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ABSTRACT
Objective: We used diffusion tensor imaging (DTI) to
test the following hypotheses: (1) there is decreased
white matter (WM) integrity in non-demented
Parkinson’s disease (PD), (2) WM integrity is
differentially reduced in PD and early Alzheimer’s
disease (AD) and (3) DTI changes in non-demented PD
are specifically associated with cognitive performance.
Methods: This study included 18 non-demented
patients with PD, 18 patients with mild cognitive
impairment due to incipient AD and 19 healthy elderly
normal control (NC) participants in a cross-sectional
design. The participants underwent DTI, and tract-
based spatial statistics was used to analyse and extract
radial diffusivity and fractional anisotropy. Correlations
between scores from a battery of neuropsychological
tests and DTI were performed in the PD group.
Results: Patients with PD had significant differences
in DTI in WM underlying the temporal, parietal and
occipital cortex as compared with NC. There were no
significant differences between the PD and AD groups
in the primary region of interest analyses, but
compared with NC there was a tendency for more
anterior changes in AD in contrast to more posterior
changes in PD. In a secondary whole-brain analysis
there were frontoparietal areas with significant
differences between AD and PD. In patients with PD,
there were significant correlations between DTI
parameters in WM underlying the prefrontal cortex and
executive and visuospatial abilities.
Conclusions: In early, non-demented PD we found
reduced WM integrity underlying the temporal, parietal
and occipital cortices. In addition, WM integrity
changes in prefrontal areas were associated with
executive and visuospatial ability. These findings
support that DTI may be an important biomarker in
early PD, and that WM changes are related to cognitive
impairment in PD.

INTRODUCTION
Cognitive impairment is common in
Parkinson’s disease (PD) and leads to patient
suffering, caregiver burden and health-related
costs.1

Most imaging studies exploring brain
changes associated with cognitive impair-
ment in PD have focused on grey matter
atrophy, whereas the importance of white
matter (WM) integrity has been less
explored. MR diffusion tensor imaging
(DTI) may broaden our understanding of
WM affection in PD.2 Recently, DTI of anter-
ior and posterior cingulum fibre tracts were
found to be more affected in PD dementia
(PDD) as compared with controls, and anter-
ior cingulate fibres were more affected in
patients with PDD compared with PD
without dementia.3 In another recent study it
was suggested that WM affection is associated
with cognitive impairment in PD, and that
brain changes progress in a sequential
pattern with hypoperfusion preceding WM
damage and grey matter atrophy.4

We and others have previously reported that
DTI changes are closely associated with cogni-
tive impairment in Alzheimer’s disease (AD).5

To our knowledge, however, analysis of DTI
parameters compared with neuropsychological
tests in patients with PD and AD has not yet

Strengths and limitations of this study

▪ Limitations of our study include lack of post-
mortem diagnosis. However, in the case of pre-
dementia Alzheimer’s disease (AD), diagnosis
was strengthened by use of cerebrospinal fluid
biomarkers, and all patients with Parkinson’s
disease (PD) had a positive DaTSCAN supporting
the clinical diagnosis.

▪ The sample size is relatively low, and thus power
issues make it difficult to differentiate between
possible AD-specific and PD-specific changes.

▪ Not all patients with PD had measurable cogni-
tive impairment. Thus, it is possible that more
pronounced diffusion tensor imaging changes
and stronger associations with cognition would
have been detected if more PD patients had mild
cognitive impairment.
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been published. This is important in order to single out
PD-specific mechanisms of cognitive impairment. Possibly,
these parameters may also be used as biomarkers for
PD-driven or AD-driven cognitive impairment. We there-
fore studied DTI in patients with PD without dementia
and compared them with age-matched patients with pre-
dementia AD and healthy controls. Our objective was to
use DTI to test the following hypotheses: (1) there is
decreased WM integrity in non-demented PD, (2) WM
integrity in PD is differentially affected from that in early
AD and (3) the DTI changes in PD are specifically asso-
ciated with cognitive performance.

METHODS
Subjects
Eighteen patients with PD from a university-hospital-based
neurological outpatient clinic were recruited during 2011
and 2012. Twelve patients were included at the time of PD
diagnosis and the remaining six were patients diagnosed
with PD during 2010 and 2011 and attending regular clin-
ical controls at the outpatient clinic. The inclusion criteria
were diagnosis of PD,6 disease duration less than 5 years
and either normal cognition, subjective cognitive impair-
ment (SCI) or mild cognitive impairment (MCI) (see
table 1 and Cognitive assessment and classification
section). The exclusion criteria were dementia (see
below), somatic (other than PD), psychiatric or other dis-
eases that might have contributed to cognitive impairment
(including drug abuse, moderate or severe depression,
solvent exposure, anoxic brain damage and active cancer).
We included two comparison groups: 18 patients with

MCI due to AD7 from an ongoing large MCI study in the
same university-hospital and who also participated in our
recent DTI study.5 These patients were matched in terms
of age, gender and level of education to the PD group.
To be included, an abnormal score on at least one cere-
brospinal fluid (CSF) AD-marker (either CSF-P-τ or CSF

AB42) as recommended7 was required. In addition, all
patients had memory problems, either subjectively or
reported by relatives. CSF extraction was performed by
lumbar puncture and analysed according to protocol and
as previously described.8 CSF P-τ was considered patho-
logical if ≥80 ng/L, Aß42 if≤550 ng/L and T-τ>if 450 ng/
L (age 50–69) or 500 ng/L (age ≥70).9 The inclusion cri-
teria were aged 40–79 years and subjectively impaired
cognition for at least 6 months. The exclusion criteria
were significantly impaired activities of daily living (ie,
dementia), established psychiatric disorder, cancer, drug
abuse, solvent exposure and anoxic brain damage includ-
ing stroke. The included patients did not fulfil any of the
core or suggestive criteria for dementia with Lewy bodies
(DLB) or criteria consistent with a diagnosis of fronto-
temporal dementia.
Nineteen healthy, elderly and cognitively normal

control (NC) participants were selected from spouses or
relatives of the patients with AD-MCI on the basis of a
clinical interview by a neurologist and neuropsycho-
logical tests administered by a trained neuropsychologist
(ie, T-scores≥40 on tests of memory, executive function-
ing and visuospatial ability). NC was individually
matched for age and level of education to the PD and
AD-MCI groups.

Clinical assessment
All patients with PD were examined by a neurologist with
training in movement disorders and met the criteria of
probable PD (3 of 4 features: asymmetric onset, bradyki-
nesia, rigidity and resting tremor),6 with the exception
that the requirement of disease duration more than
3 years was not met by 13 patients (see table 1). To
further support the PD diagnosis, all participants had a
pathological single photon emission CT using an ioflu-
pane (123I) biomarker (DaTSCAN).10

Standardised rating scales of motor function (Unified
Parkinson’s Disease Rating Scale (UPDRS) motor

Table 1 Demographics and clinical characteristics

Variables AD-MCI† (n=18) PD‡ (n=18) Controls (n=19) p Valus*

Age, years 65.6±5.6 (55–77) 66.7±5.1 (59–75) 64.6±6.5 (52–77) 0.537

Female sex, n 9 (50%) 9 (50%) 13 (68%) 0.424

Disease duration, years 2.4±1.7 (0.5–7) 2.2±1.1 (1–5) – 0.181

MMSE§ score 27.3±1.8 (24–30) 28.8±1.4 (26–30) 29.5±0.5 (29–30) 0.000

GDS¶, categories 1/2/3, n 0/0/18 8/3/7 19/0/0 0.000

Education, years 12.8±3.3 (8–18) 11.3±3.5 (7–18) 11.8±2.4 (8–16) 0.345

Fazekas; mean white matter score 1.0±0.8 (0–2) 0.9±0.7 (0–2) 0.8±0.6 (0–2) 0.779

Fazekas; mean periventricular score 1.1±0.5 (0–2) 1.1±0.5 (0–2) 1.1±0.5 (0–2) 0.927

Cerebrovascular composite score** 1.7±1.0 (0–3) 1.6±1.4 (0–4) – 0.894

The three groups did not differ regarding age, sex, years of education, cerebrovascular burden and Fazekas score.
Numbers represent means±SD (range) unless otherwise indicated.
*Significant at the p<0.05 level.
†Alzheimer’s disease—mild cognitive impairment.
‡Parkinson’s disease.
§Mini-Mental State Examination.
¶Global Deterioration Scale, category 1=normal, category 2=subjective cognitive impairment, category 3=mild cognitive impairment.
**Composite score from 0 to 6 were 0 indicates no cerebrovascular burden, 6 indicates a maximum disease burden.
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subscale)11 and Hoehn and Yahr12 staging were per-
formed by trained research physicians. The mean UPDRS
motor and Hoehn and Yahr scores were 12.3±6.8 SD
(range 5–31) and 1.7±0.6 SD (range 1.0–2.5), respectively.
Fifteen patients with PD used dopaminergic medication,
mean total daily levodopa equivalent dose 361±186 SD
(range 100–632).13 At inclusion, 10 of 18 patients used
levodopa, 5 patients used dopaminagonists and levodopa,
5 patients used only dopaminagonists and 3 patients used
no dopaminergic medication. Three patients used antide-
pressants; no patients used benzodiazepines, antipsycho-
tics or acetylcholinesterase inhibitors.
Depression was assessed using the Geriatric

Depression Scale.14 No patients with depressive symp-
toms above 5/6 cut-off were included, and the mean
scores were 2.4±1.3 and 1.2±1.0 SD for the AD and PD
groups, respectively, the AD group having slightly more
depressive symptoms than the PD group (p=0.043).
Since DTI changes may also relate to cerebrovascular

disease, WM lesions (WMLs) in the PD, AD and NC
groups were assessed using the method published by
Fazekas et al15 by one reviewer with good test–retest reli-
ability (Pearson correlation coefficient 0.83 and 0.92 for
periventricular and subcortical WML, respectively).
There were no significant differences between the groups
(table 1). In addition a composite cerebrovascular risk
score in the three groups was made consisting of six items
(smoking, diabetes, hypertension, hypercholesterolaemia
(ie, total cholesterol above 7 mmol/L or use of anticho-
lesterol agents), hyperhomocysteinaemia (ie, above
15 µmol/L) and known cerebrovascular disease other
than stroke and/or known cerebrovascular disease in the
family). The total cerebrovascular burden in the individ-
ual patient was thus assessed on a scale from 0 to 6, where
0 indicated no burden and 6 indicated maximum burden
of disease. There were no significant differences in the
mean cerebrovascular burden among the AD, PD and
NC groups (table 1).

Cognitive assessment and classification
All participants performed a cognitive assessment pro-
gramme, which consisted of three steps. In addition to a
clinical interview, Mini-Mental State Examination
(MMSE) and domain-specific screening tests were per-
formed by the clinician. As previously described, cogni-
tive staging (in normal, SCI and MCI) according to the
Global Deterioration Scale was performed.16

In addition, tests of memory, executive functioning and
visuospatial ability were administered by a trained neuro-
psychologist. The domains selected were chosen as typic-
ally impaired in PD and/or AD.17 The Rey Auditory
Verbal Learning Test-Delayed Recall (RAVLT-DR) was
used to measure episodic verbal memory.18 Visuospatial
ability was assessed using the Rey Complex Figure Test
(RCFT; reference area 0–36 points).19 In RAVLT-DR and
RCFT raw scores were used to analyse correlations to DTI
parameters. Aspects of executive functions were assessed
by tests measuring divided attention (Trail Making Test-B

(TMT-B)),20 response inhibition (Delis-Kaplan Executive
Function System (D-KEFS) Color Word, subtest 3)21 and
word fluency (Controlled Oral Word Association Test,
COWAT).22 The results for the latter tests were converted
into T-scores, a normally distributed scale with a mean
score of 50 and an SD of 10. T-scores for TMT-B and
COWAT were calculated based on normative data pro-
vided by Heaton et al,22 and the test of response inhib-
ition was scored according to norms by Delis et al.21 A
composite mean T-score was calculated for the executive
tests (equal weighting). These tests were used for explor-
ing associations between cognition and DTI.

Selection of WM region of interest
Two region of interests (ROIs) for each cognitive
domain (memory, executive functioning and visuospatial
ability) were selected a priori on the basis of presumed
predilection sites for WM tract changes (figure 1).17

Memory is associated with entorhinal and parahippo-
campal cortices, and the WM underlying these ROIs
were hence selected regarding this domain.

Figure 1 An automated labelling system for subdividing the

human cerebral cortex on MRI into gyral-based regions of

interest (ROI), by Desikan et al.38 Presented are cortical

representations of the six preplanned ROIs, here shown in

one hemisphere. The left picture illustrates the lateral view of

the hemisphere, the right showing the medial view of the

hemisphere. Red=the middle frontal gyrus (rostral division),

blue=the orbitofrontal cortex (medial division), yellow=lingual

cortex, light green=parahippocampal cortex, dark

green=entorhinal cortex, purple=precuneus.
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Visuoperceptual abnormalities are associated with pos-
terior cortical dysfunction and cause deficits in visual pro-
cessing in the temporal, parietal and occipital lobe.23–26

Occipital hypoperfusion may underlie impairment of
visual cognition.27 28 Visual information is processed in
two parallel pathways, the ventral occipitotemporal
pathway and the dorsal occipitoparietal pathway.29 Both
extend from the primary visual cortex (V1), but the
ventral pathway diverges downwards to visual association
areas in the inferior temporal region, and the dorsal
pathway diverges upwards to the posterior parietal cortex.
Patients with PD are believed to have dysfunction in
both.30 The neuroanatomical substrate of visuospatial/
visuoperceptual abilities thus involves different cerebral
regions, but the occipital lobe is considered to be the
most task-specific region concerning visual processing.
Based on the presumed anatomical basis of visuospatial
function, we hence selected one WM ROI underlying the
occipital cortex, that is, the lingual region (adjacent to
the parahippocampal cortex) and one WM ROI under-
lying the posterior parietal cortex, that is, the precuneus
region (adjacent to the lingual cortex).
Although dependent on widely distributed networks,

neuroimaging studies suggest that executive functions
are closely connected to the prefrontal regions of the
frontal lobe31 further subdivided into three frontosub-
cortical circuits, namely the dorsolateral prefrontal
cortex (DLPFC; eg, verbal fluency, reasoning and
working memory), the orbitofrontal cortex (ie, inhib-
ition) and the anterior cingulate cortex (ie, response
conflict and emotional drives).32 According to a narrow
definition, the DLPFC is roughly equivalent to
Brodmann area 9 and 46, that is, the middle frontal
lobe. We therefore selected the WM underlying the
middle frontal gyrus (rostral division) and the WM
underlying the orbitofrontal cortex (medial division) for
further analysis.
Measurements were averaged between hemispheres.

MRI/DTI acquisition
MRI was performed at 1.5 T using a Siemens Espree
system (Siemens Healthcare, Erlangen, Germany).
Three-dimensional T1-weighted images were acquired
using a magnetisation-prepared rapid acquisition gradient
echo (MPRAGE) sequence (TR/TE/TI/FA=2400/3.65/
1000/8°, matrix=240×192), 160 sagittal slices,
thickness=1.2 mm, in-plane resolution of 1 mm×1.2 mm.
The protocol also included two-dimensional axial
fluid-attenuated inversion recovery images with the follow-
ing parameters: TR/TE/TI=13420/121/2500, 36 slices,
spaced at 3 mm and 3.9 mm thick.
DTI was acquired using a single shot echo planar

imaging sequence with the following parameters:
b=750 s/mm2; 12 diffusion directions repeated five
times; 5 b0-values per slice, TR=6100 ms, TE=117 ms,
number of slices: 30, slice thickness: 3 mm (gap
1.9 mm), in-plane resolution: 1.2×1.2 mm2, bandwidth:
840 Hz/pixel.

MRI segmentations and analyses
The Oxford Centre for Functional MRI of the Brain
(FMRIB) Software Library (FSL) V.4.133 was used for
DTI analyses and calculations. Initially, FMRIB’s Linear
Image Registration Tool23 was used for affine registra-
tions of each DTI volume to the low-b (b=0) image.
Fractional anisotropy (FA) and eigenvalue maps were

created. Radial diffusivity (DR) is defined as the mean
of eigenvalue 2 and 3. Tract-Based Spatial Statistics34 was
used for voxel-wise statistical analysis of the DTI variables
(FA and DR). FMRIB’s Diffusion Toolbox was used to
create DTI by fitting a tensor model to the raw diffusion
data, and FSL’s Brain Extraction Tool was used for subse-
quent brain extraction. All participants’ FA data were
then aligned into a common space using a non-linear
registration tool (FMRIB) which uses a B-spline repre-
sentation of the registration warp field.35 Further, the
mean FA image was created and thinned to create a
mean FA skeleton that represents the centres of all tracts
common to the group. Each participant’s aligned FA
data were then projected onto this skeleton and the
resulting data fed into voxel-wise cross-subject statistics.
DR data were then extracted from each participant
according to the skeletonised FA map. Moreover, WM
ROIs based on the FreeSurfer WM parcellations were
extracted for FA and DR—the FSL FMRIB FA template
(to which every participant’s FA volume initially was
registered) was co-registered to the standard space T1
volume MNI152, which subsequently went through the
FreeSurfer processing stream to create a volume with
WM parcellations. The processing stream includes seg-
mentation of the subcortical WM and deep grey matter
volumetric structures36 and parcellation of the cortical
surface37 according to a previously published parcella-
tion scheme.38 This labels cortical sulci and gyri, and
thickness values are calculated in the ROIs. Based on
the cortical parcellation, WM in the gyrus underneath
each cortical label was identified. Each WM voxel within
a gyrus was labelled according to the label of the nearest
cortical voxel. Deep WM was not assigned to a particular
cortical area, with a 5 mm distance limit. The registra-
tion between the FA template and the MNI152 volume
was applied to the volume with the WM parcellations,
and the resulting volume was used to extract the skeleto-
nised DR data from each WM ROI.

Statistics
SPSS/PASW statistics V.18 was used for statistical analyses
and p≤0.05 was considered statistically significant.
Comparisons among the three groups (PD, AD and NC)
were made using one-way analysis of variance (ANOVA),
Kruskal-Wallis test, Student t test, Mann-Whitney test or
χ2 test as appropriate (table 1). The DTI WM ROI vari-
ables were normally distributed (after the effects of age
and sex had been corrected by regression analysis), and
hence one-way ANOVA (with a priori planned contrast
AD vs NC and PD vs NC including polynomial linear
trends) was used to compare the three groups.
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Unbiased, voxel-based whole-brain analysis was also per-
formed. However, due to the small sample sizes resulting
in low statistical power to detect expected small differ-
ences between AD and PD, ROI analyses were chosen as
the primary analyses.
The relationship between cognition and DTI in PD

was assessed as follows:
Primarily, Pearson correlations between each of the

three cognitive domains with the two a priori selected
brain regions were determined. In secondary analyses, we
determined Pearson correlations between all six ROIs and
the three cognitive domains. Finally, the specific executive
tests were correlated with the two frontal regions.
The effects of sex and age on the DTI DR parameters

were corrected by linear regression before correlations
were determined.

RESULTS
Demographics and clinical characteristics (age, gender,
disease duration, education and Fazekas score) did not
differ among the groups (table 1). The mean MMSE score
was lower in the AD and PD groups than NC (p < 0.001),
and the MMSE scores in AD (27.3±1.8 SD) were slightly
lower than that in PD (28.8±1.4 SD; p=0.009). The loca-
tions of the selected ROI’s are illustrated in figure 1.

DTI changes in PD compared with AD and NC subjects
The ANOVA-analysis revealed significant between-group
differences in all preplanned DTI ROIs.
In (temporal ROIs) WM underlying the entorhinal

cortex (ERC-WM), DR was higher compared with NC in
AD (p=0.002), but did not reach significance in PD
(p=0.059; figure 2). DR in ERC-WM increased from NC
to PD to AD (linear trend p=0.002). Similar findings
emerged for WM underlying the parahippocampal
cortex, that is, AD (p<0.001) and PD (p=0.030) as com-
pared with NC, with a gradient NC<PD<AD (linear
trend p<0.001).

In the occipital ROI, higher DR (as compared with NC)
was found in WM underlying the lingual gyrus in PD
(p=0.034), but not in AD (p=0.071) with a gradient
NC<AD<PD (linear trend p=0.034); figure 3).
In the parietal ROI (WM underlying the precuneus

cortex), higher DR (as compared with NC) was found in
PD (p=0.020) and AD (p=0.003), with a gradient
NC<AD<PD (linear trend p=0.007).
The AD-MCI and PD group did not differ regarding

the disease duration.
In (frontal ROIs) WM underlying the rostral middle

frontal cortex (RMFC-WM) had higher DR in AD
(p=0.019), but not in PD (p=0.213) as compared with
NC (gradient NC<PD<AD).
Similar findings were found for WM underlying the

medial orbitofrontal cortex, that is, higher DR in AD
(p=0.005), but not in PD (p=0.102), with a gradient
NC<PD<AD (linear trend p=0.020).
There were no significant differences in DR in any of

the WM ROIs between the PD and AD groups. In a sec-
ondary analysis we found similar between group differ-
ences for FA (data not shown).
The voxel-based analyses were generally consistent

with the findings from the ROI analyses.
In addition to the expected findings between AD versus

NC (DR; figure 4) and PD versus NC (FA; figure 5), there
were significant differences in DTI parameters (DR)
between AD and PD, with higher DR in AD compared
with PD in frontoparietal regions on the left side (cor-
rected for multiple comparisons using threshold-free
cluster enhancement; figure 6). However, no significant
changes were found for FA in AD versus NC or AD versus
PD, and similarly for DR between PD versus NC.

Associations between DTI and cognition in PD
T-scores for the different neuropsychological tests in the
PD group showed the following (mean and SD): TMT-B
(36.7±21.1), response inhibition (46.6±14.3), word

Figure 3 Radial diffusivity in white matter underlying the

lingual gyrus (L-WM DR) in Alzheimer’s disease mild

cognitive impairment (AD-MCI), Parkinson’s disease (PD) and

normal controls.

Figure 2 Radial diffusivity in white matter underlying

entorhinal cortex (ERC-WM) in Alzheimer’s disease mild

cognitive impairment (AD-MCI), Parkinson’s disease (PD) and

normal controls.

Auning E, Kjærvik VK, Selnes P, et al. BMJ Open 2014;4:e003976. doi:10.1136/bmjopen-2013-003976 5

Open Access

 on M
arch 13, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2013-003976 on 21 January 2014. D

ow
nloaded from

 

http://bmjopen.bmj.com/


fluency (46.0±9.6) and composite score for executive
tests (43.1±12.0). The mean and SD for raw scores on
RAVLT and RCFT were 7.1±3.2 and 28.5±9.2, respectively.
No correlations were found between memory

(RAVLT-DR) and prespecified DTI variables. Complex
figure reproduction did not correlate with the occipital
ROI, but in the secondary analyses a correlation with DR
in the RMFC-WM was found (r=−0.57; p=0.014).
When using the composite score for executive func-

tions, we found a significant correlation to DR in
RMFC-WM (r=−0.49; p=0.041). Analysing subtests of
executive functioning (raw scores), we found a correl-
ation between DR in RMFC-WM and time to complete
the color-word interference test (r=0.51; p=0.030) and
TMT-B (r=0.55: p=0.019).
Voxel-based whole-brain analyses revealed no signifi-

cant correlations between DTI parameters (DR and FA),
memory and composite score for executive functions.
Similarly, there were no correlations between DR and

performance on RCFT. We found, however, significant
correlations between FA and visuoconstruction (RCFT)
in corpus callosum (figure 7).

DISCUSSION
The main finding in this study was that patients with PD
without dementia had significant differences in WM
DTI-derived metrics in WM underlying the temporal,
parietal and occipital cortex as compared with NC.
Thus, our findings support the first hypothesis, that WM
integrity is disturbed even in early PD.
Our second hypothesis was that there would be differ-

ences in DTI parameters between AD and PD. Although we
did not find significant differences between the two groups
in the primary ROI-based analysis, patients with PD and AD
differed from NC in the hypothesised direction (DR in the
temporal ROIs NC<PD<AD and in the parietal and occipi-
tal ROIs NC<AD<PD). In voxel-wise whole-brain analysis we

Figure 4 Regions of increased radial diffusivity (DR; green) in patients with Alzheimer’s disease as compared with control

participants superimposed on the mean fractional anisotropy map from all participants (blue). Widespread differences in both

hemispheres are seen. No voxels were significant for reduced DR. Multiple comparisons were corrected for by threshold-free

cluster enhancement with the threshold set at p<0.05, and the significant voxels are inflated for ease of viewing. The statistical

maps are shown as overlays on the Montreal Neurological Institutes template (annotated with the corresponding y-coordinates).
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found, however, significant changes between AD and PD
(DR) in mainly frontoparietal regions including parts of the
corticospinal tracts, that is, higher DR for AD. In addition,
the voxel-wise whole-brain analyses showed significant DTI
associations in corpus callosum with visuoconstruction.
Our final hypothesis, that DTI changes in PD are asso-

ciated with cognitive ability, was also at least partly sup-
ported. Although we did not find any significant
correlations between performance on memory tasks and
DTI DR, there were moderately strong correlations
between DR in WM underlying the prefrontal cortex
and executive tests as well as visuospatial ability.
Our results are consistent with the recent findings

that patients with PD, PDD and DLB have more pro-
nounced WM affection than NC.3 4 39–41 Patients with
PD with significant DTI changes in these studies had,
however, more severe cognitive impairment (lower
mean MMSE scores) than in our PD group. Of note,
Hattori et al4 found no significant DTI changes in the

PD cognitively normal group as compared with NC. In
contrast we found significant WM tract changes in a
mixed group of patients with PD with and without
MCI. However, in a recent study by Meltzer et al42 mean
diffusivity differences (but not FA) were also found in
PD cognitively normal participants (relative to NC)
confined to corpus callosum, but not in other brain
regions. Despite a cross-sectional design, the same
study also suggested that microstructural WM integrity
loss increases with cognitive deterioration. In another
recent study, WM abnormalities were not found in PD
cognitively normal participants, in contrast to a distrib-
uted pattern of WM changes (reduced FA), mainly in
frontal areas, in patients with PD with MCI.43 Taken
together, these findings lend support to the idea that
WM tract changes evolve in parallel to cognitive decline
in PD.
We did not find correlations between loss of (presum-

ably) visual-tract WM integrity in parieto-occipital

Figure 5 Regions of decreased fractional anisotropy (FA; red) in patients with Parkinson’s disease compared with control

participants superimposed on the mean FA map from all participants (blue). Significant changes are mainly seen in frontoparietal

regions, corpus callosum and the posterior parts of cingulum. No voxels were significant for increased FA. Multiple comparisons

were corrected for by threshold-free cluster enhancement with the threshold set at p<0.05, and the significant voxels are inflated

for ease of viewing. The statistical maps are shown as overlays on the Montreal Neurological Institutes template (annotated with

the corresponding y-coordinates).
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regions and tests of visuoconstruction. In the study by
Watson et al40 the widespread correlations found
between executive functions and parameters of DTI in
DLB could be explained by the more advanced disease
stage or the potentially different disease progression in
DLB and PD. Our study found associations between pre-
frontal DTI changes and executive functioning in a
similar pattern as described by Meltzer et al.42 Although
there were numerical differences in DTI parameters in
prefrontal cortex between PD and NC, they were not
statistically significant. This may be due to the small
sample size, and stronger associations might have been
found if other prefrontal ROIs had been selected. In
addition, the complexity of neuronal networks and dif-
ferent brain areas involved in neuropsychological testing
make it difficult to exactly localise neuroanatomical sub-
strates of disease. The few DTI studies available in Lewy

body disease also suggest that WM changes are rather
widespread even at an early disease stage.
Of note, in our study AD and PD cases had different

mean MMSE scores, which might have influenced the
findings. This is not surprising since per definition all
patients with AD had MCI, whereas some of the patients
with PD were cognitively intact, and the MMSE emphasises
language and memory items and thus is more sensitive to
the changes in early AD than in PD. Although significant,
the differences in depression scores between patients with
AD and PD were minor and below cut-off for possible
depression, and we do not think this had any major influ-
ence on the results. Yet, we cannot entirely exclude the
possibility that minor differences in overall cognition
affected the comparison between AD and PD.
However, regardless of the complexity of neuronal

disease, the clinical correlates to DTI changes in Lewy

Figure 6 Regions of increased radial diffusivity (DR; red) in patients with Parkinson’s disease compared with Alzheimer’s

disease superimposed on the mean fractional anisotropy map from all participants (blue). Significant changes are seen mainly in

frontoparietal regions on the left side including parts of the corticospinal tracts. No voxels were significant for reduced DR.

Multiple comparisons were corrected for by threshold-free cluster enhancement with the threshold set at p<0.05, and the

significant voxels are inflated for ease of viewing. The statistical maps are shown as overlays on the Montreal Neurological

Institutes template (annotated with the corresponding y-coordinates). All significant changes shown reflect higher DR in

Alzheimer's disease.
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body disease suggest that DTI may be a useful biomarker
for this type of neurodegeneration.
Limitations of our study include lack of postmortem

diagnosis. However, in the case of predementia AD, diag-
nosis was strengthened by use of CSF biomarkers and all
patients with PD had a positive DaTSCAN supporting
the clinical diagnosis.
The sample size is relatively low, and thus power issues

make it difficult to reach statistical significance and dif-
ferentiate between AD and PD-specific changes.
Not all patients with PD had measurable cognitive

impairment. Thus, it is possible that more pronounced
changes and stronger associations with cognition would
have been detected if we had focused on patients with PD
with established MCI.
Only FA and DR were evaluated, whereas other para-

meters, such as mean diffusivity, axial diffusivity, were
not explored.
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