Cardiovascular mortality in bipolar disorder: a population-based cohort study in Sweden

Jeanette Westman,1 Jonas Hälgren,2 Kristian Wahlbeck,3 David Erlinge,4 Lars Alfredsson,5 Urban Ösby1,6,7,8

ABSTRACT

Objective: To estimate the cardiovascular mortality among persons with bipolar disorder in Sweden compared to the general population.

Design: Population register-based cohort study with a 20-year follow-up.

Setting: Sweden.

Participants: The entire population of Sweden (n=10.6 million) of whom 17,101 persons were diagnosed with bipolar disorder between 1987 and 2006.

Main outcome measures: Mortality rate ratios (MRR), excess mortality (excess deaths), cardiovascular disorder (CVD) and specifically cerebrovascular disease, coronary heart disease, acute myocardial infarction, sudden cardiac deaths and hospital admission rate ratio (ARR).

Results: Persons with bipolar disorder died of CVD approximately 10 years earlier than the general population. One third (38%) of all deaths in persons with bipolar disorder were caused by CVD and almost half (44%) by other somatic diseases, whereas suicide and other external causes accounted for less than a fifth of all deaths (18%). Excess mortality of both CVD (n=824) and other somatic diseases (n=988) was higher than that of suicide and other external causes (n=675 deaths). MRRs for cerebrovascular disease, coronary heart disease and acute myocardial infarction, sudden cardiac deaths and hospital admission rate ratio (ARR) for CVD treatment were only slightly increased.

Conclusions: The increased cardiovascular mortality in persons with bipolar disorder calls for renewed efforts to prevent and treat somatic diseases. Specifically, our findings imply that it would be critical to ensure that persons with bipolar disorder receive the same quality care for CVD as persons without bipolar disorder.

INTRODUCTION

Cardiovascular disease (CVD) is the main cause of death in many developed countries.1 CVD encompasses a broad range of different conditions that are potentially life threatening. In Sweden, although mortality from CVD in the population has almost halved in the last two decades, CVD still accounts for more than 40% of all deaths in the country.2 Premature death in patients with severe mental health disorders, especially patients with schizophrenia and...
bipolar disorder, has historically been attributed to suicide. However, more recent studies have shown that CVD leads to more reduced life spans than does suicide in those patients. Persons with bipolar disorder have an increased risk of CVD and have been observed to die because of CVD twice as often as the general population. Although previous studies have shown an association between bipolar disorder and mortality from CVD, few studies have addressed different types of vascular mortality or examined the related use of healthcare. An improved understanding of the causes behind and magnitude of CVD among patients with bipolar disorder is warranted along with an in-depth evaluation of different diagnostic CVD subgroups. The answers to these questions, which are far less investigated in bipolar disorder than in schizophrenia, are essential in the efforts to address the problem of premature deaths owing to CVD in persons with bipolar disorder. These questions are the focus of the present national register-based study, which extends earlier Swedish findings, both by more specific CVD mortality analyses and more recent patient data.

The aim of this study was to evaluate the excess mortality from CVD, such as cerebrovascular disease and coronary heart disease with acute myocardial infarction as its most important component, and also CVD hospital admissions in persons with bipolar disorder in Sweden between 1987 and 2006 compared to the population.

METHODS

Cohort and follow-up

All persons who resided in Sweden between the 1 January 1987 and the 31 December 2006 (n=10 631 208) were identified using the Swedish Total Population Register (TPR). The TPR was established in 1968 and contains information on sex, date and place of birth and date of migration of every resident in Sweden. Information on hospital admission, medical diagnosis and cause of death was obtained by linking the TRP with the national Swedish Cause-of-Death Register and the National Patient Register (NPR) using each resident’s unique personal identification number.

The NPR, which is maintained by the National Board of Health and Welfare, contains information on all hospital in-patient treatments in Sweden since 1987. For psychiatric in-patient care, the register has nationwide coverage dating back from 1973. For each hospitalisation, the unique national registration number, date of admission and discharge and diagnosis are registered in NPR. In Sweden, all hospital diagnoses are classified according to the WHO International Classification of Diseases (ICD). Since the diagnostic definitions of affective disorders were substantially changed in ICD-9 and ICD-10 as compared with ICD-8, only patients diagnosed with bipolar disorder according to ICD-9 or ICD-10 were included in the study. Bipolar diagnoses recorded between 1987 and 1996 were identified using ICD-9 (296A, C, E and 298B). From 1997 and later, ICD-10 (F30–F31) was used to identify bipolar diagnoses.

The Swedish Cause of Death Register (CDR) includes all deaths was calculated by applying age-specific mortality rate ratios (MRR) and admission rate ratios (ARR) to the time at risk among the patients. Person-time was stratified by sex, calendar year and age. Mortality rate ratios (MRR) and admission rate ratios (ARR) and predicted death rates were calculated with corresponding 95% confidence intervals (CI) using Poisson regression models with the GENMOD procedure using statistical software SAS (V.9.2). All models were adjusted for or stratified by sex, attained age and year of follow-up.

To calculate the excess mortality for patients with bipolar disorder, the observed number of deaths was compared with the expected number of deaths among patients with bipolar disorder. The expected number of deaths was calculated by applying age-specific, sex-specific and calendar-specific death rates in the general population to the time at risk among the patients.

The risk of dying from CVD after first hospital admission was analysed by estimating cause-specific survival curves using the Kaplan-Meier method. Additional adjusted HRs with 95% CIs were estimated using Cox proportional hazard models.

When hospital admission owing to CVD (admission rate ratios, ARR) was the event of interest, follow-up ended on the day of first admission. To ensure that the observed cases were incident, a 3-year run-in period was created to compensate for the lack of CVD coverage in the NPR before 1987. Hence, all patients with bipolar disorder analysed had no hospital admissions owing to CVD recorded for at least 3 years before follow-up.

Statistical analysis

Person-years at risk, number of cause-specific deaths and hospital admissions owing to CVD for both patients with bipolar disorder and the general population were determined. Person-time was stratified by sex, calendar year and age. Mortality rate ratios (MRR) and admission rate ratios (ARR) and predicted death rates were calculated with corresponding 95% confidence intervals (CI) using Poisson regression models with the GENMOD procedure using statistical software SAS (V.9.2). All models were adjusted for or stratified by sex, attained age and year of follow-up.

To calculate the excess mortality for patients with bipolar disorder, the observed number of deaths was compared with the expected number of deaths among patients with bipolar disorder. The expected number of deaths was calculated by applying age-specific, sex-specific and calendar-specific death rates in the general population to the time at risk among the patients.

The risk of dying from CVD after first hospital admission was analysed by estimating cause-specific survival curves using the Kaplan-Meier method. Additional adjusted HRs with 95% CIs were estimated using Cox proportional hazard models.

When hospital admission owing to CVD (admission rate ratios, ARR) was the event of interest, follow-up ended on the day of first admission. To ensure that the observed cases were incident, a 3-year run-in period was created to compensate for the lack of CVD coverage in the NPR before 1987. Hence, all patients with bipolar disorder analysed had no hospital admissions owing to CVD recorded for at least 3 years before follow-up.
RESULTS

Causes of death

Total mortality (death from any cause) between 1987 and 2006 in Sweden was more than twice as high among patients with bipolar disorder compared to the general population (MRR 2.40; 95% CI 2.33 to 2.47). Specifically, 2489 excess deaths in patients with bipolar disorder were observed (table 1). With mortality causes subdivided into CVD and other somatic and external causes of death, we found that men and women with bipolar disorder were twice as likely to die of CVD compared to the general population (MRR 2.03; 95% CI 1.93 to 2.13), with 824 excess deaths owing to CVD. Mortality from other somatic causes was also doubled (MRR 2.10; 95% CI 2.00 to 2.19), with 988 excess deaths. External causes of death, such as suicide, homicides and accidents, were increased more than nine times in patients with bipolar disorder (MRR 9.66; 95% CI 8.99 to 10.37), with 675 excess deaths. As far as CVD subgroups were concerned, mortality from cerebrovascular disease and coronary heart disease was twice as high in patients with bipolar disorder, with 184 excess deaths (MRR 2.00; 95% CI 1.81 to 2.22) and 377 excess deaths (MRR 1.95; 95% CI 1.81 to 2.09). Mortality from acute myocardial infarction was almost twice as high in patients with bipolar disorder (MRR 1.83; 95% CI 1.67 to 2.01), with 200 excess deaths. Mortality from sudden cardiac death, cardiac arrest/ventricular fibrillation, was

Table 1 Mortality rate ratios (MRRs) for persons with bipolar disorder during 1987–2006

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Men</th>
<th>Women</th>
<th>Total (both sexes)</th>
<th>Excess cases (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes of death</td>
<td>1874 (2.48)</td>
<td>2393 (2.34)</td>
<td>4267 (2.40)</td>
<td>2489 (2361 to 2617)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>733 (2.16)</td>
<td>892 (1.93)</td>
<td>1625 (2.03)</td>
<td>824 (745 to 903)</td>
</tr>
<tr>
<td>Other somatic deaths</td>
<td>735 (1.97)</td>
<td>1154 (2.19)</td>
<td>1889 (2.10)</td>
<td>988 (902 to 1073)</td>
</tr>
<tr>
<td>Suicide and other external deaths</td>
<td>406 (9.37)</td>
<td>347 (10.02)</td>
<td>753 (9.66)</td>
<td>675 (621 to 729)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>144 (2.29)</td>
<td>224 (1.86)</td>
<td>368 (2.00)</td>
<td>184 (147 to 222)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>385 (2.00)</td>
<td>391 (1.89)</td>
<td>776 (1.95)</td>
<td>377 (323 to 432)</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>227 (1.89)</td>
<td>213 (1.78)</td>
<td>440 (1.83)</td>
<td>200 (159 to 241)</td>
</tr>
<tr>
<td>Cardiac arrest/ventricular fibrillation</td>
<td>23 (2.29)</td>
<td>32 (1.62)</td>
<td>55 (1.85)</td>
<td>25 (12 to 42)</td>
</tr>
</tbody>
</table>

Figure 1 International Classification of Diseases coding and classification of disease and mortality.
also increased (MRR 1.85; 95% CI 1.42 to 2.41), with 25 excess deaths. Women and men with bipolar disorder of all ages had an equally increased mortality from CVD (data not shown).

Age and cause of death
MRR by age at death for all causes of death is shown in figure 2A and subdivided into cardiovascular death (figure 2B), other somatic death (figure 2C), suicide and other external causes of death (figure 2D). Cerebrovascular death (figure 2E), death by coronary heart disease (figure 2F) and death from acute myocardial infarction (figure 2G) are reported separately.

MRR for CVD was increased for patients with bipolar disorder across all ages, but was particularly pronounced in the young age groups (figure 2B). Patients with bipolar disorder who died of CVD were younger than people in the general population. The same finding was observed when we subdivided CVD into cerebrovascular disease, coronary heart disease and acute myocardial infarction (figure 2E–G). For acute myocardial infarction and coronary heart disease, the increased risk was most apparent in the 55-year to 65-year age groups (figure 2EG). In the ages below 50 years, the results should be interpreted with caution because there were very few events in these ages. Death by suicide and other external causes of death were 15 times more common among patients with bipolar disorder below 30 years of age compared to persons of the same age in the general population (figure 2D). Overall, the MRR for suicide and other external causes of death decreased with increasing age. However, it should be noted that it remained significantly increased in persons aged between 70 and 74 years (MRR 6.88; CI 95% 5.06 to 9.35; figure 2D).

Age differences at death between persons with bipolar disorder and the population from coronary heart disease, acute myocardial infarction and cerebrovascular disease are shown in figure 3A–C. The earlier age at death for persons with bipolar disorder is clearly shown for all these causes of death.

Admission rates
Hospital admission rates for CVD among patients with bipolar disorder were similar to those for the general population even though MRR for CVD was almost twice as high, independent of the specific CVD cause (tables 1 and 2). Survival rates 5 years after first hospital admission for CVD were significantly lower among patients with bipolar disorder than among the general population (figure 4).

DISCUSSION
Key findings
In this nationwide study of mortality among persons with bipolar disorder in Sweden compared to the population, somatic illness was the main cause of death. Patients with bipolar disorder died of CVD around 10 years earlier than the general population. Mortality from cerebrovascular disease, coronary heart disease and acute myocardial infarction was twice as high in patients with bipolar disorder as in the general population, while the frequency of hospital admissions owing to these diseases was not increased. Our findings showed that CVD in persons with bipolar disorder accounted for 824 excess deaths and other somatic diseases for 988 excess deaths, taken together 1812 excess deaths, both larger than suicide and other external causes of death (n=675). Interestingly, sudden cardiac death was also increased.

Strengths and limitations
The Swedish National Patient Register and Cause of Death Register include everyone who resides in the country and are considered unique, comprehensive and highly credible. Currently more than 99% of all somatic and psychiatric hospital discharges are recorded in the National Patient Register. Swedish hospitals and government agencies are obliged by law to enter medical information in the National Patient Register. All diagnoses in the National Patient and Cause of Death registers were given by patients’ doctors using international classification standards (ICD codes). Being register based, this study used information about clinical diagnoses from hospital admissions in Sweden. During the study period, the ICD diagnostic definitions were specific for bipolar disorder. A validation of the Swedish clinical bipolar hospital diagnoses has shown high validity, sufficient for epidemiological studies. One limitation of this study was that it was based on in-patient diagnoses, which may have generated a selective bias towards severely ill patients. However, most individuals at severe stages of bipolar disorder are admitted to hospital in Sweden. Since medical care is free in Sweden, there is no bias by costs for hospital care leading to differences in health-seeking behaviour. In a previous study, we have shown that the number and frequency of hospital admissions owing to bipolar disorder remained relatively unchanged during recent years, while the overall number of psychiatric admissions was drastically reduced.

We did not have access to medical records or information on medical treatment. In terms of the validity of the data on causes of death, in CVD deaths, we found a slightly higher autopsy rate (28%) among patients with bipolar disorder than in the general population (22%). It is unlikely that these small differences affected the outcome of the study. An advantage with the present study is the analysis of specific causes of death.

Findings from other studies
The findings of this study add to the growing body of evidence that somatic diseases, particularly CVD, contribute to the shorter lifespan among patients with bipolar disorder. Findings from several large register-based studies from different parts of the world indicate that cardiovascular disease is responsible for the majority of excess deaths, with up to 2.5-fold increased mortality. Studies using registers from the Nordic countries have shown that
patients with bipolar disorder run almost twice the risk of dying from CVD than do persons in the general population, the mechanisms for which are currently unknown.4, 5 There is a growing body of evidence from studies in other countries, and findings similar to ours have been observed in a representative study of the US population.15 In our previous study,5 standardised mortality ratios (SMR) for CVD, but not for cerebrovascular mortality, was higher for women compared to men. This difference was not found in our present study. SMR and MRR are relative measurements, affected both by population trends and trends among the cases. Thus, the different findings could be related both to changing death rates in the population and to changes among persons with bipolar disorder, or a combination of those factors. CVD contains several different causes of mortality, which may have different trends over time. However, the specific causes of death related to the sex difference in coronary heart disease mortality previously found cannot be answered in our study.

Studies have shown a higher cardiovascular mortality in persons with bipolar disorder type I compared to bipolar disorder type II or major depressive disorder.16, 17

\textbf{Figure 2} Mortality rate ratios (MRR) by age at death in persons with bipolar disorder compared to the general population for (A) all causes of death, (B) cardiovascular death, (C) other somatic death, (D) suicide and other external causes of death, (E) cerebrovascular disease, (F) coronary heart disease, and (G) acute myocardial infarction. All causes of death presented with the same scale for reasons of comparison.
In our Swedish data, bipolar disorder type I cannot be separated from bipolar disorder type II. However, patients with bipolar disorder type I are much more likely to be hospitalised and thus to be included in our sample. Earlier age of CVD has been shown in several studies, and is also confirmed in our findings of increased cardiovascular death at a younger age compared to the population in Sweden. Possible risk factors for the increased mortality from CVD among patients with bipolar disorder may include adverse effects of medication, high levels of smoking, unhealthy diet, lack of physical activity, low socioeconomic status and lower rates of nutritional counseling. Studies have shown that patients with bipolar disorder deviate from the age-based norms on arterial stiffness measures. Also, inflammation has been pointed out as a potential biological cause of increased CVD in bipolar disorder together with endothelial dysfunction. In addition, effects of genetic associations, such as those reported between type 2 diabetes, CHD and schizophrenia, could not be excluded. One of the most important loci of genetic polymorphisms linked to bipolar disease and depression is around the ATP-activated ion-channel receptor P2X7. Recently, a polymorphism in the P2X7 gene was linked to the increased risk of stroke and acute myocardial infarction, and the same polymorphism has also recently been shown to be linked to cognitive symptoms in bipolar disorder, indicating that common genetic factors could have effect on both cardiovascular disease and bipolar disorder.

CVD undertreated in persons with bipolar disorder
Studies of patients with bipolar disorder have shown that they have an increased risk of the metabolic syndrome, that is, increased blood glucose and cholesterol levels, higher blood pressure and prevalence of overweight and obesity, closely associated with CVD. To prevent and treat metabolic disorders in patients with severe mental illnesses such as bipolar disorder, new guidelines for clinicians in Sweden were drawn up in 2009, thus after the end of this study, by psychiatrists, diabetologists, endocrinologists, cardiologists and general practitioners in collaboration. The guidelines can be found on the website of the Swedish Psychiatric

Table 2 Admission rate ratios (ARR) for persons with bipolar disorder during 1990–2006

<table>
<thead>
<tr>
<th>Hospital admissions</th>
<th>Men</th>
<th>Women</th>
<th>Total (both sexes)</th>
<th>Excess cases (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular disease</td>
<td>Cases ARR (95% CI)</td>
<td>Cases ARR (95% CI)</td>
<td>Cases ARR (95% CI)</td>
<td>Cases ARR (95% CI)</td>
</tr>
<tr>
<td>540</td>
<td>1.27 (1.16 to 1.38)</td>
<td>1.33 (1.24 to 1.43)</td>
<td>1236</td>
<td>1.30 (1.23 to 1.38)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>179</td>
<td>1.32 (1.14 to 1.53)</td>
<td>271</td>
<td>1.43 (1.27 to 1.62)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>212</td>
<td>1.02 (0.89 to 1.17)</td>
<td>207</td>
<td>1.06 (0.92 to 1.21)</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>133</td>
<td>0.96 (0.81 to 1.14)</td>
<td>137</td>
<td>1.11 (0.94 to 1.31)</td>
</tr>
</tbody>
</table>
has been previously suggested as a contributor to excess
ment of lower quality) for reasons other than
Unequal access to healthcare (ie, receiving cardiac treat-
admissions, and thus being more severely affected.
admission, while the MRR patients may have several
that the ARR patients are identi-
fi
Figure 4 Five-year survival of cardiovascular disease in
persons with bipolar disorder after discharge from first
cardiovascular admission stratified by age at hospital contact.

Association (http://www.svenskpsykiatri.se). In the
guidelines, there is a strong emphasis on the increased
metabolic risks at younger age with focus both on
primary and secondary prevention strategies and the
need for collaboration between the different medical
specialties. The effects of those guidelines are still to be
evaluated.

Our finding that patients with bipolar disorder
showed only slightly increased hospital admissions rates
for CVD, despite their twice as high cardiovascular mor-
tality, strongly suggests that CVD is undertreated in
bipolar patients when compared to the general popula-
tion. In a Danish study, the rates of invasive heart
disease procedures were 40% lower among persons with
bipolar disorder than in the general population.4
Although the younger age at cardiac events in bipolar
disorder compared to the population may reduce detect-
tion, this factor is unlikely to cause the reduced rates of
invasive heart procedures, since younger age at detect-
ion would rather be expected to lead to more intensive
treatment. The lower rate of invasive heart disease pro-
cedures among persons with bipolar disorder is yet to be
explained. Sudden cardiac mortality from cardiac
arrest/ventricular fibrillation was increased among
patients with bipolar disorder (MRR 1.85), but the 25
excess cases do not explain the difference in CVD
admissions in terms of increased sudden death before
hospital admission. Thus, the reasons for CVD under-
treatment in bipolar disorder are not explained by the
current findings. In our study, the MRR and ARR
patient populations are slightly different, in the respect
that the ARR patients are identified at their first index
admission, while the MRR patients may have several
admissions, and thus being more severely affected.
Unequal access to healthcare (ie, receiving cardiac treat-
ment of lower quality) for reasons other than financial
has been previously suggested as a contributor to excess
CVD mortality in patients with severe mental disorders,
such as schizophrenia,38 and may be indicated by our
findings of increased mortality after the discharge from
hospital compared to the population. These factors have
not been studied extensively in bipolar patients.
Healthcare in Sweden is free and is financed primarily
through taxes. Therefore, it is unlikely that patients with
bipolar disorder do not seek hospital care for lack of
financial means.

Many mechanisms can contribute to the undertreat-
ment of CVD among people with bipolar disorder. Our
results indicate a failure of the healthcare system to iden-
tify and address the health needs of those patients,
which has also been shown in other studies of people
with severe mental disorders.39 The levels of CVD mor-
tality in our persons with bipolar disorder are similar to
those in schizophrenia, where adverse effects of anti-
psychotic medication have been considered the main
contributing factor. When compared with a study of
schizophrenia, a recent study of bipolar disorder in
Stockholm County found that only 29% of patients with
bipolar disorder were medicated with antipsychotics,40
as compared to practically all patients with schizophre-
nia, which raises the question of the importance of
adverse effects of antipsychotics in CVD.

CONCLUSIONS
The observed number of deaths from cardiovascular dis-
eseases in patients with bipolar disorders was almost twice
as high as the expected number in the general popula-
tion, suggesting that more resources are needed for the
prevention of these diseases in this patient group.
Targeted interventions by effective collaboration
between primary healthcare and psychiatric profes-
sionals would be crucial in the efforts to reduce excess
CVD mortality in patients with bipolar disorder. Finally,
effective cardiac treatment would ensure longevity and
improved quality of life for patients with bipolar
disorder.

Author affiliations
1Department of Neurobiology, Care Sciences, and Society, Centre for Family
Medicine (CeFAM), Karolinska Institutet, Stockholm, Sweden
2Department of Medical Epidemiology and Biostatistics (MEB), Karolinska
Institutet, Stockholm, Sweden
3Department of Mental Health and Substance Abuse Services, THL, National
Institute for Health and Welfare, Helsinki, Finland
4Department of Cardiology, Lunds Universitet, Lund, Sweden
5Institute of Environmental Medicine, Karolinska Institutet, Stockholm,
Sweden
6Department of Molecular Medicine and Surgery, Neurogenetics, Karolinska
Institutet, Stockholm, Sweden
7Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
8Department of Psychiatry, Tiohundra AB, Norrtälje, Sweden

Contributors UÖ had the idea of the study and is guarantor of the study
together with JH, who has performed the statistical analyses. JW has
contributed to the design of the study and drafted the manuscript together
with UÖ. KW, DE and LA have contributed to the design of the study and with
revisions of the manuscript. All authors have approved the final version of the
study.
Funding This paper was supported by Swedish Council for Working Life and Social Research (grant number FAS 2008-0885) and Stockholm County Council (Grant number PPG-20120263). The study was conducted and analysed independently from its funders.

Competing interests All authors have completed the ICMJE uniform disclosure form (available on request from the corresponding author). JW, KW, LA, DE and UÖ has declared no support from any organisation for the submitted work, no financial relationship with any organisations that would have interest in the submitted work in the previous 3 years, and no other activities that could appear to have influenced the submitted work. UÖ has declared travelling expenses from Janssen-Cilag for attending a course in October 2012 unrelated to the study.

Ethics approval This study was approved by the ethical review board in Stockholm County. The ethical review board determined that informed consent from participating individuals was not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The analysis data set for this study is available from the National Board of Health and Welfare (Socialstyrelsen) in Sweden. Please contact JH for further information.

REFERENCES