BMJ Open

Identification of two novel mutations, c.670_672del and c.1186C>T, and the prevalence of c.2268dup in the TPO gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006121
Article Type:	Research
Date Submitted by the Author:	14-Jul-2014
Complete List of Authors:	Lee, Ching Chin; University of Malaya, Molecular Medicine Harun, Fatimah; University of Malaya, Paediatrics Jalaludin, Muhammad Yazid; University of Malaya, Paediatrics Heh, Choon Han; University of Malaya, Pharmacy Othman, Rozana; University of Malaya, Pharmacy Mat junit, Sarni; University of Malaya, Molecular Medicine
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Genetics and genomics
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, Thyroid disease < DIABETES & ENDOCRINOLOGY, Paediatric clinical genetics & dysmorphology < GENETICS, MOLECULAR BIOLOGY

1		
2	1	Descrit
3 4	1	Research
5 6	2	Identification of two novel mutations, c.670_672del and c.1186C>T, and the prevalence
7	3	of c.2268dup in the TPO gene in a cohort of Malaysian-Chinese with thyroid
8 9	4	dyshormonogenesis
10		
11 12	5	Ching Chin Lee ¹ , Fatimah Harun ² , Muhammad Yazid Jalaludin ² , Choon Han Heh ³ , Rozana
13	6	Othman ³ , and Sarni Mat Junit ¹ *
14 15	7	¹ Department of Molecular Medicine, ² Department of Paediatrics and ³ Department of
16	8	Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
17 18	9	
19 20	10	E-mail addresses:
21	11	Ching Chin Lee: squad_one@yahoo.com, Fatimah Harun: fatimah17@um.edu.my,
22 23	12	Muhammad Yazid Jalaludin: yazidj@ummc.edu.my, Choon Han Heh:
24 25	13	silverbot@hotmail.com, Rozana Othman: rozanaothman@um.edu.my
26 27	14	
28	15	* Corresponding author
29 30	16	Associate Professor Dr Sarni Mat Junit
31 32	17	Department of Molecular Medicine
33	18	Faculty of Medicine, University of Malaya,
34 35	19	50603, Lembah Pantai, Kuala Lumpur, Malaysia
36 37	20	Tel: 603-79674718; Fax: 603-79674957
38	21	E-mail: <u>sarni@um.edu.my</u>
39 40	22	
41 42	23	
43 44	24	
45	25	
46 47	25	
48		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58		
59 60		1
60		1

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

26	ABSTRACT
27	Objectives: The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most
28	common TPO defect reported in Taiwanese patients with thyroid dyshormonogenesis. The
29	ancestors of these patients are believed to originate from the southern province of China. Our
30	previous study showed that this mutation leads to reduced abundance of the TPO protein and
31	loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidism.
32	The aim of our study was to provide further data on the incidence of TPO gene mutation in a
33	cohort of Malaysian-Chinese and its possible phenotypic effects.
34	Setting: Cohort study.
35	Participants: Twelve unrelated Malaysian-Chinese patients with congenital hypothyroidism
36	were recruited in this study. All patients showed high TSH and low fT ₄ levels at the time of
37	diagnosis with proven presence of thyroid gland
38	Primary outcome measure: Screening of the c.2268dup mutation in the TPO gene in all
39	patients was carried out using PCR method.
40	Secondary outcome measure: Further screening for mutations in other exonic regions of the
41	TPO gene was carried out if the patient is a carrier for the c.2268dup mutation
42	Results: The c.2268dup mutation was detected in 4 out of the 12 patients. A homozygous
43	patient, CHP59 had developed large multinodular goiter at the age of 13.5 years which
44	supports our previous findings that c.2268dup homozygotes developed dyshormonogenetic
45	goiter in their mid or late adolescent years. Apart from the c.2268dup and a documented
46	mutation, c.2647C>T, two novel TPO mutations namely c.670_672del and c.1186C>T were
47	also detected in our patients. In silico analyses predicted that the novel mutations affect the
48	structure/function of the TPO protein.
49	Conclusion: The c.2268dup was detected in approximately one third of the Malaysian-
50	Chinese with thyroid dyshormonogenesis. The detection of the novel c.670_672del and

BMJ Open

51	c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid
52	dyshormonogenesis.
53	
54	Strengths and limitations of this study
55	• The c.2268dup was detected in approximately one third of the Malaysian-Chinese
56	with thyroid dyshormonogenesis. The c.2268dup in the homozygous form might be
57	associated with the phenotype of dyshormonogenetic goiter.
58	• Two novel <i>TPO</i> mutations namely c.670_672del and c.1186C>T were also detected
59	in this study. In silico analyses revealed that the two mutations may affect the normal
60	structure/function of the mutant TPO protein.
61	• The <i>in silico</i> functional analyses could not be further validated due to unavailability of
62	thyroid tissue samples from the patients.
63	thyroid tissue samples from the patients.
64	
04	
65	
66	
67	
68	Keywords: Congenital hypothyroidism, thyroid peroxidase, c.2268dup, novel mutations,
69	Malaysian-Chinese
70	

INTRODUCTION

Congenital hypothyroidism (CH) is one of the most common endocrine disorders in the world affecting 1 in 3000 - 4000 newborn babies where 10 - 20 % of the cases were due to thyroid dyshormonogenesis [1]. Over the past three decades, numerous cases of dyshormonogenetic CH have been linked to defects in the TPO gene [2]. This gene encodes a protein with 933 amino acids in length which plays an important role in thyroid hormones synthesis [3]. Niu et al. in 2002 reported a nonsense mutation, c.2268dup, a common cause of dyshormonogenetic CH in Taiwan with molecular proof of a founder effect where the ancestors of these patients originated from the southern province of China [4]. Recently, we identified the c.2268dup mutation in a Malaysian-Chinese family with goitrous CH and showed that the mutation leads to the reduction of TPO protein expression with a consequential loss of enzyme activity [5]. The Chinese forms the second largest ethnic group which constitutes about 24.6 % of the 28.3 million Malaysian populations [6]. As the cause of dyshormonogenetic CH in Malaysian-Chinese remains unclear, we therefore embarked on this present study with the aim of providing further data on the incidence of TPO gene mutation in Malaysian Chinese and its possible phenotypic effects.

SUBJECTS AND METHODS

Subjects for the TPO mutation screening

A cohort (duration of follow-up between 3 and 25 years) of 12 unrelated Chinese patients with dyshormonogenetic CH who attended the Paediatric Endocrine Clinic, University Malaya Medical Centre (UMMC) was recruited for this study. Mutational screening was performed on genomic DNA extracted from peripheral venous blood of all patients who had high TSH and low fT₄ levels at the time of diagnosis with proven presence of thyroid gland (Table S1). A forward (5'-ACAGGGACGTTGGTGTGTGG-3') and a

BMJ Open

reverse (5'-TCAGAAGCACCTTTTGGCG-3') primer were used to PCR-amplify exon 13 of the TPO gene (NM 000547.5) where the c.2268dup mutation is located. Further screening for mutations in other exonic regions of the TPO gene [7] was carried out if the patient is a carrier for the c.2268dup mutation. To confirm that an alteration in the TPO gene is due to a disease-causing mutation instead of a polymorphism, a total of 100 chromosomes from 50 unrelated healthy individuals were also screened for the same mutation. Informed written consent was obtained either from patients or their parent/guardian. This study was approved by the UMMC Ethical Committee (Institutional Review Board) in accordance to the ICH-GCP guideline and the Declaration of Helsinki (Reference number, 654.16).

In silico analyses of the novel c.670_672del (p.Asp224del) and c.1186C>T (p.Arg396Cys)
mutations

107 The effects of the novel mutations on normal TPO activity were evaluated using SIFT 108 and Polyphen-2 algorithms. Alignment of human TPO sequence with those of mouse, rat, pig, 109 dog and chicken was performed using CLC Sequence Viewer 6.5.2 software (CLC bio, 110 Aarhus, Denmark). The homology models of human TPO including the wild type and the two 111 mutant proteins: p.Asp224del and p.Arg396Cys were generated, verified and compared as 112 described before [7].

RESULTS AND DISCUSSION

The c.2268dup mutation was detected in 4 out of the total 12 unrelated patients in this study. Two patients, CHP18 and CHP59, were homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation. In addition to a case reported in our previous study [5], the c.2268dup was detected in only 31 % of the total alleles studied, lower than BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

what were reported in the studies by Niu et al. (2002) (86 %) [4] and Wu et al. (2002) (40 %) [8]. For their study, only patients with confirmed total iodide organification defect (TIOD) through perchlorate discharge test were screened for the TPO gene mutations. In contrast, the perchlorate test was not performed in our patients since permission was not granted by the majority of the patients' parents. This could be the reason for the higher prevalence of the c.2268dup mutation in the Taiwanese patients when compared to our study. Nonetheless, the difference in the origin between the Chinese population of Malaysia [9] and Taiwan [10] may also have contributed to this variation.

Apart from the c.2268dup mutation, a novel c.670 672del mutation in exon 7 of the TPO gene was detected in patient CHP58. The deletion of 3 nucleotides (GAC) is predicted to produce an in-frame deletion of a single aspartic acid (p.Asp224del) in the TPO protein (Fig. 1A). Three dimensional (3-D) model analysis of the mutant protein revealed that the deleted Asp-224 residue is located within a beta-strand. The mutation has brought conformational changes to the protein by shortening the length of the beta-strand and also disrupted the correct orientation of hydrogen bonds network between Asp-223 with Asp-224, Arg-225, Tyr-226 and Arg-648. Since the altered sites are located so close to His-494, a proposed iron (heme axial ligand) binding site [11], it could possibly interfere with binding of the iron ion at His-494 or the electron transfer activity of TPO where His-494 is the source of the electron [12]. It is also predicted that the deletion of Asp-224 will alter the orientation of a salt bridge between Asp-223 and Arg-648 (Fig. 1B). Interestingly, three aspartic acid residues: Asp-222, Asp-223 and Asp224 present in the same beta-strand that is located on the outer surface of the wild type TPO contribute to a highly negatively-charged region which is also conserved across many species including mice, rat and dog implying that this region is crucial for the normal activity of the protein (Fig. 1C).

Page 7 of 17

BMJ Open

Most cases of CH associated with defects in the TPO gene were caused by either homozygous or compound heterozygous mutations. In the present study, three different mutations in TPO gene were identified in CHP38. In addition to the c.2268dup, a novel mutation, c.1186C>T (p.Arg396Cys), was detected in exon 8 and is expected to cause a substitution of arginine to cysteine at codon 396 (Fig 2A). Results from both SIFT and Polyphen-2 analyses indicated that the substitution is damaging and hence implying that this residue is important in the structure/function of the TPO. A study has shown that the Arg-396 is one of the important amino acids which could be involved in stabilizing the transition state of TPO protein during the catalytic intermediate formation [13]. The formation of a stable catalytic intermediate (compound I) of the TPO with H₂O₂ is crucial for thyroid hormone synthesis [14-15]. Catalytic process is initiated by the diffusion of H_2O_2 into the active site of the TPO protein. The α -nucleophile H₂O₂ donates a proton to the distal imidazole ring (His-239) to form a bond with the iron ion bound to residue His-494. After binding takes place, the protein attains transition state to form compound I. The arginine at position 396 is believed to play a role in stabilizing the charge for transition state of the protein through electrostatic interaction [13,16]. Alternatively, it is believed that the arginine contributes to the abnormally low pKa value of the distal histidine in the native resting enzyme. The changes of the pKa value in the transition state of the distal imidaloze are the key to determine the effectiveness of the catalysis process/rate of the compound I formation [16]. Therefore, a substitution from arginine to cysteine can bring devastating effects to the protein stability. In the present study, the 3-D model analysis showed that the p.Arg396Cys mutation has led to the structure alteration through the modification of the hydrogen bond network in the hydrophobic pocket which might interfere with the heme binding at Glu-399 [17] (Fig. 2B).

Apart from the c.2268dup and c.1186C>T mutations, a c.2647C>T mutation was also
identified in exon 16 of CHP38, where it leads to a substitution of proline to serine at codon

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

883 in the C-terminal tail (Val-869 to Leu-933) of the TPO protein. SIFT and Polyphen-2 analyses result from a previous study [2] indicates that this mutation is "benign" suggesting that the Pro-883 is probably not critical for structure/function of the TPO and does not modify TPO function. Interestingly, this mutation had also been reported in populations of Korea [18] and Japan [19]. Whether the c.2647C>T mutation is possibly a rare polymorphism is not known. Despite the *in silico* findings indicated that the substitution of Pro-883 to serine might not be critical to the protein structure/function, previously reported cases showed that patients associated with this mutation presented with severe dyshormonogenetic CH [18-19]. Since Human Splicing Finder (HSF) analysis predicted that the c.2647C>T mutation interrupts the sequences recognized by ESE proteins (data not shown), we therefore could not exclude that the sequence alteration might possibly regulate the splicing activity of the TPO pre-mRNA and lead to CH in these patients.

It is worth noting that patients with homozygous c.2268dup inclusive of two patients reported in our previous study [5], except for patient CHP59 who was 12-year old at the time of the study, had developed large multinodular goiter in their mid or late adolescent years. Although it is not known whether the reduction in TPO expression due to c.2268dup can lead to increased risk of malignant transformation, other studies have shown cases of thyroid carcinoma has developed from congenital goiter that is associated with TPO mutation [20-21] or lower/ absence of TPO expression [22-23]. Therefore, it is important to have a careful surveillance for potential thyroid neoplasm in patients with c.2268dup mutation.

191 CONCLUSION

192 In conclusion, we report two novel mutations in the *TPO* gene, $c.670_672$ del and 193 c.1186C>T, and reveal the association of c.2268dup mutation with approximately one third

Page 9 of 17

BMJ Open

ĩ	`	7	S	5	
1					
e					
	(2]	F

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Contributors:

200 CCL participated in research design, performed the experiments, analyzed the data and wrote 201 the paper; FH and MYJ collected clinical samples and analyzed the clinical data; CHH and 202 RO performed the 3D analyses and interpreted the data; SMJ proposed research design, 203 analyzed the molecular and overall data, and participated in writing the paper.

205 Funding:

This project was financially supported by grants from the Ministry of Higher Education,
Malaysia (H-20001-00-E000009 and FP050/2010B) and Postgraduate Research Fund,
University of Malaya (PV116-2012A).

Competing interests: None

212 Ethics approval: The University of Malaya Medical Centre (UMMC) Ethical Committee

Data sharing statement: No additional data are available

1		
2 3	215	REFERENCES
4	215	KET EKEWCES
5	217	1. Delange F. Neonatal screening for congenital hypothyroidism in Europe. Report of the
6	218	Newborn Committee of the European Thyroid Association. Acta Endocrinol Suppl
7	219	(Copenh) 1979; 223 :3-29
8	220	2. Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to
9 10	221	TPO mutations. Mol Cell Endocrinol 2010; 322 (1-2):38-43 doi: S0303-
11	222	7207(10)00066-3 [pii]
12		
13	223	10.1016/j.mce.2010.02.008[published Online First: Epub Date] .
14	224	3. Kimura S, Kotani T, McBride OW, Umeki K, Hirai K, Nakayama T, Ohtaki S. Human
15	225	thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and
16	226	identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A
17 18	227	1987; 84 (16):5555-9
19	228	4. Niu DM, Hwang B, Chu YK, Liao CJ, Wang PL, Lin CY. High prevalence of a novel
20	229	mutation (2268 insT) of the thyroid peroxidase gene in Taiwanese patients with total
21	230	iodide organification defect, and evidence for a founder effect. J Clin Endocrinol
22	231	Metab 2002; 87 (9):4208-12
23	232	5. Lee CC, Harun F, Jalaludin MY, Lim CY, Ng KL, Mat Junit S. Functional Analyses of
24	233	c.2268dup in Thyroid Peroxidase Gene Associated with Goitrous Congenital
25	234	Hypothyroidism. BioMed Research International 2014;2014:370538 doi:
26 27	235	10.1155/2014/370538[published Online First: Epub Date] .
27 28	236	6. Population distribution and basic demographic characteristic report 2010. Avaiable online:
29	237	http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215&Itemi
30	238	$\frac{d=89\⟨=en}{10}$ (accessed on 22 January 2014). 2010.
31	239	7. Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Mat Junit S. A Novel, Homozygous
32	240	c.1502T>G (p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian
33	241	Sisters with Congenital Hypothyroidism and Multinodular Goiter. Int J Endocrinol
34	242	2013; 2013 :987186 doi: 10.1155/2013/987186[published Online First: Epub Date] .
35 36	243	8. Wu JY, Shu SG, Yang CF, Lee CC, Tsai FJ. Mutation analysis of thyroid peroxidase gene
30 37	244 245	in Chinese patients with total iodide organification defect: identification of five novel
38		mutations. J Endocrinol 2002;172(3):627-35 doi: JOE04388 [pii][published Online
39	246 247	First: Epub Date].
40	247	9. Lee KH, Tan CB. <i>The Chinese in Malaysia</i> . New York: Oxford University Press, 1999. 10. Hsiau Ac. <i>Contemporary Taiwanese cultural nationalism</i> . London ; New York:
41	248 249	Routledge, 2000.
42	249 250	11. Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase
43	230 251	detected in patients with total iodide organification defects. J Clin Endocrinol Metab
44 45	251	1997; 82 (2):649-53
45 46	252	12. Nordlund TM. Quantitative understanding of biosystems : an introduction to biophysics.
40 47	255 254	Boca Raton: Taylor & Francis, 2011.
48	254	13. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the
49	255 256	alternatively spliced form, TPO-2. Thyroid 1998; 8 (2):185-91
50	250 257	14. Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide-dependent catalatic activity
51	258	of thyroid peroxidase and lactoperoxidase. J Biol Chem 1984; 259 (1):197-205
52	238 259	15. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and
53 54	260	lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem
54 55	200 261	1984; 259 (22):13783-90
55 56	201	1701,207(22).15705 70
57		
58		
59		
60		11

- 262 16. Dunford HB. How do enzymes work? Effect of electron circuits on transition state acid
 263 dissociation constants. J Biol Inorg Chem 2001;6(8):819-22 doi:
 264 10.1007/s007750100260[published Online First: Epub Date]|.
 - 265
 266
 17. Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999;81(5):557-62 doi: S0300-9084(99)80110-2 [pii][published Online First: Epub Date]].
 - 18. Lee ST, Lee DH, Kim JY, Kwon MJ, Kim JW, Hong YH, Lee YW, Ki CS. Molecular
 screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean
 patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol (Oxf)
 2011;75(5):715-21 doi: 10.1111/j.1365-2265.2011.04156.x[published Online First:
 Epub Date]|.
 - 19. Umeki K, Yamamoto I, Yukizane S, Kotani T. Congenital hypothyroidism caused by a
 unique thyroid peroxidase allele containing two mutations, C1708T and C2737T. J
 Pediatr Endocrinol Metab 2004;17(2):231-4
 - 275 20. Medeiros-Neto G, Gil-Da-Costa MJ, Santos CL, Medina AM, Silva JC, Tsou RM,
 276 Sobrinho-Simoes M. Metastatic thyroid carcinoma arising from congenital goiter due
 277 to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab 1998;83(11):4162-6
 - 278 21. Chertok Shacham E, Ishay A, Irit E, Pohlenz J, Tenenbaum-Rakover Y. Minimally
 279 invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular
 280 goiter due to thyroid peroxidase gene mutation. Thyroid 2012;22(5):542-6 doi:
 281 10.1089/thy.2011.0478[published Online First: Epub Date]].
 - 282 22. Di Cristofaro J, Silvy M, Lanteaume A, Marcy M, Carayon P, De Micco C. Expression of
 283 tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with
 284 alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 2006;13(2):485-95
 285 doi: 13/2/485 [pii]10.1677/erc.1.01164[published Online First: Epub Date]].
 - 286
 23. Finley DJ, Zhu B, Barden CB, Fahey TJ, 3rd. Discrimination of benign and malignant
 287
 288
 288
 2800000658-200409000-00004 [pii][published Online First: Epub Date]|.

BMJ Open

291 FIGURE-LEGEND

Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow.

Figure 2

312 (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele
313 (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide
314 transition is indicated by the arrow. The sequence alteration is predicted to cause a
315 substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

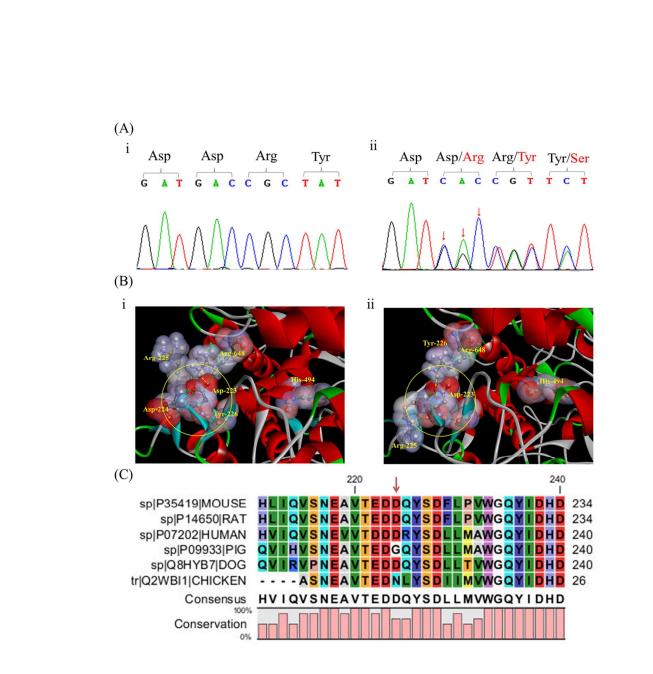
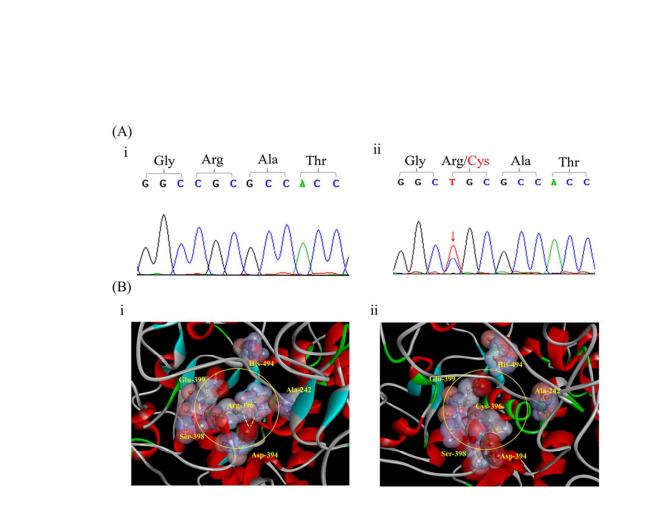



Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alphahelix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow. 110x119mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

78x60mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Supplementary material

Table S1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, cord = $< 25.0 \ \mu$ IU/ml; 1 to 3 days = 2.5 - 13.0 μ IU/ml; less than a month = 0.6 - 10.0 μ IU/ml; 1 month onwards = 0.6 - 8.0 μ IU/ml and fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L.

CH patient (CHP)	Gender	Age of diagnosis	TSH (µIU/ml)	fT₄(pmol/L)	Thyroid scan (at 3 years old) / ultrasonography
16	Female	10 days	26.5	11.3	Normal
18	Male	3 weeks	59.0	13.0	Multinodular goiter at 13.5 years
21	Female	3 months	20.6	14.1	Normal
24	Female	Newborn	61.3	13.6	Normal
38	Male	5 days	42.6	14.3	Normal
40	Male	4 days	27.8	18.4	Normal
45	Male	Newborn	217.0	5.0	Normal
51	Male	4 weeks	33.3	12.2	Normal
55	Male	7 weeks	>100	5.0	Normal
56	Female	5 weeks	181	5.0	Normal
58	Male	5 days	37	19.9	Normal
59	Male	3 months	>100	0.5	Normal

BMJ Open

Identification of two novel mutations, c.670_672del and c.1186C>T, and the prevalence of c.2268dup in the TPO gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006121.R1
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Lee, Ching Chin; University of Malaya, Molecular Medicine Harun, Fatimah; University of Malaya, Paediatrics Jalaludin, Muhammad Yazid; University of Malaya, Paediatrics Heh, Choon Han; University of Malaya, Pharmacy Othman, Rozana; University of Malaya, Pharmacy Mat Junit, Sarni; University of Malaya, Molecular Medicine
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Genetics and genomics
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, Thyroid disease < DIABETES & ENDOCRINOLOGY, Paediatric clinical genetics & dysmorphology < GENETICS, MOLECULAR BIOLOGY
	·

1 2		
- 3 4	1	Research
5 6	2	Identification of two novel mutations, c.670_672del and c.1186C>T, and the prevalence
7	3	of c.2268dup in the TPO gene in a cohort of Malaysian-Chinese with thyroid
8 9	4	dyshormonogenesis
10 11	5	Ching Chin Lee ¹ , Fatimah Harun ² , Muhammad Yazid Jalaludin ² , Choon Han Heh ³ , Rozana
12 13	6	Othman ³ , and Sarni Mat Junit ¹ *
14 15	7	¹ Department of Molecular Medicine, ² Department of Paediatrics and ³ Department of
16	8	Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
17 18	9	
19 20	10	E-mail addresses:
21	11	Ching Chin Lee: squad_one@yahoo.com, Fatimah Harun: fatimah17@um.edu.my,
22 23	12	Muhammad Yazid Jalaludin: <u>vazidj@ummc.edu.my</u> , Choon Han Heh:
24 25	13	silverbot@hotmail.com, Rozana Othman: rozanaothman@um.edu.my
26	14	
27 28	15	* Corresponding author
29 30	16	Associate Professor Dr Sarni Mat Junit
31	17	Department of Molecular Medicine
32 33	18	Faculty of Medicine, University of Malaya,
34 35	19	50603, Lembah Pantai, Kuala Lumpur, Malaysia
36 37	20	Tel: 603-79674718; Fax: 603-79674957
38	21	E-mail: <u>sarni@um.edu.my</u>
39 40	22	
41 42	23	
43	24	
44 45		
46 47	25	
48		
49 50		
51		
52 53		
53 54		
55		
56 57		
58		
59 60		1
00		1

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

26	ABSTRACT
27	Objectives: The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the mo
28	common TPO alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The
29	ancestors of these patients are believed to originate from the southern province of China. O
30	previous study showed that this mutation leads to reduced abundance of the TPO protein an
31	loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidisi
32	The aim of our study was to provide further data on the incidence of the c.2268dup mutation
33	in a cohort of Malaysian-Chinese and its possible phenotypic effects.
34	Setting: Cohort study.
35	Participants: Twelve biologically unrelated Malaysian-Chinese patients with congeni
36	hypothyroidism were recruited in this study. All patients showed high TSH and low f
37	levels at the time of diagnosis with proven presence of thyroid gland
38	Primary outcome measure: Screening of the c.2268dup mutation in the TPO gene in
39	patients was carried out using PCR-direct DNA sequencing method.
40	Secondary outcome measure: Further screening for mutations in other exonic regions of t
41	TPO gene was carried out if the patient is a carrier for the c.2268dup mutation
42	Results: The c.2268dup mutation was detected in 4 out of the 12 patients. Apart from t
43	c.2268dup and a previously documented mutation, c.2647C>T, two novel TPO mutatic
44	namely c.670_672del and c.1186C>T were also detected in our patients. In silico analys
45	predicted that the novel mutations affect the structure/function of the TPO protein.
46	Conclusion: The c.2268dup was detected in approximately one third of the Malaysia
47	Chinese with thyroid dyshormonogenesis. The detection of the novel c.670_672del a
48	c.1186C>T alterations expand the mutation spectrum of TPO associated with thyro
49	dyshormonogenesis.

1 2 3 4	51	Strengths and limitations of this study
5 6 7	52	• The c.2268dup was detected in approximately one third of the Malaysian-Chinese
8 9	53	with thyroid dyshormonogenesis. The c.2268dup in the homozygous form might be
10 11	54	associated with the phenotype of dyshormonogenetic goiter.
12 13 14	55	• Two novel <i>TPO</i> mutations namely c.670_672del and c.1186C>T were also detected
15 16	56	in this study. In silico analyses revealed that the two mutations may affect the normal
17 18	57	structure/function of the mutant TPO protein.
19 20	58	• The <i>in silico</i> functional analyses could not be further validated due to unavailability of
21 22 23	59	thyroid tissue samples from the patients.
23 24 25 26	60	
27 28	61	
29 30 31	62	
32 33 34 35	63	Keywords: Congenital hypothyroidism, <i>thyroid peroxidase</i> , c.2268dup, novel mutations,
36 37 38	64	
39 40	65	Keywords: Congenital hypothyroidism, thyroid peroxidase, c.2268dup, novel mutations,
41 42 43	66	Malaysian-Chinese
44 45 46 47 48 49 50 51 52 53	67	Malaysian-Chinese
54 55 56 57 58 59 60		3

INTRODUCTION

Congenital hypothyroidism (CH) is one of the most common endocrine disorders in the world affecting 1 in 3000 - 4000 newborn babies with 10 - 20 % of the cases are due to thyroid dyshormonogenesis [1]. Over the past three decades, numerous cases of dyshormonogenetic CH have been linked to alterations in the TPO gene [2]. This gene encodes a protein with 933 amino acids in length which plays an important role in thyroid hormones synthesis [3]. Niu et al. in 2002 reported a nonsense mutation, c.2268dup, a common cause of dyshormonogenetic CH in Taiwan with molecular proof of a founder effect [4]. Recently, we identified the c.2268dup mutation in a Malaysian-Chinese family with goitrous CH and showed that the mutation leads to the reduction of TPO protein expression with a consequential loss of enzyme activity [5]. The Chinese forms the second largest ethnic group which constitutes about 24.6 % of the 28.3 million Malaysian populations [6]. As the cause of dyshormonogenetic CH in Malaysian-Chinese remains unclear, we therefore embarked on this present study with the aim of providing further data on the incidence of the c.2268dup mutation in Malaysian Chinese and its possible phenotypic effects.

- 84 SUBJECTS AND METHODS

85 Subjects

A cohort (duration of follow-up between 3 and 25 years) of 12 biologically unrelated Chinese patients with dyshormonogenetic CH who attended the Paediatric Endocrine Clinic, University Malaya Medical Centre (UMMC) was recruited for this study. None of the patients are from a consanguineous family. All patients had high TSH and low fT_4 levels at the time of diagnosis with proven presence of thyroid gland (Table 1). Serum thyroglobulin (hTG) level was measured in patients who have reached puberty (12 years old and older) or presented with goiter; except for CHP51 and CHP55 who had been transferred to adult care

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

and other hospital, respectively (Table 1). Informed written consent was obtained either from
patients or their parent/guardian. This study was approved by the UMMC Ethical Committee
(Institutional Review Board) in accordance to the ICH-GCP guideline and the Declaration of
Helsinki (Reference number, 654.16). Perchlorate discharge test was however, not performed
in our patients since permission was not granted by the majority of the patients' parents.

98 TPO mutation screening

PCR amplification and direct DNA sequencing were performed to screen for alteration of TPO gene using genomic DNA extracted from peripheral venous blood. A forward (5'-ACAGGGACGTTGGTGTGTGG-3') (5'and reverse a TCAGAAGCACCTTTTGGCG-3') primer were used to PCR-amplify exon 13 of the TPO gene (NM 000547.5) where the c.2268dup mutation is located. Further screening for mutations in other exonic regions of the TPO gene [7] was carried out if the patient is a carrier for the c.2268dup mutation. To confirm that an alteration in the TPO gene is due to a disease-causing mutation instead of a polymorphism, a total of 100 chromosomes from 50 unrelated healthy individuals were also screened for the same mutation.

In silico analyses of the novel c.670_672del (p.Asp224del) and c.1186C>T (p.Arg396Cys)
mutations

The effects of the novel mutations on normal TPO activity were evaluated using SIFT and Polyphen-2 algorithms. Alignment of human TPO sequence with those of mouse, rat, pig, dog and chicken was performed using CLC Sequence Viewer 6.5.2 software (CLC bio, Aarhus, Denmark). The homology models of human TPO including the wild type and the two mutant proteins: p.Asp224del and p.Arg396Cys were generated, verified and compared as described before [7].

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

117 RESULTS AND DISCUSSION

In addition to a patient with homozygous c.2268dup mutation reported in our previous study [5], the c.2268dup was detected in 31 % of the total alleles studied. So far, the mutation was only detected amongst patients with confirmed total iodide organification defect (TIOD) tested using perchlorate discharge test [4, 8]. The test for TIOD was however, not performed in our patients. This could be the reason for the higher prevalence of the c.2268dup mutation in the Taiwanese patients when compared to our study [4, 8]. Nonetheless, the difference in the origin between the Chinese population of Malaysia [9] and Taiwan [10] may also have contributed to this variation. Two patients in this study, CHP18 and CHP59, were homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation.

Apart from the c.2268dup mutation, a novel, heterozygous c.670 672del mutation in exon 7 of the TPO gene was detected in patient CHP58. The deletion of 3 nucleotides (GAC) is predicted to produce an in-frame deletion of a single aspartic acid (p.Asp224del) in the TPO protein (Fig. 1A). Three dimensional (3-D) model analysis of the mutant protein revealed that the deleted Asp-224 residue is located within a beta-strand. The mutation has brought conformational changes to the protein by shortening the length of the beta-strand and also disrupted the correct orientation of hydrogen bonds network between Asp-223 with Asp-224, Arg-225, Tyr-226 and Arg-648. Since the altered sites are located so close to His-494, a proposed iron (heme axial ligand) binding site [11], it could possibly interfere with binding of the iron ion at His-494 or the electron transfer activity of TPO in which His-494 is the source of the electron [12]. It is also predicted that the deletion of Asp-224 will alter the orientation of a salt bridge between Asp-223 and Arg-648 (Fig. 1B). Interestingly, three aspartic acid residues: Asp-222, Asp-223 and Asp224 present in the same beta-strand that is located on the outer surface of the wild type TPO contribute to a highly negatively-charged region which is

also conserved across many species including mice, rat and dog implying that this region iscrucial for the normal activity of the protein (Fig. 1C).

Most cases of CH associated with alterations in the TPO gene were caused by either homozygous or compound heterozygous mutations. In the present study, three different alterations in the TPO gene were identified in CHP38 other than the confirmed polymorphism. In addition to the c.2268dup, a novel, heterozygous mutation, c.1186C>T (p.Arg396Cys), was detected in exon 8 and is expected to cause a substitution of arginine to cysteine at codon 396 (Fig 2A). Results from both SIFT and Polyphen-2 analyses indicated that the substitution is damaging and hence implying that this residue is important in the structure/function of the TPO. A study has shown that the Arg-396 is one of the important amino acids which could be involved in stabilizing the transition state of TPO protein during the catalytic intermediate formation [13]. The formation of a stable catalytic intermediate (compound I) of the TPO with H_2O_2 is crucial for thyroid hormone synthesis [14-15]. Catalytic process is initiated by the diffusion of H_2O_2 into the active site of the TPO protein. The α -nucleophile H₂O₂ donates a proton to the distal imidazole ring (His-239) to form a bond with the iron ion bound to residue His-494. After binding takes place, the protein attains transition state to form compound I. The arginine at position 396 is believed to play a role in stabilizing the charge for transition state of the protein through electrostatic interaction [13,16]. Alternatively, it is believed that the arginine contributes to the abnormally low pKa value of the distal histidine in the native resting enzyme. The changes of the pKa value in the transition state of the distal imidaloze are the key to determine the effectiveness of the catalysis process/rate of the compound I formation [16]. Therefore, a substitution from arginine to cysteine can bring devastating effects to the protein stability. In the present study, the 3-D model analysis showed that the p.Arg396Cys mutation has led to the structure

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

alteration through the modification of the hydrogen bond network in the hydrophobic pocketwhich might interfere with the heme binding at Glu-399 [17] (Fig. 2B).

Apart from the c.2268dup and c.1186C>T mutations, a non-synonymous substitution, c.2647C>T, was also identified in exon 16 of CHP38. The nucleotide alteration leads to a substitution of proline to serine at codon 883 in the C-terminal tail (Val-869 to Leu-933) of the TPO protein and was reported in patient with dyshormonogenetic CH in populations of Korea [18] and Japan [19] before. However, the consequence of the c.2647C>T remains ambiguous since both SIFT and Polyphen-2 analyses result [2] indicates that this alteration is "benign" suggesting that the Pro-883 is probably not critical for structure/function of the TPO and could be a rare polymorphism instead of disease-causing allele.

It is worth noting that CHP18 and the two sisters reported in our previous study [5] with homozygous c.2268dup had developed large multinodular goiters in their mid or late adolescent years. Although it is not known whether the reduction in TPO expression due to c.2268dup can lead to increased risk of malignant transformation, other studies have shown cases of thyroid carcinoma has developed from congenital goiters that are associated with TPO mutation [20-21] or with lower/absence of TPO expression [22-23]. Therefore, it is important to have a careful surveillance for potential thyroid neoplasm in patients with c.2268dup mutation.

186 CONCLUSION

In conclusion, we report two novel mutations in the *TPO* gene, c.670_672del and c.1186C>T, and reveal the association of c.2268dup mutation with approximately one third of a cohort of Malaysian-Chinese with dyshormonogenetic CH. This study also support our previous findings that c.2268dup homozygotes developed dyshormonogenetic goiter in their

BMJ Open

mid or late adolescent years. These data will be useful in diagnosing or predicting goitrous	BMJ Ope
	en: fir
	BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

193	

$1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1\ 1\ 1\ 2\ 1\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 4\ 4\ 4\ 4\ 4\ 4\ 4\ 4\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\$	
49 50 51 52	

194 **Contributors:**

195 CCL participated in research design, performed the experiments, analyzed the data and wrote 196 the paper; FH and MYJ collected clinical samples and analyzed the clinical data; CHH and 197 RO performed the 3D analyses and interpreted the data; SMJ proposed research design, 198 analyzed the molecular and overall data, and participated in writing the paper.

200 **F**

199

200 Funding:

- 201 This project was financially supported by grants from the Ministry of Higher Education,
- 202 Malaysia (H-20001-00-E000009, FP050/2010B and FP034-2014A).

- 204 **Competing interests**: None
- 205
 - 206 Ethics approval: The University of Malaya Medical Centre (UMMC) Ethical Committee
- 207
 - 208 Data sharing statement: No additional data are available
- 209
- 210

BMJ Open

211 FIGURE-LEGEND

Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow.

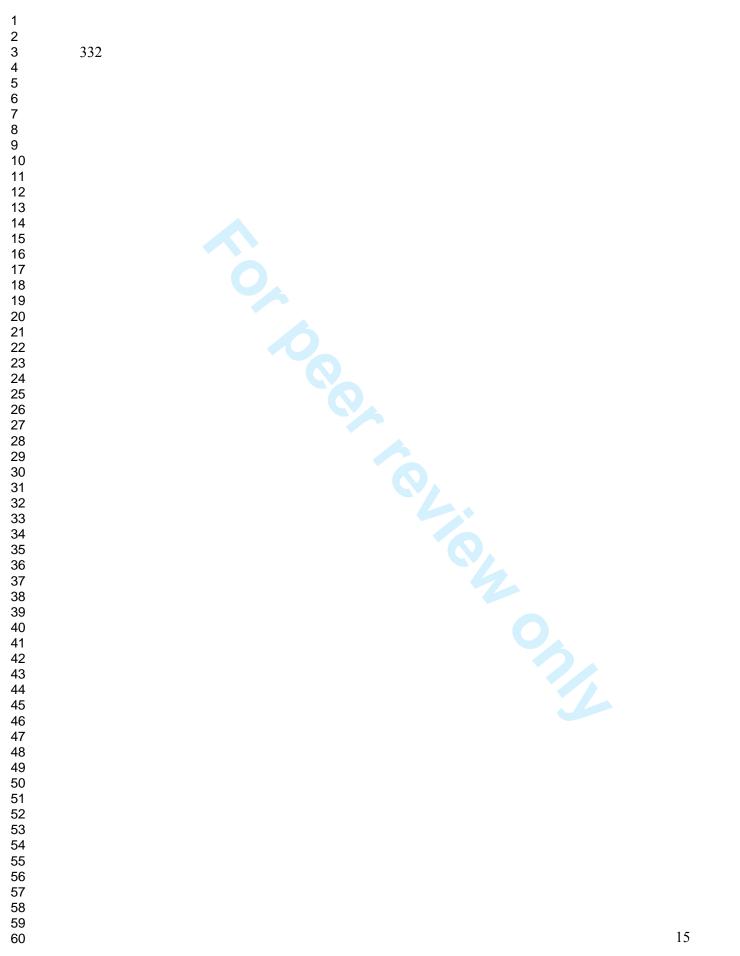
Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele
(i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide
transition is indicated by the arrow. The sequence alteration is predicted to cause a
substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).


Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, cord = $< 25.0 \mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = $0.6 - 10.0 \mu IU/ml$; 1 month onwards = $0.6 - 8.0 \mu IU/ml$, fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L andhTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients below 12 years of age, unless goiter is present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

1		
2	2.50	
3	259	REFERENCES
4 5	260	1 Delever F. Nerestal concerning for concernital homethomsidions in Forence. Denote of the
6	261	1. Delange F. Neonatal screening for congenital hypothyroidism in Europe. Report of the
7	262	Newborn Committee of the European Thyroid Association. Acta Endocrinol Suppl
8	263	(Copenh) 1979; 223 :3-29
9	264	2. Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to
10	265	TPO mutations. Mol Cell Endocrinol 2010; 322 (1-2):38-43 doi: S0303-
11	266	7207(10)00066-3 [pii]
12	267	10.1016/j.mce.2010.02.008[published Online First: Epub Date] .
13	267	3. Kimura S, Kotani T, McBride OW, et al. Human thyroid peroxidase: complete cDNA and
14	268 269	
15 16		protein sequence, chromosome mapping, and identification of two alternately spliced
17	270	mRNAs. Proc Natl Acad Sci U S A 1987;84(16):5555-9
18	271	4. Niu DM, Hwang B, Chu YK, et al. High prevalence of a novel mutation (2268 insT) of the
19	272	thyroid peroxidase gene in Taiwanese patients with total iodide organification defect,
20	273	and evidence for a founder effect. J Clin Endocrinol Metab 2002; 87 (9):4208-12
21	274	5. Lee CC, Harun F, Jalaludin MY, Lim CY, et al. Functional Analyses of c.2268dup in
22	275	Thyroid Peroxidase Gene Associated with Goitrous Congenital Hypothyroidism.
23	276	BioMed Research International 2014;2014:370538 doi:
24	277	10.1155/2014/370538[published Online First: Epub Date]].
25	278	6. Population distribution and basic demographic characteristic report 2010. Avaiable online:
26	279	http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215&Itemi
27 28	280	$\underline{d=89\⟨=en} (accessed on 22 January 2014). 2010.$
28 29	281	7. Lee CC, Harun F, Jalaludin MY, Heh CH, et al. A Novel, Homozygous c.1502T>G
30	282	(p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian Sisters with
31	283	Congenital Hypothyroidism and Multinodular Goiter. Int J Endocrinol
32	284	2013; 2013 :987186 doi: 10.1155/2013/987186[published Online First: Epub Date] .
33	285	8. Wu JY, Shu SG, Yang CF, Lee CC, et al. Mutation analysis of thyroid peroxidase gene in
34	286	Chinese patients with total iodide organification defect: identification of five novel
35	287	mutations. J Endocrinol 2002;172(3):627-35 doi: JOE04388 [pii][published Online
36	288	First: Epub Date] .
37	289	9. Lee KH, Tan CB. The Chinese in Malaysia. New York: Oxford University Press, 1999.
38	290	10. Hsiau Ac. Contemporary Taiwanese cultural nationalism. London ; New York:
39 40	291	Routledge, 2000.
40 41	292	11. Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase
42	293	detected in patients with total iodide organification defects. J Clin Endocrinol Metab
43	294	1997; 82 (2):649-53
44	295	12. Nordlund TM. Quantitative understanding of biosystems : an introduction to biophysics.
45	296	Boca Raton: Taylor & Francis, 2011.
46	297	13. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the
47	298	alternatively spliced form, TPO-2. Thyroid 1998;8(2):185-91
48	299	14. Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide-dependent catalatic activity
49 50	300	of thyroid peroxidase and lactoperoxidase. J Biol Chem 1984;259(1):197-205
50 51	301	15. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and
51 52	302	lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem
53	303	1984; 259 (22):13783-90
54	304	16. Dunford HB. How do enzymes work? Effect of electron circuits on transition state acid
55	305	dissociation constants. J Biol Inorg Chem 2001;6(8):819-22 doi:
56	306	10.1007/s007750100260[published Online First: Epub Date] .
57		
58		
59		10
60		13

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

- 17. Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999:81(5):557-62 doi: S0300-9084(99)80110-2 [pii][published Online First: Epub Date]]. 18. Lee ST, Lee DH, Kim JY, et al. Molecular screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol (Oxf) 2011;75(5):715-21 doi: 10.1111/j.1365-2265.2011.04156.x[published Online First: Epub Date]]. 19. Umeki K, Yamamoto I, Yukizane S, et al. Congenital hypothyroidism caused by a unique thyroid peroxidase allele containing two mutations, C1708T and C2737T. J Pediatr Endocrinol Metab 2004;17(2):231-4
 - 20. Medeiros-Neto G, Gil-Da-Costa MJ, Santos CL, et al. Metastatic thyroid carcinoma arising from congenital goiter due to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab 1998;83(11):4162-6
 - 21. Chertok Shacham E, Ishay A, et al. Minimally invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular goiter due to thyroid peroxidase gene mutation. Thyroid 2012;22(5):542-6 doi: 10.1089/thy.2011.0478[published Online First: Epub Date].
 - 22. Di Cristofaro J, Silvy M, Lanteaume A, et al. Expression of tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 2006;13(2):485-95 doi: 13/2/485 [pii]10.1677/erc.1.01164[published Online First: Epub Date]].
 - 23. Finley DJ, Zhu B, Barden CB, et al. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 2004;240(3):425-36; discussion 36-7 doi: 00000658-200409000-00004 [pii][published Online First: Epub Date]].

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, $cord = < 25.0 \,\mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = 0.6 - 10.0 $\mu IU/ml$; 1 month onwards = 0.6 - 8.0 $\mu IU/ml$, fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients younger than 12 years of age, unless goiter was present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

CH patient (CHP)	Gender	Age of diagnosis	Duration of follow- up (years)	TSH (μIU/ml)	fT₄ (pmol/L)	hTG (ng/ml)	Thyroid scan (at 3 years old) / ultrasonography
16	Female	10 days	17	26.5	11.3	40.7	Normal
18	Male	3 weeks	20	59.0	13.0	26	Multinodular goiter at 13.5 years
21	Female	3 months	13	20.6	14.1	20	Normal
24	Female	Newborn	6	61.3	13.6	N/A	Normal
38	Male	5 days	7	42.6	14.3	N/A	Normal
40	Male	4 days	10	27.8	18.4	N/A	Normal
45	Male	Newborn	6	217.0	5.0	N/A	Normal
51	Male	4 weeks	18	33.3	12.2	N/A	Normal
55	Male	7 weeks	11	>100	5.0	N/A	Normal
56	Female	5 weeks	25	181	5.0	2.6	Normal
58	Male	5 days	7	37	19.9	N/A	Normal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1 2 3 4										
_	338	59	Male	3 months	15	>100	0.5	283	Normal	
8 3 9	339									
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	340								Normal	
40 41 42 43										
44 45			_			<i></i>				
46 47 48 49	эсteq by copyright.	ł by guest. Prote						out/guidelines.x ۲ ዓ uo เՇเ900-৮เ0	S-nəqoįmd\3611.01 ss bədzildi µtml	n; first pu

Research Identification of two novel mutations, c.670 672del and c.1186C>T, and the prevalence of c.2268dup in the TPO gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis Ching Chin Lee¹, Fatimah Harun², Muhammad Yazid Jalaludin², Choon Han Heh³, Rozana Othman³, and Sarni Mat Junit¹* ¹Department of Molecular Medicine, ²Department of Paediatrics and ³Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. E-mail addresses: Ching Chin Lee: squad one@yahoo.com, Fatimah Harun: fatimah17@um.edu.my, Muhammad Yazid Jalaludin: <u>yazidj@ummc.edu.my</u>, Choon Han Heh: silverbot@hotmail.com, Rozana Othman: rozanaothman@um.edu.my * Corresponding author Associate Professor Dr Sarni Mat Junit Department of Molecular Medicine Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia Tel: 603-79674718; Fax: 603-79674957 E-mail: sarni@um.edu.my

1			
2 3			
4			
5 6 7	26	ABSTRACT	
8 9	27	Objectives: The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most	
10	28	common TPO defectalteration reported in Taiwanese patients with thyroid	
11 12	29	dyshormonogenesis. The ancestors of these patients are believed to originate from the	
13 14	30	southern province of China. Our previous study showed that this mutation leads to reduced	
15 16	31	abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian-Chinese	
17 18	32	family with goitrous hypothyroidism. The aim of our study was to provide further data on the	
19 20	-		
21	33	incidence of TPO genethe c.2268dup mutation in a cohort of Malaysian-Chinese and its	Formatted: Font color: Red
22 23	34	possible phenotypic effects,	Formatted: Font: Italic, Strikethrough
24	35	Setting: Cohort study.	
25 26	36	Participants: Twelve biologically unrelated Malaysian-Chinese patients with congenital	Formatted: Font color: Red
27 28	37	hypothyroidism were recruited in this study. All patients showed high TSH and low fT_4	
29 30	38	levels at the time of diagnosis with proven presence of thyroid gland	
31 32	39	Primary outcome measure: Screening of the c.2268dup mutation in the TPO gene in all	
33 34	40	patients was carried out using PCR-direct DNA sequencing method.	
35 36	41	Secondary outcome measure: Further screening for mutations in other exonic regions of the	
37 38	42	TPO gene was carried out if the patient is a carrier for the c.2268dup mutation	
39 40	43	Results: The c.2268dup mutation was detected in 4 out of the 12 patients. A homozygous	Formatted: Font: Times New Roman, Englis (U.S.)
41 42	44	patient, CHP59 had developed large multinodular goiter at the age of 13.5 years which	
43 44	45	supports our previous findings that c.2268dup homozygotes developed dyshormonogenetic	
45 46	46	goiter in their mid or late adolescent years. Apart from the c.2268dup and aApart from the	
40 47 48	47	c.2268dup and a previously documented mutation, c.2647C>T, two novel TPO mutations	
49 50	48	namely c.670_672del and c.1186C>T were also detected in our patients. In silico analyses	
51	49	predicted that the novel mutations affect the structure/function of the TPO protein.	
52 53			
54 55			
55		2	

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Conclusion: The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of *TPO* associated with thyroid dyshormonogenesis.

Strengths and limitations of this study

- The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The c.2268dup in the homozygous form might be associated with the phenotype of dyshormonogenetic goiter.
- Two novel *TPO* mutations namely c.670_672del and c.1186C>T were also detected in this study. *In silico* analyses revealed that the two mutations may affect the normal structure/function of the mutant TPO protein.
 - The *in silico* functional analyses could not be further validated due to unavailability of thyroid tissue samples from the patients.
- 69 Keywords: Congenital hypothyroidism, thyroid peroxidase, c.2268dup, novel mutations,
- 70 Malaysian-Chinese

INTRODUCTION

Congenital hypothyroidism (CH) is one of the most common endocrine disorders in the world affecting 1 in 3000 - 4000 newborn babies where with 10 - 20 % of the cases wereare due to thyroid dyshormonogenesis [1]. Over the past three decades, numerous cases of dyshormonogenetic CH have been linked to defectsalterations in the TPO gene [2]. This gene encodes a protein with 933 amino acids in length which plays an important role in thyroid hormones synthesis [3]. Niu et al. in 2002 reported a nonsense mutation, c.2268dup, a common cause of dyshormonogenetic CH in Taiwan with molecular proof of a founder effect where the ancestors of these patients originated from the southern province of China [4].[4]. Recently, we identified the c.2268dup mutation in a Malaysian-Chinese family with goitrous CH and showed that the mutation leads to the reduction of TPO protein expression with a consequential loss of enzyme activity [5]. The Chinese forms the second largest ethnic group which constitutes about 24.6 % of the 28.3 million Malaysian populations [6]. As the cause of dyshormonogenetic CH in Malaysian-Chinese remains unclear, we therefore embarked on this present study with the aim of providing further data on the incidence of TPO genethe c.2268dup mutation in Malaysian Chinese and its possible phenotypic effects.

89 SUBJECTS AND METHODS

Subjects for the TPO mutation screening

A cohort (duration of follow-up between 3 and 25 years) of 12 <u>biologically</u> unrelated Chinese patients with dyshormonogenetic CH who attended the Paediatric Endocrine Clinic, University Malaya Medical Centre (UMMC) was recruited for this study. <u>Mutational</u> screening was performed on genomic DNA extracted from peripheral venous blood of all patients whoNone of the patients are from a consanguineous family. All patients had high TSH and low fT_4 levels at the time of diagnosis with proven presence of thyroid gland (Table

Formatted: Font: (Default) Times New Roman, Font color: Red
Formatted: Font: (Default) Times New

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyrigh

-{	Formatted:	Font color:	Red
$\left(\right)$	Formatted:	Font color:	Red
1	Formattad	Font colori	Dod

Roman, Font color: Red

Formatted: Font color: Red

1			œ
2 3			o ra
4 5			ben: ff
6 7	97	1). Serum thyroglobulin (hTG) level was measured in patients who have reached puberty (12	Formatted: Font color: Red Formatted: Font color
8 9	98	years old and older) or presented with goiter; except for CHP51 and CHP55 who had been	olishe
10 11	99	transferred to adult care and other hospital, respectively (Table 1). Informed written consent	Formatted: Font color: Red
12	100	was obtained either from patients or their parent/guardian. This study was approved by the	0.113
13 14	101	UMMC Ethical Committee (Institutional Review Board) in accordance to the ICH-GCP	36/bm
15 16	102	guideline and the Declaration of Helsinki (Reference number, 654.16). Perchlorate discharge	jopen
17 18	103	test was however, not performed in our patients since permission was not granted by the	-2014
19 20	104	majority of the patients' parents.	-0061
21 22			21 or
23 24	105	<u>TPO mutation screening</u> S1).	Formatted: Font color: Red
25 26	106	PCR amplification and direct DNA sequencing were performed to screen for	inuary
27	107	alteration of TPO gene using genomic DNA extracted from peripheral venous blood, A	Formatted: Font color: Red
28 29	108	forward (5'-ACAGGGACGTTGGTGTGTGGG-3') and a reverse (5'-	Do
30 31	109	TCAGAAGCACCTTTTGGCG-3') primer were used to PCR-amplify exon 13 of the TPO	vnloa
32 33	110	gene (NM_000547.5) where the c.2268dup mutation is located. Further screening for	ded f
34 35	111	mutations in other exonic regions of the TPO gene [7] was carried out if the patient is a	
36 37	112	carrier for the c.2268dup mutation. To confirm that an alteration in the TPO gene is due to a	ttp://b
38 39	113	disease-causing mutation instead of a polymorphism, a total of 100 chromosomes from 50	njope
40	114	unrelated healthy individuals were also screened for the same mutation. Informed written	Formatted: Font color: Red
41 42	115	consent was obtained either from patients or their parent/guardian. This study was approved	j.com
43 44	116	by the UMMC Ethical Committee (Institutional Review Board) in accordance to the ICH-	on A
45 46	117	GCP guideline and the Declaration of Helsinki (Reference number, 654.16)	Formatted: Font color: Red, Malay (Malaysia)
47 48	110	In silico, analyzed of the neural of 70 (7) del (a $4\pi^2$) (del), and a 110(C) T (a $4\pi^2$) (Core)	8, 202
49 50	118	In silico analyses of the novel c.670_672del (p.Asp224del) and c.1186C>T (p.Arg396Cys)	24 by
51 52	119	mutations	guest
53 54			. Prot
55		5	ected
56 57		5	by or
58 59			2024 by guest. Protected by copyright
60		For near raview only - http://hmianan.hmi.com/aita/ahayt/ayida/	
i		For peer review only - http://bmjopen.bmj.com/site/about/guidel	

BMJ Open

The effects of the novel mutations on normal TPO activity were evaluated using SIFT and Polyphen-2 algorithms. Alignment of human TPO sequence with those of mouse, rat, pig, dog and chicken was performed using CLC Sequence Viewer 6.5.2 software (CLC bio, Aarhus, Denmark). The homology models of human TPO including the wild type and the two mutant proteins: p.Asp224del and p.Arg396Cys were generated, verified and compared as described before [7].

RESULTS AND DISCUSSION

The In addition to a patient with homozygous c.2268dup mutation was detected in 4	 Formatted: Font color: Red
out of the total 12 unrelated patients in this study. Two patients, CHP18 and CHP59, were	
homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation. In	
addition to a case reported in our previous study [5], the c.2268dup was detected in only	 Formatted: Font color: Red
	 Formatted: Font color: Red
31 % of the total alleles studied, lower than what were reported in the studies by Niu et al.	 Formatted: Font color: Red
(2002) (86 %) [4] and Wu et al. (2002) (40 %) [8]. For their study, only. So far, the mutation	
was only detected amongst patients with confirmed total iodide organification defect (TIOD)	 Formatted: Font color: Red
throughtested using perchlorate discharge test were screened for the TPO gene mutations. In	 Formatted: Font color: Red
contrast, the perchlorate [4, 8]. The test for TIOD was however, not performed in our patients	 Formatted: Font color: Red
	Formatted: Font color: Red
since permission was not granted by the majority of the patients' parents. This could be the	 Formatted: Font color: Red
reason for the higher prevalence of the c.2268dup mutation in the Taiwanese patients when	Formatted: Font color: Red
compared to our study- <u>[4, 8]</u> , Nonetheless, the difference in the origin between the Chinese	 Formatted: Font color: Red
population of Malaysia [9] and Taiwan [10] may also have contributed to this variation. <u>Two</u>	
patients in this study, CHP18 and CHP59, were homozygotes while another two, CHP38 and	
CHP58, were heterozygotes for the mutation.	 Formatted: Font color: Red

matted: Font color: Red

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.hmj.com/ on April 18, 2024 by guest. Protected by copyright

matted: Font color: Red matted: Font color: Red matted: Font color: Red

Apart from the c.2268dup mutation, a novel, heterozygous c.670 672del mutation in exon 7 of the TPO gene was detected in patient CHP58. The deletion of 3 nucleotides (GAC) is predicted to produce an in-frame deletion of a single aspartic acid (p.Asp224del) in the TPO protein (Fig. 1A). Three dimensional (3-D) model analysis of the mutant protein revealed that the deleted Asp-224 residue is located within a beta-strand. The mutation has brought conformational changes to the protein by shortening the length of the beta-strand and also disrupted the correct orientation of hydrogen bonds network between Asp-223 with Asp-224, Arg-225, Tyr-226 and Arg-648. Since the altered sites are located so close to His-494, a proposed iron (heme axial ligand) binding site [11], it could possibly interfere with binding of the iron ion at His-494 or the electron transfer activity of TPO wherein which His-494 is the source of the electron [12]. It is also predicted that the deletion of Asp-224 will alter the orientation of a salt bridge between Asp-223 and Arg-648 (Fig. 1B). Interestingly, three aspartic acid residues: Asp-222, Asp-223 and Asp224 present in the same beta-strand that is located on the outer surface of the wild type TPO contribute to a highly negatively-charged region which is also conserved across many species including mice, rat and dog implying that this region is crucial for the normal activity of the protein (Fig. 1C).

Most cases of CH associated with defects alterations in the TPO gene were caused by either homozygous or compound heterozygous mutations. In the present study, three different mutationsalterations in the TPO gene were identified in CHP38- other than the confirmed polymorphism. In addition to the c.2268dup, a novel, heterozygous mutation, c.1186C>T (p.Arg396Cys), was detected in exon 8 and is expected to cause a substitution of arginine to cysteine at codon 396 (Fig 2A). Results from both SIFT and Polyphen-2 analyses indicated that the substitution is damaging and hence implying that this residue is important in the structure/function of the TPO. A study has shown that the Arg-396 is one of the important amino acids which could be involved in stabilizing the transition state of TPO protein during Formatted: Font: (Default) Times New Roman, Font color: Red

the catalytic intermediate formation [13]. The formation of a stable catalytic intermediate (compound I) of the TPO with H_2O_2 is crucial for thyroid hormone synthesis [14-15]. Catalytic process is initiated by the diffusion of H₂O₂ into the active site of the TPO protein. The α -nucleophile H₂O₂ donates a proton to the distal imidazole ring (His-239) to form a bond with the iron ion bound to residue His-494. After binding takes place, the protein attains transition state to form compound I. The arginine at position 396 is believed to play a role in stabilizing the charge for transition state of the protein through electrostatic interaction [13,16]. Alternatively, it is believed that the arginine contributes to the abnormally low pKa value of the distal histidine in the native resting enzyme. The changes of the pKa value in the transition state of the distal imidaloze are the key to determine the effectiveness of the catalysis process/rate of the compound I formation [16]. Therefore, a substitution from arginine to cysteine can bring devastating effects to the protein stability. In the present study, the 3-D model analysis showed that the p.Arg396Cys mutation has led to the structure alteration through the modification of the hydrogen bond network in the hydrophobic pocket which might interfere with the heme binding at Glu-399 [17] (Fig. 2B). -Apart from the c.2268dup and c.1186C>T mutations, a non-synonymous

substitution, c.2647C>T-mutation, was also identified in exon 16 of CHP38, where it. The nucleotide alteration leads to a substitution of proline to serine at codon 883 in the C-terminal tail (Val-869 to Leu-933) of the TPO protein- and was reported in patient with dyshormonogenetic CH in populations of Korea [18] and Japan [19] before. However, the consequence of the c.2647C>T remains ambiguous since both SIFT and Polyphen-2 analyses result from a previous study [2] indicates that this mutationalteration is "benign" suggesting that the Pro-883 is probably not critical for structure/function of the TPO and does not modify TPO function. Interestingly, this mutation had also been reported in populations of Korea [18] and Japan [19]. Whether the c.2647C>T mutation is possibly a rare polymorphism

Formatted: Font color: Auto

1	Formatted: Font color: Red
1	Formatted: No Spacing, Left, Indent: First line: 0.5", Line spacing: Double, Tab stops: Not at 0"
1	Formatted: Font color: Red
1	Formatted: Font color: Red
1	Formatted: Font color: Red

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.gom/ on April 18, 2024 by guest. Protected by copyrigh

Formatted: Font color: Red

Formatted: Font color: Red

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Formatted: Font color: Red

(White)

Formatted: Font color: Red, Pattern: Clean

is not known. Despite the *in silico* findings indicated that the substitution of Pro 883 to serine might not be critical to the protein structure/function, previously reported cases showed that patients associated with this mutation presented with severe dyshormonogenetic CH [18-19]. Since Human Splicing Finder (HSF) analysis predicted that the c.2647C>T mutation interrupts the sequences recognized by ESE proteins (data not shown), we therefore could not exclude that the sequence alteration might possibly regulate the splicing activity of the TPO pre mRNA and lead to CH in these patients. could be a rare polymorphism instead of disease-causing allele.

It is worth noting that patients with homozygous c.2268dup inclusive of <u>CHP18 and</u> the two patientssisters reported in our previous study [5], except for patient CHP59 who was 12 year old at the time of the study,] with homozygous c.2268dup had developed large multinodular goitergoiters in their mid or late adolescent years. Although it is not known whether the reduction in TPO expression due to c.2268dup can lead to increased risk of malignant transformation, other studies have shown cases of thyroid carcinoma has developed from congenital goitergoiters that isare associated with *TPO* mutation [20-21] or with lower/-absence of TPO expression [22-23]. Therefore, it is important to have a careful surveillance for potential thyroid neoplasm in patients with c.2268dup mutation.

213 CONCLUSION

In conclusion, we report two novel mutations in the *TPO* gene, c.670_672del and c.1186C>T, and reveal the association of c.2268dup mutation with approximately one third of a cohort of Malaysian-Chinese with dyshormonogenetic CH. This study also support our previous findings that c.2268dup homozygotes developed dyshormonogenetic goiter in their

1		
2 3		
4 5 6 7		
	218	mid or late adolescent years. These data will be useful in diagnosing or predicting goitrous
8 9 10	219	dyshormonogenetic CH.
10 11 12	220	
13 14		
15 16		
17 18		
19 20		
21 22 23		
24 25		
26 27		
28 29		
30 31 22		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44 45		
43 46 47		
48 49		
50 51		
52 53		
54 55		
56 57 58		10
59 60		

1			
2 3			
3 4			
5			
6 7	221	Contributors:	
8 9	222	CCL participated in research design, performed the experiments, analyzed the data and wrote	
10 11	223	the paper; FH and MYJ collected clinical samples and analyzed the clinical data; CHH and	
12 13	224	RO performed the 3D analyses and interpreted the data; SMJ proposed research design,	
14 15	225	analyzed the molecular and overall data, and participated in writing the paper.	
16 17	226		
18 19	227	Funding:	
20 21	228	This project was financially supported by grants from the Ministry of Higher Education,	Formatted: Left, Space After: 10 pt
21 22 23	229	Malaysia (H-20001-00-E000009-and, FP050/2010B) and Postgraduate Research Fund,	Formatted: Font color: Red
24 25	230	University of Malaya (PV116-2012A). and FP034-2014A).	Formatted: Font color: Red, Strikethrough
26 27	231		
28 29	232	Competing interests: None	
30 31	233		
32 33	234	Ethics approval: The University of Malaya Medical Centre (UMMC) Ethical Committee	
34 35	235		
36 37	236	Data sharing statement: No additional data are available	
38 39			
40 41			
42			
43 44			
45			
46			
47			
48			
49			
50			
51 52			
52			
53 54			
54 55			
55 56		11	
56 57		11	
58			
59			
60			

7

8

9

10

24

25

26

2	
	4
2	4
2	4 4 4
2	4
2	1
2	4
\mathbf{r}	1
2	4 4 4
2	4
2	4
2	4
2	4 5 5
2	5
2	5
$\frac{1}{2}$	5 5 5 5 5 5
2	5
2	2
2	5
2	5
2	5
2	5
$\frac{1}{2}$	5
2	5
2	5
2	6
2	6
2	6
2	5 5 5 5 6 6 6 6 6
$\frac{1}{2}$	6
2	6
2	0
2	6
2	6
2	6
2	6
$\overline{2}$	7
$\frac{2}{2}$	7
2	7
2	/
2	7
2	7
2	7
2	7
$\overline{2}$	06666677777777777
2	7
2	7
2	1
	8
2	8
2	8
$\overline{2}$	8
-	0

35

36

37

38

39

40

48

49

50

51

237 REFERENCES238

- Delange F. Neonatal screening for congenital hypothyroidism in Europe. Report of the
 Newborn Committee of the European Thyroid Association. Acta Endocrinol Suppl
 (Copenh) 1979;223:3-29
- 11 241 (Copenn) 1979,222.529
 12 242 243 243 244
 13 244 7PO mutations. Mol Cell Endocrinol 2010;322(1-2):38-43 doi: S0303-7207(10)00066-3 [pii]
- 15 245 10.1016/j.mce.2010.02.008[published Online First: Epub Date]].
- 16 246
 17 247
 18 248
 19 249
 249
 3. Kimura S, Kotani T, McBride OW, Umeki K, Hirai K, Nakayama T, Ohtaki S. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A 1987;84(16):5555-9
- 20 250
 21 251
 251
 252
 252
 253
 4. Niu DM, Hwang B, Chu YK, Liao CJ, Wang PL, Lin CY. High prevalence of a novel mutation (2268 insT) of the thyroid peroxidase gene in Taiwanese patients with total iodide organification defect, and evidence for a founder effect. J Clin Endocrinol Metab 2002;87(9):4208-12
 - 5. Lee CC, Harun F, Jalaludin MY, Lim CY, Ng KL, Mat Junit S. Functional Analyses of
 c.2268dup in Thyroid Peroxidase Gene Associated with Goitrous Congenital
 Hypothyroidism. BioMed Research International 2014;2014:370538 doi:
 10.1155/2014/370538[published Online First: Epub Date]].
- 27 257 10.1155/2014/370538[published Online First: Epub Date]].
 28 258 6. Population distribution and basic demographic characteristic report 2010. Avaialble online: <u>http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215&Itemi</u> <u>d=89&lang=en</u> (accessed on 22 January 2014). 2010.
- 260
 261
 261
 262
 263
 263
 264
 265
 264
 265
 266
 267
 268
 269
 269
 269
 260
 261
 261
 262
 263
 264
 265
 265
 266
 267
 268
 269
 269
 269
 261
 261
 261
 261
 261
 261
 262
 263
 264
 265
 264
 265
 265
 266
 266
 267
 268
 268
 269
 269
 269
 261
 261
 261
 261
 261
 261
 261
 262
 263
 264
 265
 264
 265
 264
 265
 264
 265
 264
 265
 264
 265
 264
 265
 265
 266
 267
 268
 268
 268
 269
 269
 269
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 261
 - 8. Wu JY, Shu SG, Yang CF, Lee CC, Tsai FJ. Mutation analysis of thyroid peroxidase gene
 in Chinese patients with total iodide organification defect: identification of five novel
 mutations. J Endocrinol 2002;172(3):627-35 doi: JOE04388 [pii][published Online
 First: Epub Date]].
 - 269 9. Lee KH, Tan CB. The Chinese in Malaysia. New York: Oxford University Press, 1999.
 - 270 10. Hsiau Ac. Contemporary Taiwanese cultural nationalism. London ; New York:
 271 Routledge, 2000.
- 41 272 11. Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase
 42 273 detected in patients with total iodide organification defects. J Clin Endocrinol Metab
 43 274 1997;82(2):649-53
- 44 275 12. Nordlund TM. *Quantitative understanding of biosystems : an introduction to biophysics.*45 276 Boca Raton: Taylor & Francis, 2011.
- 46 277 13. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the alternatively spliced form, TPO-2. Thyroid 1998;8(2):185-91
 - 14. Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide-dependent catalatic activity
 of thyroid peroxidase and lactoperoxidase. J Biol Chem 1984;259(1):197-205
 - 15. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and
 lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem
 1984;259(22):13783-90

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\3\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	284 285 286 287 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 310 311 312
47 48 49 50 51 52 53 54 55 56 57 58	
59 60	

- 17. Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999;81(5):557-62 doi:
 S0300-9084(99)80110-2 [pii][published Online First: Epub Date]].
- 18. Lee ST, Lee DH, Kim JY, Kwon MJ, Kim JW, Hong YH, Lee YW, Ki CS. Molecular
 screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean
 patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol (Oxf)
 2011;75(5):715-21 doi: 10.1111/j.1365-2265.2011.04156.x[published Online First:
 Epub Date]].
- 19. Umeki K, Yamamoto I, Yukizane S, Kotani T. Congenital hypothyroidism caused by a
 unique thyroid peroxidase allele containing two mutations, C1708T and C2737T. J
 Pediatr Endocrinol Metab 2004;17(2):231-4
- 297 20. Medeiros-Neto G, Gil-Da-Costa MJ, Santos CL, Medina AM, Silva JC, Tsou RM,
 298 Sobrinho-Simoes M. Metastatic thyroid carcinoma arising from congenital goiter due
 299 to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab 1998;83(11):4162-6
- 2 300
 301
 301
 301
 301
 302
 303
 303
 21. Chertok Shacham E, Ishay A, Irit E, Pohlenz J, Tenenbaum-Rakover Y. Minimally invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular goiter due to thyroid peroxidase gene mutation. Thyroid 2012;22(5):542-6 doi: 10.1089/thy.2011.0478[published Online First: Epub Date]].
- 22. Di Cristofaro J, Silvy M, Lanteaume A, Marcy M, Carayon P, De Micco C. Expression of
 tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with
 alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 2006;13(2):485-95
 doi: 13/2/485 [pii]10.1677/erc.1.01164[published Online First: Epub Date]|.
- 308
 309
 309
 309
 309
 310
 301
 23. Finley DJ, Zhu B, Barden CB, Fahey TJ, 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 2004;240(3):425-36; discussion 36-7 doi: 00000658-200409000-00004 [pii][published Online First: Epub Date]|.

FIGURE-LEGEND

Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow.

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyrigh

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, cord = $< 25.0 \,\mu$ IU/ml; 1 to 3 days = 2.5 - 13.0 μ IU/ml; less than a month = $0.6 - 10.0 \,\mu\text{IU/ml}$; 1 month onwards = $0.6 - 8.0 \,\mu\text{IU/ml}$, fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients below 12 years of age, unless goiter is present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, $cord = \langle 25.0 \ \mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = 0.6 - 10.0 $\mu IU/ml$; 1 month onwards = 0.6 - 8.0 $\mu IU/ml$, fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients younger than 12 years of age, unless goiter was present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

CH patient (CHP)	Gender	Age of diagnosis	Duration of follow- up (years)	TSH (µIU/ml)	fT₄(pmol/L)	hTG (ng/ml)	Thyroid scan (at 3 years old) / ultrasonography
16	Female	10 days	17	26.5	11.3	40.7	Normal
18	Male	3 weeks	20	59.0	13.0	26	Multinodular goiter at 13.5 years
21	Female	3 months	13	20.6	14.1	20	Normal
24	Female	Newborn	6	61.3	13.6	N/A	Normal
38	Male	5 days	7	42.6	14.3	N/A	Normal
40	Male	4 days	10	27.8	18.4	N/A	Normal
45	Male	Newborn	6	217.0	5.0	N/A	Normal
51	Male	4 weeks	18	33.3	12.2	N/A	Normal
55	Male	7 weeks	11	>100	5.0	N/A	Normal
56	Female	5 weeks	25	181	5.0	2.6	Normal
58	Male	5 days	7	37	19.9	N/A	Normal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

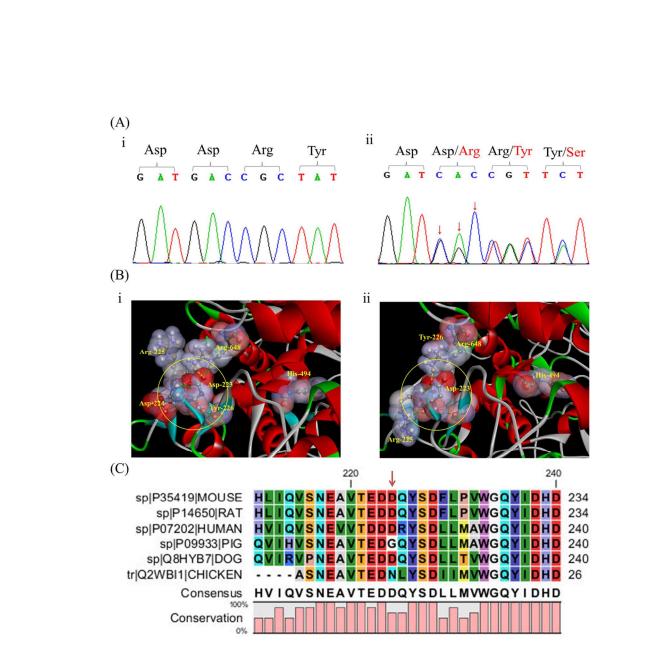
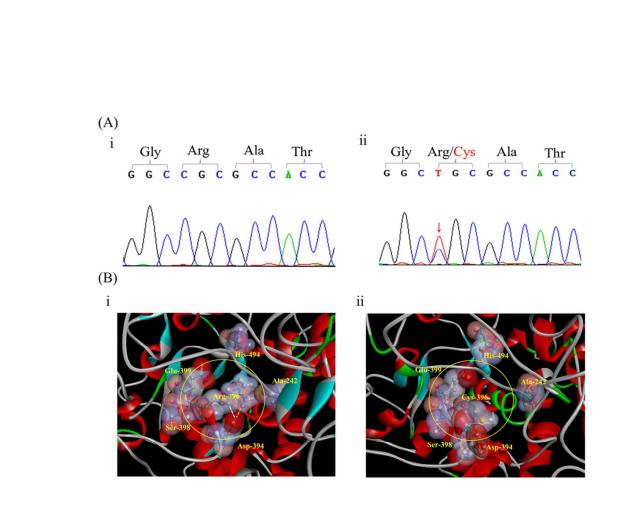



Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alphahelix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow. 110x119mm (300 x 300 DPI)

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

78x60mm (300 x 300 DPI)

BMJ Open

The prevalence of c.2268dup and detection of two novel alterations, c.670_672del and c.1186C>T, in the TPO gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006121.R2
Article Type:	Research
Date Submitted by the Author:	26-Sep-2014
Complete List of Authors:	Mat Junit, Sarni; University of Malaya, Molecular Medicine Lee, Ching Chin; University of Malaya, Molecular Medicine Harun, Fatimah; University of Malaya, Paediatrics Jalaludin, Muhammad Yazid; University of Malaya, Paediatrics Heh, Choon Han; University of Malaya, Pharmacy Othman, Rozana; University of Malaya, Pharmacy
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Genetics and genomics
Keywords:	Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, Thyroid disease < DIABETES & ENDOCRINOLOGY, Paediatric clinical genetics & dysmorphology < GENETICS, MOLECULAR BIOLOGY

1 2	
3	Research
5 6	The prevalence of c.2268dup and detection of two novel alterations, c.670_672del and
7	c.1186C>T, in the <i>TPO</i> gene in a cohort of Malaysian-Chinese with thyroid
8 9	dyshormonogenesis
10 11	Ching Chin Lee ¹ , Fatimah Harun ² , Muhammad Yazid Jalaludin ² , Choon Han Heh ³ , Rozana
12 13	Othman ³ , and Sarni Mat Junit ¹ *
14	¹ Department of Molecular Medicine, ² Department of Paediatrics and ³ Department of
15 16	Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
17 18	
19 20	E-mail addresses:
21 22	Ching Chin Lee: squad_one@yahoo.com, Fatimah Harun: fatimah17@um.edu.my,
23	Muhammad Yazid Jalaludin: <u>yazidj@ummc.edu.my</u> , Choon Han Heh:
24 25	silverbot@hotmail.com, Rozana Othman: rozanaothman@um.edu.my
26 27	
28	* Corresponding author
29	Associate Professor Dr Sarni Mat Junit
30 31	Department of Molecular Medicine
32 33	Faculty of Medicine, University of Malaya,
34 35	50603, Lembah Pantai, Kuala Lumpur, Malaysia
36	Tel: 603-79674718; Fax: 603-79674957
37 38	E-mail: <u>sarni@um.edu.my</u>
39 40	
41	
42 43	
44	
45	
46 47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59 60	1

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

ABSTRACT

Objectives: The c.2268dup mutation in the thyroid peroxidase (*TPO*) gene is the most common *TPO* alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of the c.2268dup mutation in a cohort of Malaysian-Chinese and its possible phenotypic effects.

Setting: Cohort study.

Participants: Twelve biologically unrelated Malaysian-Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high TSH and low fT_4 levels at the time of diagnosis with proven presence of thyroid gland

Primary outcome measure: Screening of the c.2268dup mutation in the *TPO* gene in all patients was carried out using PCR-direct DNA sequencing method.

Secondary outcome measure: Further screening for mutations in other exonic regions of the *TPO* gene was carried out if the patient is a carrier for the c.2268dup mutation

Results: The c.2268dup mutation was detected in 4 out of the 12 patients. Apart from the c.2268dup and a previously documented mutation, c.2647C>T, two novel *TPO* alterations namely c.670_672del and c.1186C>T were also detected in our patients. *In silico* analyses predicted that the novel alterations affect the structure/function of the TPO protein.

Conclusion: The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of *TPO* associated with thyroid dyshormonogenesis.

Strengths and limitations of this study

- The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The c.2268dup in the homozygous form might be associated with the phenotype of dyshormonogenetic goiter.
- Two novel TPO alterations namely c.670 672del and c.1186C>T were also detected . in this study. In silico analyses revealed that the two alterations may affect the normal structure/function of the mutant TPO protein.
- The *in silico* functional analyses could not be further validated due to unavailability of m the patr... thyroid tissue samples from the patients.

Keywords: Congenital hypothyroidism, thyroid peroxidase, c.2268dup, novel mutations,

Malaysian-Chinese

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

INTRODUCTION

Congenital hypothyroidism (CH) is one of the most common endocrine disorders in the world affecting 1 in 3000 - 4000 newborn babies with 10 - 20 % of the cases are due to thyroid dyshormonogenesis [1]. Over the past three decades, numerous cases of dyshormonogenetic CH have been linked to alterations in the *TPO* gene [2-3]. This gene encodes a protein with 933 amino acids in length which plays an important role in thyroid hormones synthesis [4]. Niu *et al.* in 2002 reported a nonsense mutation, c.2268dup, a common cause of dyshormonogenetic CH in Taiwan with molecular proof of a founder effect [5]. Recently, we identified the c.2268dup mutation in a Malaysian-Chinese family with goitrous CH and showed that the mutation leads to the reduction of TPO protein expression with a consequential loss of enzyme activity [6]. The Chinese forms the second largest ethnic group which constitutes about 24.6 % of the 28.3 million Malaysian populations [7]. As the cause of dyshormonogenetic CH in Malaysian-Chinese remains unclear, we therefore embarked on this present study with the aim of providing further data on the incidence of the c.2268dup mutation in Malaysian Chinese and its possible phenotypic effects.

SUBJECTS AND METHODS

Subjects

A cohort (duration of follow-up between 3 and 25 years) of 12 biologically unrelated Chinese patients with dyshormonogenetic CH who attended the Paediatric Endocrine Clinic, University Malaya Medical Centre (UMMC) was recruited for this study. None of the patients are from a consanguineous family. All patients had high TSH and low fT_4 levels at the time of diagnosis with proven presence of thyroid gland (Table 1). Serum thyroglobulin (hTG) level was measured in patients who have reached puberty (12 years old and older) or presented with goiter; except for CHP51 and CHP55 who had been transferred to adult care and other

hospital, respectively (Table 1). Informed written consent was obtained either from patients or their parent/guardian. This study was approved by the UMMC Ethical Committee (Institutional Review Board) in accordance to the ICH-GCP guideline and the Declaration of Helsinki (Reference number, 654.16). Perchlorate discharge test was however, not performed in our patients since permission was not granted by the majority of the patients' parents.

TPO mutation screening

PCR amplification and direct DNA sequencing were performed to screen for alteration of *TPO* gene using genomic DNA extracted from peripheral venous blood. A forward (5'-ACAGGGACGTTGGTGTGTGGG-3') and a reverse (5'-TCAGAAGCACCTTTTGGCG-3') primer were used to PCR-amplify exon 13 of the *TPO* gene (NM_000547.5) where the c.2268dup mutation is located. Further screening for mutations in other exonic regions of the *TPO* gene [8] was carried out if the patient is a carrier for the c.2268dup mutation. To confirm that an alteration in the *TPO* gene is due to a disease-causing mutation instead of a polymorphism, a total of 100 chromosomes from 50 unrelated healthy individuals were also screened for the same mutation.

In silico analyses of the novel c.670_672del (p.Asp224del) and c.1186C>T (p.Arg396Cys) mutations

The effects of the novel mutations on normal TPO activity were evaluated using SIFT and Polyphen-2 algorithms. Alignment of human TPO sequence with those of mouse, rat, pig, dog and chicken was performed using CLC Sequence Viewer 6.5.2 software (CLC bio, Aarhus, Denmark). The homology models of human TPO including the wild type and the two mutant proteins: p.Asp224del and p.Arg396Cys were generated, verified and compared as described before [8].

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

RESULTS AND DISCUSSION

In addition to a patient with homozygous c.2268dup mutation reported in our previous study [6], the c.2268dup was detected in 31 % of the total alleles studied. So far, the mutation was only detected amongst patients with confirmed total iodide organification defect (TIOD) tested using perchlorate discharge test [5, 9]. The test for TIOD was however, not performed in our patients. This could be the reason for the higher prevalence of the c.2268dup mutation in the Taiwanese patients when compared to our study [5, 9]. Nonetheless, the difference in the origin between the Chinese population of Malaysia [10] and Taiwan [11] may also have contributed to this variation. Further studies on the c.2268dup mutation by increasing sample size and collecting information on the ancestral origins of the patients is expected to gain a deeper understanding of the frequency and distribution pattern of the c.2268dup mutation in Malaysian-Chinese population. Two patients in this study, CHP18 and CHP59, were homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation.

Apart from the c.2268dup mutation, a novel, heterozygous c.670_672del mutation in exon 7 of the *TPO* gene was detected in patient CHP58. The deletion of 3 nucleotides (GAC) is predicted to produce an in-frame deletion of a single aspartic acid (p.Asp224del) in the TPO protein (Fig. 1A). Three dimensional (3-D) model analysis of the mutant protein revealed that the deleted Asp-224 residue is located within a beta-strand. The mutation has brought conformational changes to the protein by shortening the length of the beta-strand and also disrupted the correct orientation of hydrogen bonds network between Asp-223 with Asp-224, Arg-225, Tyr-226 and Arg-648. Since the altered sites are located so close to His-494, a proposed iron (heme axial ligand) binding site [12], it could possibly interfere with binding of the iron ion at His-494 or the electron transfer activity of TPO in which His-494 is the source of the electron [13]. It is also predicted that the deletion of Asp-224 will alter the orientation

of a salt bridge between Asp-223 and Arg-648 (Fig. 1B). Interestingly, three aspartic acid residues: Asp-222, Asp-223 and Asp224 present in the same beta-strand that is located on the outer surface of the wild type TPO contribute to a highly negatively-charged region which is also conserved across many species including mice, rat and dog implying that this region is crucial for the normal activity of the protein (Fig. 1C).

Most cases of CH associated with alterations in the TPO gene were caused by either homozygous or compound heterozygous mutations. In the present study, three different alterations in the TPO gene were identified in CHP38 other than the confirmed polymorphism. In addition to the c.2268dup, a novel, heterozygous mutation, c.1186C>T (p.Arg396Cys), was detected in exon 8 and is expected to cause a substitution of arginine to cysteine at codon 396 (Fig 2A). Results from both SIFT and Polyphen-2 analyses indicated that the substitution is damaging and hence implying that this residue is important in the structure/function of the TPO. A study has shown that the Arg-396 is one of the important amino acids which could be involved in stabilizing the transition state of TPO protein during the catalytic intermediate formation [14]. The formation of a stable catalytic intermediate (compound I) of the TPO with H_2O_2 is crucial for thyroid hormone synthesis [15-16]. Catalytic process is initiated by the diffusion of H_2O_2 into the active site of the TPO protein. The α -nucleophile H₂O₂ donates a proton to the distal imidazole ring (His-239) to form a bond with the iron ion bound to residue His-494. After binding takes place, the protein attains transition state to form compound I. The arginine at position 396 is believed to play a role in stabilizing the charge for transition state of the protein through electrostatic interaction [14,17]. Alternatively, it is believed that the arginine contributes to the abnormally low pKa value of the distal histidine in the native resting enzyme. The changes of the pKa value in the transition state of the distal imidaloze are the key to determine the effectiveness of the catalysis process/rate of the compound I formation [17]. Therefore, a substitution from BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

arginine to cysteine can bring devastating effects to the protein stability. In the present study, the 3-D model analysis showed that the p.Arg396Cys mutation has led to the structure alteration through the modification of the hydrogen bond network in the hydrophobic pocket which might interfere with the heme binding at Glu-399 [18] (Fig. 2B).

Apart from the c.2268dup and c.1186C>T mutations, a non-synonymous substitution, c.2647C>T, was also identified in exon 16 of CHP38. The nucleotide alteration leads to a substitution of proline to serine at codon 883 in the C-terminal tail (Val-869 to Leu-933) of the TPO protein and was reported in patient with dyshormonogenetic CH in populations of Korea [19] and Japan [20] before. However, the consequence of the c.2647C>T remains ambiguous since both SIFT and Polyphen-2 analyses result [3] indicates that this alteration is "benign" suggesting that the Pro-883 is probably not critical for structure/function of the TPO and could be a rare polymorphism instead of disease-causing allele.

It is worth noting that CHP18 and the two sisters reported in our previous study [6] with homozygous c.2268dup had developed large multinodular goiters in their mid or late adolescent years. Although it is not known whether the reduction in TPO expression due to c.2268dup can lead to increased risk of malignant transformation, other studies have shown cases of thyroid carcinoma has developed from congenital goiters that are associated with *TPO* mutation [21-22] or with lower/absence of TPO expression [23-24]. Therefore, it is important to have a careful surveillance for potential thyroid neoplasm in patients with c.2268dup mutation.

CONCLUSION

In conclusion, we report two novel alterations which are likely pathogenic in the *TPO* gene, c.670 672del and c.1186C>T, and an association of c.2268dup mutation with

BMJ Open

approximately one third of a cohort of Malaysian-Chinese with dyshormonogenetic CH. This study also supports our previous findings that c.2268dup homozygotes developed dyshormonogenetic goiter in their mid or late adolescent years. These data will be useful in diagnosing or predicting goitrous dyshormonogenetic CH.

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Contributors:

CCL participated in research design, performed the experiments, analyzed the data and wrote the paper; FH and MYJ collected clinical samples and analyzed the clinical data; CHH and RO performed the 3D analyses and interpreted the data; SMJ proposed research design, analyzed the molecular and overall data, and participated in writing the paper.

Funding:

This project was financially supported by grants from the Ministry of Higher Education, Malaysia (H-20001-00-E000009, FP050/2010B and FP034-2014A).

Competing interests: None declared

Ethics approval: The University of Malaya Medical Centre (UMMC) Ethical Committee

Data sharing statement: No additional data are available

FIGURE-LEGEND

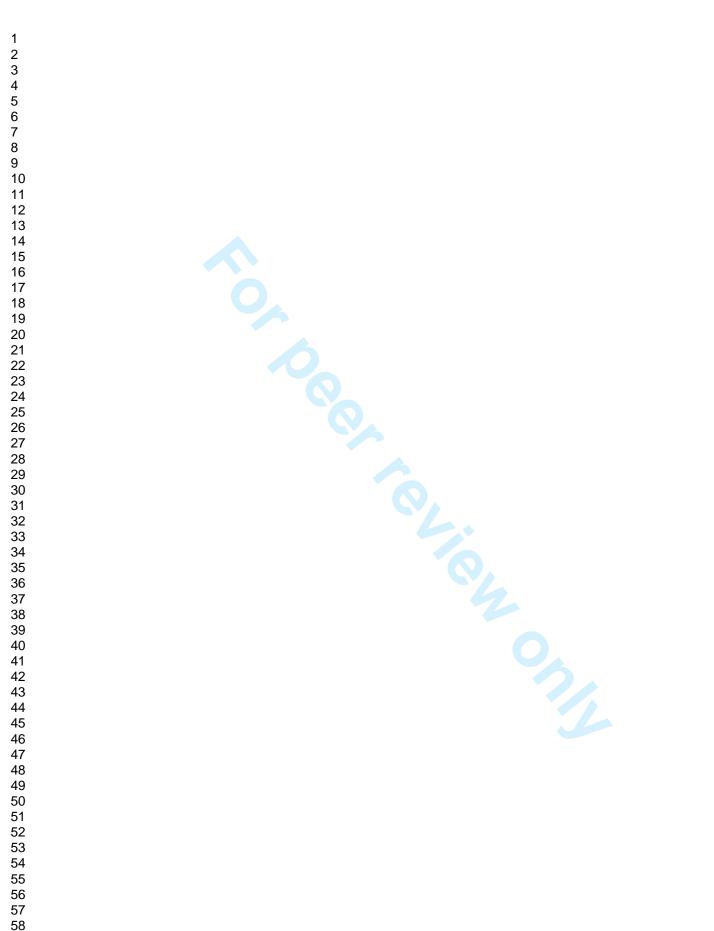

Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, betapleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow.

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a

substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, $cord = < 25.0 \ \mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = 0.6 - 10.0 $\mu IU/ml$; 1 month onwards = 0.6 - 8.0 $\mu IU/ml$, fT₄, $cord = 28.4 - 68.4 \ pmol/L$; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients below 12 years of age, unless goiter is present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

REFERENCES

1. Delange F. Neonatal screening for congenital hypothyroidism in Europe. Report of the Newborn Committee of the European Thyroid Association. Acta Endocrinol Suppl (Copenh) 1979;**223**:3-29

2. Cangul H, Aycan Z, Olivera-Nappa A, et al. Thyroid dyshormonogenesis is mainly caused by TPO mutations in consanguineous community. Clin Endocrinol (Oxf). 2013;**79**(2):275-81.

 Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol Cell Endocrinol 2010;**322**(1-2):38-43 doi: S0303-7207(10)00066-3 [pii]

10.1016/j.mce.2010.02.008[published Online First: Epub Date]|.

- 4. Kimura S, Kotani T, McBride OW, et al. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A 1987;84(16):5555-9
- 5. Niu DM, Hwang B, Chu YK, et al. High prevalence of a novel mutation (2268 insT) of the thyroid peroxidase gene in Taiwanese patients with total iodide organification defect, and evidence for a founder effect. J Clin Endocrinol Metab 2002;**87**(9):4208-12
- Lee CC, Harun F, Jalaludin MY, et al. Functional Analyses of c.2268dup in Thyroid Peroxidase Gene Associated with Goitrous Congenital Hypothyroidism. BioMed Research International 2014;2014:370538 doi: 10.1155/2014/370538[published Online First: Epub Date]|.
- 7. Population distribution and basic demographic characteristic report 2010. Avaiable online: <u>http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215&Itemid</u> <u>=89&lang=en</u> (accessed on 22 January 2014). 2010.
- Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Mat Junit S. A Novel, Homozygous c.1502T>G (p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian Sisters with Congenital Hypothyroidism and Multinodular Goiter. Int J Endocrinol 2013;2013:987186 doi: 10.1155/2013/987186[published Online First: Epub Date]|.
- Wu JY, Shu SG, Yang CF, Lee CC, et al. Mutation analysis of thyroid peroxidase gene in Chinese patients with total iodide organification defect: identification of five novel mutations. J Endocrinol 2002;172(3):627-35 doi: JOE04388 [pii][published Online First: Epub Date]].
- 10. Lee KH, Tan CB. The Chinese in Malaysia. New York: Oxford University Press, 1999.
- 11. Hsiau Ac. Contemporary Taiwanese cultural nationalism. London ; New York: Routledge, 2000.
- Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase detected in patients with total iodide organification defects. J Clin Endocrinol Metab 1997;82(2):649-53
- 13. Nordlund TM. *Quantitative understanding of biosystems : an introduction to biophysics.* Boca Raton: Taylor & Francis, 2011.
- 14. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the alternatively spliced form, TPO-2. Thyroid 1998;8(2):185-91
- 15. Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. J Biol Chem 1984;**259**(1):197-205
- 16. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem 1984;**259**(22):13783-90

- 17. Dunford HB. How do enzymes work? Effect of electron circuits on transition state acid dissociation constants. J Biol Inorg Chem 2001;6(8):819-22 doi: 10.1007/s007750100260[published Online First: Epub Date]].
- Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999;81(5):557-62 doi: S0300-9084(99)80110-2 [pii][published Online First: Epub Date]].
- Lee ST, Lee DH, Kim JY, et al. Molecular screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol (Oxf) 2011;75(5):715-21 doi: 10.1111/j.1365-2265.2011.04156.x[published Online First: Epub Date]|.
- 20. Umeki K, Yamamoto I, Yukizane S, et al. Congenital hypothyroidism caused by a unique thyroid peroxidase allele containing two mutations, C1708T and C2737T. J Pediatr Endocrinol Metab 2004;17(2):231-4
- 21. Medeiros-Neto G, Gil-Da-Costa MJ, Santos CL, Medina AM, Silva JC, Tsou RM, Sobrinho-Simoes M. Metastatic thyroid carcinoma arising from congenital goiter due to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab 1998;**83**(11):4162-6
- 22. Chertok Shacham E, Ishay A, Irit E, et al. Tenenbaum-Rakover Y. Minimally invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular goiter due to thyroid peroxidase gene mutation. Thyroid 2012;22(5):542-6 doi: 10.1089/thy.2011.0478[published Online First: Epub Date]].
- 23. Di Cristofaro J, Silvy M, Lanteaume A, et al. Expression of tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 2006;13(2):485-95 doi: 13/2/485 [pii]10.1677/erc.1.01164[published Online First: Epub Date]|.
- 24. Finley DJ, Zhu B, Barden CB, et al. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 2004;**240**(3):425-36; discussion 36-7 doi: 00000658-200409000-00004 [pii][published Online First: Epub Date]].

 Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, $cord = < 25.0 \ \mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = 0.6 - 10.0 $\mu IU/ml$; 1 month onwards = 0.6 - 8.0 $\mu IU/ml$, fT₄, cord = 28.4 - 68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients younger than 12 years of age, unless goiter was present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

CH patient (CHP)	Gender	Age of diagnosis	Duration of follow- up (years)	TSH (μIU/ml)	fT4 (pmol/L)	hTG (ng/ml)	Thyroid scan (at 3 years old) / ultrasonography
16	Female	10 days	17	26.5	11.3	40.7	Normal
18	Male	3 weeks	20	59.0	13.0	26	Multinodular goiter at 13.5 years
21	Female	3 months	13	20.6	14.1	20	Normal
24	Female	Newborn	6	61.3	13.6	N/A	Normal
38	Male	5 days	7	42.6	14.3	N/A	Normal
40	Male	4 days	10	27.8	18.4	N/A	Normal
45	Male	Newborn	6	217.0	5.0	N/A	Normal
51	Male	4 weeks	18	33.3	12.2	N/A	Normal
55	Male	7 weeks	11	>100	5.0	N/A	Normal
56	Female	5 weeks	25	181	5.0	2.6	Normal
58	Male	5 days	7	37	19.9	N/A	Normal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

10

2 3 4										
5 6	6	59	Male	3 months	15	>100	0.5	283	Normal	
7 8 9 10 11 12 13 14 15 16 17 18 9 21 22 23 24 25 26 27 8 9 30 31 23 34 56 37 8 9 40					22		ie.	0	Normal	
41 42 43 44										17
45 46			For	peer review o	only - http:	//bmjopen.bmj	.com/site/about	t/guidelines.xhtml		
47 48	scted by copyright.	t by guest. Prote	April 18, 202	no \moɔ.įmd.nəo	http://bmjop	monî bəbsolnwoC	5 January 2015. I	no 121800-4102-n9q	ojmd\3511.01 ss bədzilduq	BMJ Open: first p

Research

The prevalence of c.2268dup and detection identification of two novel alterations mutations, c.670_672del and c.1186C>T, and the prevalence of c.2268dup in the *TPO* gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis

Ching Chin Lee¹, Fatimah Harun², Muhammad Yazid Jalaludin², Choon Han Heh³, Rozana Othman³, and Sarni Mat Junit¹*

¹Department of Molecular Medicine, ²Department of Paediatrics and ³Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.

E-mail addresses:

Ching Chin Lee: <u>squad_one@yahoo.com</u>, Fatimah Harun: <u>fatimah17@um.edu.my</u>, Muhammad Yazid Jalaludin: <u>yazidj@ummc.edu.my</u>, Choon Han Heh: <u>silverbot@hotmail.com</u>, Rozana Othman: <u>rozanaothman@um.edu.my</u>

> * Corresponding author Associate Professor Dr Sarni Mat Junit Department of Molecular Medicine Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia Tel: 603-79674718; Fax: 603-79674957 E-mail: sarni@um.edu.my

ABSTRACT

Objectives: The c.2268dup mutation in the thyroid peroxidase (*TPO*) gene is the most common *TPO* defectalteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of *TPO* genethe c.2268dup mutation in a cohort of Malaysian-Chinese and its possible phenotypic effects.

Setting: Cohort study.

Participants: Twelve <u>biologically</u> unrelated <u>Malaysian-Chinese</u> patients with congenital hypothyroidism were recruited in this study. All patients showed high TSH and low fT_4 levels at the time of diagnosis with proven presence of thyroid gland

Primary outcome measure: Screening of the c.2268dup mutation in the *TPO* gene in all patients was carried out using PCR-direct DNA sequencing method.

Secondary outcome measure: Further screening for mutations in other exonic regions of the *TPO* gene was carried out if the patient is a carrier for the c.2268dup mutation

Results: The c.2268dup mutation was detected in 4 out of the 12 patients. <u>A homozygous</u> patient, CHP59 had developed large multinodular goiter at the age of 13.5 years which supports our previous findings that c.2268dup homozygotes developed dyshormonogenetic goiter in their mid or late adolescent years. Apart from the c.2268dup and a<u>Apart from the c.2268dup and a previously</u> documented mutation, c.2647C>T, two novel *TPO* alterations mutations namely c.670_672del and c.1186C>T were also detected in our patients. *In silico* analyses predicted that the novel mutations affect the structure/function of the TPO protein.

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Italic, Strikethrough

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, English (U.S.)

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Conclusion: The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of *TPO* associated with thyroid dyshormonogenesis.

Strengths and limitations of this study

- The c.2268dup was detected in approximately one third of the Malaysian-Chinese with thyroid dyshormonogenesis. The c.2268dup in the homozygous form might be associated with the phenotype of dyshormonogenetic goiter.
- Two novel TPO mutations alterations namely c.670_672del and c.1186C>T were also detected in this study. In silico analyses revealed that the two mutations-alterations may affect the normal structure/function of the mutant TPO protein.
- The *in silico* functional analyses could not be further validated due to unavailability of thyroid tissue samples from the patients.

Keywords: Congenital hypothyroidism, *thyroid peroxidase*, c.2268dup, novel mutations, Malaysian-Chinese

INTRODUCTION

Congenital hypothyroidism (CH) is one of the most common endocrine disorders in the world affecting 1 in 3000 - 4000 newborn babies wherewith 10 - 20 % of the cases wereare due to thyroid dyshormonogenesis [1]. Over the past three decades, numerous cases of dyshormonogenetic CH have been linked to defeetsalterations in the *TPO* gene [2-3]. This gene encodes a protein with 933 amino acids in length which plays an important role in thyroid hormones synthesis [4]. Niu *et al.* in 2002 reported a nonsense mutation, c.2268dup, a common cause of dyshormonogenetic CH in Taiwan with molecular proof of a founder effect where the ancestors of these patients originated from the southern province of China [4].[5]. Recently, we identified the c.2268dup mutation in a Malaysian-Chinese family with goitrous CH and showed that the mutation leads to the reduction of TPO protein expression with a consequential loss of enzyme activity [6]. The Chinese forms the second largest ethnic group which constitutes about 24.6 % of the 28.3 million Malaysian populations [7]. As the cause of dyshormonogenetic CH in Malaysian-Chinese remains unclear, we therefore embarked on this present study with the aim of providing further data on the incidence of *TPO* genethe e.2268dup mutation in Malaysian Chinese and its possible phenotypic effects.

SUBJECTS AND METHODS

Subjects for the TPO mutation screening

A cohort (duration of follow-up between 3 and 25 years) of 12 <u>biologically</u> unrelated Chinese patients with dyshormonogenetic CH who attended the Paediatric Endocrine Clinic, University Malaya Medical Centre (UMMC) was recruited for this study. <u>Mutational</u> screening was performed on genomic DNA extracted from peripheral venous blood of all patients who<u>None of the patients are from a consanguineous family</u>. All patients had high TSH and low fT₄ levels at the time of diagnosis with proven presence of thyroid gland (Table Formatted: Font: (Default) Times New Roman, Font color: Red Formatted: Font: (Default) Times New BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest, Protected by copyright

Roman, Font color: Red

Formatted: Font color: Red Formatted: Font color: Red Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red

1). Serum thyroglobulin (hTG) level was measured in patients who have reached puberty (12 years old and older) or presented with goiter; except for CHP51 and CHP55 who had been transferred to adult care and other hospital, respectively (Table 1). Informed written consent was obtained either from patients or their parent/guardian. This study was approved by the UMMC Ethical Committee (Institutional Review Board) in accordance to the ICH-GCP guideline and the Declaration of Helsinki (Reference number, 654.16). Perchlorate discharge test was however, not performed in our patients since permission was not granted by the majority of the patients' parents.

<u>TPO mutation screening S1).</u>

PCR amplification and direct DNA sequencing were performed to screen for alteration of TPO gene using genomic DNA extracted from peripheral venous blood, A forward (5'-ACAGGGACGTTGGTGTGTGG-3') and a reverse (5'-TCAGAAGCACCTTTTGGCG-3') primer were used to PCR-amplify exon 13 of the TPO gene (NM 000547.5) where the c.2268dup mutation is located. Further screening for mutations in other exonic regions of the TPO gene [8] was carried out if the patient is a carrier for the c.2268dup mutation. To confirm that an alteration in the TPO gene is due to a disease-causing mutation instead of a polymorphism, a total of 100 chromosomes from 50 unrelated healthy individuals were also screened for the same mutation. Informed written consent was obtained either from patients their parent/guardian. This study Wag approved **Board**) in accordance to the Helsinki (Reference number, 654.16).

In silico analyses of the novel c.670_672del (p.Asp224del) and c.1186C>T (p.Arg396Cys) mutations

Roman, Font color: Red

Formatted: Font: (Default) Times New

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font color: Red

BMJ Open: first published as 10, 1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.tmj.com/ on April 18, 2024 by guest. Protected by copyright

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Font: (Default) Times New Roman, Font color: Red, Malay (Malaysia)

The effects of the novel mutations on normal TPO activity were evaluated using SIFT and Polyphen-2 algorithms. Alignment of human TPO sequence with those of mouse, rat, pig, dog and chicken was performed using CLC Sequence Viewer 6.5.2 software (CLC bio, Aarhus, Denmark). The homology models of human TPO including the wild type and the two mutant proteins: p.Asp224del and p.Arg396Cys were generated, verified and compared as described before [8].

RESULTS AND DISCUSSION

The In addition to a patient with homozygous c.2268dup mutation was detected in 4 out of the total 12 unrelated patients in this study. Two patients, CHP18 and CHP59, were homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation. In addition to a case reported in our previous study [6], the c.2268dup was detected in only 31 % of the total alleles studied, lower than what were reported in the studies by Niu et al. (2002) (86 %) [4] and Wu et al. (2002) (40 %) [8]. For their study, only. So far, the mutation was only detected amongst patients with confirmed total iodide organification defect (TIOD) throughtested using perchlorate discharge test were screened for the TPO gene mutations. In contrast, the perchlorate [5, 9]. The test for TIOD was however, not performed in our patients since permission was not granted by the majority of the patients' parents. This could be the reason for the higher prevalence of the c.2268dup mutation in the Taiwanese patients when compared to our study-[5, 9]. Nonetheless, the difference in the origin between the Chinese population of Malaysia [10] and Taiwan [11] may also have contributed to this variation. Further studies on the c.2268dup mutation by increasing sample size and collecting information on the ancestral origins of the patients is expected to gain a deeper understanding of the frequency and distribution pattern of the c.2268dup mutation in Malaysian-Chinese

4	Formatted:	Font	color:	Red
	i onnattea.	1 Onc	. 1010	ncu

	Formatted:	Font color:	Red
-+	Formatted:	Font color:	Red
	Formatted:	Font color:	Red

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.tmj.com/on April 18, 2024 by guest. Protected by copyright

Formatted:	Font color:	Red
Formatted:	Font color:	Red
Formatted:	Font color:	Red
Formatted:	Font color:	Red
Formatted:	Font color:	Red
Formatted:	Font color:	Red, Highlight
Formatted:	Font color:	Red

population. <u>Two patients in this study, CHP18 and CHP59</u>, were homozygotes while another two, CHP38 and CHP58, were heterozygotes for the mutation.

Formatted: Font color: Red

Apart from the c.2268dup mutation, a novel, heterozygous c.670 672del mutation in exon 7 of the TPO gene was detected in patient CHP58. The deletion of 3 nucleotides (GAC) is predicted to produce an in-frame deletion of a single aspartic acid (p.Asp224del) in the TPO protein (Fig. 1A). Three dimensional (3-D) model analysis of the mutant protein revealed that the deleted Asp-224 residue is located within a beta-strand. The mutation has brought conformational changes to the protein by shortening the length of the beta-strand and also disrupted the correct orientation of hydrogen bonds network between Asp-223 with Asp-224, Arg-225, Tyr-226 and Arg-648. Since the altered sites are located so close to His-494, a proposed iron (heme axial ligand) binding site [12], it could possibly interfere with binding of the iron ion at His-494 or the electron transfer activity of TPO wherein which His-494 is the source of the electron [13]. It is also predicted that the deletion of Asp-224 will alter the orientation of a salt bridge between Asp-223 and Arg-648 (Fig. 1B). Interestingly, three aspartic acid residues: Asp-222, Asp-223 and Asp224 present in the same beta-strand that is located on the outer surface of the wild type TPO contribute to a highly negatively-charged region which is also conserved across many species including mice, rat and dog implying that this region is crucial for the normal activity of the protein (Fig. 1C).

Most cases of CH associated with <u>defectsalterations</u> in the *TPO* gene were caused by either homozygous or compound heterozygous mutations. In the present study, three different <u>mutationsalterations</u> in <u>the</u> *TPO* gene were identified in CHP38-<u>other than the confirmed</u> <u>polymorphism</u>. In addition to the c.2268dup, a novel<u>heterozygous</u> mutation, c.1186C>T (p.Arg396Cys), was detected in exon 8 and is expected to cause a substitution of arginine to cysteine at codon 396 (Fig 2A). Results from both SIFT and Polyphen-2 analyses indicated Formatted: Font: (Default) Times New Roman, Font color: Red

BMJ Open

that the substitution is damaging and hence implying that this residue is important in the structure/function of the TPO. A study has shown that the Arg-396 is one of the important amino acids which could be involved in stabilizing the transition state of TPO protein during the catalytic intermediate formation [14]. The formation of a stable catalytic intermediate (compound I) of the TPO with H_2O_2 is crucial for thyroid hormone synthesis [15-16]. Catalytic process is initiated by the diffusion of H_2O_2 into the active site of the TPO protein. The α -nucleophile H₂O₂ donates a proton to the distal imidazole ring (His-239) to form a bond with the iron ion bound to residue His-494. After binding takes place, the protein attains transition state to form compound I. The arginine at position 396 is believed to play a role in stabilizing the charge for transition state of the protein through electrostatic interaction [14,17]. Alternatively, it is believed that the arginine contributes to the abnormally low pKa value of the distal histidine in the native resting enzyme. The changes of the pKa value in the transition state of the distal imidaloze are the key to determine the effectiveness of the catalysis process/rate of the compound I formation [17]. Therefore, a substitution from arginine to cysteine can bring devastating effects to the protein stability. In the present study, the 3-D model analysis showed that the p.Arg396Cys mutation has led to the structure alteration through the modification of the hydrogen bond network in the hydrophobic pocket which might interfere with the heme binding at Glu-399 [18] (Fig. 2B).

-Apart from the c.2268dup and c.1186C>T mutations, a non-synonymous substitution, c.2647C>T-mutation, was also identified in exon 16 of CHP38, where it. The nucleotide alteration leads to a substitution of proline to serine at codon 883 in the C-terminal tail (Val-869 to Leu-933) of the TPO protein- and was reported in patient with dyshormonogenetic CH in populations of Korea [19] and Japan [20] before. However, the consequence of the c.2647C>T remains ambiguous since both SIFT and Polyphen-2 analyses result from a previous study [3] indicates that this mutationalteration is "benign" suggesting

1				
1	Formatted:	Font	color	Auto

	BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjop
Formatted: Font color: Auto	nd:
Formatted: No Spacing, Left, Indent: First line: 0.5", Line spacing: Double, Tab stops: Not at 0"	nj.com/
Formatted: Font color: Red	ON
Formatted: Font color: Red	Apri
Formatted: Font color: Red	JL II
Formatted: Font color: Red	3, 2
	8, 2024 by
Formatted: Font color: Red	g
Formatted: Font color: Red, Highlight	/ guest. Pr
Formatted: Font color: Red, Highlight	-
Formatted: Font color: Red	ote
Formatted: Font color: Red	ctec
	d by
	60
	tected by copyrigh
	ght.

Formatted: Font color: Red
Formatted: Font color: Red, Highlight
Formatted: Font color: Red, Highlight
Formatted: Font color: Red
Formatted: Font color: Red

that the Pro-883 is probably not critical for structure/function of the TPO and does not modify TPO function. Interestingly, this mutation had also been reported in populations of Korea [18] and Japan [19]. Whether the c.2647C>T mutation is possibly a rare polymorphism is not known. Despite the *in silico* findings indicated that the substitution of Pro-883 to serine might not be critical to the protein structure/function, previously reported cases showed that patients associated with this mutation presented with severe dyshormonogenetic CH [18-19]. Since Human Splicing Finder (HSF) analysis predicted that the c.2647C>T mutation interrupts the sequences recognized by ESE proteins (data not shown), we therefore could not exclude that the sequence alteration might possibly regulate the splicing activity of the TPO pre mRNA and lead to CH in these patients. could be a rare polymorphism instead of disease-causing allele.

It is worth noting that patients with homozygous c.2268dup inclusive of <u>CHP18 and</u> the two patientssisters reported in our previous study [6], except for patient CHP59 who was 12 year old at the time of the study,] with homozygous c.2268dup had developed large multinodular goitergoiters in their mid or late adolescent years. Although it is not known whether the reduction in TPO expression due to c.2268dup can lead to increased risk of malignant transformation, other studies have shown cases of thyroid carcinoma has developed from congenital goitergoiters that isare associated with *TPO* mutation [21-22] or with lower/ absence of TPO expression [23-24]. Therefore, it is important to have a careful surveillance for potential thyroid neoplasm in patients with c.2268dup mutation.

CONCLUSION

In conclusion, we report two novel alterations which are likely pathogenic in the *TPO* gene, c.670_672del and c.1186C>T, and reveal the association of c.2268dup mutation with

Formatted: Font color: Red

Formatted: Font color: Red, Pattern: Clear (White)

approximately one third of a cohort of Malaysian-Chinese with dyshormonogenetic CH. This study also support our previous findings that c.2268dup homozygotes developed dyshormonogenetic goiter in their mid or late adolescent years. These data will be useful in diagnosing or predicting goitrous dyshormonogenetic CH.

Contributors:

CCL participated in research design, performed the experiments, analyzed the data and wrote the paper; FH and MYJ collected clinical samples and analyzed the clinical data; CHH and RO performed the 3D analyses and interpreted the data; SMJ proposed research design, analyzed the molecular and overall data, and participated in writing the paper.

Funding:

This project was financially supported by grants from the Ministry of Higher Education, Malaysia (H-20001-00-E000009-and, FP050/2010B) and Postgraduate Research Fund, University of Malaya (PV116-2012A). and FP034-2014A).

Competing interests: None declared

Ethics approval: The University of Malaya Medical Centre (UMMC) Ethical Committee

Data sharing statement: No additional data are available

Formatted: Font: (Default) Times New Roman, Font color: Red

Formatted: Left, Space After: 10 pt

Formatted: Font: (Default) Times New Roman, Font color: Red, Strikethrough

REFERENCES

1. Delange F. Neonatal screening for congenital hypothyroidism in Europe. Report of the Newborn Committee of the European Thyroid Association. Acta Endocrinol Suppl (Copenh) 1979;**223**:3-29

2. Cangul H, Aycan Z, Olivera-Nappa A, Saglam H, Schoenmakers NA, Boelaert K, et al. Thyroid dyshormonogenesis is mainly caused by TPO mutations in consanguineous community. Clin Endocrinol (Oxf). 2013;**79**(2):275-81.

 Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol Cell Endocrinol 2010;322(1-2):38-43 doi: S0303-7207(10)00066-3 [pii]

10.1016/j.mce.2010.02.008[published Online First: Epub Date]|.

- 4. Kimura S, Kotani T, McBride OW, Umeki K, Hirai K, Nakayama T, Ohtaki S. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A 1987;84(16):5555-9
- 5. Niu DM, Hwang B, Chu YK, Liao CJ, Wang PL, Lin CY. High prevalence of a novel mutation (2268 insT) of the thyroid peroxidase gene in Taiwanese patients with total iodide organification defect, and evidence for a founder effect. J Clin Endocrinol Metab 2002;87(9):4208-12
- Lee CC, Harun F, Jalaludin MY, Lim CY, Ng KL, Mat Junit S. Functional Analyses of c.2268dup in Thyroid Peroxidase Gene Associated with Goitrous Congenital Hypothyroidism. BioMed Research International 2014;2014:370538 doi: 10.1155/2014/370538[published Online First: Epub Date]].
- 7. Population distribution and basic demographic characteristic report 2010. Available online: <u>http://www.statistics.gov.my/portal/index.php?option=com_content&id=1215&Itemid=89&lang=en</u> (accessed on 22 January 2014). 2010.
- Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Mat Junit S. A Novel, Homozygous c.1502T>G (p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian Sisters with Congenital Hypothyroidism and Multinodular Goiter. Int J Endocrinol 2013;2013:987186 doi: 10.1155/2013/987186[published Online First: Epub Date]].
- 9. Wu JY, Shu SG, Yang CF, Lee CC, Tsai FJ. Mutation analysis of thyroid peroxidase gene in Chinese patients with total iodide organification defect: identification of five novel mutations. J Endocrinol 2002;172(3):627-35 doi: JOE04388 [pii][published Online First: Epub Date]|.
- 10. Lee KH, Tan CB. The Chinese in Malaysia. New York: Oxford University Press, 1999.
- Hsiau Ac. Contemporary Taiwanese cultural nationalism. London ; New York: Routledge, 2000.
- Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase detected in patients with total iodide organification defects. J Clin Endocrinol Metab 1997;82(2):649-53
- 13. Nordlund TM. *Quantitative understanding of biosystems : an introduction to biophysics.* Boca Raton: Taylor & Francis, 2011.
- 14. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the alternatively spliced form, TPO-2. Thyroid 1998;8(2):185-91
- Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. J Biol Chem 1984;259(1):197-205

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyrigh-

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

- 16. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem 1984;259(22):13783-90
- Dunford HB. How do enzymes work? Effect of electron circuits on transition state acid dissociation constants. J Biol Inorg Chem 2001;6(8):819-22 doi: 10.1007/s007750100260[published Online First: Epub Date]].
- Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999;81(5):557-62 doi: S0300-9084(99)80110-2 [pii][published Online First: Epub Date]].
- 19. Lee ST, Lee DH, Kim JY, Kwon MJ, Kim JW, Hong YH, Lee YW, Ki CS. Molecular screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol (Oxf) 2011;75(5):715-21 doi: 10.1111/j.1365-2265.2011.04156.x[published Online First: Epub Date]].
- 20. Umeki K, Yamamoto I, Yukizane S, Kotani T. Congenital hypothyroidism caused by a unique thyroid peroxidase allele containing two mutations, C1708T and C2737T. J Pediatr Endocrinol Metab 2004;17(2):231-4
- Medeiros-Neto G, Gil-Da-Costa MJ, Santos CL, Medina AM, Silva JC, Tsou RM, Sobrinho-Simoes M. Metastatic thyroid carcinoma arising from congenital goiter due to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab 1998;83(11):4162-6
- 22. Chertok Shacham E, Ishay A, Irit E, Pohlenz J, Tenenbaum-Rakover Y. Minimally invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular goiter due to thyroid peroxidase gene mutation. Thyroid 2012;22(5):542-6 doi: 10.1089/thy.2011.0478[published Online First: Epub Date].
- 23. Di Cristofaro J, Silvy M, Lanteaume A, Marcy M, Carayon P, De Micco C. Expression of tpo mRNA in thyroid tumors: quantitative PCR analysis and correlation with alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 2006;13(2):485-95 doi: 13/2/485 [pii]10.1677/erc.1.01164[published Online First: Epub Date]].
- 24. Finley DJ, Zhu B, Barden CB, Fahey TJ, 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 2004;240(3):425-36; discussion 36-7 doi: 00000658-200409000-00004 [pii][published Online First: Epub Date]].

FIGURE-LEGEND

Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670_672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, betapleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow.

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, cord = $< 25.0 \,\mu$ IU/ml; 1 to 3 days = 2.5 - 13.0 μ IU/ml; less than a month = 0.6 - 10.0 μ IU/ml; 1 month onwards = 0.6 - 8.0 μ IU/ml, fT₄, cord = 28.4 -68.4 pmol/L; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients below 12 years of age, unless goiter is present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

 Table 1: Profiles of Malaysian-Chinese patients with CH showing the respective thyroid function at the time of diagnosis. Gray shading indicates patients with the c.2268dup mutation. Reference range for: TSH, $cord = < 25.0 \ \mu IU/ml$; 1 to 3 days = 2.5 - 13.0 $\mu IU/ml$; less than a month = 0.6 - 10.0 $\mu IU/ml$; 1 month onwards = 0.6 - 8.0 $\mu IU/ml$, fT₄, $cord = 28.4 - 68.4 \ pmol/L$; 1 month = 20.0 - 28.4 pmol/L; 4 months onwards = 9.0 - 24.5 pmol/L and hTG, (0-55.0 ng/ml). N/A: hTG level was not measured in patients younger than 12 years of age, unless goiter was present. CHP51 and CHP55 were transferred to adult care and other hospital respectively.

CH patient (CHP)	Gender	Age of diagnosis	Duration of follow- up (years)	TSH (µIU/ml)	fT₄(pmol/L)	hTG (ng/ml)	Thyroid scan (at 3 years old) / ultrasonography
16	Female	10 days	17	26.5	11.3	40.7	Normal
18	Male	3 weeks	20	59.0	13.0	26	Multinodular goiter at 13.5 years
21	Female	3 months	13	20.6	14.1	20	Normal
24	Female	Newborn	6	61.3	13.6	N/A	Normal
38	Male	5 days	7	42.6	14.3	N/A	Normal
40	Male	4 days	10	27.8	18.4	N/A	Normal
45	Male	Newborn	6	217.0	5.0	N/A	Normal
51	Male	4 weeks	18	33.3	12.2	N/A	Normal
55	Male	7 weeks	11	>100	5.0	N/A	Normal
56	Female	5 weeks	25	181	5.0	2.6	Normal
58	Male	5 days	7	37	19.9	N/A	Normal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

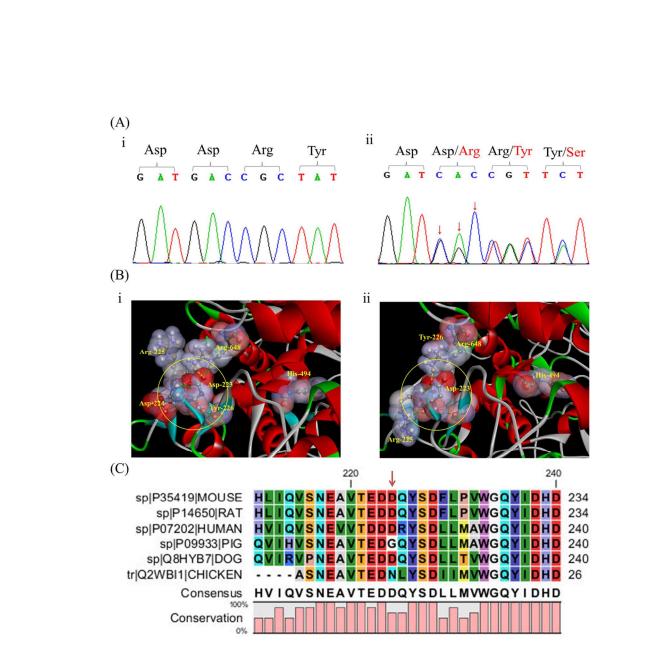
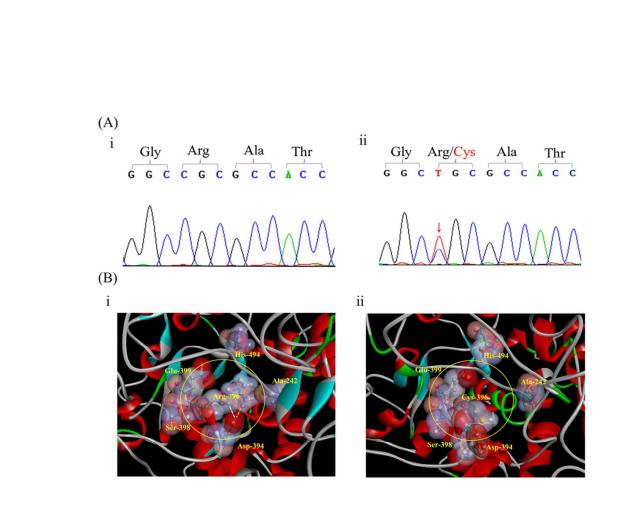



Figure 1: (A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP51 who is a heterozygote for the c.670 672del mutation (ii). The three deleted nucleotides (GAC) are indicated by the arrows. The sequence alteration is predicted to produce an in-frame deletion of a single amino acid, aspartic acid (p.Asp224del). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Asp224del (ii) TPO proteins. The protein backbones are presented as ribbons (alphahelix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region. Residues Arg-223 to Tyr-226, Arg-648 and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and it's binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii). (C) Multiple-sequence alignment of human TPO with those of mouse, rat, pig, dog and chicken. The alignment data show that the negatively charge region (Asp-222, Asp-223 and Asp224) is conserved amongst human and many different animal species. The position of the deleted residue (p.Asp224del) is indicated by the arrow. 110x119mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2014-006121 on 5 January 2015. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Figure 2

(A) DNA sequencing profiles. Electropherogram profiles of a control with a wild type allele (i), and CHP38 who is a heterozygote for the c.1186C>T mutation (ii). The single nucleotide transition is indicated by the arrow. The sequence alteration is predicted to cause a substitution of arginine to cysteine at codon 396 (p.Arg396Cys). (B) Homology models illustrating the 3-D orientation of the wild type (i) and mutant p.Arg396Cys (ii) TPO proteins. The protein backbones are presented as ribbons (alpha-helix in red, beta-pleated sheet in cyan, coils in grey, and turns in green). Hydrogen bonds are highlighted in: 1) green, hydrogen bond under the normal criteria, 2) brown, hydrogen bond/salt bridge which forms between the O atom of the carboxylate group and the H atom of an ammonium group in highly charged region, 3) white, hydrogen bond between O atom of the carboxylate group and H atom on an electro-positive C atom. Residues Ala-242, Arg-396/Cys-396, Ser398, Glu-399 (heme binding site) and His-494 (iron binding site) are represented as Connolly surface to allow the visualization of the conformational changes in the TPO protein and its binding pocket. The Connolly surface is colored according to electrostatic potential spectrum (negative potential, in red, to neutral, in white, to positive, in blue). Regions in yellow rings highlight the interrupted hydrogen bond network observed when the wild type (i) changes to the mutant TPO protein (ii).

78x60mm (300 x 300 DPI)