/m ²)	21.72±2.93	22.18±2.15
Haemoglobin concentration (g/dL)	10.6 ± 0.8*	12.9± 1.1*
MCV(fl)	85.9 ± 9.1	87.1 ± 10.2
Smoking index (Pack-years)	43.58±7.70	45.56±4.63
РН	7.39±0.017	7.38±0.023
PaCO ₂ (mm Hg)	44.67±1.32	44.31±1.28
PaO ₂ (mm Hg)	68.11±3.01	67.33.±3.62
SaO ₂ (%)	94.44±0.94	94.77±1.13

442 $PaO_2 = oxygen partial pressure; PaCO_2 = carbon dioxide partial pressure; MCV = Mean$ 443 corpuscular (erythrocyte) volume;

444 values represent numbers of patients or means+SD, as appropriate.

445 *p < 0.05, COPD patients with anaemia versus patients without anaemia using unpaired t test

446 447

448

449

450 Table 2. The comparison of pulmonary function indices in COPD patients with and without 451

Variable	Patients with low haemoglobin	Patients with normal haemoglobin
	concentration(n = 48)	concentration(n = 109)
FEV ₁ (L)	1.33±0.27	1.41 ± 0.13
FEV ₁ (% predicted)	42.15±7.53	43.28±5.72
FEV ₁ /FVC (%)	41.32±2.19	43.36±1.38
RV (L)	3.98±1.55	4.11±1.24
TLC (L)	7.82±0.93	7.11±1.78
RV/TLC (%)	60.12±6.78	53.27±6.79
IC (L)	1.52±0.47	1.61±0.43
DLco (L)	15.31±1.94*	17.10±2.05*

452 FEV1, forced expiratory volume in one second; FVC, forced vital capacity; TLC, total lung capacity; RV,

453 residual volume; IC, inspiratory capacity; DLco, carbon monoxide diffusion capacity corrected for Hb

454 concentration

anaemia

BMJ Open

1	
2	
3	
4	
5	
3 4 5 6 7 8	
0	
1	
8	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
21 22 23 24 25 26 27 28	
20 29 30	
29	
30	
31	
32	
33 34 35	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
4 3 50	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59	

60

155	values represent numbers of patients or means+SD, as appropriate				
156	*p < 0.05, COPD patients with anaemia versus patients without anaemia using unpaired t test				
457					
458					
159					
460					
461					
Table 3.The comparison of cardiopulmonary exercise testing parameters in CO			g parameters in COPD patients		
463	with and without anaemia	with and without anaemia			
	Variable	Patients with low haemoglobin	Patients with normal haemoglobin		
		concentration	concentration		
	PeakLoad (W)	66.36±16.62*	69.46±28.18*		
	Peak VO ₂ (ml/min)	866.28±274.32**	1180.42±319.18**		
	Peak VO ₂ (%pred)	56.21±14.79**	69.11±18.72**		
	Peak VO ₂ /Kg (mL/min/kg)	14.88±3.92*	18.72±3.86*		
	Peak VE (L/min)	37.89±6.33	36.71±5.42		

464 %pred = percent of predicted; VO2 = peak oxygen uptake; VE = minute ventilation; VCO2 =

8.02±1.03*

7.88±2.63*

32.15±1.28

33.2±7.2

9.20±1.42*

11.3±2.19*

31.28±2.90

34.9±6.1

465 carbon dioxide output; $\Delta O2/\Delta WR$ slope =the ratio of VO2 increase to WR increase;

466 VD/VT=dead space/tidal volume ratio

△O₂/△WR slope (ml/min/watt)

Peak O₂ pulse (mL/beat)

Lowest VE/ VCO₂

Peak VD/VT (%)

467 values represent numbers of patients or means+SD, as appropriate.

468 *P<0.05, **P<0.01, COPD patients with anaemia versus patients without anaemia using unpaired

469 **t test** 470

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

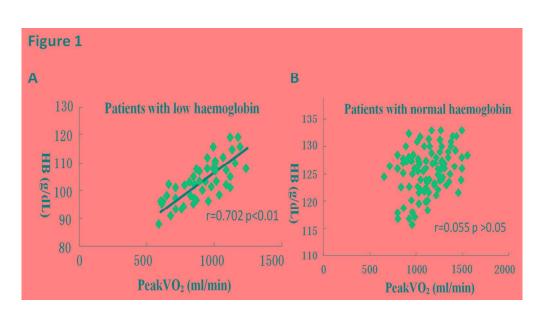


Figure 1A and 1B show the correlation between Peak V. O2 and Hb concentration in COPD patients with and without anaemia respectively.

Significant positive correlation was found between Hb concentration and Peak V. O2 in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant correlation was found with nonanemic patients (r=0.055, P >0.05) (Figure1B).

304x165mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Item No	Recommendation
Title and abstract	1	Impact of anaemia on lung function and exercise capacity in patients
		with stable severe COPD: an observational study
Introduction		
Background/rationale	2	We sought to explore the gas exchange impairment severity in severe COPD
		patients as such patients present with a lot of functional limitations and
		comorbidities. We found that decreased haemoglobin has a negative correlation
	-	with regards to gas exchange.
Objectives	3	To search for potential correlations between anaemia in patients with severe COPD
		(GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as
		ventilatory efficiency, utilizing pulmonary function test (PFT) and
		cardiopulmonary exercise testing (CPET).
Methods		
Study design	4	Clinical Observational study
Setting	5	Study was undertaken at Shanghai pulmonary hospital, Tongji university. It caters
		to a large population base within shanghai and serves referrals from centres in other
		cities as well. Clinically stable outdoor patients of severe COPD (GOLD stage III)
		between December 2011- November 2013.
Participants	6	Cohort study— The relevant population consisted of consecutive, clinically stable
		patients with a diagnosis of severe COPD (GOLD stage III), who visited the
		Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between
		December 2011 and November 2013. Patients were diagnosed as clinically stable if
		they had had no hospital admission, exacerbation, respiratory infection or change in
		medication three months prior to entering the study. They were followed up as
		outpatients.
Variables	7	During the initial visit, all the patients with a potential or known diagnosis of
		COPD underwent physical examination, arterial blood gas analysis (ABG) and
		lung
		function testing. All stable severe COPD patients (if $30\% \le FEV1 \le 50\%$ predicted
)
		underwent peripheral venous blood sampling for a CBC. We used the levels of
		haemoglobin as per the Chinese criteria, anaemia [haemoglobin (Hb) <12.0 g/dl for
		males, and <11 g/dL for females.
Data sources/	8	We used the levels of haemoglobin as per the Chinese criteria, anaemia
measurement		[haemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for females. Pulmonary
		function at rest, exercise capacity, as well as ventilatory efficiency was measured.
		We used the GOLD criteria to include just GOLD III patients. For the CPET we
		followed the ATS guidelines. The lab personnel and study authors were never in
D.	0	consultation during or after the selection of subjects.
Bias	9	To limit observer bias lab personnel were never consulted during or after the
		selection of consecutive subjects. Since we selected consecutive GOLD III stable
		COPD patients from the outpatient services selection bias was limited as other co-
a. 1. :	10	morbidities in inpatients were excluded.
Study size	10	We followed selected patients for about two years. Those meeting the defined
		criteria's and not lost to follow up or died were automatically dropped those

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

Quantitative variab	les	11 Tł	ne subjects were divided as those w	with and those without anemia. We assessed th
				ters in both groups to reach our conclusion.
Statistical methods				sing SPSS 16.0. Parameters were expressed as
		m	ean± SD. Unpaired Student t test v	was used to identify differences
		be	tween groups, whereas χ2 test was	s used to assess differences in categorical
		va	riables between groups. Correlation	ons between CPET parameters and Hb levels
		W	ere	
		de	termined by Pearson's correlation	test. P value of < 0.05 was considered
		sig	gnificant. Since we already had a s	set number of subjects included into the study
				s we did not encounter missing data problems
			• • •	cted over a period of over two years no single
			-	defining criteria to include them in the study.
		A	most all had those test on multiple	e occasions.
Results				
Participants				divided into two groups: anemia group
	-			1 g/dL for females (n=48)] and non-anemia
) were included and followed up.	
1		•		LD stage III) in outpatients were included. Th
data			and clinical characteristics of patie	
	Va	riable	Patients with low	Patients with
			haemoglobin	normal
			Concentration (%	haemoglobin
				concentration
				(%)
	Nu	mber of	48 (31%)	109(69%)
	pat	ients		
	Sez	ĸ	Men (M) 45(94%)	Men (M)99 (91%)
	Ag	e (years)	61.32±6.03	60.82 ± 7.13
	BN	$4I (kg/m^2)$	21.72±2.93	22.18±2.15
	Ha	emoglobin	$10.6 \pm 0.8*$	12.9± 1.1*
	cor	ncentration		
	(g/d	dL)		
		CV(fl)	85.9 ± 9.1	87.1 ± 10.2
		oking index	43.58±7.70	45.56±4.63
	×	ck-years)		
			rpuscular (erythrocyte) volume;	
		-	numbers of patients or means+SD, as appro-	*
0 / 1 /			patients with anaemia versus patients with	
Outcome data		• • •	· •	a negative impact on gas exchange and
Main results			ance during exercise in severe CO	-
iviaini results		-		LCO) corrected by Hb was significantly lowe an in non-anemia group [(17.1±2.1)
		-		an in non-anemia group $[(17.1\pm2.1)]$ e did not exist in the level of forced expirator
				1/ forced vital capacity (FVC), inspiratory
				capacity (TLC) and RV/TLC (P>0.05).
	uaj	paenty (IC),	, residual volume (ix v), total fully	cupacity (1 LC) and K v/1 LC (F < 0.03).

BMJ Open

Other analyses	17	anemia group(P<0.05), however, Peak minute ventilation (VE), Lowest VE/ carbon dioxide output (VCO2), Peak dead space/tidal volume ratio (VD/VT) were similar between the two groups (P>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in anemic patients. (r=0.702, P<0.01). N/A
Discussion		
Key results	18	Anemia had a negative impact on gas exchange and impaired exercise tolerance in severe COPD patients.
Limitations	19	The proportion of female patients was small. Moreover, the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients.
Interpretation	20	The results strongly indicate that oxygen carrying capacity may depend upon the level of haemoglobin for the anemic patients and oxygen delivery is crucial for the maintenance of oxidative metabolism. Previous study showed that in normal individuals, 15 g/dl of Hb carry approximately 21 ml of oxygen per 100 ml of blood and a 3g/dl decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 ml. Moreover, anaemia may result in limited oxygen supply with the consequent increase in ventilatory drive. Among patients with COPD whose ventilatory reserve were decreased, the accompanying increased ventilatory demand may result in dyspnoea. The significantly lower prevalence of COPD in females is the possible explanations for the small proportion of female patients. The reason why we choose severe (GOLD stage III) COPD patients as our object of study is that patients with anaemia had a tendency to have more severe COPD, while very severe COPD patients may not manage to complete CPET. Our results corroborate with the study by Boutou et al, while contradicts the finding by Rutter et al. The reason is that the patient profiles in our study is fundamentally different form that of Rutten et al as we have taken a lower Hb cut off value to define anemia.
Generalisability	21	The results indicated that both the function of gas exchange and exercise capacity decreased in the severe COPD patients with anaemia compared with the patients without anaemia, while th influence of anaemia on pulmonary ventilation function and ventilatory efficiency was little. Also applicability may be limited as we used a population specific criterion to define anemia. Nevertheless the gas exchange results from this study in such patient groups (stable severe anemic COPD, GOLD III) can serve as a reference for future investigators.
Other informatio	on	
Funding	22	No external funding was used for this study. Also all authors declare no financial or other conflicting interests.

BMJ Open

Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease: an observational study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2015-008295.R2
Article Type:	Research
Date Submitted by the Author:	19-Aug-2015
Complete List of Authors:	guo, jian; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test zheng, cong; Shanghai Changning District Central Hospital, Department of Respiratory Diseases xiao, qiang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test gong, sugang; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Girculation zhao, qinhua; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation wang, lan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation wang, lan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation he, jing; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Circulation yang, wenlan; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test shi, xue; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test shi, xue; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test sun, xinguo; Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center liu, jinming; Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Pulmonary Function Test and Pulmonary Function Test and Pulmonary Circulation
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	anemia, chronic obstructive pulmonary disease, cardiopulmonary exercise test, hemoglobin

SCHOLARONE[™] Manuscripts

BMJ Open

1	Impact of anaemia on lung function and exercise capacity in patients
2	with stable severe chronic obstructive pulmonary disease
3	Jian Guo ^{1*} , Cong Zheng ^{3*} , Qiang Xiao ^{1*} , Sugang Gong ² , Qinhua Zhao ² , Lan
4	Wang ² , Jing He ² , Wenlan Yang ¹ , Xue Shi ¹ , Xingguo Sun ⁴ , Jinming Liu ^{1,2}
5	¹ Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji
6	University School of Medicine, Shanghai, 200433, China
7	² Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji
8	University School of Medicine, Shanghai 200433, China
9	³ Department of Respiratory Diseases, Shanghai Changning District Central Hospital,
10	Shanghai 200336
11	⁴ State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing
12	Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese
13	Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037,
14	China
15	Correspondence to Jin-Ming Liu, PhD, Department of Pulmonary Circulation,
16	Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zheng Min
17	Road, Shanghai, 200433, China. E-mail: jinmingliu2013@126.com Tel:
18	086-021-30311561; Fax: 086-021-30311525
19	* This three authors contributed equally to this work
20	[Abstract]
21	Objective: This study intended to search for potential correlations between anaemia
22	in patients with severe COPD (GOLD stage 3) and pulmonary function at rest,
23	exercise capacity, as well as ventilatory efficiency, utilizing pulmonary function test
24	(PFT) and cardiopulmonary exercise testing (CPET).
25	Setting: Study was undertaken at Shanghai pulmonary hospital, a tertiary level centre
26	affiliated to Tongji University. It caters to a large population base within shanghai and

27 referrals from centers in other cities as well.

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Participants: 157 Chinese patients with stable severe COPD were divided into two
groups: anemia group [hemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for
females (n=48)] and non-anemia group (n=109).

Primary and secondary outcome measures: Arterial blood gas (ABG), PFT and
CPET were tested in all patients.

Results: (1) Diffusing capacity for carbon monoxide (DLco) corrected by Hb was significantly lower in anemia group $[(15.3\pm1.9) \text{ ml/min/mmHg}]$ than in non-anemia group [(17.1±2.1) ml/min/mmHg] (P<0.05). Significant difference did not exist in the level of forced expiratory volume in 1 second (FEV₁), FEV₁%pred, FEV₁/ forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (P>0.05). (2) Peak Load, Peak oxygen uptake ($\dot{V}O_2$), Peak \dot{V} O_2 %pred, Peak \dot{V} O_2/Kg , Peak O_2 pulse and the ratio of \dot{V} O_2 increase to WR increase $(\Delta V O_2/\Delta WR)$ were significantly lower in anemia group(P<0.05), however, Peak minute ventilation (VE), Lowest \dot{V} E/ carbon dioxide output (\dot{V} CO₂), Peak dead space/tidal volume ratio (VD/VT) were similar between the two groups (P>0.05). (3) A strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients. (r=0.702, P<0.01).

45 Conclusion: Anemia has a negative impact on gas exchange and exercise tolerance
46 during exercise in severe COPD patients. The decrease amplitude of Hb levels is
47 related to the quantity of oxygen uptake.

48 [Key words] anemia; chronic obstructive pulmonary disease; cardiopulmonary
49 exercise test; hemoglobin
50

51 Article summary

Heading: Impact of anaemia on lung function and exercise capacity in patients withstable severe chronic obstructive pulmonary disease

This study searched for potential correlations between anaemia in patients with severe COPD (GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as ventilatory efficiency. Our results show that anemia has a negative impact on gas exchange and exercise capacity in severe COPD patients. The decrease amplitude of Hb levels is related to the quantity of oxygen uptake. Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise, all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia. The limitations of the study is that the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients.

66 Introduction

67 Chronic obstructive pulmonary disease (COPD) affects various functional and 68 structural domains of the lungs and is recognized as a systemic disease, frequently 69 present in addition to other diseases.¹ Polycythemia, traditionally thought to be highly 70 prevalent in COPD, is less frequent nowadays with more rigorous correction of 71 hypoxaemia.² Reversely, recent research show that anaemia is highly prevalent in 72 patients with COPD.^{3,4}

Anemia, which is a well recognized comorbidity in many chronic illnesses occurs in 10-30% of COPD patients.³⁻¹² Anemia has been related with increased mortality and morbidity including increased health care costs and hospitalization.³⁻¹² Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients' ventilator response and cardiovascular response during exercise,¹³ all of which might be impaired due to anemia. It has seldom been utilized for functional assessment of COPD patients with anemia. The present study is the first to

investigate the impact of anaemia in COPD patients utilizing CPET in a Chinese population. The aims of our study were to (1) investigate the prevalence of anemia in stable severe COPD patients and (2) evaluate the impact of anemia on pulmonary function at rest, ventilatory efficiency and exercise capacity in COPD patients, utilizing PFT and CPET.

87 MATERIALS AND METHODS

88 Study subjects

The relevant population consisted of consecutive, clinically stable patients with a diagnosis of severe COPD (GOLD stage III)¹⁴, who visited the Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between December 2011 and November 2013. Patients were diagnosed as clinically stable if they had had no hospital admission, exacerbation, respiratory infection or change in medication three months prior to entering the study. Exclusion criteria included: (1) a history of bronchiectasis, asthma or other concomitant respiratory diseases; (2) a diagnosis of malignancy; 3) inability to complete CPET according to the American Thoracic Society/American College of Chest Physicians guidelines,¹⁵ such as unstable angina, acute myocardial infarction, uncontrolled arrhythmias causing symptoms and orthopedic impairment; and 4) any disease that could affect haemoglobin levels (thyroid disease, liver disease, chronic renal failure, chronic heart failure, previous history of gastrointestinal bleeding and chronic inflammatory rheumatic disease). Anaemia was defined as the presence of haemoglobin levels <12 g/dL in males and <11 g/dL in females according to China-specific criteria¹⁶. The study was approved by the hospital Ethics Committee. Informed consent was obtained from all patients before undergoing any study procedure.

Study Procedures

During the initial visit, all the patients with a potential or known diagnosis of COPD underwent physical examination, arterial blood gas analysis (ABG) and lung function testing. All stable severe COPD patients (if $30\% \le \text{FEV1} \le 50\%$ predicted) underwent peripheral venous blood sampling to determine full blood count, liver BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

transaminase, total protein (albumin and globulin), thyroid hormone, serum levels of urea and creatinine. Patients who were subsequently presented with abnormal thyroid hormone values (either high or low), glomerular filtration rate (GFR) below 60mL/min¹⁷ and increased liver enzymes twice the upper limit of normal were excluded. The included patients in the study visited the outpatient clinic within two weeks from the initial visit and performed CPET.

117 Arterial blood gas analysis and resting pulmonary function measurements

ABG measurements such as PH, partial pressure of oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂) and arterial oxygen saturation (SaO₂) were taken just after 10 minutes of rest. Each subject underwent resting PFT of forced vital capacity (FVC), forced expiratory volume in 1second (FEV₁), inspiratory capacity (IC), diffusing capacity for carbon monoxide (DLco) corrected by Hb, residual volume (RV) and total lung capacity (TLC) using standard methodology12 and equipment (Jaeger Corp., Hoechberg, Germany). All resting lung function values were reported in absolute terms and normalized to percent of predicted (% pred). Predicted spirometry values were calculated using accepted equations for Chinese adults.¹⁸

Cardiopulmonary exercise test measurements

All the patients performed on a cycle ergometer using a breath-by-breath system according to the American Thoracic Society/American College of Chest Physicians Statement on CPET.¹⁵ The equipment was calibrated in accordance with manufacturer's specifications using reference and calibration gases before each test. Standard 12 lead electrocardiograms (ECGs) and pulse oximetry were continuously monitored. Arterial blood pressure (BP) was measured every two minutes with an automatic cuff. The protocol was comprised of three minutes of rest, three minutes of unloaded cycling at 55-65 revolutions per minute (rpm), followed by a progressively increasing work rate of 5 to 15 watts (W)/min for the COPD patients, and four minutes of recovery.¹⁸

Most CPET values were reported in absolute terms and normalized to percentage
 of predicted (% pred). Predicted values were calculated using accepted equations.¹⁹

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

CPET y	140
dioxide	141
were ca	142
average	143
were ca	144
lowest o	145
Statisti	146
Sta	147
Parame	148
in absol	149
between	150
variable	151
determi	152
Results	153
Baselin	154
On	155
III) in a	156
were m	157
anemic	158
populat	159
among	160
level fo	161
pack-ye	162
or SaO ₂	163
Resting	164
Th	165
Tables 2	166
RV, TI	167

variables including oxygen uptake (VO₂), minute ventilation (VE), carbon output (VCO₂), workload (WR) and dead space/tidal volume ratio (VD/VT) alculated at peak exercise. PeakVO2 was defined as the highest 30-second of oxygen uptake in the last minute of exercise and other peak parameters lculated at the same time. Lowest $\dot{V}E/\dot{V}CO_2$ was determined by averaging the consecutive 90 sec data points.²⁰

cal analysis

atistical analysis was performed using SPSS (version 16, SPSS, Chicago). ters were expressed as mean SD. Most PFT and CPET values are expressed lute terms and % pred. Unpaired Student t test was used to identify differences n groups, whereas χ^2 test was used to assess differences in categorical es between groups. Correlations between CPET parameters and Hb levels were ned by Pearson's correlation test. P value of < 0.05 was considered significant.

e clinical and demographic characteristics

e hundred and fifty-seven patients diagnosed with severe COPD (GOLD stage outpatients were included. The vast majority (93%) of patients in the dataset ales. The mean age was 61 years. The characteristics of the anemic and non COPD patients are presented in Table 1. Forty-eight (31%) patients from this ion fulfilled laboratory criteria for anemia, therefore, the prevalence of anemia stable COPD (GOLD stage III) outpatients in our study was 31%. The Hb or anemic patients was 10.6 ± 0.8 g/dl. No difference was noted in BMI, ages, ears of smoking and arterial blood gas analysis parameters (PH, PaO₂, PaCO₂) between anemic and non anemic patients.

pulmonary function measurements

e PFT parameters of the anemic and non anemic patients are presented in 2. There was no statistical significance in FEV_1 , FEV_1 % pred, FEV_1 /FVC, IC,

LC RV/TLC between the two groups, indicating resting pulmonary ventilation

BMJ Open

function was similar to each other. However, DLco corrected by Hb was significantlylower among anemic patients compared to nonanemic patients.

170 Cardiopulmonary exercise testing

All individuals completed their CPET studies without incident. Nearly all patients stopped exercise because of leg fatigue and/or acute shortness of breath. All subjects achieved a respiratory exchange ratio (RER) >1.10, indicating sufficient metabolic stress. Because the anaerobic threshod (AT) may not be determined by V-slope method²¹ or the interpreter may feel that the AT is unreliable after reviewing an exercise test in a substantial number of severe COPD patients, CPET variables including VO2, VE, VCO2, workload, and VD/VT were calculated at peak exercise without AT. Exercise responses of all the COPD patients at peak are presented in Table 3. Overall, there was a negative impact of anemia on exercise capacity. PeakLoad, Peak \dot{V} O₂, Peak \dot{V} O₂/Kg, Peak \dot{V} O₂ pulse, and the ratio of \dot{V} O₂ increase to WR increase ($\Delta VO_2 / \Delta WR$ slope) were significantly lower among anemic patients compared with non anemic patients. None of the exercise parameters indicative of respiratory limitation and ventilatory efficiency (Peak V E, Lowest V E/ V CO₂, Peak VD/VT) differed between the two groups.

185 Correlations

PeakVO₂ is frequently used as the most reliable measure of overall exercise capacity, so we choose Peak VO₂ as the typical CPET parameters to investigate for potential associations between Hb levels and exercise capacity. The correlations between Hb concentration and Peak VO2 for the anemic and non anemic COPD patients are shown in Figure 1. A strong positive correlation was found between Hb concentration and Peak VO2 in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant correlation was found with non anemic patients (r=0.055, P >0.05) (figure1B).

Discussions

In the current study, anaemia was present in 31% of severe COPD patients. The prevalence of anaemia was higher than in patients from previous studies ³⁻¹², possibly as the study population comprised of patients with more severe COPD. The result confirms that anaemia is a common phenomenon in patients with severe COPD. The main aim of the present study was to search for potential correlations between anaemic severe COPD patients and resting pulmonary function, exercise capacity, as well as ventilatory efficiency based on PFT and CPET.

The usual PFT parameters like FEV₁, FEV₁% pred, FEV₁/FVC, IC, RV, TLC and RV/TLC of the two groups were similar to each other except for DLco corrected by Hb. A severe obstructive pattern characterized the population studied. The finding that patients in the anaemia group had significant lower DLco values (corrected by Hb) (P<0.05) indicates that the decreased level of haemoglobin may affect the rate of oxygen uptake across the alveolar-capillary bed and reduce the diffusing capacity of the lungs, without having obvious influence on the pulmonary ventilation function. Studies examining the effect of just anemia or anemia combined with disorder of the alveolocapillary membrane consistently mention that anemia does affect the diffusion capacity but the defect of the respiratory membrane on diffusing capacity is greater.²²⁻²³ In the present study we have patients with anemia and additionally defect with the respiratory membrane as is common in COPD, both contributing to the reduced DLCO as noted. The initial poor correlation with blood gases in this study we think is because the compensatory mechanisms are not yet fully dysfunctional and the anemia not severe. Also all patients in the study were clinically stable and under adequate medication.

Although anaemia has been associated with dyspnoea and reduced exercise tolerance in patients with chronic kidney disease, heart failure and cancer,²⁴⁻²⁶ few studies have been published concerning the effect of anaemia on exercise capacity in COPD patients. Cote et al studied patients with stable COPD, observed that the presence of anaemia affects the general feeling of dyspnoea measured in the MRC scale and concluded that anaemia decreases exercise tolerance measured in 6MWT.²⁷ Page 9 of 21

BMJ Open

However, the present study is the first to investigate the impact of anaemia on exercise capacity and ventilatory efficiency of severe COPD patients utilizing CPET in Chinese population.

On the one hand, the present study showed that anemic patients with severe COPD had lower PeakLoad, Peak \dot{V} O₂ (%pred), Peak \dot{V} O₂/Kg, Δ O₂/ Δ WR slope and Peak oxygen pulse (O₂ pulse) compared with the non anemic ones, demonstrating the negative effect of anemia on exercise capacity. Peak VO₂ is frequently used as the most reliable measure of overall exercise capacity. By Fick's principle^{20,28-30}, $\dot{V} O_2 =$ cardiac output*arteriovenous O₂ difference, the arteriovenous O₂ difference is dependent on the availability of hemoglobin, blood oxygenation in the lung, and extraction of oxygen in the periphery. For a given increase in cardiac output, the anemic patient, who has decreased level of haemoglobin and arterial O₂ concentration,

will have a lower Peak \dot{V} O₂. O₂ pulse is the quotient of the \dot{V} O₂ and heart rate. $\Delta \dot{V}$ $O_2/\Delta WR$ slope is an important measurement to evaluate exercise capacity in patients with heart disease. The decreased $\Delta VO_2/\Delta WR$ slope is a marker of decreased aerobic exercise capacity caused by decreased oxygen transport.³¹ In our study, we found that COPD patients with anemia had a lower $\Delta VO_2/\Delta WR$ slope than those without anemia. This result further confirmed that anemic patients may have a more serious limitation in exercise capacity than non anemic patients, which corroborate with the study by Boutou et al.³² However, we have just included subjects with GOLD III rather than theirs which included other groups as well. This study also differs in the fact that we have a larger sample size and the anemia cut off values were pertinent to the Chinese population rather than WHO defined general cut off values for anemia. The study by Rutten et al showed the 6MWD and the BODE score were not different among the patients with and without anemia which contradicts our finding.³³ However, the patient profiles in our study is fundamentally different form that of Rutten et al as we have taken a lower Hb cut off value to define anemia. Nevertheless the patients in our study have much lower Hb levels on average indicating the degree of anemia was

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

more severe. On the other hand, there were no differences in CPET parameters as Peak \dot{V} E, Lowest \dot{V} E/ \dot{V} CO₂, Peak VD/VT (%) between the two groups. Both Peak VD/VT and Lowest \dot{V} E/ \dot{V} CO₂ indicate the ventilatory efficiency of oxygen uptake and carbon dioxide elimination in patients, mainly due to the limitation of blood flow perfusion, i.e. Q/VA mismatch. Therefore, anaemia may have a negative effect on exercise capacity of patients with severe COPD, while its influence on ventilatory efficiency is little.

Apart from that, a strong positive correlation was found between Hb concentration and Peak \dot{V} O₂ in anemic patients (r=0.702, P<0.01), but no statistical significant correlation was found with non anemic patients. All these results strongly indicate that oxygen carrying capacity may depend upon the level of haemoglobin for the anemic patients and oxygen delivery is crucial for the maintenance of oxidative metabolism. Previous study showed that in normal individuals, 15 g/dl of Hb carry approximately 21 ml of oxygen per 100 ml of blood and a 3g/dl decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 ml.³⁴ Moreover, anaemia may result in limited oxygen supply with the consequent increase in ventilatory drive. Among patients with COPD whose ventilatory reserve were decreased, the accompanying increased ventilatory demand may result in dyspnoea.

Our study is not free of limitations. The proportion of female patients was small. The significantly lower prevalence of COPD in females is the possible explanations for this phenomenon. Moreover, the present data were derived from patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall population of COPD patients. The reason why we choose severe (GOLD stage III) COPD patients as our object of study is that patients with anaemia had a tendency to have more severe COPD^{32,35}, while very severe COPD patients may not manage to complete CPET. Efforts should be made to further assess the prevalence of anaemia in other stages of COPD.

- 280 Conclusions:

Our study demonstrated that COPD can be accompanied by anemia and implied

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

282	the potential correlations between anaemia in patients with COPD and respiratory
283	physiology utilizing PFT and CPET. The results indicated that both the function of gas
284	exchange and exercise capacity decreased in the severe COPD patients with anaemia
285	compared with the patients without anaemia, while the influence of anaemia on
286	pulmonary ventilation function and ventilatory efficiency was little. Future studies are
287	needed in order to evaluate the possible therapeutic approaches in COPD patients with
288	anaemia.
289	
290	contributorship statement
291	Conceived and designed the experiments: JML XGS JG CZ.
292	Performed the experiments: JG CZ QX WLY.
293	Analyzed the data: JML JG CZ QX GGS QHZ.
294	Contributed reagents/materials/analysis tools: JML JG LW JH XS.
295	Wrote the paper: JML JG CZ QX.
296	
297	competing interests
298	All of the authors have declared that no competing interests exist.
299	funding
300	There is no specific funding for our work.
301	data sharing statement
302	All the primary data were obtained at Shanghai pulmonary hospital. They are both
303	secure and available anytime through the medical records section of the hospital, both
304	in print and digital formats. We the authors are aware about sensitivity of data security.
305	And with regards to data used from other sources due permission has been obtained
306	and cited accordingly. We are ready to answer to any queries that may arise in the
307	future.
308	
309	
310	

	311	References Section:
	312 313	1.Antonelli-Incalzi R., Fuso L., De Rosa M. et al. Co-morbidity con- tributes to predict mortality
	314	of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 1997; 10:2794–2800.
	315	2.Zielinski J. Effects of long-term oxygen therapy in patients with chronic obstructive pulmonary
	316	disease. Curr Opin Pulm Med 1999; 5: 81–87.
	317	3.John M, Hoernig S, Doehner W, Okonko DD, Witt C, Anker SD. Anemia and inflammation in
	318	COPD. Chest 2005; 127: 825–829.
	319	4.Chambellan A, Chailleux E, Similowski T, ANTADIR Observatory Group. Prognostic value of
	320	hematocrit in patients with severe COPD receiving long-term oxygen therapy. Chest 2005; 128:
	321	1201–1208.
	322	5. John M, Lange A, Hoernig S, Witt C, Anker SD: Prevalence of anemia in chronic obstructive
3	323	pulmonary disease: comparison to other chronic diseases. Int J Cardiol 2006, 111:365–370.
3	324	6. Martinez FJ, Foster G, Curtis JL, Criner G, Weinmann G, Fishman A, DeCamp MM, Benditt J,
	325	Sciurba F, Make B, Mohsenifar Z, Diaz P, Hoffman E, Wise R, NETT Research Group: Predictors
3	326	of mortality in patients with emphysema and severe airflow obstruction. Am J Resp Crit Care Med
3	327	2006, 173:1326–1334.
3	328	7. Shorr AF, Doyle J, Stern L, Dolgister M, Zilberberg MD: Anemia in chronic pulmonary disease:
3	329	epidemiology and economic implications. Curr Med Res Opin 2008, 24:1123–1130.
	330	8. Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD.Eur Resp J 2009,
3	331	33:1165–1185.
3	332	9. Cosio MG, Saetta M, Agusti A: Immunologic aspects of chronic obstructive pulmonary disease.
3	333	NEJM 2009, 360:2445–2454.
3	334	10. Kollert F, Müller C, Tippelt A, Jörres RA, Heidinger D, Probst C, Pfeifer M, Budweiser S:
	335	Anaemia in chronic respiratory failure. Int J Clin Pract 2011,65:479-486.
	336	11. Kollert F, Tippelt A, Müller C, Jörres RA, Porzelius C, Pfeifer M, Budweiser S:Hemoglobin
3	337	levels above anemia thresholds are maximally predictive for long-term survival in COPD with
3	338	chronic respiratory failure. RespirCare 2013 Jul;58(7):1204-12
3	339	12. Boutou AK, Karrar S, Hopkinson NS, Polkey MI: Anemia and survival in chronic obstructive
	340	pulmonary disease: a dichotomous rather than a continuous predictor. Respiration 2013,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

341	85:126–131.
342	13. Ferrazza AM, Martolini D, Valli G, Palange P: Cardiopulmonary exercise testing in the
343	functional and prognostic evaluation of patients with pulmonary diseases. Respiration 2009; 77:
344	3–17.
345	14. Spirometry for Health Care Providers: Quick Guide. Global Initiative for Chronic Obstructive
346	Lung Disease (GOLD). http://www.goldcopd.org. Accessed February 1, 2013.
347	15, ATS/ACCP: Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003;
348	167: 211–277.
349	16. Wenbin C, Youchi W, Hongda W: Diagnostics. 5th edition. Peking: People's Health Publishing
350	House; 2002
351	17.Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anaemia associated with chronic renal
352	insufficiency among adults in the United States: results from the Triad National Health and
353	Nutrition Examination Survey. J Am Soc Nephrol.2002;13:504–10.
354	18. Mu K, Liu S (1990) Summary of Chinese pulmonary function normal values.
355	Beijing Medical University and Peking Union Medical College Press 2:83-86.
356	19. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (2011) Principles of Exercise
357	Testing and Interpretation, 5th ed. Philadelphia: Lippincott, Williams & Wilkins 568.
358	20. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002) Ventilatory efficiency
359	during exercise in healthy subjects. Am J Respir Crit Care Med 166:1443-1448.
360	21 Beaver WL, Wasserman K, WHIPP BJ, et al. A new method for detecting anaerobic threshold
361	by gas exchange. J Appl Physiol. 1986;60:2020-2027.
362 363	22 Maras-Simunić M1, Tocilj J, Simunić M. The effect of hemoglobin levels in the blood in pulmonary diffusing capacity Lijec Vjesn. 1994 Jan-Feb;116(1-2):22-5.
364	23 Petermann W. Effect of low hemoglobin levels on the diffusing capacity of the lungs for CO.
365	Investigations in persons with healthy lungs and in patients with interstitial pulmonary fibrosis.
366	Respiration. 1985;47(1):30-8.
367	24.Lim VS, DeGowin RL, Zavala D, et al. Recombinant human erythropoietin treatment in
368	pre-dialysis patients. A double-blind placebo-controlled trial. Ann Intern Med 1989; 110: 108–114.
369	25 Dudgeon DJ, Lertzman M, Askew GR. Physiological changes and clinical correlations of
370	dyspnea in cancer outpatients. J Pain Symptom Manage 2001; 21: 373-379.
371	26 Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

372	erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure.
373	Circulation 2003; 107: 294–299.
374	27. Cote C., Zilberberg M.D., Mody S.H., Dordelly L.J., Celli B. Ha- emoglobin level and its
375	clinical impact in a cohort of patients with COPD. Eur. Respir. J. 2007; 29: 923-929.
376	28 Wasserman K. Cardiopulmonary Exercise Testing and Cardiovascular Health . Armonk, NY:
377	Future. 2002.
378	29 Sun XG, Hansen JE, Ting H, et al. Comparison of exercise cardiac output by the Fick
379	principle using oxygen and carbon dioxide. Chest. 2000;118:631-640.
380	30 Stringer WW, Hansen JE, Wasserman K. Cardiac output estimated noninvasively from oxygen
381	uptake during exercise. J Appl Physiol. 1997;82:908–912.
382	31. Rehabilitation and Prevention. Official document on cardiop ul-monary exercise testing in
383	chronic hear t failure due to left ventricular dysfunction recommen dations for per formance and
384	interpretation. Monaldi Arch Che st Dis 2007; 68:6–12.
385	32. Boutou AK, Stanopoulos I, Pitsiou GG, Kontakiotis T, Kyriazis G, Sichletidis L, et al. Anemia
386	of chronic disease in chronic obstructive pulmonary disease: A Case-Control Study of
387	Cardiopulmonary Exercise Responses. Respiration 2011;82:237-245
388	33. Erica P.A. Rutten, Frits M.E. Franssen, Martijn A. Spruit, Emiel F.M. Wouters Anemia is
389	Associated with Bone Mineral Density in Chronic Obstructive Pulmonary Disease COPD 2013
390	Jun;10(3):286–92,
391	34. Culver BH: Physiology; in Albert RK, Spiro SG, Jett JR (eds): Comprehensive Respiratory
392	Medicine, ed 1. St Louis, Mosby Inc, 1999, pp89–150.
393	
394	35 Watz H, Waschki B, Boehme C, Claussen M, Meyer T, Magnussen H. Extrapulmonary effects
395	of chronic obstructive pulmonary disease on physical activity. Am J Respir Crit Care Med.
396	2008;177:743–51.
397	
398	
399	
400	

1		
2 3		
4	401	Figure captions
5 6 7	402	
8 9	403	Figure 1. Figure 1A and 1B show the correlation between Peak \dot{V} O_2 and Hb
10 11	404	concentration in COPD patients with and without anaemia respectively.
12 13	405	Significant positive correlation was found between Hb concentration and Peak $\dot{V}O_2$
14 15	406	in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant
16 17	407	correlation was found with nonanemic patients (r=0.055, P >0.05) (Figure1B).
18	408	
19	409	
20	410	
21	411	
22 23	412	
23	413	
25	414	
26	415	
27	416	
28	417	
29 30	417	
31		
32	419	
33	420	
34	421	
35	422	
36 37	423	
38	424	
39	425	
40	426	
41	427	
42 43	428	
43 44	429	
45	430	
46	431	
47	432	
48		
49 50	433	
51	434	
52	435	
53	436	
54	437	
55 56	438	
56 57	439	
58	440	
59		
60		

Variable	Patients with low haemoglobin	Patients with normal haemoglob
	Concentration (%)	concentration (%)
Number of patients (n = 157) (%)	48 (31%)	109(69%)
Sex	Men (M) 45(94%)	Men (M)99 (91%)
Age (years)	61.32±6.03	60.82±7.13
BMI (kg/m ²)	21.72±2.93	22.18±2.15
Haemoglobin concentration (g/dI	L) 10.6 ± 0.8 *	12.9± 1.1*
MCV(fl)	85.9 ± 9.1	87.1 ± 10.2
Smoking index (Pack-years)	43.58±7.70	45.56±4.63
РН	7.39±0.017	7.38±0.023
PaCO ₂ (mm Hg)	44.67±1.32	44.31±1.28
PaO ₂ (mm Hg)	68.11±3.01	67.33.±3.62
SaO ₂ (%)	94.44±0.94	94.77±1.13
Table ? The comparison of a	ulmonary function indices in CC	PD nationts with and without
Table 2.The comparison of p anaemia Variable	oulmonary function indices in CC Patients with low haemoglobin	PPD patients with and without Patients with normal haemoglobin
anaemia		-
anaemia	Patients with low haemoglobin	Patients with normal haemoglobin concentration(n = 109) 1.41±0.13
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted)	Patients with low haemoglobin concentration(n = 48) 1.33 ± 0.27 42.15 ± 7.53	Patients with normal haemoglobin concentration(n = 109) 1.41±0.13 43.28±5.72
anaemia Variable FEV ₁ (L)	Patients with low haemoglobin concentration(n = 48) 1.33 ± 0.27 42.15 ± 7.53 41.32 ± 2.19	Patients with normal haemoglobin concentration(n = 109) 1.41 ± 0.13 43.28 ± 5.72 43.36 ± 1.38
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L)	Patients with low haemoglobin concentration(n = 48) 1.33 ± 0.27 42.15 ± 7.53 41.32 ± 2.19 3.98 ± 1.55	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L)	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%)	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L)	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L)	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47	Patients with normal haemoglobic concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV,
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV,
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i residual volume; IC, inspiratory of	Patients with low haemoglobin concentration(n = 48) 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV, assion capacity corrected for Hb
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i residual volume; IC, inspiratory o concentration values represent numbers of p	Patients with low haemoglobin <u>concentration(n = 48)</u> 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac capacity; DLco, carbon monoxide diffu	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV, usion capacity corrected for Hb
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i residual volume; IC, inspiratory o concentration values represent numbers of p	Patients with low haemoglobin <u>concentration(n = 48)</u> 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac capacity; DLco, carbon monoxide differences or means+SD, as appropriate	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV, usion capacity corrected for Hb
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i residual volume; IC, inspiratory o concentration values represent numbers of p	Patients with low haemoglobin <u>concentration(n = 48)</u> 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac capacity; DLco, carbon monoxide differences or means+SD, as appropriate	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV, usion capacity corrected for Hb
anaemia Variable FEV ₁ (L) FEV ₁ (% predicted) FEV ₁ /FVC (%) RV (L) TLC (L) RV/TLC (%) IC (L) DLco (L) FEV ₁ , forced expiratory volume i residual volume; IC, inspiratory o concentration values represent numbers of p	Patients with low haemoglobin <u>concentration(n = 48)</u> 1.33 \pm 0.27 42.15 \pm 7.53 41.32 \pm 2.19 3.98 \pm 1.55 7.82 \pm 0.93 50.12 \pm 6.78 1.52 \pm 0.47 15.31 \pm 1.94* in one second; FVC, forced vital capac capacity; DLco, carbon monoxide differences or means+SD, as appropriate	Patients with normal haemoglobin concentration(n = 109) 1.41 \pm 0.13 43.28 \pm 5.72 43.36 \pm 1.38 4.11 \pm 1.24 7.11 \pm 1.78 53.27 \pm 6.79 1.61 \pm 0.43 17.10 \pm 2.05* ity; TLC, total lung capacity; RV, usion capacity corrected for Hb

Variable	Patients with low haemoglobin	Patients with normal haemoglobin concentration	
	concentration		
PeakLoad (W)	66.36±16.62*	69.46±28.18*	
Peak VO ₂ (ml/min)	866.28±274.32**	1180.42±319.18**	
Peak VO₂(%pred)	56.21±14.79**	69.11±18.72**	
Peak VO ₂ /Kg (mL/min/kg)	14.88±3.92*	18.72±3.86*	
Peak VE (L/min)	37.89±6.33	36.71±5.42	
△ O ₂ / △ WR slope (ml/min/watt)	8.02±1.03*	9.20±1.42*	
Peak O ₂ pulse (mL/beat)	7.88±2.63*	11.3±2.19*	
Lowest VE/VCO ₂	32.15±1.28	31.28±2.90	
Peak VD/VT (%)	33.2±7.2	34.9±6.1	

462 Table 3. The comparison of cardiopulmonary exercise testing parameters in COPD patients

464 %pred = percent of predicted; VO2 = peak oxygen uptake; VE = minute ventilation; VCO2 =

465 carbon dioxide output; $\Delta O2/\Delta WR$ slope =the ratio of VO2 increase to WR increase;

466 VD/VT=dead space/tidal volume ratio

467 values represent numbers of patients or means+SD, as appropriate.

468 *P<0.05, **P<0.01, COPD patients with anaemia versus patients without anaemia using unpaired

469 t test

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

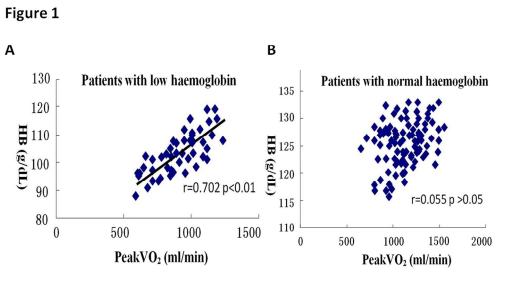


Figure 1A and 1B show the correlation between Peak V. O2 and Hb concentration in COPD patients with and without anaemia respectively.

Significant positive correlation was found between Hb concentration and Peak V. O2 in anemic patients (r=0.702, P<0.01) (Figure1A), but no statistical significant correlation was found with nonanemic patients (r=0.055, P >0.05) (Figure1B).

166x90mm (300 x 300 DPI)

	Item No	Recommendation
Title and abstract	1	Impact of anaemia on lung function and exercise capacity in patients
		with stable severe COPD: an observational study
Introduction		
Background/rationale	2	We sought to explore the gas exchange impairment severity in severe COPD
		patients as such patients present with a lot of functional limitations and
		comorbidities. We found that decreased haemoglobin has a negative correlation
	-	with regards to gas exchange.
Objectives	3	To search for potential correlations between anaemia in patients with severe COPD
		(GOLD stage 3) and pulmonary function at rest, exercise capacity, as well as
		ventilatory efficiency, utilizing pulmonary function test (PFT) and
		cardiopulmonary exercise testing (CPET).
Methods		
Study design	4	Clinical Observational study
Setting	5	Study was undertaken at Shanghai pulmonary hospital, Tongji university. It caters
-		to a large population base within shanghai and serves referrals from centres in other
		cities as well. Clinically stable outdoor patients of severe COPD (GOLD stage III)
		between December 2011- November 2013.
Participants	6	Cohort study— The relevant population consisted of consecutive, clinically stable
		patients with a diagnosis of severe COPD (GOLD stage III), who visited the
		Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between
		December 2011 and November 2013. Patients were diagnosed as clinically stable if
		they had had no hospital admission, exacerbation, respiratory infection or change in
		medication three months prior to entering the study. They were followed up as
		outpatients.
Variables	7	During the initial visit, all the patients with a potential or known diagnosis of
		COPD underwent physical examination, arterial blood gas analysis (ABG) and
		lung
		function testing. All stable severe COPD patients (if $30\% \le FEV1 \le 50\%$ predicted
)
		underwent peripheral venous blood sampling for a CBC. We used the levels of
		haemoglobin as per the Chinese criteria, anaemia [haemoglobin (Hb) <12.0 g/dl for
		males, and <11 g/dL for females.
Data sources/	8	We used the levels of haemoglobin as per the Chinese criteria, anaemia
measurement		[haemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for females. Pulmonary
		function at rest, exercise capacity, as well as ventilatory efficiency was measured.
		We used the GOLD criteria to include just GOLD III patients. For the CPET we
		followed the ATS guidelines. The lab personnel and study authors were never in
D.	0	consultation during or after the selection of subjects.
Bias	9	To limit observer bias lab personnel were never consulted during or after the
		selection of consecutive subjects. Since we selected consecutive GOLD III stable
		COPD patients from the outpatient services selection bias was limited as other co-
a. 1. :	10	morbidities in inpatients were excluded.
Study size	10	We followed selected patients for about two years. Those meeting the defined
		criteria's and not lost to follow up or died were automatically dropped those

BMJ Open: first published as 10.1136/bmjopen-2015-008295 on 8 October 2015. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

Quantitative variable	es 11 T	The subjects were divided as those	with and those without anemia. We assessed the				
			neters in both groups to reach our conclusion.				
Statistical methods							
	n	mean± SD. Unpaired Student t test was used to identify differences					
	b	between groups, whereas χ^2 test was used to assess differences in categorical					
	v	variables between groups. Correlations between CPET parameters and Hb level					
	W	/ere					
	d	etermined by Pearson's correlation	on test. P value of < 0.05 was considered				
	SI	significant. Since we already had a set number of subjects included into the study					
			ts we did not encounter missing data problems				
		• • •	ected over a period of over two years no single				
		-	a defining criteria to include them in the study.				
	Α	almost all had those test on multip	ble occasions.				
Results							
Participants 1		157 Chinese patients with stable severe COPD, divided into two groups: anemia group					
		[hemoglobin (Hb) <12.0 g/dl for males, and <11 g/dL for females (n=48)] and non-anemia					
		9) were included and followed up					
I	-		OLD stage III) in outpatients were included. Th				
data		e and clinical characteristics of pa					
	Variable	Patients with low	Patients with				
		haemoglobin	normal				
		Concentration (%	haemoglobin				
			concentration				
			(%)				
	Number of	48 (31%)	109(69%)				
	patients						
	Sex	Men (M) 45(94%)	Men (M)99 (91%)				
	Age (years)	61.32±6.03	60.82±7.13				
	BMI (kg/m ²)	21.72±2.93	22.18±2.15				
	Haemoglobin	$10.6 \pm 0.8*$	12.9± 1.1*				
	concentration						
	(g/dL)						
	MCV(fl)	85.9 ± 9.1	87.1 ± 10.2				
	Smoking index	43.58±7.70	45.56±4.63				
	(Pack-years)						
	MCV = Mean c	MCV = Mean corpuscular (erythrocyte) volume;					
	values represent	values represent numbers of patients or means+SD, as appropriate.					
		D patients with anaemia versus patients w					
Outcome data 1	÷ •	· •	d a negative impact on gas exchange and				
		exercise tolerance during exercise in severe COPD patients.					
Main results 16	-		DLCO) corrected by Hb was significantly lowe				
	-	in anemia group [(15.3 ± 1.9) ml/min/mmHg] than in non-anemia group [(17.1 ± 2.1)					
		ml/min/mmHg] (P<0.05). Significant difference did not exist in the level of forced expiratory					
		volume in 1 second (FEV1), FEV1%pred, FEV1/ forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (P>0.05).					
		readual values (UV) total lun	α canacity ($\Gamma \Gamma \Gamma$) and $R V/\Gamma \Gamma \Gamma' (P>0.05)$				

BMJ Open

		 anemia group(P<0.05), however, Peak minute ventilation (VE), Lowest VE/ carbon dioxide output (VCO2), Peak dead space/tidal volume ratio (VD/VT) were similar between the two groups (P>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in anemic patients. (r=0.702, P<0.01).
Other analyses	17	N/A
Discussion		
Key results	18	Anemia had a negative impact on gas exchange and impaired exercise tolerance in severe COPD patients.
Limitations	19	The proportion of female patients was small. Moreover, the present data were derived from
		patients with severe (GOLD stage III) COPD and thus cannot be applied to the overall
		population of COPD patients.
Interpretation	20	The results strongly indicate that oxygen carrying capacity may depend upon the level of
		haemoglobin for the anemic patients and oxygen delivery is crucial for the maintenance of
		oxidative metabolism. Previous study showed that in normal individuals, 15 g/dl of Hb carry
		approximately 21 ml of oxygen per 100 ml of blood and a 3g/dl decrease in Hb levels would
		result in a reduction of the total oxygen-carrying capacity by 4/100 ml. Moreover, anaemia
		may result in limited oxygen supply with the consequent increase in ventilatory drive. Amony
		patients with COPD whose ventilatory reserve were decreased, the accompanying increased
		ventilatory demand may result in dyspnoea.
		The significantly lower prevalence of COPD in females is the possible explanations for the small proportion of female patients. The reason why we choose severe (GOLD stage III) COPD patients as our object of study is that patients with anaemia had a tendency to have more severe COPD, while very severe COPD patients may not manage to complete CPET. Our results corroborate with the study by Boutou et al, while contradicts the finding by Rutte et al. The reason is that the patient profiles in our study is fundamentally different form that or Rutten et al as we have taken a lower Hb cut off value to define anemia.
Generalisability	21	The results indicated that both the function of gas exchange and exercise capacity decreased is the severe COPD patients with anaemia compared with the patients without anaemia, while the influence of anaemia on pulmonary ventilation function and ventilatory efficiency was little. Also applicability may be limited as we used a population specific criterion to define anemia. Nevertheless the gas exchange results from this study in such patient groups (stable severe anemic COPD, GOLD III) can serve as a reference for future investigators.
Other information	n	
Funding	22	No external funding was used for this study. Also all authors declare no financial or other conflicting interests.