Study protocol for a randomised controlled double blinded trial of the dose-dependent efficacy and safety of primaquine for clearance of gametocytes in children with uncomplicated falciparum malaria in Uganda

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2013-002759</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Protocol</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>19-Feb-2013</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Eziefula, Alice; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases
Staedke, Sarah; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases
Yeung, Shunmay; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases
Webb, Emily; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases
Kamya, Moses; Infectious Diseases Research Collaboration, White, Nicholas; Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine
Bousema, Teun; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases; Radboud University Nijmegen Medical Centre, Department of Medical Microbiology
Drakeley, Chris; London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases |
| **Primary Subject Heading:** | Infectious diseases |
| **Secondary Subject Heading:** | Epidemiology, Evidence based practice, Global health, Pharmacology and therapeutics, Research methods |
| **Keywords:** | INFECTIOUS DISEASES, Tropical medicine < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, PARASITOLOGY, PUBLIC HEALTH, Clinical trials < THERAPEUTICS |
TITLE

Study protocol for a randomised controlled double blinded trial of the dose-dependent efficacy and safety of primaquine for clearance of gametocytes in children with uncomplicated falciparum malaria in Uganda

Authors: Alice C. Eziefula1, Sarah G. Staedke1, Shunmay Yeung1, Emily Webb2, Moses Kamya3, Nicholas J. White4, Teun Bousema1,5, Chris Drakeley1

*Corresponding author: Alice C. Eziefula, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. E-mail: chi.eziefula@gmail.com, Telephone: +44 (0) 207 927 2300, Fax: +44 (0) 207 637 4314

1Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

2Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

3Infectious Diseases Research Collaboration, Mu-Jhu Building, Mulago Hospital Complex, PO Box 7475, Kampala, Uganda

4Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand

5Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands

Keywords: Malaria, transmission, gametocyte, primaquine, glucose-6-phosphate dehydrogenase deficiency
ABSTRACT

Introduction For the purpose of blocking transmission of Plasmodium falciparum malaria from humans to mosquitoes, a single dose of primaquine is recommended by the World Health Organisation as an addition to artemisinin combination therapy. Primaquine clears gametocytes but causes dose-dependent haemolysis in individuals with glucose-6-phosphate dehydrogenase deficiency. Evidence is needed to inform the optimal dosing of primaquine for malaria elimination programmes and for the purpose of interrupting the spread of artemisinin-resistant malaria. This study investigates the efficacy and safety of reducing doses of primaquine for clearance of gametocytes in participants with normal G6PD status.

Methods and analysis In this prospective, four-armed randomized placebo-controlled double-blinded trial, children aged 1-10 years, weighing over 10kg, with haemoglobin ≥ 8g/dL and uncomplicated Plasmodium falciparum malaria are treated with artemether lumefantrine and randomised to receive a dose of primaquine (0.1mg base/ kg, 0.4mg base/ kg or 0.75mg base/kg) or placebo on the third day of treatment. Participants are followed up for 28 days. Gametocytaemia is measured by quantitative nucleic acid sequence-based analysis on days 0, 2, 3, 7, 10 and 14 with a primary endpoint of the number of days to gametocyte clearance in each treatment arm and secondarily the area under the curve of gametocyte density over time. Analysis is for non-inferiority of efficacy compared to the reference dose, 0.75 mg base/kg. Safety is assessed by pair-wise comparisons of the arithmetic mean (+/- standard deviation) change in haemoglobin concentration per treatment arm and analysed for superiority to placebo and incidence of adverse events.

Ethics and dissemination Approval was obtained from the ethical committees of Makerere University...
School of Medicine, the Ugandan National Council of Science and Technology and the London School of Hygiene and Tropical Medicine. Results will be disseminated to inform malaria elimination policy, through peer-reviewed publication and academic presentations.

Trial registration: NCT01365598

ARTICLE SUMMARY

Article focus

Single-dose primaquine, administered together with artemisinin combination therapy, blocks transmission of *Plasmodium falciparum* malaria by clearing gametocytes.

Primaquine, an 8-aminoquinoline, causes dose-dependent haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Evidence is lacking on the safety and efficacy of lower doses of primaquine.

This is the protocol of a dose-finding trial being conducted in eastern Uganda.

Key messages

Dose-finding is a priority for the use of primaquine in malaria elimination programmes and to block the spread of artemisinin-resistant malaria.

This trial is designed to investigate the efficacy and safety of reducing doses of primaquine for gametocytocidal action.
This paper highlights the unique trial design issues that are relevant for investigating the efficacy and safety of antimalarials targeted against the sexual stages of malaria for blocking transmission rather than clinical cure.

Strengths and limitations of this study

For ethical reasons, in this trial, dose-finding is conducted in children with normal G6PD status, but, ultimately, information is needed on the safety of lower doses in people with G6PD deficiency.

This trial measures primaquine’s transmission-blocking potential by assessing gametocyte clearance. Endpoints of mosquito transmission at multiple timepoints could be usefully assessed but on smaller numbers of individuals.

BACKGROUND

Sustained deployment of vector control measures and accessible, effective drug therapy has reduced the transmission of *Plasmodium falciparum* in many endemic countries. However, further scaling-up of currently available malaria control measures is unlikely to achieve malaria elimination in most settings[1]. Moreover, the emergence of resistance to artemisinin in Southeast Asia[2 3], and the development of insecticide resistance and adaptive behaviour in the mosquito vector[4-6] present significant threats to the current trend of declining malaria burden. Malaria elimination initiatives and artemisinin-resistance containment strategies both require additional tools that are specifically aimed at reducing the transmission of malaria parasites[7 8].

Antimalarial drugs are designed primarily to target the asexual stages of the parasite that cause morbidity and mortality. The effect of antimalarial drugs on gametocytes, the transmission stages, has for decades been seen as ancillary. *P. falciparum* gametocytes undergo complex development that is
characterised by five morphologically distinct stages of maturation[9]. The immature gametocyte stages (I-IV) are sequestered in the reticuloendothelial system and bone marrow[10-12]. Mature stage V gametocytes typically appear approximately 12 days after the onset of patent asexual bloodstream infection, and are the only gametocyte stage that circulates in the peripheral blood and is infective to biting female Anopheles mosquitoes[13 14]. The majority of antimalarial drugs, including artemisinins, lumefantrine and piperaquine, have some efficacy against immature gametocytes[15 16]. These drugs have the potential to reduce transmission at a population level because asexual parasites are cleared, preventing de novo development of gametocytes, and fewer of the immature gametocytes that are present upon initiation of treatment survive to maturity. However, the vast majority of symptomatic cases have measurable and transmissible levels of mature gametocytes at presentation[17 18]. These persist after treatment with all antimalarials that are currently implemented as first-line treatment, including artemisinin combination therapy (ACT). Gametocytes that persist after ACT have repeatedly been shown to be infectious to mosquitoes[17 19 20]. This post-treatment gametocyte carriage frequently occurs at low densities, commonly below the microscopic threshold for detection[21 22], but is sufficiently high for efficient mosquito infection[17 23].

The only class of drugs that are effective against mature P. falciparum gametocytes is the 8-aminoquinolines. Primaquine is the most widely available drug in this class. The exact mechanism for this gametocytocidal activity is unknown, but it is probably dependent on oxidative damage to the intraerythrocytic parasite by primaquine metabolites[24] Primaquine as single dose of 0.75mg base/kg added to standard artemisinin containing therapy (ACT) has superior gametocytocidal activity to ACT alone[25-27]. All doses of primaquine described hereafter refer to the dose of primaquine base per unit weight. There are indications that doses of primaquine lower than 0.75mg /kg may be equally
efficacious. A Thai study showed that both 0.5 and 0.25mg /kg of primaquine given with ACT to adults infected with malaria effectively and indistinguishably reduced the proportion of mosquitoes that became infected after a blood meal[28]. In small numbers of adults, total doses of 30mg and 15mg have shown comparable efficacy to a 45mg dose in reducing mosquito infection rates[29 30].

The efficacy of primaquine when given as a single low dose is important in the light of concerns over the haematological safety of primaquine. There is conclusive evidence for primaquine-induced haemolysis in glucose-6 phosphate dehydrogenase (G6PD) deficient individuals[31 32]. G6PD deficient individuals are vulnerable to oxidative stress because their erythrocytes do not have alternative pathways for G6PD-dependent NADPH production, which is essential to maintain anti-oxidant defences. There is conflicting evidence on the risk of haemolysis after a single dose of primaquine. A single dose of 45mg primaquine given to a Vanuatan adult caused life-threatening haemolysis[33]. In G6PD deficient Tanzanian children, the mean fall in haemoglobin after a single dose of 0.75mg/kg primaquine was 2.5g/dL (95% CI, 1.2 to 3.8 g/dl), though no associated severe adverse events were recorded and haemolysis was transient[34]. On the other hand, primaquine was reported to be well tolerated when 0.75mg/kg was given without prior G6PD testing in large studies in Myanmar, Sudan, Russia, Cambodia and China[27 31 35 36].

Because primaquine induced haemolysis is dose-dependent[29], and because gametocytocidal efficacy may be retained with primaquine doses lower than 0.75mg/kg, the World Health Organization (WHO) recommended dose in their 2010 Guidelines for the Treatment of Malaria, dose-finding studies are needed urgently. This trial tests the hypothesis that lower doses of primaquine have a substantially lower risk of, or an absence of, adverse effects but that their gametocytocidal efficacy is retained.
METHODS AND ANALYSIS

Study design

The study is a prospective, randomised, parallel arm, placebo-controlled, double-blinded clinical trial of reducing doses of primaquine administered with artemether lumefantrine (AL) for the treatment of uncomplicated clinical *P. falciparum* malaria infection in children aged 1-10 years of age. The study uses a non-inferiority design to evaluate the efficacy and a superiority design to evaluate the safety of 0.1mg/kg and 0.4 mg/kg primaquine compared to 0.75mg/kg when added to AL.

Study objectives

1. To evaluate the efficacy of 0.1mg/kg, 0.4 mg/kg and 0.75 mg/kg primaquine when administered together with the 5th dose of AL as measured by gametocyte prevalence and density
2. To evaluate the safety of 0.1mg/kg, 0.4 mg/kg and 0.75 mg/kg primaquine when administered together with the 5th dose of AL as measured by change in mean haemoglobin, prevalence of severe anaemia (haemoglobin <5g/dL), and evidence of black urine (haemoglobinuria)
3. To assess the safety of different doses of 0.1mg/kg, 0.4 mg/kg and 0.75 mg/kg primaquine when administered together with the 5th dose of AL as measured by prevalence/incidence of adverse events and tolerability

Participants and enrolment

The study is conducted at Walukuba Health Centre IV in Walukuba sub-county, Jinja district, in eastern Uganda. In this area, malaria transmission is year-round with two seasonal peaks. The entomological...
inoculation rate (EIR) was estimated at 7 infectious bites per person per year in Walukuba[37]. Study participants are recruited from children attending the Health Centre IV with suspected malaria (Figure 1). Inclusion criteria are: age 1-10 years, weight over 10kg, fever (tympanic temperature >38°C) or history of fever in the last 24 hours, *P. falciparum* mono-infection with a parasite density <500 000/µl, and normal G6PD enzyme function. Exclusion criteria are: evidence of severe illness/ danger signs, known allergy to study medications, haemoglobin < 8g/dL, started menstruation, pregnancy or breastfeeding, antimalarials taken within the last 2 days, primaquine taken within the last 4 weeks, blood transfusion within the last 90 days.

The fluorescent spot test[38] is used for G6PD screening. This test has a cut off of approximately 20% enzyme function; below that, there is no fluorescence. The WHO classification defines severe G6PD deficiency as 10% enzyme function[39].

Randomization, blinding and intervention

After enrolment (day 0), participants are randomised to a treatment arm stratified by gender (Figure 2). The study pharmacist selects sequential opaque envelopes (from either the male or the female pile). Each envelope contains a pre-determined treatment assignment code. The study pharmacist is the only member of the clinic team not blinded to the treatment arm and is not involved in assessing patients or assigning outcomes. All study site staff who administer drugs, assess patients and process laboratory samples do not have access to the randomization code breaker.

All participants receive a three day course of artemether lumefantrine according to Ugandan national treatment guidelines for uncomplicated malaria. Participants are randomised to receive a placebo or a dose of 0.1mg/kg, 0.4 mg/kg or 0.75g mg/kg primaquine in addition to the AL treatment. The dose of
primaquine/ placebo is given at the same time as the fifth dose of AL, in the morning of day 2. To preserve the accuracy of lower weight-based doses, all primaquine doses are administered in aqueous solution and measured using a sterile syringe. The placebo is aqueous solution alone. All doses including placebo are mixed with a glucose syrup that masks the colour and taste of primaquine. All treatments are directly observed. A snack with approximately 5g of fat is administered prior to both AL and primaquine administration to optimise absorption of AL and minimise gastrointestinal side effects with primaquine. Participants are observed for 30 minutes; treatment is re-administered in any case of vomiting within this period. Repeated vomiting (>3 times) leads to exclusion from the study and treatment as complicated malaria according to national guidelines.

Follow up measurements

Study participants are reviewed on days 0, 1, 2, 3, 7, 10, 14, 21, 28 after enrolment or on any day of illness. On each of the scheduled visit days they are assessed clinically with standardised adverse event recording and blood samples are taken for microscopical detection of asexual parasites and gametocytes, molecular detection of gametocytes and haemoglobin measurements (Table 1).

Table 1 Summary of outcome measures

<table>
<thead>
<tr>
<th>OUTCOME MEASURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFICACY</td>
<td></td>
</tr>
<tr>
<td>PRIMARY</td>
<td></td>
</tr>
<tr>
<td>Mean number of days to gametocyte clearance (gametocyte clearance time, GCT)</td>
<td>Mean number of days per treatment arm for gametocytes to become undetectable using sub-microscopic molecular testing</td>
</tr>
</tbody>
</table>
methods (QT-NASBA). Re-appearance of gametocytes after
day 14 will be considered re-infection and excluded.

<table>
<thead>
<tr>
<th>SECONDARY</th>
<th>Mean (+/- SD) area under the curve of gametocyte density per day during 14 days of follow-up</th>
<th>Total number of gametocytes (measured by QT-NASBA) seen over follow up, averaged per day of follow up (days 0-14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density of gametocytes on days 7, 10 and 14</td>
<td>Mean number of gametocytes (measured by QT-NASBA) per treatment arm on days 7, 10 and 14</td>
</tr>
<tr>
<td></td>
<td>Proportion (%) of participants with gametocytes on each day of follow up</td>
<td>For each treatment arm, percentage of participants with gametocytes (measured by QT-NASBA) on each day of follow up from days 0-14.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAFETY</th>
<th>PRIMARY</th>
<th>Mean (+/- SD) maximal fall (+/ or -) in Hb (haemoglobin, g/dL) from enrolment to day 28 of follow-up</th>
<th>Mean maximal greatest negative difference in Hb (measured by HemoCue®) from enrolment value per treatment arm over 28 days follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SECONDARY</td>
<td>Follow-up day of Hb nadir</td>
<td>Mean day of follow up (day 0-28) per treatment arm of lowest Hb</td>
</tr>
</tbody>
</table>
Maximal percentage fall in Hb level compared to enrolment value

Size of maximal Hb drop (by Hemocue®) during follow up (day 0-28) from enrolment value, divided by enrolment value, *100

% participants with Hb < 5g/Dl during follow up

Percentage (number) per treatment arm during days 0-28

Requirement for blood transfusion

Percentage (number) of children receiving blood transfusion per treatment arm during days 0-28

Evidence of black urine

Percentage (number) of children with documented black/dark urine with urine dipstick positive for Hb per treatment arm during days 0-28

Incidence of serious adverse events by sign, symptom, laboratory parameter and relationship to taking study drug

Percentage (number) per treatment arm during days 0-28

Incidence of gastrointestinal symptoms after taking study drug

Percentage (number) per treatment arm during days 2-7

Blood smears from all visits are Giemsa-stained and 100 microscopic fields are screened for asexual parasites on days 0, 1, 2, 3, 7, 10, 14, 21 and 28. Asexual parasites are counted against 200 white blood cells (WBC) or, if fewer than 10 parasites are observed per 200 WBC, against 500 WBC. Gametocytes are
recorded if observed during this screening process. On day 0, 100 microscopic fields are re-read for
gametocytes specifically. If gametocytes are observed, they are quantified against 500 WBC. All
microscopy readings are done by two independent microscopists, if they disagree on prevalence or if
density results differ by more than 25%, a third reading is requested.

Gametocytes are quantified on days 0, 2, 3, 7, 10 and 14 using quantitative real time nucleic acid
sequence based analysis (QT NASBA), detecting and quantifying \(Pfs25 \) mRNA. One hundred microlitre of
finger prick blood is mixed with 900µL L6 guanidine buffer (Severn Biotech, UK) and stored at -80°C until
automatic nucleic acid extraction by MagNAPure (Roche) using commercial high yield kits. The \(Pfs25 \) QT-
NASBA is specific for mature gametocytes with a sensitivity of 0.01-0.1 gametocytes/µL of blood when
50µL blood samples are used for RNA extraction[40].

Haemoglobin is measured on days 0, 1, 2, 3, 7, 10, 14, 21 and 28 using HemoCue 201+ photometers
(HemoCue; Angelholm, Sweden). At each follow up visit, study staff assess participants in an objective
manner according to a clinical record form and assessment for adverse events is conducted in a
prospective, systematic fashion at all visits, including the enrolment visit (e.g. vomiting post AL). All data
are double-entered in real time.

Safety considerations

A protocol was developed in order to standardise the detection, investigation and management of
severe haemolysis in this trial (Figures 3 and 4). A Data Safety Monitoring Board (DSMB) has been
installed; clinically relevant haemolytic events, hospital admissions, blood transfusions and deaths are reported within 72 hours to this DSMB.

Ethical considerations

The study protocol and informed consent forms were approved by the Makerere University School of Medicine Research Ethics Committee (protocol 2011-210), the Uganda National Council of Science and Technology (protocol HS1056) and the London School of Hygiene and Tropical Medicine research ethics committee (protocol 5987). The Ugandan National Drug Authority approved the protocol and importation of primaquine for the purposes of the study. The Data Safety Monitoring Board and Trial Advisory Committee for the study agreed to meet at predetermined stages of the study. Before the study began, local community stakeholders (including village health team and local council members) in Walukuba were consulted and a community advisory board meeting was held.

Sample size

For efficacy, the sample size calculation is based on non-inferiority of each of the two test dose arms to the comparator arm, the WHO-recommended dose of primaquine, 0.75mg/kg. The primary outcome measure is number of days to gametocyte clearance. The addition of primaquine (0.75mg/kg) to ACT in Tanzania reduced the time to gametocyte clearance from 28.6 to 6.3 days (standard deviation 6 days)[41]. Allowing for a 10% loss to follow up, a sample size of 120 per arm will provide over 80% power at the 0.05 significance level to detect non-inferiority to the standard arm with a non-inferiority margin of 2.5 days, which was considered to be a clinically relevant reduction in gametocyte clearance time. This sample size also allows for an analysis of superiority of the efficacy of the two test dose arms to placebo.
For safety, the sample size calculation is based on superiority of each of the two test dose arms to the comparator arm (0.75mg/kg). For this comparator arm, Shekalaghe et. al.[34] found an overall mean absolute drop in haemoglobin by day 7 after treatment of 0.6g/dL (standard deviation 1.5). Therefore, with 80% power and at the 0.05 significance level, a sample size of 99 would be required to detect a difference in mean maximal drop in haemoglobin between treatment groups of 0.6g/dL.

Data analysis

Data will be double entered in Microsoft Access and imported into Stata version 12.0 (Statacorp Ltd, Texas, US). All efficacy analyses will be based on gametocyte detection by Pfs25 QT-NASBA. Gametocyte density on days 7, 10 and 14 will be compared with the comparator arm (0.75mg primaquine/kg) by chi-square test. The mean duration of gametocyte carriage and 95% confidence interval will be estimated in each treatment arm and compared with the comparator arm using a previously validated mathematical model[42]. The area under the curve (AUC) of gametocyte density over time will be calculated using the method described by Mendez et al.[43]. For individuals who are gametocyte positive at enrolment, Kaplan-Meier survival analysis will be used to compare the decline in gametocyte prevalence.

The primary safety outcome, mean maximal fall in haemoglobin concentration during 28 days of follow up will be assessed for each treatment arm. Pair-wise comparisons will be made between each of the treatment arms and compared with the comparator arm using unpaired t-tests.

DISCUSSION

In the 2010 edition of the Guidelines for the Treatment of Malaria, the World Health Organisation (WHO) recommends that a single dose of 0.75mg/kg primaquine is added to ACT in malaria elimination
programmes and for epidemic control, provided the risks of haemolysis in G6PD deficient patients are considered. This guidance was recently updated to recommend a lower dose of 0.25mg/kg primaquine without G6PD testing for new malaria elimination programmes and to prevent the spread of artemisinin resistance[31]. The revision was based largely on grey literature and historical data rather than on recent clinical trials and few of the data are in the public domain[44]. There have been no formal dose-finding studies using contemporary tools and standards for the measurement of drug efficacy and safety for the combination of ACTs and primaquine. In the current study, we aim to provide these urgently needed efficacy data and provide safety data for individuals with normal G6PD enzyme function.

Relatively few trials have been designed specifically to test gametocytocidal drugs in vivo. Standardised protocols and trial designs for assessing the efficacy of drugs targeted against asexual parasites[45 46] are not suitable to assess gametocytocidal drugs, where the main outcome is transmission-blocking activity rather than clinical or parasitological cure. There is no agreement on the best tools to quantify gametocyte carriage. Many trials have used microscopy to measure gametocytes[26 27 47-49] while it has been known for decades that microscopy is notoriously insensitive for detecting gametocytes[50]. Gametocytes typically circulate at densities that are ≤1% of asexual parasite densities[16 51]. Nevertheless, gametocytes are often simply recorded while screening for asexual parasites. If slides are specifically read for gametocytes, the number of microscopic fields that is screened is mostly the same as that for asexual parasites[52]. As a consequence, gametocytes measured by routine microscopically underestimate the total gametocyte prevalence by up to 10-fold[16 17 21 22]. In the current study, gametocytes are quantified with the most widely-used quantitative molecular gametocyte detection method, QT-NASBA that has an estimated sensitivity of 0.01-0.1 gametocytes/µL blood in the blood sample taken[40]. The use of this sensitive molecular method will increase the power of our efficacy
estimates since up to 90% of symptomatic malaria patients may harbour (submicroscopic) gametocyte densities prior to initiation of treatment[16].

Gametocyte density is associated with the likelihood of mosquito infection and some of the lowest gametocyte densities may therefore be unlikely to result in mosquito infections. In general, there are limitations to which gametocyte prevalence or density can be used to predict mosquito infection rates. The fitness or infectivity of gametocytes is variable, especially after treatment[19 53 54]. Very early studies demonstrated that primaquine may render gametocytes non-infectious several days before they are cleared from the circulation[30 55 56]. The only approach to directly measure transmission blocking potential involves assessing the infectiousness of the participant’s blood to mosquitoes using the membrane feeding assay or direct skin feeding assays[57], the latter being described by early malariologists[58 59]. However, the capacity for mosquito feeding assays is not widely available and repeated assessments of infectiousness on the same patients have never been performed as part of clinical trials. This is partly because of ethical concerns related to repeated venous bleeding in young children, and partly because of the complexity of mosquito husbandry when large numbers of mosquitoes are required for robust transmission estimates[60]. In the absence of biomarkers, using the prevalence and density of gametocytes after treatment is the most pragmatic approach to assess the transmission blocking efficacy of drugs across a variety of malaria endemic settings.

To assess the safety of the 8-aminoquinoline drugs, there must be a clear definition of the risk of haemolysis and how it should be measured[31 61]. The safety profile may best be defined by the incidence of endpoints that could compromise health, such as signs of severe haemolysis, and the need
for interventions such as haematinic drug administration, hospitalization or blood transfusion. These events, however, are rare and changes in haemoglobin concentration may be a more sensitive primary safety outcome for standard clinical trials. In a recent Cochrane review of randomised controlled trials of primaquine’s efficacy, only one trial[25] was found to have measured haemoglobin concentration to assess safety[62]. In this current study, clinically-relevant safety endpoints have been selected and a standardized procedure is in place for the investigation and management of severe haemolysis. A shortcoming of the current study is that safety data are most urgently needed in the most vulnerable group, G6PD deficient individuals. For ethical reasons this group was excluded. The authors consider that the priority is first to determine the minimal effective dose in a G6PD normal population before G6PD deficient individuals are exposed to this low dose of primaquine to assess safety.

The ultimate evidence for a beneficial role of primaquine in reducing malaria transmission would come from trials assessing the effect of the drug on measures of community-level transmission. Once a safe and efficacious dose of primaquine in combination with ACTs is established, a next step is designing these community trials. Treatment of symptomatic cases could play an important role in reducing the spread of (resistant) malaria strains from symptomatic patients[63]. However, because of the large pool of asymptomatic parasite carriers in all endemic settings[64] and their importance in defining transmission potential, any effect of primaquine on community-wide transmission will be limited if administration is restricted to symptomatic cases. Other strategies such as pro-active screening and treatment and (focal) mass drug administration may have a larger impact in some settings[65]. This trial forms the starting point for defining the optimal dose of primaquine for use in transmission-blocking interventions.
Trial Status

Recruitment began on 6th December 2011. The trial is ongoing.

List of abbreviations

ACT artemisinin combination therapy
AL artemether lumefantrine
G6PD glucose-6-phosphate dehydrogenase
Hb haemoglobin
QT-NASBA quantitative real time nucleic acid sequence-based
WHO World Health Organization

Authors’ contributions

Conceived and designed the study: ACE, SGS, SY, NJW, TB, CD. Participated in logistical planning: ACE, SGS, SY, EW, MK, NJW, TB, CD. Provided statistical support for the sample size estimates and the design of the statistical analysis: EW. Provided expertise for sub-microscopic gametocyte measurement: TB. Organised ethical applications, community sensitisation and study implementation: ACE. Wrote the manuscript: ACE, TB, CD. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank staff at the Infectious Diseases Research Collaboration (IDRC) in Uganda, notably, Mr Moses Kiggundu, Dr Catherine Maiteki-Sebuguzi, the members of the Programme for Resistance, Immunology, Surveillance and Modelling of Malaria in Uganda (PRISM) and the ACT PRIME and PROCESS research teams and also Ms Carolynne Stanley for logistical support at the London School of Hygiene and Tropical Medicine. Alice C. Eziefula is funded by a Clinical Fellowship from the Wellcome Trust of Great Britain (#090558/Z/09/Z).

Competing interests

None declared

REFERENCES

39. Beutler E, Duparc S, Group GPDW. Glucose-6-phosphate dehydrogenase deficiency and antimalarial

differential stages of development by quantitative nucleic acid sequence-based amplification.
Molecular and biochemical parasitology 2004;137(1):35-41 doi:
10.1016/j.molbiopara.2004.03.018[published Online First: Epub Date]

gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and

42. Okell LC, Drakeley CJ, Bousema T, et al. Modelling the impact of artemisinin combination therapy
discussion e26

43. Mendez F, Munoz A, Plowe CV. Use of area under the curve to characterize transmission potential
after antimalarial treatment. The American journal of tropical medicine and hygiene
2006;75(4):640-4

44. von Seidlein L. Mini Primaquine? Controversy and Uncertainty Surround WHO Guidelines for the

reports 2009;11(1):59-65

46. Organization WH. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping
47. Chomcharn Y, Surathin K, Bunnag D, et al. Effect of a single dose of primaquine on a Thai strain of
Plasmodium falciparum. The Southeast Asian journal of tropical medicine and public health
1980;11(3):408-12

malaria control trial in North Sumatra, Indonesia. The Southeast Asian journal of tropical
medicine and public health 1989;20(3):351-9

asexual- and sexual-stage parasites in falciparum malaria. Antimicrobial agents and
chemotherapy 2004;48(4):1329-34

gambiae in a village in Burkina Faso. The American journal of tropical medicine and hygiene
1993;48(5):700-6

51. Talman AM, Domarle O, McKenzie FE, et al. Gametocytogenesis: the puberty of *Plasmodium*
Date]]

52. Kilian AH, Metzger WG, Mutschelknauss EJ, et al. Reliability of malaria microscopy in epidemiological
studies: results of quality control. Tropical medicine & international health : TM & IH
2000;5(1):3-8

with malaria: transmission to mosquitoes of multidrug-resistant *Plasmodium falciparum*. PLoS
clinical trials 2006;1(3):e15 doi: 10.1371/journal.pctr.0010015[published Online First: Epub
Date]]

55. Gunders AE. The effect of a single dose of pyrimethamine and primaquine in combination upon
gametocytes and sporogony of Laverania falcipara (Plasmodium falciparum) in Liberia. Bulletin
of the World Health Organization 1961;24:650-3

56. Jeffery GM, Young MD, Eyles DE. The treatment of Plasmodium falciparum infection with
chloroquine, with a note on infectivity to mosquitoes of primaquine- and pyrimethamine-
treated cases. American journal of hygiene 1956;64(1):1-11

57. Bousema T, Churcher TS, Morlais I, et al. Can field-based mosquito feeding assays be used for
evaluating transmission-blocking interventions? Trends in parasitology 2013;29(2):53-9 doi:
10.1016/j.pt.2012.11.004[published Online First: Epub Date].

58. Mackerras MJ, Ercole QN. Observations on the action of quinine, atebrin and plasmoquine on the
gametocytes of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine
and Hygiene 1949;42(5):455-63

59. Rieckmann KH, McNamara JV, Frischer H, et al. Gametocytocidal and sporontocidal effects of
primaquine and of sulfadiazine with pyrimethamine in a chloroquine-resistant strain of

60. Bousema T, Dinglasan RR, Morlais I, et al. Mosquito feeding assays to determine the infectiousness
doi: 10.1371/journal.pone.0042821[published Online First: Epub Date].

Online First: Epub Date].

Cochrane database of systematic reviews 2012;9:CD008152 doi:
10.1002/14651858.CD008152.pub2[published Online First: Epub Date].

FIGURE LEGENDS

Figure 1: Enrolment and selection procedures

Figure 2: Participant flow diagram

Figure 3: Procedure for investigation of suspected haemolysis

Figure 4: Procedure for management of haemolysis
Enrolment and selection procedures
119x90mm (300 x 300 DPI)
Participant flow diagram
119x90mm (300 x 300 DPI)
Procedure for investigation of suspected haemolysis

1. Full blood count
2. G6PD function
3. Thin smear
4. Urinalysis
5. Physical examination

INDICATOR OF HAEMOLYSIS

- Confirmed fall in Hb > 2g/dL from enrollment value
- Schistocytes
- Haemoglobinuria
- Proteinuria
- Cardiovascular compromise
- Jaundice
- Black urine

ACTION

Assess severity of Haemolysis

(Haemolysis management protocol)

Hb <5g/dL, Hb fall > 2g/dL, dark urine
Procedure for management of haemolysis
119x90mm (300 x 300 DPI)