

Risk Marker Associations with Venous Thrombotic Events: A Cross-sectional Analysis

A	
Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003208
Article Type:	Research
Date Submitted by the Author:	07-Jun-2013
Complete List of Authors:	Chan, Virginia Criqui, Michael; University of California, San Diego, Department of Medicine; University of California, San Diego, Department of Family and Preventive Medicine Denenberg, Julie; University of California, San Diego, Department of Family and Preventive Medicine Koperski, Sabrina; University of California, San Diego, Department of Medicine Golomb, Beatrice; University of California San Diego, Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	Thromboembolism < CARDIOLOGY, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine), Vascular medicine < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

Risk Marker Associations with Venous Thrombotic Events: A Cross-sectional Analysis Virginia T. Chan, MD^{*, †} Michael H. Criqui, MD, MPH^{*,‡} Julie Denenberg, MA[‡] Sabrina Koperski, BS^{*} Beatrice A. Golomb, MD, PhD^{*, ‡} Department of Medicine, University of California, San Diego [†] Internal Medicine, Scripps Green Hospital, San Diego [‡] Department of Family and Preventive Medicine, University of California, San Diego Running title: Risk Markers for VTE Funding Source: This research was funded by NIH–NHLBI grant 53487 and NIH GCRC Program grant MO1 RR0827. The funding source did not influence design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. **Competing interests:** The authors have no conflicts of interest in relation to this work. **Corresponding Author:** Beatrice A. Golomb, MD, PhD Dept of Medicine 0995 UCSD School of Medicine 9500 Gilman Dr. La Jolla, CA 92093-0995 Phone: 858 558-4950 x201 Fax: 858 558-4960 Email: bgolomb@ucsd.edu (not preferred mechanism of correspondence) Word count: 2,676

ABSTRACT

Objective: To examine the interrelations among, and risk marker associations for superficial and deep venous events – superficial venous thrombosis (SVT), deep venous thrombosis (DVT) and pulmonary embolism (PE). *Design*: Cross-sectional Analysis

Setting: San Diego, CA

Participants: 2,404 men and women aged 40-79 years from four ethnic groups; Non-Hispanic White, Hispanic, African-American, and Asian. The study sample was drawn from current and former staff and employees of the University of California, San Diego and their spouses /significant others.

Outcome Measures: Superficial and deep venous events, specifically SVT, DVT and PE

Results: Significant correlates on multivariable analysis were, for SVT: female sex, ethnicity (African-

American=protective), lower educational attainment, immobility, and family history of varicose veins. For DVT and DVE significant correlates included: heavy smoking, immobility, and family history of deep venous events

(borderline for DVE). For PE, significant predictors included immobility, and, in contrast to DVT, blood

pressure (BP) (systolic or diastolic). In women, oestrogen use duration for hormone replacement therapy, in all and among oestrogen users, predicted PE and DVE respectively.

Conclusions: These findings fortify evidence for known risk correlates/ predictors for venous disease, such as immobility, family history, and hormone use. In addition, new risk associations are shown. Striking among these is an association of PE, but not DVT, to elevated BP: we conjecture PE may serve as cause, rather than consequence. Future studies should evaluate temporal direction of this association.

Keywords: Cross-Sectional Studies, Vascular Diseases/epidemiology, Vascular Diseases/ethnology, Deep Venous Thrombosis, Pulmonary Embolism

BMJ Open

Article Focus: We cross-sectionally examined relations between assessed physiological markers and history of venous events, including superficial venous thrombosis, deep venous thrombosis (DVT), and pulmonary embolism (PE).

Key Messages: We identified a significant correlation between superficial and deep venous events. As expected, predictors of deep venous events included smoking, immobility, and in women hormone use duration. Unexpectedly, elevated blood pressure (BP) significantly related to history of PE, but not DVT. Since DVT is typically a precursor condition to PE, we speculate that BP rises as a consequence rather than cause of PE (consistent with other evidence relating to BP elevation risk factors). To assess this further will require prospective assessment – not merely leading to, but also following, occurrence of PE.

Strengths and Limitations: Recall of events may be imperfect and fatal events are not included. Cross-sectional design does not define temporality in venous event/ risk marker relations. On the positive side, this design may enable relationships to be identified arising from effects of "events" on physiological variables: such relations may also be important, and may be missed in prospective studies that censor at occurrence of an event. However, prospective follow-up remains required, including those with and without PE, to confirm the conjectured directionality of the observed association.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Chronic venous disease causes significant morbidity in diverse populations around the world(1-3), and it has been estimated that 1-3% of total health care expenditures are linked to venous disorders(2, 4, 5). Considerable time and resources are devoted to venous conditions in clinical practice. The San Diego Population Study (SDPS) has sought to better define venous disease prevalence and epidemiology, by clearly delineating and separately analyzing risk correlates for different elements of venous disease, irrespective of directionality of the association. The present report pertains to a history of venous thrombotic events, including superficial venous thrombosis (SVT), deep venous thrombosis (DVT), and pulmonary embolism (PE). It assesses the relation of age, sex, and other potential risk factors to a history of these events.

Materials and Methods

Subjects

2,404 men and women aged 40-79 years from four ethnic groups (Non-Hispanic White, Hispanic, African-American, and Asian), comprising current and former staff/ employees of the University of California, San Diego and their spouses/significant others, were targeted for participation in the SDPS. Inclusion of spouses/significant others modestly extended the age range of participants (29-91 years). Subjects represented a spectrum of socioeconomic status, including unemployed and retired as well as working persons. A full description of the SDPS population, which collected data from 1994-8, is available elsewhere(6, 7). The study was approved by the UCSD Human Research Protection Program, and all subjects gave written informed consent.

Outcomes

PE).

BMJ Open

SVT, DVT and PE were ascertained by self-report. Questions elicited a history of "a blood clot in a leg vein" and "phlebitis or inflamed vein in your leg," stratified by whether the problem was in a superficial or deep vein and queried separately for each leg; "pulmonary embolism or blood clot in lung;" and "heparin or coumadin/ warfarin therapy for a problem with your veins." Because PEs are pathophysiologically linked to DVTs, DVT and PE were analyzed both separately, and conjointly as deep venous events (DVE: DVT and/or

Independent Variables

Variables evaluated for their relation to SVT, DVT and PE included self-reported age, sex, ethnicity, smoking status, alcohol consumption, self-reported activity level, education level (ranked from 1=grade school or less to 9=doctoral degree), occupation (categorical), hormone use in females, history of immobility, and family history of superficial and deep events. Systolic and diastolic brachial blood pressure (SBP and DBP, respectively) was assessed using the subject's right arm after the subject sat quietly for five minutes. Ethnicity, determined by self-report, was categorized as above as Non-Hispanic White (hereafter referred to as Caucasian), Hispanic, African-American, or Asian. Alcohol measures examined included drinking status (none vs. present), days per week of alcohol consumption, and highest number of drinks in a day. Smoking information included current smoking status, years of smoking, average packs/day during time smoked (allowing calculation of pack years of smoking), and heavy smoker status (defined as ≥40 cigarettes/day average during time smoked). Activity was coded into 5 levels, assessed relative to others of the same age and sex. Responses ranged from "much less active" to "much more active." In analyses examining venous outcomes in women, oestrogen use duration and other hormone measures were also evaluated as potential risk factors.

³ <u>Analyses</u> 5 5 6 Su 7 8 9 The (unad

Subject characteristics were tabulated as a function of venous event status – no event, SVT, DVT, or PE. The (unadjusted) relationship of demographic and potential risk variables to each event type was ascertained, using t-test of difference in mean values for continuous variables and chi-squared testing for categorical variables. Relationships between SVT, DVT and PE were evaluated.

For multivariable analyses, following examination of correlations among predictor variables to assist in assessing issues of collinearity, logistic regression was performed. Age- and sex-adjusted regressions were followed by multivariable regressions including all variables shown for bivariable analysis ("full model"). (Where several measures tapping the same variable were appraised, e.g. pack years of smoking vs. heavy smoking, the variable that bore the stronger apparent relationship to the outcome was employed in multivariable analyses.) A "final" regression model was then determined for each venous event outcome, adjusted for potential predictor variables identified from bivariable and age-sex adjusted or fully adjusted analyses. This assessed the multivariable relationship of candidate risk factors to events, controlling for potential confounders. Variables that approached significance on age-sex adjusted and/or fully adjusted analysis (P<0.2) were tested for inclusion in the final model. Those retaining potential predictive value (P<-0.2) were retained in the final model. All logistic regression analyses were performed with and without stratification by sex; results of stratified analyses are presented only where effect modification by sex was present.

Sensitivity analyses were conducted adding back non-significant variables, but typically the final model variables were robustly supported (with exceptions specified). Significance was designated as two-sided P<0.05. Analyses employed Stata version 8.0 (College Station, TX).

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Results

Population Characteristics

Sixty-six percent of subjects were female (1580 women vs. 824 men). Female participants were minimally but significantly younger on average than males (58.9 years vs. 60.1 years; P=0.012). Average values of predictor variables in this population, stratified by venous event status, are shown in **Tables 1a** and **1b**. Variables that differed significantly in those with SVT vs. no events (on unadjusted analysis) were male sex, African-American ethnicity (protective), lower education level, drinkers who did not specify maximum alcohol consumption, and family history of venous disease. For DVT, significant factors were age, Caucasian ethnicity (with African-American ethnicity somewhat protective), family history of venous disease, heavy smoking, and high maximum alcohol consumption (\geq 7 drinks per day). For PE, significant factors were heavy smoking, Caucasian ethnicity, SBP, DBP; and among women, oestrogen use duration for hormone replacement therapy (HRT) *among all females*, and oestrogen use duration *among oestrogen users* for HRT.

Relationships Among Events

The fraction of the population with superficial or deep venous events or PE is shown in **Table 2**. 142 had at least one type of thrombotic event (SVT, DVT, or PE), including 11 in whom both lower extremity (DVT) and pulmonary thrombotic events were reported. A total of 132 people had at least one SVT or DVT. Of these, 29 people reported bilateral events of one or both types, 2 citing both (data not shown in table),

More than half of those with a PE were aware of having had a DVT (52.4%). This contrasts with only 2.65% of those without a PE being aware of a prior DVT. 14.9% of those with a DVT had experienced a PE while only 0.43% of those with no reported DVT reported a PE. Thus, the expected relationship of DVT to PE (i.e. increased likelihood of PE in presence vs. absence of reported DVT, and vice versa) was upheld (χ^2 =172.1, *P*<0.001).

BMJ Open

Multivariable Analyses by Event Type

SVT (**Table 3**): Female sex, lower educational attainment, failure to specify level of maximum alcohol consumption, history of immobility, and family history of first-degree relatives with varicose veins showed significant (or for immobility, borderline significant, P<0.1) positive relations, while African-American ethnicity appeared protective, in the limited (age-sex) adjustment models. Each was significant in the final model.

DVT (**Table 4**): For DVT, significance on multivariable regression was seen for heavy smoker status; history of immobility; and family history of first-degree relatives with DVE. In addition to these variables, Caucasian ethnicity, age, and family history of superficial venous events appeared significant in the limited (age-sex) adjustment model, but lost significance on multivariable analysis.

PE (**Table 4**): For PE, significance on multivariable analysis was seen for: BP; history of immobility; and for women, duration of oestrogen use for HRT. Caucasian ethnicity and heavy smoking, with ORs exceeding 2.5, were retained in the final model, but did not meet criteria for significance, reflecting the modest number of PEs (n=21). We underscore that SBP and/or DBP, *though not related to DVT or SVT in any adjustment scenario*, were significantly related to PE on unadjusted and adjusted analysis.

DVE (DVT and/or PE; **Table 4**): As for DVT, age and Caucasian ethnicity, though significant in the limited adjustment model, lost significance with further adjustment. Significance was seen for heavy smoker status; and history of immobility; and for women, oestrogen use duration *among oestrogen users* for HRT. Family history of DVE, with an OR of 2.49, was also retained in the final model. This variable approached but did not meet criteria for significance (*P*=0.057).

Discussion

This is the first study to characterize, in a population sample, the relationships between superficial and deep venous events, and between DVTs and PEs; and to characterize the risk correlates for SVT, DVT, PE, and DVE. Some anticipated relationships were confirmed; and some intriguing differences in statistical correlates of SVT vs. DVT; and for DVT vs. PE were revealed.

The expected significant relationship between DVT and PE was upheld(8). There was also a significant relationship between risk of SVT and risk of DVT, as well as risk of PE(9).

Regarding sex differences, females were confirmed to have strongly and significantly higher rates of SVTs than males. Oestrogen use duration for HRT showed a link to DVE in women, consistent with existing findings(9-12).

History of heavy smoking was not associated with SVT, but was a strong risk factor for DVT and DVE. Smoking is often not reported as a risk factor for venous thrombosis, though it has been recognized to amplify risk in the setting of oral contraceptive use(13), perhaps contributing to its association to venous thromboembolism in studies of women of reproductive age(14). Moreover, some studies do report an association of smoking to venous thromboembolism extending to older samples and men as well as women(15, 16).

Caucasian ethnicity bore an apparent relationship to DVT, PE and DVE; that was, however, extinguished with multivariable adjustment. Some other studies have also reported a relation of ethnicity to DVT to be extinguished with adjustment for other factors(17). Family history showed an association to DVT that accounted for the ethnicity association and is also consistent with existing data on genetic variation in clotting factors(10, 18).

Immobility, a known risk factor for venous events(10, 11, 17, 19-21), was affirmed here to be a strong predictor for DVT, PE, and DVE. It was also a predictor, though less potent, for superficial events. Many factors associated with thrombosis entail periods of immobility: these range from nursing home confinement(9) and hospitalization(9, 17, 20), to peri-surgical, neurological and injury states(9, 18-20).

Among the most interesting findings, SBP and DBP, though unrelated to DVT, were strongly related to PE. We suggest that, because risk marker data were procured after event occurrence, PE could drive subsequent elevations in BP. Transient hypoxia in settings like sleep apnea promotes BP elevation(22, 23). The possibility cannot be excluded that even focal pulmonary infarction might reduce efficiency of oxygen transfer to blood sufficiently to influence BP in some instances. Potentially compatible information derives from data that initial DVT accompanied by PE is a risk factor for *recurrence* of DVT(24); and that arterial hypertension is a risk factor for *recurrent* DVT(25), which we hypothesize could be a marker for prior overt or occult PE.

Longitudinal study assessing change in risk markers *following* events is seldom undertaken. Therefore cross-sectional designs' lack of "temporality" may serve here not as a fault but an advantageous feature, enabling *event-factor* as well as *factor-event* relations to be uncovered. However prospective studies are desired to confirm hypothesized "reverse" directionality. Whether elevated BP ultimately proves to be a risk factor for, or a consequence of PE, the relationship will be important to understand.

This study has limitations, including those pertaining to all cross-sectional studies. Though the sample was economically broad and ethnically diverse, findings for this population need not generalize to all others; however, affirmation of many known associations reduces concerns regarding generalizability. The study measures historical occurrence rather than prospective incidence. There is inherent potential for omitted variable bias, which can influence the apparent relationship of tested variables to the outcome of interest. Fatal events as well as clinically silent ones were not included in our analyses. Most of the retained variables showed relationships robust across sensitivity analyses, supporting relevance of the variables identified. Exceptions

arose with inclusion/exclusion of ethnicity and family history. In this as in all studies, apparent ethnic and family relationships may represent proxies for (measured and) unmeasured variables with which ethnicity (or family) correlate. There were few cases of current cancer in our sample; cancer has elsewhere been reported to predict venous events(9, 19). Finally, events have already occurred when risk markers were measured. For modifiable risk factors, the events could drive the factors rather than the converse, as discussed for the association of PE to increased SBP and DBP.

This study confirms relationships of sex, history of immobility, heavy smoking, and duration of HRT to venothrombotic events. Family history was also affirmed to bear a strong relation to venous events, consistent with recognized genetic risk factors. In addition, an intriguing association of systolic and diastolic blood pressure to PE, but not to DVT, was identified, which merits further evaluation.

Contributorship statement: MC and BG conceived the idea for the study. MC acquired and provided the data. JD managed data, developed data dictionary, and contributed to analysis review. VC, BG, and SK conducted statistical analyses. Manuscript was drafted by BG and VC. All authors contributed to revision to the manuscript for intellectual content and approved the final manuscript.

Data sharing: There are no additional data available.

11

References

1

2 3

4

5

6 7

- 1. da Silva A, Widmer LK, Martin H, Mall T, Glaus L, Schneider M. Varicose veins and chronic venous insufficiency. Vasa. 1974;3(2):118-25.
- 2. Lafuma A, Fagnani F, Peltier-Pujol F, Rauss A. [Venous disease in France: an unrecognized public health problem]. J Mal Vasc. 1994;19(3):185-9.
- 9 3. Daver J. Socio-economic data on venous disease. Int Angiol. 1984;3:84-6.
- 4. Kurz X, Kahn SR, Abenhaim L, Clement D, Norgren L, Baccaglini U, et al. Chronic venous disorders of the leg: epidemiology, outcomes, diagnosis and management. Summary of an evidence-based report of the VEINES task force. Venous Insufficiency Epidemiologic and Economic Studies. Int Angiol. 1999;18(2):83-102.
- 5. Task Force on Chronic Venous Disorders of the Leg. Chapter 6: economic outcomes. The management of chronic venous disorders of the leg: an evidence-based report of an international task force. Phlebology 1999;14(suppl 1):35–42.
- Criqui MH, Jamosmos M, Fronek A, Denenberg JO, Langer RD, Bergan J, et al. Chronic venous disease in an ethnically diverse population: the San Diego Population Study. Am J Epidemiol. 2003;158(5):448-56.
- Kaplan RM, Criqui MH, Denenberg JO, Bergan J, Fronek A. Quality of life in patients with chronic venous disease: San Diego population study. J Vasc Surg. 2003;37(5):1047-53. Epub 2003/05/21.
- 8. Ghaye B, Willems V, Nchimi A, Kouokam L, Noukoua C, De Maertelaer V, et al. Relationship between the extent of deep venous thrombosis and the extent of acute pulmonary embolism as assessed by CT angiography. Br J Radiol. 2009;82(975):198-203.
- 9. Heit JA. The epidemiology of venous thromboembolism in the community: implications for prevention
 and management. J Thromb Thrombolysis. 2006;21(1):23-9.
- 10. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol. 2007;44(2):62-9.
- Sejersen HM, Nielsen HK, Thyssen JP, Husted SE. [Deep venous thrombosis–epidemiology, diagnosis and treatment]. Ugeskr Laeger. 2007;169(2):109-11. Dyb venos trombose–epidemiologi, diagnose og behandling.
- Rosendaal FR. Venous thrombosis: the role of genes, environment, and behavior. Hematology Am Soc Hematol Educ Program. 2005:1-12.
- Pomp ER, Rosendaal FR, Doggen CJ. Smoking increases the risk of venous thrombosis and acts synergistically with oral contraceptive use. Am J Hematol. 2008;83(2):97-102.
- Worralurt C, Taneepanichskul S. Risk factors of venous thromboembolism (VTE) in Thai reproductive aged female: King Chulalongkorn Memorial Hospital experience. J Med Assoc Thai. 2005;88(11):1502-5.
- Hansson PO, Eriksson H, Welin L, Svardsudd K, Wilhelmsen L. Smoking and abdominal obesity: risk factors for venous thromboembolism among middle-aged men: "the study of men born in 1913". Arch Intern Med. 1999;159(16):1886-90.
- 47
 16. Severinsen MT, Kristensen SR, Johnsen SP, Dethlefsen C, Tjonneland A, Overvad K. Smoking and venous thromboembolism: a Danish follow-up study. J Thromb Haemost. 2009;7(8):1297-303. Epub 2009/07/02.
- Tan KK, Koh WP, Chao AK. Risk factors and presentation of deep venous thrombosis among Asian
 patients: a hospital-based case-control study in Singapore. Ann Vasc Surg. 2007;21(4):490-5.
- Milio G, Siragusa S, Mina C, Amato C, Corrado E, Grimaudo S, et al. Superficial venous thrombosis:
 prevalence of common genetic risk factors and their role on spreading to deep veins. Thromb Res.
 2008;123(2):194-9. Epub 2008/04/05.
- 57 58
- 59

BMJ Open

- Sugimura K, Sakuma M, Shirato K. Potential risk factors and incidence of pulmonary thromboembolism in Japan: results from an overview of mailed questionnaires and matched case-control study. Circ J. 2006;70(5):542-7.
- Nakamura M, Sakuma M, Yamada N, Tanabe N, Nakanishi N, Miyahara Y, et al. Risk factors of acute
 pulmonary thromboembolism in Japanese patients hospitalized for medical illness: results of a multicenter
 registry in the Japanese society of pulmonary embolism research. J Thromb Thrombolysis.
 2006;21(2):131-5.
- 21. Rosendaal FR, A VANHV, Doggen CJ. Venous thrombosis in the elderly. J Thromb Haemost. 2007;5
 Suppl 1:310-7.
- Coy TV, Dimsdale JE, Ancoli-Israel S, Clausen JL. The role of sleep-disordered breathing in essential hypertension. Chest. 1996;109(4):890-5.
- Hargens TA, Nickols-Richardson SM, Gregg JM, Zedalis D, Herbert WG. Hypertension research in sleep
 apnea. J Clin Hypertens (Greenwich). 2006;8(12):873-8.
- 24. Christiaens L. [Idiopathic venous thromboembolic disease. risk factors for recurrence in 2006]. Arch Mal Coeur Vaiss. 2007;100(2):133-8. Maladie veineuse thromboembolique idiopathique. Facteurs de risque de recidive en 2006.
- 25. Linnemann B, Zgouras D, Schindewolf M, Schwonberg J, Jarosch-Preusche M, Lindhoff-Last E. Impact
 of sex and traditional cardiovascular risk factors on the risk of recurrent venous thromboembolism: results
 from the German MAISTHRO Registry. Blood Coagul Fibrinolysis. 2008;19(2):159-65.

Legends Table 1a. Legend DBP – diastolic blood pressure; DVT – deep venous thrombosis; HDL – high-density lipoprotein cholesterol; HRT – postmenopausal hormone replacement therapy; PE – pulmonary embolism; SBP – systolic blood pressure; SD – standard deviation; SVT – superficial venous thrombosis. * P<0.05; ** P<0.01; *** P<0.001 [†] Ordinal rather than continuous: Ranked from 1 = Grade school or less to 9 = Doctoral Degree. [‡] This correlated well with pack years, which showed a similar relationship to venous events; but variable transformations more suitably satisfied regression constraints for this variable, and the impact of this variable was more potent than that of pack years for deep events, the category of events for which it was predictive. § Pack years was calculated by multiplying years smoked by the average number of cigarettes per day divided by 20 (the average number of cigarettes in one pack). ¶ Rated relative to others your age, 1-5 with 5 being most active. Only females were included in this portion of the analysis. Table 1b. Legend DBP – diastolic blood pressure; DVT – deep venous thrombosis; PE – pulmonary embolism; SBP – systolic blood pressure; SVT – superficial venous thrombosis. * P<0.05; ** P≤0.010; *** P≤0.001 [†] Hypertension: SBP \geq 140 or DBP \geq 90. Table 2. Legend DVT – deep venous thrombosis; PE – pulmonary embolism; SVT – superficial venous thrombosis.

Recall: Some variables had missing data; and some subjects had multiple types of events.

Table 3. Legend DBP – diastolic blood pressure; DVE – deep venous event; SBP – systolic blood pressure; OR – odds ratio.

* Age variable was adjusted for sex only; and sex variable was adjusted for age only.

[†] Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as not to double-count the shared (collinear) contribution by the SBP and DBP values.

Table 4. Legend

DBP – diastolic blood pressure; DVE – deep venous event; DVT – deep venous thrombosis; OR – odds ratio; PE – pulmonary embolism; SBP – systolic blood pressure; SVT – superficial venous thrombosis.

* Age variable was adjusted for sex only; and sex variable was adjusted for age only.

[†] Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as not to double-count the shared (collinear) contribution by the SBP and DBP values.

[‡] Although some variables lose significance in the fully adjusted model due to collinearity, variables which were of significance or borderline significance in unadjusted or age/sex adjusted model were added back to the final model. When Caucasian ethnicity and heavy smoking were included without one another in the final model, they resumed significance or borderline significance.

 \S In the final model, either one of the blood pressure measures – SBP or DBP – could be included and remained statistically significant. (Only one of the two blood pressure variables was included because of collinearity.) || Female specific analysis. Excludes family history of first deep events (see comment for PE). The final femalespecific model included age and history immobilization, the sole other variables with P < 0.2 (neither <0.1). Note: Caucasian ethnicity shows significant relationship to DVT if not adjusted for family history of DVE (OR=2.15, P=0.008). If both Caucasian ethnicity and family history of DVE are included, Caucasian ethnicity

loses significance (OR 1.29, P=0.659) but family history of deep events retains significance (OR 3.17, P=0.026).

Note: Age (OR=1.02, P=0.035) and Caucasian ethnicity (OR=1.97, P=0.015) show a significant relationship to combined deep events in the final model if family history of venous events is excluded.

Note: For combined DVT and/or PE oestrogen use for HRT was tested as a predictor in women but was not significant. For oestrogen use duration (per 10 years) ORs (*P*-values) for age-adjusted and final models, were 0.532 (0.534) and 0.523 (0.611). For oestrogen use duration (per 10 years) *among oestrogen users*, ORs (*P*-values) for age-adjusted and final models were 0.948 (0.955); and 0.767 (0.756). In the latter case, family history of first deep events was excluded from the final model or the oestrogen variable was dropped due to collinearity. Of note, the resulting modified final model (which included the oestrogen variable) dropped the heavy smoking variable.

Table 1a. Summary of Demographic and Predictor Variables by Venous Event Status (continuous variables):

,	variables).				
3	Variables	No Event	SVT	DVT	PE
)		N=2262	N=63	N=74	N=21
<u>2</u> 3		Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
5	Age	59.1 (11.4)	60.5 (10.7)	61.9 (11.7)*	61.5 (10.2)
3	Education†	5.78 (1.73)	5.11 (1.89)***	5.73 (1.67)	5.29 (1.79)
)	Highest number of drinks per day	2.70 (3.13)	2.24 (2.51)	3.32 (3.76)	3.06 (2.84)
<u>'</u> } 	Cigarettes/ day averaged over	6.99 (11.5)	7.73 (14.1)	12.0 (16.1)***	13.2 (14.9)*
5	years totaled‡				

BMJ Open

Pack years§	7.22 (14.9)	7.38 (18.7)	13.9 (22.3)***	16.5 (20.9)**	
SBP (mmHg)	131 (20.3)	132 (22.4)	133 (20.9)	143.0 (21.0)**	
DBP (mmHg)	76.8 (11.3)	76.6 (10.8)	78.2 (9.67)	82.5 (7.69)*	
Total Cholesterol (mg/dl)	210 (41.3)	207 (38.4)	211 (43.2)	209.2 (42.3)	
HDL (mg/dl)	54.5 (17.0)	51.4 (11.3)	50.9 (15.6)	49.9 (16.5)	
Activity Level¶	3.71 (1.16)	3.69 (1.19)	3.53 (1.22)	3.40 (1.27)	
Number of times in a week	3.60 (2.51)	3.78 (2.66)	3.52 (2.53)	3.40 (2.54)	
engaging in \geq 20 min of vigorous	6				
activity					
Longest period of immobility	11.0 (110)	5.38 (11.9)	17.8 (51.8)	31.4 (84.5)	
(days)					
Oestrogen use duration for HRT	0.743 (3.73)	0.882 (3.04)	0.313 (1.60)	5.92 (13.9)***	
among all females∫ (years)					
Oestrogen use duration among	9.82 (9.79)	6.43 (5.97)	7.50 (3.54)	35.5 (3.54)***	
oestrogen users for HRT∫ (years)					
					16
For peer review	only - http://bmjo	ppen.bmj.com/site	/about/guidelines.>	chtml	

	Variables	No Event (%)	SVT (%)	DVT (%)	PE (%)
Male		34.5	19.0**	35.1	42.9
Hypertension	†	35.9	28.6	32.4	42.9
Drinker (any	alcohol)	93.4	87.3	95.9	90.5
Maximum alo	cohol consumption ≥ 7	7.42	7.31	14.3*	16.7
Drinkers who maximum lev consumption		8.49	22.6***	11.1	10.5
Current smok	ter	6.02	3.17	9.46	9.52
Heavy smoke during time s	er (≥40 cigarettes per day moked)	3.85	3.17	14.9***	14.3*
Ethnicity	Caucasian	58.9	65.1	78.4***	81.0*
	Hispanic	14.7	20.6	9.46	4.76
	African American	13.9	4.76*	8.11*	9.52
	Asian	12.5	9.52	4.05	4.76
Occupation	Professional	26.4	21.1	26.1	20.0
	Technical, Administrative, or Managerial	40.9	38.6	40.6	45.0
	Clerical and Skilled	26.8	29.8	30.4	25.0

BMJ Open

Semi-skilled	3.85	8.77	2.90	5.00
Laborer	2.07	1.75	0.00	5.00
Family history of venous diseases	57.2	76.2**	71.6*	57.1
Oral contraceptive use (ever; female)	58.1	56.0	54.4	58.3

Table 2.	Venous	Events	in	Studied	Рорт	ulation
	-					

			If	
Venous Condition	All Subjects:	SVT:	DVT:	PE:
	N (%)	N (%)	N (%)	N (%)
SVT	63 (2.68)	63 (100)	5 (22.7)	2 (13.3)
DVT	74 (3.09)	5 (8.33)	74 (100)	11 (52.4)
PE	21 (0.87)	2 (3.17)	11 (14.9)	21 (100)
Any deep event (DVT or PE)	84 (3.50)	5 (8.33)	74 (100)	21 (100)
Any event (SVT or DVT or PE)	142 (5.91)	63 (100)	74 (100)	21 (100)

1 2
3
4
5
6
7
ð G
10
11
12
13
14
15
17
18
19
20
-3456789101234151678901222342567890112334567890132334567890112345678901123456789013233456789013233456789
22 22
23 24
25
26
27
28
29
30 31
32
33
34
35
36
37 38
39
40
41
42
43 44
44 45
46
47
48
49
50 51
51 52
52 53
54
55
56
57 58
58 59
60

	Age-Sex	Fully Adjusted	Final Model
	Adjusted*	OR (P-value)	OR (P -value)
	OR (P -value)		
Age	1.01 (0.306)	1.03 (0.224)	-
Male sex	0.437 (0.011)	0.275 (0.042)	0.470 (0.028)
African American ethnicity	0.290 (0.038)	0.378 (0.204)	0.305 (0.047)
Education	0.821 (0.015)	0.805 (0.079)	0.801 (0.007)
Activity Level	0.971 (0.796)	0.931 (0.686)	-
Heavy Smoking (≥40 cigarettes	0.913 (0.901)	0.977 (0.983)	-
per day during time smoked)			
DBP (per 20mmHg)	1.03 (0.894)	2.14 (0.227)	-
SBP (per 20mmHg)	1.01 (0.942)	_†	-
Drinkers who did not specify	4.37 (<0.001)	4.65 (0.011)	3.33 (<0.001)
their maximum alcohol			
consumption per day			
History of immobility (>1day)	1.55 (0.091)	2.53 (0.015)	1.71 (0.043)
Family history of first-degree	1.54 (0.301)	1.55 (0.520)	-
relatives with superficial			
venous events			
Family history of first-degree	2.30 (0.002)	1.25 (0.706)	2.02 (0.009)
relatives with varicose veins			
Family history of first-degree	1.74 (0.177)	1.25 (0.637)	-

Ξ	
BMJ C	
0	
pei	
firs	
p	
ď	
is	
Je	
0 0	
ر کا	
10	
1	
36	
/br	
Ъ.	
jopen.	
ŗ	
20	
3	
ģ	
ished as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downly	
202	
on	
n N	
י 21 N	
Š	
rc	
7	
201	
4	
D	
Ň	
nlo	
load	
ĕ	
led fr	
PT 0	
5	
튶	
omjo	
B	
ēn	
.p	
크.	
8	
ъ	
q	
Ā	
pri	
oril 23,	
20	
2024	
Å	
g	
Ječ	
÷	
t. Protecte	
ote	
cte	
ed b	
у со	
бd	
′rig	
ħ.	
-	

⊿0

		DVT			PE		DVT and PE OR			
		OR			OR					
	(P -value)				(P -value)		(P -value)			
	Age-Sex	Fully	Final	Age-Sex	Fully	Final	Age-Sex	Fully	Final	
	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model	
	1.02	1.05		1.02	0.977		1.03	1.04		
Age	(0.047)	(0.162)	-	(0.404)	(0.621)	-	(0.004)	(0.202)	-	
	1.01	0.479		1.41	0.778		1.15	0.773		
Male sex	(0.955)	(0.312)	-	(0.435)	(0.795)	-	(0.548)	(0.662)	-	
o	2.35	0.754		2.68	5.77	2.58	2.26	0.936		
Caucasian ethnicity	(0.003)	(0.674)	-	(0.083)	(0.149)	(0.096)‡	0.003)	(0.913)	-	
A attractor I arral	0.827	0.819		0.771	0.986		0.846	0.909		
Activity Level	(0.059)	(0.418)	-	(0.163)	(0.971)	-	(0.081)	(0.672)	-	
Heavy Smoking (≥40	4.19	10.1	16.6	3.50	5.21	2.73	3.38	6.92	12.5	
cigarettes per day during time smoked)	(<0.001)	(0.007)	(<0.001)	(0.052)	(0.191)	(0.121)‡	(<0.001)	(0.013)	(<0.001)	
	1.28	0.442		2.06	3.20	2.29	1.39	0.764		
DBP (per 20mmHg)	(0.227)	(0.445)	-	(0.014)	(0.419)	(0.010) §	(0.077)	(0.766)	-	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	

SBP (per 20mmHg)	0.996	_ †	_	1.59	_ †	- §	1.05	_ †	_
SDI (per zonning)	(0.975)			(0.012)		8	(0.643)		
Drinkers who did not									
specify their maximum	1.74	1.46		1.63	2.70		1.61	1.09	
alcohol consumption per	(0.170)	(0.739)	-	(0.534)	(0.447)	-	(0.235)	(0.939)	-
day		0							
History of immobility	2.17	5.32	4.30	4.44	4.21	4.07	2.23	3.80	3.48
(>1day)	(0.001)	(0.008)	(0.006)	(0.002)	(0.114)	(0.004)	(<0.001)	(0.013)	(0.008
Family history of first-	2.22	0.710		1.51	0.720		2.52	0.626	
degree relatives with	3.32	0.719	-	1.51	0.730	-	2.52	(0.449)	-
superficial venous events	(0.024)	(0.643)		(0.600)	(0.754)		(0.036)		
Family history of first-	4.41	3.51	3.28	0.855	0.431	0,	3.42	2.85	2.49
degree relatives with DVE	(0.003)	(0.066)	(0.020)	(0.889)	(0.491)	-	(0.010)	(0.100)	(0.057
Oestrogen use duration for				2.73	3.73	2.63			
HRT (per 10 years)	-	-	-	(0.000)	(0.000)	(0.001)			
Oestrogen use duration	-	-	-	-	-	-	4.67	5.22	4.74

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

among oestrogen users for				(0.018)	(0.018)	((
HRT (per 10 years)						
		I	I	I	1	
among oestrogen users for HRT (per 10 years)						

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	3
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	3
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(d) If applicable, explain how loss to follow-up was addressed	5
		(e) Describe any sensitivity analyses	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

i unumg	~~	which the present article is based	-
Other information Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	9-10
		similar studies, and other relevant evidence	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	9
Limitations			
Key results	18	Summarise key results with reference to study objectives	8-9
Discussion			8-10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
		(b) Report category boundaries when continuous variables were categorized	-
		interval). Make clear which confounders were adjusted for and why they were included	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	6-7
Outcome data	15*	Report numbers of outcome events or summary measures over time	6
		(c) Summarise follow-up time (eg, average and total amount)	6
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		confounders	-,
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	- 6. Table 1
		(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	-
		eligible, included in the study, completing follow-up, and analysed	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	6

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Risk Marker Associations with Venous Thrombotic Events: A Cross-sectional Analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003208.R1
Article Type:	Research
Date Submitted by the Author:	08-Nov-2013
Complete List of Authors:	Golomb, Beatrice; University of California San Diego, Medicine Chan, Virginia Denenberg, Julie; University of California, San Diego, Department of Family and Preventive Medicine Koperski, Sabrina; University of California, San Diego, Department of Medicine Criqui, Michael; University of California, San Diego, Department of Medicine; University of California, San Diego, Department of Family and Preventive Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	Thromboembolism < CARDIOLOGY, EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine), Vascular medicine < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

Risk Marker Associations with Venous Thrombotic Events: A Cross-sectional Analysis Beatrice A. Golomb, MD, PhD^{*‡¶} Virginia T. Chan, MD^{* † ¶} Julie O. Denenberg, MA[‡] Sabrina Koperski, BS* Michael H. Criqui, MD, MPH* ^{*} Department of Medicine, University of California, San Diego [†] Internal Medicine, Scripps Green Hospital, San Diego f Californ. [‡] Department of Family and Preventive Medicine, University of California, San Diego [¶]Designates shared first authorship Running title: Risk Markers for VTE **Corresponding Author:** Beatrice A. Golomb, MD, PhD Dept of Medicine 0995 UCSD School of Medicine 9500 Gilman Dr. La Jolla, CA 92093-0995 Phone: 858 558-4950 x201 Fax: 858 558-4960 Email: bgolomb@ucsd.edu (not preferred mechanism of correspondence) Word count: 2,840 Keywords: Cross-Sectional Studies, Vascular Diseases/epidemiology, Vascular Diseases/ethnology, Deep Venous Thrombosis, Pulmonary Embolism

ABSTRACT

Objective: To examine the interrelations among, and risk marker associations for superficial and deep venous events – superficial venous thrombosis (**SVT**), deep venous thrombosis (**DVT**) and pulmonary embolism (**PE**). *Design*: Cross-sectional Analysis

Setting: San Diego, CA

Participants: 2,404 men and women aged 40-79 years from four ethnic groups; Non-Hispanic White, Hispanic, African-American, and Asian. The study sample was drawn from current and former staff and employees of the University of California, San Diego and their spouses /significant others.

Outcome Measures: Superficial and deep venous events, specifically SVT, DVT, PE, and combined deep venous events (**DVE**) comprising DVT and PE.

Results: Significant correlates on multivariable analysis were, for SVT: female sex, ethnicity (African-

American=protective), lower educational attainment, immobility, and family history of varicose veins. For DVT and DVE significant correlates included: heavy smoking, immobility, and family history of deep venous events (borderline for DVE). For PE, significant predictors included immobility, and, in contrast to DVT, blood pressure (**BP**) (systolic or diastolic). In women, oestrogen use duration for hormone replacement therapy, in all and among oestrogen users, predicted PE and DVE respectively.

Conclusions: These findings fortify evidence for known risk correlates/ predictors for venous disease, such as family history, hormone use, and immobility. New risk associations are shown. Striking among these is an association of PE, but not DVT, to elevated BP: we conjecture PE may serve as cause, rather than consequence. Future studies should evaluate temporal direction of this association. Oxidative stress and cell energy compromise are proposed to explain and predict many risk factors, operating through cell-death mediated triggering of coagulation activation.

BMJ Open

Article Summary

Article Focus: We cross-sectionally examined relations between assessed physiological markers and history of venous events, including superficial venous thrombosis, deep venous thrombosis (**DVT**), and pulmonary embolism (**PE**).

Key Messages: We identified a significant correlation between superficial and deep venous events. As expected, predictors of deep venous events included smoking, immobility, and in women hormone use duration. Unexpectedly, elevated blood pressure (**BP**) significantly related to history of PE, but not DVT. Since DVT is typically a precursor condition to PE, we speculate that BP rises as a consequence rather than cause of PE (consistent with other evidence relating to BP-elevation risk factors). To assess this further will require longitudinal assessment – not merely leading to, but also following, occurrence of PE.

Strengths and Limitations: Recall may be imperfect and fatal events are not included. Cross-sectional design does not define temporality in venous event/ risk marker relations. On the positive side, this design may enable relationships to be identified arising from effects of "events" on physiological variables: such relations may also be important, and may be missed in prospective studies that censor follow-up at occurrence of an event. Longitudinal assessment, continued after PE occurrence, is required to confirm the conjectured directionality of the observed association.

Introduction

Chronic venous disease causes significant morbidity in diverse populations around the world¹⁻⁵ and costs are material, with estimates suggesting that up to several percent of total health care expenditures are linked to venous disorders^{2 6-9}. Considerable time and resources are devoted to venous conditions in clinical practice. The San Diego Population Study (**SDPS**) has sought to better define venous disease prevalence and epidemiology¹⁰ ¹¹, by clearly delineating and separately analyzing risk correlates for different elements of venous disease, irrespective of directionality of the association. The present report pertains to a history of venous thrombotic events, including superficial venous thrombosis (**SVT**), deep venous thrombosis (**DVT**), and pulmonary embolism (**PE**). It assesses the relation of age, sex, and other potential risk factors to a history of these events.

Materials and Methods

Subjects

2,404 men and women aged 40-79 years from four ethnic groups (Non-Hispanic White, Hispanic, African-American, and Asian), comprising current and former staff/ employees of the University of California, San Diego and their spouses/significant others, were targeted for participation in the SDPS. Inclusion of spouses/significant others modestly extended the age range of participants (29-91 years). Subjects represented a spectrum of socioeconomic status, including unemployed and retired as well as working persons. A description of the SDPS population, which collected data from 1994-8, is available elsewhere¹⁰. The study's primary aims related to prevalence, and the study was powered such that 95% confidence limits for prevalence for each sex were less than $\pm 3.3\%$; and for subgroups of e.g. n=200, less than $\pm 7\%$. The study was approved by the UCSD Human Research Protection Program, and all participants gave written informed consent.

SVT, DVT and PE were ascertained by self-report. Questions elicited a history of "a blood clot in a leg vein" and "phlebitis or inflamed vein in your leg," stratified by whether the problem was in a superficial or deep vein and queried separately for each leg; "pulmonary embolism or blood clot in lung;" and "heparin or coumadin/ warfarin therapy for a problem with your veins." Because PEs are pathophysiologically linked to DVTs, DVT and PE were analyzed both separately, and conjointly as deep venous events (**DVE**: DVT and/or PE).

Independent Variables

Variables evaluated for their relation to SVT, DVT, PE and DVE included self-reported age, sex, ethnicity, smoking status, alcohol consumption, self-reported activity level, education level (ranked from 1=grade school or less to 9=doctoral degree), occupation (categorical), hormone use in females (including oral contraceptive use (and if so, # years); and postmenopausal hormone replacement therapy use (and if so, # of years), and history of immobility (i.e. bedrest) for >1 day. Assessment of family history of venous events inquired regarding each qualifying venous condition in each first degree relative (parents, siblings, children), such that a positive family history of deep venous events required one or more qualifying deep venous event in one or more first degree relatives. Systolic and diastolic brachial blood pressure (SBP and DBP, respectively) were assessed using the subject's right arm after the subject sat quietly for five minutes. Ethnicity, determined by self-report, was categorized as above as Non-Hispanic White (hereafter referred to as Caucasian), Hispanic, African-American, or Asian. Alcohol measures examined included drinking status (none vs. present), days per week of alcohol consumption, and highest number of drinks in a day. Smoking information included current smoking status, years of smoking, average packs/day during time smoked (allowing calculation of pack years of smoking), and heavy smoker status (defined as \geq 40 cigarettes/day average during time smoked). Activity was coded into 5 levels, assessed relative to others of the same age and sex. Responses ranged from "much less

Page 6 of 65

BMJ Open

active" to "much more active." In analyses examining venous outcomes in women, oestrogen use duration and

other hormone measures were also evaluated as potential risk factors.

<u>Analyses</u>

Subject characteristics were tabulated as a function of venous event status – no event, SVT, DVT, or PE. The unadjusted relationship of demographic and potential risk variables to each event type was ascertained, using t-test of difference in mean values for continuous variables and chi-squared testing for categorical variables. Relationships between SVT, DVT and PE were also evaluated.

For multivariable analyses, following examination of correlations among predictor variables to assist in assessing issues of collinearity, logistic regression was performed. Age- and sex-adjusted regressions were followed by multivariable regressions including all variables for which a relationship was supported in bivariable analysis ("full model"). Where several measures tapping the same variable were appraised, e.g. pack years of smoking vs. heavy smoking, the variable that bore the stronger apparent relationship to the outcome was employed in multivariable analyses. A "final" regression model was then determined for each venous event outcome, adjusted for potential predictor variables identified from bivariable and age-sex adjusted or fully adjusted analyses. This assessed the multivariable relationship of candidate risk factors to events, controlling for potential confounders. Variables that approached significance on age-sex adjusted and/or fully adjusted analysis (P<0.2) were tested for inclusion in the final model. Those retaining potential predictive value (P<-0.2) were retained in the final model. All logistic regression analyses were performed with and without stratification by sex; results of stratified analyses are presented only where effect modification by sex was present.

Sensitivity analyses were conducted adding back non-significant variables, but typically the final model variables were robustly supported (with exceptions specified). Significance was designated as two-sided P<0.05. Analyses employed Stata version 8.0 (College Station, TX).

Results

Population Characteristics

Sixty-six percent of subjects were female (1,580 women vs. 824 men). Female participants were minimally but significantly younger on average than males (58.9 years vs. 60.1 years; P=0.012). Average values of predictor variables in this population, stratified by venous event status, are shown in **Tables 1a** and **1b**. Variables that differed significantly in those with SVT vs. no events (on unadjusted analysis) were male sex, African-American ethnicity (protective), lower education level, drinkers who did not specify maximum alcohol consumption, and family history of venous disease. For DVT, significant factors were age, Caucasian ethnicity (with African-American ethnicity somewhat protective), family history of venous disease, heavy smoking, and high maximum alcohol consumption (\geq 7 drinks per day). For PE, significant factors were heavy smoking, Caucasian ethnicity, SBP, DBP; and among women, oestrogen use duration for hormone replacement therapy (**HRT**) among all females..

Relationships Among Events

The fraction of the population with superficial or deep venous events or PE is shown in **Table 2**. 142 had at least one type of thrombotic event (SVT, DVT, or PE), including 11 in whom both lower extremity (DVT) and pulmonary thrombotic events were reported. A total of 132 people had at least one SVT or DVT. Of these, 29 people reported bilateral events of one or both types, 2 citing both (data not shown in table),

More than half of those with a PE were aware of having had a DVT (52.4%). This contrasts with only 2.65% of those without a PE being aware of a prior DVT. 14.9% of those with a DVT had experienced a PE while only 0.43% of those with no reported DVT reported a PE. Thus, the expected relationship of DVT to PE

(i.e. increased likelihood of PE in presence vs. absence of reported DVT, and vice versa) was upheld (χ^2 =172.1, *P*<0.001).

A significant relationship (χ^2 analysis) was also seen between experiencing an SVT and a DVT (*P*<0.001), as well as between experiencing an SVT and a PE (*P*=0.010).

Multivariable Analyses by Event Type

SVT (**Table 3**): Female sex, lower educational attainment, failure to specify level of maximum alcohol consumption, history of immobility, and family history of first-degree relatives with varicose veins showed significant (or for immobility, borderline significant, P<0.1) positive relations, while African-American ethnicity appeared protective, in the limited (age-sex) adjustment models. Each was significant in the final model.

DVT (**Table 4**): For DVT, significance on multivariable regression was seen for heavy smoker status; history of immobility; and family history of first-degree relatives with DVE. In addition to these variables, Caucasian ethnicity, age, and family history of superficial venous events appeared significant in the limited (age-sex) adjustment model, but lost significance on multivariable analysis.

PE (**Table 4**): For PE, significance on multivariable analysis was seen for: BP; history of immobility; and for women, duration of oestrogen use for HRT. Caucasian ethnicity and heavy smoking, with ORs exceeding 2.5, were retained in the final model, but did not meet criteria for significance, reflecting the modest number of PEs (n=21). We underscore that SBP and/or DBP, *though not related to DVT or SVT in any adjustment scenario*, were significantly related to PE on unadjusted and adjusted analysis.

DVE (DVT and/or PE; **Table 4**): As for DVT, age and Caucasian ethnicity, though significant in the limited adjustment model, lost significance with further adjustment. Significance was seen for heavy smoker

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

e	e 9 of 65 BMJ Open
	status; and history of immobility. Family history of DVE, with an OR of 2.49, was also retained in the final
	model. This variable approached but did not meet criteria for significance ($P=0.057$).
	Discussion
	This study characterizes, in a population sample, the relationships between superficial and deep venous
	events, and between DVTs and PEs; and characterizes the risk correlates for SVT, DVT, PE, and DVE. Some
	anticipated relationships were confirmed; and some intriguing differences in statistical correlates of SVT vs.
	DVT; and for DVT vs. PE were revealed.
	The expected significant relationship between DVT and PE was upheld ¹² . There was also a significant
	relationship between risk of SVT and risk of DVT, as well as of PE, as others have recently reported ¹³⁻¹⁶ .
	Regarding sex differences, females were confirmed to have strongly and significantly higher rates of
	SVTs than males. Oestrogen use duration for HRT showed a link to DVE in women, consistent with existing
	findings ^{13 17-19} .
	History of heavy smoking was not associated with SVT, but was a strong risk factor for DVT and DVE
	Smoking has been inconsistently reported as a risk factor for venous thrombosis ²⁰ , though it has been
	recognized to amplify risk in the setting of oral contraceptive use ²¹ , perhaps contributing to its association to
	venous thromboembolism in studies of women of reproductive age ²² . Moreover, some studies do report an
	association of smoking to venous thromboembolism extending to older samples and men as well as women ^{23 24}

Caucasian ethnicity bore an apparent relationship to DVT, PE and DVE that was, however, extinguished with multivariable adjustment. The demographics of San Diego are such that ethnic minorities are more strongly represented in younger ages. Consistent with this, Caucasians were on average older than other study participants. Some other studies have also reported a relation of ethnicity to DVT to be extinguished with

adjustment for other factors²⁵. Family history showed an association to DVT that is also consistent with existing documentation of genetic variation in venous thrombosis risk^{17 26-30}.

Immobility, a known risk factor for venous events^{17 26 31-36} was affirmed here to be a strong predictor for DVT, PE, and DVE. It was also a predictor, though less potent, for superficial events. Many factors elsewhere reported to be associated with thrombosis entail periods of immobility: these range from nursing home confinement¹³ and hospitalization ^{13 25 37}, to perisurgical, neurological and injury states ^{13 25 37 38}; factors also extend to prolonged sitting in the work environment^{31-33 35}.

High maximum alcohol consumption was linked to DVT. High maximum alcohol use (such as binge drinking) is the pattern most linked to blackouts³⁹⁻⁴¹, and thus immobilization. This alcohol finding coheres with a recent report of an association of venous thromboembolism to hard liquor consumption and binge drinking (contrasted with a protective association for wine consumption)⁴².

We suggest, in addition, that many (if not most) risk factors for venous thromboembolism, those identified here and elsewhere, share in common an association to elevated risk of cell death, through oxidative stress or adverse cell energy supply-demand balance. Cell death is a consideration with immobilization (leading to focal ischemia), heavy smoking (oxidative stress⁴³⁻⁴⁵ triggers apoptosis⁴⁶), heavy alcohol (promoting oxidative stress⁴⁷⁻⁵⁰ and mitochondrial toxicity⁵¹⁻⁵⁵ as well as ischemia from immobilization). Cancer, trauma, surgery, and the puerpuerium are associated with tissue injury and cell death. Pregnancy is associated with diversion of blood and energy substrates to the fetus, as well as potential for ischemic compression, which can promote cell death. We observe that *cell death triggers coagulation activation*, via exposure at the cell surface of phosphatidylserine⁵⁶, and hypothesize that ultimately numerous additional factors, sharing in common elevated risk of cell death (with oxidative stress and/or cell energy supply-demand frequently involved), or correlation to these, will be identified in the future as risk factors for venous thromboembolism. Indeed, the observation that initial DVT accompanied by PE is a risk factor for recurrence of DVT⁵⁷ also fits this theme:

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

PE, by affecting oxygen transfer, has prospects to tip the energy adequacy balance, particularly in settings of energy compromise from other sources. Also relevant, central obesity is linked to oxidative stress and cell energy inadequacy⁵⁸, and has shown a reported link to thromboembolism risk²³.

Perhaps the most novel findings from this analysis were that SBP and DBP, though unrelated to DVT, were strongly related to PE. We suggest that given absence of a relation of blood pressure, in this sample, to the requisite precursor event DVT, and given measurement of BP after venous event occurrence, causality could operate in the reverse direction: PE, known to be a risk factor for pulmonary hypertension⁵⁹⁻⁶⁴, could drive elevation in arterial BP. Indeed, transient hypoxemia in other settings (such as sleep apnea) promotes BP elevation^{13 26 37 65 66 67 68 69}. Even modest reduction in oxygen transfer, arising from pulmonary embolism, might influence BP adversely – concordant with assembled evidence that a range of factors that impair cell energy, promote hypertension (and other metabolic syndrome factors) ⁵⁸. Additional potentially compatible information derives from data that initial DVT accompanied by PE is a risk factor for *recurrence* of DVT⁵⁷; and that arterial hypertension is a risk factor for *recurrent* DVT⁷⁰, which we hypothesize could be a marker for prior overt or occult PE.

Longitudinal studies assessing change in risk markers *following* events are seldom undertaken. Therefore cross-sectional designs' lack of "temporality" may serve here not as a fault but an advantageous feature, enabling *event-factor* as well as *factor-event* relations to be uncovered. However prospective studies are desired to confirm hypothesized "reverse" directionality. Irrespective of whether elevated BP ultimately proves to be a consequence of PE, as we propose, the relationship will be important to understand.

This study has limitations, including those pertaining to all cross-sectional studies. Though the sample was diverse economically and ethnically, findings for this population need not generalize to all others; however, reproduction in this sample of many previously reported associations reduces concerns regarding generalizability of the findings. The study measures historical occurrence rather than prospective incidence.

Neither fatal events nor clinically silent ones were included in our analyses. Assessment is by self-report, which may involve recall and reporting bias; however self-report of venous events has been used in other studies⁷¹. In one study, it was shown that most self-reported DVTs were corroborated by surgeons' report (via phone call), and concordance was particularly strong for PE⁷². Most significantly, numerous associations identified here, both among venous outcomes, and between risk factors and venous outcomes, cohere with associations reported in other studies using alternate event assessment modalities, providing strong convergent validation for the findings. An additional limitation, as in all observational studies, is inherent potential for omitted variable bias, which can influence the apparent relationship of tested variables to the outcome of interest. Most of the retained variables showed relationships robust across sensitivity analyses, supporting relevance of the variables identified. Exceptions arose with inclusion/exclusion of ethnicity and family history. In this as in all studies, apparent ethnic and family relationships may represent proxies for (measured and) unmeasured variables with which ethnicity (or family) correlate. There were few cases of current cancer in our sample; cancer has elsewhere been reported to predict venous events^{13 65 73-76}. Finally, events had already occurred when risk markers were measured. For modifiable risk factors, the events could drive the factors rather than the converse, as discussed for the association of PE to increased SBP and DBP.

This study supports previously reported relationships of sex, history of immobility, heavy smoking, and duration of HRT to venothrombotic events. It supports recent evidence for a relation of heavy maximal alcohol consumption to venous thromboses, consistent with prior evidence linking binge drinking to venous events⁴². Family history was also affirmed to bear a strong relation to venous events, consistent with (but not exclusive to) recognized genetic risk factors. An intriguing association of systolic and diastolic blood pressure to PE, but not to DVT, was identified. This novel finding is illuminated by, and simultaneously contributes to, an emerging body of evidence linking mediators of cell energy compromise to increased risk of hypertension – and to other metabolic syndrome factors ⁵⁸. It is also observed, to our knowledge for the first time, that factors promoting

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

BM
õ
pen
: firs
st p
Jblis
shec
as
10.
113
6/bi
njog
oen-
201
<u>ω</u> -0
032
808
9
2 20
larc
г 20
014.
0
Ň
~
loade
loaded fr
loaded from
loaded from http
loaded from http://br
loaded from http://bmjop
BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.
loaded from http://bmjopen.bmj
loaded from http://bmjopen.bmj.cor
loaded from http://bmjopen.bmj.com/ o
loaded from http://bmjopen.bmj.com/ on Ap
loaded from http://bmjopen.bmj.com/ on April 2
.bmj.com/ on April 23,
.bmj.com/ on April 23, 20
.bmj.com/ on April 23,
.bmj.com/ on April 23, 20

<text> cell death – including factors that contribute to (or reflect) cell energy compromise or oxidative stress – may be expected to dispose to venous thromboembolism, explaining many observed risk factors²³, and predicting numerous additional ones⁵⁸.

Contributorship statement: MC and BG conceived the idea for the study. MC acquired and provided the data. JD managed data, developed the data dictionary, and contributed to analysis review. VC, BG, and SK conducted statistical analyses. The manuscript was drafted by BG and VC. All authors contributed to revision to the manuscript for intellectual content and approved the final manuscript.

Data sharing: There are no additional data available.

Funding Source: This research was funded by NIH–NHLBI grant 53487 and NIH GCRC Program grant MO1

RR0827. The funding source did not influence design and conduct of the study; collection, management,

analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Competing interests: The authors have no conflicts of interest in relation to this work.

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- 1 2 3 References 4 1. da Silva A, Widmer LK, Martin H, et al. Varicose veins and chronic venous insufficiency. Vasa 5 1974;3(2):118-25. 6 7 2. Lafuma A, Fagnani F, Peltier-Pujol F, et al. [Venous disease in France: an unrecognized public health 8 problem]. J Mal Vasc 1994;19(3):185-9. 9 3. Daver J. Socio-economic data on venous disease. Int Angiol 1984;3:84-6. 10 4. Goldhaber SZ. Venous thromboembolism: epidemiology and magnitude of the problem. Best Pract Res Clin 11 Haematol 2012;25(3):235-42. 12 13 5. Stein PD, Matta F. Epidemiology and incidence: the scope of the problem and risk factors for development of 14 venous thromboembolism. Clin Chest Med 2010;31(4):611-28. 15 6. Kurz X. Kahn SR. Abenhaim L. et al. Chronic venous disorders of the leg: epidemiology, outcomes. 16 diagnosis and management. Summary of an evidence-based report of the VEINES task force. Venous 17 Insufficiency Epidemiologic and Economic Studies. Int Angiol 1999;18(2):83-102. 18 19
- 7. Task Force on Chronic Venous Disorders of the Leg. Chapter 6: economic outcomes. The management of chronic venous disorders of the leg: an evidence-based report of an international task force. *Phlebology* 1999;14(suppl 1):35–42.
- 8. Vekeman F, LaMori JC, Laliberte F, et al. Risks and cost burden of venous thromboembolism and bleeding
 for patients undergoing total hip or knee replacement in a managed-care population. *J Med Econ* 2011;14(3):324-34.
- P. Baser O, Supina D, Sengupta N, et al. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. *Curr Med Res Opin* 2011;27(2):423-9.
- 10. Kaplan RM, Criqui MH, Denenberg JO, et al. Quality of life in patients with chronic venous disease: San Diego population study. *J Vasc Surg* 2003;37(5):1047-53.
 11. G in a Multiple and the life a
- 11. Criqui MH, Jamosmos M, Fronek A, et al. Chronic venous disease in an ethnically diverse population: the
 San Diego Population Study. *Am J Epidemiol* 2003;158(5):448-56.
- 35 12. Ghaye B, Willems V, Nchimi A, et al. Relationship between the extent of deep venous thrombosis and the
 36 extent of acute pulmonary embolism as assessed by CT angiography. *Br J Radiol* 2009;82(975):198-203.
- 13. Heit JA. The epidemiology of venous thromboembolism in the community: implications for prevention and management. *J Thromb Thrombolysis* 2006;21(1):23-9.
- 14. Marchiori A, Mosena L, Prandoni P. Superficial vein thrombosis: risk factors, diagnosis, and treatment.
 Semin Thromb Hemost 2006;32(7):737-43.
- 15. Decousus H, Bertoletti L, Frappe P, et al. Recent findings in the epidemiology, diagnosis and treatment of superficial-vein thrombosis. *Thromb Res* 2011;127 Suppl 3:S81-5.
- 16. Hirmerova J, Seidlerova J, Subrt I. Deep vein thrombosis and/or pulmonary embolism concurrent with
 superficial vein thrombosis of the legs: cross-sectional single center study of prevalence and risk factors.
 Int Angiol 2013;32(4):410-6.
 17. Cuchman M. Epidemiology and risk factors for venous thrombosis. Samin Hamatel 2007:44(2):62.0
 - 17. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol 2007;44(2):62-9.
- 18. Sejersen HM, Nielsen HK, Thyssen JP, Husted SE. [Deep venous thrombosis--epidemiology, diagnosis and treatment]. Ugeskr Laeger 2007;169(2):109-11.
- 19. Rosendaal FR. Venous thrombosis: the role of genes, environment, and behavior. *Hematology Am Soc Hematol Educ Program* 2005:1-12.
- 20. Blondon M, Wiggins KL, McKnight B, et al. The association of smoking with venous thrombosis in women. A population-based, case-control study. *Thromb Haemost* 2013;109(5):891-6.
- 57 58 59

21. Pomp ER, Rosendaal FR, Doggen CJ. Smoking increases the risk of venous thrombosis and acts synergistically with oral contraceptive use. <i>Am J Hematol</i> 2008;83(2):97-102.
22. Worralurt C, Taneepanichskul S. Risk factors of venous thromboembolism (VTE) in Thai reproductive aged
female: King Chulalongkorn Memorial Hospital experience. J Med Assoc Thai 2005;88(11):1502-5.
23. Hansson PO, Eriksson H, Welin L, et al. Smoking and abdominal obesity: risk factors for venous
thromboembolism among middle-aged men: "the study of men born in 1913". Arch Intern Med
1999;159(16):1886-90.
24. Severinsen MT, Kristensen SR, Johnsen SP, et al. Smoking and venous thromboembolism: a Danish follow-
up study. J Thromb Haemost 2009;7(8):1297-303.
25. Tan KK, Koh WP, Chao AK. Risk factors and presentation of deep venous thrombosis among Asian
patients: a hospital-based case-control study in Singapore. Ann Vasc Surg 2007;21(4):490-5.
26. Milio G, Siragusa S, Mina C, et al. Superficial venous thrombosis: prevalence of common genetic risk
factors and their role on spreading to deep veins. <i>Thromb Res</i> 2008;123(2):194-9.
27. Smith NL, Wiggins KL, Reiner AP, et al. Replication of findings on the association of genetic variation in
24 hemostasis genes and risk of incident venous thrombosis. <i>J Thromb Haemost</i> 2009;7(10):1743-6.
28. Smith NL, Hindorff LA, Heckbert SR, et al. Association of genetic variations with nonfatal venous
thrombosis in postmenopausal women. JAMA 2007;297(5):489-98.
29. Gellekink H, Muntjewerff JW, Vermeulen SH, et al. Catechol-O-methyltransferase genotype is associated
with plasma total homocysteine levels and may increase venous thrombosis risk. <i>Thromb Haemost</i>
2007;98(6):1226-31.
30. Ahmad-Nejad P, Dempfle CE, Weiss C, et al. The G534E-polymorphism of the gene encoding the factor
VII-activating protease is a risk factor for venous thrombosis and recurrent events. <i>Thromb Res</i>
2012;130(3):441-4.
31. Healy B, Levin E, Perrin K, et al. Prolonged work- and computer-related seated immobility and risk of
venous thromboembolism. J R Soc Med 2010;103(11):447-54.
32. West J, Perrin K, Aldington S, et al. A case-control study of seated immobility at work as a risk factor for
venous thromboembolism. J R Soc Med 2008;101(5):237-43.
33. Aldington S, Pritchard A, Perrin K, et al. Prolonged seated immobility at work is a common risk factor for
venous thromboembolism leading to hospital admission. <i>Intern Med J</i> 2008;38(2):133-5.
34. Gaber TA. Significant reduction of the risk of venous thromboembolism in all long-term immobile patients
a few months after the onset of immobility. <i>Med Hypotheses</i> 2005;64(6):1173-6.
35. Beasley R, Raymond N, Hill S, et al. eThrombosis: the 21st century variant of venous thromboembolism
associated with immobility. <i>Eur Respir J</i> 2003;21(2):374-6.
36. Farzamnia H, Rabiei K, Sadeghi M, et al. The predictive factors of recurrent deep vein thrombosis. <i>ARYA</i>
Atheroscler 2011;7(3):123-8.
37. Nakamura M, Sakuma M, Yamada N, et al. Risk factors of acute pulmonary thromboembolism in Japanese
patients hospitalized for medical illness: results of a multicenter registry in the Japanese society of
pulmonary embolism research. J Thromb Thrombolysis 2006;21(2):131-5.
38. Medda P, Fornaro M, Fratta S, et al. A case of deep venous thrombosis following protracted catatonic
immobility recovered with electroconvulsive therapy: the relevance for an early intervention. <i>Gen Hosp</i>
<i>Psychiatry</i> 2012;34(2):209 e5-7.
39. Delk EW, Meilman PW. Alcohol use among college students in Scotland compared with norms from the
United States. J Am Coll Health 1996;44(6):274-81.
40. Kypri K, Paschall MJ, Langley J, et al. Drinking and alcohol-related harm among New Zealand university
students: findings from a national Web-based survey. <i>Alcohol Clin Exp Res</i> 2009;33(2):307-14.
$\mathcal{L}_{\mathcal{L}}$
1.6
15

BMJ Open

2	
3 4	41. Read JP, Wardell JD, Bachrach RL. Drinking consequence types in the first college semester differentially predict drinking the following year. <i>Addict Behav</i> 2013;38(1):1464-71.
5 6	42. Hansen-Krone IJ, Braekkan SK, Enga KF, et al. Alcohol consumption, types of alcoholic beverages and risk
7	of venous thromboembolism - the Tromso Study. <i>Thromb Haemost</i> 2011;106(2):272-8.
8	43. Mesaros C, Arora JS, Wholer A, et al. 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco-smoking-
9	induced oxidative stress. Free Radic Biol Med 2012;53(3):610-7.
10	44. Talukder MA, Johnson WM, Varadharaj S, et al. Chronic cigarette smoking causes hypertension, increased
11 12	oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice.
12	Am J Physiol Heart Circ Physiol 2011;300(1):H388-96.
14	45. Grassi D, Desideri G, Ferri L, et al. Oxidative stress and endothelial dysfunction: say NO to cigarette
15	smoking! Curr Pharm Des 2010;16(23):2539-50.
16 17	46. Takahashi A, Masuda A, Sun M, et al. Oxidative stress-induced apoptosis is associated with alterations in
18	mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). <i>Brain Res</i>
19	Bull 2004;62(6):497-504.
20	47. Haorah J, Ramirez SH, Floreani N, et al. Mechanism of alcohol-induced oxidative stress and neuronal
21	injury. Free Radic Biol Med 2008;45(11):1542-50.
22	
23 24	48. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. <i>Life Sci</i> 2007;81(3):177-87.
24 25	49. Albano E. Alcohol, oxidative stress and free radical damage. <i>Proc Nutr Soc</i> 2006;65(3):278-90.
26	50. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. <i>Alcohol Res Health</i>
27	2003;27(4):277-84.
28	51. Reddy VD, Padmavathi P, Kavitha G, et al. Alcohol-induced oxidative/nitrosative stress alters brain
29	mitochondrial membrane properties. <i>Mol Cell Biochem</i> 2013;375(1-2):39-47.
30 31	52. Almansa I, Fernandez A, Garcia-Ruiz C, et al. Brain mitochondrial alterations after chronic alcohol
32	consumption. <i>J Physiol Biochem</i> 2009;65(3):305-12.
33	53. Mantena SK, King AL, Andringa KK, et al. Mitochondrial dysfunction and oxidative stress in the
34	pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med 2008;44(7):1259-
35	72.
36 37	54. Cederbaum AI. Effects of alcohol on hepatic mitochondrial function and DNA. Gastroenterology
38	1999;117(1):265-9.
39	55. Gordon ER. Alcohol-induced mitochondrial changes in the liver. <i>Recent Dev Alcohol</i> 1984;2:143-58.
40	56. Reutelingsperger CP, van Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed
41	inflammation and coagulation during apoptosis. <i>Cell Mol Life Sci</i> 1997;53(6):527-32.
42 43	57. Christiaens L. [Idiopathic venous thromboembolic disease. risk factors for recurrence in 2006]. Arch Mal
43 44	<i>Coeur Vaiss</i> 2007;100(2):133-8.
45	58. Golomb BA. The starving cell: Metabolic syndrome as an adaptive process. <i>Nature Precedings</i>
46	2011; <u>http://precedings.nature.com/documents/6535/version/1</u> .
47	59. McCabe C, Deboeck G, Harvey I, et al. Inefficient exercise gas exchange identifies pulmonary hypertension
48	in chronic thromboembolic obstruction following pulmonary embolism. Thromb Res 2013.
49 50	60. Barros A, Baptista R, Nogueira A, et al. Predictors of pulmonary hypertension after intermediate-to-high risk
51	pulmonary embolism. Rev Port Cardiol 2013.
52	61. Morris TA. Why acute pulmonary embolism becomes chronic thromboembolic pulmonary hypertension:
53	clinical and genetic insights. Curr Opin Pulm Med 2013;19(5):422-9.
54	62. Klok FA, Mos IC, van Kralingen KW, et al. Chronic pulmonary embolism and pulmonary hypertension.
55 56	Semin Respir Crit Care Med 2012;33(2):199-204.
50 57	
58	
59	16
60	10

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Page 18 of 65

- 63. Berghaus TM, Barac M, von Scheidt W, et al. Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 2011;128(6):e144-7.
- 64. Poli D, Miniati M. The incidence of recurrent venous thromboembolism and chronic thromboembolic pulmonary hypertension following a first episode of pulmonary embolism. Curr Opin Pulm Med 2011;17(5):392-7.
- 65. Sugimura K, Sakuma M, Shirato K. Potential risk factors and incidence of pulmonary thromboembolism in Japan: results from an overview of mailed questionnaires and matched case-control study. Circ J 2006;70(5):542-7.
- 66. Coy TV, Dimsdale JE, Ancoli-Israel S, et al. The role of sleep-disordered breathing in essential hypertension. Chest 1996;109(4):890-5.
- 67. Hargens TA, Nickols-Richardson SM, Gregg JM, et al. Hypertension research in sleep apnea. J Clin Hypertens (Greenwich) 2006;8(12):873-8.
- 68. Lin QC, Deng CS, Ding HB, et al. [Effects of long term nasal continuous positive airway pressure on the blood pressure of patients with obstructive sleep apnea hypopnea syndrome]. Zhonghua Jie He He Hu Xi Za Zhi 2012;35(9):687-90.
- 69. He QY, Feng J, Zhang XL, et al. Elevated nocturnal and morning blood pressure in patients with obstructive sleep apnea syndrome. Chin Med J (Engl) 2012;125(10):1740-6.
- 70. Linnemann B, Zgouras D, Schindewolf M, et al. Impact of sex and traditional cardiovascular risk factors on the risk of recurrent venous thromboembolism: results from the German MAISTHRO Registry. Blood Coagul Fibrinolysis 2008;19(2):159-65.
- 71. Wu EC, Barba CA. Current practices in the prophylaxis of venous thromboembolism in bariatric surgery. Obes Surg 2000;10(1):7-13; discussion 14.
- 72. Greenbaum JN, Bornstein LJ, Lyman S, et al. The validity of self-report as a technique for measuring shortterm complications after total hip arthroplasty in a joint replacement registry. J Arthroplasty 2012;27(7):1310-5.
- 73. Ahlbrecht J, Dickmann B, Ay C, et al. Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012;30(31):3870-5.
- 74. Lauw MN, van Doormaal FF, Middeldorp S, et al. Cancer and venous thrombosis: current comprehensions and future perspectives. Semin Thromb Hemost 2013;39(5):507-14.
- 75. Araujo A. [Cancer and deep venous thrombosis: the purpose of the CATCH clinical trial]. Acta Med Port 2013;26(2):83-5.
- 76. Timp JF, Braekkan SK, Versteeg HH, et al. Epidemiology of cancer-associated venous thrombosis. Blood 2013;122(10):1712-23.

BMJ Open

18	
rol;	BMJ Open: first published as 10.1136/bmjopen-2013-003208
riable	003208 on 21 N
ve.	March 201
ded by	2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.
18	pyright.

1
Legends
Table 1. Legend
DBP – diastolic blood pressure; DVT – deep venous thrombosis; HDL – high-density lipoprotein cholesterol;
HRT – postmenopausal hormone replacement therapy; PE – pulmonary embolism; SBP – systolic blood
pressure; SD – standard deviation; SVT – superficial venous thrombosis.
* P<0.05; ** P<0.01; *** P<0.001
[†] Ordinal rather than continuous: Ranked from 1 = Grade school or less to 9 = Doctoral Degree.
‡ This correlated well with pack years, which showed a similar relationship to venous events; but variable
transformations more suitably satisfied regression constraints for this variable, and the impact of this variable
was more potent than that of pack years for deep events, the category of events for which it was predictive.
§ Pack years was calculated by multiplying years smoked by the average number of cigarettes per day divided b
20 (the average number of cigarettes in one pack).
¶ Rated relative to others your age, 1-5 with 5 being most active.
\int Only females were included in this portion of the analysis.
\ddagger Hypertension: SBP \ge 140 or DBP \ge 90.
Table 2. Legend
DVT – deep venous thrombosis; PE – pulmonary embolism; SVT – superficial venous thrombosis.
Recall: Some variables had missing data; and some subjects had multiple types of events.
Table 3. Legend

DBP - diastolic blood pressure; DVE - deep venous event; SBP - systolic blood pressure; OR - odds ratio.

* Age variable was adjusted for sex only; and sex variable was adjusted for age only.

[†] Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as

 Table 4. Legend

 DBP – diastolic blood pressure; DVE – deep venous event; DVT – deep venous thrombosis; OR – odds ratio;

PE – pulmonary embolism; SBP – systolic blood pressure; SVT – superficial venous thrombosis.

* Age variable was adjusted for sex only; and sex variable was adjusted for age only.

not to double-count the shared (collinear) contribution by the SBP and DBP values.

[†] Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as not to double-count the shared (collinear) contribution by the SBP and DBP values.

Although some variables lose significance in the fully adjusted model due to collinearity, variables which were of significance or borderline significance in unadjusted or age/sex adjusted model were added back to the final model.
When Caucasian ethnicity and heavy smoking were included without one another in the final model, they resumed significance or borderline significance.

§ In the final model, either one of the blood pressure measures – SBP or DBP – could be included and remained statistically significant. (Only one of the two blood pressure variables was included because of collinearity.) || Female specific analysis. Excludes family history of first deep events (see comment for PE). The final female-specific model included age and history immobilization, the sole other variables with P<0.2 (neither <0.1). Note: Caucasian ethnicity shows significant relationship to DVT if not adjusted for family history of DVE (OR=2.15, P=0.008). If both Caucasian ethnicity and family history of DVE are included, Caucasian ethnicity loses significance (OR 1.29, P=0.659) but family history of deep events retains significance (OR 3.17, P=0.026).

Note: Age (OR=1.02,*P*=0.035) and Caucasian ethnicity (OR=1.97,*P*=0.015) show a significant relationship to combined deep events in the final model if family history of venous events is excluded.

1	
2 3 4	Note: For combined DVT and/or PE oestrogen use for HRT was tested as a predictor in women but was not
5	
6 7	significant. For oestrogen use duration (per 10 years) ORs (P -values) for age-adjusted and final models, were
, 8 9	0.532 (0.534) and 0.523 (0.611).
10	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
21 22	
23	
24	
25 26	
27	
28	
29 30	
31	
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
45 46	
47	
48 49	
49 50	
51 52	
52 53	
53 54	
55	
56 57	
57 58	
59	
60	

variables): Variables	No Event	SVT	DVT	PE
	N=2262	N=63	N=74	N=21
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Age	59.1 (11.4)	60.5 (10.7)	61.9 (11.7)*	61.5 (10.2)
Education [†]	5.78 (1.73)	5.11 (1.89)***	5.73 (1.67)	5.29 (1.79)
Highest number of drinks per day	2.70 (3.13)	2.24 (2.51)	3.32 (3.76)	3.06 (2.84)
Cigarettes/ day averaged over	6.99 (11.5)	7.73 (14.1)	12.0 (16.1)***	13.2 (14.9)
years totaled‡	Q			
Pack years§	7.22 (14.9)	7.38 (18.7)	13.9 (22.3)***	16.5 (20.9)*
SBP (mmHg)	131 (20.3)	132 (22.4)	133 (20.9)	143.0 (21.0)
DBP (mmHg)	76.8 (11.3)	76.6 (10.8)	78.2 (9.67)	82.5 (7.69)
Total Cholesterol (mg/dl)	210 (41.3)	207 (38.4)	211 (43.2)	209.2 (42.3
HDL (mg/dl)	54.5 (17.0)	51.4 (11.3)	50.9 (15.6)	49.9 (16.5)
Activity Level¶	3.71 (1.16)	3.69 (1.19)	3.53 (1.22)	3.40 (1.27)
Number of times in a week	3.60 (2.51)	3.78 (2.66)	3.52 (2.53)	3.40 (2.54)
engaging in ≥ 20 min of vigorous				
activity				
Longest period of immobility	11.0 (110)	5.38 (11.9)	17.8 (51.8)	31.4 (84.5)
(days)				
Oestrogen use duration for HRT	0.743 (3.73)	0.882 (3.04)	0.313 (1.60)	5.92 (13.9)*
among all females∫ (years)				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Variables	No Event (%)	SVT (%)	DVT (%)	PE (%)
Male		34.5	19.0**	35.1	42.9
Hypertension	##	35.9	28.6	32.4	42.9
Drinker (any	alcohol)	93.4	87.3	95.9	90.5
Maximum alcohol consumption ≥7		7.42	7.31	14.3*	16.7
drinks per da	y				
Drinkers who	o did not specify	8.49	22.6***	11.1	10.5
maximum lev	vel of alcohol	0			
consumption		0			
Current smoker		6.02	3.17	9.46	9.52
Heavy smoker (≥40 cigarettes per day		3.85	3.17	14.9***	14.3*
during time s	moked)				
Ethnicity	Caucasian	58.9	65.1	78.4***	81.0*
	Hispanic	14.7	20.6	9.46	4.76
	African American	13.9	4.76*	8.11*	9.52
	Asian	12.5	9.52	4.05	4.76
Occupation	Professional	26.4	21.1	26.1	20.0
	Technical,	40.9	38.6	40.6	45.0
	Administrative, or				
	Managerial				
	Clerical and Skilled	26.8	29.8	30.4	25.0

... ~ - -. . . .

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

50	mi skilled	3.85	8.77	2.90	5.00	
	emi-skilled	2.83	ð.//	2.90	5.00	
La	aborer	2.07	1.75	0.00	5.00	
Family history of	venous diseases	57.2	76.2**	71.6*	57.1	
Venous condition	n in any first degree					
relative)						
Oral contraceptiv	re use (ever; female)	58.1	56.0	54.4	58.3	

			If	
Venous Condition	All Subjects:	SVT:	DVT:	PE:
	N (%)	N (%)	N (%)	N (%)
SVT	63 (2.68)	63 (100)	5 (22.7)	2 (13.3)
DVT	74 (3.09)	5 (8.33)	74 (100)	11 (52.4)
PE	21 (0.87)	2 (3.17)	11 (14.9)	21 (100)
Any deep event (DVT or PE)	84 (3.50)	5 (8.33)	74 (100)	21 (100)
Any event (SVT or DVT or PE)	142 (5.91)	63 (100)	74 (100)	21 (100)

1
2
3 4 5 6 7 8
4
5
6
7
8
à
10
10
11
12
13
14
15
16
17
18
9 10 11 12 13 14 15 16 17 18 19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
∠ I 00
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
39
40
40 41
41
43
44
45
46
47
48
49
50
51
52
ວ∠ 53
00
54
55
56
57
58
59
60

	Age-Sex	Fully Adjusted	Final Model
	Adjusted*	OR (P-value)	OR (P -value)
	OR (P -value)		
Age	1.01 (0.306)	1.03 (0.224)	-
Male sex	0.437 (0.011)	0.275 (0.042)	0.470 (0.028)
African American ethnicity	0.290 (0.038)	0.378 (0.204)	0.305 (0.047)
Education	0.821 (0.015)	0.805 (0.079)	0.801 (0.007)
Activity Level	0.971 (0.796)	0.931 (0.686)	-
Heavy Smoking (≥40 cigarettes	0.913 (0.901)	0.977 (0.983)	-
per day during time smoked)			
DBP (per 20mmHg)	1.03 (0.894)	2.14 (0.227)	-
SBP (per 20mmHg)	1.01 (0.942)	-	-
Drinkers who did not specify	4.37 (<0.001)	4.65 (0.011)	3.33 (<0.001)
their maximum alcohol			
consumption per day			
History of immobility (>1day)	1.55 (0.091)	2.53 (0.015)	1.71 (0.043)
Family history of first-degree	1.54 (0.301)	1.55 (0.520)	-
relatives with superficial			
venous events			
Family history of first-degree	2.30 (0.002)	1.25 (0.706)	2.02 (0.009)
relatives with varicose veins			
Family history of first-degree	1.74 (0.177)	1.25 (0.637)	

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2		
3 4 relatives with DVE		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 377 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 <tr< td=""><td></td><td></td></tr<>		

⊿0

Table 4. Multivariate Analyses for DVT, PE, and Combined Deep Venous Events

		DVT			PE		D	VT and Pl	E
		OR			OR			OR	
		(P -value)			(P -value)			(P -value)	
	Age-Sex	Fully	Final	Age-Sex	Fully	Final	Age-Sex	Fully	Final
	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model
	1.02	1.05		1.02	0.977		1.03	1.04	
Age	(0.047)	(0.162)	-	(0.404)	(0.621)	-	(0.004)	(0.202)	-
	1.01	0.479	8	1.41	0.778		1.15	0.773	
Male sex	(0.955)	(0.312)	-	(0.435)	(0.795)	-	(0.548)	(0.662)	-
	2.35	0.754		2.68	5.77	2.58	2.26	0.936	
Caucasian ethnicity	(0.003)	(0.674)	-	(0.083)	(0.149)	(0.096)‡	0.003)	(0.913)	-
A ativity I aval	0.827	0.819		0.771	0.986		0.846	0.909	
Activity Level	(0.059)	(0.418)	-	(0.163)	(0.971)	-	(0.081)	(0.672)	-
Heavy Smoking (≥40	4.19	10.1	16.6	3.50	5.21	2.73	3.38	6.92	12.5
cigarettes per day during time smoked)	(<0.001)	(0.007)	(<0.001)	(0.052)	(0.191)	(0.121)‡	(<0.001)	(0.013)	(<0.001)
	1.28	0.442		2.06	3.20	2.29	1.39	0.764	
DBP (per 20mmHg)	(0.227)	(0.445)	-	(0.014)	(0.419)	(0.010) §	(0.077)	(0.766)	-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

⊿0

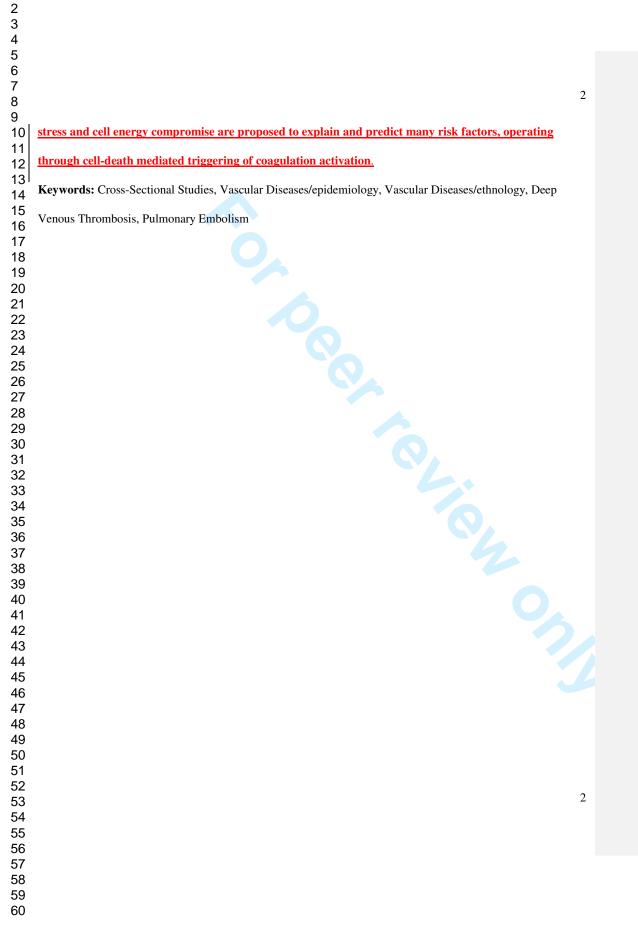
1	

SBP (per 20mmHg)	0.996	_ †		1.59	_ †	- §	1.05	_ †	
SBP (per 20mming)	(0.975)	_ `	-	(0.012)	_ `	- 8	(0.643)	_ `	-
Drinkers who did not									
specify their maximum	1.74	1.46		1.63	2.70		1.61	1.09	
alcohol consumption per	(0.170)	(0.739)	-	(0.534)	(0.447)	-	(0.235)	(0.939)	-
day		6							
History of immobility	2.17	5.32	4.30	4.44	4.21	4.07	2.23	3.80	3.48
(>1day)	(0.001)	(0.008)	(0.006)	(0.002)	(0.114)	(0.004)	(<0.001)	(0.013)	(0.008
Family history of first-				8				0.626	
degree relatives with	3.32	0.719	_	1.51	0.730	_	2.52	(0.449)	-
C C	(0.024)	(0.643)		(0.600)	(0.754)		(0.036)	(0.1.5)	
superficial venous events									
Family history of first-	4.41	3.51	3.28	0.855	0.431	0,	3.42	2.85	2.49
degree relatives with DVE	(0.003)	(0.066)	(0.020)	(0.889)	(0.491)	-	(0.010)	(0.100)	(0.057
Oestrogen use duration for				2.73	3.73	2.63			
HRT (per 10 years)	-	-	-	(0.000)	(0.000)	(0.001)			
Oestrogen use duration	-	-	-	-	-	-	4.67	5.22	4.74

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

among oestrogen users for				(0.018)	(0.018)	(0.016)
HRT (per 10 years)						
	For peer review only					


BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2		
2		
4		
5 6		
7		
8		
9 10	Risk Marker Associations with Venous Thrombotic Events:	
11	KISK WATKET ASSociations with vehous Thrombouc Events:	
12 13	A Cross-sectional Analysis	
14 15	Beatrice A. Golomb, MD, PhD ^{*‡¶}	
16 17	Virginia T. Chan, MD ^{*†¶}	
18 19	Julie O. Denenberg, MA [‡]	
20 21	Sabrina Koperski, BS [*]	
22	Michael H. Criqui, MD, MPH*	
23 24		
25 26	* Department of Medicine, University of California, San Diego	
27 28	[†] Internal Medicine, Scripps Green Hospital, San Diego	
29 30	[‡] Department of Family and Preventive Medicine, University of California, San Diego	
31 32 33	[¶] Designates shared first authorship	
33 34 35	Running title: Risk Markers for VTE	
36 37	Funding Source: This research was funded by NIH–NHLBI grant 53487 and NIH GCRC Program grant MO1	
38 39	RR0827. The funding source did not influence design and conduct of the study; collection, management,	
40 41	analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.	
42 43	 analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. Competing interests: The authors have no conflicts of interest in relation to this work. Corresponding Author: Beatrice A. Golomb, MD, PhD 	
44	Corresponding Author:	
45	Beatrice A. Golomb, MD, PhD	
46	Dept of Medicine 0995	
47 48	UCSD School of Medicine 9500 Gilman Dr.	
49	4500 Gliman Dr. La Jolla, CA 92093-0995	
50	Phone: 858 558-4950 x201	
51	Fax: 858 558-4960	
52 53		
53 54		
55		
56		
57 50		
58 59		
60		
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

 Email: bgolomb@ucsd.edu (not preferred mechanism of correspondence)

ABSTRACT

Objective: To examine the interrelations among, and risk marker associations for superficial and deep venous events - superficial venous thrombosis (SVT), deep venous thrombosis (DVT) and pulmonary embolism (PE). Design: Cross-sectional Analysis Setting: San Diego, CA Participants: 2,404 men and women aged 40-79 years from four ethnic groups; Non-Hispanic White, Hispanic, African-American, and Asian. The study sample was drawn from current and former staff and employees of the University of California, San Diego and their spouses /significant others. Outcome Measures: Superficial and deep venous events, specifically SVT, DVT, PE, and combined deep venous events (DVE) comprising DVT and PE-and PE. Results: Significant correlates on multivariable analysis were, for SVT: female sex, ethnicity (African-American=protective), lower educational attainment, immobility, and family history of varicose veins. For DVT and DVE significant correlates included: heavy smoking, immobility, and family history of deep venous events (borderline for DVE). For PE, significant predictors included immobility, and, in contrast to DVT, blood pressure (BP) (systolic or diastolic). In women, oestrogen use duration for hormone replacement therapy, in all and among oestrogen users, predicted PE and DVE respectively. Conclusions; These findings fortify evidence for known risk correlates/ predictors for venous disease, such as Formatted Formatted immobility, family history, and hormone use, and immobility. - In addition, nNew risk associations are shown. Striking among these is an association of PE, but not DVT, to elevated BP: we conjecture PE may serve as cause, rather than consequence. Future studies should evaluate temporal direction of this association. Oxidative

1		
2		
3		
4		
5 6		
7		
8	3	
9		
10	Article Summary	
11	Article Focus: We cross-sectionally examined relations between assessed physiological markers and history of	
12	Arnele Focus. we cross-sectionary examined relations between assessed physiological markets and instory of	
13 14	venous events, including superficial venous thrombosis, deep venous thrombosis (DVT), and pulmonary	
15		
16	embolism (PE).	
17	Key Messages: We identified a significant correlation between superficial and deep venous events. As expected,	
18		
19 20	predictors of deep venous events included smoking, immobility, and in women hormone use duration.	
21 22	Unexpectedly, elevated blood pressure (BP) significantly related to history of PE, but not DVT. Since DVT is	
 23 24	typically a precursor condition to PE, we speculate that BP rises as a consequence rather than cause of PE	
25	(consistent with other evidence relating to BP-elevation risk factors). To assess this further will require	
26 27	longitudinal prospective assessment – not merely leading to, but also following, occurrence of PE.	
26 27 28 29 30 31	Strengths and Limitations: Recall of events may be imperfect and fatal events are not included. Cross-sectional	
30 31	design does not define temporality in venous event/ risk marker relations. On the positive side, this design may	
32 33	enable relationships to be identified arising from effects of "events" on physiological variables: such relations	
34 35	may also be important, and may be missed in prospective studies that censor <u>follow-up</u> at occurrence of an	
36 37	event. Longitudinal assessment, continued after PE occurrence, is However, prospective follow-up remains	
38 39	required, including those with and without PE, to confirm the conjectured directionality of the observed	
40	association.	
41 42		
42 43		
44		
45		
46		
47		
48 40		
49 50		
50 51		
52		
53	3	
54		
55		
56 57		
57 58		
59		
60		
		e e sulstaa

Introduction

Chronic venous disease causes significant morbidity in diverse populations around the world $\frac{1-5}{7}$ and costs are material, with estimates suggestingit has been estimated that up to several percent1-3% of total health care expenditures are linked to venous disorders^{2 6-9}. Considerable time and resources are devoted to venous conditions in clinical practice. The San Diego Population Study (SDPS) has sought to better define venous disease prevalence and epidemiology^{10 11}, by clearly delineating and separately analyzing risk correlates for different elements of venous disease, irrespective of directionality of the association. The present report pertains to a history of venous thrombotic events, including superficial venous thrombosis (SVT), deep venous thrombosis (DVT), and pulmonary embolism (PE). It assesses the relation of age, sex, and other potential risk factors to a history of these events. **Materials and Methods** Subjects 2,404 men and women aged 40-79 years from four ethnic groups (Non-Hispanic White, Hispanic, African-American, and Asian), comprising current and former staff/ employees of the University of California, San Diego and their spouses/significant others, were targeted for participation in the SDPS. Inclusion of spouses/significant others modestly extended the age range of participants (29-91 years). Subjects represented a spectrum of socioeconomic status, including unemployed and retired as well as working persons. A-full description of the SDPS population, which collected data from 1994-8, is available elsewhere¹⁰. The study's primary aims related to prevalence, and the study was powered such that 95% confidence limits for prevalence for each sex were less than $\pm 3.3\%$; and for subgroups of e.g. n=200, less than $\pm 7\%$, (-6, -7). The

study was approved by the UCSD Human Research Protection Program, and all <u>participants</u>subjects gave written informed consent.

Outcomes

SVT, DVT and PE were ascertained by self-report. Questions elicited a history of "a blood clot in a leg vein" and "phlebitis or inflamed vein in your leg," stratified by whether the problem was in a superficial or deep vein and queried separately for each leg; "pulmonary embolism or blood clot in lung;" and "heparin or coumadin/ warfarin therapy for a problem with your veins." Because PEs are pathophysiologically linked to DVTs, DVT and PE were analyzed both separately, and conjointly as deep venous events (**DVE**: DVT and/or PE).

Variables evaluated for their relation to SVT, DVT, <u>PE</u> and <u>DVEPE</u> included self-reported age, sex, ethnicity, smoking status, alcohol consumption, self-reported activity level, education level (ranked from 1=grade school or less to 9=doctoral degree), occupation (categorical), hormone use in females (including oral contraceptive use (and if so, # years); and postmenopausal hormone replacement therapy use (and if so, # of years), and, history of immobility (i.e. bedrest) for >1 day. Assessment of ,-and-family history of yenous superficial and deep-events inquired regarding each qualifying venous condition in each first degree relative (parents, siblings, children), such that a positive family history of deep venous events required one or more qualifying deep venous event in one or more first degree relatives.² Systolic and diastolic brachial blood pressure (SBP and DBP, respectively) werewas assessed using the subject's right arm after the subject sat quietly for five minutes. Ethnicity, determined by self-report, was categorized as above as Non-Hispanic White (hereafter referred to as Caucasian), Hispanic, African-American, or Asian. Alcohol measures

examined included drinking status (none vs. present), days per week of alcohol consumption, and highest number of drinks in a day. Smoking information included current smoking status, years of smoking, average packs/day during time smoked (allowing calculation of pack years of smoking), and heavy smoker status (defined as \geq 40 cigarettes/day average during time smoked). Activity was coded into 5 levels, assessed relative to others of the same age and sex. Responses ranged from "much less active" to "much more active." In analyses examining venous outcomes in women, oestrogen use duration and other hormone measures were also evaluated as potential risk factors. Analyses Subject characteristics were tabulated as a function of venous event status - no event, SVT, DVT, or PE. The (unadjusted) relationship of demographic and potential risk variables to each event type was ascertained, using t-test of difference in mean values for continuous variables and chi-squared testing for categorical variables. Relationships between SVT, DVT and PE were also evaluated. For multivariable analyses, following examination of correlations among predictor variables to assist in assessing issues of collinearity, logistic regression was performed. Age- and sex-adjusted regressions were followed by multivariable regressions including all variables shown for which a relationship was supported in bivariable analysis ("full model"). (Where several measures tapping the same variable were appraised, e.g. pack years of smoking vs. heavy smoking, the variable that bore the stronger apparent relationship to the outcome was employed in multivariable analyses.) A "final" regression model was then determined for each venous event outcome, adjusted for potential predictor variables identified from bivariable and age-sex adjusted or fully adjusted analyses. This assessed the multivariable relationship of candidate risk factors to events, controlling for potential confounders. Variables that approached significance on age-sex adjusted and/or fully adjusted analysis (P<0.2) were tested for inclusion in the final model. Those retaining potential predictive value (P<-0.2) were

1 2 3			
4 5			
6 7			
8	7		
9 10	retained in the final model. All logistic regression analyses were performed with and without stratification by		
11 12	sex; results of stratified analyses are presented only where effect modification by sex was present.		
13 14	Sensitivity analyses were conducted adding back non-significant variables, but typically the final model		
15 16	variables were robustly supported (with exceptions specified). Significance was designated as two-sided		
17 18	P<0.05. Analyses employed Stata version 8.0 (College Station, TX).		
19			
20 21	Results		
22 23	Population Characteristics		
24 25	Sixty-six percent of subjects were female (1,580 women vs. 824 men). Female participants were		
26 27	minimally but significantly younger on average than males (58.9 years vs. 60.1 years; P=0.012). Average values		
28 29	of predictor variables in this population, stratified by venous event status, are shown in Tables 1a and 1b.		
30 31	Variables that differed significantly in those with SVT vs. no events (on unadjusted analysis) were male sex,		
32 33	African-American ethnicity (protective), lower education level, drinkers who did not specify maximum alcohol		
34	consumption, and family history of venous disease. For DVT, significant factors were age, Caucasian ethnicity		
35 36	(with African-American ethnicity somewhat protective), family history of venous disease, heavy smoking, and		
37 38	high maximum alcohol consumption (≥7 drinks per day). For PE, significant factors were heavy smoking,		
39 40	Caucasian ethnicity, SBP, DBP; and among women, oestrogen use duration for hormone replacement therapy		
41 42	(HRT) among all females, and oestrogen use duration among oestrogen users for HRT.	 Format Format	
43 ¹ 44		Format	tea
45	Relationships Among Events		
46 47	The fraction of the population with superficial or deep venous events or PE is shown in Table 2. 142		
48 49	had at least one type of thrombotic event (SVT, DVT, or PE), including 11 in whom both lower extremity		
50 51			
52 53	7		
54 55			
56 57			
58			
59 60			

(DVT) and pulmonary thrombotic events were reported. A total of 132 people had at least one SVT or DVT. Of these, 29 people reported bilateral events of one or both types, 2 citing both (data not shown in table), More than half of those with a PE were aware of having had a DVT (52.4%). This contrasts with only 2.65% of those without a PE being aware of a prior DVT. 14.9% of those with a DVT had experienced a PE while only 0.43% of those with no reported DVT reported a PE. Thus, the expected relationship of DVT to PE (i.e. increased likelihood of PE in presence vs. absence of reported DVT, and vice versa) was upheld (χ^2 =172.1, *P*<0.001). A significant relationship (χ^2 analysis) was also seen between experiencing an SVT and a DVT (P < 0.001), as well as between experiencing an SVT and a PE (P = 0.010). Multivariable Analyses by Event Type SVT (Table 3): Female sex, lower educational attainment, failure to specify level of maximum alcohol consumption, history of immobility, and family history of first-degree relatives with varicose veins showed significant (or for immobility, borderline significant, P < 0.1) positive relations, while African-American ethnicity appeared protective, in the limited (age-sex) adjustment models. Each was significant in the final model. DVT (Table 4): For DVT, significance on multivariable regression was seen for heavy smoker status; history of immobility; and family history of first-degree relatives with DVE. In addition to these variables, Caucasian ethnicity, age, and family history of superficial venous events appeared significant in the limited (age-sex) adjustment model, but lost significance on multivariable analysis. PE (Table 4): For PE, significance on multivariable analysis was seen for: BP; history of immobility; and for women, duration of oestrogen use for HRT. Caucasian ethnicity and heavy smoking, with ORs exceeding 2.5, were retained in the final model, but did not meet criteria for significance, reflecting the modest

BMJ Open

	9
number of PEs (n=21). We underscore that SBP and/or DBP, though not related to DVT or SVT in any	
adjustment scenario, were significantly related to PE on unadjusted and adjusted analysis.	
DVE (DVT and/or PE; Table 4): As for DVT, age and Caucasian ethnicity, though significant in the	
limited adjustment model, lost significance with further adjustment. Significance was seen for heavy smoker	
status; and history of immobility; and for women, oestrogen use duration among oestrogen users for HRT.	
Family history of DVE, with an OR of 2.49, was also retained in the final model. This variable approached but	
did not meet criteria for significance (P=0.057).	
Discussion	
This is the first study characterizes, to characterize, in a population sample, the relationships between	
superficial and deep venous events, and between DVTs and PEs; and characterizesto characterize the risk	
correlates for SVT, DVT, PE, and DVE. Some anticipated relationships were confirmed; and some intriguing	
differences in statistical correlates of SVT vs. DVT; and for DVT vs. PE were revealed.	
The expected significant relationship between DVT and PE was upheld ¹² . There was also a significant	
relationship between risk of SVT and risk of DVT, as well as risk of PE, as others have recently reported ¹³⁻¹	⁶ .
Regarding sex differences, females were confirmed to have strongly and significantly higher rates of	
SVTs than males. Oestrogen use duration for HRT showed a link to DVE in women, consistent with existing	
findings ^{13 17-19} .	
History of heavy smoking was not associated with SVT, but was a strong risk factor for DVT and DVE	
Smoking <u>has been inconsistently</u> is often not reported as a risk factor for venous <u>thrombosis</u> ²⁰ , thrombosis,	
though it has been recognized to amplify risk in the setting of oral contraceptive use ²¹ , perhaps contributing t	<u>to</u>
its association to venous thromboembolism in studies of women of reproductive age ²² . Moreover, some	
	9

studies do report an, perhaps contributing to its association of smoking to venous thromboembolism extending to older samples and men as well as in studies of women of reproductive age²³²⁴. Caucasian ethnicity bore an apparent relationship to DVT, PE and DVE that was, however, extinguished with multivariable adjustment. The demographics of San Diego are such that ethnic minorities are more strongly represented in younger ages. Consistent with this, Caucasians were on average older than other study participants. Some other studies have also reported a relation of ethnicity to DVT to be extinguished with adjustment for other factors. Moreover, some studies do report an association of smoking to venous thromboembolism extending to older samples and men as well as women²⁵. Family history showed Caucasian ethnicity bore an associationapparent relationship to DVT, PE and DVE; that iswas, however, extinguished with multivariable adjustment. Some other studies have also consistent with existing documentationreported a relation of genetic variation in venous thrombosis riskethnicity to DVT to be extinguished with adjustment for other factors^{17 26-30}. Immobility, a known risk factor for venous events. Family history showed an association to DVT that accounted for the ethnicity association and is also consistent with existing data on genetic variation in clotting factors^{17 26 31-36} was affirmed here to be a strong predictor for DVT, PE, and DVE.-Immobility, a known risk factor for venous events It was also a predictor, though less potent, for superficial events. Many factors elsewhere reported to be associated with thrombosis entail periods of immobility: these range from nursing home confinement¹³, was affirmed here to be a strong predictor for DVT, PE, and DVE. It was also a predictor, though less potent, for superficial events._and hospitalization Many factors associated with thrombosis entail periods of immobility: these range from nursing home confinement^{13 25 37}, to perisurgical, neurological and injury states and hospitalization^{13 25 37 38}; factors also extend to prolonged sitting in the work environment^{31-33 35}. BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Hij binge drin coheres w and binge Wa identified oxidative immobiliz death. Pro potential f coagulatio ultimately stress and the future accompan transfer, I from othe inadequaa DVT, wer
48	
	<u>sample, to</u>
52 53	
54 55	
56 57	
58 59	
60	

11
igh maximum alcohol consumption was linked to DVT. High maximum alcohol use (such as
inking) is the pattern most linked to blackouts ³⁹⁻⁴¹ , and thus immobilization. This alcohol finding
with a recent report of an association of venous thromboembolism to hard liquor consumption
e drinking (contrasted with a protective association for wine consumption) ⁴² .
Ve suggest, in addition, that many (if not most) risk factors for venous thromboembolism, those
d here and elsewhere, share in common an association to elevated risk of cell death, through
e stress or adverse cell energy supply-demand balance. Cell death is a consideration with
ization (leading to focal ischemia), heavy smoking (oxidative stress ⁴³⁻⁴⁵ triggers apoptosis ⁴⁶),
cohol (promoting oxidative stress ⁴⁷⁻⁵⁰ and mitochondrial toxicity ⁵¹⁻⁵⁵ as well as ischemia from
ization). Cancer, trauma, surgery, and the puerpuerium are associated with tissue injury and cell
regnancy is associated with diversion of blood and energy substrates to the fetus, as well as
for ischemic compression, which can promote cell death. We observe that cell death triggers
<i>ion activation</i> , via exposure at the cell surface of phosphatidylserine ⁵⁶ , and hypothesize that
y numerous additional factors, sharing in common elevated risk of cell death (with oxidative
d/or cell energy supply-demand frequently involved), or correlation to these, will be identified in
re as risk factors for venous thromboembolism. Indeed, the observation that initial DVT
nied by PE is a risk factor for recurrence of DVT ⁵⁷ also fits this theme: PE, by affecting oxygen
has prospects to tip the energy adequacy balance, particularly in settings of energy compromise
er sources. Also relevant, central obesity is linked to oxidative stress and cell energy
acy ⁵⁸ , and has shown a reported link to thromboembolism risk ²³ .
erhaps the most novel findings from this analysis were that SBP and DBP, though unrelated to
ere strongly related to PE. We suggest that given absence of a relation of blood pressure, in this
to the requisite precursor event DVT, and given measurement of BP after venous event
11

occurrence, causality could operate in the reverse direction: PE, known to be a risk factor for pulmonary hypertension⁵⁹⁻⁶⁴, could drive elevation in arterial BP. Indeed, transient hypoxemia in other settings (such as sleep apnea) promotes BP elevation, to peri surgical, neurological and injury states 13 26 37 65 -Among the most interesting findings, SBP and DBP, though unrelated to DVT, were strongly related to PE. We suggest that, because risk marker data were procured after event occurrence, PE could drive subsequent elevations in BP. Transient hypoxia in settings like sleep apnea promotes BP elevation^{66.67}. The possibility cannot be excluded that even focal pulmonary infarction might reduce efficiency of oxygen transfer to blood sufficiently to influence BP in some instances. Potentially compatible information derives from data that initial DVT accompanied by PE is a risk factor for *recurrence* of DVT^{68 69}. Even modest reduction in oxygen transfer, arising from pulmonary embolism, might influence BP adversely - concordant with assembled evidence that a range of factors that impair cell energy, promote hypertension (and other metabolic syndrome factors) ; and that arterial hypertension is a risk factor for recurrent DVT⁵⁸. Additional potentially compatible information derives from data that initial DVT accompanied by PE is a risk factor for recurrence of DVT⁵⁷; and that arterial hypertension is a risk factor for recurrent DVT⁷⁰, which we hypothesize could be a marker for prior overt or occult PE. , which we hypothesize could be a marker for prior overt or occult PE. Longitudinal studiesstudy assessing change in risk markers following events are seldom undertaken. Therefore cross-sectional designs' lack of "temporality" may serve here not as a fault but an advantageous feature, enabling event-factor as well as factor-event relations to be uncovered. However prospective studies are desired to confirm hypothesized "reverse" directionality. Irrespective of whether Whether elevated BP ultimately proves to be a risk factor for, or a consequence of PE, as we propose, the relationship will be important to understand.

BMJ Open

This study has limitations, including those pertaining to all cross-sectional studies. Though the sample was diverse economically and ethnically, findings for this population need not generalize to all others; however, reproduction in this sample of many previously reported associations reduces concerns regarding generalizability of the findings. The study measures historical occurrence rather than prospective incidence. Neither fatal events nor clinically silent ones were included in our analyses. Assessment is by self-report, which may involve recall and reporting bias; however self-report of venous events has been used in other studies⁷¹. In one study, it was shown that most self-reported DVTs were corroborated by surgeons' report (via phone call), and concordance was particularly strong for PE⁷². Most significantly, numerous associations identified here, both among venous outcomes, and between risk factors and venous outcomes, cohere with associations reported in other studies using alternate event assessment modalities, providing strong convergent validation for the findings. An additional limitation, as in all observational studies, economically broad and ethnically diverse, findings for this population need not generalize to all others; however, affirmation of many known associations reduces concerns regarding generalizability. The study measures historical occurrence rather than prospective incidence. There is inherent potential for omitted variable bias, which can influence the apparent relationship of tested variables to the outcome of interest. Fatal events as well as clinically silent ones were not included in our analyses. Most of the retained variables showed relationships robust across sensitivity analyses, supporting relevance of the variables identified. Exceptions arose with inclusion/exclusion of ethnicity and family history. In this as in all studies, apparent ethnic and family relationships may represent proxies for (measured and) unmeasured variables with which ethnicity (or family) correlate. There were few cases of current cancer in our sample; cancer has elsewhere been reported to predict venous events^{13 65 73-76}.- Finally, events hadhave already occurred when risk markers were measured. For modifiable risk factors, the events could drive the factors rather than the converse, as discussed for the association of PE to increased SBP and DBP.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

14	
This study supports previously reported confirms relationships of sex, history of immobility, heavy	
smoking, and duration of HRT to venothrombotic events. It supports recent evidence for a relation of heavy	
maximal alcohol consumption to venous thromboses, consistent with prior evidence linking binge	
drinking to venous events ⁴² . Family history was also affirmed to bear a strong relation to venous events,	
consistent with (but not exclusive to) recognized genetic risk factors. In addition, aAn intriguing association of	
systolic and diastolic blood pressure to PE, but not to DVT, was <i>identified. This novel finding is illuminated</i>	
by, and simultaneously contributes to, an emerging body of evidence linking mediators of cell energy	
<u>compromise to increased risk of hypertension – and to other metabolic syndrome factors</u> ⁵⁸ .identified,	
which merits further evaluation, It is also observed, to our knowledge for the first time, that factors	Formatted
promoting cell death – including factors that contribute to (or reflect) cell energy compromise or	
oxidative stress – may be expected to dispose to venous thromboembolism, explaining many observed risk	
factors ²³ , and predicting numerous additional ones ⁵⁸ ,	Formatted
	Formatted
Contributorship statements MC and DC conscious the idea for the state MC conscious to the date	

Contributorship statement: MC and BG conceived the idea for the study. MC acquired and provided the data.
 JD managed data, developed <u>the</u> data dictionary, and contributed to analysis review. VC, BG, and SK conducted statistical analyses. <u>The manuscript</u> was drafted by BG and VC. All authors contributed to revision to the manuscript for intellectual content and approved the final manuscript.

Data sharing: There are no additional data available.

1		
2		
3		
4		
5		
6		
7	15	
8		
9		
10	References	
11	1. da Silva A, Widmer LK, Martin H, Mall T, Glaus L, Schneider M. Varicose veins and chronic venous	
12	insufficiency. Vasa 1974;3(2):118-25.	
	2. Lafuma A, Fagnani F, Peltier-Pujol F, Rauss A. [Venous disease in France: an unrecognized public health	
13	problem]. J Mal Vasc 1994;19(3):185-9.	
14	3. Daver J. Socio-economic data on venous disease. <i>Int Angiol</i> 1984;3:84-6.	
15	4. Goldhaber SZ. Venous thromboembolism: epidemiology and magnitude of the problem. <i>Best Pract Res Clin</i>	
16	Haematol 2012;25(3):235-42.	
17	5. Stein PD, Matta F. Epidemiology and incidence: the scope of the problem and risk factors for development of	
18		
19	venous thromboembolism. <i>Clin Chest Med</i> 2010;31(4):611-28.	
	6. Kurz X, Kahn SR, Abenhaim L, Clement D, Norgren L, Baccaglini U, et al. Chronic venous disorders of the	
20	leg: epidemiology, outcomes, diagnosis and management. Summary of an evidence-based report of the	
21	VEINES task force. Venous Insufficiency Epidemiologic and Economic Studies. Int Angiol	
22	1999;18(2):83-102.	
23	7. Task Force on Chronic Venous Disorders of the Leg. Chapter 6: economic outcomes. The management of	
24	chronic venous disorders of the leg: an evidence-based report of an international task force. <i>Phlebology</i>	
25	1999;14(suppl 1):35–42.	
26	8. Vekeman F, LaMori JC, Laliberte F, Nutescu E, Duh MS, Bookhart BK, et al. Risks and cost burden of	
27	venous thromboembolism and bleeding for patients undergoing total hip or knee replacement in a	
	managed-care population. J Med Econ 2011;14(3):324-34.	
28	9. Baser O, Supina D, Sengupta N, Wang L, Kwong L. Clinical and cost outcomes of venous thromboembolism	
29	in Medicare patients undergoing total hip replacement or total knee replacement surgery. Curr Med Res	
30	<i>Opin</i> 2011;27(2):423-9.	
31	10. Kaplan RM, Criqui MH, Denenberg JO, Bergan J, Fronek A. Quality of life in patients with chronic venous	
32	disease: San Diego population study. J Vasc Surg 2003;37(5):1047-53.	
33	11. Criqui MH, Jamosmos M, Fronek A, Denenberg JO, Langer RD, Bergan J, et al. Chronic venous disease in	
34	an ethnically diverse population: the San Diego Population Study. Am J Epidemiol 2003;158(5):448-56.	
35	12. Ghaye B, Willems V, Nchimi A, Kouokam L, Noukoua C, De Maertelaer V, et al. Relationship between the	
36	extent of deep venous thrombosis and the extent of acute pulmonary embolism as assessed by CT	
	angiography. Br J Radiol 2009;82(975):198-203.	
37	13. Heit JA. The epidemiology of venous thromboembolism in the community: implications for prevention and	
38	management. J Thromb Thrombolysis 2006;21(1):23-9.	
39	14. Marchiori A, Mosena L, Prandoni P. Superficial vein thrombosis: risk factors, diagnosis, and treatment.	
40	Semin Thromb Hemost 2006;32(7):737-43.	
41		
42	15. Decousus H, Bertoletti L, Frappe P, Becker F, Jaouhari AE, Mismetti P, et al. Recent findings in the	
43	epidemiology, diagnosis and treatment of superficial-vein thrombosis. <i>Thromb Res</i> 2011;127 Suppl	
43 44	3:S81-5.	
	16. Hirmerova J, Seidlerova J, Subrt I. Deep vein thrombosis and/or pulmonary embolism concurrent with	
45	superficial vein thrombosis of the legs: cross-sectional single center study of prevalence and risk factors.	
46	Int Angiol 2013;32(4):410-6.	
47	17. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol 2007;44(2):62-9.	
48	18. Sejersen HM, Nielsen HK, Thyssen JP, Husted SE. [Deep venous thrombosisepidemiology, diagnosis and	
49	treatment]. Ugeskr Laeger 2007;169(2):109-11.	
50	19. Rosendaal FR. Venous thrombosis: the role of genes, environment, and behavior. <i>Hematology Am Soc</i>	
51	Hematol Educ Program 2005:1-12.	
52	15	
53	15	
54		
55		
56		
57		
58		
59		
60		
50		

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1		
2		
3		
4		
5 6		
6 7		
7 8	16	
o 9		
9 10	20. Blondon M, Wiggins KL, McKnight B, Psaty BM, Rice KM, Heckbert SR, et al. The association of smoking	
11	with venous thrombosis in women. A population-based, case-control study. <i>Thromb Haemost</i>	
12	2013;109(5):891-6.	
13	21. Pomp ER, Rosendaal FR, Doggen CJ. Smoking increases the risk of venous thrombosis and acts	
14	synergistically with oral contraceptive use. Am J Hematol 2008;83(2):97-102.	
15	22. Worralurt C, Taneepanichskul S. Risk factors of venous thromboembolism (VTE) in Thai reproductive aged	
16	female: King Chulalongkorn Memorial Hospital experience. J Med Assoc Thai 2005;88(11):1502-5.	
17	23. Hansson PO, Eriksson H, Welin L, Svardsudd K, Wilhelmsen L. Smoking and abdominal obesity: risk factors for venous thromboembolism among middle-aged men: "the study of men born in 1913". <i>Arch</i>	
18	Intern Med 1999;159(16):1886-90.	
19	24. Severinsen MT, Kristensen SR, Johnsen SP, Dethlefsen C, Tjonneland A, Overvad K. Smoking and venous	
20	thromboembolism: a Danish follow-up study. J Thromb Haemost 2009;7(8):1297-303.	
21	25. Tan KK, Koh WP, Chao AK. Risk factors and presentation of deep venous thrombosis among Asian	
22	patients: a hospital-based case-control study in Singapore. Ann Vasc Surg 2007;21(4):490-5.	
23	26. Milio G, Siragusa S, Mina C, Amato C, Corrado E, Grimaudo S, et al. Superficial venous thrombosis:	
24	prevalence of common genetic risk factors and their role on spreading to deep veins. <i>Thromb Res</i> 2008;123(2):194.9	
25	2008;123(2):194-9. 27. Smith NL, Wiggins KL, Reiner AP, Lange LA, Cushman M, Heckbert SR, et al. Replication of findings on	
26	the association of genetic variation in 24 hemostasis genes and risk of incident venous thrombosis. J	
27	Thromb Haemost 2009;7(10):1743-6.	
28	28. Smith NL, Hindorff LA, Heckbert SR, Lemaitre RN, Marciante KD, Rice K, et al. Association of genetic	
29	variations with nonfatal venous thrombosis in postmenopausal women. JAMA 2007;297(5):489-98.	
30 21	29. Gellekink H, Muntjewerff JW, Vermeulen SH, Hermus AR, Blom HJ, den Heijer M. Catechol-O-	
31 32	methyltransferase genotype is associated with plasma total homocysteine levels and may increase venous	
32 33	thrombosis risk. <i>Thromb Haemost</i> 2007;98(6):1226-31.	
33 34	30. Ahmad-Nejad P, Dempfle CE, Weiss C, Bugert P, Borggrefe M, Neumaier M. The G534E-polymorphism of the gene encoding the factor VII-activating protease is a risk factor for venous thrombosis and recurrent	
34 35	events. <i>Thromb Res</i> 2012;130(3):441-4.	
36	31. Healy B, Levin E, Perrin K, Weatherall M, Beasley R. Prolonged work- and computer-related seated	
37	immobility and risk of venous thromboembolism. JR Soc Med 2010;103(11):447-54.	
38	32. West J, Perrin K, Aldington S, Weatherall M, Beasley R. A case-control study of seated immobility at work	
39	as a risk factor for venous thromboembolism. <i>J R Soc Med</i> 2008;101(5):237-43.	
40	33. Aldington S, Pritchard A, Perrin K, James K, Wijesinghe M, Beasley R. Prolonged seated immobility at	
41	work is a common risk factor for venous thromboembolism leading to hospital admission. <i>Intern Med J</i> 2008;38(2):133-5.	
42	34. Gaber TA. Significant reduction of the risk of venous thromboembolism in all long-term immobile patients	
43	a few months after the onset of immobility. <i>Med Hypotheses</i> 2005;64(6):1173-6.	
44	35. Beasley R, Raymond N, Hill S, Nowitz M, Hughes R. eThrombosis: the 21st century variant of venous	
45	thromboembolism associated with immobility. <i>Eur Respir J</i> 2003;21(2):374-6.	
46	36. Farzamnia H, Rabiei K, Sadeghi M, Roghani F. The predictive factors of recurrent deep vein thrombosis.	
47	ARYA Atheroscler 2011;7(3):123-8. 37. Nakamura M, Sakuma M, Yamada N, Tanabe N, Nakanishi N, Miyahara Y, et al. Risk factors of acute	
48	<i>51.</i> Nakamura M, Sakuma M, Yamada N, Tanabe N, Nakanishi N, Miyanara Y, et al. Risk factors of acute pulmonary thromboembolism in Japanese patients hospitalized for medical illness: results of a	
49 50	multicenter registry in the Japanese society of pulmonary embolism research. J Thromb Thrombolysis	
50	2006;21(2):131-5.	
51 52		
52 53	16	
53 54		
54 55		
ວວ 56		
57		
58		
59		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

38. Medda P, Fornaro M, Fratta S, Callari A, Manzo V, Ciaponi B, et al. A case of deep venous thrombosis following protracted catatonic immobility recovered with electroconvulsive therapy: the relevance for an early intervention. <i>Gen Hosp Psychiatry</i> 2012;34(2):209 e5-7.	
39. Delk EW, Meilman PW. Alcohol use among college students in Scotland compared with norms from the United States. <i>J Am Coll Health</i> 1996;44(6):274-81.	
 40. Kypri K, Paschall MJ, Langley J, Baxter J, Cashell-Smith M, Bourdeau B. Drinking and alcohol-related harm among New Zealand university students: findings from a national Web-based survey. <i>Alcohol Clin Exp Res</i> 2009;33(2):307-14. 	
41. Read JP, Wardell JD, Bachrach RL. Drinking consequence types in the first college semester differentially predict drinking the following year. <i>Addict Behav</i> 2013;38(1):1464-71.	
 42. Hansen-Krone IJ, Braekkan SK, Enga KF, Wilsgaard T, Hansen JB. Alcohol consumption, types of alcoholic beverages and risk of venous thromboembolism - the Tromso Study. <i>Thromb Haemost</i> 2011;106(2):272-8. 	
43. Mesaros C, Arora JS, Wholer A, Vachani A, Blair IA. 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco- smoking-induced oxidative stress. <i>Free Radic Biol Med</i> 2012;53(3):610-7.	
44. Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette	
 smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. <i>Am J Physiol Heart Circ Physiol</i> 2011;300(1):H388-96. 45. Grassi D, Desideri G, Ferri L, Aggio A, Tiberti S, Ferri C. Oxidative stress and endothelial dysfunction: say 	
NO to cigarette smoking! Curr Pharm Des 2010;16(23):2539-50.	
46. Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH	
 (pHm). Brain Res Bull 2004;62(6):497-504. 47. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced origination of the second neuropeal initial for the second neuropeal	
oxidative stress and neuronal injury. <i>Free Radic Biol Med</i> 2008;45(11):1542-50. 48. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. <i>Life Sci</i> 2007;81(3):177-87.	
 49. Albano E. Alcohol, oxidative stress and free radical damage. <i>Proc Nutr Soc</i> 2006;65(3):278-90. 50. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. <i>Alcohol Res Health</i> 2003;27(4):277-84. 	
51. Reddy VD, Padmavathi P, Kavitha G, Saradamma B, Varadacharyulu N. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. <i>Mol Cell Biochem</i>	
2013;375(1-2):39-47.	
52. Almansa I, Fernandez A, Garcia-Ruiz C, Muriach M, Barcia JM, Miranda M, et al. Brain mitochondrial alterations after chronic alcohol consumption. <i>J Physiol Biochem</i> 2009;65(3):305-12.	
53. Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. <i>Free Radic Biol Med</i> 2008;44(7):1259-72.	
54. Cederbaum AI. Effects of alcohol on hepatic mitochondrial function and DNA. <i>Gastroenterology</i> 1999;117(1):265-9.	
 55. Gordon ER. Alcohol-induced mitochondrial changes in the liver. <i>Recent Dev Alcohol</i> 1984;2:143-58. 56. Reutelingsperger CP, van Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. <i>Cell Mol Life Sci</i> 1997;53(6):527-32. 	
 Christiaens L. [Idiopathic venous thromboembolic disease. risk factors for recurrence in 2006]. Arch Mal Coeur Vaiss 2007;100(2):133-8. 	
17	
17	
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	html
. , , , , , , , , , , , , , , , , , , ,	

Page 50 of 65

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1		
2		
3		
4		
5		
6		
7		
8	18	
9		
10	58. Golomb BA. The starving cell: Metabolic syndrome as an adaptive process. Nature Precedings	
	2011;http://precedings.nature.com/documents/6535/version/1.	
11	59. McCabe C, Deboeck G, Harvey I, Rose RA, Gopalan D, Screaton N, et al. Inefficient exercise gas exchange	
12	identifies pulmonary hypertension in chronic thromboembolic obstruction following pulmonary	
13	embolism. <i>Thromb Res</i> 2013.	
14	60. Barros A, Baptista R, Nogueira A, Jorge E, Teixeira R, Castro G, et al. Predictors of pulmonary	
15	hypertension after intermediate-to-high risk pulmonary embolism. <i>Rev Port Cardiol</i> 2013.	
16	61. Morris TA. Why acute pulmonary embolism becomes chronic thromboembolic pulmonary hypertension:	
17	clinical and genetic insights. Curr Opin Pulm Med 2013;19(5):422-9.	
18	62. Klok FA, Mos IC, van Kralingen KW, Vahl JE, Huisman MV. Chronic pulmonary embolism and pulmonary	
19	hypertension. Semin Respir Crit Care Med 2012;33(2):199-204.	
20	63. Berghaus TM, Barac M, von Scheidt W, Schwaiblmair M. Echocardiographic evaluation for pulmonary	
21	hypertension after recurrent pulmonary embolism. Thromb Res 2011;128(6):e144-7.	
22	64. Poli D, Miniati M. The incidence of recurrent venous thromboembolism and chronic thromboembolic	
23	pulmonary hypertension following a first episode of pulmonary embolism. Curr Opin Pulm Med	
24	2011;17(5):392-7.	
25	65. Sugimura K, Sakuma M, Shirato K. Potential risk factors and incidence of pulmonary thromboembolism in	
26	Japan: results from an overview of mailed questionnaires and matched case-control study. Circ J	
27	2006;70(5):542-7.	
28	66. Coy TV, Dimsdale JE, Ancoli-Israel S, Clausen JL. The role of sleep-disordered breathing in essential	
29	hypertension. <i>Chest</i> 1996;109(4):890-5.	
30	67. Hargens TA, Nickols-Richardson SM, Gregg JM, Zedalis D, Herbert WG. Hypertension research in sleep	
31	apnea. J Clin Hypertens (Greenwich) 2006;8(12):873-8.	
32	68. Lin QC, Deng CS, Ding HB, Chen H, Chen GP, Huang JC, et al. [Effects of long term nasal continuous	
33	positive airway pressure on the blood pressure of patients with obstructive sleep apnea hypopnea supdramal. <i>Theorebug lie Un Vi Ta Thi</i> 2012;25(0):687,00	
	syndrome]. <i>Zhonghua Jie He He Hu Xi Za Zhi</i> 2012;35(9):687-90. 69. He QY, Feng J, Zhang XL, Liang ZA, Huang SG, Kang J, et al. Elevated nocturnal and morning blood	
34	pressure in patients with obstructive sleep apnea syndrome. <i>Chin Med J (Engl)</i> 2012;125(10):1740-6.	
35	70. Linnemann B, Zgouras D, Schindewolf M, Schwonberg J, Jarosch-Preusche M, Lindhoff-Last E. Impact of	
36	sex and traditional cardiovascular risk factors on the risk of recurrent venous thromboembolism: results	
37	from the German MAISTHRO Registry. <i>Blood Coagul Fibrinolysis</i> 2008;19(2):159-65.	
38	71. Wu EC, Barba CA. Current practices in the prophylaxis of venous thromboembolism in bariatric surgery.	
39	Obes Surg 2000;10(1):7-13; discussion 14.	
40	72. Greenbaum JN, Bornstein LJ, Lyman S, Alexiades MM, Westrich GH. The validity of self-report as a	
41	technique for measuring short-term complications after total hip arthroplasty in a joint replacement	
42	registry. J Arthroplasty 2012;27(7):1310-5.	
43	73. Ahlbrecht J, Dickmann B, Ay C, Dunkler D, Thaler J, Schmidinger M, et al. Tumor grade is associated with	
44	venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis	
45	Study. J Clin Oncol 2012;30(31):3870-5.	
46	74. Lauw MN, van Doormaal FF, Middeldorp S, Buller HR. Cancer and venous thrombosis: current	
47	comprehensions and future perspectives. Semin Thromb Hemost 2013;39(5):507-14.	
48	75. Araujo A. [Cancer and deep venous thrombosis: the purpose of the CATCH clinical trial]. Acta Med Port	
49	2013;26(2):83-5.	
50	76. Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous	
51	thrombosis. <i>Blood</i> 2013;122(10):1712-23.	
52		
53	18	
54		
5 I E E		

- 58
- 59

1 2 3		
4 5		
6 7		
8	19	
9 10 11	Legends	
12	Table 1. Legend	
13 14	DBP – diastolic blood pressure; DVT – deep venous thrombosis; HDL – high-density lipoprotein cholesterol;	
15 16	HRT – postmenopausal hormone replacement therapy; PE – pulmonary embolism; SBP – systolic blood	
17 18	pressure; SD – standard deviation; SVT – superficial venous thrombosis.	
19 20	* P<0.05; ** P<0.01; *** P<0.001	
21 22	\dagger Ordinal rather than continuous: Ranked from 1 = Grade school or less to 9 = Doctoral Degree.	
23 24	‡ This correlated well with pack years, which showed a similar relationship to venous events; but variable	
25	transformations more suitably satisfied regression constraints for this variable, and the impact of this variable	
26 27	was more potent than that of pack years for deep events, the category of events for which it was predictive.	
28 29	§ Pack years was calculated by multiplying years smoked by the average number of cigarettes per day divided by	
30 31	20 (the average number of cigarettes in one pack). ¶ Rated relative to others your age, 1-5 with 5 being most active. $\int Only$ females were included in this portion of the analysis. ‡‡ Hypertension: SBP \geq 140 or DBP \geq 90. Table 2. Legand	
32 33	¶ Rated relative to others your age, 1-5 with 5 being most active.	
34 35	∫ Only females were included in this portion of the analysis.	
36	\ddagger Hypertension: SBP ≥ 140 or DBP ≥ 90.	
37 38		
39 40	Table 2. Legend	
41 42	DVT – deep venous thrombosis; PE – pulmonary embolism; SVT – superficial venous thrombosis.	
43 44	DVT – deep venous thrombosis; PE – pulmonary embolism; SVT – superficial venous thrombosis. Recall: Some variables had missing data; and some subjects had multiple types of events.	
45		
46 47	Table 3. Legend	
48 49	DBP – diastolic blood pressure; DVE – deep venous event; SBP – systolic blood pressure; OR – odds ratio.	
50 51	* Age variable was adjusted for sex only; and sex variable was adjusted for age only.	
52 53	19	
54 55		
56		
57 58		
59		
60		

BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

not to double-count the shared (collinear) contribution by the SBP and DBP values. Table 4. Legend DBP – diastolic blood pressure; DVE – deep venous event; DVT – deep venous thrombosis; OR – odds ratio; PE – pulmonary embolism; SBP – systolic blood pressure; SVT – superficial venous thrombosis. * Age variable was adjusted for sex only; and sex variable was adjusted for age only. [†] Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as not to double-count the shared (collinear) contribution by the SBP and DBP values. ‡ Although some variables lose significance in the fully adjusted model due to collinearity, variables which were of significance or borderline significance in unadjusted or age/sex adjusted model were added back to the final model. When Caucasian ethnicity and heavy smoking were included without one another in the final model, they resumed significance or borderline significance. § In the final model, either one of the blood pressure measures – SBP or DBP – could be included and remained statistically significant. (Only one of the two blood pressure variables was included because of collinearity.) || Female specific analysis. Excludes family history of first deep events (see comment for PE). The final femalespecific model included age and history immobilization, the sole other variables with P < 0.2 (neither < 0.1). Note: Caucasian ethnicity shows significant relationship to DVT if not adjusted for family history of DVE (OR=2.15, P=0.008). If both Caucasian ethnicity and family history of DVE are included, Caucasian ethnicity loses significance (OR 1.29, P=0.659) but family history of deep events retains significance (OR 3.17, *P*=0.026). Note: Age (OR=1.02, P=0.035) and Caucasian ethnicity (OR=1.97, P=0.015) show a significant relationship to combined deep events in the final model if family history of venous events is excluded.

† Instead of including both SBP and DBP, we used DBP and the residual of regression of SBP on DBP, so as

1 2	
3 4	
5	
6 7	
8	21
9 10 ¹ 11	Note: For combined DVT and/or PE oestrogen use for HRT was tested as a predictor in women but was not
12 ^s	significant. For oestrogen use duration (per 10 years) ORs (P -values) for age-adjusted and final models, were
14	0.532 (0.534) and 0.523 (0.611). For oestrogen use duration (per 10 years) among oestrogen users, ORs (P-
15 16	values) for age-adjusted and final models were 0.948 (0.955); and 0.767 (0.756). (0.756). In the latter case,
17 18	family history of first deep events was excluded from the final model or the oestrogen variable was dropped due
19 <mark>ŧ</mark> 20	to collinearity. Of note, the resulting modified final model (which included the oestrogen variable) dropped the
	tamily history of first deep events was excluded from the final model of the oestrogen variable was dropped due to collinearity. Of note, the resulting modified final model (which included the oestrogen variable) dropped the heavy smoking variable.
22	
23 24	
25	
26 27	
28	
29	
30	
31 32	
33	
34	
35 36	
30 37	
38	
39 40	
40 41	
42	
43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	21
54 55	
55 56	
57	
58 59	

Variables	No Event	SVT	DVT	PE
	N=2262	N=63	N=74	N=21
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Age	59.1 (11.4)	60.5 (10.7)	61.9 (11.7)*	61.5 (10.2)
Education [†]	5.78 (1.73)	5.11 (1.89)***	5.73 (1.67)	5.29 (1.79)
Highest number of drinks per day	2.70 (3.13)	2.24 (2.51)	3.32 (3.76)	3.06 (2.84)
Cigarettes/ day averaged over	6.99 (11.5)	7.73 (14.1)	12.0 (16.1)***	13.2 (14.9)*
ears totaled‡				
Pack years§	7.22 (14.9)	7.38 (18.7)	13.9 (22.3)***	16.5 (20.9)**
SBP (mmHg)	131 (20.3)	132 (22.4)	133 (20.9)	143.0 (21.0)**
DBP (mmHg)	76.8 (11.3)	76.6 (10.8)	78.2 (9.67)	82.5 (7.69)*
Total Cholesterol (mg/dl)	210 (41.3)	207 (38.4)	211 (43.2)	209.2 (42.3)
IDL (mg/dl)	54.5 (17.0)	51.4 (11.3)	50.9 (15.6)	49.9 (16.5)
ctivity Level¶	3.71 (1.16)	3.69 (1.19)	3.53 (1.22)	3.40 (1.27)
Number of times in a week	3.60 (2.51)	3.78 (2.66)	3.52 (2.53)	3.40 (2.54)
ngaging in ≥ 20 min of vigorous				
activity				
Longest period of immobility	11.0 (110)	5.38 (11.9)	17.8 (51.8)	31.4 (84.5)
days)				
Destrogen use duration for HRT	0.743 (3.73)	0.882 (3.04)	0.313 (1.60)	5.92 (13.9)***
among all females∫ (years)				

Table 1a. Summary of Demographic and Predictor Variables by Venous Event Status (continuous

1 2 3 4						
5 6 7 8 9						23
10 11 12 13	O estrogen use duration <i>am</i> oestrogen users for HRT] (9.82 (9.79) (years)	6.43 (5.97)	7.50 (3.54)	35.5 (3.54)≋≋≋ <u>÷÷</u>	
1 15 167 18 19 20 21 22 32 42 56 77 28 29 30 1 22 33 43 56 73 39 40 14 24 34 45 66 74 49 50 15 25 35 55 56 57						23
58 59 60						

Table 1b. Summary of Demographic and Predictor Variables by Venous Event Status (categorical
variables) :

	Variables	No Event (%)	SVT (%)	DVT (%)	PE (%)
Male		34.5	19.0**	35.1	42.9
Hypertension	n ^{‡‡}	35.9	28.6	32.4	42.9
Drinker (any	v alcohol)	93.4	87.3	95.9	90.5
Maximum a	lcohol consumption ≥7	7.42	7.31	14.3*	16.7
drinks per da	ay				
Drinkers wh	o did not specify	8.49	22.6***	11.1	10.5
maximum le	vel of alcohol				
consumption	1				
Current smo	ker	6.02	3.17	9.46	9.52
Heavy smok	er (≥40 cigarettes per day	3.85	3.17	14.9***	14.3*
during time	smoked)				
Ethnicity	Caucasian	58.9	65.1	78.4***	81.0*
	Hispanic	14.7	20.6	9.46	4.76
	African American	13.9	4.76*	8.11*	9.52
	Asian	12.5	9.52	4.05	4.76
Occupation	Professional	26.4	21.1	26.1	20.0
	Technical,	40.9	38.6	40.6	45.0
	Administrative, or				
	Managerial				
	Clerical and Skilled	26.8	29.8	30.4	25.0

Semi-skilled	3.85	8.77	2.90	5.00
Laborer	2.07	1.75	0.00	5.00
Family history of venous diseases	57.2	76.2**	71.6*	57.1
(Venous condition in any first				
<u>degree relative)</u>				
Oral contraceptive use (ever; female)	58.1	56.0	54.4	58.3

Table 2. Venous Events in Studied Population

			If	
Venous Condition	All Subjects:	SVT:	DVT:	PE:
	N (%)	N (%)	N (%)	N (%)
SVT	63 (2.68)	63 (100)	5 (22.7)	2 (13.3)
DVT	74 (3.09)	5 (8.33)	74 (100)	11 (52.4)
РЕ	21 (0.87)	2 (3.17)	11 (14.9)	21 (100)
Any deep event (DVT or PE)	84 (3.50)	5 (8.33)	74 (100)	21 (100)
Any event (SVT or DVT or PE)	142 (5.91)	63 (100)	74 (100)	21 (100)

	Age-Sex	Fully Adjusted	Final Model
	Adjusted*	OR (P-value)	OR (P -value)
	OR (P -value)		
Age	1.01 (0.306)	1.03 (0.224)	-
Male sex	0.437 (0.011)	0.275 (0.042)	0.470 (0.028)
African American ethnicity	0.290 (0.038)	0.378 (0.204)	0.305 (0.047)
Education	0.821 (0.015)	0.805 (0.079)	0.801 (0.007)
Activity Level	0.971 (0.796)	0.931 (0.686)	-
Heavy Smoking (≥40 cigarettes	0.913 (0.901)	0.977 (0.983)	-
per day during time smoked)			
DBP (per 20mmHg)	1.03 (0.894)	2.14 (0.227)	O.
SBP (per 20mmHg)	1.01 (0.942)	- [†]	
Drinkers who did not specify	4.37 (<0.001)	4.65 (0.011)	3.33 (<0.001)
their maximum alcohol			
consumption per day			
History of immobility (>1day)	1.55 (0.091)	2.53 (0.015)	1.71 (0.043)
Family history of first-degree	1.54 (0.301)	1.55 (0.520)	-
relatives with superficial			
venous events			
Family history of first-degree	2.30 (0.002)	1.25 (0.706)	2.02 (0.009)
relatives with varicose veins			
Family history of first-degree	1.74 (0.177)	1.25 (0.637)	-

1 2 3 4					BMJ Open:
4 5 7 8 9				28	first published
10 11	relatives with DVE				l as 10
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 5\\ 16\\ 17\\ 18\\ 9\\ 0\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$				28	BMJ Open: first published as 10.1136/bmjopen-2013-003208 on 21 March 2014. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.
56 57					by co
58 59 60					opyrigh
00	For	 ly http://hmia	non hmi oom/o		.+

Page 61 of 65

 BMJ Open

		DVT			PE		D	VT and PI	E	
		OR			OR		OR			
		(P -value)			(P -value)			(P -value)		
	Age-Sex	Fully	Final	Age-Sex	Fully	Final	Age-Sex	Fully	Final	
	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model	Adjusted*	Adjusted	Model	
	1.02	1.05		1.02	0.977		1.03	1.04		
Age	(0.047)	(0.162)	6	(0.404)	(0.621)	-	(0.004)	(0.202)	-	
	1.01	0.479		1.41	0.778		1.15	0.773		
Male sex	(0.955)	(0.312)	-	(0.435)	(0.795)	-	(0.548)	(0.662)	-	
	2.35	0.754		2.68	5.77	2.58	2.26	0.936		
Caucasian ethnicity	(0.003)	(0.674)	-	(0.083)	(0.149)	(0.096)‡	0.003)	(0.913)	-	
	0.827	0.819		0.771	0.986		0.846	0.909		
Activity Level	(0.059)	(0.418)	-	(0.163)	(0.971)	-	(0.081)	(0.672)	-	
Heavy Smoking (≥40	4.19	10.1	16.6	3.50	5.21	2.73	3.38	6.92	12.5	
cigarettes per day during time smoked)	(<0.001)	(0.007)	(<0.001)	(0.052)	(0.191)	(0.121) [‡]	(<0.001)	(0.013)	(<0.001	
	1.28	0.442		2.06	3.20	2.29	1.39	0.764		
DBP (per 20mmHg)	(0.227)	(0.445)	-	(0.014)	(0.419)	(0.010) §	(0.077)	(0.766)	-	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	0.996	_ †		1.59	_ †	e	1.05	_ †	
SBP (per 20mmHg)	(0.975)	_ '	-	(0.012)	- '	- §	(0.643)	- '	-
Drinkers who did not									
specify their maximum	1.74	1.46		1.63	2.70		1.61	1.09	
alcohol consumption per	(0.170)	(0.739)	-	(0.534)	(0.447)	-	(0.235)	(0.939)	-
day									
History of immobility	2.17	5.32	4.30	4.44	4.21	4.07	2.23	3.80	3.48
(>1day)	(0.001)	(0.008)	(0.006)	(0.002)	(0.114)	(0.004)	(<0.001)	(0.013)	(0.008)
Family history of first-		0.710		1.51	0.720		2.52	0.626	
degree relatives with	3.32	0.719	-	1.51	0.730	-	2.52	(0.449)	-
superficial venous events	(0.024)	(0.643)		(0.600)	(0.754)	16	(0.036)		
Family history of first-	4.41	3.51	3.28	0.855	0.431		3.42	2.85	2.49
degree relatives with DVE	(0.003)	(0.066)	(0.020)	(0.889)	(0.491)	-	(0.010)	(0.100)	(0.057)
Oestrogen use duration for				2.73	3.73	2.63			
HRT∥ (per 10 years)	-	-	-	(0.000)	(0.000)	(0.001)			
Oestrogen use duration	-	-	-	-	-	-	4.67	5.22	4.74

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3		
4		
5		
6 7 8		
7		
0		
0		
9		
10		
11		
12		
12		
13		
14		
15		
16		
17		
10		
10		
19		
20		
16 17 18 19 20 21		
22		
23		
22 23 24		
24		
25		
26		
27		
28		
29		
20		
30		
31		
32		
33		
34		
35		
26		
36 37		
37		
38		
39		
40		
41		
41		
43		
44		
45		
46		
47		
48		
10		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	3
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	3
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	4
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(d) If applicable, explain how loss to follow-up was addressed	5
		(e) Describe any sensitivity analyses	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	6
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) Summarise follow-up time (eg, average and total amount)	6
Outcome data	15*	Report numbers of outcome events or summary measures over time	6
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	6-7
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			8-10
Key results	18	Summarise key results with reference to study objectives	8-9
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	9
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	9-10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	1
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml