

Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial Fibrillation Recurrence: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004418
Article Type:	Research
Date Submitted by the Author:	07-Nov-2013
Complete List of Authors:	Yo, Chia-Hung; Far Eastern Memorial Hospital, Department of Emergency Medicine Lee, Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation and Physical Medicine Chang, Shy-Shin; Chang Gung Memorial Hospital, Department of Family Medicine Lee, Chien-Hung; Medical Wisdom Consultants, Lee, Chien-Chang; National Taiwan University Hospital Yunlin Branch, Department of Emergency Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Adult cardiology < CARDIOLOGY, Pacing & electrophysiology < CARDIOLOGY, Hypertension < CARDIOLOGY, C - reactive protein, cardioversion, meta-analysis

SCHOLARONE[™] Manuscripts

Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial Fibrillation Recurrence: a systematic review and meta-analysis

¹Chia-Hung Yo MD, ²Si-Huei Lee MD ^{3,4}Shy-Shin Chang MD, ⁵Matthew Chien-Hung Lee PhD, JD, ^{4,5}Chien-Chang Lee MD, MSc

¹Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.

²Department of Rehabilitation and Physical Medicine, Taipei Veteran

General Hospital, Taipei, Taiwan

³Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

⁴Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

University, Taoyuan, Taiwan.

⁵Medical Wisdom Consultants, Houston, USA

⁴Department of Epidemiology, Harvard School of Public Health, Boston, USA.

⁵Department of Emergency Medicine, National Taiwan University Hospital Yunlin

Branch, Douliou, Taiwan

Address correspondence to

Chien-Chang Lee MD, MSc

Email: cclee100@gmail.com

Postal Address: No 579 Sec 2 Yunlin Road, Douliou, Yunlin County 640, Taiwan

Telephone: +886-5-532-3911 ext. 2326

Fax: +886-2322-3150

Word count: 2535

Conflict of interest: None declared

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Abstract

Objectives: We performed a systematic review and meta-analysis of studies on high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are predictive of atrial fibrillation (AF) recurrence after cardioversion.

Design: Systematic review and meta-analysis.

Data sources: PubMed, EMBASE, and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to April 2013.

Study eligibility criteria: This review selected observational studies in which the measurements of serum CRP were used to predict atrial fibrillation recurrence. An hs-CRP assay was defined as any c-reactive protein (CRP) test capable of measuring serum CRP to below 0.6 mg/dL.

Primary and secondary outcome measures: We summarized test performance characteristics with the use of forest plots, hierarchical summary receiver operating characteristic (HSROC) curves, and bivariate random effects models. Meta-regression analysis was performed to explore the source of heterogeneity.

Results: We included nine qualifying studies comprising a total of 347 patients with AF recurrence and 335 controls. A CRP level higher than the optimal cutoff point was an independent predictor of AF recurrence after cardioversion (summary adjusted odds ratio: 3.33; 95%CI: 2.10-5.28). The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% CI: 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cutoff point of 1.9 mg/l to predict long-term AF recurrence

1	
2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
22	
23	
24	
27	
25	
26	
25 26 27	
28	
27 28 29	
29	
30	
31	
32	
32 33 34	
24	
34	
35 36 37	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
23	
54	
55	
56	
57	
57	
58	
59	

60

(77% sensitivity, 65% specificity), and 3 mg/l to predict short-term AF recurrence (73% sensitivity, 71% specificity).

Conclusions: High-sensitivity CRP assays are moderately accurate in predicting AF recurrence after successful cardioversion. Different cutoffs should be applied to patients with short-term or long-term follow-up.

Strengths and limitations of this study

- This meta-analysis finding supports that measurement of CRP levels before cardioversion can aid in the prediction of AF recurrence.
- We reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy.
- •A bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies.

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

- •Results of sensitivity analysis did not show a significantly different overall predictive accuracy between long-term and short-term follow-up, however, a heterogeneity tended toward between-study variability.
- •Current summary estimates based on the one cutoff point may thus have under-evaluated the clinical usefulness of hs-CRP assays. An individual data meta-analysis would be needed to overcome the limitations of this aggregated data meta-analysis.

Keywords: atrial fibrillation, recurrence, cardioversion, C - reactive protein, meta-analysis

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Introduction

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, although the prevalence is highest among people of advanced age.^{1,2} AF poses a significant economic burden, with a 66% increase in hospital admissions over the past two decades. It is estimated that the number of patients affected by AF is likely to grow 2.5 fold by the year 2050.¹⁻³ In addition, AF may lead to debilitating complications such as ischemic stroke and heart failure. Although ventricular rate control is an acceptable treatment strategy in many patients, some patients may remain symptomatic despite adequate rate controls. For this group of patients, cardioversion may be the treatment of choice. Electrical cardioversion can restore sinus rhythm effectively in most patients and can act with antiarrhythmic drugs synergistically to enhance the cardioversion success rate.⁴ However, cardioversion is not the definite treatment. Approximately 50% of patients undergoing cardioversion usually present with recurrence of AF within three to six months of cardioversion despite ongoing antiarrhythmic treatment.⁵ Left ventricular dysfunction, left atrial enlargement, arrhythmia duration, and history of hypertension are major risk factors for AF recurrence.⁶ However, recent studies have indicated that inflammation, necrosis, and fibrosis play roles in the structural remodeling process of the atria, contributing to the perpetuation or recurrence of atrial fibrillation.

C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response to proinflammatory cytokines, notably interluekin-6, and other endogenous signals of innate immunity or tissue damage. CRP has recently been shown to be associated with cardiovascular risk and AF recurrence. A previous meta-analysis revealed that CRP is elevated in patients with AF.⁷ However, 5 of the 6 studies included in that analysis used traditional automated immunonephelometric assays to

BMJ Open

measure CRP. Unfortunately, those assays are insufficiently sensitive for measuring the low level of inflammation associated with AF. A newer enzyme immunoassay, namely high-sensitivity CRP (hs-CRP), is capable of measuring serum CRP below 0.6 mg/dL and may further enhance the predictability of AF recurrence.⁸ Since 2006, several studies evaluating the accuracy of hs-CRP in predicting AF recurrence have been published,⁹⁻¹⁹ warranting a systemic and quantitative summary of current evidence on the accuracy of CRP in predicting AF recurrence after cardioversion. Methods Identification of Studies

General bibliographic databases (MEDLINE and EMBASE) were searched from inception to April 2013. The medical subject heading (MeSH) and text words for the term C -reactive protein were combined with the MeSH term "diagnosis of atrial fibrillation". The search was limited to human studies with no language restrictions. In addition to the electronic search, reference lists in all known reviews and primary studies were checked manually.

Selection Criteria

This review focused on observational studies in which the measurements of serum CRP were used to predict atrial fibrillation recurrence. The population of interest comprised patients with paroxysmal or persistent AF who underwent electric cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was defined as AF documented by ECG at any time after the cardioversion during the follow-up period. Generally, patients were instructed to return to the clinic if the symptoms such as palpitations, shortness of breath, or chest discomfort developed after cardioversion. We included studies using a cohort design or case-control design

with appropriate controls. Two reviewers independently assessed eligible articles for inclusion. Disagreements were initially resolved by consensus and using arbitration by a third reviewer if consensus could not be reached by the two reviewers. We extracted data from the included studies. Data collected include study design, participants, country, period of recruitment, hs-CRP assay, cutoff-points, length of follow-up period, and recurrence of AF. One reviewer extracted the data and a second reviewer independently verified the correctness of the extracted data.

Quality Assessment

We assessed the methodological quality of the selected studies using a well-validated tool for assessment of quality of diagnostic accuracy studies (Quality Assessment of Diagnostic Accuracy Studies, QUADAS).²⁰ The QUADAS instrument scrutinizes characteristics of study designs, population, index tests, and reference standards that may be associated with risk of bias. These features included the spectrum of patients, whether index tests and reference standards were evaluated and interpreted independently to avoid incorporation bias, and whether all patients underwent the same reference standards to avoid differential or partial verification bias.

Data Abstraction

One reviewer independently extracted the data and a second reviewer independently verified the data. Extracted data comprised the following: overall study characteristics (including the first author, country, language, and date of publication); patient characteristics (including age range and pre-existing atrial fibrillation); quantitative data required for construction of a 2 x 2 table (including number of participants, sensitivity, specificity, and recurrence case number); information

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

regarding the hs-CRP assay (including brand name of the test kit, cutoff levels, and quantitative or semi-quantitative nature of the test); and study settings. In studies that reported multiple pairs of sensitivity and specificity data, we consistently used the data with the highest Youden index (sensitivity + specificity -1) and performed a sensitivity analysis at a later stage.

Quantitative Data Synthesis

We performed a meta-analysis of diagnostic test accuracy of CRP testing for the prediction of recurrent AF. When 2×2 tables contained 0 cells, we performed continuity correction by adding 0.5 to each cell. We calculated the pooled sensitivity and specificity, positive and negative likelihood ratios, and the diagnostic odds ratio of CRP, along with the respective 95% confidence intervals (CIs), using a bivariate meta-analysis model.²¹ Likelihood ratios were then translated to post-test probability by use of Fagan's plot. We constructed a hierarchical summary receiver operating characteristic (HSROC) curve that plots sensitivity versus specificity and calculated the area under the curve (AUROC).²² We evaluated the degree of between-study heterogeneity by using the I² test.²³ To explore the clinical sources of heterogeneity, we defined the potential explanatory variables *a priori* and performed subgroup analysis to see if the accuracy estimates changed significantly across various subgroups. The presence and the effect of publication bias were examined using a combination of the Egger tests.²⁴ Statistical analyses were conducted using the statistical package STATA (Version 11.0, Stata Corp, College Station, TX), notably with the user-written "midas" and "metandi" programs. All statistical tests were two-sided and statistical significance was defined as a P value less than .05.

Search Results and Study Characteristics

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The flow of inclusion and exclusion is summarized in Figure 1. Using our search criteria, we identified 784 studies, of which 352 were from PubMed and 432 were from EMBASE. A total of 752 citations were excluded based on pre-defined criteria. No additional citations were identified from the reference lists. A total of 32 articles were retrieved for full-text review, and 23 were excluded due to various reasons detailed in Figure 1. A total of 9 studies that evaluated the accuracy of hs-CRP tests in predicting AF recurrence after cardioversion were finally included in the meta-analysis. The 9 studies included a total of 682 patients with AF after successful cardioversion, of which 347 (50.9%) developed recurrence.

Characteristics of included studies

Table 1 lists the study and population characteristics of the 9 patient populations. The mean age of patients in the included studies ranged from 55.1 years to 67.9 years and the mean follow-up period ranged from 30 days to 1 year. Seven studies included patients with persistent AF, while 2 studies included patients with paroxysmal AF. Seven studies used electric shock, one used circumferential pulmonary vein isolation, and the other used intravenous amiodarone as the primary method for cardioversion. A total of seven studies provided multivariate (adjusted) odds ratios to evaluate the independent predictive value of CRP levels. These studies generally adjusted for potential predictors of AF recurrence such as age, sex, use of anti-arrhythmic agents, and heart structural and functional parameters. All studies showed that CRP was a significant independent predictor of AF recurrence. Associated adjusted ratios and adjusted variables are summarized in table 1.

Quality assessment

Results of the quality assessment of studies of diagnostic accuracy are summarized

BMJ Open

in figure 2. All studies were prospective and enrolled consecutive outpatients with
AF after cardioversion. Three studies had a short follow-up period (i.e. < X years).
Although most of the studies did not indicate whether physicians were blinded to the
index tests when diagnosing AF recurrence, the determination of AF recurrence was
not affected by the knowledge of hs-CRP test results and risk of incorporation bias
was minimal. None of the studies reported the undetermined results or withdrawals.

Diagnostic accuracy indices

Sensitivity, specificity, and diagnostic odds ratio

The estimated sensitivity and specificity were relatively consistent across studies $(I^2=14.5\%)$. Table 2 shows the results of individual and combined sensitivity estimates for the tests. The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% confidence interval 63% to 78%) and 72.0% (61% to 81%), respectively. The pooled positive likelihood ratio was 2.57 and the negative likelihood ratio was 0.4, which can then be translated into a post-test probability of 73% for a positive hs-CRP test result and a post-test probability of 29% for a negative hs-CRP test result (Figure 2). The area under the ROC curve showed an acceptable overall accuracy (0.77, Figure 3). Figure 4 shows the forest plot of the ORs.

Subgroup analysis and meta-regression

In view of the potential influence of spectrum variability, we considered the duration of follow-up, mode of cardioversion, and type of AF in the study patients to be important. Hs-CRP test results generally had higher sensitivity and lower specificity in predicting long-term over short-term AF recurrence. Excluding two studies not using electric shock as the primary cardioversion method did not significantly alter

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

the predictive accuracy. Similarly, *focusing the study patients on persistent AF population* had similar results as compared with the main overall analysis. Exploratory meta-regression analysis did not find that any pre-specified covariate significantly changed the effect estimate.

Discussion

This meta-analysis shows that elevated CRP levels are independently predictive of AF recurrence in patients with persistent or paroxysmal AF who have undergone successful cardioversion. This finding supports that measurement of CRP levels before cardioversion can aid in the prediction of AF recurrence. Despite the modest pooled sensitivity and specificity, the rule-in diagnostic value was still high, given the high recurrence rate of AF observed in these included studies. A positive hs-CRP test result at baseline can predict a 73% chance of AF recurrence in the 6 to 12 months following cardioversion.

Previous studies have examined risk factors that predict AF recurrence. Traditional clinical risk factors for recurrence include history of multiple AF episodes, use of diuretic treatment, higher CHADS-2 (Congestive heart failure, history of Hypertension, Age≥75 years, Diabetes mellitus, and past history of Stroke or TIA doubled) index score, frequent use of amiodarone, calcium-channel blockers, and 1C drugs, and digitalis.^{25,26} Although each of these factors could predict AF recurrence with some accuracy, a quantitative combination of these predictors is not available, and the clinical utility of these variables remains questionable.

During the past decade, serum biomarkers have emerged as practical tools to help in the early identification of patients at high risk for various cardiac events. Elevation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of inflammatory markers is associated with sudden cardiac death in patients with heart failure or coronary artery disease, and onset of ventricular arrhythmia.²⁷⁻³⁰ Of note, there is abundant evidence that elevated serum levels of CRP are associated with the genesis and perpetuation of atrial fibrillation. CRP is the most commonly used clinical inflammatory biomarker. It is mainly produced in liver and by inflammatory cells in response to proinflammatory cytokine stimulation. Although the pathophysiology of AF remains elusive, there is pathophysiological evidence supporting the role of inflammation in the initiation, maintenance, and perpetuation of AF.³¹ Clinically, AF is frequently associated with local inflammatory diseases such as myocarditis or pericarditis, and systemic inflammatory status, such as post-operative state and severe sepsis. Histologically, structural remodeling of the atria manifested by loss of myocardium and increased atrial fibrosis is a hallmark of atrial fibrillation.³² Inflammatory cell infiltrates and oxidative damage have been demonstrated in atrial biopsy specimens from AF patients.³³ Activated inflammatory cells in conjunction with reactive oxygen species, cytokines, and growth factors, may ultimately lead to matrix deposition with atrial fibrosis. Recent evidence also shows that the uses of immune-modulating agents such as statins, angiotensin-converting enzyme inhibitors, or glucocorticoids modulate the course of AF.³⁴

In addition to CRP, b-type natriuretic peptide (BNP) has been shown to be an indicator of new onset AF and AF recurrence after successful cardioversion.^{29,30,35} BNP is also produced in response to atrial pressure and volume overload and there is evidence that BNP is secreted by the atrium in patients with AF. A previous meta-analysis showed that the standardized mean difference in plasma BNP level between patients with non-recurrence and patients with recurrence was -1.35 (95%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

confidence interval -2.17, -0.53).³⁶ Data on sensitivity and specificity in that study were not available. The comparative accuracy between BNP and hs-CRP in predicting AF recurrence thus requires further analysis.

There are both strengths and limitations in our study. Considering the limitation of sensitivity and specificity in clinical interpretation, we reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy. The LRs indicate how much a given CRP testing result increases or decreases the probability of recurrence of AF. Post-test probabilities can be derived from pre-test probabilities and LRs, which are an important clinical parameter for major clinical decision making. Second, we used a bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies. Third, we performed sensitivity analysis by restricting analysis within two broad categories of follow-up duration. Results of sensitivity analysis did not show a significantly different overall predicative accuracy between long-term and short-term follow-up. Our study also had limitations. Overall, as assessed by the heterogeneity of dOR, the included studies evaluating CRP levels and AF recurrence strongly tended toward between-study variability (heterogeneity). Potential sources of between-study variability included differences in incidence of AF recurrence, different threshold values of CRP concentration used, and different duration for follow-up. Another limitation was the strategy we used to determine the optimal cutoff value. Most studies determined an optimal cutoff value to maximize both sensitivity and specificity. Although a single cutoff value is straightforward in clinical interpretation, it may make a marker neither sensitive nor specific enough to rule out or rule in an outcome of interest. A two cut-off value strategy, with one using a lower cutoff value to optimize the sensitivity (rule-out value) and the other

BMJ Open

using a higher cutoff value to optimize the specificity (rule-in value), would make better use of the information that a biomarker with a continuous value could provide. Current summary estimates based on the one cutoff point may thus have under-evaluated the clinical usefulness of hs-CRP assays. To make the best use of the biomarker information by adopting a two cutoff point strategy or a multi-cutoff point risk classification strategy, an individual data meta-analysis would be needed to overcome the limitations of this aggregated data meta-analysis.

Conclusions

Baseline CRP levels before cardioversion can independently predict AF recurrence after successful cardioversion. Given the high recurrence rate reported in most series, the modest positive likelihood ratio for hs-CRP assays still has high positive predictive value. Future studies should focus on the evaluation of two or multiple cutoff points. In the interim, their inclusion in existing pre-cardioversion evaluation algorithms should be considered.

References

- 1. Fabbri G, Maggioni AP. A review of the epidemiological profile of patients with atrial fibrillation and heart failure. *Expert review of cardiovascular therapy*. Sep 2012;10(9):1133-1140.
- 2. Menezes AR, Lavie CJ, DiNicolantonio JJ, et al. Atrial fibrillation in the 21st century: a current understanding of risk factors and primary prevention strategies. *Mayo Clinic proceedings. Mayo Clinic.* Apr 2013;88(4):394-409.
- Anderson JL, Halperin JL, Albert NM, et al. Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology*. May 7 2013;61(18):1935-1944.
- 4. Manlucu J, Brancato S, Lane C, Kazemian P, Michaud GF. Contemporary approaches to persistent atrial fibrillation. *Expert review of cardiovascular therapy*. Nov 2012;10(11):1421-1435.
- 5. Disertori M, Lombardi F, Barlera S, et al. Clinical characteristics of patients with asymptomatic recurrences of atrial fibrillation in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. *American heart journal*. Aug 2011;162(2):382-389.
- 6. Letsas KP, Weber R, Burkle G, et al. Pre-ablative predictors of atrial fibrillation recurrence following pulmonary vein isolation: the potential role of inflammation. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* Feb 2009;11(2):158-163.
- 7. Liu T, Li L, Korantzopoulos P, Goudevenos JA, Li G. Meta-analysis of association between C-reactive protein and immediate success of electrical cardioversion in persistent atrial fibrillation. *The American journal of cardiology*. Jun 15 2008;101(12):1749-1752.
- Roberts WL, Sedrick R, Moulton L, Spencer A, Rifai N. Evaluation of four automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. *Clinical chemistry*. Apr 2000;46(4):461-468.
- **9.** Celebi OO, Celebi S, Canbay A, Ergun G, Aydogdu S, Diker E. The effect of sinus rhythm restoration on high-sensitivity C-reactive protein levels and their association with long-term atrial fibrillation recurrence after electrical cardioversion. *Cardiology*. 2011;118(3):168-174.

BMJ Open

10.	Barassi A, Pezzilli R, Morselli-Labate AM, et al. Serum amyloid a and
	C-reactive protein independently predict the recurrences of atrial fibrillation
	after cardioversion in patients with preserved left ventricular function. The
	Canadian journal of cardiology. Sep-Oct 2012;28(5):537-541.
11.	Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reactive
	protein to the first onset and the recurrence rate in lone atrial fibrillation. The
	American journal of cardiology. Mar 1 2006;97(5):659-661.
12.	Henningsen KM, Therkelsen SK, Bruunsgaard H, Krabbe KS, Pedersen BK,
	Svendsen JH. Prognostic impact of hs-CRP and IL-6 in patients with persistent
	atrial fibrillation treated with electrical cardioversion. Scandinavian journal of
	clinical and laboratory investigation. 2009;69(3):425-432.
13.	Liu J, Fang PH, Dibs S, Hou Y, Li XF, Zhang S. High-sensitivity C-reactive
	protein as a predictor of atrial fibrillation recurrence after primary
	circumferential pulmonary vein isolation. Pacing and clinical
	electrophysiology : PACE. Apr 2011;34(4):398-406.
14.	Lombardi F, Tundo F, Belletti S, Mantero A, Melzi D'eril G V. C-reactive
	protein but not atrial dysfunction predicts recurrences of atrial fibrillation after
	cardioversion in patients with preserved left ventricular function. Journal of
	cardiovascular medicine (Hagerstown, Md.). Jun 2008;9(6):581-588.
15.	Loricchio ML, Cianfrocca C, Pasceri V, et al. Relation of C-reactive protein to
	long-term risk of recurrence of atrial fibrillation after electrical cardioversion.
	The American journal of cardiology. May 15 2007;99(10):1421-1424.
16.	Wazni O, Martin DO, Marrouche NF, et al. C reactive protein concentration
	and recurrence of atrial fibrillation after electrical cardioversion. Heart
	(British Cardiac Society). Oct 2005;91(10):1303-1305.
17.	Rizos I, Rigopoulos AG, Kalogeropoulos AS, et al. Hypertension and
	paroxysmal atrial fibrillation: a novel predictive role of high sensitivity
	C-reactive protein in cardioversion and long-term recurrence. Journal of
	human hypertension. Jul 2010;24(7):447-457.
18.	Watanabe E, Arakawa T, Uchiyama T, Kodama I, Hishida H. High-sensitivity
	C-reactive protein is predictive of successful cardioversion for atrial
	fibrillation and maintenance of sinus rhythm after conversion. International
	<i>journal of cardiology</i> . Apr 14 2006;108(3):346-353.
19.	Zarauza J, Rodriguez Lera MJ, Farinas Alvarez C, et al. [Relationship between
	C-reactive protein level and early recurrence of atrial fibrillation after
	electrical cardioversion]. <i>Revista espanola de cardiologia</i> . Feb
•••	2006;59(2):125-129.
20.	Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of
	15

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

diagnostic test accuracy. *Annals of internal medicine*. Dec 16 2008;149(12):889-897.

- Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG, Stijnen T. Bivariate random effects meta-analysis of ROC curves. *Medical decision making : an international journal of the Society for Medical Decision Making*. Sep-Oct 2008;28(5):621-638.
- **22.** Harbord RM, Whiting P, Sterne JA, et al. An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. *Journal of clinical epidemiology*. Nov 2008;61(11):1095-1103.
- 23. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ (Clinical research ed.)*. Sep 6 2003;327(7414):557-560.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed.)*. Sep 13 1997;315(7109):629-634.
- 25. Komatsu T, Sato Y, Ozawa M, et al. Relationship between CHADS2 score and efficacy of antiarrhythmic drug therapy in patients with paroxysmal atrial fibrillation. *Circulation journal : official journal of the Japanese Circulation Society.* Feb 25 2013;77(3):639-645.
- 26. Letsas KP, Efremidis M, Giannopoulos G, et al. CHADS2 and CHA2DS2-VASc scores as predictors of left atrial ablation outcomes for paroxysmal atrial fibrillation. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* Jun 28 2013.
- Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. *Circulation*. Jun 4 2002;105(22):2595-2599.
- **28.** Parekh RS, Plantinga LC, Kao WH, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. *Kidney international*. Nov 2008;74(10):1335-1342.
- **29.** Streitner F, Kuschyk J, Veltmann C, et al. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. *Cytokine*. Sep 2009;47(3):166-172.
- Korngold EC, Januzzi JL, Jr., Gantzer ML, Moorthy MV, Cook NR, Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. *Circulation.* Jun 9 2009;119(22):2868-2876.
- **31.** Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation

60

BMJ Open

1		
2		
3		of atrial fibrillation. European heart journal. Oct 2005;26(20):2083-2092.
4		
5	32.	Allessie M, Ausma J, Schotten U. Electrical, contractile and structural
6		remodeling during atrial fibrillation. Cardiovascular research. May
7		2002;54(2):230-246.
8		
9	33.	Van Wagoner DR. Oxidative Stress and Inflammation in Atrial Fibrillation:
10		Role in Pathogenesis and Potential as a Therapeutic Target. Journal of
11		
12		Cardiovascular Pharmacology. 2008;52(4):306-313
13 14		310.1097/FJC.1090b1013e31817f39398.
14 15	34.	Moro C, Hernandez-Madrid A, Matia R. Non-antiarrhythmic drugs to prevent
16	0.11	
17		atrial fibrillation. American journal of cardiovascular drugs : drugs, devices,
18		and other interventions. 2010;10(3):165-173.
19	35.	den Uijl DW, Delgado V, Tops LF, et al. Natriuretic peptide levels predict
20	55.	
21		recurrence of atrial fibrillation after radiofrequency catheter ablation.
22		American heart journal. Jan 2011;161(1):197-203.
23	36.	Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and
24	30.	
25		recurrence of atrial fibrillation after successful electrical cardioversion: a
26		meta-analysis. The Journal of international medical research.
27		
28		2011;39(5):1618-1624.
29		2011;39(5):1618-1624.
30		
31 32		
32		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48 49		
49 50		
50		
52		
53		
54		
55		
56		

2	
2	
3	
4	
5	
6	
7	
ģ	
0	
9	
10	
2 3 4 5 6 7 8 9 10 11	
11 12 13 14 15 16 17 18 19	
13	
1/	
14	
10	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
27	
21	
28	
29	
30	
31	
32	
33	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
40	
47	
48	
<u>4</u> 9	

Table 1. Summary of the characteristics of the included studies

Author, year, country	Mean Age	Prevalence (N)	Follow-u p time	Cutoff (mg/l)	AF type	Cardiovers ion	Sensitivity, Specificity	Adjusted odd ratio	Adjusted variables
Wazni O, 2005,USA ¹	67.3	0.68(111)	76 days	3.1	Persistent AF	Electric	59 %, 69 %	2.0 (1.2-3.2)	Age, sex, duration of AF, coronary artery disease, hypertension, left ventricular hypertrophy, LAD
Zarauza J, 2006, Spain ²	62.7	0.43(37)	30 days	3.0	Persistent AF	Electric	81%, 67 %	3.7 (1.3-10.8)	Sex, age, time, size of left atrium, history of hypertension, pharmacological treatment
Watanabe E, 2006, Japan ³	64	0.76(84)	1 year	0.6	Persistent AF	Electric	75%, 90%	5.3 (2.5-11.5)	Sex, coronary artery disease, hypertension, smoking, diabetes, AF duration, LAD, and LVEF
Loricchio ML, 2007, Italy ⁴	67	0.52(102)	1 year	1.9	Persistent AF	Electric	87%, 37%	5.0 (1.8-14.3)	Age, gender, EF, LAD , hypertension, diabetes, pharmacological treatment
Lombardi F, 2008, Italy⁵	67	0.34(53)	21 days	3.6	Persistent AF	Electric	64%, 83%	1.6 (1.0-2.5)	Age, LAD, LAA, LAAEV, NTproBNP level, history of AF, AF duration or pharmacological treatment
Henningsen KMA, 2009, Denmark ⁶	65	0.68(56)	180 days	3.0	Persistent AF	Electric	60%, 83%	NA	ΝΑ
Rizos I, 2010,Greece ⁷	67.9	0.64(61)	1 year	2.3	Paroxysmal AF	Pharmacol ogic	72%, 68%	6.2 (2.2-17.6)	IL-6, age, gender, PAF history, LAD, EF, diabetes, smoking
Liu J, 2011,China ⁸	55.1	0.39(44)	1 year	1.9	Paroxysmal AF	Electric ablation	79%, 70 %	5.1 (2.1–12.1)	Age, gender, type of AF, duration of AF, LAD, LVEF, plasma hsCRP concentration.
Barassi A, 2012,Italy ⁹	66.9	0.33(57)	21 days	3.0	Persistent AF	Electric	74%, 84 %	NA	NA

Abbreviations: HsCRP: High-sensitivity C-reactive protein NA: Not applicable ACE: angiotensin-converting enzyme;

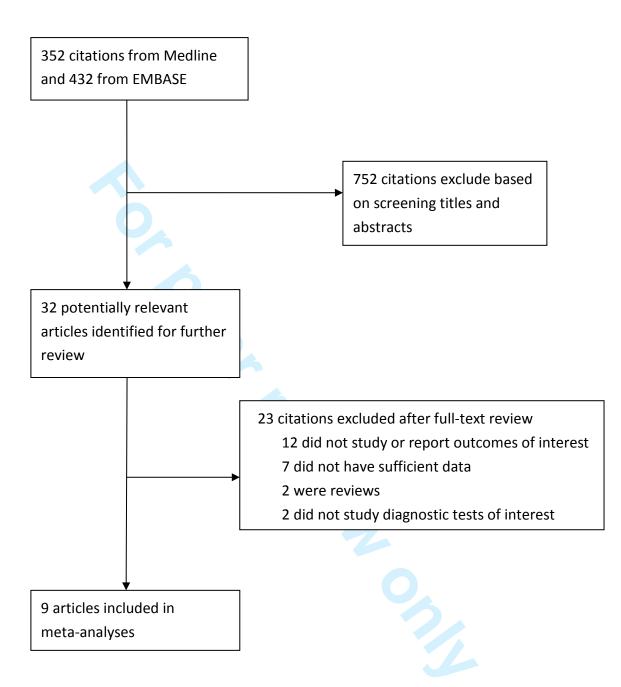
18

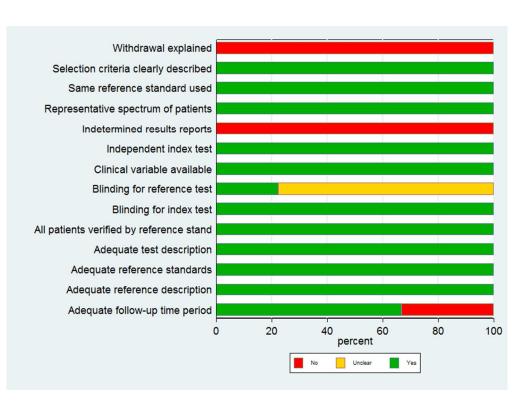
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

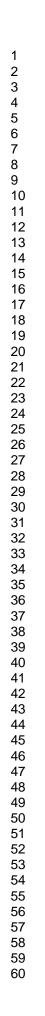
2	
3	
л	

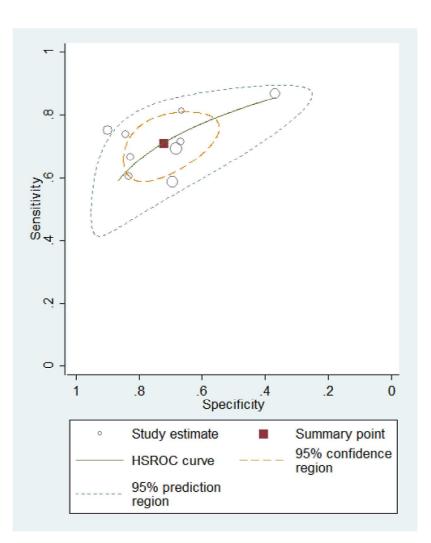
5 6


Table 2. Summary of pooled diagnostic accuracy indices


Variables	Number of	Sensitivity	Specificity	Likelihood	Likelihood	AUROC	l ²	Diagnostic OR	Meta-regres
)	studies	(95% CI)	(95% CI)	ratio+	ratio-	(95% CI)	(95% CI)	(95% CI)	sion P
Overall ¹⁻⁹	9	0.71(0.63-0.78)	0.72(0.61-0.81)	2.57(1.86-3.55)	0.40(0.32-0.50)	0.77(0.73-0.81)	14.6(0-56.6)	5.91 (4.07-8.59)	
Follow time< 6 months ^{1,2,5,9}	4	0.73(0.56-0.85)	0.71(0.54-0.83)	2.50(1.67-3.77)	0.38(0.24-0.59)	0.78(0.74-0.82)	0.0(0.0-74.6)	6.34(3.70- 10.85)	0.759
Follow time > one year ^{3,5-8}	5	0.77(0.69-0.84)	0.65(0.45-0.80)	2.22(3.14-12.88)	0.35(0.26-0.48)	0.79(0.75-0.82)	34.8(0.0-77.2)	5.54(3.29-9.32)	0.552
Electric cardioversion ^{1-6,9}	7	0.72(0.62-0.80)	0.74(0.60-0.85)	2.81(1.79-4.41)	0.38(0.29-0.50)	0.78(0.75-0.82)	33.0(0.0-71.6)	5.13(3.63- 7.25)	0.611
Persistent AF ^{1-6,9}	7	0.70(0.61-0.78)	0.71(0.59-0.80)	2.40(1.77-3.25)	0.42(0.33-0.53)	0.76(0.72-0.80)	22.3(0.0-64.2)	5.70(3.77-8.62)	0.899

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.


Figure 1 Flow chart of study identification and inclusion

Results of the quality assessment of studies of diagnostic accuracy 302x219mm (72 x 72 DPI)

The summary ROC curve of hs-CRP 297x420mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2	
2	
3	
4	
5	
6	
7	
ρ Ω	
0	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
18	
10	
19	
- 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 112 3 14 5 6 7 8 9 10 112 3 14 5 6 7 8 9 10 112 3 14 5 16 7 8 9 10 112 112 112 112 112 112 112 112 112	
21	
22	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
21	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
30	
30	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
46 47	
41	
48	
49	
50	
51	
52	
52	
53	
54	
55	
50 51 52 53 54 55 56 57 58 59	
57	
51	
20	
59	
60	

Author	Year		Odds ratio (95% CI)	% Weight
Wazni O	2005		3.23 (1.39, 7.51)	19.61
Watanabe E	2006	-		5.71
Zarauza J	2006		8.67 (1.84, 40.79)	5.84
Loricchio ML	2007		3.82 (1.43, 10.21)	14.45
Lombardi F	2008		9.67 (2.59, 36.06)	8.08
Henningsen KMA	2009		7.67 (1.89, 31.09)	7.15
Rizos I	2010		5.00 (1.67, 14.93)	11.71
Liu J	2011		4.88 (2.10, 11.35)	19.69
Barassi A	2012		14.93 (3.90, 57.19)	7.77
Overall (I-squared =	14.6%, p = 0.312)	\diamond	5.91 (4.07, 8.59)	100.00

The forest plot of the ORs 209x148mm (300 x 300 DPI) BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page ;
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Х
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Х
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Х
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Х
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Х
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Х
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Х
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Х
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Х
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Х
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Х
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Х
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Х
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Х

 Page 25 of 25

Page 1 of 2

8

10

PRISMA 2009 Checklist

5 Reported Section/topic # **Checklist item** 6 on page # Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective Х 9 reporting within studies). 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating Х Additional analyses which were pre-specified. RESULTS Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at Х each stage, ideally with a flow diagram. For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and Study characteristics 18 Х provide the citations. Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). Х For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each Х Results of individual studies 20 intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. Х 22 Х Risk of bias across studies Present results of any assessment of risk of bias across studies (see Item 15). 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). Х Additional analysis DISCUSSION Х Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to 3 key groups (e.g., healthcare providers, users, and policy makers). Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of Limitations 25 Х identified research, reporting bias). 34 Provide a general interpretation of the results in the context of other evidence, and implications for future research. Х Conclusions 26 FUNDING 39 Fundina Х 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. 42 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 43 doi:10.1371/iournal.pmed1000097 For more information, visit: www.prisma-statement.org. 44 45 Page 2 of 2 46 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 47

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright. 48

Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial Fibrillation Recurrence: a systematic review and meta-analysis

Open Den-2013-004418.R1 Inrch In-2014 Inia-Hung; Far Eastern Memorial Hospital, Department of Emergency ine Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation hysical Medicine
n-2014 nia-Hung; Far Eastern Memorial Hospital, Department of Emergency ine Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation hysical Medicine
n-2014 hia-Hung; Far Eastern Memorial Hospital, Department of Emergency ine Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation hysical Medicine
hia-Hung; Far Eastern Memorial Hospital, Department of Emergency ine Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation hysical Medicine
ine Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation hysical Medicine
g, Shy-Shin; Chang Gung Memorial Hospital, Department of Family ine Chien-Hung; Medical Wisdom Consultants, Chien-Chang; National Taiwan University Hospital Yunlin Branch, tment of Emergency Medicine
ovascular medicine
ovascular medicine
cardiology < CARDIOLOGY, Pacing & electrophysiology < IOLOGY, Hypertension < CARDIOLOGY, C - reactive protein,
•

SCHOLARONE[™] Manuscripts

BMJ Open

1	Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial
2	Fibrillation Recurrence: a systematic review and meta-analysis
3	
4	¹ Chia-Hung Yo MD, ² Si-Huei Lee MD ^{3,4} Shy-Shin Chang MD, ⁵ Matthew
5	Chien-Hung Lee PhD, JD, ^{6,7} Chien-Chang Lee MD, MSc
6	
7	¹ Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei
8	City, Taiwan.
9	² Department of Rehabilitation and Physical Medicine, Taipei Veteran
10	General Hospital, Taipei, Taiwan
11	³ Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
12	⁴ Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung
13	University, Taoyuan, Taiwan.
14	⁵ Medical Wisdom Consultants, Houston, USA
15	⁶ Department of Epidemiology, Harvard School of Public Health, Boston, USA.
16	⁷ Department of Emergency Medicine, National Taiwan University Hospital Yunlin
17	Branch, Douliou, Taiwan
18	Address correspondence to
19	Address correspondence to Chien-Chang Lee MD, MSc
20	Email: cclee100@gmail.com
21	Postal Address: No 579 Sec 2 Yunlin Road, Douliou, Yunlin County 640, Taiwan
22	Telephone: +886-5-532-3911 ext. 2326
23	Fax: +886-2322-3150
24	Word count: 2535
25	Conflict of interest: None declared
	1

26	Abstract
27	Objectives: We performed a systematic review and meta-analysis of studies on
28	high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are
29	predictive of atrial fibrillation (AF) recurrence after cardioversion.
30	
31	Design: Systematic review and meta-analysis.
32	
33	Data sources: PubMed, EMBASE, and Cochrane databases as well as a hand search of
34	the reference lists in the retrieved articles from inception to December 2013.
35	
36	Study eligibility criteria: This review selected observational studies in which the
37	measurements of serum CRP were used to predict atrial fibrillation recurrence. An
38	hs-CRP assay was defined as any c-reactive protein (CRP) test capable of measuring
39	serum CRP to below 0.6 mg/dL.
40	
41	Primary and secondary outcome measures: We summarized test performance
42	characteristics with the use of forest plots, hierarchical summary receiver operating
43	characteristic (HSROC) curves, and bivariate random effects models. Meta-regression
44	analysis was performed to explore the source of heterogeneity.
45	
46	Results: We included nine qualifying studies comprising a total of 347 patients with AF
47	recurrence and 335 controls. A CRP level higher than the optimal cutoff point was an
48	independent predictor of AF recurrence after cardioversion (summary adjusted odds
49	ratio: 3.33; 95%CI: 2.10-5.28). The estimated pooled sensitivity and specificity for
50	hs-CRP was 71.0% (95% Cl: 63% to 78%) and 72.0% (61% to 81%), respectively.
51	Most studies used a CRP cutoff point of 1.9 mg/l to predict long-term AF recurrence

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

52	(77% sensitivity, 65% specificity), and 3 mg/l to predict short-term AF recurrence (73%
53	sensitivity, 71% specificity).
54	
55	Conclusions: High-sensitivity CRP assays are moderately accurate in predicting AF
56	recurrence after successful cardioversion. Different cutoffs should be applied to
57	short-term or long-term prediction of AF recurrence.
58	
59	Strengths and limitations of this study
60	•This meta-analysis finding supports that measurement of CRP levels before
61	cardioversion can aid in the prediction of AF recurrence.
62	•We reported summary likelihood ratios (LRs) as an ancillary measure of predictive
63	accuracy.
64	•A bivariate random effect model to account for the inherent negative correlation
65	arising from different cutoff values used in different studies, and occurring
66	between the logit TPR and FPR.
67	•Results of sensitivity analysis did not show a significantly different overall
68	predictive accuracy between long-term and short-term follow-up, however, a
69	heterogeneity tended toward between-study variability.
70	•Current summary estimates based on the one cutoff point may thus have
71	under-evaluated the clinical usefulness of hs-CRP assays. An individual data
72	meta-analysis would be needed to overcome the limitations of this aggregated
73	data meta-analysis.
74	
75	Keywords: atrial fibrillation, recurrence, cardioversion, C - reactive protein,
76	meta-analysis
77	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	78	
2 3 4 5 6	79	Introduction
7 8	80	Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, although the
9 10	81	prevalence is highest among people of advanced age. ^{1,2} AF poses a significant
11 12 13	82	economic burden, with a 66% increase in hospital admissions over the past two decades.
14 15	83	It is estimated that the number of patients affected by AF is likely to grow 2.5 fold by
16 17	84	the year 2050. ¹⁻³ In addition, AF may lead to debilitating complications such as
18 19	85	ischemic stroke and heart failure. Although ventricular rate control is an acceptable
20 21	86	treatment strategy in many patients, some patients may remain symptomatic despite
22 23	87	adequate rate controls. For this group of patients, cardioversion may be the treatment of
24 25 26	88	choice. Electrical cardioversion can restore sinus rhythm effectively in most patients
27 28	89	and can act with antiarrhythmic drugs synergistically to enhance the cardioversion
29 30	90	success rate. ⁴ However, cardioversion is not the definite treatment. Approximately 50%
31 32	91	of patients undergoing cardioversion usually present with recurrence of AF within three
33 34	92	to six months of cardioversion despite ongoing antiarrhythmic treatment. ⁵ Left
35 36 37	93	ventricular dysfunction, left atrial enlargement, arrhythmia duration, and history of
37 38 39	94	hypertension are major risk factors for AF recurrence. ⁶ However, recent studies have
40 41	95	indicated that inflammation, necrosis, and fibrosis play roles in the structural
42 43	96	remodeling process of the atria, contributing to the perpetuation or recurrence of atrial
44 45	97	fibrillation.
46 47	98	
48 49 50	99	C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response
51 52	100	to proinflammatory cytokines, notably interluekin-6, and other endogenous signals of
53 54	101	innate immunity or tissue damage. CRP has recently been shown to be associated with
55 56	102	cardiovascular risk and AF recurrence. A previous meta-analysis revealed that CRP is
57 58	103	elevated in patients with AF. ⁷ However, 5 of the 6 studies included in that analysis
59 60		4
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	104	υ
5 6	105	ι
7 8	106	i
9 10 11	107	ł
12 13	108	а
14 15	109	s
16 17	110	ŗ
18 19	111	t
20 21 22	112	
22 23 24	113	N
25 26	114	Ι
27 28	115	(
29 30	116	i
31 32 33	117	t
33 34 35	118	f
36 37	119	Ι
38 39	120	s
40 41	121	
42 43	122	5
44 45 46	123]
40 47 48	124	(
49 50	125	С
51 52	126	С
53 54	127	Ċ
55 56	128	f
57 58 59	129	s
59 60		

104	used traditional automated immunonephelometric assays to measure CRP.
105	Unfortunately, those assays are insufficiently sensitive for measuring the low level of
106	inflammation associated with AF. A newer enzyme immunoassay, namely
107	high-sensitivity CRP (hs-CRP), is capable of measuring serum CRP below 0.6 mg/dL
108	and may further enhance the predictability of AF recurrence. ⁸ Since 2006, several
109	studies evaluating the accuracy of hs-CRP in predicting AF recurrence have been
110	published, ⁹⁻¹⁹ warranting a systemic and quantitative summary of current evidence on
111	the accuracy of CRP in predicting AF recurrence after cardioversion.
112	
113	Methods
114	Identification of Studies
115	General bibliographic databases (MEDLINE and EMBASE) were searched from
116	inception to April 2013. The medical subject heading (MeSH) and text words for the
117	term C -reactive protein were combined with the MeSH term "diagnosis of atrial
118	fibrillation". The search was limited to human studies with no language restrictions.
119	In addition to the electronic search, reference lists in all known reviews and primary
120	studies were checked manually.
121	
122	Selection Criteria
123	This review focused on observational studies in which the measurements of serum
124	CRP were used to predict atrial fibrillation recurrence. The population of interest
125	comprised patients with paroxysmal or persistent AF who underwent electric
126	cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was
127	defined as AF documented by ECG at any time after the cardioversion during the
128	follow-up period. Generally, patients were instructed to return to the clinic if the
129	symptoms such as palpitations, shortness of breath, or chest discomfort developed 5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

130	after cardioversion. We included studies using a cohort design or case-control design
131	with appropriate controls. Two reviewers independently assessed eligible articles for
132	inclusion. Disagreements were initially resolved by consensus and using arbitration
133	by a third reviewer if consensus could not be reached by the two reviewers. We
134	extracted data from the included studies. Data collected include study design,
135	participants, country, period of recruitment, hs-CRP assay, cutoff-points, length of
136	follow-up period, and recurrence of AF. One reviewer extracted the data and a second
137	reviewer independently verified the correctness of the extracted data.
138	
139	Quality Assessment
140	We assessed the methodological quality of the selected studies using a well-validated
141	tool for assessment of quality of diagnostic accuracy studies (Quality Assessment of
142	Diagnostic Accuracy Studies, QUADAS). ²⁰ The QUADAS instrument scrutinizes
143	characteristics of study designs, population, index tests, and reference standards that
144	may be associated with risk of bias. These features included the spectrum of patients,
145	whether index tests and reference standards were evaluated and interpreted
146	independently to avoid incorporation bias, and whether all patients underwent the
147	same reference standards to avoid differential or partial verification bias.
148	
149	Data Abstraction
150	One reviewer independently extracted the data and a second reviewer independently
151	verified the data. Extracted data comprised the following: overall study characteristics
152	(including the first author, country, language, and date of publication); patient
153	characteristics (including age range and pre-existing atrial fibrillation); quantitative
154	data required for construction of a 2 x 2 table (including number of participants,
155	sensitivity, specificity, and recurrence case number); information regarding the 6
	~

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	156	hs-CRP assay (including brand name of the test kit, cutoff levels, and quantitative or
4 5		
6	157	semi-quantitative nature of the test); and study settings. In studies that reported
7 8 9	158	multiple pairs of sensitivity and specificity data, we consistently used the data with
10 11	159	the highest Youden index (sensitivity + specificity -1) and performed a sensitivity
12 13	160	analysis at a later stage.
14 15	161	
16 17 18	162	Quantitative Data Synthesis
19 20	163	We performed a meta-analysis of diagnostic test accuracy of CRP testing for the
21 22	164	prediction of recurrent AF. When 2×2 tables contained 0 cells, we performed
23 24	165	continuity correction by adding 0.5 to each cell. We calculated the pooled sensitivity
25 26	166	and specificity, positive and negative likelihood ratios, and the diagnostic odds ratio
27 28	167	of CRP, along with the respective 95% confidence intervals (CIs), using a bivariate
29 30	168	meta-analysis model. ²¹ Likelihood ratios were then translated to post-test probability
31 32 33	169	by use of Fagan's plot. We constructed a hierarchical summary receiver operating
34 35	170	characteristic (HSROC) curve that plots sensitivity versus specificity and calculated
36 37	171	the area under the curve (AUROC). ²² We evaluated the degree of between-study
38 39	172	heterogeneity by using the I ² test. ²³ To explore the clinical sources of heterogeneity,
40 41	173	we defined the potential explanatory variables a priori and performed subgroup
42 43	174	analysis to see if the accuracy estimates changed significantly across various
44 45 46	175	subgroups. The presence and the effect of publication bias were examined using a
47 48	176	combination of the Egger tests. ²⁴ Statistical analyses were conducted using the
49 50	177	statistical package STATA (Version 11.0, Stata Corp, College Station, TX), notably
51 52	178	with the user-written "midas" and "metandi" programs. All statistical tests were
53 54	179	two-sided and statistical significance was defined as a P value less than .05.
55 56	180	
57 58 59 60	181	Search Results and Study Characteristics 7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8
8
8
8
8
8
9 10
10
11
12
13
14
15
16
17
10
10
19
20 21
21
22 23 24 25 26 27 28 29 30 31 32 33
23
24
25
26
27
28
29
30
31
31 32 33 34 35 36 37 38 39
33
34
35
36
30
37
38
39
40
41
42
43
44
44 45
44 45 46
44 45
44 45 46
44 45 46 47
44 45 46 47 48 49
44 45 46 47 48 49 50
44 45 46 47 48 49 50 51
44 45 46 47 48 49 50 51 52
44 45 46 47 48 49 50 51 52 53
44 45 46 47 48 49 50 51 52 53 54
44 45 46 47 48 49 50 51 52 53 54 55
 44 45 46 47 48 49 50 51 52 53 54 55 56
44 45 46 47 48 49 50 51 52 53 54 55 56 57
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
44 45 46 47 48 49 50 51 52 53 54 55 56 57

1

182	The flow of inclusion and exclusion is summarized in Figure 1. Using our search
183	criteria, we identified 784 studies, of which 352 were from PubMed and 432 were
184	from EMBASE. A total of 752 citations were excluded based on pre-defined criteria.
185	No additional citations were identified from the reference lists. A total of 32 articles
186	were retrieved for full-text review, and 23 were excluded due to various reasons
187	detailed in Figure 1. A total of 9 studies that evaluated the accuracy of hs-CRP tests in
188	predicting AF recurrence after cardioversion were finally included in the
189	meta-analysis. The 9 studies included a total of 682 patients with AF after successful
190	cardioversion, of which 347 (50.9%) developed recurrence.
191	
192	Characteristics of included studies
193	Table 1 lists the study and population characteristics of the 9 patient populations even
194	if we had additional 5 studies that don't have sufficient data for statistical analysis ²⁵⁻²⁹ .
195	The mean age of patients in the included studies ranged from 55.1 years to 67.9 years
196	and the mean follow-up period ranged from 30 days to 1 year. Seven studies included
197	patients with persistent AF, while 2 studies included patients with paroxysmal AF.
198	Seven studies used electric shock, one used circumferential pulmonary vein isolation
199	(also known as electric ablation), and the other used intravenous amiodarone as the
200	primary method for cardioversion. A total of seven studies provided multivariate
201	(adjusted) odds ratios to evaluate the independent predictive value of CRP levels.
202	These studies generally adjusted for potential predictors of AF recurrence such as age,
203	sex, use of anti-arrhythmic agents, and heart structural and functional parameters. All
204	studies showed that CRP was a significant independent predictor of AF recurrence.
205	Associated adjusted ratios and adjusted variables are summarized in table 1.
206	
207	Quality assessment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

208	Results of the quality assessment of studies of diagnostic accuracy are summarized in
209	figure 2. All studies were prospective and enrolled consecutive outpatients with AF
210	after cardioversion. Three studies had a short follow-up period (i.e. ≤ 0.5 or 1 year).
211	Although most of the studies did not indicate whether physicians were blinded to the
212	index tests when diagnosing AF recurrence, the determination of AF recurrence was
213	not affected by the knowledge of hs-CRP test results and risk of incorporation bias
214	was minimal. None of the studies reported the undetermined results or withdrawals.
215	
216	Diagnostic accuracy indices
217	Sensitivity, specificity, and diagnostic odds ratio
218	The estimated sensitivity and specificity were relatively consistent across studies
219	$(I^2=14.6\%)$. Table 2 shows the results of individual and combined sensitivity
220	estimates for the tests. The estimated pooled sensitivity and specificity for hs-CRP
221	was 71.0% (95% confidence interval 63% to 78%) and 72.0% (61% to 81%),
222	respectively. We used the pooled prevalence of AF recurrence in this study as the
223	pre-test probability. With a pooled positive likelihood ratio of 2.57 and a negative
224	likelihood ratio of 0.4, the post-test probability for AF recurrence for a positive
225	hs-CRP test result was 72% and a post-test probability for a negative hs-CRP test
226	result was 29%. The area under the ROC curve showed an acceptable overall
227	measurement of discrimination (0.77, Figure 3). Figure 4 shows the forest plot of the
228	ORs.
229	
230	Subgroup analysis and meta-regression
231	In view of the potential influence of spectrum variability, we considered the duration
232	of follow-up, mode of cardioversion, and type of AF in the study patients to be
233	important. Hs-CRP test results generally had higher sensitivity and lower specificity 9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 10 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

234	in predicting long-term over short-term AF recurrence. Excluding two studies not
235	using electric shock as the primary cardioversion method did not significantly alter
236	the predictive accuracy. Similarly, focusing the study patients on persistent AF
237	population had similar results as compared with the main overall analysis.
238	Exploratory meta-regression analysis did not find that any pre-specified covariate
239	significantly changed the effect estimate.
240	
241	Discussion
242	This meta-analysis shows that elevated CRP levels are independently predictive of AF
243	recurrence in patients with persistent or paroxysmal AF who have undergone
244	successful cardioversion. This finding supports that measurement of CRP levels
245	before cardioversion can aid in the prediction of AF recurrence. Despite the modest
246	pooled sensitivity and specificity, the rule-in diagnostic value was still high, given the
247	high recurrence rate of AF observed in these included studies. A positive hs-CRP test
248	result at baseline can predict a 73% chance of AF recurrence in the 6 to 12 months
249	following cardioversion.
250	
251	Previous studies have examined risk factors that predict AF recurrence. Traditional
252	clinical risk factors for recurrence include history of multiple AF episodes, use of
253	diuretic treatment, higher CHADS-2 (Congestive heart failure, history of
254	Hypertension, Age≥75 years, Diabetes mellitus, and past history of Stroke or TIA
255	doubled) index score, frequent use of amiodarone, calcium-channel blockers, and 1C
256	drugs, and digitalis. ^{30,31} Although each of these factors could predict AF recurrence
257	with some accuracy, a quantitative combination of these predictors is not available,

and the clinical utility of these variables remains questionable. This also suggests that

a multivariate prediction model should be developed for AF recurrence, and that

BMJ Open

260	hsCRP should be a candidate for inclusion in the model.
261	
262	During the past decade, serum biomarkers have emerged as practical tools to help in
263	the early identification of patients at high risk for various cardiac events. Elevation of
264	inflammatory markers is associated with sudden cardiac death in patients with heart
265	failure or coronary artery disease, and onset of ventricular arrhythmia. ³²⁻³⁵ Of note,
266	there is abundant evidence that elevated serum levels of CRP are associated with the
267	genesis and perpetuation of atrial fibrillation. CRP is the most commonly used clinical
268	inflammatory biomarker. It is mainly produced in liver and by inflammatory cells in
269	response to proinflammatory cytokine stimulation. Although the pathophysiology of
270	AF remains elusive, there is pathophysiological evidence supporting the role of
271	inflammation in the initiation, maintenance, and perpetuation of AF. ³⁶ Clinically, AF
272	is frequently associated with local inflammatory diseases such as myocarditis or
273	pericarditis, and systemic inflammatory status, such as post-operative state and severe
274	sepsis. Histologically, structural remodeling of the atria manifested by loss of
275	myocardium and increased atrial fibrosis is a hallmark of atrial fibrillation. ³⁷
276	Inflammatory cell infiltrates and oxidative damage have been demonstrated in atrial
277	biopsy specimens from AF patients. ³⁸ Activated inflammatory cells in conjunction
278	with reactive oxygen species, cytokines, and growth factors, may ultimately lead to
279	matrix deposition with atrial fibrosis. Recent evidence also shows that the uses of
280	immune-modulating agents such as statins, angiotensin-converting enzyme inhibitors,
281	or glucocorticoids modulate the course of AF. ³⁹
282	
283	In addition to CRP, b-type natriuretic peptide (BNP) has been shown to be an indicator
284	of new onset AF and AF recurrence after successful cardioversion. ^{34,35,40} BNP is also
285	produced in response to atrial pressure and volume overload and there is evidence that 11

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BNP is secreted by the atrium in patients with AF. A previous meta-analysis showed
that the standardized mean difference in plasma BNP level between patients with
non-recurrence and patients with recurrence was -1.35 (95% confidence interval -2.17,
-0.53).⁴¹ Data on sensitivity and specificity in that study were not available. The
comparative accuracy between BNP and hs-CRP in predicting AF recurrence thus
requires further analysis.

There are both strengths and limitations in our study. Considering the limitation of sensitivity and specificity in clinical interpretation, we reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy. The LRs indicate how much a given CRP testing result increases or decreases the probability of recurrence of AF. Post-test probabilities can be derived from pre-test probabilities and LRs, which are an important clinical parameter for major clinical decision making. Second, we used a bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies, and occurring between the logit TPR and FPR. Third, we performed sensitivity analysis by restricting analysis within two broad categories of follow-up duration. Results of sensitivity analysis did not show a significantly different overall predicative accuracy between long-term and short-term prediction of AF recurrence. Nonetheless, it is noteworthy that the sensitivity may be over estimated in our study under the hypothesis where the inflammation may be symptomatic since none of the studies provided withdrawal and undetermined results, and the ascertainment of AF was passive. This event further introduces the differential verification bias. Moreover, our meta-analysis is restricted to distinguish hsCRP levels above or below 0.6 mg/dL because the authors in only one of the studies claimed to possess such capability. Finally, due to the lack of individual data, it is hard to determine whether the area

Page 13 of 51

BMJ Open

312	under ROC (AUC) can be improved by the new assay either on overall or on
313	individual studies. Overall, as assessed by the heterogeneity of dOR, the included
314	studies evaluating CRP levels and AF recurrence strongly tended toward
315	between-study variability (heterogeneity). Potential sources of between-study
316	variability included differences in incidence of AF recurrence, different threshold
317	values of CRP concentration used, and different duration for follow-up. Another
318	limitation was the strategy we used to determine the optimal cutoff value. Most
319	studies determined an optimal cutoff value to maximize both sensitivity and
320	specificity. Although a single cutoff value is straightforward in clinical interpretation,
321	it may make a marker neither sensitive nor specific enough to rule out or rule in an
322	outcome of interest. A two cut-off value strategy, with one using a lower cutoff value
323	to optimize the sensitivity (rule-out value) and the other using a higher cutoff value to
324	optimize the specificity (rule-in value), would make better use of the information that
325	a biomarker with a continuous value could provide. Current summary estimates based
326	on the one cutoff point may thus have under-evaluated the clinical usefulness of
327	hs-CRP assays. To make the best use of the biomarker information by adopting a two
328	cutoff point strategy or a multi-cutoff point risk classification strategy, an individual
329	data meta-analysis would be needed to overcome the limitations of this aggregated
330	data meta-analysis.
331	
332	Conclusions
333	Baseline CRP levels before cardioversion can independently predict AF recurrence
334	after successful cardioversion. Given the high recurrence rate reported in most series,

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

336 predictive value. Future studies should focus on the evaluation of two or multiple

cutoff points. In the interim, their inclusion in existing pre-cardioversion evaluation

the modest positive likelihood ratio for hs-CRP assays still has high positive

algorithms should be considered. Acknowledgement This study was supported by grants of Far Eastern Memorial Hospital, Taiwan (FEMH-2013 D 036)

- 1. Fabbri G, Maggioni AP. A review of the epidemiological profile of patients with atrial fibrillation and heart failure. *Expert review of cardiovascular therapy*. Sep 2012;10(9):1133-1140.
- 2. Menezes AR, Lavie CJ, DiNicolantonio JJ, et al. Atrial fibrillation in the 21st century: a current understanding of risk factors and primary prevention strategies. *Mayo Clinic proceedings. Mayo Clinic.* Apr 2013;88(4):394-409.
- Anderson JL, Halperin JL, Albert NM, et al. Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology*. May 7 2013;61(18):1935-1944.
- 4. Manlucu J, Brancato S, Lane C, Kazemian P, Michaud GF. Contemporary approaches to persistent atrial fibrillation. *Expert review of cardiovascular therapy*. Nov 2012;10(11):1421-1435.
- Disertori M, Lombardi F, Barlera S, et al. Clinical characteristics of patients with asymptomatic recurrences of atrial fibrillation in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. *American heart journal*. Aug 2011;162(2):382-389.
- 6. Letsas KP, Weber R, Burkle G, et al. Pre-ablative predictors of atrial fibrillation recurrence following pulmonary vein isolation: the potential role of inflammation. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* Feb 2009;11(2):158-163.
- Liu T, Li L, Korantzopoulos P, Goudevenos JA, Li G. Meta-analysis of association between C-reactive protein and immediate success of electrical cardioversion in persistent atrial fibrillation. *The American journal of cardiology*. Jun 15 2008;101(12):1749-1752.
- Roberts WL, Sedrick R, Moulton L, Spencer A, Rifai N. Evaluation of four automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. *Clinical chemistry*. Apr 2000;46(4):461-468.
- Celebi OO, Celebi S, Canbay A, Ergun G, Aydogdu S, Diker E. The effect of sinus rhythm restoration on high-sensitivity C-reactive protein levels and their association with long-term atrial fibrillation recurrence after electrical cardioversion. *Cardiology*. 2011;118(3):168-174.
- Barassi A, Pezzilli R, Morselli-Labate AM, et al. Serum amyloid a and C-reactive protein independently predict the recurrences of atrial fibrillation

 after cardioversion in patients with preserved left ventricular function. <i>The</i> <i>Canadian journal of cardiology</i>. Sep-Oct 2012;28(5):537-541. 11. Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reactive protein to the first onset and the recurrence rate in lone atrial fibrillation. <i>The</i> <i>American journal of cardiology</i>. Mar 1 2006;97(5):659-661. 12. Henningsen KM, Therkelsen SK, Bruunsgaard H, Krabbe KS, Pedersen BK,
11. Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reactive protein to the first onset and the recurrence rate in lone atrial fibrillation. <i>The American journal of cardiology</i> . Mar 1 2006;97(5):659-661.
protein to the first onset and the recurrence rate in lone atrial fibrillation. <i>The American journal of cardiology</i> . Mar 1 2006;97(5):659-661.
American journal of cardiology. Mar 1 2006;97(5):659-661.
12 Hanningson KM Tharkelson SK Bruunsgoord H Krobbe KS Dederson BK
12. Heminigsen KW, Therkeisen SK, Bruunsgaard H, Klabbe KS, Federsen BK,
Svendsen JH. Prognostic impact of hs-CRP and IL-6 in patients with persistent
atrial fibrillation treated with electrical cardioversion. Scandinavian journal of
clinical and laboratory investigation. 2009;69(3):425-432.
13. Liu J, Fang PH, Dibs S, Hou Y, Li XF, Zhang S. High-sensitivity C-reactive
protein as a predictor of atrial fibrillation recurrence after primary
circumferential pulmonary vein isolation. Pacing and clinical
electrophysiology: PACE. Apr 2011;34(4):398-406.
14. Lombardi F, Tundo F, Belletti S, Mantero A, Melzi D'eril G V. C-reactive
protein but not atrial dysfunction predicts recurrences of atrial fibrillation after
cardioversion in patients with preserved left ventricular function. Journal of
cardiovascular medicine (Hagerstown, Md.). Jun 2008;9(6):581-588.
15. Loricchio ML, Cianfrocca C, Pasceri V, et al. Relation of C-reactive protein to
long-term risk of recurrence of atrial fibrillation after electrical cardioversion.
The American journal of cardiology. May 15 2007;99(10):1421-1424.
16. Wazni O, Martin DO, Marrouche NF, et al. C reactive protein concentration and
recurrence of atrial fibrillation after electrical cardioversion. <i>Heart (British</i>
<i>Cardiac Society).</i> Oct 2005;91(10):1303-1305.
17. Rizos I, Rigopoulos AG, Kalogeropoulos AS, et al. Hypertension and
paroxysmal atrial fibrillation: a novel predictive role of high sensitivity
C-reactive protein in cardioversion and long-term recurrence. <i>Journal of human hypertension</i> . Jul 2010;24(7):447-457.
 18. Watanabe E, Arakawa T, Uchiyama T, Kodama I, Hishida H. High-sensitivity
C-reactive protein is predictive of successful cardioversion for atrial fibrillation
and maintenance of sinus rhythm after conversion. <i>International journal of</i>
cardiology. Apr 14 2006;108(3):346-353.
 Zarauza J, Rodriguez Lera MJ, Farinas Alvarez C, et al. [Relationship between
C-reactive protein level and early recurrence of atrial fibrillation after electrical
cardioversion]. <i>Revista espanola de cardiologia</i> . Feb 2006;59(2):125-129.
20. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of
diagnostic test accuracy. Annals of internal medicine. Dec 16
2008;149(12):889-897.
21. Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG,
16
10

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

	Stijnen T. Bivariate random effects meta-analysis of ROC curves. Medical
	decision making : an international journal of the Society for Medical Decision
	Making. Sep-Oct 2008;28(5):621-638.
22.	Harbord RM, Whiting P, Sterne JA, et al. An empirical comparison of method
	for meta-analysis of diagnostic accuracy showed hierarchical models are
	necessary. Journal of clinical epidemiology. Nov 2008;61(11):1095-1103.
23.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
	meta-analyses. BMJ (Clinical research ed.). Sep 6 2003;327(7414):557-560.
24.	Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis
	detected by a simple, graphical test. BMJ (Clinical research ed.). Sep 13
	1997;315(7109):629-634.
25.	Buob A, Jung J, Siaplaouras S, Neuberger HR, Mewis C. Discordant regulatio
	of CRP and NT-proBNP plasma levels after electrical cardioversion of
	persistent atrial fibrillation. Pacing and clinical electrophysiology : PACE. Jun
	2006;29(6):559-563.
26.	Cosgrave J, Foley JB, Bahadur K, Bennett K, Crean P, Walsh MJ. Inflammator
	markers are not associated with outcomes following elective external
	cardioversion. International journal of cardiology. Jun 28
	2006;110(3):373-377.
27.	Ellinor PT, Low A, Patton KK, Shea MA, MacRae CA. C-Reactive protein in
	lone atrial fibrillation. The American journal of cardiology. May 1
	2006;97(9):1346-1350.
28.	Korantzopoulos P, Kolettis TM, Kountouris E, Siogas K, Goudevenos JA.
	Variation of inflammatory indexes after electrical cardioversion of persistent
	atrial fibrillation. Is there an association with early recurrence rates?
	International journal of clinical practice. Aug 2005;59(8):881-885.
29.	Psychari SN, Chatzopoulos D, Iliodromitis EK, Apostolou TS, Kremastinos D
	C-reactive protein, interleukin 6, and N-terminal pro-brain natriuretic peptide
	following cardioversion of atrial fibrillation: is there a role of biomarkers in
	arrhythmia recurrence? <i>Angiology</i> . May 2011;62(4):310-316.
30.	Komatsu T, Sato Y, Ozawa M, et al. Relationship between CHADS2 score and
	efficacy of antiarrhythmic drug therapy in patients with paroxysmal atrial
	fibrillation. Circulation journal : official journal of the Japanese Circulation
	Society. Feb 25 2013;77(3):639-645.
31.	Letsas KP, Efremidis M, Giannopoulos G, et al. CHADS2 and CHA2DS2-VAS
	scores as predictors of left atrial ablation outcomes for paroxysmal atrial
	fibrillation. Europace : European pacing, arrhythmias, and cardiac
	electrophysiology : journal of the working groups on cardiac pacing,
	17

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Jun 28 2013.

- Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. *Circulation*. Jun 4 2002;105(22):2595-2599.
- Parekh RS, Plantinga LC, Kao WH, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. *Kidney international*. Nov 2008;74(10):1335-1342.
- 34. Streitner F, Kuschyk J, Veltmann C, et al. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. *Cytokine*. Sep 2009;47(3):166-172.
- Korngold EC, Januzzi JL, Jr., Gantzer ML, Moorthy MV, Cook NR, Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. *Circulation*. Jun 9 2009;119(22):2868-2876.
- 36. Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation of atrial fibrillation. *European heart journal*. Oct 2005;26(20):2083-2092.
- Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. *Cardiovascular research*. May 2002;54(2):230-246.
- Van Wagoner DR. Oxidative Stress and Inflammation in Atrial Fibrillation: Role in Pathogenesis and Potential as a Therapeutic Target. *Journal of Cardiovascular Pharmacology*. 2008;52(4):306-313 310.1097/FJC.1090b1013e31817f39398.
- 39. Moro C, Hernandez-Madrid A, Matia R. Non-antiarrhythmic drugs to prevent atrial fibrillation. *American journal of cardiovascular drugs : drugs, devices, and other interventions.* 2010;10(3):165-173.
- 40. den Uijl DW, Delgado V, Tops LF, et al. Natriuretic peptide levels predict recurrence of atrial fibrillation after radiofrequency catheter ablation. *American heart journal*. Jan 2011;161(1):197-203.
- Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. *The Journal of international medical research*. 2011;39(5):1618-1624.

BMJ Open

Figure legends

Figure 1. A simplified flow chart to identify and to include studies. Amongst 752 citations in MEDLINE and EMBASE from inception to December 2013, a search limited to human studies using "C-reactive protein" and the MeSH term "diagnosis of atrial fibrillation" resulted in 32 potentially relevant articles for further review. After careful scrutinization on full text, 9 articles were left for meta-analysis.

Figure 2. The quality assessment of diagnostic accuracy on studies. A spectrum of features were analysed to avoid bias using a well-validated tool called Quality Assessment of Diagnostics Accuracy Studies (QUADAS). Percentage for each feature was independently evaluated among the studies. It is worthy of attention that none of the studies explained the withdrawal and reported indetermined results, likely to compromise the quality of diagnostic accuracy.

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Figure 3. **The ROC curve of hs-CRP.** Our analysis suggests it is highly possible to predict atrial fibrillation using C-creative protein since the area under the curve generates a measurement of discrimination ~0.77. The overall sensitivity and specificity are relatively high. We have 5 out 9 studies that fall in the 95% CI region, while 8 out 9 in the 95% prediction region.

Figure 4. The forest plot of the odds ratios (ORs). Our study indicates that hsCRP-positive patients are ~5.91 times more likely to develop a recurrence of atrial

2	
3	
4	
-	
5	
6	
7	
~	
8	
9	
10	
10	
11	
12	
13	
10	
14	
15	
16	
47	
17	
18	
19	
20	
20	
13456789101234156789011234456789011234456789013234567890112344567890112344567890132344567890132334567889011000000000000000000000000000000000	
22	
~~	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
01	
32	
33	
34	
0-	
35	
36	
37	
20	
38	
39	
4∩	
44	
41	
42	
43	
44	
45	
46	
-	
47	
48	
<u>4</u> 9	
<u> </u>	

Table 1. Summary of the characteristics of the included studies

Author, year, country	Mean Age	Prevalence (N)	Follow-up time	Cutoff (mg/l)	AF type	Cardiovers ion	Sensitivity, Specificity	Adjusted odd ratio	Adjusted variables
Wazni O, 2005,USA ¹⁶	67.3	0.68(111)	76 days	3.1	Persistent AF	Electric	59 %, 69 %	2.0 (1.2-3.2)	Age, sex, duration of AF, coronary artery disease, hypertension, left ventricular hypertrophy, LAD
Zarauza J, 2006, Spain ¹⁹	62.7	0.43(37)	30 days	3.0	Persistent AF	Electric	81%, 67 %	3.7 (1.3-10.8)	Sex, age, time, size of left atrium, history of hypertension, pharmacological treatment
Watanabe E, 2006, Japan ¹⁸	64	0.76(84)	1 year	0.6	Persistent AF	Electric	75%, 90%	5.3 (2.5-11.5)	Sex, coronary artery disease, hypertension, smoking, diabetes, AF duration, LAD, and LVEF
Loricchio ML, 2007, Italy ¹⁵	67	0.52(102)	1 year	1.9	Persistent AF	Electric	87%, 37%	5.0 (1.8-14.3)	Age, gender, EF, LAD , hypertension, diabetes, pharmacological treatment
Lombardi F, 2008, Italy ¹⁴	67	0.34(53)	21 days	3.6	Persistent AF	Electric	64%, 83%	1.6 (1.0-2.5)	Age, LAD, LAA, LAAEV, NTproBNP level, history of AF, AF duration or pharmacological treatment
Henningsen KMA, 2009, Denmark ¹²	65	0.68(56)	180 days	3.0	Persistent AF	Electric	60%, 83%	7.7 (1.9-31.1) *	ΝΑ
Rizos I, 2010,Greece ¹⁷	67.9	0.64(61)	1 year	2.3	Paroxysmal AF	Pharmacol ogic	72%, 68%	6.2 (2.2-17.6)	IL-6, age, gender, PAF history, LAD, EF, diabetes, smoking
Liu J, 2011,China ¹³	55.1	0.39(44)	1 year	1.9	Paroxysmal AF	Electric ablation	79%, 70 %	5.1 (2.1–12.1)	Age, gender, type of AF, duration of AF, LAD, LVEF, plasma hsCRP concentration.
Barassi A, 2012,Italy ¹⁰	66.9	0.33(57)	21 days	3.0	Persistent AF	Electric	74%, 84 %	14.9 (3.9-57.2) *	ΝΑ

Abbreviations: HsCRP: High-sensitivity C-reactive protein NA: Not applicable ACE: angiotensin-converting enzyme; *: crude effect estimate

21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Table 2. Summary of pooled diagnostic accuracy indices

0 Variables	Number of studies	Sensitivity (95% CI)	Specificity (95% CI)	Likelihood ratio+	Likelihood ratio-	AUROC (95% CI)	ı ² (95% CI)	Diagnostic OR (95% CI)	Meta-regr ession P	Egger's test P
3 Overall ^{10,12-19}	9	0.71(0.63-0.78)	0.72(0.61-0.81)	2.57(1.86-3.55)	0.40(0.32-0.50)	0.77(0.73-0.81)	14.6(0-56.6)	5.91 (4.07-8.59)		0.566
4 5 Follow time< 6 6 months ^{10,14,16,19}	4	0.73(0.56-0.85)	0.71(0.54-0.83)	2.50(1.67-3.77)	0.38(0.24-0.59)	0.78(0.74-0.82)	0.0(0.0-74.6)	6.34(3.70- 10.85)	0.759	0.345
 Follow time > one year^{12-14,17,18} 	5	0.77(0.69-0.84)	0.65(0.45-0.80)	2.22(3.14-12.88)	0.35(0.26-0.48)	0.79(0.75-0.82)	34.8(0.0-77.2)	5.54(3.29-9.32)	0.552	0.583
Electric 2 cardioversion ^{10,12,} 3 14-16,18,19	7	0.72(0.62-0.80)	0.74(0.60-0.85)	2.81(1.79-4.41)	0.38(0.29-0.50)	0.78(0.75-0.82)	33.0(0.0-71.6)	5.13(3.63- 7.25)	0.611	0.198
5 Persistent 6 AF ^{10,12,14-16,18,19}	7	0.70(0.61-0.78)	0.71(0.59-0.80)	2.40(1.77-3.25)	0.42(0.33-0.53)	0.76(0.72-0.80)	22.3(0.0-64.2)	5.70(3.77-8.62)	0.899	0.464
8 9 0 1 2 3 4										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 23 of 51

BMJ Open

1		
2		
3	1	Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial
4	_	· ····· · · · ························
5	2	Fibrillation Recurrence: a systematic review and meta-analysis
6 7	-	The first finance is a second of the first and
8	3	
9	5	
10	4	¹ Chia-Hung Yo MD, ² Si-Huei Lee MD ^{3,4} Shy-Shin Chang MD, ⁵ Matthew
11	-	Child-Hung 10 MiD, 51-Huer Lee MiD Sity-5hill Chang MiD, Matthew
12	5	Chien-Hung Lee PhD, JD, 64,75 Chien-Chang Lee MD, MSc
13	J	Chief-Hung Ece Hild, JD, Chief-Chang Ece MD, MSc
14	6	
15	0	
16	7	¹ Department of Emerson as Medicine, For Festern Memorial Herrital, New Tainei
17	/	¹ Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei
18	0	
19	8	City, Taiwan.
20	•	
21	9	² Department of Rehabilitation and Physical Medicine, Taipei Veteran
22 23	4.0	
23 24	10	General Hospital, Taipei, Taiwan
25		
26	11	³ Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
27		
28	12	⁴ Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung
29		
30	13	University, Taoyuan, Taiwan.
31		
32	14	⁵ Medical Wisdom Consultants, Houston, USA
33	ĺ	
34	15	⁶⁴ Department of Epidemiology, Harvard School of Public Health, Boston, USA.
35 36	10	
37	16	²⁵ Department of Emergency Medicine, National Taiwan University Hospital Yunlin
38	10	Department of Emergency Wedlenie, National Talwar oniversity Hospital Talmin
39	17	Branch, Douliou, Taiwan
40	17	branch, bounou, rarwan
41	18	Address correspondence to
42	10	Address correspondence to
43	10	Address correspondence to Chien-Chang Lee MD, MSc
44	19	Chien-Chang Lee MD, MSc
45	20	
46	20	Email: cclee100@gmail.com
47 48	• •	
48	21	Postal Address: No 579 Sec 2 Yunlin Road, Douliou, Yunlin County 640, Taiwan
50		
51	22	Telephone: +886-5-532-3911 ext. 2326
52		
53	23	Fax: +886-2322-3150
54		
55	24	Word count: 2535
56		
57	25	Conflict of interest: None declared
58 50		1
59 60		1
00		

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

23
3
4 5 6 7
5
6
7
8
9
10
11
9 10 11 12
13 14 15
13
14
15
16
17
18
19
20
21
22
23
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40
25
20
20
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
40
50
51
52
53
54
55
56
57 58
58
59
60
00

1 2

26 Abstract 27 Objectives: We performed a systematic review and meta-analysis of studies on 28 high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are 29 predictive of atrial fibrillation (AF) recurrence after cardioversion. 30 31 Design: Systematic review and meta-analysis. 32 33 Data sources: PubMed, EMBASE, and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. 34 35 Study eligibility criteria: This review selected observational studies in which the 36 37 measurements of serum CRP were used to predict atrial fibrillation recurrence. An 38 hs-CRP assay was defined as any c-reactive protein (CRP) test capable of measuring 39 serum CRP to below 0.6 mg/dL. 40 41 Primary and secondary outcome measures: We summarized test performance 42 characteristics with the use of forest plots, hierarchical summary receiver operating 43 characteristic (HSROC) curves, and bivariate random effects models. Meta-regression 44 analysis was performed to explore the source of heterogeneity. 45 46 Results: We included nine qualifying studies comprising a total of 347 patients with AF 47 recurrence and 335 controls. A CRP level higher than the optimal cutoff point was an 48 independent predictor of AF recurrence after cardioversion (summary adjusted odds 49 ratio: 3.33; 95%CI: 2.10-5.28). The estimated pooled sensitivity and specificity for 50 hs-CRP was 71.0% (95% Cl: 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cutoff point of 1.9 mg/l to predict long-term AF recurrence 51

BMJ Open

52	(77% sensitivity, 65% specificity), and 3 mg/l to predict short-term AF recurrence (73%
53	sensitivity, 71% specificity).
54	
55	Conclusions: High-sensitivity CRP assays are moderately accurate in predicting AF
56	recurrence after successful cardioversion. Different cutoffs should be applied to
57	patients with short-term or long-term follow-upprediction of AF recurrence.
58	
59	Strengths and limitations of this study
60	•This meta-analysis finding supports that measurement of CRP levels before
61	cardioversion can aid in the prediction of AF recurrence.
62	•We reported summary likelihood ratios (LRs) as an ancillary measure of predictive
63	accuracy.
64	•A bivariate random effect model to account for the inherent negative correlation
65	arising from different cutoff values used in different studies, and occurring
66	between the logit TPR and FPR.
67	•Results of sensitivity analysis did not show a significantly different overall
68	predictive accuracy between long-term and short-term follow-up, however, a
69	heterogeneity tended toward between-study variability.
70	•Current summary estimates based on the one cutoff point may thus have
71	under-evaluated the clinical usefulness of hs-CRP assays. An individual data
72	meta-analysis would be needed to overcome the limitations of this aggregated
73	data meta-analysis.
74	
75	Keywords: atrial fibrillation, recurrence, cardioversion, C - reactive protein,
76	meta-analysis
77	2
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

78	
79	Introduction
80	Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, although the
81	prevalence is highest among people of advanced age. ^{1,2} AF poses a significant
82	economic burden, with a 66% increase in hospital admissions over the past two decades.
83	It is estimated that the number of patients affected by AF is likely to grow 2.5 fold by
84	the year 2050. ¹⁻³ In addition, AF may lead to debilitating complications such as
85	ischemic stroke and heart failure. Although ventricular rate control is an acceptable
86	treatment strategy in many patients, some patients may remain symptomatic despite
87	adequate rate controls. For this group of patients, cardioversion may be the treatment of
88	choice. Electrical cardioversion can restore sinus rhythm effectively in most patients
89	and can act with antiarrhythmic drugs synergistically to enhance the cardioversion
90	success rate. ⁴ However, cardioversion is not the definite treatment. Approximately 50%
91	of patients undergoing cardioversion usually present with recurrence of AF within three
92	to six months of cardioversion despite ongoing antiarrhythmic treatment. ⁵ Left
93	ventricular dysfunction, left atrial enlargement, arrhythmia duration, and history of
94	hypertension are major risk factors for AF recurrence. ⁶ However, recent studies have
95	indicated that inflammation, necrosis, and fibrosis play roles in the structural
96	remodeling process of the atria, contributing to the perpetuation or recurrence of atrial
97	fibrillation.
98	
99	C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response
100	to proinflammatory cytokines, notably interluekin-6, and other endogenous signals of
101	innate immunity or tissue damage. CRP has recently been shown to be associated with
102	cardiovascular risk and AF recurrence. A previous meta-analysis revealed that CRP is
103	elevated in patients with AF. ⁷ However, 5 of the 6 studies included in that analysis $\frac{4}{4}$

BMJ Open

104	used traditional automated immunonephelometric assays to measure CRP.
105	Unfortunately, those assays are insufficiently sensitive for measuring the low level of
106	inflammation associated with AF. A newer enzyme immunoassay, namely
107	high-sensitivity CRP (hs-CRP), is capable of measuring serum CRP below 0.6 mg/dL
108	and may further enhance the predictability of AF recurrence. ⁸ Since 2006, several
109	studies evaluating the accuracy of hs-CRP in predicting AF recurrence have been
110	published, ⁹⁻¹⁹ warranting a systemic and quantitative summary of current evidence on
111	the accuracy of CRP in predicting AF recurrence after cardioversion.
112	
113	Methods
114	Identification of Studies
115	General bibliographic databases (MEDLINE and EMBASE) were searched from
116	inception to April 2013. The medical subject heading (MeSH) and text words for the
117	term C -reactive protein were combined with the MeSH term "diagnosis of atrial
118	fibrillation". The search was limited to human studies with no language restrictions.
119	In addition to the electronic search, reference lists in all known reviews and primary
120	studies were checked manually.
121	
122	Selection Criteria
123	This review focused on observational studies in which the measurements of serum
124	CRP were used to predict atrial fibrillation recurrence. The population of interest
125	comprised patients with paroxysmal or persistent AF who underwent electric
126	cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was
127	defined as AF documented by ECG at any time after the cardioversion during the
128	follow-up period. Generally, patients were instructed to return to the clinic if the
129	symptoms such as palpitations, shortness of breath, or chest discomfort developed

Page 28 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

130	after cardioversion. We included studies using a cohort design or case-control design
131	with appropriate controls. Two reviewers independently assessed eligible articles for
132	inclusion. Disagreements were initially resolved by consensus and using arbitration
133	by a third reviewer if consensus could not be reached by the two reviewers. We
134	extracted data from the included studies. Data collected include study design,
135	participants, country, period of recruitment, hs-CRP assay, cutoff-points, length of
136	follow-up period, and recurrence of AF. One reviewer extracted the data and a second
137	reviewer independently verified the correctness of the extracted data.
138	
139	Quality Assessment
140	We assessed the methodological quality of the selected studies using a well-validated
141	tool for assessment of quality of diagnostic accuracy studies (Quality Assessment of
142	Diagnostic Accuracy Studies, QUADAS). ²⁰ The QUADAS instrument scrutinizes
143	characteristics of study designs, population, index tests, and reference standards that
144	may be associated with risk of bias. These features included the spectrum of patients,
145	whether index tests and reference standards were evaluated and interpreted
146	independently to avoid incorporation bias, and whether all patients underwent the
147	same reference standards to avoid differential or partial verification bias.
148	
149	Data Abstraction
150	One reviewer independently extracted the data and a second reviewer independently
151	verified the data. Extracted data comprised the following: overall study characteristics
152	(including the first author, country, language, and date of publication); patient
153	characteristics (including age range and pre-existing atrial fibrillation); quantitative
154	data required for construction of a 2 x 2 table (including number of participants,
455	

1 2		
3 4	156	hs-CR
5 6	157	semi-q
7 8	158	multip
9 10 11	159	the hig
12 13	160	analys
14 15	161	
16 17	162	Quanti
18 19	163	We per
20 21	164	predic
22 23 24	165	contin
25 26	166	and sp
27 28	167	of CR
29 30	168	meta-a
31 32	169	by use
33 34 35	170	charac
36 37	171	the are
38 39	172	hetero
40 41	173	we def
42 43	174	analys
44 45	175	subgro
46 47 48	176	combi
49 50	177	statisti
51 52	178	with th
53 54	179	two-si
55 56	180	
57 58 59	181	Search
59 60		

hs-CRP assay (including brand name of the test kit, cutoff levels, and quantitative or
semi-quantitative nature of the test); and study settings. In studies that reported
multiple pairs of sensitivity and specificity data, we consistently used the data with
the highest Youden index (sensitivity + specificity -1) and performed a sensitivity
analysis at a later stage.

162 Quantitative Data Synthesis

rformed a meta-analysis of diagnostic test accuracy of CRP testing for the tion of recurrent AF. When 2×2 tables contained 0 cells, we performed uity correction by adding 0.5 to each cell. We calculated the pooled sensitivity becificity, positive and negative likelihood ratios, and the diagnostic odds ratio P, along with the respective 95% confidence intervals (CIs), using a bivariate nalysis model.²¹ Likelihood ratios were then translated to post-test probability of Fagan's plot. We constructed a hierarchical summary receiver operating teristic (HSROC) curve that plots sensitivity versus specificity and calculated a under the curve (AUROC).²² We evaluated the degree of between-study geneity by using the I² test.²³ To explore the clinical sources of heterogeneity, fined the potential explanatory variables *a priori* and performed subgroup is to see if the accuracy estimates changed significantly across various ups. The presence and the effect of publication bias were examined using a nation of the Egger tests.²⁴ Statistical analyses were conducted using the ical package STATA (Version 11.0, Stata Corp, College Station, TX), notably he user-written "midas" and "metandi" programs. All statistical tests were ded and statistical significance was defined as a P value less than .05.

181 Search Results and Study Characteristics

7

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1
2
3 4 5 6 7 8
4
5
6
7
8
9
10
11
12
12
17
14
ID 40
16
17
18
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 1 32 33 34 35 36 37 38 9 0
20
21
22
23
24
25
26
20
21
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
57 58
59
60

1

182	The flow of inclusion and exclusion is summarized in Figure 1. Using our search
183	criteria, we identified 784 studies, of which 352 were from PubMed and 432 were
184	from EMBASE. A total of 752 citations were excluded based on pre-defined criteria.
185	No additional citations were identified from the reference lists. A total of 32 articles
186	were retrieved for full-text review, and 23 were excluded due to various reasons
187	detailed in Figure 1. A total of 9 studies that evaluated the accuracy of hs-CRP tests in
188	predicting AF recurrence after cardioversion were finally included in the
189	meta-analysis. The 9 studies included a total of 682 patients with AF after successful
190	cardioversion, of which 347 (50.9%) developed recurrence.
191	
192	Characteristics of included studies
193	Table 1 lists the study and population characteristics of the 9 patient populations even
194	if we had additional 5 studies that don't have sufficient data for statistical analysis 25-29
195	The mean age of patients in the included studies ranged from 55.1 years to 67.9 years
196	and the mean follow-up period ranged from 30 days to 1 year. Seven studies included
197	patients with persistent AF, while 2 studies included patients with paroxysmal AF.
198	Seven studies used electric shock, one used circumferential pulmonary vein isolation
199	(also known as electric ablation), and the other used intravenous amiodarone as the
200	primary method for cardioversion. A total of seven studies provided multivariate
201	(adjusted) odds ratios to evaluate the independent predictive value of CRP levels.
202	These studies generally adjusted for potential predictors of AF recurrence such as age,
203	sex, use of anti-arrhythmic agents, and heart structural and functional parameters. All
204	studies showed that CRP was a significant independent predictor of AF recurrence.
205	Associated adjusted ratios and adjusted variables are summarized in table 1.
206	
207	Quality assessment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8

BMJ Open

208	Results of the quality assessment of studies of diagnostic accuracy are summarized in
209	figure 2. All studies were prospective and enrolled consecutive outpatients with AF
210	after cardioversion. Three studies had a short follow-up period (i.e. ≤ 0.5 or 1 year).
211	Although most of the studies did not indicate whether physicians were blinded to the
212	index tests when diagnosing AF recurrence, the determination of AF recurrence was
213	not affected by the knowledge of hs-CRP test results and risk of incorporation bias
214	was minimal. None of the studies reported the undetermined results or withdrawals.
215	
216	Diagnostic accuracy indices
217	Sensitivity, specificity, and diagnostic odds ratio
218	The estimated sensitivity and specificity were relatively consistent across studies
219	$(I^2=14.6\%)$. Table 2 shows the results of individual and combined sensitivity
220	estimates for the tests. The estimated pooled sensitivity and specificity for hs-CRP
221	was 71.0% (95% confidence interval 63% to 78%) and 72.0% (61% to 81%),
222	respectively. We used the pooled prevalence of AF recurrence in this study as the
223	pre-test probability. With a pooled positive likelihood ratio of 2.57 and a negative
224	likelihood ratio of 0.4, the post-test probability for AF recurrence for a positive
225	hs-CRP test result was 72% and a post-test probability for a negative hs-CRP test
226	result was 29%. The area under the ROC curve showed an acceptable overall
227	measurement of discrimination (0.77, Figure 3). Figure 4 shows the forest plot of the
228	<u>ORs.</u>
229	
230	Subgroup analysis and meta-regression
231	In view of the potential influence of spectrum variability, we considered the duration
232	of follow-up, mode of cardioversion, and type of AF in the study patients to be
233	important. Hs-CRP test results generally had higher sensitivity and lower specificity 9

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

in predicting long-term over short-term AF recurrence. Excluding two studies not using electric shock as the primary cardioversion method did not significantly alter the predictive accuracy. Similarly, focusing the study patients on persistent AF *population* had similar results as compared with the main overall analysis. Exploratory meta-regression analysis did not find that any pre-specified covariate significantly changed the effect estimate. Discussion This meta-analysis shows that elevated CRP levels are independently predictive of AF recurrence in patients with persistent or paroxysmal AF who have undergone successful cardioversion. This finding supports that measurement of CRP levels before cardioversion can aid in the prediction of AF recurrence. Despite the modest pooled sensitivity and specificity, the rule-in diagnostic value was still high, given the high recurrence rate of AF observed in these included studies. A positive hs-CRP test result at baseline can predict a 73% chance of AF recurrence in the 6 to 12 months following cardioversion. Previous studies have examined risk factors that predict AF recurrence. Traditional clinical risk factors for recurrence include history of multiple AF episodes, use of diuretic treatment, higher CHADS-2 (Congestive heart failure, history of Hypertension, Age≥75 years, Diabetes mellitus, and past history of Stroke or TIA doubled) index score, frequent use of amiodarone, calcium-channel blockers, and 1C drugs, and digitalis.^{30,31} Although each of these factors could predict AF recurrence

257 with some accuracy, a quantitative combination of these predictors is not available,

and the clinical utility of these variables remains questionable. This also suggests that

259 <u>a multivariate prediction model should be developed for AF recurrence, and that</u>

BMJ Open

260	hsCRP should be a candidate for inclusion in the model.
261	
262	During the past decade, serum biomarkers have emerged as practical tools to help in
263	the early identification of patients at high risk for various cardiac events. Elevation of
264	inflammatory markers is associated with sudden cardiac death in patients with heart
265	failure or coronary artery disease, and onset of ventricular arrhythmia. ³²⁻³⁵ Of note,
266	there is abundant evidence that elevated serum levels of CRP are associated with the
267	genesis and perpetuation of atrial fibrillation. CRP is the most commonly used clinical
268	inflammatory biomarker. It is mainly produced in liver and by inflammatory cells in
269	response to proinflammatory cytokine stimulation. Although the pathophysiology of
270	AF remains elusive, there is pathophysiological evidence supporting the role of
271	inflammation in the initiation, maintenance, and perpetuation of AF. ³⁶ Clinically, AF
272	is frequently associated with local inflammatory diseases such as myocarditis or
273	pericarditis, and systemic inflammatory status, such as post-operative state and severe
274	sepsis. Histologically, structural remodeling of the atria manifested by loss of
275	myocardium and increased atrial fibrosis is a hallmark of atrial fibrillation. ³⁷
276	Inflammatory cell infiltrates and oxidative damage have been demonstrated in atrial
277	biopsy specimens from AF patients. ³⁸ Activated inflammatory cells in conjunction
278	with reactive oxygen species, cytokines, and growth factors, may ultimately lead to
279	matrix deposition with atrial fibrosis. Recent evidence also shows that the uses of
280	immune-modulating agents such as statins, angiotensin-converting enzyme inhibitors,
281	or glucocorticoids modulate the course of AF. ³⁹
282	
283	In addition to CRP, b-type natriuretic peptide (BNP) has been shown to be an indicator
284	of new onset AF and AF recurrence after successful cardioversion. ^{34,35,40} BNP is also
285	produced in response to atrial pressure and volume overload and there is evidence that 11

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BNP is secreted by the atrium in patients with AF. A previous meta-analysis showed
that the standardized mean difference in plasma BNP level between patients with
non-recurrence and patients with recurrence was -1.35 (95% confidence interval -2.17,
-0.53).⁴¹ Data on sensitivity and specificity in that study were not available. The
comparative accuracy between BNP and hs-CRP in predicting AF recurrence thus
requires further analysis.

There are both strengths and limitations in our study. Considering the limitation of sensitivity and specificity in clinical interpretation, we reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy. The LRs indicate how much a given CRP testing result increases or decreases the probability of recurrence of AF. Post-test probabilities can be derived from pre-test probabilities and LRs, which are an important clinical parameter for major clinical decision making. Second, we used a bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies, and occurring between the logit TPR and FPR. Third, we performed sensitivity analysis by restricting analysis within two broad categories of follow-up duration. Results of sensitivity analysis did not show a significantly different overall predicative accuracy between long-term and short-term follow-upprediction of AF recurrence. Nonetheless, it is noteworthy that the sensitivity may be over estimated in our study under the hypothesis where the inflammation may be symptomatic since none of the studies provided withdrawal and undetermined results, and the ascertainment of AF was passive. This event further introduces the differential verification bias. Moreover, our meta-analysis is restricted to distinguish hsCRP levels above or below 0.6 mg/dL because the authors in only one of the studies claimed to possess such capability. Finally, due to the lack of individual data, it is hard to determine whether the area

Page 35 of 51

BMJ Open

312	under ROC (AUC) can be improved by the new assay either on overall or on
313	individual studies. Overall, as assessed by the heterogeneity of dOR, the included
314	studies evaluating CRP levels and AF recurrence strongly tended toward
315	between-study variability (heterogeneity). Potential sources of between-study
316	variability included differences in incidence of AF recurrence, different threshold
317	values of CRP concentration used, and different duration for follow-up. Another
318	limitation was the strategy we used to determine the optimal cutoff value. Most
319	studies determined an optimal cutoff value to maximize both sensitivity and
320	specificity. Although a single cutoff value is straightforward in clinical interpretation,
321	it may make a marker neither sensitive nor specific enough to rule out or rule in an
322	outcome of interest. A two cut-off value strategy, with one using a lower cutoff value
323	to optimize the sensitivity (rule-out value) and the other using a higher cutoff value to
324	optimize the specificity (rule-in value), would make better use of the information that
325	a biomarker with a continuous value could provide. Current summary estimates based
326	on the one cutoff point may thus have under-evaluated the clinical usefulness of
327	hs-CRP assays. To make the best use of the biomarker information by adopting a two
328	cutoff point strategy or a multi-cutoff point risk classification strategy, an individual
329	data meta-analysis would be needed to overcome the limitations of this aggregated
330	data meta-analysis.
331	
332	Conclusions
333	Baseline CRP levels before cardioversion can independently predict AF recurrence
334	after successful cardioversion. Given the high recurrence rate reported in most series,
335	the modest positive likelihood ratio for hs-CRP assays still has high positive
336	predictive value. Future studies should focus on the evaluation of two or multiple
337	cutoff points. In the interim, their inclusion in existing pre-cardioversion evaluation

algorithms should be considered. Acknowledgement This study was supported by grants of Far Eastern Memorial Hospital, Taiwan (FEMH-2013 D 036)

Kelei	rences
1.	Fabbri G, Maggioni AP. A review of the epidemiological profile of patients with
	atrial fibrillation and heart failure. Expert review of cardiovascular therapy. Sep
	2012;10(9):1133-1140.
2.	Menezes AR, Lavie CJ, DiNicolantonio JJ, et al. Atrial fibrillation in the 21st
	century: a current understanding of risk factors and primary prevention
	strategies. Mayo Clinic proceedings. Mayo Clinic. Apr 2013;88(4):394-409.
3.	Anderson JL, Halperin JL, Albert NM, et al. Management of patients with atrial
	fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS
	recommendations): a report of the American College of Cardiology/American
	Heart Association Task Force on Practice Guidelines. Journal of the American
	College of Cardiology. May 7 2013;61(18):1935-1944.
4.	Manlucu J, Brancato S, Lane C, Kazemian P, Michaud GF. Contemporary
	approaches to persistent atrial fibrillation. Expert review of cardiovascular
	<i>therapy</i> . Nov 2012;10(11):1421-1435.
5.	Disertori M, Lombardi F, Barlera S, et al. Clinical characteristics of patients
	with asymptomatic recurrences of atrial fibrillation in the Gruppo Italiano per lo
	Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation
	(GISSI-AF) trial. American heart journal. Aug 2011;162(2):382-389.
6.	Letsas KP, Weber R, Burkle G, et al. Pre-ablative predictors of atrial fibrillation
	recurrence following pulmonary vein isolation: the potential role of
	inflammation. Europace : European pacing, arrhythmias, and cardiac
	electrophysiology : journal of the working groups on cardiac pacing,
	arrhythmias, and cardiac cellular electrophysiology of the European Society of
	<i>Cardiology</i> . Feb 2009;11(2):158-163.
7.	Liu T, Li L, Korantzopoulos P, Goudevenos JA, Li G. Meta-analysis of
	association between C-reactive protein and immediate success of electrical
	cardioversion in persistent atrial fibrillation. The American journal of
	<i>cardiology</i> . Jun 15 2008;101(12):1749-1752.
8.	Roberts WL, Sedrick R, Moulton L, Spencer A, Rifai N. Evaluation of four
	automated high-sensitivity C-reactive protein methods: implications for clinical
	and epidemiological applications. <i>Clinical chemistry</i> . Apr 2000;46(4):461-468.
9.	Celebi OO, Celebi S, Canbay A, Ergun G, Aydogdu S, Diker E. The effect of
	sinus rhythm restoration on high-sensitivity C-reactive protein levels and their
	association with long-term atrial fibrillation recurrence after electrical
	cardioversion. Cardiology. 2011;118(3):168-174.
10.	Barassi A, Pezzilli R, Morselli-Labate AM, et al. Serum amyloid a and
	C-reactive protein independently predict the recurrences of atrial fibrillation

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	after cardioversion in patients with preserved left ventricular function. The
	Canadian journal of cardiology. Sep-Oct 2012;28(5):537-541.
11.	Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reactive
	protein to the first onset and the recurrence rate in lone atrial fibrillation. The
	American journal of cardiology. Mar 1 2006;97(5):659-661.
12.	Henningsen KM, Therkelsen SK, Bruunsgaard H, Krabbe KS, Pedersen BK,
	Svendsen JH. Prognostic impact of hs-CRP and IL-6 in patients with persistent
	atrial fibrillation treated with electrical cardioversion. Scandinavian journal of
	clinical and laboratory investigation. 2009;69(3):425-432.
13.	Liu J, Fang PH, Dibs S, Hou Y, Li XF, Zhang S. High-sensitivity C-reactive
	protein as a predictor of atrial fibrillation recurrence after primary
	circumferential pulmonary vein isolation. Pacing and clinical
	electrophysiology : PACE. Apr 2011;34(4):398-406.
14.	Lombardi F, Tundo F, Belletti S, Mantero A, Melzi D'eril G V. C-reactive
	protein but not atrial dysfunction predicts recurrences of atrial fibrillation after
	cardioversion in patients with preserved left ventricular function. Journal of
	cardiovascular medicine (Hagerstown, Md.). Jun 2008;9(6):581-588.
15.	Loricchio ML, Cianfrocca C, Pasceri V, et al. Relation of C-reactive protein to
	long-term risk of recurrence of atrial fibrillation after electrical cardioversion.
	The American journal of cardiology. May 15 2007;99(10):1421-1424.
16.	Wazni O, Martin DO, Marrouche NF, et al. C reactive protein concentration and
	recurrence of atrial fibrillation after electrical cardioversion. <i>Heart (British</i>
17	<i>Cardiac Society).</i> Oct 2005;91(10):1303-1305.
17.	Rizos I, Rigopoulos AG, Kalogeropoulos AS, et al. Hypertension and
	paroxysmal atrial fibrillation: a novel predictive role of high sensitivity
	C-reactive protein in cardioversion and long-term recurrence. <i>Journal of human</i>
18.	<i>hypertension</i> . Jul 2010;24(7):447-457. Watanabe E, Arakawa T, Uchiyama T, Kodama I, Hishida H. High-sensitivity
10.	C-reactive protein is predictive of successful cardioversion for atrial fibrillation
	and maintenance of sinus rhythm after conversion. <i>International journal of</i>
	cardiology. Apr 14 2006;108(3):346-353.
19.	Zarauza J, Rodriguez Lera MJ, Farinas Alvarez C, et al. [Relationship between
17.	C-reactive protein level and early recurrence of atrial fibrillation after electrical
	cardioversion]. <i>Revista espanola de cardiologia</i> . Feb 2006;59(2):125-129.
20.	Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of
<u> </u>	diagnostic test accuracy. Annals of internal medicine. Dec 16
	2008;149(12):889-897.
21.	Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG,
	16

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

	Stijnen T. Bivariate random effects meta-analysis of ROC curves. Medical
	decision making : an international journal of the Society for Medical Decision Making. Sep-Oct 2008;28(5):621-638.
22.	Harbord RM, Whiting P, Sterne JA, et al. An empirical comparison of methods
	for meta-analysis of diagnostic accuracy showed hierarchical models are
	necessary. Journal of clinical epidemiology. Nov 2008;61(11):1095-1103.
23.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
	meta-analyses. <i>BMJ (Clinical research ed.)</i> . Sep 6 2003;327(7414):557-560.
24.	Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis
	detected by a simple, graphical test. BMJ (Clinical research ed.). Sep 13
	1997;315(7109):629-634.
25.	Buob A, Jung J, Siaplaouras S, Neuberger HR, Mewis C. Discordant regulatio
	of CRP and NT-proBNP plasma levels after electrical cardioversion of
	persistent atrial fibrillation. Pacing and clinical electrophysiology : PACE. Jun
	2006;29(6):559-563.
26.	Cosgrave J, Foley JB, Bahadur K, Bennett K, Crean P, Walsh MJ. Inflammator
	markers are not associated with outcomes following elective external
	cardioversion. International journal of cardiology. Jun 28
	2006;110(3):373-377.
27.	Ellinor PT, Low A, Patton KK, Shea MA, MacRae CA. C-Reactive protein in
	lone atrial fibrillation. The American journal of cardiology. May 1
	2006;97(9):1346-1350.
28.	Korantzopoulos P, Kolettis TM, Kountouris E, Siogas K, Goudevenos JA.
	Variation of inflammatory indexes after electrical cardioversion of persistent
	atrial fibrillation. Is there an association with early recurrence rates?
• •	International journal of clinical practice. Aug 2005;59(8):881-885.
29.	Psychari SN, Chatzopoulos D, Iliodromitis EK, Apostolou TS, Kremastinos D
	C-reactive protein, interleukin 6, and N-terminal pro-brain natriuretic peptide
	following cardioversion of atrial fibrillation: is there a role of biomarkers in
20	arrhythmia recurrence? <i>Angiology</i> . May 2011;62(4):310-316. Komatsu T, Sato Y, Ozawa M, et al. Relationship between CHADS2 score and
30.	efficacy of antiarrhythmic drug therapy in patients with paroxysmal atrial
	fibrillation. <i>Circulation journal : official journal of the Japanese Circulation Society</i> . Feb 25 2013;77(3):639-645.
31.	Letsas KP, Efremidis M, Giannopoulos G, et al. CHADS2 and CHA2DS2-VAS
51.	scores as predictors of left atrial ablation outcomes for paroxysmal atrial
	fibrillation. Europace : European pacing, arrhythmias, and cardiac
	electrophysiology : journal of the working groups on cardiac pacing,
	ereen sprijstetegy i journaa of the working groups on curatice pacing,
	17

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Jun 28 2013.

- Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. *Circulation*. Jun 4 2002;105(22):2595-2599.
- Parekh RS, Plantinga LC, Kao WH, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. *Kidney international*. Nov 2008;74(10):1335-1342.
- 34. Streitner F, Kuschyk J, Veltmann C, et al. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. *Cytokine*. Sep 2009;47(3):166-172.
- Korngold EC, Januzzi JL, Jr., Gantzer ML, Moorthy MV, Cook NR, Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. *Circulation*. Jun 9 2009;119(22):2868-2876.
- 36. Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation of atrial fibrillation. *European heart journal*. Oct 2005;26(20):2083-2092.
- Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. *Cardiovascular research*. May 2002;54(2):230-246.
- Van Wagoner DR. Oxidative Stress and Inflammation in Atrial Fibrillation: Role in Pathogenesis and Potential as a Therapeutic Target. *Journal of Cardiovascular Pharmacology*. 2008;52(4):306-313 310.1097/FJC.1090b1013e31817f39398.
- 39. Moro C, Hernandez-Madrid A, Matia R. Non-antiarrhythmic drugs to prevent atrial fibrillation. *American journal of cardiovascular drugs : drugs, devices, and other interventions.* 2010;10(3):165-173.
- 40. den Uijl DW, Delgado V, Tops LF, et al. Natriuretic peptide levels predict recurrence of atrial fibrillation after radiofrequency catheter ablation. *American heart journal*. Jan 2011;161(1):197-203.
- Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. *The Journal of international medical research*. 2011;39(5):1618-1624.

1 2	
2 3 4 5 6 7	
5 6	
7 8	
9 10	
11 12	
13 14	
15	
17	
19	
20	
22	
24 25	
26 27	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 435 36 37 38 39	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59 60	

Figure legends Figure 1. A simplified flow chart to identify and to include studies. Amongst 752 citations in MEDLINE and EMBASE from inception to December 2013, a search limited to human studies using "C-reactive protein" and the MeSH term "diagnosis of atrial fibrillation" resulted in 32 potentially relevant articles for further review. After careful scrutinization on full text, 9 articles were left for meta-analysis. Figure 2. The quality assessment of diagnostic accuracy on studies. A spectrum of features were analysed to avoid bias using a well-validated tool called Quality Assessment of Diagnostics Accuracy Studies (QUADAS). Percentage for each feature was independently evaluated among the studies. It is worthy of attention that none of the studies explained the withdrawal and reported indetermined results, likely to compromise the quality of diagnostic accuracy. Figure 3. The ROC curve of hs-CRP. Our analysis suggests it is highly possible to predict atrial fibrillation using C-creative protein since the area under the curve generates a measurement of discrimination ~0.77. The overall sensitivity and specificity are relatively high. We have 5 out 9 studies that fall in the 95% CI region, while 8 out 9 in the 95% prediction region. Figure 4. The forest plot of the odds ratios (ORs). Our study indicates that hsCRP-positive patients are ~5.91 times more likely to develop a recurrence of atrial

fibrillation than hsCRP-negative patients are. The estimated sensitivity and specificity

<text>

1	
2	
3	
4	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 5 6 7 8 9 10 11 2 10 10 10 10 10 10 10 10 10 10 10 10 10	
â	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 4 35 36 37 38 9 20	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
20	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>1</u> 0	

Table 1. Summary of the characteristics of the included studies

Author, year, country	Mean Age	Prevalence (N)	Follow-up time	Cutoff (mg/l)	AF type	Cardiovers ion	Sensitivity, Specificity	Adjusted odd ratio	Adjusted variables
Wazni O, 2005,USA ¹⁶	67.3	0.68(111)	76 days	3.1	Persistent AF	Electric	59 %, 69 %	2.0 (1.2-3.2)	Age, sex, duration of AF, coronary artery disease, hypertension, left ventricular hypertrophy, LAD
Zarauza J, 2006, Spain ¹⁹	62.7	0.43(37)	30 days	3.0	Persistent AF	Electric	81%, 67 %	3.7 (1.3-10.8)	Sex, age, time, size of left atrium, history of hypertension, pharmacological treatment
Watanabe E, 2006, Japan ¹⁸	64	0.76(84)	1 year	0.6	Persistent AF	Electric	75%, 90%	5.3 (2.5-11.5)	Sex, coronary artery disease, hypertension, smoking, diabetes, AF duration, LAD, and LVEF
Loricchio ML, 2007, Italy ¹⁵	67	0.52(102)	1 year	1.9	Persistent AF	Electric	87%, 37%	5.0 (1.8-14.3)	Age, gender, EF, LAD , hypertension, diabetes, pharmacological treatment
Lombardi F, 2008, Italy ¹⁴	67	0.34(53)	21 days	3.6	Persistent AF	Electric	64%, 83%	1.6 (1.0-2.5)	Age, LAD, LAA, LAAEV, NTproBNP level, history of AF, AF duration or pharmacological treatment
Henningsen KMA, 2009, Denmark ¹²	65	0.68(56)	180 days	3.0	Persistent AF	Electric	60%, 83%	7.7 (1.9-31.1) *	ΝΑ
Rizos I, 2010,Greece ¹⁷	67.9	0.64(61)	1 year	2.3	Paroxysmal AF	Pharmacol ogic	72%, 68%	6.2 (2.2-17.6)	IL-6, age, gender, PAF history, LAD, EF, diabetes, smoking
Liu J, 2011,China ¹³	55.1	0.39(44)	1 year	1.9	Paroxysmal AF	Electric ablation	79%, 70 %	5.1 (2.1–12.1)	Age, gender, type of AF, duration of AF, LAD, LVEF, plasma hsCRP concentration.
Barassi A, 2012,Italy ¹⁰	66.9	0.33(57)	21 days	3.0	Persistent AF	Electric	74%, 84 %	14.9 (3.9-57.2) *	ΝΑ

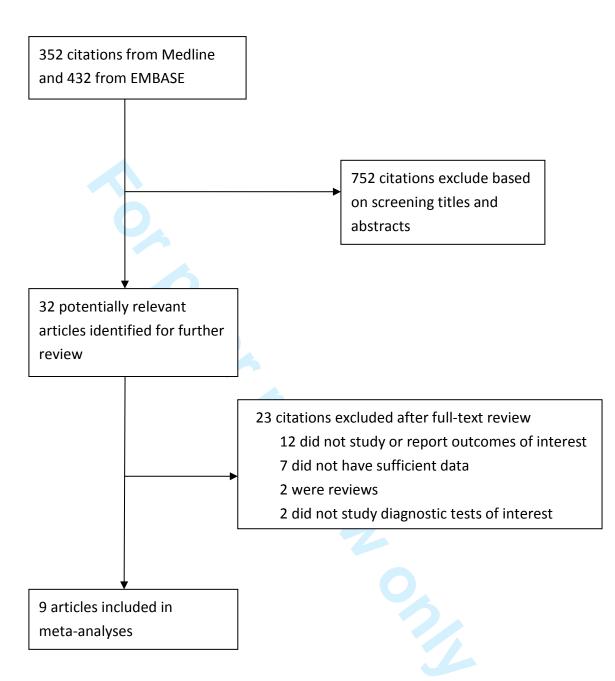
Abbreviations: HsCRP: High-sensitivity C-reactive protein NA: Not applicable ACE: angiotensin-converting enzyme; *: crude effect estimate

21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Table 2. Summary of pooled diagnostic accuracy indices


5 6

8												
9 10 11 12			<u>Number</u> <u>of</u> <u>studies</u>	<u>Sensitivity</u> (95% CI)	Specificity (95% CI)	<u>Likelihood</u> <u>ratio+</u>	<u>Likelihood</u> <u>ratio-</u>	<u>AUROC</u> (95% CI)	<u>l²</u> (95% Cl)	Diagnostic OR (95% CI)	<u>Meta-regr</u> <u>ession P</u>	<u>Egger's</u> <u>test P</u>
1: 1- 1: 1: 1: 1: 1:	overail	2-19	<u>9</u>	<u>0.71(0.63-0.78)</u>	<u>0.72(0.61-0.81)</u>	<u>2.57(1.86-3.55)</u>	0.40(0.32-0.50)	<u>0.77(0.73-0.81)</u>	<u>14.6(0-56.6)</u>	<u>5.91 (4.07-8.59)</u>	<u></u>	<u>0.566</u>
	Follow time months ^{10,14}		<u>4</u>	<u>0.73(0.56-0.85)</u>	<u>0.71(0.54-0.83)</u>	<u>2.50(1.67-3.77)</u>	<u>0.38(0.24-0.59)</u>	<u>0.78(0.74-0.82)</u>	<u>0.0(0.0-74.6)</u>	<u>6.34(3.70- 10.85)</u>	<u>0.759</u>	<u>0.345</u>
	year ^{12-14,17,2}	<u>e > one</u> ¹⁸	<u>5</u>	<u>0.77(0.69-0.84)</u>	<u>0.65(0.45-0.80)</u>	<u>2.22(3.14-12.88)</u>	<u>0.35(0.26-0.48)</u>	<u>0.79(0.75-0.82)</u>	<u>34.8(0.0-77.2)</u>	<u>5.54(3.29-9.32)</u>	<u>0.552</u>	<u>0.583</u>
	2 <u>cardioversi</u> 3 <u>14-16,18,19</u>	ion ^{10,12,}	Z	<u>0.72(0.62-0.80)</u>	<u>0.74(0.60-0.85)</u>	<u>2.81(1.79-4.41)</u>	<u>0.38(0.29-0.50)</u>	0.78(0.75-0.82)	<u>33.0(0.0-71.6)</u>	<u>5.13(3.63- 7.25)</u>	<u>0.611</u>	<u>0.198</u>
222	5 <u>Persistent</u> 5 ▲ F ^{10,12,14-16,}	,18,19	<u>7</u>	<u>0.70(0.61-0.78)</u>	<u>0.71(0.59-0.80)</u>	<u>2.40(1.77-3.25)</u>	<u>0.42(0.33-0.53)</u>	0.76(0.72-0.80)	22.3(0.0-64.2)	<u>5.70(3.77-8.62)</u>	<u>0.899</u>	<u>0.464</u>
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 9 0 1 2 3 4											

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

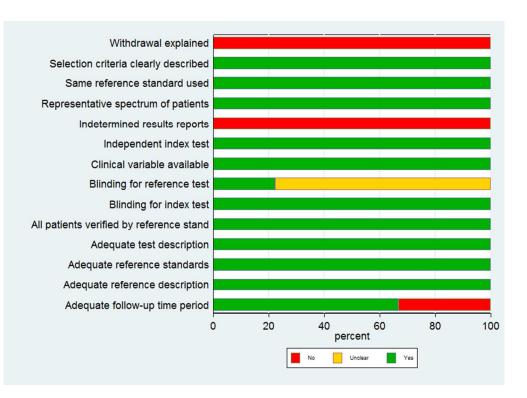
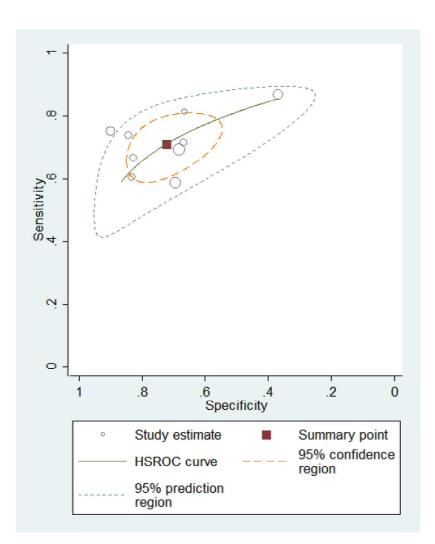
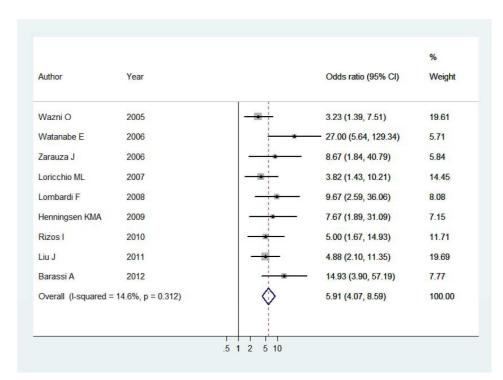

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Figure 1 Flow chart of study identification and inclusion



Page 46 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



Results of the quality assessment of studies of diagnostic accuracy 302x219mm (72 x 72 DPI)

The summary ROC curve of hs-CRP 297x420mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The forest plot of the ORs 209x148mm (300 x 300 DPI)

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	P1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	P2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	P4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	P4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	P5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	P5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	P5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	P5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	P5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	P6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	P6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	P7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	P6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ² for each meta-analysis, For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	P7

BMJ Open

PRISMA 2009 Checklist

Page	1	of	2
Page		UI.	2

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	P6-7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	P7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	P8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	P8, Table1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	P8,12-13
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	P9, Table1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	P9, Table2, Fig3, Fig4
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	P9,12-13
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	P9, Table2
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	P10-11
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	P12-13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	P13-14
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	P14

Δ

PRISMA 2009 Checklist

.oup (2009). Preterred (For more information, vs. Page. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial Fibrillation Recurrence: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004418.R2
Article Type:	Research
Date Submitted by the Author:	29-Jan-2014
Complete List of Authors:	Yo, Chia-Hung; Far Eastern Memorial Hospital, Department of Emergency Medicine Lee, Si-Huei; Taipei Veteran General Hospital, Department of Rehabilitation and Physical Medicine Chang, Shy-Shin; Chang Gung Memorial Hospital, Department of Family Medicine Lee, Chien-Hung; Medical Wisdom Consultants, Lee, Chien-Chang; National Taiwan University Hospital Yunlin Branch, Department of Emergency Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Adult cardiology < CARDIOLOGY, Pacing & electrophysiology < CARDIOLOGY, Hypertension < CARDIOLOGY, C - reactive protein, cardioversion, meta-analysis
	·

SCHOLARONE[™] Manuscripts

BMJ Open

1	Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial
2	Fibrillation Recurrence: a systematic review and meta-analysis
3	
4	¹ Chia-Hung Yo MD, ² Si-Huei Lee MD ^{3,4} Shy-Shin Chang MD, ⁵ Matthew
5	Chien-Hung Lee PhD, JD, ^{6,7} Chien-Chang Lee MD, MSc
6	
7	¹ Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei
8	City, Taiwan.
9	² Department of Rehabilitation and Physical Medicine, Taipei Veteran
10	General Hospital, Taipei, Taiwan
11	³ Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
12	⁴ Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung
13	University, Taoyuan, Taiwan.
14	⁵ Medical Wisdom Consultants, Houston, USA
15	⁶ Department of Epidemiology, Harvard School of Public Health, Boston, USA.
16	⁷ Department of Emergency Medicine, National Taiwan University Hospital Yunlin
17	Branch, Douliou, Taiwan
18	Address correspondence to
19	Address correspondence to Chien-Chang Lee MD, MSc
20	Email: cclee100@gmail.com
21	Postal Address: No 579 Sec 2 Yunlin Road, Douliou, Yunlin County 640, Taiwan
22	Telephone: +886-5-532-3911 ext. 2326
23	Fax: +886-2322-3150
24	Word count: 2535
25	Conflict of interest: None declared
	1

26	Abstract
27	Objectives: We performed a systematic review and meta-analysis of studies on
28	high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are
29	predictive of atrial fibrillation (AF) recurrence after cardioversion.
30	
31	Design: Systematic review and meta-analysis.
32	
33	Data sources: PubMed, EMBASE, and Cochrane databases as well as a hand search of
34	the reference lists in the retrieved articles from inception to December 2013.
35	
36	Study eligibility criteria: This review selected observational studies in which the
37	measurements of serum CRP were used to predict atrial fibrillation recurrence. An
38	hs-CRP assay was defined as any c-reactive protein (CRP) test capable of measuring
39	serum CRP to below 0.6 mg/dL.
40	
41	Primary and secondary outcome measures: We summarized test performance
42	characteristics with the use of forest plots, hierarchical summary receiver operating
43	characteristic (HSROC) curves, and bivariate random effects models. Meta-regression
44	analysis was performed to explore the source of heterogeneity.
45	
46	Results: We included nine qualifying studies comprising a total of 347 patients with AF
47	recurrence and 335 controls. A CRP level higher than the optimal cutoff point was an
48	independent predictor of AF recurrence after cardioversion (summary adjusted odds
49	ratio: 3.33; 95%CI: 2.10-5.28). The estimated pooled sensitivity and specificity for
50	hs-CRP was 71.0% (95% Cl: 63% to 78%) and 72.0% (61% to 81%), respectively.
51	Most studies used a CRP cutoff point of 1.9 mg/l to predict long-term AF recurrence

BMJ Open

52	(77% sensitivity, 65% specificity), and 3 mg/l to predict short-term AF recurrence (73%
53	sensitivity, 71% specificity).
54	
55	Conclusions: High-sensitivity CRP assays are moderately accurate in predicting AF
56	recurrence after successful cardioversion.
57	
58	Strengths and limitations of this study
59	•This meta-analysis finding supports that measurement of CRP levels before
60	cardioversion can aid in the prediction of AF recurrence.
61	•We reported summary likelihood ratios (LRs) as an ancillary measure of predictive
62	accuracy.
63	•A bivariate random effect model to account for the inherent negative correlation
64	arising from different cutoff values used in different studies, and occurring
65	between the logit true positive rates (TPR) and false positive rates (FPR).
66	•Results of sensitivity analysis did not show a significantly different overall
67	predictive accuracy between long-term and short-term follow-up, however, a
68	heterogeneity tended toward between-study variability.
69	•Current summary estimates based on the one cutoff point may thus have
70	under-evaluated the clinical usefulness of hs-CRP assays.
71	
72	Keywords: atrial fibrillation, recurrence, cardioversion, C - reactive protein,
73	meta-analysis
74	
75	
76	Introduction
77	Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, although the 3

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2
2
3
4
5
5
6
7
0
o
9
10
11
10
12
13
14
15
10
16
17
18
2 3 4 5 6 7 8 9 10 1 12 3 14 5 16 7 8 9 10 11 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3
19
20
21
20
22
23
24
05
25
26
27
21
28
29
20
30
31
32
202
33
34
35
26
30
37
38
00
39
40
41
10
42
42 43
44
45
45 46
40
47 48
48
49
40 F0
50 51
51
52
52
ეკ
54
51 52 53 54 55 56 57
55
56
57
58
50
59
60

98

99

100

101

102

103

1

78	prevalence is highest among people of advanced age. ^{1,2} AF poses a significant
79	economic burden, with a 66% increase in hospital admissions over the past two decades.
80	It is estimated that the number of patients affected by AF is likely to grow 2.5 fold by
81	the year 2050. ¹⁻³ In addition, AF may lead to debilitating complications such as
82	ischemic stroke and heart failure. Although ventricular rate control is an acceptable
83	treatment strategy in many patients, some patients may remain symptomatic despite
84	adequate rate controls. For this group of patients, cardioversion may be the treatment of
85	choice. Electrical cardioversion can restore sinus rhythm effectively in most patients
86	and can act with antiarrhythmic drugs synergistically to enhance the cardioversion
87	success rate. ⁴ However, cardioversion is not the definite treatment. Approximately 50%
88	of patients undergoing cardioversion usually present with recurrence of AF within three
89	to six months of cardioversion despite ongoing antiarrhythmic treatment. ⁵ Left
90	ventricular dysfunction, left atrial enlargement, arrhythmia duration, and history of
91	hypertension are major risk factors for AF recurrence. ⁶ However, recent studies have
92	indicated that inflammation, necrosis, and fibrosis play roles in the structural
93	remodeling process of the atria, contributing to the perpetuation or recurrence of atrial
94	fibrillation.
95	
96	C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response
97	to proinflammatory cytokines, notably interluekin-6, and other endogenous signals of

4

Unfortunately, those assays are insufficiently sensitive for measuring the low level of

innate immunity or tissue damage. CRP has recently been shown to be associated with

cardiovascular risk and AF recurrence. A previous meta-analysis revealed that CRP is

elevated in patients with AF.⁷ However, 5 of the 6 studies included in that analysis

used traditional automated immunonephelometric assays to measure CRP.

inflammation associated with AF. A newer enzyme immunoassay, namely

BMJ Open

104	high-sensitivity CRP (hs-CRP), is capable of measuring serum CRP below 0.6 mg/dL
105	and may further enhance the predictability of AF recurrence. ⁸ Since 2006, several
106	studies evaluating the accuracy of hs-CRP in predicting AF recurrence have been
107	published, ⁹⁻¹⁹ warranting a systemic and quantitative summary of current evidence on
108	the accuracy of CRP in predicting AF recurrence after cardioversion.
109	
110	Methods
111	Identification of Studies
112	General bibliographic databases (MEDLINE and EMBASE) were searched from
113	inception to April 2013. The medical subject heading (MeSH) and text words for the
114	term C -reactive protein were combined with the MeSH term "diagnosis of atrial
115	fibrillation". The search was limited to human studies with no language restrictions.
116	In addition to the electronic search, reference lists in all known reviews and primary
117	studies were checked manually.
118	
119	Selection Criteria
120	This review focused on observational studies in which the measurements of serum
121	CRP were used to predict atrial fibrillation recurrence. The population of interest
122	comprised patients with paroxysmal or persistent AF who underwent electric
123	cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was
123 124	cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was defined as AF documented by ECG at any time after the cardioversion during the
124	defined as AF documented by ECG at any time after the cardioversion during the
124 125	defined as AF documented by ECG at any time after the cardioversion during the follow-up period. Generally, patients were instructed to return to the clinic if the
124 125 126	defined as AF documented by ECG at any time after the cardioversion during the follow-up period. Generally, patients were instructed to return to the clinic if the symptoms such as palpitations, shortness of breath, or chest discomfort developed
124 125 126 127	defined as AF documented by ECG at any time after the cardioversion during the follow-up period. Generally, patients were instructed to return to the clinic if the symptoms such as palpitations, shortness of breath, or chest discomfort developed after cardioversion. We included studies using a cohort design or case-control design

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

2
3
1
-
4 5 6 7
6
7
8
à
40
10
11
12
13
14
45
15
16
17
18
, 8 9 10 11 12 13 14 15 16 7 18 20 21 22 23 24
20
20
21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23
24
25
20
26
27
28
29
20
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

by a third reviewer if consensus could not be reached by the two reviewers. We
extracted data from the included studies. Data collected include study design,
participants, country, period of recruitment, hs-CRP assay, cutoff-points, length of
follow-up period, and recurrence of AF. One reviewer extracted the data and a second
reviewer independently verified the correctness of the extracted data.

135

136 Quality Assessment

137 We assessed the methodological quality of the selected studies using a well-validated 138 tool for assessment of quality of diagnostic accuracy studies (Quality Assessment of Diagnostic Accuracy Studies, QUADAS).²⁰ The QUADAS instrument scrutinizes 139 140 characteristics of study designs, population, index tests, and reference standards that 141 may be associated with risk of bias. These features included the spectrum of patients, 142 whether index tests and reference standards were evaluated and interpreted 143 independently to avoid incorporation bias, and whether all patients underwent the 144 same reference standards to avoid differential or partial verification bias. 145 146 Data Abstraction 147 One reviewer independently extracted the data and a second reviewer independently 148 verified the data. Extracted data comprised the following: overall study characteristics 149 (including the first author, country, language, and date of publication); patient 150 characteristics (including age range and pre-existing atrial fibrillation); quantitative 151 data required for construction of a 2 x 2 table (including number of participants, 152 sensitivity, specificity, and recurrence case number); information regarding the 153 hs-CRP assay (including brand name of the test kit, cutoff levels, and quantitative or 154 semi-quantitative nature of the test); and study settings. In studies that reported multiple pairs of sensitivity and specificity data, we consistently used the data with 155

BMJ Open

156	the highest Youden index (sensitivity + specificity -1) and performed a sensitivity
157	analysis at a later stage.
158	
159	Quantitative Data Synthesis
160	We performed a meta-analysis of diagnostic test accuracy of CRP testing for the
161	prediction of recurrent AF. We calculated the pooled sensitivity and specificity,
162	positive and negative likelihood ratios, and the diagnostic odds ratio of CRP, along
163	with the respective 95% confidence intervals (CIs), using a bivariate meta-analysis
164	model. ²¹ Likelihood ratios were then translated to post-test probability by use of
165	Fagan's plot. We constructed a hierarchical summary receiver operating characteristic
166	(HSROC) curve that plots sensitivity versus specificity and calculated the area under
167	the curve (AUROC). ²² We evaluated the degree of between-study heterogeneity by
168	using the I ² test. ²³ To explore the clinical sources of heterogeneity, we defined the
169	potential explanatory variables a priori and performed subgroup analysis to see if the
170	accuracy estimates changed significantly across various subgroups. The presence and
171	the effect of publication bias were examined using a combination of the Egger tests. ²⁴
172	Statistical analyses were conducted using the statistical package STATA (Version 11.0,
173	Stata Corp, College Station, TX), notably with the user-written "midas" and
174	"metandi" programs. All statistical tests were two-sided and statistical significance
175	was defined as a P value less than .05.
176	
177	Search Results and Study Characteristics
178	The flow of inclusion and exclusion is summarized in Figure 1. Using our search
179	criteria, we identified 784 studies, of which 352 were from PubMed and 432 were
180	from EMBASE. A total of 752 citations were excluded based on pre-defined criteria.
181	No additional citations were identified from the reference lists. A total of 32 articles $\frac{1}{2}$
	7

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

182	were retrieved for full-text review, and 23 were excluded due to various reasons
183	detailed in Figure 1. A total of 9 studies that evaluated the accuracy of hs-CRP tests in
184	predicting AF recurrence after cardioversion were finally included in the
185	meta-analysis. The 9 studies included a total of 682 patients with AF after successful
186	cardioversion, of which 347 (50.9%) developed recurrence.
187	
188	Characteristics of included studies
189	Table 1 lists the study and population characteristics of the 9 patient populations even
190	if we had additional 5 studies that don't have sufficient data for statistical analysis ²⁵⁻²⁹ .
191	The mean age of patients in the included studies ranged from 55.1 years to 67.9 years
192	and the mean follow-up period ranged from 30 days to 1 year. Seven studies included
193	patients with persistent AF, while 2 studies included patients with paroxysmal AF.
194	Seven studies used electric shock, one used circumferential pulmonary vein isolation
195	(also known as electric ablation), and the other used intravenous amiodarone as the
196	primary method for cardioversion. A total of seven studies provided multivariate
197	(adjusted) odds ratios to evaluate the independent predictive value of CRP levels.
198	These studies generally adjusted for potential predictors of AF recurrence such as age,
199	sex, use of anti-arrhythmic agents, and heart structural and functional parameters. All
200	studies showed that CRP was a significant independent predictor of AF recurrence.
201	Associated adjusted ratios and adjusted variables are summarized in table 1.
202	
203	Quality assessment
204	Results of the quality assessment of studies of diagnostic accuracy are summarized in
205	figure 2. All studies were prospective and enrolled consecutive outpatients with AF
206	after cardioversion. Three studies had a short follow-up period (i.e. ≤ 0.5 or 1 year).
207	Although most of the studies did not indicate whether physicians were blinded to the 8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

208	index tests when diagnosing AF recurrence, the determination of AF recurrence was
209	not affected by the knowledge of hs-CRP test results and risk of incorporation bias
210	was minimal. None of the studies reported the undetermined results or withdrawals.
211	
212	Diagnostic accuracy indices
213	Sensitivity, specificity, and diagnostic odds ratio
214	The estimated sensitivity and specificity were relatively consistent across studies
215	$(I^2=14.6\%)$. Table 2 shows the results of individual and combined sensitivity
216	estimates for the tests. The estimated pooled sensitivity and specificity for hs-CRP
217	was 71.0% (95% confidence interval 63% to 78%) and 72.0% (61% to 81%),
218	respectively. The pooled prevalence of AF recurrence was 54% herein, and we used it
219	as the pre-test probability. With a pooled positive likelihood ratio of 2.57 and a
220	negative likelihood ratio of 0.4, the post-test probability for AF recurrence for a
221	positive hs-CRP test result was 72% and a post-test probability for a negative hs-CRP
222	test result was 29%. The area under the ROC curve showed an acceptable overall
223	measurement of discrimination (0.77, Figure 3). Figure 4 shows the forest plot of the
224	ORs.
225	
226	Subgroup analysis and meta-regression
227	In view of the potential influence of spectrum variability, we considered the duration
228	of follow-up, mode of cardioversion, and type of AF in the study patients to be
229	important. Hs-CRP test results generally had higher sensitivity and lower specificity
230	in predicting long-term over short-term AF recurrence. Excluding two studies not
231	using electric shock as the primary cardioversion method did not significantly alter
232	the predictive accuracy. Similarly, focusing the study patients on persistent AF
233	<i>population</i> had similar results as compared with the main overall analysis.

Page 10 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Exploratory meta-regression analysis did not find that any pre-specified covariate significantly changed the effect estimate. Discussion This meta-analysis shows that elevated CRP levels are independently predictive of AF recurrence in patients with persistent or paroxysmal AF who have undergone successful cardioversion. This finding supports that measurement of CRP levels before cardioversion can aid in the prediction of AF recurrence. Despite the modest pooled sensitivity and specificity, the rule-in diagnostic value was still high, given the high recurrence rate of AF observed in these included studies. A positive hs-CRP test result at baseline can predict a 73% chance of AF recurrence in the 6 to 12 months following cardioversion. Previous studies have examined risk factors that predict AF recurrence. Traditional clinical risk factors for recurrence include history of multiple AF episodes, use of diuretic treatment, higher CHADS-2 (Congestive heart failure, history of Hypertension, Age≥75 years, Diabetes mellitus, and past history of Stroke or TIA doubled) index score, frequent use of amiodarone, calcium-channel blockers, and 1C

- drugs, and digitalis.^{30,31} Although each of these factors could predict AF recurrence
- with some accuracy, a quantitative combination of these predictors is not available,
- and the clinical utility of these variables remains questionable. This also suggests that
- a multivariate prediction model should be developed for AF recurrence, and that
- 256 hsCRP should be a candidate for inclusion in the model.
- During the past decade, serum biomarkers have emerged as practical tools to help in
 the early identification of patients at high risk for various cardiac events. Elevation of 10

Page 11 of 51

BMJ Open

260	inflammatory markers is associated with sudden cardiac death in patients with heart
261	failure or coronary artery disease, and onset of ventricular arrhythmia. ³²⁻³⁵ Of note,
262	there is abundant evidence that elevated serum levels of CRP are associated with the
263	genesis and perpetuation of atrial fibrillation. CRP is the most commonly used clinical
264	inflammatory biomarker. It is mainly produced in liver and by inflammatory cells in
265	response to proinflammatory cytokine stimulation. Although the pathophysiology of
266	AF remains elusive, there is pathophysiological evidence supporting the role of
267	inflammation in the initiation, maintenance, and perpetuation of AF. ³⁶ Clinically, AF
268	is frequently associated with local inflammatory diseases such as myocarditis or
269	pericarditis, and systemic inflammatory status, such as post-operative state and severe
270	sepsis. Histologically, structural remodeling of the atria manifested by loss of
271	myocardium and increased atrial fibrosis is a hallmark of atrial fibrillation. ³⁷
272	Inflammatory cell infiltrates and oxidative damage have been demonstrated in atrial
273	biopsy specimens from AF patients. ³⁸ Activated inflammatory cells in conjunction
274	with reactive oxygen species, cytokines, and growth factors, may ultimately lead to
275	matrix deposition with atrial fibrosis. Recent evidence also shows that the uses of
276	immune-modulating agents such as statins, angiotensin-converting enzyme inhibitors,
277	or glucocorticoids modulate the course of AF. ³⁹
278	
279	In addition to CRP, b-type natriuretic peptide (BNP) has been shown to be an indicator
280	of new onset AF and AF recurrence after successful cardioversion. ^{34,35,40} BNP is also
281	produced in response to atrial pressure and volume overload and there is evidence that
282	BNP is secreted by the atrium in patients with AF. A previous meta-analysis showed
283	that the standardized mean difference in plasma BNP level between patients with
284	non-recurrence and patients with recurrence was -1.35 (95% confidence interval -2.17,
285	-0.53). ⁴¹ Data on sensitivity and specificity in that study were not available. The

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 12 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

comparative accuracy between BNP and hs-CRP in predicting AF recurrence thusrequires further analysis.

There are both strengths and limitations in our study. Considering the limitation of sensitivity and specificity in clinical interpretation, we reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy. The LRs indicate how much a given CRP testing result increases or decreases the probability of recurrence of AF. Post-test probabilities can be derived from pre-test probabilities and LRs, which are an important clinical parameter for major clinical decision making. Second, we used a bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies, and occurring between the logit TPR and FPR. Third, we performed sensitivity analysis by restricting analysis within two broad categories of follow-up duration. Results of sensitivity analysis did not show a significantly different overall predicative accuracy between long-term and short-term prediction of AF recurrence. Nonetheless, it is noteworthy that the sensitivity may be over estimated in our study under the hypothesis where the inflammation may be symptomatic since none of the studies provided withdrawal and undetermined results, and the ascertainment of AF was passive. This event further introduces the differential verification bias. Moreover, our meta-analysis is restricted to distinguish hsCRP levels above or below 0.6 mg/dL because the authors in only one of the studies claimed to possess such capability. Finally, due to the lack of individual data, it is hard to determine whether the area under ROC (AUC) can be improved by the new assay either on overall or on individual studies. In general, potential sources of between-study variability included differences in incidence of AF recurrence, different threshold values of CRP concentration used, and different duration for follow-up. Another limitation was the

312	strategy we used to determine the optimal cutoff value. Most studies determined an
313	optimal cutoff value to maximize both sensitivity and specificity. Although a single
314	cutoff value is straightforward in clinical interpretation, it may make a marker neither
315	sensitive nor specific enough to rule out or rule in an outcome of interest. A two
316	cut-off value strategy, with one using a lower cutoff value to optimize the sensitivity
317	(rule-out value) and the other using a higher cutoff value to optimize the specificity
318	(rule-in value), would make better use of the information that a biomarker with a
319	continuous value could provide. Current summary estimates based on the one cutoff
320	point may thus have under-evaluated the clinical usefulness of hs-CRP assays. To
321	make the best use of the biomarker information by adopting a two cutoff point
322	strategy or a multi-cutoff point risk classification strategy, an individual data
323	meta-analysis would be needed to overcome the limitations of this aggregated data
324	meta-analysis.
325	
326	Conclusions
327	Baseline CRP levels before cardioversion can independently predict AF recurrence
328	after successful cardioversion. Given the high recurrence rate reported in most series,
329	the modest positive likelihood ratio for hs-CRP assays still has high positive
330	predictive value. Future studies should focus on the evaluation of two or multiple
331	cutoff points. In the interim, their inclusion in existing pre-cardioversion evaluation
332	algorithms should be considered.
333	
334	
335	
336	
337	13
	15

Acknowledgement This study was supported by grants of Far Eastern Memorial Hospital, Taiwan (FEMH-2013_D_036) **Data sharing** The study results will be published in a peer-reviewed scientific journal. The extracted data will open to sharing upon request. Contributorship C.H.Y.: study design, data management, statistics, first draft, final draft, and approval; S.H.L.: study design, scientific and statistic advisory, study monitoring, final draft, and approval; S.S.C.: statistics, final draft, and approval; M.C.L.; data collection, final draft, and approval; C.C.L.: design, scientific and statistic advisory, final draft, and approval. **Competing Interest** None

- 1. Fabbri G, Maggioni AP. A review of the epidemiological profile of patients with atrial fibrillation and heart failure. *Expert review of cardiovascular therapy*. Sep 2012;10(9):1133-1140.
- 2. Menezes AR, Lavie CJ, DiNicolantonio JJ, et al. Atrial fibrillation in the 21st century: a current understanding of risk factors and primary prevention strategies. *Mayo Clinic proceedings. Mayo Clinic.* Apr 2013;88(4):394-409.
- Anderson JL, Halperin JL, Albert NM, et al. Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology*. May 7 2013;61(18):1935-1944.
- 4. Manlucu J, Brancato S, Lane C, et al. Contemporary approaches to persistent atrial fibrillation. *Expert review of cardiovascular therapy*. Nov 2012;10(11):1421-1435.
- Disertori M, Lombardi F, Barlera S, et al. Clinical characteristics of patients with asymptomatic recurrences of atrial fibrillation in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. *American heart journal*. Aug 2011;162(2):382-389.
- 6. Letsas KP, Weber R, Burkle G, et al. Pre-ablative predictors of atrial fibrillation recurrence following pulmonary vein isolation: the potential role of inflammation. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* Feb 2009;11(2):158-163.
- Liu T, Li L, Korantzopoulos P, Goudevenos JA, et al. Meta-analysis of association between C-reactive protein and immediate success of electrical cardioversion in persistent atrial fibrillation. *The American journal of cardiology*. Jun 15 2008;101(12):1749-1752.
- Roberts WL, Sedrick R, Moulton L, et al. Evaluation of four automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. *Clinical chemistry*. Apr 2000;46(4):461-468.
- Celebi OO, Celebi S, Canbay A, et al. The effect of sinus rhythm restoration on high-sensitivity C-reactive protein levels and their association with long-term atrial fibrillation recurrence after electrical cardioversion. *Cardiology*. 2011;118(3):168-174.
- 10. Barassi A, Pezzilli R, Morselli-Labate AM, et al. Serum amyloid a and C-reactive protein independently predict the recurrences of atrial fibrillation

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	after cardioversion in patients with preserved left ventricular function. The
	Canadian journal of cardiology. Sep-Oct 2012;28(5):537-541.
11.	Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reacti protein to the first onset and the recurrence rate in lone atrial fibrillation. <i>Th</i>
	American journal of cardiology. Mar 1 2006;97(5):659-661.
12.	Henningsen KM, Therkelsen SK, Bruunsgaard H, et al. Prognostic impact of
12.	hs-CRP and IL-6 in patients with persistent atrial fibrillation treated with
	electrical cardioversion. Scandinavian journal of clinical and laboratory
	investigation. 2009;69(3):425-432.
13.	Liu J, Fang PH, Dibs S, et al. High-sensitivity C-reactive protein as a predic
15.	of atrial fibrillation recurrence after primary circumferential pulmonary vei
	isolation. <i>Pacing and clinical electrophysiology : PACE</i> . Apr
	2011;34(4):398-406.
14.	Lombardi F, Tundo F, Belletti S, et al. C-reactive protein but not atrial
17.	dysfunction predicts recurrences of atrial fibrillation after cardioversion in
	patients with preserved left ventricular function. <i>Journal of cardiovascular</i>
	medicine (Hagerstown, Md.). Jun 2008;9(6):581-588.
15.	Loricchio ML, Cianfrocca C, Pasceri V, et al. Relation of C-reactive protein
13.	long-term risk of recurrence of atrial fibrillation after electrical cardioversic
	The American journal of cardiology. May 15 2007;99(10):1421-1424.
16.	Wazni O, Martin DO, Marrouche NF, et al. C reactive protein concentration
10.	recurrence of atrial fibrillation after electrical cardioversion. <i>Heart (British</i>
	<i>Cardiac Society)</i> . Oct 2005;91(10):1303-1305.
17.	Rizos I, Rigopoulos AG, Kalogeropoulos AS, et al. Hypertension and
17.	paroxysmal atrial fibrillation: a novel predictive role of high sensitivity
	C-reactive protein in cardioversion and long-term recurrence. <i>Journal of hum</i>
	hypertension. Jul 2010;24(7):447-457.
18.	Watanabe E, Arakawa T, Uchiyama T, et al. High-sensitivity C-reactive prot
10.	is predictive of successful cardioversion for atrial fibrillation and maintenar
	of sinus rhythm after conversion. <i>International journal of cardiology</i> . Apr 1
	2006;108(3):346-353.
19.	Zarauza J, Rodriguez Lera MJ, Farinas Alvarez C, et al. [Relationship betwo
17.	C-reactive protein level and early recurrence of atrial fibrillation after electr
	cardioversion]. <i>Revista espanola de cardiologia</i> . Feb 2006;59(2):125-129.
20.	Leeflang MM, Deeks JJ, Gatsonis C, et al.Systematic reviews of diagnostic
_ 0.	accuracy. Annals of internal medicine. Dec 16 2008;149(12):889-897.
21.	Arends LR, Hamza TH, van Houwelingen JC, et al. Bivariate random effect
-1.	meta-analysis of ROC curves. <i>Medical decision making : an international</i>

BMJ Open

	journal of the Society for Medical Decision Making. Sep-Oct
	2008;28(5):621-638.
22.	Harbord RM, Whiting P, Sterne JA, et al. An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. <i>Journal of clinical epidemiology</i> . Nov 2008;61(11):1095-1103.
23.	Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. <i>BMJ (Clinical research ed.)</i> . Sep 6 2003;327(7414):557-560.
24.	Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. <i>BMJ (Clinical research ed.)</i> . Sep 13 1997;315(7109):629-634.
25.	Buob A, Jung J, Siaplaouras S, et al. Discordant regulation of CRP and NT-proBNP plasma levels after electrical cardioversion of persistent atrial fibrillation. <i>Pacing and clinical electrophysiology : PACE</i> . Jun 2006;29(6):559-563.
26.	Cosgrave J, Foley JB, Bahadur K, et al.Inflammatory markers are not associated with outcomes following elective external cardioversion. <i>International journal of cardiology</i> . Jun 28 2006;110(3):373-377.
27.	Ellinor PT, Low A, Patton KK, et al. C-Reactive protein in lone atrial fibrillation. <i>The American journal of cardiology.</i> May 1 2006;97(9):1346-1350.
28.	Korantzopoulos P, Kolettis TM, Kountouris E, et al. Variation of inflammatory indexes after electrical cardioversion of persistent atrial fibrillation. Is there an association with early recurrence rates? <i>International journal of clinical practice</i> . Aug 2005;59(8):881-885.
29.	Psychari SN, Chatzopoulos D, Iliodromitis EK, et al. C-reactive protein, interleukin 6, and N-terminal pro-brain natriuretic peptide following cardioversion of atrial fibrillation: is there a role of biomarkers in arrhythmia recurrence? <i>Angiology</i> . May 2011;62(4):310-316.
30.	Komatsu T, Sato Y, Ozawa M, et al. Relationship between CHADS2 score and efficacy of antiarrhythmic drug therapy in patients with paroxysmal atrial fibrillation. <i>Circulation journal : official journal of the Japanese Circulation</i> <i>Society.</i> Feb 25 2013;77(3):639-645.
31.	Letsas KP, Efremidis M, Giannopoulos G, et al. CHADS2 and CHA2DS2-VASc scores as predictors of left atrial ablation outcomes for paroxysmal atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing,</i> <i>arrhythmias, and cardiac cellular electrophysiology of the European Society of</i> <i>Cardiology.</i> Jun 28 2013.
32.	Albert CM, Ma J, Rifai N, et al. Prospective study of C-reactive protein,
	17

1 2 3

4

5 6

7

8 9

10

11

12 13

14

15 16

17

18 19

20

21 22

23

24 25

26

27

28 29

30

31 32

33

34 35

36

37

38 39

40

41 42

43

44 45

46

60

homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. Jun 4 2002;105(22):2595-2599. 33. Parekh RS, Plantinga LC, Kao WH, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney international. Nov 2008;74(10):1335-1342. 34. Streitner F, Kuschyk J, Veltmann C, et al. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. Cytokine. Sep 2009;47(3):166-172. 35. Korngold EC, Januzzi JL, Jr., Gantzer ML, et al. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation. Jun 9 2009;119(22):2868-2876. 36. Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation of atrial fibrillation. European heart journal. Oct 2005;26(20):2083-2092. 37. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular research. May 2002;54(2):230-246. 38. Van Wagoner DR. Oxidative Stress and Inflammation in Atrial Fibrillation: Role in Pathogenesis and Potential as a Therapeutic Target. Journal of Cardiovascular Pharmacology. 2008;52(4):306-313 310.1097/FJC.1090b1013e31817f39398. 39. Moro C, Hernandez-Madrid A, Matia R. Non-antiarrhythmic drugs to prevent atrial fibrillation. American journal of cardiovascular drugs : drugs, devices, and other interventions. 2010;10(3):165-173. 40. den Uijl DW, Delgado V, Tops LF, et al. Natriuretic peptide levels predict recurrence of atrial fibrillation after radiofrequency catheter ablation. American heart journal. Jan 2011;161(1):197-203. 41. Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. The Journal of international medical research. 2011;39(5):1618-1624.

18

BMJ Open

Figure legends

Figure 1. A simplified flow chart to identify and to include studies. Amongst 752 citations in MEDLINE and EMBASE from inception to December 2013, a search limited to human studies using "C-reactive protein" and the MeSH term "diagnosis of atrial fibrillation" resulted in 32 potentially relevant articles for further review. After careful scrutinization on full text, 9 articles were left for meta-analysis.

Figure 2. The quality assessment of diagnostic accuracy on studies. A spectrum of features were analysed to avoid bias using a well-validated tool called Quality Assessment of Diagnostics Accuracy Studies (QUADAS). Percentage for each feature was independently evaluated among the studies. It is worthy of attention that none of the studies explained the withdrawal and reported indetermined results, likely to compromise the quality of diagnostic accuracy.

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Figure 3. **The ROC curve of hs-CRP.** Our analysis suggests it is highly possible to predict atrial fibrillation using C-creative protein since the area under the curve generates a measurement of discrimination ~0.77. The overall sensitivity and specificity are relatively high. We have 5 out 9 studies that fall in the 95% CI region, while 8 out 9 in the 95% prediction region.

Figure 4. The forest plot of the odds ratios (ORs). Our study indicates that hsCRP-positive patients are ~5.91 times more likely to develop a recurrence of atrial

2	
3	
4	
-	
5	
6	
7	
~	
8	
9	
10	
10	
11	
12	
13	
10	
14	
15	
16	
47	
17	
18	
19	
20	
20	
13456789101234156789011234456789011234456789013234567890112344567890112344567890132344567890132334567889011000000000000000000000000000000000	
22	
~~	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
01	
32	
33	
34	
0-	
35	
36	
37	
20	
38	
39	
4∩	
44	
41	
42	
43	
44	
45	
46	
-	
47	
48	
<u>4</u> 9	
<u> </u>	

Table 1. Summary of the characteristics of the included studies

Author, year, country	Mean Age	Prevalence (N)	Follow-up time	Cutoff (mg/l)	AF type	Cardiovers ion	Sensitivity, Specificity	Adjusted odd ratio	Adjusted variables	
Wazni O, 2005,USA ¹⁶	67.3	0.68(111)	76 days	3.1	Persistent AF	Electric	59 %, 69 %	2.0 (1.2-3.2)	Age, sex, duration of AF, coronary artery disease, hypertension, left ventricular hypertrophy, LAD	
Zarauza J, 2006, Spain ¹⁹	62.7	0.43(37)	30 days	3.0	Persistent AF	Electric	81%, 67 %	3.7 (1.3-10.8)	Sex, age, time, size of left atrium, history of hypertension, pharmacological treatment	
Watanabe E, 2006, Japan ¹⁸	64	0.76(84)	1 year	0.6	Persistent AF	Electric	75%, 90%	5.3 (2.5-11.5)	Sex, coronary artery disease, hypertension, smoking, diabetes, AF duration, LAD, and LVEF	
Loricchio ML, 2007, Italy ¹⁵	67	0.52(102)	1 year	1.9	Persistent AF	Electric	87%, 37%	5.0 (1.8-14.3)	Age, gender, EF, LAD , hypertension, diabetes, pharmacological treatment	
Lombardi F, 2008, Italy ¹⁴	67	0.34(53)	21 days	3.6	Persistent AF	Electric	64%, 83%	1.6 (1.0-2.5)	Age, LAD, LAA, LAAEV, NTproBNP level, history of AF, AF duration or pharmacological treatment	
Henningsen KMA, 2009, Denmark ¹²	65	0.68(56)	180 days	3.0	Persistent AF	Electric	60%, 83%	7.7 (1.9-31.1)	NA	
Rizos I, 2010,Greece ¹⁷	67.9	0.64(61)	1 year	2.3	Paroxysmal AF	Pharmacol ogic	72%, 68%	6.2 (2.2-17.6)	IL-6, age, gender, PAF history, LAD, EF, diabetes,	
Liu J, 2011,China ¹³	55.1	0.39(44)	1 year	1.9	Paroxysmal AF	Electric ablation	79%, 70 %	5.1 (2.1–12.1)	Age, gender, type of AF, duration of AF, LAD, LVEF, plasma hsCRP concentration.	
Barassi A, 2012,Italy ¹⁰	66.9	0.33(57)	21 days	3.0	Persistent AF	Electric	74%, 84 %	14.9 (3.9-57.2) *	NA	

Abbreviations: HsCRP: High-sensitivity C-reactive protein NA: Not applicable ACE: angiotensin-converting enzyme; *: crude effect estimate

21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Table 2. Summary of pooled diagnostic accuracy indices

0 Variables	Number of studies	Sensitivity (95% Cl)	Specificity (95% Cl)	Likelihood ratio+	Likelihood ratio-	AUROC (95% CI)	l ² (95% Cl)	Diagnostic OR (95% CI)	Meta-regr ession P	Egger's test P
3 Overall ^{10,12-19}	9	0.71(0.63-0.78)	0.72(0.61-0.81)	2.57(1.86-3.55)	0.40(0.32-0.50)	0.77(0.73-0.81)	14.6(0-56.6)	5.91 (4.07-8.59)		0.566
5 Follow time< 6 6 months ^{10,14,16,19}	4	0.73(0.56-0.85)	0.71(0.54-0.83)	2.50(1.67-3.77)	0.38(0.24-0.59)	0.78(0.74-0.82)	0.0(0.0-74.6)	6.34(3.70- 10.85)	0.759	0.345
 Follow time > one year^{12-14,17,18} 	5	0.77(0.69-0.84)	0.65(0.45-0.80)	2.22(3.14-12.88)	0.35(0.26-0.48)	0.79(0.75-0.82)	34.8(0.0-77.2)	5.54(3.29-9.32)	0.552	0.583
 Electric cardioversion^{10,12,} 14-16,18,19 	7	0.72(0.62-0.80)	0.74(0.60-0.85)	2.81(1.79-4.41)	0.38(0.29-0.50)	0.78(0.75-0.82)	33.0(0.0-71.6)	5.13(3.63- 7.25)	0.611	0.198
5 Persistent 6 AF ^{10,12,14-16,18,19}	7	0.70(0.61-0.78)	0.71(0.59-0.80)	2.40(1.77-3.25)	0.42(0.33-0.53)	0.76(0.72-0.80)	22.3(0.0-64.2)	5.70(3.77-8.62)	0.899	0.464
28 29 30 31 32 33 34										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 23 of 51

BMJ Open

1		
2		
3	1	Value of High-sensitivity C-reactive Protein Assays in Predicting Atrial
4	_	· ····· · · · ························
5	2	Fibrillation Recurrence: a systematic review and meta-analysis
6 7	-	The first finance is a second of the first and
8	3	
9	5	
10	4	¹ Chia-Hung Yo MD, ² Si-Huei Lee MD ^{3,4} Shy-Shin Chang MD, ⁵ Matthew
11	-	Child-Hung 10 MiD, 51-Huer Lee MiD Sity-5hill Chang MiD, Matthew
12	5	Chien-Hung Lee PhD, JD, 64,75 Chien-Chang Lee MD, MSc
13	J	Chief-Hung Ece Hild, JD, Chief-Chang Ece MD, MSc
14	6	
15	0	
16	7	¹ Department of Emerson as Medicine, For Festern Memorial Herrital, New Tainei
17	/	¹ Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei
18	•	
19	8	City, Taiwan.
20	•	
21	9	² Department of Rehabilitation and Physical Medicine, Taipei Veteran
22 23	4.0	
23 24	10	General Hospital, Taipei, Taiwan
25		
26	11	³ Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
27		
28	12	⁴ Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung
29		
30	13	University, Taoyuan, Taiwan.
31		
32	14	⁵ Medical Wisdom Consultants, Houston, USA
33	ĺ	
34	15	⁶⁴ Department of Epidemiology, Harvard School of Public Health, Boston, USA.
35 36	10	
37	16	²⁵ Department of Emergency Medicine, National Taiwan University Hospital Yunlin
38	10	Department of Emergency Wedlenie, National Talwar oniversity Hospital Talmin
39	17	Branch, Douliou, Taiwan
40	17	branch, bounou, rarwan
41	18	Address correspondence to
42	10	Address correspondence to
43	10	Address correspondence to Chien-Chang Lee MD, MSc
44	19	Chien-Chang Lee MD, MSc
45	20	
46	20	Email: cclee100@gmail.com
47 48	• •	
48	21	Postal Address: No 579 Sec 2 Yunlin Road, Douliou, Yunlin County 640, Taiwan
50		
51	22	Telephone: +886-5-532-3911 ext. 2326
52		
53	23	Fax: +886-2322-3150
54		
55	24	Word count: 2535
56		
57	25	Conflict of interest: None declared
58 50		1
59 60		1
00		

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

23
3
4 5 6 7
5
6
7
8
9
10
11
9 10 11 12
13 14 15
13
14
15
16
17
18
19
20
21
22
23
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40
25
20
20
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
40
50
51
52
53
54
55
56
57 58
58
59
60
00

1 2

26 Abstract 27 Objectives: We performed a systematic review and meta-analysis of studies on 28 high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are 29 predictive of atrial fibrillation (AF) recurrence after cardioversion. 30 31 Design: Systematic review and meta-analysis. 32 33 Data sources: PubMed, EMBASE, and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. 34 35 Study eligibility criteria: This review selected observational studies in which the 36 37 measurements of serum CRP were used to predict atrial fibrillation recurrence. An 38 hs-CRP assay was defined as any c-reactive protein (CRP) test capable of measuring 39 serum CRP to below 0.6 mg/dL. 40 41 Primary and secondary outcome measures: We summarized test performance 42 characteristics with the use of forest plots, hierarchical summary receiver operating 43 characteristic (HSROC) curves, and bivariate random effects models. Meta-regression 44 analysis was performed to explore the source of heterogeneity. 45 46 Results: We included nine qualifying studies comprising a total of 347 patients with AF 47 recurrence and 335 controls. A CRP level higher than the optimal cutoff point was an 48 independent predictor of AF recurrence after cardioversion (summary adjusted odds 49 ratio: 3.33; 95%CI: 2.10-5.28). The estimated pooled sensitivity and specificity for 50 hs-CRP was 71.0% (95% Cl: 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cutoff point of 1.9 mg/l to predict long-term AF recurrence 51

BMJ Open

52	(77% sensitivity, 65% specificity), and 3 mg/l to predict short-term AF recurrence (73%
53	sensitivity, 71% specificity).
54	
55	Conclusions: High-sensitivity CRP assays are moderately accurate in predicting AF
56	recurrence after successful cardioversion. Different cutoffs should be applied to
57	patients with short term or long term follow-upprediction of AF recurrence.
58	
59	Strengths and limitations of this study
60	•This meta-analysis finding supports that measurement of CRP levels before
61	cardioversion can aid in the prediction of AF recurrence.
62	•We reported summary likelihood ratios (LRs) as an ancillary measure of predictive
63	accuracy.
64	•A bivariate random effect model to account for the inherent negative correlation
65	arising from different cutoff values used in different studies, and occurring
66	between the logit true positive rates (TPR) and false positive rates (FPR).
67	•Results of sensitivity analysis did not show a significantly different overall
68	predictive accuracy between long-term and short-term follow-up, however, a
69	heterogeneity tended toward between-study variability.
70	•Current summary estimates based on the one cutoff point may thus have
71	under-evaluated the clinical usefulness of hs-CRP assays. An individual data
72	meta analysis would be needed to overcome the limitations of this aggregated
73	data meta analysis.
74	
75	Keywords: atrial fibrillation, recurrence, cardioversion, C - reactive protein,
76	meta-analysis
77	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

78	
79	Introduction
80	Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, although the
81	prevalence is highest among people of advanced age. ^{1,2} AF poses a significant
82	economic burden, with a 66% increase in hospital admissions over the past two decades.
83	It is estimated that the number of patients affected by AF is likely to grow 2.5 fold by
84	the year 2050. ¹⁻³ In addition, AF may lead to debilitating complications such as
85	ischemic stroke and heart failure. Although ventricular rate control is an acceptable
86	treatment strategy in many patients, some patients may remain symptomatic despite
87	adequate rate controls. For this group of patients, cardioversion may be the treatment of
88	choice. Electrical cardioversion can restore sinus rhythm effectively in most patients
89	and can act with antiarrhythmic drugs synergistically to enhance the cardioversion
90	success rate. ⁴ However, cardioversion is not the definite treatment. Approximately 50%
91	of patients undergoing cardioversion usually present with recurrence of AF within three
92	to six months of cardioversion despite ongoing antiarrhythmic treatment. ⁵ Left
93	ventricular dysfunction, left atrial enlargement, arrhythmia duration, and history of
94	hypertension are major risk factors for AF recurrence. ⁶ However, recent studies have
95	indicated that inflammation, necrosis, and fibrosis play roles in the structural
96	remodeling process of the atria, contributing to the perpetuation or recurrence of atrial
97	fibrillation.
98	
99	C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response
100	to proinflammatory cytokines, notably interluekin-6, and other endogenous signals of
101	innate immunity or tissue damage. CRP has recently been shown to be associated with
102	cardiovascular risk and AF recurrence. A previous meta-analysis revealed that CRP is
103	elevated in patients with AF. ⁷ However, 5 of the 6 studies included in that analysis $\frac{4}{4}$

BMJ Open

104	used traditional automated immunonephelometric assays to measure CRP.
105	Unfortunately, those assays are insufficiently sensitive for measuring the low level of
106	inflammation associated with AF. A newer enzyme immunoassay, namely
107	high-sensitivity CRP (hs-CRP), is capable of measuring serum CRP below 0.6 mg/dL
108	and may further enhance the predictability of AF recurrence. ⁸ Since 2006, several
109	studies evaluating the accuracy of hs-CRP in predicting AF recurrence have been
110	published, ⁹⁻¹⁹ warranting a systemic and quantitative summary of current evidence on
111	the accuracy of CRP in predicting AF recurrence after cardioversion.
112	
113	Methods
114	Identification of Studies
115	General bibliographic databases (MEDLINE and EMBASE) were searched from
116	inception to April 2013. The medical subject heading (MeSH) and text words for the
117	term C -reactive protein were combined with the MeSH term "diagnosis of atrial
118	fibrillation". The search was limited to human studies with no language restrictions.
119	In addition to the electronic search, reference lists in all known reviews and primary
120	studies were checked manually.
121	
122	Selection Criteria
123	This review focused on observational studies in which the measurements of serum
124	CRP were used to predict atrial fibrillation recurrence. The population of interest
125	comprised patients with paroxysmal or persistent AF who underwent electric
126	cardioversion, ablation therapy, or pharmacological cardioversion. AF recurrence was
127	defined as AF documented by ECG at any time after the cardioversion during the
128	follow-up period. Generally, patients were instructed to return to the clinic if the
129	symptoms such as palpitations, shortness of breath, or chest discomfort developed
	<u> </u>

Page 28 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

-	130	after cardioversion. We included studies using a cohort design or case-control design
-	131	with appropriate controls. Two reviewers independently assessed eligible articles for
-	132	inclusion. Disagreements were initially resolved by consensus and using arbitration
-	133	by a third reviewer if consensus could not be reached by the two reviewers. We
-	134	extracted data from the included studies. Data collected include study design,
-	135	participants, country, period of recruitment, hs-CRP assay, cutoff-points, length of
-	136	follow-up period, and recurrence of AF. One reviewer extracted the data and a second
-	137	reviewer independently verified the correctness of the extracted data.
-	138	
-	139	Quality Assessment
-	140	We assessed the methodological quality of the selected studies using a well-validated
-	141	tool for assessment of quality of diagnostic accuracy studies (Quality Assessment of
-	142	Diagnostic Accuracy Studies, QUADAS). ²⁰ The QUADAS instrument scrutinizes
-	143	characteristics of study designs, population, index tests, and reference standards that
-	144	may be associated with risk of bias. These features included the spectrum of patients,
-	145	whether index tests and reference standards were evaluated and interpreted
-	146	independently to avoid incorporation bias, and whether all patients underwent the
-	147	same reference standards to avoid differential or partial verification bias.
-	148	
-	149	Data Abstraction
-	150	One reviewer independently extracted the data and a second reviewer independently
-	151	verified the data. Extracted data comprised the following: overall study characteristics
-	152	(including the first author, country, language, and date of publication); patient
-	153	characteristics (including age range and pre-existing atrial fibrillation); quantitative
-	154	data required for construction of a 2 x 2 table (including number of participants,

BMJ Open

1	56	hs-CRP assay (including brand name of the test kit, cutoff levels, and quantitative or
1	57	semi-quantitative nature of the test); and study settings. In studies that reported
1	58	multiple pairs of sensitivity and specificity data, we consistently used the data with
1	59	the highest Youden index (sensitivity + specificity -1) and performed a sensitivity
1	60	analysis at a later stage.
1	61	
1	62	Quantitative Data Synthesis
1	63	We performed a meta-analysis of diagnostic test accuracy of CRP testing for the
1	64	prediction of recurrent AF. When 2×2 tables contained 0 cells, we performed
1	65	continuity correction by adding 0.5 to each cell. We calculated the pooled sensitivity
1	66	and specificity, positive and negative likelihood ratios, and the diagnostic odds ratio
1	67	of CRP, along with the respective 95% confidence intervals (CIs), using a bivariate
1	68	meta-analysis model. ²¹ Likelihood ratios were then translated to post-test probability
1	69	by use of Fagan's plot. We constructed a hierarchical summary receiver operating
1	70	characteristic (HSROC) curve that plots sensitivity versus specificity and calculated
1	71	the area under the curve (AUROC). ²² We evaluated the degree of between-study
1	72	heterogeneity by using the I ² test. ²³ To explore the clinical sources of heterogeneity,
1	73	we defined the potential explanatory variables a priori and performed subgroup
1	74	analysis to see if the accuracy estimates changed significantly across various
1	75	subgroups. The presence and the effect of publication bias were examined using a
1	76	combination of the Egger tests. ²⁴ Statistical analyses were conducted using the
1	77	statistical package STATA (Version 11.0, Stata Corp, College Station, TX), notably
1	78	with the user-written "midas" and "metandi" programs. All statistical tests were
1	79	two-sided and statistical significance was defined as a P value less than .05.
1	80	
1	81	Search Results and Study Characteristics
		1

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1
2
3 4 5 6 7 8
4
5
6
7
8
9
10
11
12
12
17
14
ID 40
16
17
18
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 1 32 33 34 35 36 37 38 9 0
20
21
22
23
24
25
26
20
21
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
57 58
59
60

1

182	The flow of inclusion and exclusion is summarized in Figure 1. Using our search
183	criteria, we identified 784 studies, of which 352 were from PubMed and 432 were
184	from EMBASE. A total of 752 citations were excluded based on pre-defined criteria.
185	No additional citations were identified from the reference lists. A total of 32 articles
186	were retrieved for full-text review, and 23 were excluded due to various reasons
187	detailed in Figure 1. A total of 9 studies that evaluated the accuracy of hs-CRP tests in
188	predicting AF recurrence after cardioversion were finally included in the
189	meta-analysis. The 9 studies included a total of 682 patients with AF after successful
190	cardioversion, of which 347 (50.9%) developed recurrence.
191	
192	Characteristics of included studies
193	Table 1 lists the study and population characteristics of the 9 patient populations even
194	if we had additional 5 studies that don't have sufficient data for statistical analysis 25-29
195	The mean age of patients in the included studies ranged from 55.1 years to 67.9 years
196	and the mean follow-up period ranged from 30 days to 1 year. Seven studies included
197	patients with persistent AF, while 2 studies included patients with paroxysmal AF.
198	Seven studies used electric shock, one used circumferential pulmonary vein isolation
199	(also known as electric ablation), and the other used intravenous amiodarone as the
200	primary method for cardioversion. A total of seven studies provided multivariate
201	(adjusted) odds ratios to evaluate the independent predictive value of CRP levels.
202	These studies generally adjusted for potential predictors of AF recurrence such as age,
203	sex, use of anti-arrhythmic agents, and heart structural and functional parameters. All
204	studies showed that CRP was a significant independent predictor of AF recurrence.
205	Associated adjusted ratios and adjusted variables are summarized in table 1.
206	
207	Quality assessment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8

BMJ Open

208	Results of the quality assessment of studies of diagnostic accuracy are summarized in
209	figure 2. All studies were prospective and enrolled consecutive outpatients with AF
210	after cardioversion. Three studies had a short follow-up period (i.e. ≤ 0.5 or 1 year).
211	Although most of the studies did not indicate whether physicians were blinded to the
212	index tests when diagnosing AF recurrence, the determination of AF recurrence was
213	not affected by the knowledge of hs-CRP test results and risk of incorporation bias
214	was minimal. None of the studies reported the undetermined results or withdrawals.
215	
216	5 Diagnostic accuracy indices
217	Sensitivity, specificity, and diagnostic odds ratio
218	The estimated sensitivity and specificity were relatively consistent across studies
219	($I^2=14.6\%$). Table 2 shows the results of individual and combined sensitivity
220	estimates for the tests. The estimated pooled sensitivity and specificity for hs-CRP
221	was 71.0% (95% confidence interval 63% to 78%) and 72.0% (61% to 81%),
222	respectively. The pooled prevalence of AF recurrence was 54% herein, and wWe used
223	the pooled prevalence of AF recurrence in this study it as the pre-test probability. With
224	a pooled positive likelihood ratio of 2.57 and a negative likelihood ratio of 0.4, the
225	post-test probability for AF recurrence for a positive hs-CRP test result was 72% and a
226	post-test probability for a negative hs-CRP test result was 29%. The area under the
227	ROC curve showed an acceptable overall measurement of discrimination (0.77,
228	Figure 3). Figure 4 shows the forest plot of the ORs.
229	
230	Subgroup analysis and meta-regression
231	In view of the potential influence of spectrum variability, we considered the duration
232	of follow-up, mode of cardioversion, and type of AF in the study patients to be
233	important. Hs-CRP test results generally had higher sensitivity and lower specificity
	9

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

in predicting long-term over short-term AF recurrence. Excluding two studies not using electric shock as the primary cardioversion method did not significantly alter the predictive accuracy. Similarly, focusing the study patients on persistent AF *population* had similar results as compared with the main overall analysis. Exploratory meta-regression analysis did not find that any pre-specified covariate significantly changed the effect estimate. Discussion This meta-analysis shows that elevated CRP levels are independently predictive of AF recurrence in patients with persistent or paroxysmal AF who have undergone successful cardioversion. This finding supports that measurement of CRP levels before cardioversion can aid in the prediction of AF recurrence. Despite the modest pooled sensitivity and specificity, the rule-in diagnostic value was still high, given the high recurrence rate of AF observed in these included studies. A positive hs-CRP test result at baseline can predict a 73% chance of AF recurrence in the 6 to 12 months following cardioversion. Previous studies have examined risk factors that predict AF recurrence. Traditional clinical risk factors for recurrence include history of multiple AF episodes, use of diuretic treatment, higher CHADS-2 (Congestive heart failure, history of Hypertension, Age≥75 years, Diabetes mellitus, and past history of Stroke or TIA doubled) index score, frequent use of amiodarone, calcium-channel blockers, and 1C drugs, and digitalis.^{30,31} Although each of these factors could predict AF recurrence with some accuracy, a quantitative combination of these predictors is not available,

- 258 and the clinical utility of these variables remains questionable. This also suggests that
- 259 <u>a multivariate prediction model should be developed for AF recurrence, and that</u>

BMJ Open

260	hsCRP should be a candidate for inclusion in the model.
261	
262	During the past decade, serum biomarkers have emerged as practical tools to help in
263	the early identification of patients at high risk for various cardiac events. Elevation of
264	inflammatory markers is associated with sudden cardiac death in patients with heart
265	failure or coronary artery disease, and onset of ventricular arrhythmia. ³²⁻³⁵ Of note,
266	there is abundant evidence that elevated serum levels of CRP are associated with the
267	genesis and perpetuation of atrial fibrillation. CRP is the most commonly used clinical
268	inflammatory biomarker. It is mainly produced in liver and by inflammatory cells in
269	response to proinflammatory cytokine stimulation. Although the pathophysiology of
270	AF remains elusive, there is pathophysiological evidence supporting the role of
271	inflammation in the initiation, maintenance, and perpetuation of AF. ³⁶ Clinically, AF
272	is frequently associated with local inflammatory diseases such as myocarditis or
273	pericarditis, and systemic inflammatory status, such as post-operative state and severe
274	sepsis. Histologically, structural remodeling of the atria manifested by loss of
275	myocardium and increased atrial fibrosis is a hallmark of atrial fibrillation. ³⁷
276	Inflammatory cell infiltrates and oxidative damage have been demonstrated in atrial
277	biopsy specimens from AF patients. ³⁸ Activated inflammatory cells in conjunction
278	with reactive oxygen species, cytokines, and growth factors, may ultimately lead to
279	matrix deposition with atrial fibrosis. Recent evidence also shows that the uses of
280	immune-modulating agents such as statins, angiotensin-converting enzyme inhibitors,
281	or glucocorticoids modulate the course of AF. ³⁹
282	
283	In addition to CRP, b-type natriuretic peptide (BNP) has been shown to be an indicator
284	of new onset AF and AF recurrence after successful cardioversion. ^{34,35,40} BNP is also
285	produced in response to atrial pressure and volume overload and there is evidence that 11

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BNP is secreted by the atrium in patients with AF. A previous meta-analysis showed
that the standardized mean difference in plasma BNP level between patients with
non-recurrence and patients with recurrence was -1.35 (95% confidence interval -2.17,
-0.53).⁴¹ Data on sensitivity and specificity in that study were not available. The
comparative accuracy between BNP and hs-CRP in predicting AF recurrence thus
requires further analysis.

There are both strengths and limitations in our study. Considering the limitation of sensitivity and specificity in clinical interpretation, we reported summary likelihood ratios (LRs) as an ancillary measure of predictive accuracy. The LRs indicate how much a given CRP testing result increases or decreases the probability of recurrence of AF. Post-test probabilities can be derived from pre-test probabilities and LRs, which are an important clinical parameter for major clinical decision making. Second, we used a bivariate random effect model to account for the inherent negative correlation arising from different cutoff values used in different studies, and occurring between the logit TPR and FPR. Third, we performed sensitivity analysis by restricting analysis within two broad categories of follow-up duration. Results of sensitivity analysis did not show a significantly different overall predicative accuracy between long-term and short-term follow-upprediction of AF recurrence. Nonetheless, it is noteworthy that the sensitivity may be over estimated in our study under the hypothesis where the inflammation may be symptomatic since none of the studies provided withdrawal and undetermined results, and the ascertainment of AF was passive. This event further introduces the differential verification bias. Moreover, our meta-analysis is restricted to distinguish hsCRP levels above or below 0.6 mg/dL because the authors in only one of the studies claimed to possess such capability. Finally, due to the lack of individual data, it is hard to determine whether the area

BMJ Open

2		
3 4	312	under ROC (AUC) can be improved by the new assay either on overall or on
5 6	313	individual studies. In general, Overall, as assessed by the heterogeneity of dOR, the
7 8 9	314	included studies evaluating CRP levels and AF recurrence strongly tended toward
9 10 11	315	between study variability (heterogeneity). pPotential sources of between-study
12 13	316	variability included differences in incidence of AF recurrence, different threshold
14 15	317	values of CRP concentration used, and different duration for follow-up. Another
16 17	318	limitation was the strategy we used to determine the optimal cutoff value. Most
18 19	319	studies determined an optimal cutoff value to maximize both sensitivity and
20 21	320	specificity. Although a single cutoff value is straightforward in clinical interpretation,
22 23 24	321	it may make a marker neither sensitive nor specific enough to rule out or rule in an
24 25 26	322	outcome of interest. A two cut-off value strategy, with one using a lower cutoff value
27 28	323	to optimize the sensitivity (rule-out value) and the other using a higher cutoff value to
29 30	324	optimize the specificity (rule-in value), would make better use of the information that
31 32	325	a biomarker with a continuous value could provide. Current summary estimates based
33 34	326	on the one cutoff point may thus have under-evaluated the clinical usefulness of
35 36 37	327	hs-CRP assays. To make the best use of the biomarker information by adopting a two
38 39	328	cutoff point strategy or a multi-cutoff point risk classification strategy, an individual
40 41	329	data meta-analysis would be needed to overcome the limitations of this aggregated
42 43	330	data meta-analysis.
44 45	331	data meta-analysis.
46 47	332	Conclusions
48 49 50	333	Baseline CRP levels before cardioversion can independently predict AF recurrence
50 51 52	334	after successful cardioversion. Given the high recurrence rate reported in most series,
53 54	335	the modest positive likelihood ratio for hs-CRP assays still has high positive
55 56	336	predictive value. Future studies should focus on the evaluation of two or multiple
57 58 59	337	cutoff points. In the interim, their inclusion in existing pre-cardioversion evaluation 13

algorithms should be considered. Acknowledgement This study was supported by grants of Far Eastern Memorial Hospital, Taiwan (FEMH-2013 D 036)

1.	Fabbri G, Maggioni AP. A review of the epidemiological profile of patients with
	atrial fibrillation and heart failure. Expert review of cardiovascular therapy. Sep
	2012;10(9):1133-1140.
2.	Menezes AR, Lavie CJ, DiNicolantonio JJ, et al. Atrial fibrillation in the 21st
	century: a current understanding of risk factors and primary prevention
	strategies. Mayo Clinic proceedings. Mayo Clinic. Apr 2013;88(4):394-409.
3.	Anderson JL, Halperin JL, Albert NM, et al. Management of patients with atrial
	fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS
	recommendations): a report of the American College of Cardiology/American
	Heart Association Task Force on Practice Guidelines. Journal of the American
	College of Cardiology. May 7 2013;61(18):1935-1944.
4.	Manlucu J, Brancato S, Lane C, Kazemian P, Michaud GF. Contemporary
	approaches to persistent atrial fibrillation. Expert review of cardiovascular
	<i>therapy</i> . Nov 2012;10(11):1421-1435.
5.	Disertori M, Lombardi F, Barlera S, et al. Clinical characteristics of patients
	with asymptomatic recurrences of atrial fibrillation in the Gruppo Italiano per lo
	Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation
	(GISSI-AF) trial. American heart journal. Aug 2011;162(2):382-389.
6.	Letsas KP, Weber R, Burkle G, et al. Pre-ablative predictors of atrial fibrillation
	recurrence following pulmonary vein isolation: the potential role of
	inflammation. Europace : European pacing, arrhythmias, and cardiac
	electrophysiology : journal of the working groups on cardiac pacing,
	arrhythmias, and cardiac cellular electrophysiology of the European Society of
	<i>Cardiology</i> . Feb 2009;11(2):158-163.
7.	Liu T, Li L, Korantzopoulos P, Goudevenos JA, Li G. Meta-analysis of
	association between C-reactive protein and immediate success of electrical
	cardioversion in persistent atrial fibrillation. The American journal of
_	<i>cardiology</i> . Jun 15 2008;101(12):1749-1752.
8.	Roberts WL, Sedrick R, Moulton L, Spencer A, Rifai N. Evaluation of four
	automated high-sensitivity C-reactive protein methods: implications for clinical
	and epidemiological applications. <i>Clinical chemistry</i> . Apr 2000;46(4):461-468.
9.	Celebi OO, Celebi S, Canbay A, Ergun G, Aydogdu S, Diker E. The effect of
	sinus rhythm restoration on high-sensitivity C-reactive protein levels and their
	association with long-term atrial fibrillation recurrence after electrical
	cardioversion. Cardiology. 2011;118(3):168-174.
10.	Barassi A, Pezzilli R, Morselli-Labate AM, et al. Serum amyloid a and
	C-reactive protein independently predict the recurrences of atrial fibrillation

	after cardioversion in patients with preserved left ventricular function. The
	Canadian journal of cardiology. Sep-Oct 2012;28(5):537-541.
11.	Hatzinikolaou-Kotsakou E, Tziakas D, Hotidis A, et al. Relation of C-reactive
	protein to the first onset and the recurrence rate in lone atrial fibrillation. The
	American journal of cardiology. Mar 1 2006;97(5):659-661.
12.	Henningsen KM, Therkelsen SK, Bruunsgaard H, Krabbe KS, Pedersen BK,
	Svendsen JH. Prognostic impact of hs-CRP and IL-6 in patients with persistent
	atrial fibrillation treated with electrical cardioversion. Scandinavian journal of
	clinical and laboratory investigation. 2009;69(3):425-432.
13.	Liu J, Fang PH, Dibs S, Hou Y, Li XF, Zhang S. High-sensitivity C-reactive
	protein as a predictor of atrial fibrillation recurrence after primary
	circumferential pulmonary vein isolation. Pacing and clinical
	electrophysiology : PACE. Apr 2011;34(4):398-406.
14.	Lombardi F, Tundo F, Belletti S, Mantero A, Melzi D'eril G V. C-reactive
	protein but not atrial dysfunction predicts recurrences of atrial fibrillation after
	cardioversion in patients with preserved left ventricular function. Journal of
	cardiovascular medicine (Hagerstown, Md.). Jun 2008;9(6):581-588.
15.	Loricchio ML, Cianfrocca C, Pasceri V, et al. Relation of C-reactive protein to
	long-term risk of recurrence of atrial fibrillation after electrical cardioversion.
	The American journal of cardiology. May 15 2007;99(10):1421-1424.
16.	Wazni O, Martin DO, Marrouche NF, et al. C reactive protein concentration and
	recurrence of atrial fibrillation after electrical cardioversion. Heart (British
	<i>Cardiac Society</i>). Oct 2005;91(10):1303-1305.
17.	Rizos I, Rigopoulos AG, Kalogeropoulos AS, et al. Hypertension and
	paroxysmal atrial fibrillation: a novel predictive role of high sensitivity
	C-reactive protein in cardioversion and long-term recurrence. <i>Journal of human</i>
10	hypertension. Jul 2010;24(7):447-457.
18.	Watanabe E, Arakawa T, Uchiyama T, Kodama I, Hishida H. High-sensitivity
	C-reactive protein is predictive of successful cardioversion for atrial fibrillation
	and maintenance of sinus rhythm after conversion. <i>International journal of</i>
10	cardiology. Apr 14 2006;108(3):346-353.
19.	Zarauza J, Rodriguez Lera MJ, Farinas Alvarez C, et al. [Relationship between
	C-reactive protein level and early recurrence of atrial fibrillation after electrical
20	cardioversion]. <i>Revista espanola de cardiologia</i> . Feb 2006;59(2):125-129.
20.	Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of diagnostic test accuracy. <i>Annals of internal medicine</i> . Dec 16
	2008;149(12):889-897.
21.	Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink MG,
	16

BMJ Open

	Stijnen T. Bivariate random effects meta-analysis of ROC curves. Medical
	decision making : an international journal of the Society for Medical Decision Making. Sep-Oct 2008;28(5):621-638.
22.	Harbord RM, Whiting P, Sterne JA, et al. An empirical comparison of method
	for meta-analysis of diagnostic accuracy showed hierarchical models are
	necessary. Journal of clinical epidemiology. Nov 2008;61(11):1095-1103.
23.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
	meta-analyses. BMJ (Clinical research ed.). Sep 6 2003;327(7414):557-560.
24.	Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis
	detected by a simple, graphical test. BMJ (Clinical research ed.). Sep 13
	1997;315(7109):629-634.
25.	Buob A, Jung J, Siaplaouras S, Neuberger HR, Mewis C. Discordant regulation
	of CRP and NT-proBNP plasma levels after electrical cardioversion of
	persistent atrial fibrillation. Pacing and clinical electrophysiology : PACE. Jur
	2006;29(6):559-563.
26.	Cosgrave J, Foley JB, Bahadur K, Bennett K, Crean P, Walsh MJ. Inflammator
	markers are not associated with outcomes following elective external
	cardioversion. International journal of cardiology. Jun 28
	2006;110(3):373-377.
27.	Ellinor PT, Low A, Patton KK, Shea MA, MacRae CA. C-Reactive protein in
	lone atrial fibrillation. The American journal of cardiology. May 1
	2006;97(9):1346-1350.
28.	Korantzopoulos P, Kolettis TM, Kountouris E, Siogas K, Goudevenos JA.
	Variation of inflammatory indexes after electrical cardioversion of persistent
	atrial fibrillation. Is there an association with early recurrence rates?
	International journal of clinical practice. Aug 2005;59(8):881-885.
29.	Psychari SN, Chatzopoulos D, Iliodromitis EK, Apostolou TS, Kremastinos DT
	C-reactive protein, interleukin 6, and N-terminal pro-brain natriuretic peptide
	following cardioversion of atrial fibrillation: is there a role of biomarkers in
•	arrhythmia recurrence? <i>Angiology</i> . May 2011;62(4):310-316.
30.	Komatsu T, Sato Y, Ozawa M, et al. Relationship between CHADS2 score and
	efficacy of antiarrhythmic drug therapy in patients with paroxysmal atrial
	fibrillation. <i>Circulation journal : official journal of the Japanese Circulation</i>
2.1	Society. Feb 25 2013;77(3):639-645.
31.	Letsas KP, Efremidis M, Giannopoulos G, et al. CHADS2 and CHA2DS2-VAS
	scores as predictors of left atrial ablation outcomes for paroxysmal atrial
	fibrillation. Europace : European pacing, arrhythmias, and cardiac
	electrophysiology : journal of the working groups on cardiac pacing,
	17

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Jun 28 2013.

- Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. *Circulation*. Jun 4 2002;105(22):2595-2599.
- Parekh RS, Plantinga LC, Kao WH, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. *Kidney international*. Nov 2008;74(10):1335-1342.
- 34. Streitner F, Kuschyk J, Veltmann C, et al. Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm. *Cytokine*. Sep 2009;47(3):166-172.
- Korngold EC, Januzzi JL, Jr., Gantzer ML, Moorthy MV, Cook NR, Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. *Circulation*. Jun 9 2009;119(22):2868-2876.
- 36. Engelmann MD, Svendsen JH. Inflammation in the genesis and perpetuation of atrial fibrillation. *European heart journal*. Oct 2005;26(20):2083-2092.
- Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. *Cardiovascular research*. May 2002;54(2):230-246.
- Van Wagoner DR. Oxidative Stress and Inflammation in Atrial Fibrillation: Role in Pathogenesis and Potential as a Therapeutic Target. *Journal of Cardiovascular Pharmacology*. 2008;52(4):306-313 310.1097/FJC.1090b1013e31817f39398.
- 39. Moro C, Hernandez-Madrid A, Matia R. Non-antiarrhythmic drugs to prevent atrial fibrillation. *American journal of cardiovascular drugs : drugs, devices, and other interventions.* 2010;10(3):165-173.
- 40. den Uijl DW, Delgado V, Tops LF, et al. Natriuretic peptide levels predict recurrence of atrial fibrillation after radiofrequency catheter ablation. *American heart journal*. Jan 2011;161(1):197-203.
- Tang Y, Yang H, Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. *The Journal of international medical research*. 2011;39(5):1618-1624.

1 2	
2 3 4 5 6 7	
5 6	
7 8	
9 10	
11 12	
13 14	
15	
17	
19	
20	
22	
24 25	
26 27	
28 29	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 435 36 37 38 39	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
49 50 51	
52	
53 54	
55 56	
57 58	
59 60	

Figure legends Figure 1. A simplified flow chart to identify and to include studies. Amongst 752 citations in MEDLINE and EMBASE from inception to December 2013, a search limited to human studies using "C-reactive protein" and the MeSH term "diagnosis of atrial fibrillation" resulted in 32 potentially relevant articles for further review. After careful scrutinization on full text, 9 articles were left for meta-analysis. Figure 2. The quality assessment of diagnostic accuracy on studies. A spectrum of features were analysed to avoid bias using a well-validated tool called Quality Assessment of Diagnostics Accuracy Studies (QUADAS). Percentage for each feature was independently evaluated among the studies. It is worthy of attention that none of the studies explained the withdrawal and reported indetermined results, likely to compromise the quality of diagnostic accuracy. Figure 3. The ROC curve of hs-CRP. Our analysis suggests it is highly possible to predict atrial fibrillation using C-creative protein since the area under the curve generates a measurement of discrimination ~0.77. The overall sensitivity and specificity are relatively high. We have 5 out 9 studies that fall in the 95% CI region, while 8 out 9 in the 95% prediction region. Figure 4. The forest plot of the odds ratios (ORs). Our study indicates that hsCRP-positive patients are ~5.91 times more likely to develop a recurrence of atrial

fibrillation than hsCRP-negative patients are. The estimated sensitivity and specificity

<text>

2	
3	
4	
-	
5	
6	
7	
~	
8	
9	
10	
10	
11	
12	
13	
10	
14	
15	
16	
47	
17	
18	
19	
00	
20	
13456789101234156789011234456789011234456789013234567890112344567890112344567890132344567890132334567889011000000000000000000000000000000000	
22	
22	
23	
24	
25	
20	
26	
27	
 วo	
20	
29	
30	
24	
31	
32	
33	
24	
34	
35	
36	
27	
31	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>1</u> 0	

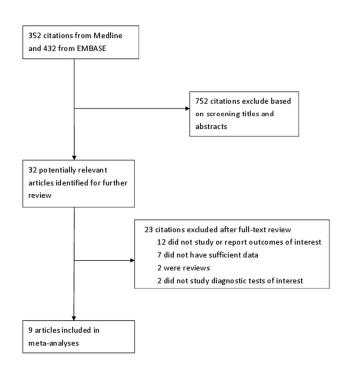
Table 1. Summary of the characteristics of the included studies

Author,	Mean	Prevalence	Follow-up	Cutoff	AF type	Cardiovers	Sensitivity,	Adjusted odd	Adjusted variables	
year, country	Age	(N)	time	(mg/l)	Аг туре	ion	Specificity	ratio	Aujusteu variables	
Wazni O,	67.3	0 69(111)	76 days	3.1	Persistent AF	Electric		2.0 (1.2-3.2)	Age, sex, duration of AF, coronary artery disease,	
2005,USA ¹⁶	07.5	0.68(111)	76 days	5.1	Persistent AF	Electric	59 %, 69 %	2.0 (1.2-3.2)	hypertension, left ventricular hypertrophy, LAD	
Zarauza J,	62.7	0 42(27)	20 daya	2.0	Developent AF	Flastria	810/ 67.0/	27(12100)	Sex, age, time, size of left atrium, history of	
2006, Spain ¹⁹	62.7	0.43(37)	30 days	3.0	Persistent AF	Electric	81%, 67 %	3.7 (1.3-10.8)	hypertension, pharmacological treatment	
Watanabe E,	64	0.7(0.4)	1			FI 1.1	750/ 000/		Sex, coronary artery disease, hypertension,	
2006, Japan ¹⁸	64	0.76(84)	1 year	0.6	Persistent AF	Electric	75%, 90%	5.3 (2.5-11.5)	smoking, diabetes, AF duration, LAD, and LVEF	
Loricchio ML,	C7	0 52(402)	1	1.0	Demistent AF	F lastvia	070/ 070/	F 0 (1 0 1 4 2)	Age, gender, EF, LAD , hypertension, diabetes,	
2007, Italy ¹⁵	67	0.52(102)	1 year	1.9	Persistent AF	Electric	87%, 37%	5.0 (1.8-14.3)	pharmacological treatment	
Lombardi F,	C7	0.24(52)	24	2.6	D		C 10(020)		Age, LAD, LAA, LAAEV, NTproBNP level, history of	
2008, Italy ¹⁴	67	0.34(53)	21 days	3.6	Persistent AF	Electric	64%, 83%	1.6 (1.0-2.5)	AF, AF duration or pharmacological treatment	
Henningsen KMA,		0.00(50)	190 dava	2.0	Developent AF	Flactric	C0% 820/	7.7 (1.9-31.1)	NA	
2009, Denmark ¹²	65	0.68(56)	180 days	3.0	Persistent AF	Electric	60%, 83%	*	NA	
Rizos I,	67.0	0.64(64)			Paroxysmal	Pharmacol	720/ 600/		IL-6, age, gender, PAF history, LAD, EF, diabetes,	
2010,Greece ¹⁷	67.9	0.64(61)	1 year	2.3	AF	ogic	72%, 68%	6.2 (2.2-17.6)	smoking	
1	FF 4	0.20(44)	1	1.0	Paroxysmal	Electric	700/ 70.0/	54 (24 424)	Age, gender, type of AF, duration of AF, LAD, LVEF,	
Liu J, 2011,China ¹³	55.1	0.39(44)	1 year	1.9	AF	ablation	79%, 70 %	5.1 (2.1–12.1)	plasma hsCRP concentration.	
Barassi A,		0.22(57)	21 days	2.0	Demistent AF	Ele etcia	740/ 04 0/	14.9 (3.9-57.2)		
2012, Italy ¹⁰	66.9	0.33(57)	21 days	3.0	Persistent AF	Electric	74%, 84 %	*	NA	

Abbreviations: HsCRP: High-sensitivity C-reactive protein NA: Not applicable ACE: angiotensin-converting enzyme; *: crude effect estimate

21

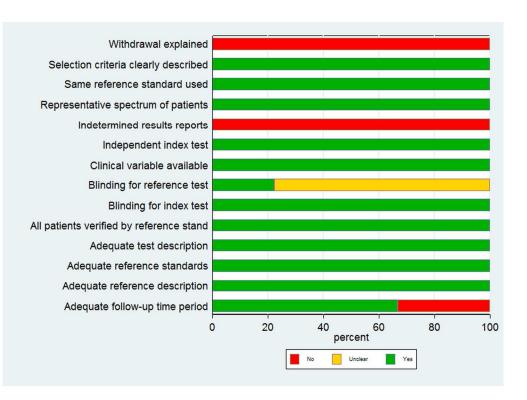
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

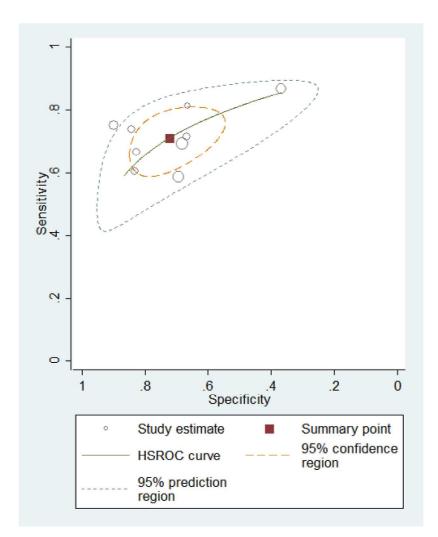

Table 2. Summary of pooled diagnostic accuracy indices

5 6

8				, ,	<u> </u>	,	1	1				
9 10 11 12			<u>Number</u> <u>of</u> <u>studies</u>	<u>Sensitivity</u> (95% CI)	Specificity (95% CI)	<u>Likelihood</u> <u>ratio+</u>	<u>Likelihood</u> <u>ratio-</u>	<u>AUROC</u> (95% CI)	<u>l²</u> (95% Cl)	Diagnostic OR (95% CI)	<u>Meta-regr</u> <u>ession P</u>	<u>Egger's</u> <u>test P</u>
1	overail	2-19	<u>9</u>	<u>0.71(0.63-0.78)</u>	<u>0.72(0.61-0.81)</u>	<u>2.57(1.86-3.55)</u>	0.40(0.32-0.50)	<u>0.77(0.73-0.81)</u>	<u>14.6(0-56.6)</u>	<u>5.91 (4.07-8.59)</u>	<u></u>	<u>0.566</u>
1	Follow time months ^{10,14}		<u>4</u>	<u>0.73(0.56-0.85)</u>	<u>0.71(0.54-0.83)</u>	<u>2.50(1.67-3.77)</u>	<u>0.38(0.24-0.59)</u>	<u>0.78(0.74-0.82)</u>	<u>0.0(0.0-74.6)</u>	<u>6.34(3.70- 10.85)</u>	<u>0.759</u>	<u>0.345</u>
1 1 1	year ^{12-14,17,2}	<u>e > one</u> ¹⁸	<u>5</u>	<u>0.77(0.69-0.84)</u>	<u>0.65(0.45-0.80)</u>	<u>2.22(3.14-12.88)</u>	<u>0.35(0.26-0.48)</u>	<u>0.79(0.75-0.82)</u>	<u>34.8(0.0-77.2)</u>	<u>5.54(3.29-9.32)</u>	<u>0.552</u>	<u>0.583</u>
2 2 2 2 2	2 <u>cardioversi</u> 3 <u>14-16,18,19</u>	ion ^{10,12,}	Z	<u>0.72(0.62-0.80)</u>	<u>0.74(0.60-0.85)</u>	<u>2.81(1.79-4.41)</u>	<u>0.38(0.29-0.50)</u>	0.78(0.75-0.82)	<u>33.0(0.0-71.6)</u>	<u>5.13(3.63- 7.25)</u>	<u>0.611</u>	<u>0.198</u>
222	5 <u>Persistent</u> 5 ▲ F ^{10,12,14-16,}	,18,19	<u>7</u>	<u>0.70(0.61-0.78)</u>	<u>0.71(0.59-0.80)</u>	<u>2.40(1.77-3.25)</u>	<u>0.42(0.33-0.53)</u>	0.76(0.72-0.80)	22.3(0.0-64.2)	<u>5.70(3.77-8.62)</u>	<u>0.899</u>	<u>0.464</u>
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 9 0 1 2 3 4								D71			

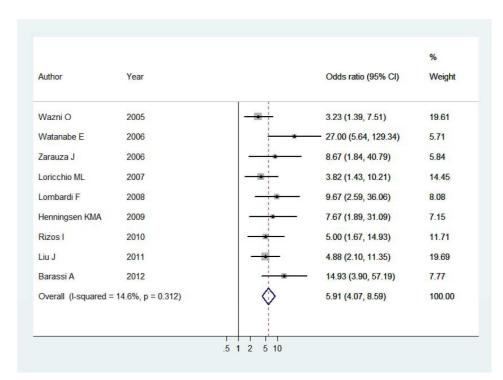
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Figure 1 Flow chart of study identification and inclusion


Flow chart of study identification and inclusion 90x127mm (300 x 300 DPI)

Page 46 of 51

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



Results of the quality assessment of studies of diagnostic accuracy 123x90mm (300 x 300 DPI)

The summary ROC curve of hs-CRP 297x420mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2013-004418 on 20 February 2014. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The forest plot of the ORs 209x148mm (300 x 300 DPI)

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #		
TITLE					
Title	1	Identify the report as a systematic review, meta-analysis, or both.	P1		
ABSTRACT					
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.			
INTRODUCTION					
Rationale	3	Describe the rationale for the review in the context of what is already known.	P4		
Objectives	4	4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).			
METHODS					
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.			
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.			
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.			
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.			
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).			
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.			
Data items	11	1 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.			
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	P7		
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	P6-7		
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	P7		

BMJ Open

PRISMA 2009 Checklist

Page	1	of	2
Page		UI.	2

Section/topic	bic # Checklist item		 Reported on page # 	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).		
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.		
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).		
Results of individual studies	20	0 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).		
DISCUSSION				
Summary of evidence	24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).		P10-11	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	P12-13	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	P13-14	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	P14	

Δ

PRISMA 2009 Checklist

.oup (2009). Preterred (For more information, vs. Page. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml