

Stem cell transplantation of matched sibling donors compared with immunosuppressive therapy for acquired severe aplastic anemia – a Cochrane Systematic Review

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005039
Article Type:	Research
Date Submitted by the Author:	12-Feb-2014
Complete List of Authors:	Peinemann, Frank; University of Cologne, Children's Hospital Labeit, Alexander; University of Illinois College of Medicine, Center for Outcomes Research
Primary Subject Heading :	Haematology (incl blood transfusion)
Secondary Subject Heading:	Paediatrics, Pharmacology and therapeutics
Keywords:	CHEMOTHERAPY, Anaemia < HAEMATOLOGY, Bone marrow transplantation < HAEMATOLOGY, Paediatric oncology < ONCOLOGY, STATISTICS & RESEARCH METHODS, TRANSPLANT MEDICINE

Page 1 of 27

BMJ Open

1 2		Subject: Transplantation for SAA
- 3 4	1	Stem cell transplantation of matched sibling donors compared with immunosuppressive ther-
5 6	2	apy for acquired severe aplastic anemia – a Cochrane Systematic Review*
7 8	3	Frank Peinemann, ^{1†} Alexander Labeit, ²
9 10	4	¹ Children's Hospital, University of Cologne, Cologne, Germany
11 12	5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
13	6	USA
14 15	7	
16 17	8	FP: pubmedprjournal@gmail.com
18	9	AL: <u>alabeit.publications@gmail.com</u>
19 20	10	
21 22	11	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
23	12	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
24 25	13	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
26 27	14	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
28	15	to feedback, and the CDSR should be consulted for the most recent version of the review.
29 30	16	
31 32	17	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
33	18	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
34 35	19	Phone: +49-176-31130745.
36 37	20	
38 39	21	Keywords
40 41		
42	22	severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-
43 44	23	pressive therapy, systematic review
45 46	24	
47	25	
48 49	26	
50 51		
52		
53 54		
55 56		
57		
58 59		

27 Abstract

Objectives: Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of this Cochrane review was to evaluate the effectiveness and adverse events of first-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared to first-line immunosuppressive therapy.

32 Setting: Specialised stem cell transplantations units in primary care hospitals

Participants: We included 302 participants with newly diagnosed acquired severe aplastic
anemia. The age ranged from early childhood to young adulthood. We excluded studies on
participants with secondary aplastic anemia.

36 Interventions: We included allogeneic haematopoietic stem cell transplantation as the test 37 intervention harvested from any source of matched sibling donor and serving as a first-line 38 therapy. We included immunosuppressive therapy as comparator with either antithymocyte/-39 antilymphocyte globulin or ciclosporin or a combination of the two.

40 Primary and secondary outcome measures planned and finally measured: The primary 41 outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft 42 failure, graft-versus-host disease, no response to immunosuppressive therapy, relapse after 43 initial successful treatment, secondary clonal disease or malignancies, health-related quality 44 of life, and performance scores.

45 Results: We identified three prospective non-randomized controlled trials with a study design 46 that was consistent with the principle of 'Mendelian randomization' in allocating patients to 47 treatment groups. All studies had a high risk of bias due to the study design and were 48 conducted more than 15 years. The pooled hazard ratio for overall mortality for the

Subject: Transplantation for SAA

BMJ Open

49	transplanted group versus the not transplanted group was 0.95 (95% confidence interval 0.43
50	to 2.12, $P = 0.90$).
51	Conclusions: There are insufficient and biased data that do not allow any firm conclusions to
52	be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell
53	transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of
54	patients with acquired severe aplastic anemia.
55	
56	Strengths and limitations of this study
57	• We conducted a comprehensive literature search and strictly adhered to the projected
58	methodology.
59	• We restricted the study design to randomized controlled trials and prospective non-
60	randomized controlled trials and the studies had to be compatible with 'Mendelian
61	Randomization' to avoid excess risk of bias.
62	• The included data are too scarce and too biased to allow any conclusion on the com-
63	parative effectiveness of MSD-HSCT and IST.
64	• The included data were collected 15 to more than 30 years ago. Thus, the results may
65	not be applicable to current modern standard care.
66	

Subject: Transplantation for SAA

67 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities. First-line ciclosporin and/or antithymocyte or antilymphocyte globulin denoted as first-line immunosuppressive therapy (IST) is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Some patients do not respond well or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

BMJ Open

89 Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library
[5]. Publication of this work is in agreement with the policy of The Cochrane Collaboration
[6]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA
statement, adhered to its principles and conformed to its checklist [7].

94 Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [8]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with either antithymocyte/antilymphocyte globulin or ciclosporin or a combination of the two [8]. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

109 Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: Transplantation for SAA

22 April 2013. The corresponding search strategies are depicted in the original Cochrane Re-view [5]. We retrieved all titles and abstracts by electronic searching and downloaded them to the reference management database EndNote Version X3 [9]. Two authors assessed the eligi-bility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. Gray 1991 and Wheatley 2004 described the potential of 'Mendelian ran-domization' to minimize bias when comparing MSD-HSCT with an alternative therapy [10 11]. We judged studies as consistent with the principle of 'Mendelian randomization' if all transplant donors were clearly siblings and if the allocation of patients to treatment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

129 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [12]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the

BMJ Open

Subject: Transplantation for SAA

inclusion criteria for the present review and critical for confidence in results: comparable baseline characteristics and concurrent control. We applied The Cochrane Collaboration's criteria for judging risk of bias [13].

Data synthesis

One review author entered the data into Review Manager [14]. Another review author checked the entered data. We synthesized data on mortality (MSD-HSCT versus IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given in the publication, we estimated hazard ratios according to methods proposed by [15] and [16].

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Results

146 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (Figure
1). Bayever 1984 [17] and Gratwohl 1981 [18] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [19], a
follow up article [20], one protocol [21], and two abstracts [22 23]. We did not identify any
RCTs.

152 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males. and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [19]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2).

162 Effects of intervention

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence interval of 0.43 to 2.12 (P value = 0.90) (**Figure 2**). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT

BMJ Open

Subject: Transplantation for SAA

group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in **Table 4**. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-JST a. in the IST grow, yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher than 70%.

Subject: Transplantation for SAA

Discussion

178 Interpretation of main results

We identified three prospective, non-randomized controlled trials [17-19] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [24]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [25]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

BMJ Open

Subject: Transplantation for SAA ment of overall survival in the group of matched related donor transplants but not in the IST group [26]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [27]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [28].

209 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (start-ing in 1976). All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized and Nitsch 2006 described the limits to causal inference based on 'Mendelian randomization' [29].

221 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: Transplantation for SAA

early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with
IST should also be made aware that the disease may recur after initial successful treatment,
and that life-threatening late clonal and malignant disease after IST may occur in a higher
percentage compared to HSCT.

BMJ Open

Subject: Transplantation for SAA

Acknowledgments

- We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- University of Cologne, Germany, for provision of fulltexts.

Ethics statement

An ethics statement was not required for this work.

Financial Disclosure

Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manu-script.

Conflict of Interest Statement

No authors have any competing interests.

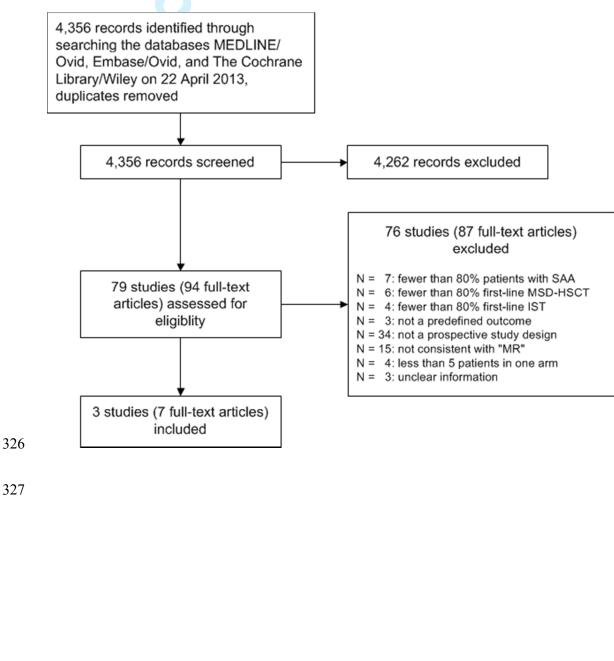
Subject: Transplantation for SAA

References

7	243	1. Genetic and Rare Diseases Information Center (GARD). <i>Aplastic anemia</i> . Bethesda: The
8	244	Office of Rare Diseases Research (ORDR) and the National Human Genome Research
9 10	245	Institute (NHGRI) of the National Institutes of Health (NIH), 2013.
11	246	2. Kaufman DW, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and
12		
13	247	aplastic anemia. Am J Hematol 2006;81(1):65-67
14	248	3. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56
15	210	
16	249	4. Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of
17	250	acquired aplastic anaemia. Br J Haematol 2009;147:43-70
18		
19	251	5. Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell
20 21	252	transplantation of HLA-matched sibling donors compared with first-line ciclosporin
21	253	and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia.
22	255	The Cochrane database of systematic reviews 2013;7:CD006407 doi:
23 24	254	10.1002/14651858.CD006407.pub2[published Online First: Epub Date]].
24 25	233	10.1002/14031838.CD000407.pub2[published Online First. Epub Date]].
26	256	6. The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print
27	250	journals. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane
28		
29	258	Collaboration, 2013.
30	250	7 Mahar D. Libarati A. Tatzlaff I. at al. Drafarrad reporting items for systematic reviews and
31	259	7. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
32	260	meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97
33	2(1	8 December 10 March ICW/ Autoric Austrice First line tractor out has income any marchine and
34	261	8. Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression and
35	262	sibling marrow transplantation. Hematology Am Soc Hematol Educ Program
36	263	2010; 2010 :36-42
37	• • • •	
38	264	9. EndNote [program]. New York City: Thomson Reuters, 2013.
39	265	
40	265	10. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation
41	266	with chemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12
42 43	267	
43	267	11. Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to
45	268	evaluate allogeneic stem cell transplantation in leukaemia. Int J Epidemiol
46	269	2004; 33 :15-17
47		
48	270	12. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for
49	271	assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:
50	272	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
51	273	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
52	274	Available from www.cochrane-handbookorg.
53		
54	275	13. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the
55	276	'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:
56	277	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
57	_ , ,	
58		
59		
60		14

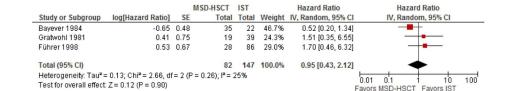
BMJ Open

1		Subject: Transplantation for SAA
2 3	278	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
4 5	279	Available from www.cochrane-handbookorg.
6 7	280 281	14. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011.
8 9 10	282	15. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses
11	283	of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34
12 13	284 285	 Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16-16
14 15	205	time-to-event data into meta-anarysis. Thats 2007,0.10-10
16	286	17. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation
17	287	and antithymocyte globulin in treatment of young patients with severe aplastic anemia.
18	288	J Pediatr 1984;105:920-25
19 20	289	18. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz
20 21 22	290	Med Wochenschr 1981;111:1520-22
23	291	19. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic
24	292	anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin
25 26	293	Padiatr 1998; 210 :173-79
27	294	20 Führer M. Bennf H. Beumenn Let al Immunoquintegrive therein for enlectic enemic in
28 29	294 295	20. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood 2005; 106 :2102-04
30 31 32	296 297	21. Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and development of the SAA 94 pilot protocol. Klin Padiatr 1994; 206 :289-95
32 33	271	
34	298	22. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow
35	299	transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl
36 37	300	1:156a, Abstract 631-156a, Abstract 631
38	301	23. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and
39	302	immunosuppressive therapy in children with aplastic anemia: data from a prospective
40 41	303	multinational trial in Germany, Austria and Switzerland. Blood 2004;104: Abstract
42	304	1439-Abstract 39
43	305	24. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am
44 45	306	2009; 23 (2):171-91
46		
47	307	25. Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell
48	308	transplantation from HLA-identical siblings for severe aplastic anemia in patients over
49	309	40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18
50 51	310	26. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic
52	311	stem cell transplantation compared to immunosuppressive therapy in acquired severe
53	312	aplastic anemia. PLoS One 2011;6(4):e18572-e72
54 55		
55 56 57	313 314	27. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011; 93 (6):832-37
58		
59 60		


1		Subject: Transplantation for SAA
2 3 4 5	315 316	 Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012;2012:292-300
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32		
33 34 35 36 37 38 39 40		
41 42 43 44		
45 46 47		
48 49 50		
51 52 53 54 55		
55 56		

BMJ Open

Subject: Transplantation for SAA


321 Figure legends

- 322 Figure 1. Study flow
- 323 Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic
- 324 hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors;
- 325 "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia

Subject: Transplantation for SAA

- 328 Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model.
- 329 Standard error calculated from data presented in the Kaplan-Meier graph of the article.
- 330 Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem
- 331 cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:
- 332 first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

Tables

Table 1. Characteristics of included studies

Study ID	Duration	Median	Setting, center,	Patients,	Median age, years	Fraction	Median	Stem cell	IST compo-	ATG
	of study	follow	country	no. ¹	(range) ¹	of males,	interval,	source	nents	source
		up				% ¹	days ^{1,2}			
Bayever	1977 to	N.R.	Single, United	35 vs. 22	17 (2 to 24)	67 vs. 68	60 vs. 58	bone	ATG	horse
1984	1982		States		vs. 15 (1 to 23)			marrow		
Führer	1993 to	N.R.	Multi, Germa-	28 vs. 86	10.1 (2.3 to 15.8)	43 vs. 62	49 vs. 23	bone	ATG	horse
1998	1997		ny, Austria		vs. 9.1 (0.9 to 15.2)			marrow	Ciclosporin	
Gratwohl	1976 to	N.R.	Single, Swit-	19 vs. 13	18 (4 to 29)	53 vs. 54	105 vs. 180	bone	ATG	N.R.
1981	1980		zerland		vs. 23 (7 to 37)			marrow	Ciclosporin	

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not s therapy, more reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/pmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Subject: Transplantation for SAA

Table 2. Risk of bias of included studies

Study ID	Blinding of out-	Incomplete	Selective	Other bias	Comparable base-	Concurrent	Overall judgement
	come assessment	outcome data	reporting		line characteristics	control	of bias
Bayever 1984	High	Low	Unclear	High ¹	Low	Low	High
Führer 1998	High	High	High ²	High ³	Low	Low	High
Gratwohl 1981	High	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

⊿0 **BMJ Open**

Subject: Transplantation for SAA

Table 3. Overall survival

Study ID	MSI	D-HSCT	IST		FU^1	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^2$ (N.R.)	5	0.56^{3}

¹Time point of Kaplan-Meier estimate.

²Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

 3 The D value was not reported and we calculated the D value using Eisbar's event test

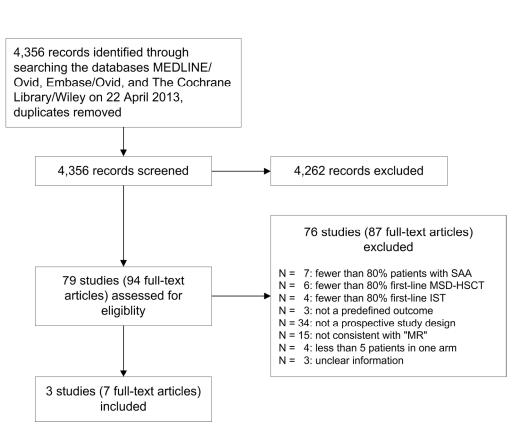
³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Subject: Transplantation for SAA

Table 4. Secondary outcomes


Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD: graft-versus-host disease; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia

170x130mm (300 x 300 DPI)

Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model. Standard error calculated from data presented in the Kaplan-Meier graph of the article. Ab-breviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST: first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

254x190mm (300 x 300 DPI)

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION	·		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	in the Cochrane review
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6 to 7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7

PRISMA 2009 Checklist

		(e.g., I ²) for each meta-analysis.	
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	in the Cochrane review
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	table 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8 to 9, table 3 to 4, figure 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	figure 1
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	table 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	none
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
FUNDING	<u>. </u>		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27 of 27

BMJ Open

1 2 3	LORIS MAN
4 5	Funding

10

PRISMA 2009 Checklist

Funding	27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.
From: Moher D, Libera doi:10.1371/journal.pme	ati A. Tetzlaff J. Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e100009 For more information, visit: www.prisma-statement.org. Page 2 of 2
	For more information, visit: www.prisma-statement.org.
	Page 2 of 2
	Fage 2 01 2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
pλ cobλugµr.	BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://pmjopen.bm/ on April 17, 2024 by guest. Protected

BMJ Open

Stem cell transplantation of matched sibling donors compared with immunosuppressive therapy for acquired severe aplastic anemia – a Cochrane Systematic Review

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005039.R1
Article Type:	Research
Date Submitted by the Author:	09-Jun-2014
Complete List of Authors:	Peinemann, Frank; University of Cologne, Children's Hospital Labeit, Alexander; University of Illinois College of Medicine, Center for Outcomes Research
Primary Subject Heading :	Haematology (incl blood transfusion)
Secondary Subject Heading:	Paediatrics, Pharmacology and therapeutics
Keywords:	CHEMOTHERAPY, Anaemia < HAEMATOLOGY, Bone marrow transplantation < HAEMATOLOGY, Paediatric oncology < ONCOLOGY, STATISTICS & RESEARCH METHODS, TRANSPLANT MEDICINE

BMJ Open

1 2		Subject: bmjopen-2014-005039-R1: SAA-MSD
3 4	1	Stem cell transplantation of matched sibling donors compared with immunosuppressive ther-
5 6	2	apy for acquired severe aplastic anemia – a Cochrane Systematic Review*
7 8	3	Frank Peinemann, ^{1†} Alexander Labeit, ²
9 10	4	¹ Children's Hospital, University of Cologne, Cologne, Germany
11 12	5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
13	6	USA
14 15	7	
16 17	8	FP: pubmedprjournal@gmail.com
18	9	AL: alabeit.publications@gmail.com
19 20	10	
21 22	11	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
23	12	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
24 25	13	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
26 27	14	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
28 29	15	to feedback, and the CDSR should be consulted for the most recent version of the review.
30	16	
31 32	17	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
33 34	18	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
35 36	19	Phone: +49-176-31130745.
37 38	20	
39 40	21	Keywords
41	22	severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-
42 43	23	pressive therapy, systematic review
44 45	24	pressive therapy, systematic review
46	25	
47 48	26	
49 50	27	
51	28	
52 53		
54		
55 56		
57 58		
59		
60		

29 Abstract

30 Objectives: Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of 31 this Cochrane review was to evaluate the effectiveness and adverse events of first-line 32 allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared 33 to first-line immunosuppressive therapy.

34 Setting: Specialised stem cell transplantations units in primary care hospitals

35 Participants: We included 302 participants with newly diagnosed acquired severe aplastic 36 anemia. The age ranged from early childhood to young adulthood. We excluded studies on 37 participants with secondary aplastic anemia.

38 Interventions: We included allogeneic haematopoietic stem cell transplantation as the test 39 intervention harvested from any source of matched sibling donor and serving as a first-line 40 therapy. We included immunosuppressive therapy as comparator with either antithymocyte/-41 antilymphocyte globulin or ciclosporin or a combination of the two.

42 Primary and secondary outcome measures planned and finally measured: The primary 43 outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft 44 failure, graft-versus-host disease, no response to immunosuppressive therapy, relapse after 45 initial successful treatment, secondary clonal disease or malignancies, health-related quality 46 of life, and performance scores.

47 Results: We identified three prospective non-randomized controlled trials with a study design 48 that was consistent with the principle of 'Mendelian randomization' in allocating patients to 49 treatment groups. All studies had a high risk of bias due to the study design and were 50 conducted more than 15 years. The pooled hazard ratio for overall mortality for the

BMJ Open

	Subject: bmjopen-2014-005039-R1: SAA-MSD		
51	transplanted group versus the not transplanted group was 0.95 (95% confidence interval 0.43		
52	to 2.12, $P = 0.90$).		
53	Conclusions: There are insufficient and biased data that do not allow any firm conclusions to		
54	be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell		
55	transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of		
56	patients with acquired severe aplastic anemia.		
57			
58	Strengths and limitations of this study		
59	• We conducted a comprehensive literature search and strictly adhered to the projected		
60	methodology.		
61	• We restricted the study design to randomized controlled trials and prospective non-		
62	randomized controlled trials and the studies had to be compatible with 'Mendelian		
63	Randomization' to avoid excess risk of bias.		
64	• The included data are too scarce and too biased to allow any conclusion on the com-		
65	parative effectiveness of MSD-HSCT and IST.		
66	• The included data were collected 15 to more than 30 years ago. Thus, the results may		
67	not be applicable to current modern standard care.		
68			
	3		

Subject: bmjopen-2014-005039-R1: SAA-MSD

69 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line immunosuppressive therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin. First-line IST is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in the present study on equal terms. ATG as well as ALG are polyclonal antibodies that recognize a variety of human lymphocyte cell surface antigens, reduce the number of lymphocytes and induce an immunosuppressive effect. They originate in animals immunized

BMJ Open

Subject: bmjopen-2014-005039-R1: SAA-MSD

with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic response and the survival of patients after a first treatment for severe aplastic anemia, it may be crucial in what type of animal ATG originates, as a randomized study showed that rabbit ATG was inferior in this respect to horse ATG [6]. The currently recommended combination of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate and potentially complementary modes of action[5]. Some patients do not respond well to IST or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R1: SAA-MSD

Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

BMJ Open

Principle of 'Mendelian randomization'

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation. In general, MSD-HSCT is a life-threatening treatment that can lead to early severe adverse events including death. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

146 Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to 22 April 2013. The corresponding search strategies are depicted in the original Cochrane Review [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to the reference management database EndNote Version X3 [14]. Two authors assessed the eli-

Subject: bmjopen-2014-005039-R1: SAA-MSD

 gibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. We judged studies as consistent with the principle of 'Mendelian randomi-zation' if all transplant donors were clearly siblings and if the allocation of patients to treat-ment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

164 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable baseline characteristics and concurrent control. We applied The Cochrane Collaboration's criteria for judging risk of bias [16].

174 Data synthesis

175 One review author entered the data into Review Manager [17]. Another review author

Page 9 of 53

BMJ Open

<text><text><text> checked the entered data. We synthesized data on mortality (MSD-HSCT versus IST) by

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R1: SAA-MSD

Results

181 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

187 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males. and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

BMJ Open

Subject: bmjopen-2014-005039-R1: SAA-MSD

Effects of intervention

than 70%.

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in Table 4. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher

Subject: bmjopen-2014-005039-R1: SAA-MSD

Discussion

217 Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

236 Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Subject: bmjopen-2014-005039-R1: SAA-MSD

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

248 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (start-ing in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian ranBMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R1: SAA-MSD

domization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for
assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events.
Nitsch 2006 described the limits to causal inference based on 'Mendelian randomization' [32].

268 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.

BMJ Open

Subject: bmjopen-2014-005039-R1: SAA-MSD

Acknowledgments

- We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- University of Cologne, Germany, for provision of fulltexts.

Ethics statement

An ethics statement was not required for this work.

Financial Disclosure

Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manu-script.

Conflict of Interest Statement

No authors have any competing interests.

Data Sharing Statement

No additional data available.

Contributorship Statement

- FP: design, search strategy, study selection, data extraction, data analysis, writing the
- manuscript
- AL: methodological perspective, reviewing the manuscript

Subject: bmjopen-2014-005039-R1: SAA-MSD

References

6 7 8 9 10	295 296 297	1. Genetic and Rare Diseases Information Center (GARD). <i>Aplastic anemia</i> . Bethesda: The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH), 2013.
10 11 12 13	298 299	 Kaufman DW, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and aplastic anemia. Am J Hematol 2006;81(1):65-67
14 15	300	3. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56
16 17 18	301 302	 Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of acquired aplastic anaemia. Br J Haematol 2009;147:43-70
19 20 21 22	303 304 305	 Young NS, Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In: Handin RI, Lux SE, Stossel TP, eds. Blood: Principles and practice of hematology. Philadelphia: Lippincott Williams & Wilkins, 2003:273-318.
23 24 25 26	306 307	 Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. New England Journal of Medicine 2011;365(5):430-38
20 27 28 29 30 31 32	308 309 310 311 312	 Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared with first-line ciclosporin and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia. The Cochrane database of systematic reviews 2013;7:CD006407 doi: 10.1002/14651858.CD006407.pub2[published Online First: Epub Date].
33 34 35 36	313 314 315	 The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print journals. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane Collaboration, 2013.
37 38 39 40	316 317	9. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97
40 41 42 43 44	318 319 320	 Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression and sibling marrow transplantation. Hematology Am Soc Hematol Educ Program 2010;2010:36-42
45 46 47	321 322	 Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12
48 49 50 51	323 324 325	 Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to evaluate allogeneic stem cell transplantation in leukaemia. Int J Epidemiol 2004;33:15-17
52 53 54 55	326 327	 Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1986;327(8479):507-08
55 56 57 58 59 60	328	14. EndNote [program]. New York City: Thomson Reuters, 2013.

1		Subject: bmjopen-2014-005039-R1: SAA-MSD
2	220	15 Hissing IDT Altered DC Stemp IAC Table 9.5 - The Cashering Callaboration's to alter
3	329	15. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for
4	330	assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:
5	331	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
6	332	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
7	333	Available from www.cochrane-handbookorg.
8	000	
9	334	16. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the
10	335	'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:
11		
12	336	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
13	337	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
14	338	Available from www.cochrane-handbookorg.
15		
16	339	17. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The
17	340	Cochrane Collaboration, 2011.
18		
19	341	18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses
20	342	of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34
21	572	of the published including for survival endpoints. Stat fried 1996,17(24).2015-54
22	343	19. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary
23		
24	344	time-to-event data into meta-analysis. Trials 2007;8:16-16
25	245	
26	345	20. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation
27	346	and antithymocyte globulin in treatment of young patients with severe aplastic anemia.
28	347	J Pediatr 1984;105:920-25
29		
30	348	21. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz
31	349	Med Wochenschr 1981; 111 :1520-22
32		
33	350	22. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic
34	351	anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin
35	352	Padiatr 1998; 210 :173-79
36	552	Faulal 1990,210.175-79
37	353	22 Führer M. Demof II. Deumenn I. et al. Immunequenzagive thereny for enlectic enemie in
38		23. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in
39	354	children: a more severe disease predicts better survival. Blood 2005;106:2102-04
40		
41	355	24. Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and
42	356	development of the SAA 94 pilot protocol. Klin Padiatr 1994;206:289-95
43		
44	357	25. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow
45	358	transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl
46	359	1:156a, Abstract 631-156a, Abstract 631
47		
48	360	26. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and
49	361	immunosuppressive therapy in children with aplastic anemia: data from a prospective
50		
51	362	multinational trial in Germany, Austria and Switzerland. Blood 2004;104:Abstract
52	363	1439-Abstract 39
53		
54	364	27. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am
55	365	2009; 23 (2):171-91
56		
57		
58		
59		
60		

Subject: bmjopen-2014-005039-R1: SAA-MSD 28. Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18 29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72 30. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011;93(6):832-37 31. Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012;2012:292-300 32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403

BMJ Open

Subject: bmjopen-2014-005039-R1: SAA-MSD

Figure legends

381	Figure 1. Study flow
382	Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic
383	hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors;
384	"MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia
385	
386 387	Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model.
388	Standard error calculated from data presented in the Kaplan-Meier graph of the article.
389	Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem
390	cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:
391	first-line immunosuppressive therapy; IV: inverse variance; SE: standard error
392 393	

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Tables

Table 1. Characteristics of included studies

Study ID	Duration of study	Median follow	Setting, cen- ter, country	Patients, no. ¹	Median age, years $(range)^1$	Fraction of males,	Median interval,	Stem cell source	IST compo- nents	ATG source
	of study	up	ter, country	110.	(range)	000000000000000000000000000000000000	days ^{1,2}	source	licitts	source
Bayever	1977 to	N.R.	Single, United	35 vs. 22	17 (2 to 24) vs.	67 vs. 68	60 vs. 58	bone	ATG	horse
1984	1982		States		15 (1 to 23)			marrow		
Führer	1993 to	N.R.	Multi, Germa-	28 vs. 86	10.1 (2.3 to 15.8) vs.	43 vs. 62	49 vs. 23	bone	ATG	horse
1998	1997		ny, Austria		9.1 (0.9 to 15.2)			marrow	Ciclosporin	
Gratwohl	1976 to	N.R.	Single, Swit-	19 vs. 13	18 (4 to 29) vs.	53 vs. 54	105 vs. 180	bone	ATG	N.R.
1981	1980		zerland		23 (7 to 37)			marrow	Ciclosporin	

¹MSD-HSCT vs. IST

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

⊿0

Subject: bmjopen-2014-005039-R1: SAA-MSD

Table 2. Risk of bias of included studies

Study ID	Blinding of as- sessment of over- all mortality	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	Low	Low	Unclear	High ¹	Low	Low	High
Führer 1998	Low	High	High ²	High ³	Low	Low	High
Gratwohl 1981	Low	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Subject: bmjopen-2014-005039-R1: SAA-MSD

Table 3. Overall survival

Study ID	MSE	MSD-HSCT		IST		P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^2$ (N.R.)	5	0.56^{3}

¹Time point of Kaplan-Meier estimate.

²Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

⊿0 Subject: bmjopen-2014-005039-R1: SAA-MSD

Table 4. Secondary outcomes

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD; graft-versus-host disease; IST: immunosuppressive therapy including eiclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4		
5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD
6		
7 8	1	Stem cell transplantation of matched sibling donors compared with immunosuppressive ther-
9	2	apy for acquired severe aplastic anemia – a Cochrane Systematic Review*
10		
11 12	3	Frank Peinemann, ^{1†} Alexander Labeit, ²
13	4	¹ Children's Hospital, University of Cologne, Cologne, Germany
14	5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
15 16	6	USA
17	7	
18 19	8	FP: <u>pubmedprjournal@gmail.com</u>
20	9	AL: alabeit.publications@gmail.com
21	10	
22 23	11	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
24	12	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
25 26	13	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
27	14	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
28	15	to feedback, and the CDSR should be consulted for the most recent version of the review.
29 30	16	
31 32	17	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
33	18	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
34 35	19	Phone: +49-176-31130745.
36	20	
37 38	20 21	
39	21	
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53		
54 55		
56		
57		1
58		
59 60		

1			
2			
3			
4 5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD	
6 7 8	22	Keywords	
9 10	23	severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-	
11 12	24	pressive therapy, systematic review	
13	25 26		
14 15	20 27	Strengths and limitations of this study	
16 17			
17 18 19	28	• We conducted a comprehensive literature search and strictly adhered to the projected	
20 21	29	methodology.	
21 22 23	30	• We restricted the study design to randomized controlled trials and prospective non-	
24	31	randomized controlled trials and the studies had to be compatible with 'Mendelian	
25 26 27	32	Randomization' to avoid excess risk of bias.	
27 28 29	33	• The included data are too scarce and too biased to allow any conclusion on the com-	
30	34	parative effectiveness of MSD-HSCT and IST.	
31 32	35	• The included data were collected 15 to more than 30 years ago. Thus, the results may	
33 34 35	36	not be applicable to current modern standard care.	
36 37	37		
38	38		
39 40	39		
41 42			
43 44			
45			
46 47			
48			
49 50			
50 51			
52			
53 54			
55			
56		2	
57 58			
59			
60			

42 Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of this 43 Cochrane review was to evaluate the effectiveness and adverse events of first-line allogeneic 44 hematopoietic stem cell transplantation of HLA-matched sibling donors compared to first-line 45 immunosuppressive therapy.

46 Procedure

We searched the electronic databases MEDLINE (Ovid), EMBASE (Ovid), and The Cochrane Library CENTRAL (Wiley) for published articles from 1946 to 22 April 2013. We included randomized controlled trials and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups.

52 Results

We identified three prospective non-randomized controlled trials with 302 participants. We did not identify a randomized controlled trial. All studies had a high risk of bias due to the study design and were conducted more than 15 years ago and may not be applicable to the standard of care of today. The pooled hazard ratio for overall mortality for the transplanted group versus the not transplanted group was 0.95 (95% confidence interval 0.43 to 2.12, P =

Subject: bmjopen-2014-005039<u>-R1</u>: SAA-MSD

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of patients with acquired severe aplastic anemia.

Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

<u>According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of</u> <u>the British Committee for Standards in Haematology [4], first-line immunosuppressive</u> <u>therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin.</u> First-line <u>IST_eiclosporin_and/or_antithymocyte_or_antilymphocyte_globulin_denoted_as_first_line</u> <u>immunosuppressive therapy (IST)</u> is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3].

-Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in

	Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD	
90	the present study on equal terms. ATG as well as ALG are polyclonal antibodies that	
91	recognize a variety of human lymphocyte cell surface antigens, reduce the number of	
92	lymphocytes and induce an immunosuppressive effect. They originate in animals immunized	
93	with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct	
94	lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic	
95	response and the survival of patients after a first treatment for severe aplastic anemia, it may	
96	be crucial in what type of animal ATG originates, as a randomized study showed that rabbit	
97	ATG was inferior in this respect to horse ATG [6]. The currently recommended combination	
98	of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate	
99	and potentially complementary modes of action[5]. Some patients do not respond well to IST	
100	or show no response at all. Frequent transfusions increase the risk of adverse events such as	
101	iron overload and early death. If a diagnosis of SAA is established at an early patient age,	
102	then it is crucial to know which treatment promises more benefit and less harm in the long	
103	run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT	
104	compared to IST in patients with SAA.	
	compared to IST in patients with SAA.	

Subject: bmjopen-2014-005039-R1: SAA-MSD

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

110 Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with either-ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. antithymocyte/antilymphocyte globulin or ciclosporin or a combination of the two The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

129	Principle of 'Mendelian randomization'

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation. In general, MSD-HSCT is a life-threatening treatment that can lead to early severe adverse events including death. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to 22 April 2013. The corresponding search strategies are depicted in the original Cochrane Review [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to

Formatted: Heading 2

Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R1: SAA-MSD

the reference management database EndNote Version X3 [14]. Two authors assessed the eli-gibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. Gray 1991 and Wheatley 2004 described the potential of 'Mendelian ran-domization' to minimize bias when comparing MSD HSCT with an alternative therapy [11 12]-We judged studies as consistent with the principle of 'Mendelian randomization' if all transplant donors were clearly siblings and if the allocation of patients to treatment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

167 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable

Subject: bmjopen-2014-005039-RI: SAA-MSD

baseline characteristics and concurrent control. We applied The Cochrane Collaboration'scriteria for judging risk of bias [16].

177 Data synthesis

One review author entered the data into Review Manager [17]. Another review author checked the entered data. We synthesized data on mortality (MSD-HSCT versus IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given in the publication, we estimated hazard ratios according to methods proposed by [18] and [19]. BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Results

184 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

190 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males, and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in **Table 4**. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher than 70%.

Subject: bmjopen-2014-005039-R1: SAA-MSD

Discussion

Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

239 Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

Subject: bmjopen-2014-005039-R1: SAA-MSD

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

251 Strengths and limitations

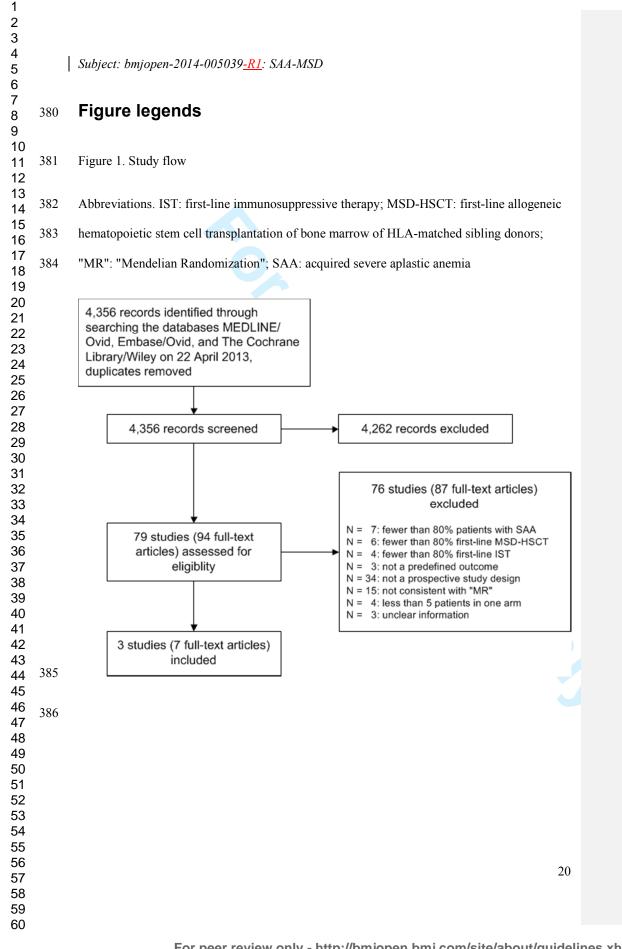
One of the strengths of this review is the broadness of the search strategy such that study retrieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (starting in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian ran-

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039<u>-R1</u>: SAA-MSD domization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events. and-Nitsch 2006 described the limits to causal inference based on 'Mendelian randomization' [32].

Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.


1			
2			
3 ₄			
4 5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD	
6 7	281	Acknowledgments	
8			
9 10 11	282	We thank the members of the Editorial Base of the Cochrane Haematological Malignancies	
12	283	Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the	
13 14 15	284	University of Cologne, Germany, for provision of fulltexts.	
16 17 18	285	Ethics statement	
19 20 21	286	An ethics statement was not required for this work.	
22 23 24 25	287	Financial Disclosure	
23 26 27	288	Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role	
28 29	289	in study design, data collection and analysis, decision to publish, or preparation of the manu-	
30 31	290	script.	
32 33 34	291	Conflict of Interest Statement	
35 36 37	292	No authors have any competing interests.	
38 39 40	293		
40 41 42			
43 44			
45			
46 47			
48			
49 50			
51			
52 53			
54			
55 56			
56 57		16	
58			
59 60			

5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD	
6 7 8	294	References	
9 10 11 12	295 296 297	 Genetic and Rare Diseases Information Center (GARD). <i>Aplastic anemia</i>. Bethesda: The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH), 2013. 	
13 14 15	298 299	 Kaufman DW, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and aplastic anemia. Am J Hematol 2006;81(1):65-67 	
16 17	300	3. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56	
18 19 20	301 302	 Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of acquired aplastic anaemia. Br J Haematol 2009;147:43-70 	
21 22 23 24	303 304 305	 Young NS, Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In: Handin RI, Lux SE, Stossel TP, eds. Blood: Principles and practice of hematology. Philadelphia: Lippincott Williams & Wilkins, 2003:273-318. 	
25 26	306 307	6. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. New England Journal of Medicine 2011; 365 (5):430-38	
27 28 29 30 31 32	308 309 310 311 312	 Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared with first-line ciclosporin and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia. The Cochrane database of systematic reviews 2013;7:CD006407 doi: 10.1002/14651858.CD006407.pub2[published Online First: Epub Date] . 	
33 34 35 36	313 314 315	 The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print journals. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane Collaboration, 2013. 	
37 38	316 317	9. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97	
39 40 41 42	318 319 320	 Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression and sibling marrow transplantation. Hematology Am Soc Hematol Educ Program 2010;2010:36-42 	
43 44 45	321 322	11. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12	
46 47 48 49	323 324 325	 Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to evaluate allogeneic stem cell transplantation in leukaemia. Int J Epidemiol 2004;33:15-17 	
50 51	326 327	 Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1986;327(8479):507-08 	
52 53 54 55	328	14. EndNote [program]. New York City: Thomson Reuters, 2013.	
56 57 58 59 60		17	

Subject: bmjopen-2014-005039<u>-R1</u>: SAA-MSD

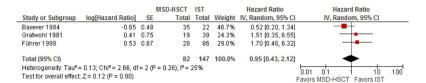
1		
2		
3		
4 5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD
6		
7	329	15. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for
8	330 331	assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
9	332	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
10 11	333	Available from www.cochrane-handbookorg.
12	334	16. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the
13	335	'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:
14	336	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
15 16	337	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
17	338	Available from www.cochrane-handbookorg.
18	339	17. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The
19	340	Cochrane Collaboration, 2011.
20 21	341	18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses
22	342	of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34
23	343	19. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary
24	344	time-to-event data into meta-analysis. Trials 2007;8:16-16
25 26		
20 27	345 346	20. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation
28	340 347	and antithymocyte globulin in treatment of young patients with severe aplastic anemia. J Pediatr 1984;105:920-25
29		
30	348	21. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz
31 32	349	Med Wochenschr 1981;111:1520-22
33	350	22. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic
34	351	anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin
35	352	Padiatr 1998; 210 :173-79
36 37	353	23. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in
38	354	children: a more severe disease predicts better survival. Blood 2005;106:2102-04
39	355	24. Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and
40	356	development of the SAA 94 pilot protocol. Klin Padiatr 1994; 206 :289-95
41	257	25 Eithers M. Demaftli, Dundech C. Jamman and an entry (IST) and have a surrout
42 43	357 358	25. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998; 92 Suppl
44	359	1:156a, Abstract 631-156a, Abstract 631
45	260	
46	360 361	26. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and immunosuppressive therapy in children with aplastic anemia: data from a prospective
47 48	362	multinational trial in Germany, Austria and Switzerland. Blood 2004; 104 :Abstract
40	363	1439-Abstract 39
50	364	27. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am
51	365	2009; 23 (2):171-91
52 53		
53 54		
55		
56		18
57		10
58 59		

1 2 3		
3 4 5		Subject: bmjopen-2014-005039 <u>-R1</u> : SAA-MSD
6 7 8 9	366 367 368	 Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18
10 11 12 13	369 370 371	29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72
14 15	372 373	30. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011; 93 (6):832-37
16 17 18	374 375	 Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012;2012:292-300
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ \end{array}$	376 377 378 379	 32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403
53 54 55 56 57 58 59 60		19

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039<u>-R1</u>: SAA-MSD


387 Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model.

388 Standard error calculated from data presented in the Kaplan-Meier graph of the article.

389 Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem

390 cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:

391 first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

Tables

Table 1. Characteristics of included studies

Study ID	Duration	Median	Setting, cen-	Patients,	Median age, years	Fraction	Median	Stem cell	IST compo-	ATG 🔸
•	of study	follow	ter, country	no. ¹	(range) ¹	of males,	interval,	source	nents	source
	-	up	, <u>,</u>			% ¹	days ^{1,2}			
Bayever	1977 to	N.R.	Single, United	35 vs. 22	17 (2 to 24) <u>vs.</u>	67 vs. 68	60 vs. 58	bone	ATG	horse
1984	1982		States		vs. 15 (1 to 23)			marrow		
Führer	1993 to	N.R.	Multi, Germa-	28 vs. 86	10.1 (2.3 to 15.8) <u>vs.</u>	43 vs. 62	49 vs. 23	bone	ATG	horse
1998	1997		ny, Austria		vs. 9.1 (0.9 to 15.2)			marrow	Ciclosporin	
Gratwohl	1976 to	N.R.	Single, Swit-	19 vs. 13	18 (4 to 29) <u>vs.</u>	53 vs. 54	105 vs. 180	bone	ATG	N.R.
1981	1980		zerland		vs. 23 (7 to 37)			marrow	Ciclosporin	
TICO	T IOT				`					

¹MSD-HSCT vs. IST

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

Subject: bmjopen-2014-005039-R1: SAA-MSD

Table 2. Risk of bias of included studies

Study ID	Blinding of <u>as-</u> sessment of over- <u>all mortalityout</u> come assessment	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	HighLow	Low	Unclear	High ¹	Low	Low	High
Führer 1998	HighLow	High	High ²	High ³	Low	Low	High
Gratwohl 1981	HighLow	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Subject: bmjopen-2014-005039-<u>R1</u>: SAA-MSD

Table 3. Overall survival

Study ID	MSE	D-HSCT	IST		FU^1	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^{2}$ (N.R.)	5	0.56^{3}

¹Time point of Kaplan-Meier estimate.

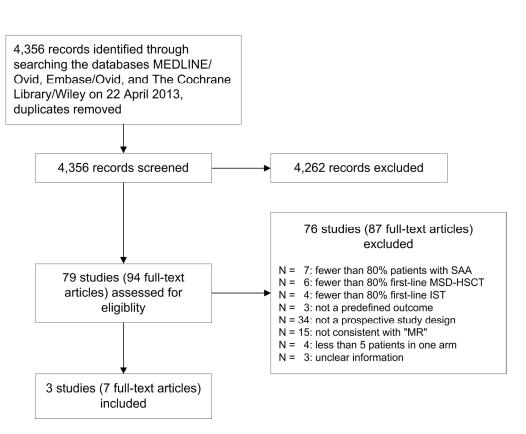
²Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line

HSCT from the then again available MSD that was offered after the patients showed no response to IST.

³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

Subject: bmjopen-2014-005039-R1: SAA-MSD


Table 4. Secondary outcomes

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients ²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD: graft-versus-host disease; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia 170x130mm (300 x 300 DPI)

Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model. Standard error calculated from data presented in the Kaplan-Meier graph of the article. Ab-breviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST: first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

254x190mm (300 x 300 DPI)

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	•		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS	•		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	in the Cochrane review
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6 to 7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7

10

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	in the Cochrane review
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	table 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8 to 9, table 3 to 4, figure 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	figure 1
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	table 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	none
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
FUNDING			

Page 53 of 53

BMJ Open

10

PRISMA 2009 Checklist

3 4 5 6	nding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	12
7				
-1 - 1 - 1	<i>m:</i> Moher D, Liberati A, Tetzlaff 10.1371/journal.pmed1000097	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6 For more information, visit: www.prisma-statement.org. Page 2 of 2	6(6): e1000097.
3	To: To? Injournal.priled Tooboo?		For more information, visit: www.prisma-statement.org.	
10 11			Page 2 of 2	
12			Faye z or z	
13				
14				
15				
16				
17				
18				
19 20				
20				
22				
23				
24				
25				
26				
27				
28 29				
29 30				
31				
32				
33				
34				
35				
36				
37 38				
39				
40				
41				
42				
43				
44				
45 46			For peer review only http://breienen.htti.com/eite/shevidalinee.vhtml	
46 47			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47 48	st. Protected by copyright.	pλ đne:	2024. Zown on April 2014. Downloaded from http://www.non.com/on/2014. Downloaded from http://www.non.com/on/2014. 2024	BW1C

BMJ Open

Stem cell transplantation of matched sibling donors compared with immunosuppressive therapy for acquired severe aplastic anemia – a Cochrane Systematic Review

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005039.R2
Article Type:	Research
Date Submitted by the Author:	13-Jun-2014
Complete List of Authors:	Peinemann, Frank; University of Cologne, Children's Hospital Labeit, Alexander; University of Illinois College of Medicine, Center for Outcomes Research
Primary Subject Heading :	Haematology (incl blood transfusion)
Secondary Subject Heading:	Paediatrics, Pharmacology and therapeutics
Keywords:	CHEMOTHERAPY, Anaemia < HAEMATOLOGY, Bone marrow transplantation < HAEMATOLOGY, Paediatric oncology < ONCOLOGY, STATISTICS & RESEARCH METHODS, TRANSPLANT MEDICINE

BMJ Open

1		Subject: bmjopen-2014-005039-R2: SAA-MSD
2 3		
4	1	Stem cell transplantation of matched sibling donors compared with immunosuppressive
5 6	2	therapy for acquired severe aplastic anemia – a Cochrane Systematic Review*
7		
8 9	3	Frank Peinemann, ^{1†} Alexander Labeit, ²
10	4	¹ Children's Hospital, University of Cologne, Cologne, Germany
11 12	5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
13	6	USA
14 15	7	
16 17	8	FP: pubmedprjournal@gmail.com
18	9	AL: <u>alabeit.publications@gmail.com</u>
19 20	10	
21 22	11	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
23	12	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
24 25	13	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
26 27	14	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
28	15	to feedback, and the CDSR should be consulted for the most recent version of the review.
29 30	16	
31 32	17	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
33	18	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
34 35	19	Phone: +49-176-31130745.
36 37		
38	20	
39 40	21	Keywords
41	22	severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-
42 43	23	pressive therapy, systematic review
44	24	
45 46	25	
47 48	26	
49	27	
50 51	28	
52 53	29	
54	30	
55 56	31	
57	32	
58 59		
60		1

Subject: bmjopen-2014-005039-R2: SAA-MSD

33 Abstract

34	Objectives: Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of
35	this Cochrane review was to evaluate the effectiveness and adverse events of first-line
36	allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared
37	to first-line immunosuppressive therapy.
38	
39	Setting: Specialised stem cell transplantations units in primary care hospitals
40	
41	Participants: We included 302 participants with newly diagnosed acquired severe aplastic
42	anemia. The age ranged from early childhood to young adulthood. We excluded studies on
43	participants with secondary aplastic anemia.
44	
45	Interventions: We included allogeneic haematopoietic stem cell transplantation as the test
46	intervention harvested from any source of matched sibling donor and serving as a first-line
47	therapy. We included immunosuppressive therapy as comparator with either antithymocyte/-
48	antilymphocyte globulin or ciclosporin or a combination of the two.
49	
50	Primary and secondary outcome measures planned and finally measured: The primary
51	outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft
52	failure, graft-versus-host disease, no response to immunosuppressive therapy, relapse after
53	initial successful treatment, secondary clonal disease or malignancies, health-related quality
54	of life, and performance scores.
55	
56	Results: We identified three prospective non-randomized controlled trials with a study design
57	that was consistent with the principle of 'Mendelian randomization' in allocating patients to
58	treatment groups. All studies had a high risk of bias due to the study design and were
59	conducted more than 15 years. The pooled hazard ratio for overall mortality for the donor
60	group versus the no donor group was 0.95 (95% confidence interval 0.43 to 2.12, $P = 0.90$).
61	
62	Conclusions: There are insufficient and biased data that do not allow any firm conclusions to
63	be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell

BMJ Open

1		Subject: bmjopen-2014-005039-R2: SAA-MSD
2 3	64	transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of
4 5	65	patients with acquired severe aplastic anemia.
6	66	
7 8	67	
9 10 11	68	Strengths and limitations of this study
12 13 14	69	• We conducted a comprehensive literature search and strictly adhered to the projected
15 16	70	methodology.
17 18	71	• We restricted the study design to randomized controlled trials and prospective non-
19 20 21	72	randomized controlled trials and the studies had to be compatible with 'Mendelian
22 23	73	Randomization' to avoid excess risk of bias.
24 25	74	• The included data are too scarce and too biased to allow any conclusion on the com-
26 27	75	parative effectiveness of MSD-HSCT and IST.
28 29 30	76	• The included data were collected 15 to more than 30 years ago. Thus, the results may
31 32	77	not be applicable to current modern standard care.
33 34	78	
35 36	79	
37 38	80	
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
57 58		
59		
60		

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

81 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line immunosuppressive therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin. First-line IST is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in the present study on equal terms. ATG as well as ALG are polyclonal antibodies that recognize a variety of human lymphocyte cell surface antigens, reduce the number of

BMJ Open

lymphocytes and induce an immunosuppressive effect. They originate in animals immunized with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic response and the survival of patients after a first treatment for severe aplastic anemia, it may be crucial in what type of animal ATG originates, as a randomized study showed that rabbit ATG was inferior in this respect to horse ATG [6]. The currently recommended combination of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate and potentially complementary modes of action[5]. Some patients do not respond well to IST or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

BMJ Open

Subject: bmjopen-2014-005039-R2: SAA-MSD

Principle of 'Mendelian randomization'

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation. In general, MSD-HSCT is a life-threatening treatment that can lead to early severe adverse events including death. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

158 Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to 22 April 2013. The corresponding search strategies are depicted in the original Cochrane Review [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to the reference management database EndNote Version X3 [14]. Two authors assessed the eliBMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

gibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. We judged studies as consistent with the principle of 'Mendelian randomi-zation' if all transplant donors were clearly siblings and if the allocation of patients to treat-ment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

176 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable baseline characteristics and concurrent control. We applied The Cochrane Collaboration's criteria for judging risk of bias [16].

186 Data synthesis

187 One review author entered the data into Review Manager [17]. Another review author

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

checked the entered data. We synthesized data on mortality for the donor group (MSD-HSCT) versus the no donor group (IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given in the publication, we estimated hazard ratios according to methods proposed by [18] and to beer texien only [19].

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

Results

194 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

200 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males. and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

BMJ Open

Subject: bmjopen-2014-005039-R2: SAA-MSD

214 Effects of intervention

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in Table 4. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher than 70%.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

Discussion

230 Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

249 Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

BMJ Open

Subject: bmjopen-2014-005039-R2: SAA-MSD

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

261 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. We assumed a possible 'Mendelian Randomiza-tion' in the three included studies, though, the authors did not mention this approach and did not report what proportion of patients with a matched sibling donor actually received the transplant. Thus, crucial information is lacking to judge the compliance of patients and the significance of the assumed concept of natural allocation. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (starting in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2: SAA-MSD

current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian randomization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events. Nitsch 2006 described the limits to causal inference based on 'Mendelian ran-domization' [32].

286 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.

BMJ Open

Subject: bmjopen-2014-005039-R2: SAA-MSD

294 Acknowledgments

- 295 We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- 296 Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- 297 University of Cologne, Germany, for provision of fulltexts.

298 Financial Disclosure

- Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role
 in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

303 Contributorship Statement

- FP: design, search strategy, study selection, data extraction, data analysis, writing the
 manuscript
- AL: methodological perspective, reviewing the manuscript

308 Conflict of Interest Statement

309 No authors have any competing interests.

310 Data Sharing Statement

311 No additional data available312

313 Ethics statement

314 An ethics statement was not required for this work.

Subject: bmjopen-2014-005039-R2: SAA-MSD

References

of Rare Diseases Research (ORDR) and the National Human Genome Research e (NHGRI) of the National Institutes of Health (NIH), 2013.
e (MIGRI) of the National Institutes of Health (MIII), 2013.
W, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and c anemia. Am J Hematol 2006; 81 (1):65-67
A, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56
, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of ed aplastic anaemia. Br J Haematol 2009; 147 :43-70
Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In: a RI, Lux SE, Stossel TP, eds. Blood: Principles and practice of hematology. elphia: Lippincott Williams & Wilkins, 2003:273-318.
P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in
ed aplastic anemia. New England Journal of Medicine 2011; 365 (5):430-38
F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell
antation of HLA-matched sibling donors compared with first-line ciclosporin
antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia.
ochrane database of systematic reviews 2013;7:CD006407 doi:
2/14651858.CD006407.pub2[published Online First: Epub Date] .
ne Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print
s. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane
oration, 2013.
iberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
nalyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97
R, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression
ling marrow transplantation. Hematology Am Soc Hematol Educ Program
010:36-42
heatley K. How to avoid bias when comparing bone marrow transplantation
nemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12
K, Gray R. Commentary: Mendelian randomization: an update on its use to
te allogeneic stem cell transplantation in leukaemia. Int J Epidemiol
3 :15-17
Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet
27 (8479):507-08
program]. New York City: Thomson Reuters, 2013.

BMJ Open

1		Subject: bmjopen-2014-005039-R2: SAA-MSD
2	350	15 Uligging IDT Altmon DC Storne IAC Table 9.5 a The Coebrane Collaboration's tool for
3		15. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for
4	351	assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:
5	352	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
6	353	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
7 8	354	Available from www.cochrane-handbookorg.
9		
10	355	16. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the
10	356	'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:
12	357	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
13	358	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
14	359	Available from www.cochrane-handbookorg.
15		
16	360	17. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The
17	361	Cochrane Collaboration, 2011.
18		
19	362	18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses
20	363	of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34
21		
22	364	19. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary
23	365	time-to-event data into meta-analysis. Trials 2007;8:16-16
24		
25 26	366	20. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation
20 27	367	and antithymocyte globulin in treatment of young patients with severe aplastic anemia.
28	368	J Pediatr 1984; 105 :920-25
29		
30	369	21. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz
31	370	Med Wochenschr 1981;111:1520-22
32		
33	371	22. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic
34	372	anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin
35	373	Padiatr 1998; 210 :173-79
36	575	
37	374	23. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in
38	375	children: a more severe disease predicts better survival. Blood 2005;106:2102-04
39		
40	376	24. Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and
41	377	development of the SAA 94 pilot protocol. Klin Padiatr 1994;206:289-95
42 43		
44	378	25. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow
45	379	transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl
46	380	1:156a, Abstract 631-156a, Abstract 631
47		
48	381	26. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and
49	382	immunosuppressive therapy in children with aplastic anemia: data from a prospective
50	383	multinational trial in Germany, Austria and Switzerland. Blood 2004;104:Abstract
51	384	1439-Abstract 39
52	504	1+57-1105udet 57
53	385	27. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am
54	386	2009; 23 (2):171-91
55	500	
56		
57		
58 50		
59 60		
00		17

- 28. Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18 29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72 30. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of
- aplastic anemia. Int J Hematol 2011;93(6):832-37 31. Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and
- <text> 32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403

transplantation. Hematology Am Soc Hematol Educ Program 2012;2012:292-300

BMJ Open

Subject: bmjopen-2014-005039-R2: SAA-MSD

Figure legends

Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic

hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors;

"MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia

Figure 2. Mortality in the donor group (MSD-HSCT) vs. the no donor group (IST); effect: hazard ratio; random-effects model.

- Standard error calculated from data presented in the Kaplan-Meier graph of the article.
- Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem
- cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:
- first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Tables

Table 1. Characteristics of included studies

Study ID	Duration	Median	Setting, center,	Patients,	Median age, years	Fraction of	Median inter-	Stem cell	IST compo-	ATG
~~~~	of study	FU	country	no. ¹	(range) ¹	males, % ¹	val, days ^{1,2}	source	nents	source
Bayever	1977 to	NR	Single, United	35 vs. 22	17 (2 to 24) vs.	67 vs. 68	60 vs. 58	Bone mar-	ATG	horse
1984	1982		States		15 (1 to 23)			row		
Führer	1993 to	NR	Multi, Germany,	28 vs. 86	10.1 (2.3 to 15.8) vs.	43 vs. 62	49 vs. 23	Bone mar-	ATG	horse
1998	1997		Austria		9.1 (0.9 to 15.2)			row	Ciclosporin	
Gratwohl	1976 to	NR	Single, Switzer-	19 vs. 13	18 (4 to 29) vs.	53 vs. 54	105 vs. 180	Bone mar-	ATG	N.R.
1981	1980		land		23 (7 to 37)			row	Ciclosporin	

¹Donor group (MSD-HSCT) versus No donor group (IST)

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; FU: follow-up; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; NR: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### Subject: bmjopen-2014-005039-R2: SAA-MSD

Table 2. Risk of bias of included studies

Study ID	Blinding of as- sessment of over- all mortality	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	Low	Low	Unclear	High ¹	Low	Low	High
Führer 1998	Low	High	High ²	High ³	Low	Low	High
Gratwohl 1981	Low	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### Subject: bmjopen-2014-005039-R2: SAA-MSD

Table 3. Overall survival

Study ID	Donor group (MSD-HSCT)		No donor group (IST)		$FU^1$	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^2$ (N.R.)	5	$0.56^{3}$

¹Time point of Kaplan-Meier estimate.

 2 Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

⊿0 Subject: bmjopen-2014-005039-R2: SAA-MSD

Table 4. Secondary outcomes

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD; graft-versus-host disease; IST: immunosuppressive therapy including eiclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## **BMJ Open**

Subject: bmjopen-2014-005039-<u>R1R2</u>: SAA-MSD

1	Stem cell transplantation of matched sibling donors compared with immunosuppressive
2	therapy for acquired severe aplastic anemia – a Cochrane Systematic Review*
3	Frank Peinemann, ^{1†} Alexander Labeit, ²
4	¹ Children's Hospital, University of Cologne, Cologne, Germany
5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
6	USA
7	
3	FP: pubmedprjournal@gmail.com
9	AL: <u>alabeit.publications@gmail.com</u>
0	
1	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
2	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
3	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
4	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
5	to feedback, and the CDSR should be consulted for the most recent version of the review.
6	
7	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
8	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
9	Phone: +49-176-31130745.
0	Phone: +49-176-31130745.
21	
1	

#### **BMJ Open**

	Subject: bmjopen-2014-005039- <u>R1R2</u> : SAA-MSD
22	Keywords
23	severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-
24	pressive therapy, systematic review
25	
26	
20	Strengths and limitations of this study
21	Strengths and minitations of this study
28	• We conducted a comprehensive literature search and strictly adhered to the projected
29	methodology.
30	• We restricted the study design to randomized controlled trials and prospective non-
31	randomized controlled trials and the studies had to be compatible with 'Mendelian
22	Dendemiestical to consider the other
32	Randomization' to avoid excess risk of bias.
33	• The included data are too scarce and too biased to allow any conclusion on the com-
34	parative effectiveness of MSD-HSCT and IST.
54	parative effectiveness of MSD-HSC1 and IS1.
35	• The included data were collected 15 to more than 30 years ago. Thus, the results may
36	not be applicable to current modern standard care.
37	
38	
39	
59	

Subject: bmjopen-2014-005039-<u>R1R2</u>: SAA-MSD

## **Abstract**

#### 41 Background

42 Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of this 43 Cochrane review was to evaluate the effectiveness and adverse events of first-line allogeneic 44 hematopoietic stem cell transplantation of HLA-matched sibling donors compared to first-line 45 immunosuppressive therapy.

46 Procedure

We searched the electronic databases MEDLINE (Ovid), EMBASE (Ovid), and The Cochrane Library CENTRAL (Wiley) for published articles from 1946 to 22 April 2013. We included randomized controlled trials and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups.

52 Results

We identified three prospective non-randomized controlled trials with 302 participants. We did not identify a randomized controlled trial. All studies had a high risk of bias due to the study design and were conducted more than 15 years ago and may not be applicable to the standard of care of today. The pooled hazard ratio for overall mortality for the transplanted <u>donor</u> group versus the <u>not transplantedno donor</u> group was 0.95 (95% confidence interval 0.43 to 2.12, P = 0.90).

#### **BMJ Open**

Subject: bmjopen-2014-005039-R1R2: SAA-MSD

Conclusions

<text> There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of patients with acquired severe aplastic anemia.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>R1R2</u>: SAA-MSD

## 67 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line immunosuppressive therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin. First-line IST is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in the present study on equal terms. ATG as well as ALG are polyclonal antibodies that recognize a variety of human lymphocyte cell surface antigens, reduce the number of lymphocytes and induce an immunosuppressive effect. They originate in animals immunized

#### **BMJ Open**

with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic response and the survival of patients after a first treatment for severe aplastic anemia, it may be crucial in what type of animal ATG originates, as a randomized study showed that rabbit ATG was inferior in this respect to horse ATG [6]. The currently recommended combination of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate and potentially complementary modes of action [5]. Some patients do not respond well to IST or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-RIR2: SAA-MSD

## 103 Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

#### 108 Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

#### **BMJ Open**

Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

**Principle of 'Mendelian randomization'** 

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation. In general, MSD-HSCT is a life-threatening treatment that can lead to early severe adverse events including death. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

144 Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to 22 April 2013. The corresponding search strategies are depicted in the original Cochrane Review [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to the reference management database EndNote Version X3 [14]. Two authors assessed the eli-

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

#### **BMJ Open**

Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

 gibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. We judged studies as consistent with the principle of 'Mendelian randomi-zation' if all transplant donors were clearly siblings and if the allocation of patients to treat-ment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

162 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable baseline characteristics and concurrent control. We applied The Cochrane Collaboration's criteria for judging risk of bias [16].

172 Data synthesis

173 One review author entered the data into Review Manager [17]. Another review author

#### **BMJ Open**

checked the entered data. We synthesized data on mortality for the donor group (MSD-HSCT) versus the no donor group (IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given in the publication, we estimated hazard ratios according to methods proposed by [18] and [19].

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<del>R1R2</del>: SAA-MSD

## **Results**

#### 180 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

## 186 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males. and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

#### **BMJ Open**

Subject: bmjopen-2014-005039-R-IR2: SAA-MSD

#### **Effects of intervention**

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in Table 4. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher 

than 70%.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>RIR2</u>: SAA-MSD

## **Discussion**

#### 216 Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

**Recent therapeutic improvement** 

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

#### **BMJ Open**

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

247 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. We assumed a possible 'Mendelian Randomiza-tion' in the three included studies, though, the authors did not mention this approach and did not report what proportion of patients with a matched sibling donor actually received the transplant. Thus, crucial information is lacking to judge the compliance of patients and the significance of the assumed concept of natural allocation. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (starting in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to

#### **BMJ Open**

Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian randomization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events. Nitsch 2006 described the limits to causal inference based on 'Mendelian ran-domization' [32].

#### 272 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.

#### **BMJ Open**

Subject: bmjopen-2014-005039-<u>R4R2</u>: SAA-MSD

#### Acknowledgments

- We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- University of Cologne, Germany, for provision of fulltexts.

#### **Ethics statement**

An ethics statement was not required for this work.

#### **Financial Disclosure**

Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manu-script.

#### **Conflict of Interest Statement**

No authors have any competing interests.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

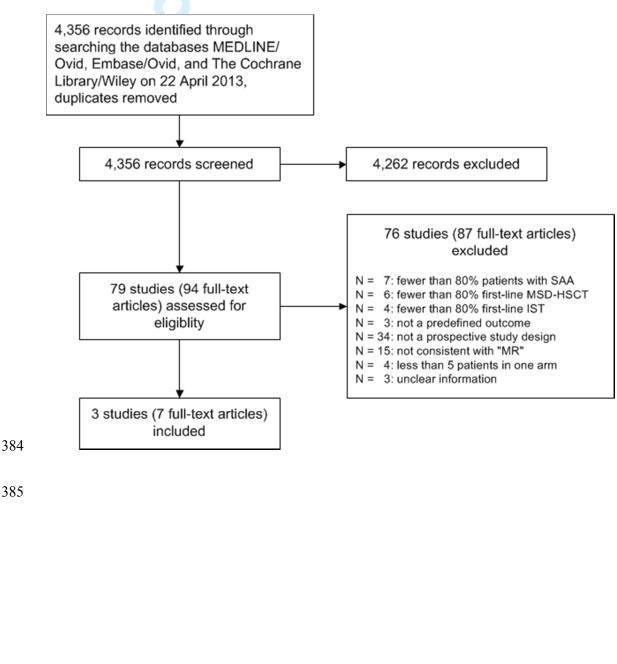
## **References**

294 295 296	1. Genetic and Rare Diseases Information Center (GARD). <i>Aplastic anemia</i> . Bethesda: The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH), 2013.
297 298	<ol> <li>Kaufman DW, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and aplastic anemia. Am J Hematol 2006;81(1):65-67</li> </ol>
299	3. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56
300 301	4. Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of acquired aplastic anaemia. Br J Haematol 2009;147:43-70
302 303 304	<ol> <li>Young NS, Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In: Handin RI, Lux SE, Stossel TP, eds. Blood: Principles and practice of hematology. Philadelphia: Lippincott Williams &amp; Wilkins, 2003:273-318.</li> </ol>
305 306	6. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. New England Journal of Medicine 2011; <b>365</b> (5):430-38
307 308 309 310 311	<ol> <li>Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared with first-line ciclosporin and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia. The Cochrane database of systematic reviews 2013;7:CD006407 doi: 10.1002/14651858.CD006407.pub2[published Online First: Epub Date]].</li> </ol>
312 313 314	<ol> <li>The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print journals. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane Collaboration, 2013.</li> </ol>
315 316	9. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97
317 318 319	<ol> <li>Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression and sibling marrow transplantation. Hematology Am Soc Hematol Educ Program 2010;2010:36-42</li> </ol>
320 321	11. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12
322 323 324	<ol> <li>Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to evaluate allogeneic stem cell transplantation in leukaemia. Int J Epidemiol 2004;33:15-17</li> </ol>
325 326	<ol> <li>Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1986;<b>327</b>(8479):507-08</li> </ol>
327	14. EndNote [program]. New York City: Thomson Reuters, 2013.
	17

### **BMJ Open**

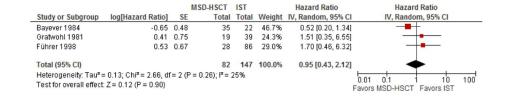
1		Subject: bmjopen-2014-005039- <u>R1R2</u> : SAA-MSD
2	328	15. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for
3		
4	329	assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:
5	330	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
6 7	331	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
8	332	Available from www.cochrane-handbookorg.
9		
10	333	16. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the
10	334	'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:
12	335	Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of
13	336	Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011
14	337	Available from www.cochrane-handbookorg.
15		
16	338	17. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The
17	339	Cochrane Collaboration, 2011.
18		
19	340	18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses
20	341	of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34
21		
22	342	19. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary
23	343	time-to-event data into meta-analysis. Trials 2007;8:16-16
24		
25 26	344	20. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation
20	345	and antithymocyte globulin in treatment of young patients with severe aplastic anemia.
28	346	J Pediatr 1984;105:920-25
29		
30	347	21. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz
31	348	Med Wochenschr 1981;111:1520-22
32		
33	349	22. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic
34	350	anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin
35	351	Padiatr 1998; <b>210</b> :173-79
36	001	
37	352	23. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in
38	353	children: a more severe disease predicts better survival. Blood 2005;106:2102-04
39		
40	354	24. Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and
41 42	355	development of the SAA 94 pilot protocol. Klin Padiatr 1994;206:289-95
42		
44	356	25. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow
45	357	transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl
46	358	1:156a, Abstract 631-156a, Abstract 631
47		
48	359	26. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and
49	360	immunosuppressive therapy in children with aplastic anemia: data from a prospective
50	361	multinational trial in Germany, Austria and Switzerland. Blood 2004;104:Abstract
51	362	1439-Abstract 39
52	502	1 1 <i>57 1</i> 1050 (doi <i>57</i>
53	363	27. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am
54	364	2009; <b>23</b> (2):171-91
55	507	
56		
57		
58 50		
59 60		
00		10

1		Subject: bmjopen-2014-005039- <del>R1<u>R2</u>: SAA-MSD</del>
2 3 4 5 6	365 366 367	<ol> <li>Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18</li> </ol>
7 8 9 10	368 369 370	29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72
11 12 13	371 372	30. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011; <b>93</b> (6):832-37
14 15 16	373 374	31. Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012; <b>2012</b> :292-300
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 34\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 15\\ 23\\ 54\\ 55\\ \end{array}$	375 376 377 378	32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403
56 57 58		


BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

#### **BMJ Open**

Subject: bmjopen-2014-005039-<del>R1R2</del>: SAA-MSD


# 379 Figure legends

- 380 Figure 1. Study flow
- 381 Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic
- 382 hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors;
- 383 "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia



Subject: bmjopen-2014-005039-RIR2: SAA-MSD

- 386 Figure 2. Mortality in the donor group (MSD-HSCT) vs. the no donor group (IST); effect:
- 387 hazard ratio; random-effects model.
- 388 Standard error calculated from data presented in the Kaplan-Meier graph of the article.
- 389 Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem
- 390 cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:
- 391 first-line immunosuppressive therapy; IV: inverse variance; SE: standard error



## **Tables**

Table 1. Characteristics of included studies

Study ID	Duration	Median	Setting, center,	Patients,	Median age, years	Fraction of	Median inter-	Stem cell	IST compo-	ATG
	of study	FU	country	no. ¹	(range) ¹	males, % ¹	val, days ^{1,2}	source	nents	source
Bayever	1977 to	NR	Single, United	35 vs. 22	17 (2 to 24) vs.	67 vs. 68	60 vs. 58	Bone mar-	ATG	horse
1984	1982		States		15 (1 to 23)			row		
Führer	1993 to	NR	Multi, Germany,	28 vs. 86	10.1 (2.3 to 15.8) vs.	43 vs. 62	49 vs. 23	Bone mar-	ATG	horse
1998	1997		Austria		9.1 (0.9 to 15.2)			row	Ciclosporin	
Gratwohl	1976 to	NR	Single, Switzer-	19 vs. 13	18 (4 to 29) vs.	53 vs. 54	105 vs. 180	Bone mar-	ATG	N.R.
1981	1980		land		23 (7 to 37)			row	Ciclosporin	

¹Donor group (MSD-HSCT) versus No donor group (IST) ²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; FU: follow-up; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; NR: not reported; no.: number

## Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

Table 2. Risk of bias of included studies

Study ID	Blinding of as- sessment of over- all mortality	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	Low	Low	Unclear	High ¹	Low	Low	High
Führer 1998	Low	High	High ²	High ³	Low	Low	High
Gratwohl 1981	Low	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

⊿0

#### **BMJ Open**

#### Subject: bmjopen-2014-005039-<del>R1<u>R2</u>: SAA-MSD</del>

Table 3. Overall survival

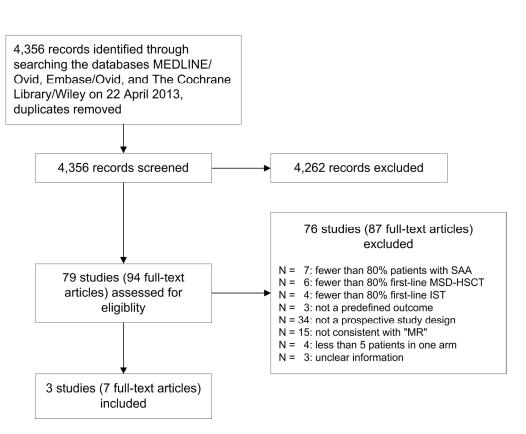
Study ID	Don	or group (MSD-HSCT)	No c	lonor group (IST)	$FU^1$	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^2$ (N.R.)	5	$0.56^{3}$

¹Time point of Kaplan-Meier estimate.

²Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST; immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival


Table 4. Secondary outcomes

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD: graft-versus-host disease; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality



#### Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia 170x130mm (300 x 300 DPI)



Figure 2. Mortality (MSD-HSCT vs. IST); effect: hazard ratio; random-effects model. Standard error calculated from data presented in the Kaplan-Meier graph of the article. Ab-breviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST: first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

254x190mm (300 x 300 DPI)

# PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	•		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS	•		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	in the Cochrane review
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6 to 7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7

10

# PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	in the Cochrane review
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	table 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8 to 9, table 3 to 4, figure 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	figure 1
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	table 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	none
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
FUNDING			

Page 53 of 53

BMJ Open



10

# PRISMA 2009 Checklist

3 4 5 6	nding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	12
7				
-1 - 1 - i	<i>m:</i> Moher D, Liberati A, Tetzlaff 10.1371/journal.pmed1000097	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6 For more information, visit: www.prisma-statement.org. Page 2 of 2	6(6): e1000097.
3	To: To? Injournal.priled Tobooo?		For more information, visit: www.prisma-statement.org.	
10 11			Page 2 of 2	
12			Faye z or z	
13				
14				
15				
16				
17				
18				
19 20				
20				
22				
23				
24				
25				
26				
27				
28 29				
29 30				
31				
32				
33				
34				
35				
36				
37 38				
39				
40				
41				
42				
43				
44				
45 46			For peer review only http://breienen.htti.com/eite/shevidalinee.vhtml	
46 47			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47 48	st. Protected by copyright.	pλ đne:	2024. Zown on April 2014. Downloaded from http://www.non.com/on/2014. Downloaded from http://www.non.com/on/2014. 2024	BW1C

# **BMJ Open**

## Stem cell transplantation of matched sibling donors compared with immunosuppressive therapy for acquired severe aplastic anemia – a Cochrane Systematic Review

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005039.R3
Article Type:	Research
Date Submitted by the Author:	18-Jun-2014
Complete List of Authors:	Peinemann, Frank; University of Cologne, Children's Hospital Labeit, Alexander; University of Illinois College of Medicine, Center for Outcomes Research
<b>Primary Subject Heading</b> :	Haematology (incl blood transfusion)
Secondary Subject Heading:	Paediatrics, Pharmacology and therapeutics
Keywords:	CHEMOTHERAPY, Anaemia < HAEMATOLOGY, Bone marrow transplantation < HAEMATOLOGY, Paediatric oncology < ONCOLOGY, STATISTICS & RESEARCH METHODS, TRANSPLANT MEDICINE



#### **BMJ Open**

1		Subject: bmjopen-2014-005039-R3: SAA-MSD
2 3 4	1	Stem cell transplantation of matched sibling donors compared with immunosuppressive
5	2	therapy for acquired severe aplastic anemia – a Cochrane Systematic Review*
6 7	-	
8 9	3	Frank Peinemann, ^{1†} Alexander Labeit, ²
10	4	¹ Children's Hospital, University of Cologne, Cologne, Germany
11 12	5	² Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Illinois,
13	6	USA
14 15	7	
16 17	8	FP: pubmedprjournal@gmail.com
18	9	AL: alabeit.publications@gmail.com
19 20	10	
21 22	11	*This article is based on a Cochrane Systematic Review published in the Cochrane Database
23	12	of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:
24 25	13	10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for information).
26	14	Cochrane Systematic Reviews are regularly updated as new evidence emerges and in response
27 28	15	to feedback, and the CDSR should be consulted for the most recent version of the review.
29 30	16	
31	17	[†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, University of
32 33	18	Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal@gmail.com.
34 35	19	Phone: +49-176-31130745.
36	17	
37 38	20	
39	21	
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

## 22 Keywords

- 23 severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-
- 24 pressive therapy, systematic review

## 

#### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

## 29 Abstract

30 Objectives: Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of 31 this Cochrane review was to evaluate the effectiveness and adverse events of first-line 32 allogeneic hematopoietic stem cell transplantation of HLA-matched sibling donors compared 33 to first-line immunosuppressive therapy.

34 Setting: Specialised stem cell transplantations units in primary care hospitals

Participants: We included 302 participants with newly diagnosed acquired severe aplastic
anemia. The age ranged from early childhood to young adulthood. We excluded studies on
participants with secondary aplastic anemia.

38 Interventions: We included allogeneic haematopoietic stem cell transplantation as the test 39 intervention harvested from any source of matched sibling donor and serving as a first-line 40 therapy. We included immunosuppressive therapy as comparator with either antithymocyte/-41 antilymphocyte globulin or ciclosporin or a combination of the two.

42 Primary and secondary outcome measures planned and finally measured: The primary 43 outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft 44 failure, graft-versus-host disease, no response to immunosuppressive therapy, relapse after 45 initial successful treatment, secondary clonal disease or malignancies, health-related quality 46 of life, and performance scores.

47 Results: We identified three prospective non-randomized controlled trials with a study design 48 that was consistent with the principle of 'Mendelian randomization' in allocating patients to 49 treatment groups. All studies had a high risk of bias due to the study design and were 50 conducted more than 15 years. The pooled hazard ratio for overall mortality for the donor

	Subject: bmjopen-2014-005039-R3: SAA-MSD
51	group versus the no donor group was 0.95 (95% confidence interval 0.43 to 2.12, $P = 0.90$ ).
52	Conclusions: There are insufficient and biased data that do not allow any firm conclusions to
53	be made about the comparative effectiveness of first-line allogeneic hematopoietic stem cell
54	transplantation of HLA-matched sibling donors and first-line immunosuppressive therapy of
55	patients with acquired severe aplastic anemia.
56	
57	Strengths and limitations of this study
58	• We conducted a comprehensive literature search and strictly adhered to the projected
59	methodology.
60	• We restricted the study design to randomized controlled trials and prospective non-
61	randomized controlled trials and the studies had to be compatible with 'Mendelian
62	Randomization' to avoid excess risk of bias.
63	• The included data are too scarce and too biased to allow any conclusion on the com-
64	parative effectiveness of MSD-HSCT and IST.
65	• The included data were collected 15 to more than 30 years ago. Thus, the results may
66	
67	

#### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

## 68 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line immunosuppressive therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin. First-line IST is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in the present study on equal terms. ATG as well as ALG are polyclonal antibodies that recognize a variety of human lymphocyte cell surface antigens, reduce the number of lymphocytes and induce an immunosuppressive effect. They originate in animals immunized

#### **BMJ Open**

#### Subject: bmjopen-2014-005039-R3: SAA-MSD

with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic response and the survival of patients after a first treatment for severe aplastic anemia, it may be crucial in what type of animal ATG originates, as a randomized study showed that rabbit ATG was inferior in this respect to horse ATG [6]. The currently recommended combination of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate and potentially complementary modes of action[5]. Some patients do not respond well to IST or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

#### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

## 104 Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

#### 109 Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

## 126 Principle of 'Mendelian randomization'

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation because the risk of early death is expected to be higher in the transplantation group than in the non-transplantation group. The reason is the potentially life-threatening graft-versus-host disease occuring only in the transplanted patients. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

## Search strategy and selection of studies

We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library CENTRAL (Wiley) including articles published from inception to 22 April 2013. The corresponding search strategies are depicted in the original Cochrane Review [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to

### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

the reference management database EndNote Version X3 [14]. Two authors assessed the eligibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. We judged studies as consistent with the principle of 'Mendelian randomi-zation' if all transplant donors were clearly siblings and if the allocation of patients to treat-ment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

## 163 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable baseline characteristics and concurrent control. We applied The Cochrane Collaboration's criteria for judging risk of bias [16].

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

#### Data synthesis

One review author entered the data into Review Manager [17]. Another review author checked the entered data. We synthesized data on mortality for the donor group (MSD-HSCT) versus the no donor group (IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given in the publication, we estimated hazard ratios according to methods proposed by [18] and

[19].

urc .

### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

## **Results**

## 181 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

187 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males, and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (Table 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

#### **Effects of intervention**

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (Table 3). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in Table 4. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher 

than 70%.

### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

## **Discussion**

## 217 Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplanted patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

236 Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not for
IST. Peinemann 2011 identified three studies that reported a statistically significant improve-

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

248 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. We assumed a possible 'Mendelian Randomiza-tion' in the three included studies, though, the authors did not mention this approach and did not report what proportion of patients with a matched sibling donor actually received the transplant. Thus, crucial information is lacking to judge the compliance of patients and the significance of the assumed concept of natural allocation. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (starting in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to

t/guidelines.xhtml

### **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian randomization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events. Nitsch 2006 described the limits to causal inference based on 'Mendelian ran-domization' [32].

273 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R3: SAA-MSD

# 281 Acknowledgments

- 282 We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- 283 Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- 284 University of Cologne, Germany, for provision of fulltexts.

# 285 Ethics statement

286 An ethics statement was not required for this work.

# 287 Financial Disclosure

- 288 Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role
- in study design, data collection and analysis, decision to publish, or preparation of the manu-

290 script.

# 291 Conflict of Interest Statement

292 No authors have any competing interests.

# 293 Contributorship Statement

- 294 FP: design, search strategy, study selection, data extraction, data analysis, writing the
- 295 manuscript
- AL: methodological perspective, reviewing the manuscript
- .

# 298 Data Sharing Statement

299 No additional data available.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

## **BMJ Open**

Subject: bmjopen-2014-005039-R3: SAA-MSD

#### References

4 5	500	
6 7 8 9	301 302	1. Genetic and Rare Diseases Information Center (GARD). <i>Aplastic anemia</i> . Bethesda: The Office of Rare Diseases Research (ORDR) and the National Human Genome Research
9 10	303	Institute (NHGRI) of the National Institutes of Health (NIH), 2013.
11 12 13	304 305	<ol> <li>Kaufman DW, Kelly JP, Issaragrisil S, et al. Relative incidence of agranulocytosis and aplastic anemia. Am J Hematol 2006;81(1):65-67</li> </ol>
14 15	306	3. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365(9471):1647-56
16	307	4. Marsh JCW, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of
17 18	308	acquired aplastic anaemia. Br J Haematol 2009;147:43-70
19 20	309	5. Young NS, Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In:
20	310	Handin RI, Lux SE, Stossel TP, eds. Blood: Principles and practice of hematology.
22 23	311	Philadelphia: Lippincott Williams & Wilkins, 2003:273-318.
24	312	6. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in
25	313	acquired aplastic anemia. New England Journal of Medicine 2011;365(5):430-38
26		
27	314	7. Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell
28	315	transplantation of HLA-matched sibling donors compared with first-line ciclosporin
29	316	and/or antithymocyte or antilymphocyte globulin for acquired severe aplastic anemia.
30	317	The Cochrane database of systematic reviews 2013;7:CD006407 doi:
31 32	318	10.1002/14651858.CD006407.pub2[published Online First: Epub Date] .
33	319	8. The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print
34	320	journals. The Cochrane Policy Manual [updated 12 July 2013]. Oxford: The Cochrane
35 36 37	320	Collaboration, 2013.
38	322	9. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
39 40	323	meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097-e97
41	324	10. Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression
42	325	and sibling marrow transplantation. Hematology Am Soc Hematol Educ Program
43 44	326	2010; <b>2010</b> :36-42
45	327	11. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation
46	328	with chemotherapy. Bone Marrow Transplant 1991;7(Suppl 3):9-12
47	520	with chemotherapy. Bone Marrow Transplant 1991,7(Suppl 5).9-12
48	329	12. Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to
49	330	evaluate allogeneic stem cell transplantation in leukaemia. Int J Epidemiol
50	330	2004; <b>33</b> :15-17
51	551	2004,33.13-17
52	222	12 Katan MD Analia anatain Eisafamua annua dalatanal and annuan Lanat
53	332	13. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet
54	333	1986; <b>327</b> (8479):507-08
55	~~ .	
56	334	14. EndNote [program]. New York City: Thomson Reuters, 2013.
57 59		
58 50		
59		
60		

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Subject: bmjopen-2014-005039-R3: SAA-MSD

15.	<ul> <li>Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:</li> <li>Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwcochrane-handbookorg.</li> </ul>
16.	Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the 'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from www.cochrane-handbook.org.
17.	Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011.
18.	Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; <b>17</b> (24):2815-34
19.	Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16-16
20.	Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation and antithymocyte globulin in treatment of young patients with severe aplastic anemia. J Pediatr 1984; <b>105</b> :920-25
21.	Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz Med Wochenschr 1981;111:1520-22
22.	Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin Padiatr 1998; <b>210</b> :173-79
23.	Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood 2005; <b>106</b> :2102-04
24.	Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and development of the SAA 94 pilot protocol. Klin Padiatr 1994; <b>206</b> :289-95
25.	Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl 1:156a, Abstract 631-156a, Abstract 631
26.	Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and immunosuppressive therapy in children with aplastic anemia: data from a prospective multinational trial in Germany, Austria and Switzerland. Blood 2004; <b>104</b> :Abstract 1439-Abstract 39
27.	Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am 2009; <b>23</b> (2):171-91

## **BMJ Open**

1	Subject: bmjopen-2014-005039-R3: SAA-MSD
2 3 372 4 373 5 374 6	<ol> <li>Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18</li> </ol>
7 375 8 376 9 377	29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72
1137812379	<ol> <li>Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011;93(6):832-37</li> </ol>
14 15 380 16 381	<ol> <li>Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012;2012:292-300</li> </ol>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403

# Tables

Table 1. Characteristics of included studies

Study ID	Duration	Median	Setting, center,	Patients,	Median age, years	Fraction of	Median inter-	Stem cell	IST compo-	ATG
	of study	FU	country	no. ¹	(range) ¹	males, % ¹	val, days ^{1,2}	source	nents	source
Bayever	1977 to	NR	Single, United	35 vs. 22	17 (2 to 24) vs.	67 vs. 68	60 vs. 58	Bone mar-	ATG	horse
1984	1982		States		15 (1 to 23)			row		
Führer	1993 to	NR	Multi, Germany,	28 vs. 86	10.1 (2.3 to 15.8) vs.	43 vs. 62	49 vs. 23	Bone mar-	ATG	horse
1998	1997		Austria		9.1 (0.9 to 15.2)			row	Ciclosporin	
Gratwohl	1976 to	NR	Single, Switzer-	19 vs. 13	18 (4 to 29) vs.	53 vs. 54	105 vs. 180	Bone mar-	ATG	N.R.
1981	1980		land		23 (7 to 37)			row	Ciclosporin	

¹Donor group (MSD-HSCT) versus No donor group (IST)

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; FU: follow-up; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; NR: not reported; no.: number

## Subject: bmjopen-2014-005039-R3: SAA-MSD

Table 2. Risk of bias of included studies

Study ID	Blinding of as- sessment of over- all mortality	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	Low	Low	Unclear	High ¹	Low	Low	High
Führer 1998	Low	High	High ²	High ³	Low	Low	High
Gratwohl 1981	Low	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Subject: bmjopen-2014-005039-R3: SAA-MSD

Table 3. Overall survival

Study ID	Donor group (MSD-HSCT)		No c	lonor group (IST)	$FU^1$	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^2$ (N.R.)	5	$0.56^{3}$

¹Time point of Kaplan-Meier estimate.

 2 Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

⊿0 Subject: bmjopen-2014-005039-R3: SAA-MSD

Table 4. Secondary outcomes

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD; graft-versus-host disease; IST: immunosuppressive therapy including eiclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality

# **Figure legends**

Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia

Figure 2. Mortality in the donor group (MSD-HSCT) vs. the no donor group (IST); effect: hazard ratio; random-effects model. Standard error calculated from data presented in the Kaplan-Meier graph of the article. Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST: first-line immunosuppressive therapy; IV: inverse variance; SE: standard error

## **BMJ Open**

1 Subject: bmjopen-2014-005039- <u>R2R3</u> : SAA-MSD	
2 3	
4 1 Stem cell transplantation of matched sibling donors compared with immur	nosuppressive
<ul> <li>therapy for acquired severe aplastic anemia – a Cochrane Systematic Revi</li> </ul>	ew*
<ul> <li>7</li> <li>8 3 Frank Peinemann,^{1†} Alexander Labeit,²</li> </ul>	
9 10 4 ¹ Children's Hospital, University of Cologne, Cologne, Germany	
¹¹ ₁₂ 5 ² Center for Outcomes Research, University of Illinois College of Medicine at P	Peoria, Illinois,
13 6 USA	
14 15 7	
16 8 FP: pubmedpriournal@gmail.com	
18 9 AL: alabeit.publications@gmail.com	
19 20 10	
<ul><li>21</li><li>22</li><li>11 *This article is based on a Cochrane Systematic Review published in the Cochr</li></ul>	rane Database
23 12 of Systematic Reviews 2013, Issue 7. Art. No.: CD006407. DOI:	
24 25 13 10.1002/14651858.CD006407.pub2. (see www.thecochranelibrary.com for info	ormation).
26 2714Cochrane Systematic Reviews are regularly updated as new evidence emerges a	and in response
28 15 to feedback, and the CDSR should be consulted for the most recent version of t	the review.
29 30 16	
³¹ 17 [†] Corresponding author: Frank Peinemann, M.D., M.Sc., Children's Hospital, Un	niversity of
<ul> <li>18 Cologne, Kerpener Str. 62, 50937 Cologne, Germany; e-mail: pubmedprjournal</li> <li>34</li> </ul>	l@gmail.com.
35 19 Phone: +49-176-31130745. 36	
$     37 \\     38 20 $	
39 21	
40 41	
42 43	
44	
45 46	
47	
48	
49 50	
51	
52	
53 54	
55	
56	

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<del>R2R3</del>: SAA-MSD

2
3
4
5
6
7
8
à
10
10
11
12
13
14
15
16
17
18
19
20
9 10 11 12 13 14 15 16 17 18 19 20 21
22
23
22 23 24 25
25
26
27
27 28
20 29
30
31
32
33
34 35
35
36
37
36 37 38
39
40
41
42
43
44
45
46
40 47
47 48
49 50
50
51
52
53
54
55
56
57
58
59
60

1

22 Keywords 23 severe aplastic anemia, stem cell transplantation, bone marrow transplantation, immunosup-24 pressive therapy, systematic review 25 26 27 Strengths and limitations of this study 28 We conducted a comprehensive literature search and strictly adhered to the projected methodology. 29 30 We restricted the study design to randomized controlled trials and prospective non-• 31 randomized controlled trials and the studies had to be compatible with 'Mendelian 32 Randomization' to avoid excess risk of bias. 33 The included data are too scarce and too biased to allow any conclusion on the com-• 34 parative effectiveness of MSD-HSCT and IST. 35 The included data were collected 15 to more than 30 years ago. Thus, the results may • 36 not be applicable to current modern standard care. 37 38 39

### **BMJ Open**

Subject: bmjopen-2014-005039-<mark>R2R3</mark>: SAA-MSD

## **Abstract**

## 41 Background

42 Acquired severe aplastic anemia is a rare and potentially fatal disease. The aim of this 43 Cochrane review was to evaluate the effectiveness and adverse events of first-line allogeneic 44 hematopoietic stem cell transplantation of HLA-matched sibling donors compared to first-line 45 immunosuppressive therapy.

46 Procedure

We searched the electronic databases MEDLINE (Ovid), EMBASE (Ovid), and The Cochrane Library CENTRAL (Wiley) for published articles from 1946 to 22 April 2013. We included randomized controlled trials and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups.

52 Results

We identified three prospective non-randomized controlled trials with 302 participants. We did not identify a randomized controlled trial. All studies had a high risk of bias due to the study design and were conducted more than 15 years ago and may not be applicable to the standard of care of today. The pooled hazard ratio for overall mortality for the donor group versus the no donor group was 0.95 (95% confidence interval 0.43 to 2.12, P = 0.90).

60 Conclusions

## **BMJ Open**

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

61 There are insufficient and biased data that do not allow any firm conclusions to be made about 62 the comparative effectiveness of first-line allogeneic hematopoietic stem cell transplantation 63 of HLA-matched sibling donors and first-line immunosuppressive therapy of patients with 64 acquired severe aplastic anemia.

### **BMJ Open**

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

## 66 Introduction

Acquired severe aplastic anemia (SAA) is a rare [1] and potentially fatal disease which is characterized by hypocellular bone marrow and pancytopenia; it mainly affects young adults. The estimated incidence rate of SAA ranges from 0.7 to 4.1 per million people per year [2]. The underlying pathophysiology is thought to be an aberrant immune response involving the T-cell mediated destruction of hematopoietic stem cells [3]. Major signs and symptoms are severe infections, bleeding, and exhaustion and patients may experience paleness, weakness, fatigue, and shortness of breath.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line allogeneic hematopoietic stem cell transplantation (HSCT) from the bone marrow of an human leukocyte antigen (HLA)-matched sibling donor (MSD) is regarded as the initial treatment of choice for newly diagnosed patients with severe aplastic anemia. Graft failure may lead to early death and the conditioning regimen may lead to severe non-hematological organ toxicities.

According to the 2009 Guidelines for the diagnosis and management of aplastic anaemia of the British Committee for Standards in Haematology [4], first-line immunosuppressive therapy (IST) is a combination of antithymocyte globulin (ATG) and ciclosporin. First-line IST is indicated for patients where no MSD is available, which can be expected for 70% of patients with SAA [3]. Ciclosporin is an immunosuppressant drug that is not lymphocytotoxic but has specific inhibitory effects on T-lymphocyte function [5]. In the past, antilymphocyte globulin (ALG) was reported interchangeably in the literature alongside ATG, therefore, ALG is reported in the present study on equal terms. ATG as well as ALG are polyclonal antibodies that recognize a variety of human lymphocyte cell surface antigens, reduce the number of lymphocytes and induce an immunosuppressive effect. They originate in animals immunized

### **BMJ Open**

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

with either normal human thymocytes, collected at pediatric cardiac surgery or thoracic duct lymphocytes, collected during therapeutic cannulation [5]. Concerning the hematologic response and the survival of patients after a first treatment for severe aplastic anemia, it may be crucial in what type of animal ATG originates, as a randomized study showed that rabbit ATG was inferior in this respect to horse ATG [6]. The currently recommended combination of ciclosporin with ATG in the treatment of severe aplastic anemia is based on their separate and potentially complementary modes of action[5]. Some patients do not respond well to IST or show no response at all. Frequent transfusions increase the risk of adverse events such as iron overload and early death. If a diagnosis of SAA is established at an early patient age, then it is crucial to know which treatment promises more benefit and less harm in the long run. We aimed to evaluate the effectiveness and severe adverse events of MSD-HSCT compared to IST in patients with SAA.

### **BMJ Open**

Subject: bmjopen-2014-005039-R2R3: SAA-MSD

#### Methods

This article is based on a Cochrane Systematic Review published in The Cochrane Library [7]. Publication of this work is in agreement with the policy of The Cochrane Collaboration [8]. While preparing this systematic review and meta-analysis, we endorsed the PRISMA statement, adhered to its principles and conformed to its checklist [9].

#### Study inclusion criteria

We included randomized controlled trials (RCTs) and prospective non-randomized controlled trials as long as the study design was consistent with the principle of 'Mendelian randomization' in allocating patients to treatment groups. We required a minimum of 80% of relevant patients per group and we set a minimum sample size of five participants per group. We set no limits on language, year of publication, or year of treatment. We included participants with newly diagnosed acquired severe aplastic anemia [4]. We did not set any age limits for participants. We excluded studies on participants with secondary aplastic anemia. We included HSCT as the test intervention harvested from any source of MSD and serving as a first-line therapy [10]. That means, no other HSCT or IST has been offered to the patients before. We included IST as comparator with ciclosporin combined with ATG as the current mode of IST [10]. To accommodate also former modes of IST, we also included ciclosporin combined with ALG, cyclosporine alone, ATG alone, and ALG. Other agents such as corticosteroids and androgens were not considered. The primary outcome was overall mortality. Secondary outcomes were treatment-related mortality, graft failure, graft-versus-host disease, no response to IST, relapse after initial successful treatment, secondary clonal disease or malignancies, health-related quality of life, and performance scores.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<mark>R2<u>R3</u>: SAA-MSD</mark>

**Pri** 

## Principle of 'Mendelian randomization'

There are ethical concerns around randomization of patients with severe aplastic anemia to transplantation versus non-transplantation because the risk of early death is expected to be higher in the transplantation group than in the non-transplantation group. The reason is the potentially life-threatening graft-versus-host disease occuring only in the transplanted patients. In general, MSD HSCT is a life threatening treatment that can lead to early severe adverse events including death. Gray 1991 [11] and Wheatley 2004 [12] described the potential of 'Mendelian randomization' to minimize bias when comparing MSD-HSCT with an alternative therapy. The base concept has been ascribed to Katan 1986 [13]. 'Mendelian randomization' means the view that nature itself has already 'randomized' the paternal and maternal part of a gene given that donor and recipient are siblings. Thus, 'Mendelian randomization' by definition accepts only siblings as transplant donors and these sibling donors are required to have 'identical' or matched features of specific transplant-relevant HLA sites when compared with the transplant recipient. Therefore, patients with an HLA-matched sibling will be allocated to the MSD-HSCT group. On the other hand, patients with siblings that are not HLA compatible will be allocated to the immunosuppressive therapy group. The term 'Mendelian randomization' refers to the fact that the genetic distribution of paternal and maternal alleles follows a random process and is determined before birth. This concept takes advantage of an instrumental variable for allocating the patients to treatment groups and, at the same time, this variable is neither associated with the treatment nor associated with the outcome.

146 Search strategy and selection of studies

147 We conducted an electronic literature database search in MEDLINE (Ovid), EMBASE (Ov148 id), and Cochrane Library CENTRAL (Wiley) including articles published from inception to

### **BMJ Open**

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

22 April 2013. The corresponding search strategies are depicted in the original Cochrane Re-view [7]. We retrieved all titles and abstracts by electronic searching and downloaded them to the reference management database EndNote Version X3 [14]. Two authors assessed the eli-gibility of retrieved papers independently. We considered studies written in languages other than English. We judged studies to be prospective if an explicit statement was reported or there were clues suggesting a prospective design (e.g. prior approval of treatment, informed consent). We judged studies to be retrospective if an explicit statement was reported or it was implied by description that data were reviewed from an existing source. We regarded each of the following items as an indication of a retrospective design: registry reports and reviewing of medical records. We judged studies as consistent with the principle of 'Mendelian randomi-zation' if all transplant donors were clearly siblings and if the allocation of patients to treat-ment groups was not based on age. We regarded studies as not consistent with the principle of 'Mendelian randomization' if age was not balanced between groups, indicating that age played a role in the group assignment. Example for imbalance: distribution of age categories was statistically not comparable (P value less than 0.05).

164 Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias in the included studies using six criteria. We have used four criteria from The Cochrane Collaboration's tool for assessing risk of bias [15]: blinding of outcome assessment, complete outcome data such as missing data, selective reporting such as not reporting pre-specified outcomes, and other sources of bias such as bias related to the specific study design and competing interest. We extended the Cochrane tool for assessing risk of bias with two additional criteria that are specific to the inclusion criteria for the present review and critical for confidence in results: comparable

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<del>R2<u>R3</u>:</del> SAA-MSD

baseline characteristics and concurrent control. We applied The Cochrane Collaboration'scriteria for judging risk of bias [16].

## 174 Data synthesis

One review author entered the data into Review Manager [17]. Another review author checked the entered data. We synthesized data on mortality for the donor group (MSD-HSCT) versus the no donor group (IST) by using the hazard ratio (HR) for time-to-event data as the primary effect measure with a random-effects model. If the hazard ratio was not directly given stimated hazas. in the publication, we estimated hazard ratios according to methods proposed by [18] and [19].

### **BMJ Open**

Subject: bmjopen-2014-005039-R2R3: SAA-MSD

## **Results**

## 182 Search results

We identified three non-randomized, prospective, parallel, controlled clinical trials (**Figure** 1). Bayever 1984 [20] and Gratwohl 1981 [21] reported their results in a single original article, respectively. Führer 1998 reported five publications including one original article [22], a follow up article [23], one protocol [24], and two abstracts [25 26]. We did not identify any RCTs.

188 Characteristics of included articles

The main study, patients and interventions characteristics are shown in **Table 1**. The patients were treated and observed between 1976 and 1997. Thus, the reported data were collected more than 15 years ago. Median follow up was not reported. Median age, fraction of males, and median days of time interval between diagnosis and begin of treatment were roughly comparable between the treatment groups within each study. The age ranged from early childhood to young adulthood. In the study by Führer 1998, all patients were less than 17 years old by definition of the inclusion criteria [22]. Bone marrow was used as source for all transplants. All three included studies had a high risk of bias due to the study design (**Table** 2). We judged a low risk of bias for blinding the assessment of overall mortality. Blinding or lack of blinding is not expected to make a difference concerning overall mortality. The au-thors of all included studies did not report that 'Mendelian randomization' was planned and the authors did not report the size of the involved families. The authors did not report the numbers of siblings and the results of the individual genetic analyses.

## **BMJ Open**

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

## 202 Effects of intervention

The pooled hazard ratio estimate for overall mortality was 0.95 with a 95% confidence inter-val of 0.43 to 2.12 (P value = 0.90) (Figure 2). According to the meta-analysis based on data from all three included studies, overall mortality was not statistically significantly different between MSD-HSCT and IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group (**Table 3**). The results for the secondary out-comes including treatment-related mortality after MSD-HSCT, graft failure after MSD-HSCT, graft-versus-host-disease (GVHD) after MSD-HSCT, no response to IST, and relapse after IST are shown in Table 4. With respect to secondary clonal disease or malignancies, Bayever 1984 reported one patient who developed T-cell lymphoma after MSD-HSCT and Führer 1998 reported 4 patients who developed acute myelogenous leukemia after IST. Health-related quality of life questionnaires were not used in any of the included studies. Ba-yever 1984 reported that almost all evaluable patients in the MSD-HSCT group (92%) and less than half of the patients in the IST group had a Karnofsky Performance Status of higher than 70%.

### **BMJ Open**

Subject: bmjopen-2014-005039-<mark>R2R3</mark>: SAA-MSD

## **Discussion**

## 218 Interpretation of main results

We identified three prospective, non-randomized controlled trials [20-22] including 302 par-ticipants; 121 received MSD-HSCT and 181 received IST. Based on these trials we found insufficient evidence to clarify whether MSD-HSCT leads to better overall survival than IST. Overall survival ranged from 47% to 84% in the MSD-HSCT group and from 45% to 87% in the IST group and in a meta-analysis, overall mortality was not statistically significantly dif-ferent between the treatment groups. Treatment-related mortality in the MSD-HSCT group was considerable ranging from 20% to 42%. The graft failure rate was variable and caused the death of 3% to 16% of transplanted patients. GVHD affected a quarter to a half of transplant-ed patients. More than half of patients in one study did not respond to IST. Relapse affected up to one in eight patients after IST in one study. Secondary clonal disease or malignancies were detected rarely in both treatment groups. Marsh 2009 estimated that allogeneic bone marrow transplantation from an HLA-identical sibling donor provides a 75% to 90% chance of long-term cure in patients younger than 40 years of age [4]. Similarly, in a review of stud-ies with younger patients, Guinan 2009 reported an overall survival between 75% and 95% at three to five years [27]. Sangiolo 2010 concluded that their data favors extending MSD-HSCT to patients older than 40 years of age who are without significant co-morbidities [28]. The results of the studies included in the present systematic review appear to roughly match the recent estimates reported by others.

237 Recent therapeutic improvement

Bacigalupo 2008 reported that the outcome has improved since 1996 for HSCT but not forIST. Peinemann 2011 identified three studies that reported a statistically significant improve-

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

ment of overall survival in the group of matched related donor transplants but not in the IST group [29]. Several factors may have contributed to recent improvements in HSCT, such as detailed HLA-matching and less irradiation-based conditioning. The Third Consensus Con-ference on the treatment of aplastic anemia agreed in 2010 that bone marrow should be used as the source of stem cells and that the upper age limit should be 50 years and that the combi-nation of antithymocyte globulin and ciclosporin remains the gold standard for immunosup-pressive therapy [30]. Scheinberg 2012 provided an overview and update of various treatment options for severe aplastic anemia including immunosuppressive therapy and transplantation [31].

249 Strengths and limitations

One of the strengths of this review is the broadness of the search strategy such that study re-trieval bias is very unlikely. We restricted the inclusion to studies to randomized controlled trials and prospective non-randomized controlled trials that were compatible with 'Mendelian Randomization' to avoid excess risk of bias. We assumed a possible 'Mendelian Randomiza-tion' in the three included studies, though, the authors did not mention this approach and did not report what proportion of patients with a matched sibling donor actually received the transplant. Thus, crucial information is lacking to judge the compliance of patients and the significance of the assumed concept of natural allocation. Nevertheless, the included data are too scarce and too biased to allow any conclusion on the comparative effectiveness of MSD-HSCT and IST. The rates of adverse events, such as treatment-related mortality, graft failure, no response to IST, and GVHD, are unusually high, which may be explained by the age of the studies (starting in 1976). We did not separate horse ATG from rabbit ATG, although the type of animal as the origin of ATG was reported as a serious effect modifier [6]. All data were collected about 15 up to more than 30 years ago. Thus, the results may not be applicable to

### **BMJ Open**

current modern standard care. Use of 'Mendelian randomization' is no guarantee that bias is minimized. This may be because tissue typing data may not be accurate. Patients may have only one sibling either in the donor or in the no donor group. Large families have a greater chance of finding a donor. Therefore, designing a non-randomized controlled trial by applying 'Mendelian randomization' requires careful thought to effectively reduce bias and control for potential confounders. There is a time lag in patients with siblings because tissue typing and readiness for assignment to treatment group may possibly take several months [12]. On the other hand, patients with no siblings can be assigned immediately and are at earlier risk for adverse events. Nitsch 2006 described the limits to causal inference based on 'Mendelian ran-domization' [32].

## 274 Conclusions

There are insufficient and biased data that do not allow any firm conclusions to be made about the comparative effectiveness of MSD-HSCT and IST. Patients should be made aware of the early treatment-related mortality and the burden of GVHD after HSCT. Patients treated with IST should also be made aware that the disease may recur after initial successful treatment, and that life-threatening late clonal and malignant disease after IST may occur in a higher percentage compared to HSCT.

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

# 282 Acknowledgments

- 283 We thank the members of the Editorial Base of the Cochrane Haematological Malignancies
- 284 Group, Cologne, Germany, especially Nicole Skoetz for advice on the review. We thank the
- 285 University of Cologne, Germany, for provision of fulltexts.

# 286 Ethics statement

287 An ethics statement was not required for this work.

# 288 Financial Disclosure

Provision of fulltexts by the University of Cologne, Germany. No funding bodies had any role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

# 292 Conflict of Interest Statement

293 No authors have any competing interests.

## **BMJ Open**

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

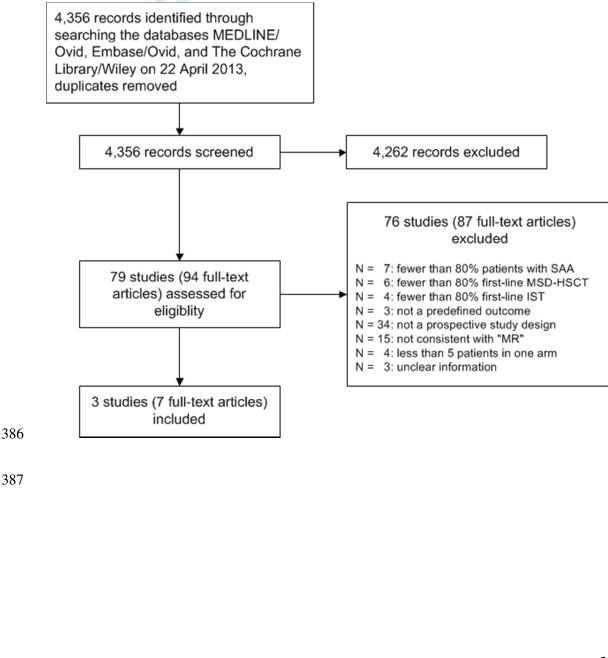
### **References**

4 5	
6	1 Constin and Bars Dissages Information Conter (CAPD) Anlastic growing Dethesdor The
7 29 8 29	
9 29 10	
11     29       12     30	
13 14 30	
15 16 20	
10     302       17     302       18     302	
19 20 30-	5. Young NS, Shimamura A. Chapter 9: Acquired bone marrow failure syndromes. In:
20	
22 30	
23 24 30	6. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in
24 30 25 30 26	
27 30	7. Peinemann F, Bartel C, Grouven U. First-line allogeneic hematopoietic stem cell
28 31	
29 31	
30 31	
31 32 31	
33 34 31	8. The Cochrane Collaboration. 2.2.5 Publication of versions of Cochrane Reviews in print
34	*
35 31 36 31 37	
38 31 [°]	9. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and
39 31 40	
41 31	10. Passweg JR, Marsh JCW. Aplastic Anemia: First-line treatment by immunosuppression
42 32	
43 44 32	
45 32	2 11. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation
46 32	
47	with enemotion py. Done mariow fransplant 1991,7 (Suppr S).9 12
48 32	12. Wheatley K, Gray R. Commentary: Mendelian randomization: an update on its use to
49 20	
50 32 51 32 52	
53 32 [°]	13. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet
54 32 55	
56 32' 57 58 59 60	9 14. EndNote [program]. New York City: Thomson Reuters, 2013.

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

<ul> <li>15. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.a The Cochrane Collaboration's tool for</li> <li>assessing risk of bias. Chapter 8: Assessing risk of bias in included studies. In:</li> <li>Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of</li> <li>Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011</li> <li>Available from www.cochrane-handbook.org.</li> </ul>	
<ul> <li>16. Higgins JPT, Altman DG, Sterne JAC. Table 8.5.d Criteria for judging risk of bias in the</li> <li>'Risk of bias' assessment tool. Chapter 8: Assessing risk of bias in included studies. In:</li> <li>Higgins JPT, Green S (editors) Cochrane Handbook for Systematic Reviews of</li> <li>Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011</li> <li>Available from wwwcochrane-handbookorg.</li> </ul>	
<ul> <li>340 17. Review Manager (RevMan) [program]. Copenhagen: The Nordic Cochrane Centre, The</li> <li>341 Cochrane Collaboration, 2011.</li> </ul>	
<ul> <li>18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses</li> <li>of the published literature for survival endpoints. Stat Med 1998;17(24):2815-34</li> </ul>	
<ul> <li>19. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary</li> <li>time-to-event data into meta-analysis. Trials 2007;8:16-16</li> </ul>	
<ul> <li>20. Bayever E, Champlin R, Ho W, et al. Comparison between bone marrow transplantation</li> <li>and antithymocyte globulin in treatment of young patients with severe aplastic anemia.</li> <li>J Pediatr 1984;105:920-25</li> </ul>	
<ul> <li>349 21. Gratwohl A, Osterwalder B, Nissen C, et al. Treatment of severe aplastic anemia. Schweiz</li> <li>350 Med Wochenschr 1981;111:1520-22</li> </ul>	
<ul> <li>22. Führer M, Burdach S, Ebell W, et al. Relapse and clonal disease in children with aplastic</li> <li>anemia (AA) after immunosuppressive therapy (IST): The SAA 94 experience. Klin</li> <li>Padiatr 1998;210:173-79</li> </ul>	
<ul> <li>354 23. Führer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in</li> <li>355 children: a more severe disease predicts better survival. Blood 2005;106:2102-04</li> </ul>	
<ul> <li>Führer M, Bender-Götze C, Ebell W, et al. Treatment of aplastic anemiaaims and development of the SAA 94 pilot protocol. Klin Padiatr 1994;206:289-95</li> </ul>	
<ul> <li>25. Führer M, Rampf U, Burdach S. Immunosuppressive therapy (IST) and bone marrow</li> <li>transplantation (BMT) for aplastic anemia (AA) in children. Blood 1998;92 Suppl</li> <li>1:156a, Abstract 631-156a, Abstract 631</li> </ul>	
<ul> <li>26. Führer M, Rampf U, Niemeyer CM, et al. Bone marrow transplantation and</li> <li>immunosuppressive therapy in children with aplastic anemia: data from a prospective</li> <li>multinational trial in Germany, Austria and Switzerland. Blood 2004;104:Abstract</li> <li>1439-Abstract 39</li> </ul>	
<ul> <li>365 27. Guinan EC. Acquired aplastic anemia in childhood. Hematol Oncol Clin North Am</li> <li>366 2009;23(2):171-91</li> </ul>	

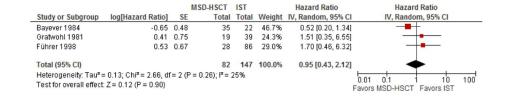
## **BMJ Open**


1		Subject: bmjopen-2014-005039- <mark>R2<u>R3</u>: SAA-MSD</mark>
2 3 4 5 6	367 368 369	28. Sangiolo D, Storb R, Deeg HJ, et al. Outcome of allogeneic hematopoietic cell transplantation from HLA-identical siblings for severe aplastic anemia in patients over 40 years of age. Biol Blood Marrow Transplant 2010;16(10):1411-18
7 8 9 10	370 371 372	29. Peinemann F, Grouven U, Kroger N, et al. First-line matched related donor hematopoietic stem cell transplantation compared to immunosuppressive therapy in acquired severe aplastic anemia. PLoS One 2011;6(4):e18572-e72
11 12 13	373 374	30. Kojima S, Nakao S, Young N, et al. The Third Consensus Conference on the treatment of aplastic anemia. Int J Hematol 2011; <b>93</b> (6):832-37
14 15 16	375 376	31. Scheinberg P. Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program 2012; <b>2012</b> :292-300
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 44 25 26 27 28 29 30 31 32 33 435 36 37 38 39 40 41 42 43 44 50 51 52 53	377 378 379 380	32. Nitsch D, Molokhia M, Smeeth L, et al. Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials. Am J Epidemiol 2006;163(5):397-403
54 55 56 57 58		

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Subject: bmjopen-2014-005039-R2R3: SAA-MSD

# 381 Figure legends


- 382 Figure 1. Study flow
- 383 Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic
- 384 hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors;
- 385 "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia



## **BMJ Open**

Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

- 388 Figure 2. Mortality in the donor group (MSD-HSCT) vs. the no donor group (IST); effect:
- 389 hazard ratio; random-effects model.
- 390 Standard error calculated from data presented in the Kaplan-Meier graph of the article.
- 391 Abbreviations: CI: confidence interval; MSD-HSCT: first-line allogeneic hematopoietic stem
- 392 cell transplantation of bone marrow of HLA-matched sibling donors; log: logarithm; IST:
- 393 first-line immunosuppressive therapy; IV: inverse variance; SE: standard error



 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

# Tables

Table 1. Characteristics of included studies

Ctu de ID	Dunation	Median	Catting conton	Detiente	Madian and man	Enertian of	Median inter-	Ctore call	ICT commo	ATC
Study ID	Duration	Median	Setting, center,	Patients,	Median age, years	Fraction of		Stem cell	IST compo-	ATG
	of study	FU	country	no. ¹	(range) ¹	males, $\%^1$	val, days ^{1,2}	source	nents	source
Bayever	1977 to	NR	Single, United	35 vs. 22	17 (2 to 24) vs.	67 vs. 68	60 vs. 58	Bone mar-	ATG	horse
1984	1982		States		15 (1 to 23)			row		
Führer	1993 to	NR	Multi, Germany,	28 vs. 86	10.1 (2.3 to 15.8) vs.	43 vs. 62	49 vs. 23	Bone mar-	ATG	horse
1998	1997		Austria		9.1 (0.9 to 15.2)			row	Ciclosporin	
Gratwohl	1976 to	NR	Single, Switzer-	19 vs. 13	18 (4 to 29) vs.	53 vs. 54	105 vs. 180	Bone mar-	ATG	N.R.
1981	1980		land		23 (7 to 37)			row	Ciclosporin	

¹Donor group (MSD-HSCT) versus No donor group (IST)

²Median time interval between diagnosis and begin of treatment

Abbreviations. ATG: anti-thymocyte globulin; FU: follow-up; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; NR: not reported; no.: number

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

Table 2. Risk of bias of included studies

Study ID	Blinding of as- sessment of over- all mortality	Incomplete outcome data	Selective reporting	Other bias	Comparable base- line characteristics	Concurrent control	Overall judgement of bias
Bayever 1984	Low	Low	Unclear	High ¹	Low	Low	High
Führer 1998	Low	High	High ²	High ³	Low	Low	High
Gratwohl 1981	Low	High	Unclear	Unclear	Low	Low	High

¹Bayever 1984: The authors reported the study results at an early time point before all planned data had been gathered: "We present this interim report(...)".

²Führer 1998: In the 2005 update, overall survival, secondary clonal disease or malignancies, and also relapse were not reported separately for the 2 distinct treatment groups. Rather, the results were presented for 2 subgroups according to disease severity. This was different from the earlier report of the same study published in 1998 covering the study period from 1993 to 1997. See Fig. 1 and Tab. 1 of the article.

³Führer 1998: Financial support was provided by 2 pharmaceutical companies.

Abbreviations. ATG: anti-thymocyte globulin; IST: immunosuppressive therapy; MSD-HSCT: HLA-matched sibling donor hematopoietic stem cell transplantation; N.R.: not reported; no.: number

## Subject: bmjopen-2014-005039-R2R3: SAA-MSD

Table 3. Overall survival

Study ID	Donor group (MSD-HSCT)		No c	lonor group (IST)	$FU^1$	P value
	Ν	OS (95% CI)	Ν	OS (95% CI)	Year	
Bayever 1984	35	72% (64 to 80)	22	45% (29 to 61)	2	0.18
Führer 1998	28	84% (N.R.)	86	87% (N.R.)	4	0.43
Gratwohl 1981	19	47% (N.R.)	13	$69\%^{2}$ (N.R.)	5	$0.56^{3}$

¹Time point of Kaplan-Meier estimate.

 2 Gratwohl 1981: Two of 13 patients were eligible for MSD-HSCT but donors were not available in the first place; the two patients died after they received a second-line HSCT from the then again available MSD that was offered after the patients showed no response to IST.

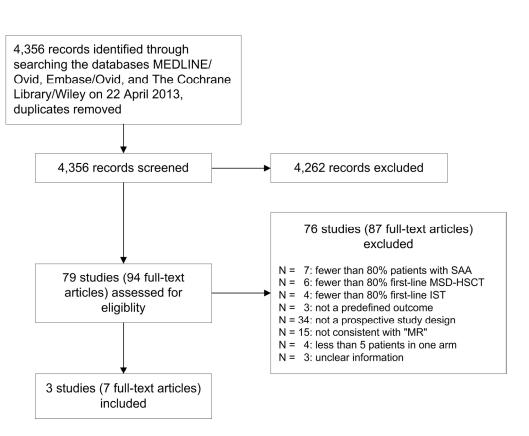
³The P value was not reported and we calculated the P value using Fisher's exact test.

Abbreviations: CI: confidence interval; FU: follow up; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N: number of analyzed patients; N.R.: not reported; OS: overall survival

⊿0

## Subject: bmjopen-2014-005039-<u>R2R3</u>: SAA-MSD

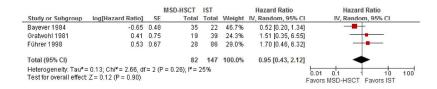
Table 4. Secondary outcomes

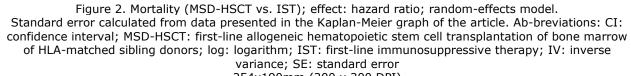

Study ID	TRM after MSD-HSCT ^{1,2}	Graft failure after MSD-HSCT ¹	GVHD after MSD- HSCT ¹	No response to IST ¹	Relapse at 5 years after IST ¹
Bayever 1984	20% (7 of 35)	3% (1 of 35)	51% (17 of 33)	64% (14 of 22)	12.5% (1 of 8)
Führer 1998	N.R.	N.R.	N.R.	N.R.	N.R.
Gratwohl 1981	42% (8 of 19)	16% (3 of 19)	26% (5 of 19)	15% (2 of 13)	N.R.

¹In parenthesis: number of affected of number of evaluable patients

²Treatment-related mortality was not reported for IST.

Abbreviations. GVHD: graft-versus-host disease; IST: immunosuppressive therapy including ciclosporin and/or antithymocyte or antilymphocyte globulin; MSD-HSCT: firstline allogeneic hematopoietic stem cell transplantation from HLA-matched sibling donor; N.R.: not reported; TRM: treatment-related mortality


BMJ Open: first published as 10.1136/bmjopen-2014-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.




## Figure 1. Study flow

Abbreviations. IST: first-line immunosuppressive therapy; MSD-HSCT: first-line allogeneic hematopoietic stem cell transplantation of bone marrow of HLA-matched sibling donors; "MR": "Mendelian Randomization"; SAA: acquired severe aplastic anemia

170x130mm (300 x 300 DPI)





254x190mm (300 x 300 DPI)

# PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #				
TITLE							
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1				
ABSTRACT							
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3				
INTRODUCTION							
Rationale	3	Describe the rationale for the review in the context of what is already known.	4				
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5				
METHODS							
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5				
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5				
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6				
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	in the Cochrane review				
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6				
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6				
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6				
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6 to 7				
		State the principal summary measures (e.g., risk ratio, difference in means).	7				

Page 53 of 54

BMJ Open



10

# PRISMA 2009 Checklist

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ² ) for each meta-analysis.	7
		Page 1 of 2	
Section/topic	_#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	in the Cochrane review
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	table 2
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8 to 9, table 3 to 4, figure 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	figure 1
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	table 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	none
DISCUSSION		<u> </u>	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
FUNDING	<u> </u>		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	



# PRISMA 2009 Checklist

4 5 6	unding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	12
7	o <i>m:</i> Moher D. Liberati A. Tetzlaff	.I Altm	han DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement, PLoS Med For more information, visit: www.prisma-statement.org. Page 2 of 2	6(6) [,] e1000097
9 do	i:10.1371/journal.pmed1000097	0, 7 441		
10			For more information, visit: www.prisma-statement.org.	
11			Page 2 of 2	
12				
13				
14				
15				
16				
17				
18				
19				
20 21				
21 22				
22				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35 36				
30 37				
37 38				
39				
40				
41				
42				
43				
44				
45				
46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47				
48	st. Protected by copyright.	sand yo	0.112 Alist published as 10.51136/bmjopen-2004-005039 on 15 July 2014. Downloaded from http://bmjopen.bmj.com/ on	BW1 O