

The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeartRFA trial protocol

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002377
Article Type:	Protocol
Date Submitted by the Author:	20-Nov-2012
Complete List of Authors:	Risom, Signe; Rigshospitalet, The Heart Centre Zwisler, Ann-Dorthe; National institute of Public Health, University of Copenhagen; Rigshospitalet, The Heart Centre Rasmussen, Trine; Rigshospitalet, The Heart Centre; Gentofte Hospital, Department of cardiology Sibilitz, Kirstine; Rigshospitalet, Cardiology Svendsen, Jesper; Rigshospitalet, The Heart Centre Gluud, Christian; Copenhagen University Hospital, Centre for Clinical Intervention Research Hansen, Jane; Copenhagen Trial Unit, Centre for Clinical Intervention Research Winkel, Per; Copenhagen Trial Unit, Centre for Clinical Intervention Research Thygesen, Lau; University of Southern Denmark, National Institute of Public Health Perhonen, Merja; Corusfit, Hansen, Jim; Gentofte Hospital, Department of cardiology Dunbar, Sandra; Nell Hodgson Woodruff School of Nursing, Emory University Berg, Selina; Rigshospitalet, Cardiology; Gentofte Hospital, Department of cardiology
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Cardiovascular medicine, Nursing, Rehabilitation medicine
Keywords:	Adult cardiology < CARDIOLOGY, Atrial Fibrillation , QUALITATIVE RESEARCH, Clinical trials < THERAPEUTICS

SCHOLARONE™ Manuscripts

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	Item No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	3-4
Introduction			
Background and	2a	Scientific background and explanation of rationale	5-7
objectives	2b	Specific objectives or hypotheses	7 +9
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	7-9
J	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	N/A
Participants	4a	Eligibility criteria for participants	10
	4b	Settings and locations where the data were collected	10
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	11-17
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	17-21
	6b	Any changes to trial outcomes after the trial commenced, with reasons	N/A
Sample size	7a	How sample size was determined	20-21
	7b	When applicable, explanation of any interim analyses and stopping guidelines	23-24
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	10-11
generation	8b	Type of randomisation; details of any restriction (such as blocking and block size)	10-11
Allocation concealment	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	N/A
mechanism			
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	10
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	11 + 21

CONSORT 2010 checklist Page 1

		assessing outcomes) and how	
	11b	If relevant, description of the similarity of interventions	N/A
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	21-23
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	24-25
Results			
Participant flow (a	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and	N/A
diagram is strongly		were analysed for the primary outcome	
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	N/A
Recruitment	14a	Dates defining the periods of recruitment and follow-up	N/A
	14b	Why the trial ended or was stopped	N/A
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	N/A
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was	N/A
		by original assigned groups	<u> </u>
Outcomes and	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its	N/A
estimation		precision (such as 95% confidence interval)	
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	N/A
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	N/A
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	N/A
Discussion			
Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	27-28
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	28
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	N/A
Other information			25-26
Registration	23	Registration number and name of trial registry	
Protocol	24	Where the full trial protocol can be accessed, if available	N/A
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	29

^{*}We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see www.consort-statement.org.

CONSORT 2010 checklist Page 2

The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeart $_{\rm RFA}$ trial protocol

Signe S. Risom, RN, MSc^{1,§}, Ann-Dorthe Zwisler, MD, Ph.D.^{1,2}, Trine B. Rasmussen RN, MScN^{1,4}, Kirstine Lærum Sibilitz, MD¹, Jesper Hastrup Svendsen, MD, DMSc, FESC ^{1,3}, Christian Gluud, MD, DMSc⁵, Jane Lindschou Hansen, MSc⁵, Per Winkel, MD, DMSc⁵, Lau Caspar Thygesen, MSc, Ph.D.², Merja Perhonen MD, Ph.D.⁶, Jim Hansen, MD⁴, Sandra B. Dunbar, RN, DSN, FAAN, FAHA⁷, Selina Kikkenborg Berg, RN, MScN, Ph.D. FESC ^{1,4}.

Hospital, Denmark

Atlanta, Georgia, United States

§Corresponding author:

Signe Stelling Risom, RN, MSc,

The Heart Centre, Department of Cardiology,

Copenhagen University Hospital,

Blegdamsvej 9, DK-2100 Copenhagen.

¹ Rigshospitalet, The Heart Centre, Copenhagen University Hospital, Denmark

² National Institute of Public Health, University of Southern Denmark

³ Gentofte Hospital, Department of Cardiology, Denmark

⁴ The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC)

⁵ Copenhagen Trial Unit, Centre for Clinical Intervention Research. Copenhagen University

⁶ CorusFit, Heikinkatu 3 B, 40100 Jyväskylä, Finland

⁷Nell Hodgson Woodruff School of Nursing, Emory University

Signe.stelling.risom@rh.regionh.dk

Word count:

 Abstract: 300, Body: 6.833

Keywords: atrial fibrillation, cardiac rehabilitation, physical exercise, psycho-education

Article summary

Article focus

- The CopenHeart_{RFA} trial is a randomised clinical trial investigating the effects of comprehensive cardiac rehabilitation versus usual care for patients treated for atrial fibrillation (AF) with ablation.
- The hypothesis is that comprehensive cardiac rehabilitation improves physical capacity and mental health.
- Using a mixed methods approach, a broad range of outcome measures are collected to evaluate the intervention.

Key messages

- AF affects 1-2% of the population. Patients with AF experience diminished quality of life and are afraid to do physical exercise after treatment with ablation.
- No studies exploring the effects of rehabilitation of patients treated for AF with ablation have been published.
- This trial is the first to examine physical functioning and to test a comprehensive rehabilitation programme on a large population of patients treated for AF with ablation.

 CopenHeart_{RFA} will provide much needed evidence and insight on the post-discharge status and rehabilitation needs of patients treated for AF with ablation.

Strengths and limitations of this study

- The study has been designed to meet the criteria for high quality in non-pharmacological randomised clinical trials with central randomisation, multi-centre participation, blinded assessment and analysis.
- We are aware of the day to day variation that can appear when carrying out ergospirometry, in testing and that the performance can depend on the individual tester. Accordingly, we will interpret the findings conservatively.

Abstract

Introduction

Atrial fibrillation affects almost 2% of the population in the Western world. To preserve sinus rhythm, ablation is undertaken in symptomatic patients. Observational studies show that patients with atrial fibrillation often report low quality of life and are less prone to be physically active due to fear of triggering fibrillation. Small trials indicates that exercise training has a positive effect on exercise capacity and mental health, and both patients with recurrent atrial fibrillation and in sinus rhythm may benefit from rehabilitation in managing life after ablation. No randomised trials have been published on cardiac rehabilitation for atrial fibrillation patients treated with ablation that includes exercise and psycho-educational components.

Aim

To test the effects of an integrated cardiac rehabilitation programme versus treatment as usual for patients with atrial fibrillation treated with ablation.

Methods and analysis design

The trial is a multicentre parallel arm design with 1:1 randomisation to the intervention and control group with blinded outcome assessment. 210 patients treated for atrial fibrillation with radiofrequency ablation will be included. The intervention consists of a rehabilitation programme including four psycho-educative consultations with a specially trained nurse and 12 weeks of individualised exercise training, plus the standard medical follow-up. Patients in the control group will receive the standard medical follow-up. The primary outcome measure is exercise capacity measured by VO₂ peak. The secondary outcome measure is self-rated mental health measured by the Short Form 36 questionnaire. Post intervention, qualitative interviews will be conducted in 10% of the intervention group.

Ethics and dissemination

The protocol is approved by the regional research ethics committee (number. H-1-2011-135), the Danish Data Protection Agency (reg. nr. 2007-58-0015) and follows the latest version of the Declaration of Helsinki. The results will be published in peer-reviewed journals and may possibly impact on rehabilitation guidelines.

Registration: Clinicaltrials.gov identifier: NCT01523145

Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia and affects 2% of the population in the Western world. ¹⁻³ Typical symptoms are palpitations, dyspnoea, fatigue, dizziness, and syncope. Patients' symptoms and the length of periods in AF are highly variable both for the individual and between patients. ⁴⁻⁶ AF is associated with increased risk of stroke, other thromboembolic events, and heart failure. ⁶⁻⁸ Hospitalisations due to AF account for one third of all admissions for cardiac arrhythmias. ⁸ As the prevalence of AF increases with age, the incidence of AF is increasing due to an ageing population. ^{2,9,10} After 40 years of age, the lifetime risk of developing AF is 25%. ¹¹ The annual cost of AF is high in comparison with other diseases. ¹² Therefore, AF has become an economic burden and this will continue to increase over the coming decades. ¹³ Thus, AF has now become a health, social and economic challenge in the Western world.

Primary treatment goals for individuals with AF are re-establishing and maintaining sinus rhythm, decreasing AF symptoms, and prevention of complications. In accordance with current national and international guidelines, radiofrequency ablation (RFA) is often undertaken in symptomatic patients. RFA is an invasive treatment, intended to cure AF and has a success rate of 77% versus 52% for antiarrhythmic medication. ¹⁵ In Denmark, around 600 RFAs are conducted annually at two heart centres.

A cohort study of 655 patients from a randomised trial found that AF symptoms are a negative predictor for patients' physical capacity, ¹⁶ and in the presence of AF, patients do fewer physical activities. ¹⁷ Smaller observational studies and a randomised trial investigating the effect of exercise

training on AF patients found increased exercise capacity and a decreased resting heart rate after training. $^{18-20}$

 Previous studies show significantly impaired quality of life in patients with AF compared to healthy controls measured by the questionnaire Short Form 36 (SF-36). The general health component (± standard deviation) was 54±21 in AF patients compared to 78±17 in healthy controls. A qualitative study demonstrated that educational help after AF treatment is lacking, even though symptoms of distress and lack of self-management regarding symptoms like palpitations, dyspnoea, and fatigue are common. Furthermore, small observational studies indicate a positive effect of exercise training on patients with AF in terms of mental health and physical activity (15% increase of VO₂). Nowever, these findings need confirmation in larger randomised clinical trials.

Secondary prevention initiatives including cardiac rehabilitation are recommended by the European Society of Cardiology (ESC). ²³ Although evidence of its efficacy is strong, general cardiac rehabilitation is still poorly implemented and often only on selected populations thus the development of full comprehensive preventive programmes, according to the ESC recommendations is warranted. ²⁴ Studies exploring the effects of rehabilitation of patients treated for AF are lacking. As there is no evidence of its efficacy, the rehabilitation provided is presumably often suboptimal or totally lacking. Lessons, however, might be learned from rehabilitation studies in patients with related cardiac conditions. The positive effects of cardiac rehabilitation have been well documented, particularly in patients with coronary heart disease and heart failure, where rehabilitation has been proven to reduce hospital re-admissions and mortality in a cost-effective way, ^{25, 26} as well as improve quality of life. ²⁷ More specifically, studies on the effect of exercise training have demonstrated an increase in exercise capacity of up to 38% in patients after valve

 replacement surgery ²⁸ and an increase in peak VO₂ of 2.3±2.2 (SD) ml/kg per minute in the intervention group compared with -0.3±2.1 (SD) ml/kg per minute in the control group, as well as a significant change in quality of life in older patients with heart failure. ²⁹ Traditional cardiac rehabilitation has focused on physical training and standardized programmes, but studies indicate that individualized content and supervised exercise components are key design characteristics for improving outcomes. ³⁰ In addition to exercise training, there is evidence to support interventions that include patient education, which in patients with coronary heart disease has been shown to improve health related quality of life and decrease healthcare costs, ³¹ and psychological support, which has been shown to improve psychological symptoms in patients with coronary heart disease, such as depression and anxiety. ³² Evidence on the efficacy of comprehensive interventions for patients treated for AF, however, is needed.

Interventions designed to cover both physical and psychological problems may provide the best method for optimising functioning and enhancing quality of life.³³ We have not been able to identify randomised trials or observational studies in patients who have undergone RFA for AF that offer both psycho-educational intervention and physical training. Therefore, the CopenHeart_{RFA} trial was undertaken with the aim of testing a rehabilitation programme consisting of physical exercise and a psycho-educational intervention versus treatment as usual for RFA treated AF patients.

Methods

Design

Major parts of the method section and trial design in this paper are similar to two other randomised clinical trials, CopenHeart $_{VR}$ and CopenHeart $_{IE}$, and therefore sections from this paper will be copied in these trial protocols (Sibilitz KL et al. *Effect of integrated cardiac rehabilitation versus treatment as usual for patients with isolated heart valve surgery: The randomised CopenHeart*

 valvular trial protocol. drafted October 2012; and Rasmussen TB et al. A randomised clinical trial of comprehensive cardiac rehabilitation versus usual care for patients treated for infective endocarditis – the CopenHeart_{IE}. Accepted for publication, BMJ Open, October 2012).

The CopenHeart_{RFA} trial is a multi-centre, multidisciplinary randomised clinical superiority trial. Secondary, qualitative data are also collected and the two methods are integrated by applying a mixed method embedded experimental design (Figure 1). 34, 35 Quantitative methods are applied, with specified quantitative pre- and post-measures to evaluate the effect of the experimental intervention. Alongside quantitative measurements, qualitative data will be collected. The premise of mixed methods research is that the use of qualitative and quantitative approaches in combination provides a better understanding of the research problems than either approach alone, because different types of questions require different types of data and that mixed methods research provides strengths that offset the weaknesses of both qualitative and quantitative research.³⁴ The methods are integrated by applying a mixed method embedded experimental design and include qualitative data to develop the intervention and to examine the process of the intervention and the results of the trial (see Figure 1). 34, 35 The rationale for this approach is that the quantitative findings provide a general understanding of the research problem through statistical results while qualitative findings refine and explain the results by exploring participants' views in greater detail. Evaluation using qualitative research methods is increasingly promoted in evidence-based rehabilitation. ³⁶⁻³⁹ Qualitative research alongside randomised controlled trials can contribute in several ways to the development and evaluation of complex healthcare interventions and may be particularly useful in evaluating interventions that involve social and behavioural processes that are difficult to explore or capture using quantitative methods alone. 40 As patient participation is paramount for the efficacy of the rehabilitation, 41 we find it highly valuable to include the patients' perspective in the

 development and evaluation of the intervention. This paper presents the study protocol for the $CopenHeart_{RFA}$ randomised clinical trial. The complementary studies are briefly described in a separate section.

The trial is described in accordance with the current SPIRIT guidelines (Standard Protocol Items: Recommendations for Interventional Trials). 42 Results will be reported following the CONSORT (CONsolidated Standards Of Reporting Trials) guidelines for non-pharmacological interventions. 43

Trial hypotheses

The primary hypothesis is that the rehabilitation program increases physical capacity among AF patients treated with RFA after 4 months measured by VO_2 peak, which is expected to be 20% more than in the control group receiving standard treatment alone. The estimate of 20% is based on findings from pilot studies including patients with permanent AF which found an increase of 15% in VO_2 peak. We therefore expect a VO_2 peak in the intervention group of 18 ml/kg/min and of 15 ml/kg/min in the control group, corresponding to a difference of 20% (3 ml/kg/min).

The secondary hypothesis is that the rehabilitation programme increases quality of life and self-rated mental health among AF patients treated with RFA after 6 months by 3 points on the Medical Outcome Study Short Form 36 (SF-36) questionnaire mental component scale, compared with control participants receiving standard treatment.¹⁹

Exploratory hypotheses are that the experimental intervention decreases AF recurrence; improves self-rated health and sleep-quality; reduces early retirement from work, use of health care services and mortality, and is cost efficient.

Trial participants

 Consecutive patients hospitalised for AF and treated with RFA at two heart centres in Denmark (Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital) will be screened for inclusion and approached for trial participation (Figure 2). Regardless of RFA outcome, both patients with recurrent AF and patients in sinus rhythm after the ablation will be included in the trial. Patients 18 years of age or older, Danish speaking, and providing verbal and written informed consent will be eligible for participation. Patients unable to understand trial instructions, pregnant or breastfeeding, with reduced ability to follow the planned programme due to other physical illness, who prior to RFA have been doing intense physical exercise or sports at competitive level several times a week, or do not wish to participate, and patients already enrolled in clinical trials that prohibit participation in additional trials are excluded.

Trial procedure, randomisation, and follow-up

Patients will be approached for participation during their hospitalisation for RFA. Information will be given by a nurse or physician from the research team, who will obtain informed written consent after the RFA procedure. A brief oral introduction is initially given together with written information describing the trial and implications for the patient in detail. The patient is given ample time to read the information and if necessary involve a relative in the decision making. The enrolling nurse or physician will return after the RFA or call the patient to answer any questions the patient or their relative might have. The patient should subsequently be able to provide informed consent or reject participation. After the informed consent form is signed, baseline data will be collected including the baseline questionnaire package, demographic variables, and clinical characteristics (Table 2). Then the Copenhagen Trial Unit (http://www.ctu.dk/) is contacted for central randomisation of the participant. Randomisation is conducted according to a computer-

 generated allocation sequence with a varying block size kept unknown to the investigators. Participants are randomised 1:1 to the experimental intervention group or the control group and stratified according to sex and type of AF (persistent or paroxysmal). Thus, neither investigators nor patients or relatives can influence to which group the patients are allocated. For both groups, the follow-up assessment will take place at 1 month, 4 months, 6 months, and 12 months post-discharge, and a register-based follow-up assessment will be conducted at 24 months (Table 2). In case of complications to the RFA after enrolment in the trial, the patients will be handled individually (e.g., arrhythmia or inguinal haematoma).

The patients answer questionnaires independently of the researchers, and before randomisation. All questionnaires are distributed electronically, thus data management is handled independently from the researchers that interpret data. All data are stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart group.

Personal information about potential and enrolled patients will be collected electronically and shared in a database only accessible to those within the project group responsible for patient recruitment, in order to protect confidentiality before, during and after the trial.

Due to the nature of rehabilitation, the intervention group is not blinded for the patients or the investigators, but the outcome assessment of the primary outcome, the statistical analyses, and drawing of conclusions will be conducted blinded for the allocated intervention group.

The experimental intervention group

Patients in the experimental intervention group will follow the integrated cardiac rehabilitation programme consisting of a psycho-educational component and an exercise training component

alongside standard treatment (described below). The patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

The physical exercise training component

 The intervention has been developed and partly tested in a clinical rehabilitation trial, the COPE-ICD trial ⁴⁵, which included patients with an implantable cardioverter defibrillator. We here observed a significant impact of the intervention on peak VO₂, physical capacity and self-assessed mental health. The intervention has been modified for patients treated for atrial fibrillation with ablation as described below. The CopenHeart physical exercise intervention meets European ²⁴ and Danish guidelines ⁴⁶ for physical exercise in patients with heart disease, and complies with The National Danish Board of Health recommendations for physical exercise in daily living for heart patients. ⁴⁷

The physical exercise starts one month after the ablation and after the first ergospirometry test and comprises the following three elements:

Individually planned physical exercise by specially trained physiotherapists. Integrating detailed information concerning AF symptoms and RFA, co-morbidity, hospitalisation, activities of daily living, and level of physical activity prior to RFA, a specially trained physiotherapist conducts a patient telephone consultation up to 30 minutes. The consultation is based on initial testing of the patient including a cardiopulmonary exercise test, a 6 minutes walking test and a 'sit and stand' test, described in the outcome section. For all patients, a rehabilitation plan is prepared as an individual training diary, and all patients are instructed in the use of a heart rate monitor (Polar Watch provided by Rigshospitalet). The heart rate monitor and diary is essential to ensure CopenHeart training protocol compliance and they are returned for data collection at the end of the exercise training intervention.

 Intensive exercise training programme. Physical exercise is initiated at Rigshospitalet four weeks after RFA to ensure optimal rest and healing. Using wireless electrodes integrated into t-shirts (Corus-Fit, CardioCardio and Corus Exercise Assistant, CEA, version 2.0.16, Finland) potential cardiac arrhythmias, electrocardiographic abnormalities such as ST-depression, ST-elevation, Q- or T-wave altering, atrial fibrillation, and ventricular arrhythmias and training intensity level are monitored.

After 1-3 exercise training sessions at Rigshospitalet, the patient continues the programme at a local CopenHeart certified training facility supervised by physiotherapists or as supervised home-based training. Supervised home-based exercise training has shown similar results to hospital-based exercise training ³¹ and has been confirmed in a Danish setting. ⁴⁸

The physical exercise training continues for 12 weeks, comprising three sessions weekly of 60 minutes, in total, 36 sessions. The training protocol consists of cardiovascular training and strength exercises to improve endurance and muscular strength.

An exercise session consists of 10 minutes warm up, 20 minutes bicycling, 20 minutes strength, and a 10 minutes stretching and cool-down period. Using the results from the cardiopulmonary exercise test performed prior to the initial training session, in combination with the Borg scale measuring subjective exhaustion, the aerobic exercise is performed with gradually increasing intensity throughout the exercise intervention period, corresponding to 13 to 17 on the Borg Scale and 50% to 80% of the maximum heart rate. The anaerobic resistance training is initiated at 30% to 40 % of 1 repetition maximum (RM) for the upper body, and 40% to 50 % of 1 RM for the lower body, with an increasing work load during the training sessions. To achieve cardiovascular adjustment and reduce the risk of malignant cardiac arrhythmias and ischemia, the training session

is initiated and terminated with a warm up and a cool down period to gradually increase and decrease training intensity and heart rate. This cardiovascular adjustment has been proven to reduce the risk of ischemia and arrhythmia in relation to exercise training. ^{49, 50} Training is predominantly performed in the upright position to reduce left ventricle preload (diastolic volume) and the risk of ischemia and arrhythmias due to heart failure. ⁵⁰

<u>Sustained moderate physical exercise daily.</u> Participants are instructed to perform moderate physical exercise at least 30 minutes a day during the intervention period, e.g., bicycling, walking, gardening, jogging or recreational sports. Participants are encouraged to continue with moderate physical exercise throughout life.

The psycho-educational component

 The aim of the psycho-educational intervention is to provide emotional support and improve coping skills and illness appraisal in order for the patient to respond appropriately to physical and psychological symptoms. Education and information about the disease prepare the patient for expected symptoms and sensations. Dialogue and shared reflection facilitate strategies for coping with symptoms and experiences associated with the condition, e.g., anxiety and fear. Cardiac care nurses with specific training will perform the psycho-educational intervention. Some of the most commonly reported concerns of patients treated for AF with RFA, such as recurrent AF, and concerns about being able to manage a working life are outlined in a guide which nurses use to address when and if relevant (see Table 1). Information given will also be based on national guidelines and standard treatment of patients treated for AF. The consultations focus on managing life after AF treated with RFA by establishing a joint approach to disease management and coping strategies, taking a holistic view. The psycho-educational intervention is inspired by R.R. Parse's Human Becoming Practice Methodologies' three dimensions. These are interpreted as: 1) discuss and give meaning to the past, present and future, 2) explore and discuss events and possibilities and

 3) move along with envisioned possibilities. According to this theory, there are three ways of changing health: creative imaging, that is to see, hear and feel what a situation might be like if lived in a different way, affirming personal patterns and value priorities, and shedding light on paradoxes, that is, looking at the incongruence in a situation and changing the view held of something. The nurse is present in the process through discussions, silent immersion and reflection. The human becoming practice methodology was chosen to apply a holistic patient approach, focusing on the coping and transformation process of the individual person. Furthermore, the method is already extensively used in the outpatient heart clinics at the heart centre at Rigshospitalet, such as for patients with inherited heart diseases and adults with congenital heart disease and is documented in the COPE-ICD trial. 45, 52 The consultations take place in a quiet setting at the out-patient clinic and will last for approximately one hour. The nurse is able to facilitate contact with or seek advice from a physician if needed. The first consultation will be approximately one month after discharge, and then once every four to six weeks, with a total of four consultations. Consultations can be done by telephone, in accordance with the patient's wishes. The primary investigator will attend the consultations regularly to ensure protocol compliance.

Table1. Guide to the psycho-educative consultation.

Number visit	1 2 3 4
Ask the patient how he/she has been since the ablation.	
What has happened since last time he/she was here?	X X X X
Invite the patient to talk about his/her thoughts and questions.	X X X X
Ask about the time leading up to RFA	X
and his/her AF history. Experiences before, under and	

after the hospitalization and RFA.		
Talk about how it is to have had/ have AF and	X	
been through RFA, how that have affected the patient's		
life. Is there something he/she avoids or feel like		
he/she cannot do anymore? This in relation to family		
relations, friends and free time/ leisure activities.		
Make sure that the patient has started the physical	X X X	
training and talk about how it is going. Are training		
appointments booked?		
Talk about if the patient has changed his/her	X	
feelings or thoughts of the body and its functions.		
Talk about recognition of symptoms, how the patient	X X (X) (X)	
is feeling about recurrence of AF and opinions about		
future AF treatment. Worries about recurrence of AF,		
strategies of prevention.		
Information/recommendations in relation to the	XXXX	
subjects/problems discussed.		

Intervention deviations

 Both components of the intervention will be supervised regularly by the primary investigator to ensure protocol compliance. Modification of the allocated intervention due to surgery complications, rehospitalisation or emerging co-morbidities (e.g. recurrent AF, musculoskeletal problems) will be individually assessed, and the time of the primary outcome assessment at four

 months (described in section below) will be corrected in accordance with changes in the intervention.

Control group: treatment as usual

Patients in the control group will follow standard treatment for patients treated for AF with RFA including 3-6 months follow-up with a physician and a 12 months follow-up with a nurse. Furthermore, patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

Outcomes and data collection

Data will be collected to evaluate the effect and meaning of the intervention. The primary and secondary outcomes reflect the primary modifiable factors of the intervention. Since almost no evidence exists for rehabilitation programmes for patients treated for AF with RFA, data on a number of outcomes will be collected for exploratory analyses.

Primary outcome

Physical capacity measured by peak VO_2 according to a standardised protocol developed in accordance with guidelines 53,54 1, 4 and 12 months after randomisation (Table 1).

Physical capacity is measured by peak VO₂ using cardiopulmonary exercise testing (Ergo-Spiro CS-200, Schiller, Schweiz). The test is performed according to current guidelines for ergospirometry testing, and by ergometer bicycle, simultaneously monitoring heart-rhythm, blood pressure, electrocardiogram (ECG), and measuring gas-exchange during workload and in the following recovery period. The average test duration is 10-15 minutes including pre- and post- test phase without work load. Before each session calibration is performed to address changes in room

temperature, humidity and air oxygen content. A standardised ramp-protocol is used with initial work load of 25 or 50 watts, increasing gradually by 12.5 watts every minute until peak exhaustion. Peak exhaustion is evaluated by a respiratory exchange ratio (RER) ≥ T 1.10 or subjective exhaustion of the patient. In order to equally encourage the patients, independent of the tester, a standardised guide has been developed. During the test period, clinical manifestations, ECG abnormalities (ST depression, ST elevation, Q- and T-wave changes, supraventricular or ventricular arrhythmias), blood pressure response, and several physiological variables are observed and documented. The test will be performed by either a cardiac care nurse or a physician. For safety reasons preset criteria for initiation and/or termination of the test have been defined.

Secondary outcome

 Self-rated mental health is measured by the SF-36 questionnaire, ⁵⁵⁻⁵⁷ mental component score, after 1 month, 4 months, 6 months and 12 months (Table 2).

Exploratory outcomes

Long-term follow-up: Register data regarding mortality, causes of death, hospitalisation/re-hospitalisation, emergency room visits, outpatient visits, health care costs, visits to the general practitioner, medication use, employment status and payment of welfare benefits (sick leave payment and early retirement pension) will be collected at 24 months to assess long term effects of the intervention (Table 2). Danish recording keeping for the data mentioned above functions well, with only a small percentage of lost data. ⁵⁸ Consequently the method is well suited as an outcome measure in small patient populations. Data will be extracted from the Danish National Patient Register, the Danish National Health Service Register, the Danish National Prescription Registry,

 the Danish National Causes of Death Register and records of transfer payments and labour market affiliation. 59-62

<u>6 minutes walking test</u>: The maximum walking distance (in meters) within 6 minutes is measured, using standardized instructions, ⁶³ while subjective exhaustion with regard to fatigue and dyspnoea using the Borg scale ⁶⁴ is registered.

<u>Sit and stand test</u>: The maximum amount of times a patient can sit and rise from a normal chair within 30 seconds is recorded. Subjective exhaustion is measured using the Borg exhaustion scale.⁶⁴ <u>Biochemical screening:</u> Potassium, sodium, haemoglobin and creatinine. 1 EDTA plasma heparin tube will be frozen (80°) for further analyses (pro-BNP, BNP, copeptin).

Other exploratory outcomes: AF recurrence, self-rated health and sleep-quality, retirement from work, use of health care services, mortality and cost efficiency (Table 2).

Table 2. Exploratory quantities subjected to post-hoc analysis

Quantity	Time of measure (months)	Type of quantity
Demographic		
Sex	BL	Binary (M/F)
Age, height, weight,	BL, 1,4,12	Continuous
Marital, occupational, educational status	BL	Categorical
Clinical		
NYHA- classification	BL, 1, 4, 12	Continuous
Previous heart disease, diabetes mellitus, kidney disease, pulmonary disease (COPD), co-morbidities, hypertension, dyslipidaemia, smoking	BL	Binary (Y/N)
Medication	BL, 1, 4, 12	Binary (Y/N)
AF specific data:		
Type of atrial fibrillation	BL	Categorical
Number of ablations	BL, 1,4,12	Binary (Y/N)
Atrial fibrillation symptoms	BL, 1,4,12	Continuous
CHA ₂ DS ₂ VASc score	BL, 1,4, 12	Continuous
The European Heart Rhythm Association symptom score	BL, 1,4, 12	Continuous

AFEQT, Atrial Fibrillation Effect on Quality-of-life; BL, baseline; CHA₂DS₂VASc, score for Atrial Fibrillation Stroke Risk; EQ-5D, EuroQoL; HADS, Hospital Anxiety and Depression Scale; HeartQoL R, Heart-Related Quality of Life; IPAQ, International Physical Activity Questionnaire; PSQI, Pittsburgh Sleep Quality Index; QoL-CV, Quality of Life - Cardiac Version; SF-36, Short Form 36.

Sample size calculation for the primary outcome

5

6

7

8

9

10

11

12 13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28 29

30 31 32

33 34

35 36

37

43 44

45 46

47 48

49 50 51

52

53 54 55

56 57

58 59 60 We are performing a randomised trial where the continuous variable VO₂ peak is the primary outcome. The control and the intervention group are independent and the ratio of patients in the intervention group to the patients in the control group is 1:1. A previous trial of patients with permanent AF found that VO₂ peak was normally distributed with a standard deviation of 3.8 ml/kg/min.⁴⁴ As the CopenHeart_{RFA} trial has a more varied patient population who have all been treated for AF with RFA, which means that the majority of the patients will have sinus rhythm and

 the rest will have AF, the patients are not directly comparable with the patients in the previous trial, and we assume a standard deviation of 6 ml/kg/min to be more relevant. We consider a 0.5 standard deviation to be the minimal relevant difference, equivalent to 3 ml/kg/min. Therefore, if the true difference between the intervention group and control group is 3 ml/kg/min and the standard deviation is 6 ml/kg/min in the control group, 105 patients in the intervention group and 105 in the control group (a total of 210 patients) are needed to reject the null hypothesis, stating that the mean in the intervention group and the control group is the same, with a power of 95%. The type I error probability associated with this test of this null hypothesis is 5%.

Power calculation for the secondary outcome

The secondary outcome measure is the continuous variable mental component, SF 36. If the true difference between the intervention and control group is 7 points, and the standard deviation in the control group is 18 points. ²¹ We will be able to reject the null hypothesis that the population means of the experimental and control groups are equal with a probability of (power) 0.80. The type I error probability associated with this test of this null hypothesis is 5%.

Statistical analyses

Data will be pseudo-anonymised and analysed blinded by a trial-independent statistician using intention-to-treat analyses and a mixed model with repeated measures (MMRM) for continuous outcome measures. Using MMRM ensures that missing data values (in case of the primary and secondary outcome) will not create bias as long as the values are missing at random. Two-sided tests are performed. The level of significance is set at 5%. With regard to multiplicity, gate keeping will be used to adjust the observed P values for primary and secondary outcomes. Both unadjusted and adjusted P values will be reported.

 For the primary and secondary outcomes, sensitivity analysis will be conducted to assess the potential impact of values missing not at random. For each intervention group (A and B) some quantities (imputing quantities) are computed to be used to impute missing values in a group (A or B) as follows. A comparison between group A and group B where missing values in group A are imputed using imputing quantities obtained from group A and missing values from group B are imputed using imputing quantities obtained from group B is referred to as a best case analysis. If missing values in group A are imputed using imputing quantities obtained from group B and vice versa the comparison is called a worst case analysis. The imputing quantities for the primary outcome are the group mean at T1 (X1-bar), the group mean at T4 (X4-bar), the group mean at T6 (X6-bar), the mean difference between the value measured at T4 and that measured at T1 (delta 1), and the mean difference between the value measured at T6 and that measured at T4 (delta-2). Table 3 explains how the quantities are used to impute missing values in a group (either the same group or the other intervention group). If the standard error (SE) of a parameter estimate calculated using imputed data is smaller than that of the corresponding parameter calculated using complete case data it is replaced by the latter SE when the P value is calculated (Table 3).

Long-term register-based outcomes will be analysed by two different models: non-negative count outcomes (e.g., number of contacts with hospital or number of visits to general practitioners) will be analysed by a Poisson model or a zero-inflated Poisson model if the number of zeros are large, and time-to-event data (e.g., cause-specific mortality and leaving the labor market) will be analysed with survival methods (Kaplan-Meier estimator and Cox regression model). Especially for socio-economic outcomes, competing risks due to mortality will be considered if a large proportion of patients die during follow-up.

 Exploratory data will be analysed using appropriate statistical methods according to the type of data (see Table 2). SPSS version 17.0 and SAS version 9.3 will be used.

Table 3. Statistical analysis

Observed pattern in group B at	Imputed value in group B at	Imputed value in group B at	Imputed value in group B at
1, 4, and 6 months	1 month	4 month	6 months
mis ^A , mis, mis	X1-bar ^B	X4-bar ^c	X6-bar ^D
mis, mis, Y3 ^E	Y3 – (delta1 ^F + delta2 ^G) ^H	Y3 – delta2	
mis, Y2, mis	Y2 – delta1		Y2 + delta2
Y1, mis, mis		Y1 + delta1	Y1 + delta1 + delta2
Y1, Y2, mis			Y2 + delta2
Y1, mis, Y3		(Y1 + delta1 + Y3 - delta2)/2	
mis, Y2, Y3	Y2 – delta1		

Table to explain the use of imputing quantities derived from observed values in a group (group A) to impute missing values in a group (group B). mis=missing value, X1=value at month 1, X4=value at month 4, X6=value at month 6.

Interim analysis and Data Monitoring Safety Committee (DMSC)

The DMSC works independently from the funder and has no competing interests, and consists of two clinicians and a statistician. The committee is responsible for safeguarding the interests of trial participants, assessing the safety and efficacy of the interventions during the trial, and for monitoring the overall conduct of the clinical trial. In line with the terms of the Data Monitoring

^AThe value at 4 months is missing in group B, ^BMean of values observed in group A at time 1 month. ^CMean of values observed in group A at time 4 months. ^EObserved value in group B at time 6 months. ^EThe mean of difference between values observed at time 4 months and value observed at time 1 month in group A, ^EThe mean of difference between value observed at time 6 months and value observed at time 6 months in group A at time 6 months.

and Safety Committee charter, one formal interim analysis meeting will be held to review data relating to treatment efficacy, participant safety, and quality of trial conduct. The three members of the Data Monitoring and Safety Committee will meet when the 12 week follow-up data of about 50% of the trial participants have been obtained. Any serious adverse events will be registered as part of the data collection and the overall number of adverse events will be reported at the meeting.

Complementary studies

 The Surveysbased study. The post-discharge status of the patients treated with RFA will be explored through a national survey. The standardised questionnaires SF-36,⁶⁷ Hospital Anxiety and Depression Scale (HADS), ⁶⁸ EuroQoL-EQ-5D, ^{69,70} Heart Related Quality of Life (HeartQoL R), ⁷¹ International Physical Activity Questionnaire (IPAQ), ^{72,73} and a questionnaire developed by the Danish Heart Foundation on the extent and quality of rehabilitation offered will be sent to patients having undergone treatment for RFA, 6-12 months post-discharge. The instruments are all validated and have good reliability and responsiveness. ^{68,72,74,75,80,81} The data will provide knowledge on patients' self-rated health, quality of life, anxiety and depression, economic situation and the extent and quality of the rehabilitation currently received. Patients were identified through the National Patient Register ⁵⁹ and questionnaires were sent out to 608 patients. We anticipate 25% will decline participation, leaving an estimated 456 questionnaire respondents. Data will be anonymised and analysed by relevant descriptive statistical methods.

Qualitative post intervention study

After the intervention, 10% of the participants from the intervention group will be strategically chosen for an interview in order to explore the experiences and processes behind the potential effects of the intervention. The qualitative study will explore patient experiences of participating in the CopenHeart_{RFA} programme and investigate which components were meaningful.

 To achieve maximum variation, qualified interviewees are chosen on the basis of sex, AF type, and current heart rhythm. 82 The analysis will be inspired by Ricoeur's theory of interpretation consisting of three levels: naive reading, structured analysis and critical interpretation and discussion. 83

Economic evaluation

An economic evaluation will be conducted alongside the trial to assess the cost-utility of cardiac rehabilitation compared with treatment as usual in the study population. The economic evaluation will compare the costs to quality adjusted life years (QALY) and take a societal perspective, as recommended nationally. QALYs and costs will be assessed at the end of the intervention, 6 months from randomisation, and later after 24 months from randomisation using register-based follow up.

QALYs will be estimated using the self-completed EQ-5D instrument, which is a standardised instrument assessing 5 dimensions of self-reported health status (mobility, self-care, usual activities, pain/discomfort and anxiety/depression).

84, 85 The estimated calculations will be valued using Danish preference weights.

86 Information on costs will only include costs that are expected to differ between the intervention and usual care group.

73 Costs included in the evaluation are health costs associated with the rehabilitation programme, other health care costs (health care utilization besides rehabilitation), patient costs and costs of productivity losses. Information on costs will be collected by a mixture of activity-based costing, surveys, patient diary and by the use of public records.

Results from the analysis will be reported as an incremental cost-effectiveness analysis (ICER).

Sensitivity analysis will be conducted to express uncertainty in the estimates.

87 The reporting of the ICER is presented using Bayesian methods, including bootstrapping and presented as cost-effectiveness acceptability curves.

Ethics

The inclusion started December 2011 and is approved by the Regional Ethics Committee (number H-1-2011-135) and the Danish Data Protection Agency (no. 2007-58-0015). All eligible patients

will be informed about the trial verbally and in writing, and the patients are included after informed consent has been obtained. All data will be handled confidentially and patients ensured anonymity. The trial complies with the latest Declaration of Helsinki and is registered at ClinicalTrials.gov (NCT01523145). An independent international safety committee monitors the trial. All serious and adverse events will be registered and reported in accordance with the safety charter.

Not providing rehabilitation to the control group can be ethically justified as current national and international guidelines give no specific recommendations on cardiac rehabilitation for patients treated for AF with RFA. The scope and quality of rehabilitation offered to this population is unknown, but suspicions are that generally no rehabilitation is offered in Denmark. The only way patients can get supervised exercise training is if they voluntarily enrol in a programme e.g. through non-profit organisations. The survey based complementary study, described previously in this paper, will hopefully provide more insight into this. In screening patients for participation, the enrolling nurse or physician will exclude those with a compelling rehabilitation need. Furthermore, patients are informed of the study design before giving their consent, and are free to decline participation.

Discussion

 Due to the difference in the three patient groups that are included in the overall CopenHeart trial, patients treated for infective endocarditis, heart valve surgery and patients treated for AF with RFA, the intervention and outcome measures differ slightly, most importantly in the case of the psychoeducational intervention, which is longer for patients treated for infective endocarditis and heart valve surgery, because of the complexity of the diseases and the longer hospitalisation. Biochemical markers are similarly chosen differently to address the various co-morbidities of the three diseases and some disease specific questionnaires are chosen to capture the specific disease relevant issues.

 To our knowledge no previous randomised clinical trials or observational studies have been conducted focusing on integrated cardiac rehabilitation for AF patients treated with RFA, so therefore it is not known what effect, if any, rehabilitation has on these patients. However, in the light of evidence from other groups of patients with heart disease a positive effect can be expected.^{23, 89, 90}

This trial is different from previous trials because we apply a comprehensive coronary rehabilitation intervention which consists of both a physical training component and a psycho-educational component. This combination is hypothesised to strengthen the patient both physically and mentally even if the patient has AF. Also we use mixed methods, which has its strengths in both using qualitative and quantitative research design.³⁴

The major strengths of this randomised clinical trial are that it includes consecutive patients with a reasonable number of inclusion and exclusion criteria securing external validity for the results. The trial employs central, stratified randomisation which secures against selection bias. ⁹¹⁻⁹³ The primary outcome is assessed blinded to intervention and so are all statistical analyses, which should reduce detection and interpretation bias. ⁹¹⁻⁹³ The long-term outcomes are based on data taken from public registry data, which are also likely not to include biased reporting of outcomes.

The secondary outcomes of self-rated mental health are by nature subjective and are likely to be biased. 91-93 The patients answer questionnaires independently of the researchers. Data management is handled independently from the researchers that interpret data. All questionnaires are distributed electronically. All data entry is stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart Group.

 Trial limitations include the fact that it is known from previous rehabilitation trials ³³ that patients in the control group have a tendency to do physical training due to the focus on the subject in the recruitment process. We will be aware of that when we recruit and not focus on giving extensive information about the exercise programme, or encourage patients to do physical training before knowing what group they are randomised to. Any difference between patients completing the intervention and those not completing (drop-outs) will be carefully discussed when evaluating the intervention, results and the suitability for implementation. The trial is designed with multiple statistical comparisons so results will be interpreted with caution. Further limitations of the trial and methods used are similar to those of other trials including physical exercise and physical testing, namely time-of-day, and day-to-day variation using exercise testing. ⁹⁴ To ensure standard testing of all physical exercise tests in the trial, standardised instructions for patients have been developed as described in the methods section. Conversely, the trial population will be representative for the true RFA population, meaning that some patients will have AF and some sinus rhythm while exercising and testing, and this will facilitate implementation of The CopenHeart_{RFA} trial rehabilitation programme in daily clinical practice.

The challenge with the set-up is that patients come from considerable distances and therefore some will decline participation. Also, due to the nature of rehabilitation trials, the patients have to meet at the hospital frequently, especially when randomised to the experimental intervention group.

The trial will, to our knowledge, be the largest trial conducted dealing with rehabilitation AF ablation recipients. If a positive effect of integrated rehabilitation is found, it may have an impact on the rehabilitation offered to patients treated for AF with RFA at international level. The trial is expected to identify an intervention which can improve health and quality of life for the patients,

 and subsequently reduce healthcare utilization and costs, as well as mortality.

Publication policy

The results of the trial will be published in appropriate peer-reviewed journals regardless of the outcome. Authorship will be determined according to the guidelines of the International Committee of Medical Journal Editors.

The outcome data will be analysed and published in the short term of 4 and 6 months and the long term of 24 months. Due to the comprehensiveness of the outcome measures further post hoc analysis will be published in separate papers. Economic and long term follow up will be reported as data becomes accessible.

Timetable

Recruitment started in December 2011 in one heart centre and in July 2012 in the other participating heart centre and is planned to finish in December 2013. To achieve adequate participant enrolment, patients in doubt are contacted after hospital discharge by phone. The inclusion rate is closely monitored every week.

Acknowledgements and Funding

The rehabilitation team responsible for the intervention programme and trial administration is:

Rikke Brandt Jakobsen, Lone Siersbæk-Hansen, Lars Tang, Helena Tjalk Sørensen, Signe Gills,

Helle Tauby, Katrine Haase and Line Ellemann-Jensen.

The trial is partly funded by The Danish Council for Strategic Research, The Lundbeck Foundation, and The Heart Centre at Rigshospitalet. The funders have no influence on the trial design, the execution of the trial or the interpretation of data.

Authors' contributions

SKB and ADZ in collaboration with SSR, JLH, MP, LCT, PW and CG designed the trial. SSR in collaboration with SKB, ADZ, TBR, KLS, JHS, CG, LCT, SD, JLH and SD drafted the manuscript. All revised the manuscript critically. All authors have given their final approval of the version to be published.

Competing interests

None.

- 1. Stewart S, Hart CL, Hole DJ, McMurray JJV. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. *Heart* 2001; November 01;86(5):516-21.
- 2. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *JAMA* 2001; May 9;285(18):2370-5.
- 3. Ruigomez A, Johansson S, Wallander MA, Garcia Rodriguez LA. Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK. *BMC Cardiovasc Disord* 2005; Jul 11;5:20.
- 4. European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery, Camm AJ, Kirchhof P, Lip GY, Schotten U, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). *Europace* 2010; Oct;12(10):1360-420.

 Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, Bergman. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atral fibrillation (Review) 2009;The Cochrane Libraly(1).

- 6. Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener HC, et al. Outcome parameters for trials in atrial fibrillation: recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork and the European Heart Rhythm Association. *Europace* 2007; Nov;9(11):1006-23.
- 7. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. *Am J Med* 2002; Oct 1;113(5):359-64.
- 8. Camm J. Antiarrhythmic drugs for the maintenance of sinus rhythm: Risks and benefits.

 Int J Cardiol 2011; Jun 25;.
- 9. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. *Eur Heart J* 2006; Apr;27(8):949-53.

- 10. Naccarelli GV, Varker H, Lin J, Schulman KL. Increasing prevalence of atrial fibrillation and flutter in the United States. *Am J Cardiol* 2009; Dec 1;104(11):1534-9.
- 11. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. *Circulation* 2004; Aug 31;110(9):1042-6.
- 12. Ericson L, Bergfeldt L, Bjorholt I. Atrial fibrillation: the cost of illness in Sweden. *Eur J Health Econ* 2011; Oct;12(5):479-87.
- 13. Wolowacz SE, Samuel M, Brennan VK, Jasso-Mosqueda JG, Van Gelder IC. The cost of illness of atrial fibrillation: a systematic review of the recent literature. *Europace* 2011; Oct;13(10):1375-85.
- 14. Brenyo AJ, Aktas MK. Non-pharmacologic management of atrial fibrillation. *Am J Cardiol* 2011; Jul 15;108(2):317-25.

- 15. Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. *Circ Arrhythm Electrophysiol* 2009; Aug;2(4):349-61.
- 16. Atwood JE, Myers JN, Tang XC, Reda DJ, Singh SN, Singh BN. Exercise capacity in atrial fibrillation: a substudy of the Sotalol-Amiodarone Atrial Fibrillation Efficacy Trial (SAFE-T). *Am Heart J* 2007; Apr; 153(4):566-72.
- 17. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: a study based on interviews with 100 patients seeking hospital assistance. *BMC Cardiovasc Disord* 2004; Aug 3;4:13.
- 18. Hegbom F, Sire S, Heldal M, Orning OM, Stavem K, Gjesdal K. Short-term exercise training in patients with chronic atrial fibrillation: effects on exercise capacity, AV conduction, and quality of life. *J Cardiopulm Rehabil* 2006; Jan-Feb;26(1):24-9.
- 19. Hegbom F, Stavem K, Sire S, Heldal M, Orning OM, Gjesdal K. Effects of short-term exercise training on symptoms and quality of life in patients with chronic atrial fibrillation. *Int J Cardiol* 2007; Mar 2;116(1):86-92.

- 20. Osbak PS, Mourier M, Kjaer A, Henriksen JH, Kofoed KF, Jensen GB. A randomized study of the effects of exercise training on patients with atrial fibrillation. *Am Heart J* 2011; Dec;162(6):1080-7.
- 21. Dorian P, Jung W, Newman D, Paquette M, Wood K, Ayers GM, et al. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: implications for the assessment of investigational therapy. *J Am Coll Cardiol* 2000; Oct;36(4):1303-9.
- 22. McCabe PJ, Schumacher K, Barnason SA. Living with atrial fibrillation: a qualitative study. *J Cardiovasc Nurs* 2011; Jul-Aug;26(4):336-44.
- 23. Piepoli MF, Corra U, Benzer W, Bjarnason-Wehrens B, Dendale P, Gaita D, et al.

 Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2010; Feb;17(1):1-17.
- 24. Piepoli MF, Corra U, Adamopoulos S, Benzer W, Bjarnason-Wehrens B, Cupples M, et al. Secondary prevention in the clinical management of patients with cardiovascular

diseases. Core components, standards and outcome measures for referral and delivery.

Eur J Prev Cardiol 2012; Jun 20;.

- 25. Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, et al. Exercise-based cardiac rehabilitation for coronary heart disease. *Cochrane Database Syst Rev* 2011; Jul 6;(7)(7):CD001800.
- 26. Davies EJ, Moxham T, Rees K, Singh S, Coats AJ, Ebrahim S, et al. Exercise based rehabilitation for heart failure. *Cochrane Database Syst Rev* 2010; Apr 14;(4)(4):CD003331.
- 27. Shepherd CW, While AE. Cardiac rehabilitation and quality of life: a systematic review. *Int J Nurs Stud* 2012; Jun;49(6):755-71.
- 28. Sire S. Physical training and occupational rehabilitation after aortic valve replacement.

 Eur Heart J 1987; Nov;8(11):1215-20.

- 29. Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. *Circ Heart Fail* 2010; Nov 1;3(6):659-67.
- 30. Clark AM, Catto S, Bowman G, Macintyre PD. Design matters in secondary prevention: individualization and supervised exercise improves the effectiveness of cardiac rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2011; Oct;18(5):761-9.
- 31. Clark AM, Haykowsky M, Kryworuchko J, MacClure T, Scott J, DesMeules M, et al. A meta-analysis of randomized control trials of home-based secondary prevention programs for coronary artery disease. *Eur J Cardiovasc Prev Rehabil* 2010; Jun;17(3):261-70.
- 32. Whalley B, Rees K, Davies P, Bennett P, Ebrahim S, Liu Z, et al. Psychological interventions for coronary heart disease. *Cochrane Database Syst Rev* 2011; Aug 10;(8)(8):CD002902.
- 33. Berg SK. *Comprehensive rehabilitation for patients with ICD: PhD dissertation.*[Aarhus]: Faculty of Health Sciences, Aarhus University; 2011.

Page 42 of 52

- 34. Creswell JW, Plano Clark VL. *Designing and conducting mixed methods research.*Thousand Oaks, Calif.: SAGE Publications; 2007.
- 35. O'Cathain A, Murphy E, Nicholl J. Three techniques for integrating data in mixed methods studies. *BMJ* 2010; Sep 17;341:c4587.
- 36. Carter RE, Lubinsky J, Domholdt E. *Rehabilitation research: principles and applications.* 4. ed. ed. St. Louis, Mo.: Elsevier Saunders; 2011.
- 37. Law MC, MacDermid J. *Evidence-based rehabilitation: A guide to practice.* 2. edition ed. Thorofare, NJ: Slack; 2008.
- 38. Clark N, Boyd NR, Goodman RM, Windsor RA. *Evaluation of health promotion, health education, and disease prevention programs.* 3. ed. ed. Boston: McGraw-Hill; 2004.
- 39. Hammell KW, Carpenter C. Qualitative research in evidence-based rehabilitation.

Edinburgh: Churchill Livingstone; 2004.

- 40. Lewin S, Glenton C, Oxman AD. Use of qualitative methods alongside randomised controlled trials of complex healthcare interventions: methodological study. *BMJ* 2009; Sep 10;339:b3496.
- 41. Neubeck L, Freedman SB, Clark AM, Briffa T, Bauman A, Redfern J. Participating in cardiac rehabilitation: a systematic review and meta-synthesis of qualitative data. *Eur J Prev Cardiol* 2012; Jun;19(3):494-503.
- 42. Chan A, Tetzlaff J, Altman D, Gotzsche P, Hrobjartsson A, et al. The SPIRIT initiative:

 Defining Standard Protocol Items for Randomized Trials [conference abstract]. *German J Evid Quality Health Care (Suppl)* 2008;(102:S27).
- 43. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, CONSORT Group. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. *Ann Intern Med* 2008; Feb 19;148(4):295-309.
- 44. Mertens DJ, Kavanagh T. Exercise training for patients with chronic atrial fibrillation. *J*Cardiopulm Rehabil 1996; May-Jun;16(3):193-6.

46. Zwisler A, Madsen M, Konstantin Nissen N. *Hjerterehabilitering: en medicinsk teknologivurdering: evidens fra litteraturen og DANREHAB-forsøget. http://www.si-folkesundhed.dk/upload/hjerterehabilitering_001.pdf*. Version: 1,0 ed. Kbh.: Sundhedsstyrelsen; 2006.

47. Anbefalinger for fysisk aktivitet. Available at:

 http://www.sst.dk/Sundhed%20og%20forebyggelse/Fysisk%20aktivitet/Anbefalinger%20til %20voksne.aspx. Accessed 09/13, 2011.

48. Oerkild B, Frederiksen M, Hansen JF, Simonsen L, Skovgaard LT, Prescott E. Home-based cardiac rehabilitation is as effective as centre-based cardiac rehabilitation among elderly with coronary heart disease: results from a randomised clinical trial. *Age Ageing* 2011; Jan;40(1):78-85.

- 49. Fitchet A, Doherty PJ, Bundy C, Bell W, Fitzpatrick AP, Garratt CJ. Comprehensive cardiac rehabilitation programme for implantable cardioverter-defibrillator patients: a randomised controlled trial. *Heart* 2003; Feb;89(2):155-60.
- 50. Lampman RM, Knight BP. Prescribing exercise training for patients with defibrillators.

 Am J Phys Med Rehabil 2000; May-Jun;79(3):292-7.
- 51. Parse RR. *The human becoming school of thought: a perspective for nurses and other health professionals.* Thousand Oaks, Calif.: Sage; 1998.
- 52. Berg SK, Pedersen BD, Svendsen JH, Zwisler AD, Kristensen L, Pedersen PU.

 COPE-ICD: Patient experience of participation in an ICD specific rehabilitation

 programme. *Eur J Cardiovasc Nurs* 2011; Apr 22;.
- 53. Mezzani A, Agostoni P, Cohen-Solal A, Corra U, Jegier A, Kouidi E, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2009; Jun;16(3):249-67.

54. Gibbons L, Blair SN, Kohl HW, Cooper K. The safety of maximal exercise testing. *Circulation* 1989; Oct;80(4):846-52.

- 55. Bjørner JB, Trab Damsgaard M, Watt T, Bech P, Rasmussen NK, Søndergaard Kristensen T, et al. *Dansk manual til SF-36: et spørgeskema om helbredsstatus.* [S.I.]: Lif; 1997.
- 56. Ware JE,Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. *Med Care* 1992; Jun;30(6):473-83.
- 57. McHorney CA, Ware JE,Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. *Med Care* 1993; Mar;31(3):247-63.
- 58. Andersen TF, Madsen M, Jorgensen J, Mellemkjoer L, Olsen JH. The Danish National Hospital Register. A valuable source of data for modern health sciences. *Dan Med Bull* 1999; Jun;46(3):263-8.

- 59. Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. *Scand J Public Health* 2011; Jul;39(7 Suppl):30-3.
- 60. Andersen JS, Olivarius Nde F, Krasnik A. The Danish National Health Service Register. *Scand J Public Health* 2011; Jul;39(7 Suppl):34-7.
- 61. Kildemoes HW, Sorensen HT, Hallas J. The Danish National Prescription Registry.

 Scand J Public Health 2011; Jul;39(7 Suppl):38-41.
- 62. Helweg-Larsen K. The Danish Register of Causes of Death. *Scand J Public Health* 2011; Jul;39(7 Suppl):26-9.
- 63. ATS Committee on Proficiency Standards for Clinical Pulmonary Function

 Laboratories. ATS statement: guidelines for the six-minute walk test. *Am J Respir Crit*Care Med 2002; Jul 1;166(1):111-7.
- 64. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc* 1982;14(5):377-81.
- 65. Rikli RE, Jones CJ. Senior fitness test manual. Champaign, III.: Human Kinetics; 2001.

- 66. Ekholm O, Hesse U, Davidsen M, Kjoller M. The study design and characteristics of the Danish national health interview surveys. *Scand J Public Health* 2009; Sep;37(7):758-65.
- 67. Ware JE, Kosinski M, Gandek B. SF-36 Health Survey.: Manual and Interpretation guide 2005;The Health Institute, New England Medical Center, Boston, Massachussetts.
- 68. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. *Acta Psychiatr Scand* 1983; Jun;67(6):361-70.
- 69. Ferrans CE, Powers MJ. Quality of life index: development and psychometric properties. *ANS Adv Nurs Sci* 1985; Oct;8(1):15-24.
- 70. Bowman G, Watson R, Trotman-Beasty A. Primary emotions in patients after myocardial infarction. *J Adv Nurs* 2006; Mar;53(6):636-45.
- 71. Bøgelund M, Mønsted C. *Hjertepatienters brug og oplevelse af rehabilitering 2010.*Kbh.: Hjerteforeningen; 2010.

- 72. Oldridge N, Saner H, McGee HM, HeartQoL Study Investigators. The Euro Cardio-QoL Project. An international study to develop a core heart disease health-related quality of life questionnaire, the HeartQoL. *Eur J Cardiovasc Prev Rehabil* 2005; Apr;12(2):87-94.
- 73. Drummond MF. *Methods for the economic evaluation of health care programmes.* 3rd edition ed. Oxford: Oxford University Press; 2005.
- 74. Hallal PC, Victora CG. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). *Med Sci Sports Exerc* 2004; Mar;36(3):556.
- 75. Schwartz JE, Jandorf L, Krupp LB. The measurement of fatigue: a new instrument. *J Psychosom Res* 1993; Oct;37(7):753-62.
- 76. Buysse DJ, Reynolds CF,3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res* 1989; May;28(2):193-213.
- 77. Spertus J, Dorian P, Bubien R, Lewis S, Godejohn D, Reynolds MR, et al.
- Development and validation of the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT)

- 78. DeSouza CM, Legedza AT, Sankoh AJ. An overview of practical approaches for handling missing data in clinical trials. *J Biopharm Stat* 2009; Nov;19(6):1055-73.
- 79. Dmitrienko A, Wiens BL, Tamhane AC, Wang X. Tree-structured gatekeeping tests in clinical trials with hierarchically ordered multiple objectives. *Stat Med* 2007; May 30;26(12):2465-78.
- 80. McHorney CA, Ware JE, Rogers W, Raczek A, Lu JFR. The validity and relative precision of MOS short- and long-form health status scales and Dartmouth COOP charts: results from the Medical Outcomes Study.
- 81. Schweikert B, Hahmann H, Leidl R. Validation of the EuroQol questionnaire in cardiac rehabilitation. *Heart* 2006; Jan;92(1):62-7.
- 82. Polit DF, Beck CT. Essentials of nursing research: methods, appraisal, and utilization.
- 6. edition ed. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2006.

- 83. Ricoeur P. *Interpretation theory: discourse and the surplus of meaning.* 5. print. ed.
- Fort Worth, Tex.: Texas Christian University Press; 1976.
- 84. EuroQol--a new facility for the measurement of health-related quality of life. The EuroQol Group. *Health Policy* 1990; Dec;16(3):199-208.
- 85. Brooks R. EuroQol: the current state of play. Health Policy 1996; Jul;37(1):53-72.
- 86. Wittrup-Jensen KU, Lauridsen J, Gudex C, Pedersen KM. Generation of a Danish TTO value set for EQ-5D health states. *Scand J Public Health* 2009; Jul;37(5):459-66.
- 87. Fox-Rushby JA, Cairns J. *Economic evaluation*. Maidenhead: Open University Press; 2005.
- 88. Fenwick E, Claxton K, Sculpher M. Representing uncertainty: the role of cost-effectiveness acceptability curves. *Health Econ* 2001; Dec;10(8):779-87.
- 89. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. *Am J Med* 2004; May 15;116(10):682-92.

- 91. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ* 2008; Mar 15;336(7644):601-5.
- 92. Gluud L. Bias in clinical intervention research. Am J Epidemiol 2006;163(6):493-501.
- 93. Savovic J, Jones H, Altman D, Harris R, Juni P, Pildal J, et al. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. *Health Technol Assess* 2012; Sep;16(35):1-82.
- 94. Rowland T, Unnithan V, Barker P, Lindley M, Roche D, Garrard M. Time-of-day effect on cardiac responses to progressive exercise. *Chronobiol Int* 2011; Aug;28(7):611-6.

The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeartRFA trial protocol

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002377.R1
Article Type:	Protocol
Date Submitted by the Author:	04-Jan-2013
Complete List of Authors:	Risom, Signe; Rigshospitalet, The Heart Centre Zwisler, Ann-Dorthe; National institute of Public Health, University of Copenhagen; Rigshospitalet, The Heart Centre Rasmussen, Trine; Rigshospitalet, The Heart Centre; Gentofte Hospital, Department of cardiology Sibilitz, Kirstine; Rigshospitalet, Cardiology Svendsen, Jesper; Rigshospitalet, The Heart Centre Gluud, Christian; Copenhagen University Hospital, Centre for Clinical Intervention Research Hansen, Jane; Copenhagen Trial Unit, Centre for Clinical Intervention Research Winkel, Per; Copenhagen Trial Unit, Centre for Clinical Intervention Research Thygesen, Lau; University of Southern Denmark, National Institute of Public Health Perhonen, Merja; Corusfit, Hansen, Jim; Gentofte Hospital, Department of cardiology Dunbar, Sandra; Nell Hodgson Woodruff School of Nursing, Emory University Berg, Selina; Rigshospitalet, Cardiology; Gentofte Hospital, Department of cardiology
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Cardiovascular medicine, Nursing, Rehabilitation medicine
Keywords:	Adult cardiology < CARDIOLOGY, Atrial Fibrillation , QUALITATIVE RESEARCH, Clinical trials < THERAPEUTICS

SCHOLARONE™ Manuscripts

The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeart $_{\rm RFA}$ trial protocol

Signe S. Risom, RN, MSc^{1,§}, Ann-Dorthe Zwisler, MD, Ph.D.^{1,2}, Trine B. Rasmussen RN, MScN^{1,4}, Kirstine Lærum Sibilitz, MD¹, Jesper Hastrup Svendsen, MD, DMSc, FESC ^{1,3}, Christian Gluud, MD, DMSc⁵, Jane Lindschou Hansen, MSc⁵, Per Winkel, MD, DMSc⁵, Lau Caspar Thygesen, MSc, Ph.D.², Merja Perhonen MD, Ph.D.⁶, Jim Hansen, MD⁴, Sandra B. Dunbar, RN, DSN, FAAN, FAHA⁷, Selina Kikkenborg Berg, RN, MScN, Ph.D. FESC ^{1,4}.

Hospital, Denmark

Atlanta, Georgia, United States

§Corresponding author:

Signe Stelling Risom, RN, MSc,

The Heart Centre, Department of Cardiology,

Copenhagen University Hospital,

Blegdamsvej 9, DK-2100 Copenhagen.

¹ Rigshospitalet, The Heart Centre, Copenhagen University Hospital, Denmark

² National Institute of Public Health, University of Southern Denmark

³ Gentofte Hospital, Department of Cardiology, Denmark

⁴ The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC)

⁵ Copenhagen Trial Unit, Centre for Clinical Intervention Research. Copenhagen University

⁶ CorusFit, Heikinkatu 3 B, 40100 Jyväskylä, Finland

⁷Nell Hodgson Woodruff School of Nursing, Emory University

Signe.stelling.risom@rh.regionh.dk

Word count:

 Abstract: 300, Body: 7.035

Keywords: atrial fibrillation, cardiac rehabilitation, physical exercise, psycho-education

Article summary

Article focus

- The CopenHeart_{RFA} trial is a randomised clinical trial investigating the effects of comprehensive cardiac rehabilitation versus usual care for patients treated for atrial fibrillation (AF) with ablation.
- The hypothesis is that comprehensive cardiac rehabilitation improves physical capacity and mental health.
- Using a mixed methods approach, a broad range of outcome measures are collected to evaluate the intervention.

Key messages

- AF affects 1-2% of the population. Patients with AF experience diminished quality of life and are afraid to do physical exercise after treatment with ablation.
- No studies exploring the effects of rehabilitation of patients treated for AF with ablation have been published.
- This trial is the first to examine physical functioning and to test a comprehensive rehabilitation programme on a large population of patients treated for AF with ablation.

 CopenHeart_{RFA} will provide much needed evidence and insight on the post-discharge status and rehabilitation needs of patients treated for AF with ablation.

Strengths and limitations of this study

- The study has been designed to meet the criteria for high quality in non-pharmacological randomised clinical trials with central randomisation, multi-centre participation, blinded assessment and analysis.
- We are aware of the day to day variation that can appear when carrying out ergospirometry,
 in testing and that the performance can depend on the individual tester. Accordingly, we will
 interpret the findings conservatively.

Abstract

Introduction

Atrial fibrillation affects almost 2% of the population in the Western world. To preserve sinus rhythm, ablation is undertaken in symptomatic patients. Observational studies show that patients with atrial fibrillation often report low quality of life and are less prone to be physically active due to fear of triggering fibrillation. Small trials indicates that exercise training has a positive effect on exercise capacity and mental health, and both patients with recurrent atrial fibrillation and in sinus rhythm may benefit from rehabilitation in managing life after ablation. No randomised trials have been published on cardiac rehabilitation for atrial fibrillation patients treated with ablation that includes exercise and psycho-educational components.

Aim

To test the effects of an integrated cardiac rehabilitation programme versus treatment as usual for patients with atrial fibrillation treated with ablation.

Methods and analysis design

The trial is a multicentre parallel arm design with 1:1 randomisation to the intervention and control group with blinded outcome assessment. 210 patients treated for atrial fibrillation with radiofrequency ablation will be included. The intervention consists of a rehabilitation programme including four psycho-educative consultations with a specially trained nurse and 12 weeks of individualised exercise training, plus the standard medical follow-up. Patients in the control group will receive the standard medical follow-up. The primary outcome measure is exercise capacity measured by VO₂ peak. The secondary outcome measure is self-rated mental health measured by the Short Form 36 questionnaire. Post intervention, qualitative interviews will be conducted in 10% of the intervention group.

Ethics and dissemination

The protocol is approved by the regional research ethics committee (number. H-1-2011-135), the Danish Data Protection Agency (reg. nr. 2007-58-0015) and follows the latest version of the Declaration of Helsinki. The results will be published in peer-reviewed journals and may possibly impact on rehabilitation guidelines.

Registration: Clinicaltrials.gov identifier: NCT01523145

Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia and affects 2% of the population in the Western world. 1-3 Typical symptoms are palpitations, dyspnoea, fatigue, dizziness, and syncope. Patients' symptoms and the length of periods in AF are highly variable both for the individual and between patients. 4-6 AF is associated with increased risk of stroke, other thromboembolic events, and heart failure. 6-8 Hospitalisations due to AF account for one third of all admissions for cardiac arrhythmias. As the prevalence of AF increases with age, the incidence of AF is increasing due to an ageing population. After 40 years of age, the lifetime risk of developing AF is 25%. The annual cost of AF is high in comparison with other diseases. Therefore, AF has become an economic burden and this will continue to increase over the coming decades. Thus, AF has now become a health, social and economic challenge in the Western world.

Primary treatment goals for individuals with AF are re-establishing and maintaining sinus rhythm, decreasing AF symptoms, and prevention of complications. In accordance with current national and international guidelines, radiofrequency ablation (RFA) is often undertaken in symptomatic patients. RFA is an invasive treatment, intended to cure AF and has a success rate of 77% versus 52% for antiarrhythmic medication. In Denmark, around 600 RFAs are conducted annually at two heart centres.

A cohort study of 655 patients from a randomised trial found that AF symptoms are a negative predictor for patients' physical capacity, ¹⁶ and in the presence of AF, patients do fewer physical activities. ¹⁷ Smaller observational studies and a randomised trial investigating the effect of exercise

training on AF patients found increased exercise capacity and a decreased resting heart rate after training. $^{18-20}$

 Previous studies show significantly impaired quality of life in patients with AF compared to healthy controls measured by the questionnaire Short Form 36 (SF-36). The general health component (± standard deviation) was 54±21 in AF patients compared to 78±17 in healthy controls. A qualitative study demonstrated that educational help after AF treatment is lacking, even though symptoms of distress and lack of self-management regarding symptoms like palpitations, dyspnoea, and fatigue are common. Furthermore, small observational studies indicate a positive effect of exercise training on patients with AF in terms of mental health and physical activity (15% increase of VO₂). Nowever, these findings need confirmation in larger randomised clinical trials.

Secondary prevention initiatives including cardiac rehabilitation are recommended by the European Society of Cardiology (ESC). Studies exploring the effects of rehabilitation for patients treated for AF are lacking. As there is no evidence of its efficacy, rehabilitation is not systematically provided in Denmark and most often patients treated for AF with RFA are not offered any rehabilitation at all. The evidence for general cardiac rehabilitation is strong, but it is found that it is poorly implemented and only selected patient groups are offered full comprehensive cardiac rehabilitation programmes, even though ESC recommends such programmes. Research has mainly been conducted within patients with coronary heart disease and heart failure, where rehabilitation has been proven to reduce hospital re-admissions and mortality in a cost-effective way, so well as improve quality of life. More specifically, studies on the effect of exercise training have demonstrated an increase in exercise capacity of up to 38% in patients after valve replacement surgery and an increase in peak VO₂ of 2.3±2.2 (SD) ml/kg per minute in the intervention group

 compared with -0.3 ± 2.1 (SD) ml/kg per minute in the control group, as well as a significant change in quality of life in older patients with heart failure.²⁹

.. Traditional cardiac rehabilitation has focused on physical training and standardized programmes, but studies now indicate that individualized content and supervised exercise components can improving outcomes. ³⁰ In addition to exercise training, there is evidence to support interventions that include patient education, which in patients with coronary heart disease has shown to improve health related quality of life and decrease healthcare costs, ³¹ and psychological support, which has been shown to improve psychological symptoms, such as depression and anxiety. ³² Interventions designed to cover both physical and psychological problems may provide the best method for optimising functioning and enhancing quality of life. ³³ We have not been able to identify randomised trials or observational studies in patients who have undergone RFA for AF that offer both psycho-educational intervention and physical training. Therefore, the CopenHeart_{RFA} trial was undertaken with the aim of testing a rehabilitation programme consisting of physical exercise and a psycho-educational intervention versus treatment as usual for RFA treated AF patients.

Methods

Design

Major parts of the method section and trial design in this paper are similar to two other randomised clinical trials, CopenHeart_{VR} and CopenHeart_{IE}, and therefore sections from this paper will be copied in these trial protocols (Sibilitz KL et al. *Effect of integrated cardiac rehabilitation versus treatment as usual for patients with isolated heart valve surgery: The randomised CopenHeart valvular trial protocol.* drafted October 2012; and Rasmussen TB et al. *A randomised clinical trial of comprehensive cardiac rehabilitation versus usual care for patients treated for infective endocarditis* – the CopenHeart_{IE}. Accepted for publication, BMJ Open, October 2012).

 The CopenHeart_{RFA} trial is a multi-centre, multidisciplinary randomised clinical superiority trial. Secondary, qualitative data are also collected and the two methods are integrated by applying a mixed method embedded experimental design (Figure 1). 34, 35 Quantitative methods are applied, with specified quantitative pre- and post-measures to evaluate the effect of the experimental intervention. Alongside quantitative measurements, qualitative data will be collected. The premise of mixed methods research is that the use of qualitative and quantitative approaches in combination provides a better understanding of the research problems than either approach alone, because different types of questions require different types of data and that mixed methods research provides strengths that offset the weaknesses of both qualitative and quantitative research.³⁴ The methods are integrated by applying a mixed method embedded experimental design and include qualitative data to develop the intervention and to examine the process of the intervention and the results of the trial (see Figure 1). 34, 35 The rationale for this approach is that the quantitative findings provide a general understanding of the research problem through statistical results while qualitative findings refine and explain the results by exploring participants' views in greater detail and will be presented by themes of patient thoughts or concerns about the intervention. Evaluation using qualitative research methods is increasingly promoted in evidence-based rehabilitation. ³⁶⁻³⁹ Qualitative research alongside randomised controlled trials can contribute in several ways to the development and evaluation of complex healthcare interventions and may be particularly useful in evaluating interventions that involve social and behavioural processes that are difficult to explore or capture using quantitative methods alone. 40 As patient participation is paramount for the efficacy of the rehabilitation, 41 we find it highly valuable to include the patients' perspective in the development and evaluation of the intervention. This paper presents the study protocol for the CopenHeart_{RFA}

 randomised clinical trial. The complementary studies, including the qualitative part of the trial are briefly described in a separate section.

The trial is described in accordance with the current SPIRIT guidelines (Standard Protocol Items: Recommendations for Interventional Trials). 42 Results will be reported following the CONSORT (CONsolidated Standards Of Reporting Trials) guidelines for non-pharmacological interventions. 43

Trial hypotheses

The primary hypothesis is that the rehabilitation program increases physical capacity among AF patients treated with RFA after 4 months measured by VO_2 peak, which is expected to be 20% more than in the control group receiving standard treatment alone. The estimate of 20% is based on findings from pilot studies including patients with permanent AF which found an increase of 15% in VO_2 peak. We therefore expect a VO_2 peak in the intervention group of 18 ml/kg/min and of 15 ml/kg/min in the control group, corresponding to a difference of 20% (3 ml/kg/min).⁴⁴

The secondary hypothesis is that the rehabilitation programme increases quality of life and self-rated mental health among AF patients treated with RFA after 6 months by 3 points on the Medical Outcome Study Short Form 36 (SF-36) questionnaire mental component scale, compared with control participants receiving standard treatment.¹⁹

Exploratory hypotheses are that the experimental intervention decreases AF recurrence; improves self-rated health and sleep-quality; reduces early retirement from work, use of health care services and mortality, and is cost efficient.

Trial participants

 Consecutive patients hospitalised for AF and treated with RFA at two heart centres in Denmark (Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital) will be screened for inclusion and approached for trial participation (Figure 2). Regardless of RFA outcome, both patients with recurrent AF and patients in sinus rhythm after the ablation will be included in the trial. Patients 18 years of age or older, Danish speaking, and providing verbal and written informed consent will be eligible for participation. Patients unable to understand trial instructions, pregnant or breastfeeding, with reduced ability to follow the planned programme due to other physical illness, who prior to RFA have been doing intense physical exercise or sports at competitive level several times a week, or do not wish to participate, and patients already enrolled in clinical trials that prohibit participation in additional trials are excluded.

Trial procedure, randomisation, and follow-up

Patients will be approached for participation during their hospitalisation for RFA. Information will be given by a nurse or physician from the research team, who will obtain informed written consent after the RFA procedure. A brief oral introduction is initially given together with written information describing the trial and implications for the patient in detail. The patient is given ample time to read the information and if necessary involve a relative in the decision making. The enrolling nurse or physician will return after the RFA or call the patient to answer any questions the patient or their relative might have. The patient should subsequently be able to provide informed consent or reject participation. After the informed consent form is signed, baseline data will be collected including the baseline questionnaire package, demographic variables, and clinical characteristics (Table 2). Then the Copenhagen Trial Unit (http://www.ctu.dk/) is contacted for

 central randomisation of the participant. Randomisation is conducted according to a computer-generated allocation sequence with a varying block size kept unknown to the investigators.

Participants are randomised 1:1 to the experimental intervention group or the control group and stratified according to sex and type of AF (persistent or paroxysmal). Thus, neither investigators nor patients or relatives can influence to which group the patients are allocated. For both groups, the follow-up assessment will take place at 1 month, 4 months, 6 months, and 12 months post-discharge, and a register-based follow-up assessment will be conducted at 24 months (Table 2). In case of complications to the RFA after enrolment in the trial, the patients will be handled individually (e.g., arrhythmia or inguinal haematoma).

The patients answer questionnaires independently of the researchers, and before randomisation. All questionnaires are distributed electronically, thus data management is handled independently from the researchers that interpret data. All data are stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart group.

Personal information about potential and enrolled patients will be collected electronically and shared in a database only accessible to those within the project group responsible for patient recruitment, in order to protect confidentiality before, during and after the trial.

Due to the nature of rehabilitation, the intervention group is not blinded for the patients or the investigators, but the outcome assessment of the primary outcome, the statistical analyses, and drawing of conclusions will be conducted blinded for the allocated intervention group.

The experimental intervention group

Patients in the experimental intervention group will follow the integrated cardiac rehabilitation programme consisting of a psycho-educational component and an exercise training component

alongside standard treatment (described below). The patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

The physical exercise training component

 The intervention has been developed and partly tested in a clinical rehabilitation trial, the COPE-ICD trial ⁴⁵, which included patients with an implantable cardioverter defibrillator. We here observed a significant impact of the intervention on peak VO₂, physical capacity and self-assessed mental health. The intervention has been modified for patients treated for atrial fibrillation with ablation as described below. The CopenHeart physical exercise intervention meets European ²⁴ and Danish guidelines ⁴⁶ for physical exercise in patients with heart disease, and complies with The National Danish Board of Health recommendations for physical exercise in daily living for heart patients. ⁴⁷

The physical exercise starts one month after the ablation and after the first ergospirometry test and comprises the following three elements:

Individually planned physical exercise by specially trained physiotherapists. Integrating detailed information concerning AF symptoms and RFA, co-morbidity, hospitalisation, activities of daily living, and level of physical activity prior to RFA, a specially trained physiotherapist conducts a patient telephone consultation up to 30 minutes. The consultation is based on initial testing of the patient including a cardiopulmonary exercise test, a 6 minutes walking test and a 'sit and stand' test, described in the outcome section. For all patients, a rehabilitation plan is prepared as an individual training diary, and all patients are instructed in the use of a heart rate monitor (Polar Watch provided by Rigshospitalet). The heart rate monitor and diary is essential to ensure CopenHeart training protocol compliance and they are returned for data collection at the end of the exercise training intervention.

 Intensive exercise training programme. Physical exercise is initiated at Rigshospitalet four weeks after RFA to ensure optimal rest and healing. Using wireless electrodes integrated into t-shirts (Corus-Fit, CardioCardio and Corus Exercise Assistant, CEA, version 2.0.16, Finland) potential cardiac arrhythmias, electrocardiographic abnormalities such as ST-depression, ST-elevation, Q- or T-wave altering, atrial fibrillation, and ventricular arrhythmias and training intensity level are monitored.

After 1-3 exercise training sessions at Rigshospitalet, the patient continues the programme at a local CopenHeart certified training facility supervised by physiotherapists or as supervised home-based training. Supervised home-based exercise training has shown similar results to hospital-based exercise training ³¹ and has been confirmed in a Danish setting. ⁴⁸

The physical exercise training continues for 12 weeks, comprising three sessions weekly of 60 minutes, in total, 36 sessions. The training protocol consists of cardiovascular training and strength exercises to improve endurance and muscular strength.

An exercise session consists of 10 minutes warm up, 20 minutes bicycling, 20 minutes strength, and a 10 minutes stretching and cool-down period. Using the results from the cardiopulmonary exercise test performed prior to the initial training session, in combination with the Borg scale measuring subjective exhaustion, the aerobic exercise is performed with gradually increasing intensity throughout the exercise intervention period, corresponding to 13 to 17 on the Borg Scale and 50% to 80% of the maximum heart rate. The anaerobic resistance training is initiated at 30% to 40 % of 1 repetition maximum (RM) for the upper body, and 40% to 50 % of 1 RM for the lower body, with an increasing work load during the training sessions. To achieve cardiovascular adjustment and reduce the risk of malignant cardiac arrhythmias and ischemia, the training session

is initiated and terminated with a warm up and a cool down period to gradually increase and decrease training intensity and heart rate. This cardiovascular adjustment has been proven to reduce the risk of ischemia and arrhythmia in relation to exercise training. ^{49, 50} Training is predominantly performed in the upright position to reduce left ventricle preload (diastolic volume) and the risk of ischemia and arrhythmias due to heart failure. ⁵⁰

<u>Sustained moderate physical exercise daily.</u> Participants are instructed to perform moderate physical exercise at least 30 minutes a day during the intervention period, e.g., bicycling, walking, gardening, jogging or recreational sports. Participants are encouraged to continue with moderate physical exercise throughout life.

The psycho-educational component

 The aim of the psycho-educational intervention is to provide emotional support and improve coping skills and illness appraisal in order for the patient to respond appropriately to physical and psychological symptoms. Education and information about the disease prepare the patient for expected symptoms and sensations. Dialogue and shared reflection facilitate strategies for coping with symptoms and experiences associated with the condition, e.g., anxiety and fear. Cardiac care nurses with specific training will perform the psycho-educational intervention. Some of the most commonly reported concerns of patients treated for AF with RFA, such as recurrent AF, and concerns about being able to manage a working life are outlined in a guide which nurses use to address when and if relevant (see Table 1). Information given will also be based on national guidelines and standard treatment of patients treated for AF. The consultations focus on managing life after AF treated with RFA by establishing a joint approach to disease management and coping strategies, taking a holistic view. The psycho-educational intervention is inspired by R.R. Parse's Human Becoming Practice Methodologies' three dimensions. These are interpreted as: 1) discuss and give meaning to the past, present and future, 2) explore and discuss events and possibilities and

 3) move along with envisioned possibilities. According to this theory, there are three ways of changing health: creative imaging, that is to see, hear and feel what a situation might be like if lived in a different way, affirming personal patterns and value priorities, and shedding light on paradoxes, that is, looking at the incongruence in a situation and changing the view held of something. The nurse is present in the process through discussions, silent immersion and reflection. The human becoming practice methodology was chosen to apply a holistic patient approach, focusing on the coping and transformation process of the individual person. Furthermore, the method is already extensively used in the outpatient heart clinics at the heart centre at Rigshospitalet, such as for patients with inherited heart diseases and adults with congenital heart disease and is documented in the COPE-ICD trial. 45,52 The consultations take place in a quiet setting at the out-patient clinic and will last for approximately one hour. The nurse is able to facilitate contact with or seek advice from a physician if needed. The first consultation will be approximately one month after discharge, and then once every four to six weeks, with a total of four consultations. Consultations can be done by telephone, in accordance with the patient's wishes. The primary investigator will attend the consultations regularly to ensure protocol compliance.

Table1. Guide to the psycho-educative consultation.

Number visit	1 2 3 4
Ask the patient how he/she has been since the ablation.	
What has happened since last time he/she was here?	X X X X
Invite the patient to talk about his/her thoughts and questions.	X X X X
Ask about the time leading up to RFA	X
and his/her AF history. Experiences before, under and	

after the hospitalization and RFA.				
Talk about how it is to have had/ have AF and	X			
been through RFA, how that have affected the patient's				
life. Is there something he/she avoids or feel like				
he/she cannot do anymore? This in relation to family				
relations, friends and free time/ leisure activities.				
Make sure that the patient has started the physical	X X X			
training and talk about how it is going. Are training				
appointments booked?				
Talk about if the patient has changed his/her	X			
feelings or thoughts of the body and its functions.				
Talk about recognition of symptoms, how the patient	X X (X) (X)			
is feeling about recurrence of AF and opinions about				
future AF treatment. Worries about recurrence of AF,				
strategies of prevention.				
Information/recommendations in relation to the	XXXX			
subjects/problems discussed.				

Intervention deviations

 Both components of the intervention will be supervised regularly by the primary investigator to ensure protocol compliance. Modification of the allocated intervention due to surgery complications, rehospitalisation or emerging co-morbidities (e.g. recurrent AF, musculoskeletal problems) will be individually assessed, and the time of the primary outcome assessment at four

 months (described in section below) will be corrected in accordance with changes in the intervention.

Control group: treatment as usual

Patients in the control group will follow standard treatment for patients treated for AF with RFA including 3-6 months follow-up with a physician and a 12 months follow-up with a nurse. Furthermore, patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

Outcomes and data collection

Data will be collected to evaluate the effect and meaning of the intervention. The primary and secondary outcomes reflect the primary modifiable factors of the intervention. Since this is a complex intervention with two main components, an exercise component and a psycho-educational component, this is reflected in the primary and secondary outcome. The intervention has been tested in ICD patients (unpublished data in the COPE-ICD trail, available on request) and the intervention reflects well in the chosen measures that have found to be sensitive to changes based on the intervention. Since almost no evidence exists for rehabilitation programmes for patients treated for AF with RFA, data on a number of outcomes will be collected for exploratory analyses.

Primary outcome

Physical capacity measured by peak VO₂ according to a standardised protocol developed in accordance with guidelines ^{53, 54} 1, 4 and 12 months after randomisation (Table 1).

Physical capacity is measured by peak VO₂ using cardiopulmonary exercise testing (Ergo-Spiro CS-200, Schiller, Schweiz). This is chosen as a primary outcome since this is standard in exercise based

rehabilitation trails. The test is performed according to current guidelines for ergospirometry testing, and by ergometer bicycle, simultaneously monitoring heart-rhythm, blood pressure, electrocardiogram (ECG), and measuring gas-exchange during workload and in the following recovery period. The average test duration is 10-15 minutes including pre- and post- test phase without work load. Before each session calibration is performed to address changes in room temperature, humidity and air oxygen content. A standardised ramp-protocol is used with initial work load of 25 or 50 watts, increasing gradually by 12.5 watts every minute until peak exhaustion. Peak exhaustion is evaluated by a respiratory exchange ratio (RER) ≥ T 1.10 or subjective exhaustion of the patient. In order to equally encourage the patients, independent of the tester, a standardised guide has been developed. During the test period, clinical manifestations, ECG abnormalities (ST depression, ST elevation, Q- and T-wave changes, supraventricular or ventricular arrhythmias), blood pressure response, and several physiological variables are observed and documented. The test will be performed by either a cardiac care nurse or a physician. For safety reasons preset criteria for initiation and/or termination of the test have been defined.

Secondary outcome

 Self-rated mental health is measured by the SF-36 questionnaire, ⁵⁵⁻⁵⁷ mental component score, after 1 month, 4 months, 6 months and 12 months (Table 2).

Exploratory outcomes

Long-term follow-up: Register data regarding mortality, causes of death, hospitalisation/re-hospitalisation, emergency room visits, outpatient visits, health care costs, visits to the general practitioner, medication use, employment status and payment of welfare benefits (sick leave payment and early retirement pension) will be collected at 24 months to assess long term effects of

 the intervention (Table 2). Danish recording keeping for the data mentioned above functions well, with only a small percentage of lost data. ⁵⁸ Consequently the method is well suited as an outcome measure in small patient populations. Data will be extracted from the Danish National Patient Register, the Danish National Health Service Register, the Danish National Prescription Registry, the Danish National Causes of Death Register and records of transfer payments and labour market affiliation. ⁵⁹⁻⁶²

<u>6 minutes walking test</u>: The maximum walking distance (in meters) within 6 minutes is measured, using standardized instructions, ⁶³ while subjective exhaustion with regard to fatigue and dyspnoea using the Borg scale ⁶⁴ is registered.

<u>Sit and stand test</u>: The maximum amount of times a patient can sit and rise from a normal chair within 30 seconds is recorded. Subjective exhaustion is measured using the Borg exhaustion scale.⁶⁴ <u>Biochemical screening:</u> Potassium, sodium, haemoglobin and creatinine. 1 EDTA plasma heparin tube will be frozen (80°) for further analyses (pro-BNP, BNP, copeptin).

Other exploratory outcomes: AF recurrence, self-rated health and sleep-quality, retirement from work, use of health care services, mortality and cost efficiency (Table 2).

Table 2. Exploratory quantities subjected to post-hoc analysis

Quantity	Time of measure (months)	Type of quantity
Demographic		
Sex	BL	Binary (M/F)
Age, height, weight,	BL, 1,4,12	Continuous
Marital, occupational, educational status	BL	Categorical
Clinical		
NYHA- classification	BL, 1, 4, 12	Continuous
Previous heart disease, diabetes mellitus, kidney disease, pulmonary disease (COPD), co-morbidities, hypertension, dyslipidaemia, smoking	BL	Binary (Y/N)
Medication	BL, 1, 4, 12	Binary (Y/N)

AF specific data:		
Type of atrial fibrillation	BL	Categorical
Number of ablations	BL, 1,4,12	Binary (Y/N)
Atrial fibrillation symptoms	BL, 1,4,12	Continuous
CHA ₂ DS ₂ VASc score	BL, 1,4, 12	Continuous
The European Heart Rhythm Association symptom score	BL, 1,4, 12	Continuous
Paraclinical and imaging		
Blood work (Haemoglobin, infection-, kidney- liver and selected nutritional parameters, electrolytes, cholesterol- and thyroid status, ProBNP)	BL, 1, 4, 12	Continuous
Electrocardiogram	BL, 4, 12	Continuous
Physical function		
6 minute walking test ⁶³	BL, 1, 4, 12	Continuous
Sit to stand test ⁶⁵	1, 4, 12	Continuous
EVO recording	1,4,12	Categorical
Questionnaires		
Physical activity level 66	BL, 1, 4, 6, 12, 24	Binary (Y/N)
SF-36 ⁶⁷ HADS ⁶⁸ , QoL-CV ⁶⁹	BL, 1, 4, 6, 12, 24	Continuous
Emotions and Health ⁷⁰	BL	Continuous
Rehabilitation ⁷¹	12	Continuous
HeartQoL R ⁷² , EQ-5D ⁷³	BL, 6, 12, 24	Continuous
IPAQ ⁷⁴	1, 4, 12, 24	Continuous
MFI-20 ⁷⁵	BL, 1, 4, 12	Continuous
PSQI ⁷⁶	1, 6	Continuous
AFEQT ⁷⁷	BL, 1,4,12,24	Continuous

AFEQT, Atrial Fibrillation Effect on Quality-of-life; BL, baseline; CHA₂DS₂VASc, score for Atrial Fibrillation Stroke Risk; EQ-5D, EuroQoL; HADS, Hospital Anxiety and Depression Scale; HeartQoL R, Heart-Related Quality of Life; IPAQ, International Physical Activity Questionnaire; PSQI, Pittsburgh Sleep Quality Index; QoL-CV, Quality of Life - Cardiac Version; SF-36, Short Form 36.

Sample size calculation for the primary outcome

We are performing a randomised trial where the continuous variable VO_2 peak is the primary outcome. The control and the intervention group are independent and the ratio of patients in the

 intervention group to the patients in the control group is 1:1. A previous trial of patients with permanent AF found that VO₂ peak was normally distributed with a standard deviation of 3.8 ml/kg/min. As the CopenHeart_{RFA} trial has a more varied patient population who have all been treated for AF with RFA, which means that the majority of the patients will have sinus rhythm and the rest will have AF, the patients are not directly comparable with the patients in the previous trial, and we assume a standard deviation of 6 ml/kg/min to be more relevant. We consider a 0.5 standard deviation to be the minimal relevant difference, equivalent to 3 ml/kg/min. Therefore, if the true difference between the intervention group and control group is 3 ml/kg/min and the standard deviation is 6 ml/kg/min in the control group, 105 patients in the intervention group and 105 in the control group (a total of 210 patients) are needed to reject the null hypothesis, stating that the mean in the intervention group and the control group is the same, with a power of 95%. The type I error probability associated with this test of this null hypothesis is 5%.

Power calculation for the secondary outcome

The secondary outcome measure is the continuous variable mental component, SF 36. If the true difference between the intervention and control group is 7 points, and the standard deviation in the control group is 18 points, ²¹ we will be able to reject the null hypothesis that the population means of the experimental and control groups are equal with a probability of (power) 0.80. The type I error probability associated with this test of this null hypothesis is 5%.

Statistical analyses

Data will be pseudo-anonymised and analysed blinded by a trial-independent statistician using intention-to-treat analyses and a mixed model with repeated measures (MMRM) for continuous outcome measures.⁷⁸ Using MMRM ensures that missing data values (in case of the primary and

 secondary outcome) will not create bias as long as the values are missing at random. Two-sided tests are performed. The level of significance is set at 5%. With regard to multiplicity, gate keeping will be used to adjust the observed P values for primary and secondary outcomes.⁷⁹ Both unadjusted and adjusted P values will be reported.

For the primary and secondary outcomes, sensitivity analysis will be conducted to assess the potential impact of values missing not at random. For each intervention group (A and B) some quantities (imputing quantities) are computed to be used to impute missing values in a group (A or B) as follows. A comparison between group A and group B where missing values in group A are imputed using imputing quantities obtained from group B is referred to as a best case analysis. If missing values in group A are imputed using imputing quantities obtained from group B and vice versa the comparison is called a worst case analysis. The imputing quantities for the primary outcome are the group mean at T1 (X1-bar), the group mean at T4 (X4-bar), the group mean at T6 (X6-bar), the mean difference between the value measured at T4 and that measured at T1 (delta 1), and the mean difference between the value measured at T6 and that measured at T4 (delta-2). Table 3 explains how the quantities are used to impute missing values in a group (either the same group or the other intervention group). If the standard error (SE) of a parameter estimate calculated using imputed data is smaller than that of the corresponding parameter calculated using complete case data it is replaced by the latter SE when the P value is calculated (Table 3).

Long-term register-based outcomes will be analysed by two different models: non-negative count outcomes (e.g., number of contacts with hospital or number of visits to general practitioners) will be analysed by a Poisson model or a zero-inflated Poisson model if the number of zeros are large, and time-to-event data (e.g., cause-specific mortality and leaving the labor market) will be analysed

 with survival methods (Kaplan-Meier estimator and Cox regression model). Especially for socioeconomic outcomes, competing risks due to mortality will be considered if a large proportion of patients die during follow-up.

Exploratory data will be analysed using appropriate statistical methods according to the type of data (see Table 2). SPSS version 17.0 and SAS version 9.3 will be used.

Table 3. Statistical analysis

Observed pattern in group B at	Imputed value in group B at	Imputed value in group B at	Imputed value in group B at
1, 4, and 6 months	1 month	4 month	6 months
mis ^A , mis, mis	X1-bar ^B	X4-bar ^c	X6-bar ^D
mis, mis, Y3 ^E	Y3 – (delta1 ^F + delta2 ^G) ^H	Y3 – delta2	
mis, Y2, mis	Y2 – delta1		Y2 + delta2
Y1, mis, mis	•	Y1 + delta1	Y1 + delta1 + delta2
Y1, Y2, mis			Y2 + delta2
Y1, mis, Y3		(Y1 + delta1 + Y3 - delta2)/2	
mis, Y2, Y3	Y2 – delta1		

Table to explain the use of imputing quantities derived from observed values in a group (group A) to impute missing values in a group (group B). mis=missing value, X1=value at month 1, X4=value at month 4, X6=value at month 6.

^AThe value at 4 months is missing in group B, ^BMean of values observed in group A at time 1 month. ^CMean of values observed in group A at time 4 months. ^EObserved value in group B at time 6 months. ^EThe mean of difference between values observed at time 4 months and value observed at time 1 month in group A, ^EThe mean of difference between value observed at time 6 months and value observed at time 6 months in group A at time 6 months.

Interim analysis and Data Monitoring Safety Committee (DMSC)

The DMSC works independently from the funder and has no competing interests, and consists of two clinicians and a statistician. The committee is responsible for safeguarding the interests of trial participants, assessing the safety and efficacy of the interventions during the trial, and for monitoring the overall conduct of the clinical trial. In line with the terms of the Data Monitoring and Safety Committee charter, one formal interim analysis meeting will be held to review data relating to treatment efficacy, participant safety, and quality of trial conduct. The three members of the Data Monitoring and Safety Committee will meet when the 12 week follow-up data of about 50% of the trial participants have been obtained. Any serious adverse events will be registered as part of the data collection and the overall number of adverse events will be reported at the meeting.

Complementary studies

 The Surveysbased study. The post-discharge status of the patients treated with RFA will be explored through a national survey. The standardised questionnaires SF-36, ⁶⁷ Hospital Anxiety and Depression Scale (HADS), ⁶⁸ EuroQoL-EQ-5D, ^{69, 70} Heart Related Quality of Life (HeartQoL R), ⁷¹ International Physical Activity Questionnaire (IPAQ), ^{72, 73} and a questionnaire developed by the Danish Heart Foundation on the extent and quality of rehabilitation offered will be sent to patients having undergone treatment for RFA, 6-12 months post-discharge. The instruments are all validated and have good reliability and responsiveness. ^{68, 72, 74, 75, 80, 81} The data will provide knowledge on patients' self-rated health, quality of life, anxiety and depression, economic situation and the extent and quality of the rehabilitation currently received. Patients were identified through the National Patient Register ⁵⁹ and questionnaires were sent out to 608 patients. We anticipate 25% will decline participation, leaving an estimated 456 questionnaire respondents. Data will be anonymised and analysed by relevant descriptive statistical methods.

After the intervention, 10% of the participants from the intervention group will be strategically

Qualitative post intervention study

chosen for an interview in order to explore the experiences and processes behind the potential effects of the intervention. The qualitative study will explore patient experiences of participating in the CopenHeart_{RFA} programme and investigate which components were meaningful.

To achieve maximum variation, qualified interviewees are chosen on the basis of sex, AF type, and current heart rhythm. The analysis will be inspired by Ricoeur's theory of interpretation consisting of three levels: naive reading, structured analysis and critical interpretation and discussion. The results will be presented in themes based on patient experience and evaluation of the intervention. As an example we will look for explanations for the results in physical capacity and mental health as described by the patients. We are using mixed method to explore all aspects of the intervention, but the qualitative findings are seen as a complementary study to the primary randomised clinical trial.

Economic evaluation

An economic evaluation will be conducted alongside the trial to assess the cost-utility of cardiac rehabilitation compared with treatment as usual in the study population. The economic evaluation will compare the costs to quality adjusted life years (QALY) and take a societal perspective, as recommended nationally. QALYs and costs will be assessed at the end of the intervention, 6 months from randomisation, and later after 24 months from randomisation using register-based follow up.

QALYs will be estimated using the self-completed EQ-5D instrument, which is a standardised instrument assessing 5 dimensions of self-reported health status (mobility, self-care, usual activities, pain/discomfort and anxiety/depression). The estimated calculations will be valued using Danish preference weights. Information on costs will only include costs that are expected to differ

between the intervention and usual care group. Costs included in the evaluation are health costs associated with the rehabilitation programme, other health care costs (health care utilization besides rehabilitation), patient costs and costs of productivity losses. Information on costs will be collected by a mixture of activity-based costing, surveys, patient diary and by the use of public records. Results from the analysis will be reported as an incremental cost-effectiveness analysis (ICER). Sensitivity analysis will be conducted to express uncertainty in the estimates. The reporting of the ICER is presented using Bayesian methods, including bootstrapping and presented as cost-effectiveness acceptability curves.

Ethics

 The inclusion started December 2011 and is approved by the Regional Ethics Committee (number H-1-2011-135) and the Danish Data Protection Agency (no. 2007-58-0015). All eligible patients will be informed about the trial verbally and in writing, and the patients are included after informed consent has been obtained. All data will be handled confidentially and patients ensured anonymity. The trial complies with the latest Declaration of Helsinki and is registered at ClinicalTrials.gov (NCT01523145). An independent international safety committee monitors the trial. All serious and adverse events will be registered and reported in accordance with the safety charter.

Not providing rehabilitation to the control group can be ethically justified as current national and international guidelines give no specific recommendations on cardiac rehabilitation for patients treated for AF with RFA. The scope and quality of rehabilitation offered to this population is unknown, but suspicions are that generally no rehabilitation is offered in Denmark. The only way patients can get supervised exercise training is if they voluntarily enrol in a programme e.g. through non-profit organisations. The survey based complementary study, described previously in this paper, will hopefully provide more insight into this. In screening patients for participation, the

 enrolling nurse or physician will exclude those with a compelling rehabilitation need. Furthermore, patients are informed of the study design before giving their consent, and are free to decline participation.

Discussion

Due to the difference in the three patient groups that are included in the overall CopenHeart trial, patients treated for infective endocarditis, heart valve surgery and patients treated for AF with RFA, the intervention and outcome measures differ slightly, most importantly in the case of the psychoeducational intervention, which is longer for patients treated for infective endocarditis and heart valve surgery, because of the complexity of the diseases and the longer hospitalisation. Biochemical markers are similarly chosen differently to address the various co-morbidities of the three diseases and some disease specific questionnaires are chosen to capture the specific disease relevant issues.

To our knowledge no previous randomised clinical trials or observational studies have been conducted focusing on integrated cardiac rehabilitation for AF patients treated with RFA, so therefore it is not known what effect, if any, rehabilitation has on these patients. However, in the light of evidence from other groups of patients with heart disease a positive effect can be expected. ^{23, 89, 90}

This trial is different from previous trials because we apply a comprehensive rehabilitation intervention which consists of both a physical training component and a psycho-educational component. This combination is hypothesised to strengthen the patient both physically and mentally even if the patient has AF. Also we use mixed methods, which has its strengths in both using qualitative and quantitative research design.³⁴

 The secondary outcomes of self-rated mental health are by nature subjective and are likely to be biased. ⁹¹⁻⁹³ The patients answer questionnaires independently of the researchers. Data management is handled independently from the researchers that interpret data. All questionnaires are distributed electronically. All data entry is stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart Group.

Trial limitations include the fact that it is known from previous rehabilitation trials ³³ that patients in the control group have a tendency to do physical training due to the focus on the subject in the recruitment process. We will be aware of that when we recruit and not focus on giving extensive information about the exercise programme, or encourage patients to do physical training before knowing what group they are randomised to. Any difference between patients completing the intervention and those not completing (drop-outs) will be carefully discussed when evaluating the intervention, results and the suitability for implementation. The trial is designed with multiple statistical comparisons so results will be interpreted with caution. Further limitations of the trial and methods used are similar to those of other trials including physical exercise and physical testing, namely time-of-day, and day-to-day variation using exercise testing. ⁹⁴ To ensure standard testing of all physical exercise tests in the trial, standardised instructions for patients have been developed as

 described in the methods section. Conversely, the trial population will be representative for the true RFA population, meaning that some patients will have AF and some sinus rhythm while exercising and testing, and this will facilitate implementation of The CopenHeart_{RFA} trial rehabilitation programme in daily clinical practice. We are aware that patients treated with RFA are a highly selected group of patients with paroxysmal or persistent AF, and they are properly more likely to participate and complete a rehabilitation programme, compared to patients with e.g. permanent AF since patients with permanent AF often are older and suffer from co-morbidity ⁴. Therefore we do not expect to generalize the results to all AF patients.

The challenge with the set-up is that patients come from considerable distances and therefore some will decline participation. Also, due to the nature of rehabilitation trials, the patients have to meet at the hospital frequently, especially when randomised to the experimental intervention group.

The trial will, to our knowledge, be the largest trial conducted dealing with rehabilitation AF ablation recipients. If a positive effect of integrated rehabilitation is found, it may have an impact on the rehabilitation offered to patients treated for AF with RFA at international level. The trial is expected to identify an intervention which can improve health and quality of life for the patients, and subsequently reduce healthcare utilization and costs, as well as mortality.

Publication policy

The results of the trial will be published in appropriate peer-reviewed journals regardless of the outcome. Authorship will be determined according to the guidelines of the International Committee of Medical Journal Editors.

The outcome data will be analysed and published in the short term of 4 and 6 months and the long term of 24 months. Due to the comprehensiveness of the outcome measures further post hoc analysis will be published in separate papers. Economic and long term follow up will be reported as data becomes accessible.

Timetable

 Recruitment started in December 2011 in one heart centre and in July 2012 in the other participating heart centre and is planned to finish in December 2013. To achieve adequate participant enrolment, patients in doubt are contacted after hospital discharge by phone. The inclusion rate is closely monitored every week.

Acknowledgements and Funding

The rehabilitation team responsible for the intervention programme and trial administration is:

Rikke Brandt Jakobsen, Lone Siersbæk-Hansen, Lars Tang, Helena Tjalk Sørensen, Signe Gills,

Helle Tauby, Katrine Haase and Line Ellemann-Jensen.

The trial is partly funded by The Danish Council for Strategic Research, The Lundbeck Foundation, and The Heart Centre at Rigshospitalet. The funders have no influence on the trial design, the execution of the trial or the interpretation of data.

Authors' contributions

SKB and ADZ in collaboration with SSR, JLH, MP, LCT, PW and CG designed the trial. SSR in collaboration with SKB, ADZ, TBR, KLS, JHS, CG, LCT, SD, JLH and SD drafted the manuscript. All revised the manuscript critically. All authors have given their final approval of the version to be published.

Competing interests

None.

- 1. Stewart S, Hart CL, Hole DJ, et al. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. *Heart* 2001; November 01;86(5):516-21.
- 2. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *JAMA* 2001; May 9;285(18):2370-5.
- 3. Ruigomez A, Johansson S, Wallander MA, et al. Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK. *BMC Cardiovasc Disord* 2005; Jul 11;5:20.
- 4. European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery, Camm AJ, Kirchhof P, Lip GY, Schotten U, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). *Europace* 2010; Oct;12(10):1360-420.

- 5. Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, et al. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atral fibrillation (Review) 2009;The Cochrane Libraly(1).
- 6. Kirchhof P, Auricchio A, Bax J, et al. Outcome parameters for trials in atrial fibrillation: recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork and the European Heart Rhythm Association. *Europace* 2007; Nov;9(11):1006-23.
- 7. Stewart S, Hart CL, Hole DJ, et al. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. *Am J Med* 2002; Oct 1;113(5):359-64.
- 8. Camm J. Antiarrhythmic drugs for the maintenance of sinus rhythm: Risks and benefits.

 Int J Cardiol 2011; Jun 25;.
- 9. Heeringa J, van der Kuip DA, Hofman A, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. *Eur Heart J* 2006; Apr;27(8):949-53.

- 10. Naccarelli GV, Varker H, Lin J, et al. Increasing prevalence of atrial fibrillation and flutter in the United States. *Am J Cardiol* 2009; Dec 1;104(11):1534-9.
- 11. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. *Circulation* 2004; Aug 31;110(9):1042-6.
- 12. Ericson L, Bergfeldt L, Bjorholt I. Atrial fibrillation: the cost of illness in Sweden. *Eur J Health Econ* 2011; Oct;12(5):479-87.
- 13. Wolowacz SE, Samuel M, Brennan VK, et al. The cost of illness of atrial fibrillation: a systematic review of the recent literature. *Europace* 2011; Oct;13(10):1375-85.
- 14. Brenyo AJ, Aktas MK. Non-pharmacologic management of atrial fibrillation. *Am J Cardiol* 2011; Jul 15;108(2):317-25.
- 15. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. *Circ Arrhythm Electrophysiol* 2009; Aug;2(4):349-61.

- 17. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: a study based on interviews with 100 patients seeking hospital assistance. *BMC Cardiovasc Disord* 2004; Aug 3;4:13.
- 18. Hegbom F, Sire S, Heldal M, et al. Short-term exercise training in patients with chronic atrial fibrillation: effects on exercise capacity, AV conduction, and quality of life. *J*Cardiopulm Rehabil 2006; Jan-Feb;26(1):24-9.
- 19. Hegbom F, Stavem K, Sire S, et al. Effects of short-term exercise training on symptoms and quality of life in patients with chronic atrial fibrillation. *Int J Cardiol* 2007; Mar 2;116(1):86-92.
- 20. Osbak PS, Mourier M, Kjaer A, et al. A randomized study of the effects of exercise training on patients with atrial fibrillation. *Am Heart J* 2011; Dec;162(6):1080-7.

- 21. Dorian P, Jung W, Newman D, et al. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: implications for the assessment of investigational therapy. *J Am Coll Cardiol* 2000; Oct;36(4):1303-9.
- 22. McCabe PJ, Schumacher K, Barnason SA. Living with atrial fibrillation: a qualitative study. *J Cardiovasc Nurs* 2011; Jul-Aug;26(4):336-44.
- 23. Piepoli MF, Corra U, Benzer W, et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2010; Feb;17(1):1-17.
- 24. Piepoli MF, Corra U, Adamopoulos S, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery. *Eur J Prev Cardiol* 2012; Jun 20;.
- 25. Heran BS, Chen JM, Ebrahim S, et al. Exercise-based cardiac rehabilitation for coronary heart disease. *Cochrane Database Syst Rev* 2011; Jul 6;(7)(7):CD001800.

- 26. Davies EJ, Moxham T, Rees K, et al. Exercise based rehabilitation for heart failure.
- Cochrane Database Syst Rev 2010; Apr 14;(4)(4):CD003331.
- 27. Shepherd CW, While AE. Cardiac rehabilitation and quality of life: a systematic review.
- Int J Nurs Stud 2012; Jun;49(6):755-71.

- 28. Sire S. Physical training and occupational rehabilitation after aortic valve replacement.
- Eur Heart J 1987; Nov;8(11):1215-20.
- 29. Kitzman DW, Brubaker PH, Morgan TM, et al. Exercise training in older patients with
- heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial.
- Circ Heart Fail 2010; Nov 1;3(6):659-67.
- 30. Clark AM, Catto S, Bowman G, et al. Design matters in secondary prevention:
- individualization and supervised exercise improves the effectiveness of cardiac
- rehabilitation. Eur J Cardiovasc Prev Rehabil 2011; Oct;18(5):761-9.

- 31. Clark AM, Haykowsky M, Kryworuchko J, et al. A meta-analysis of randomized control trials of home-based secondary prevention programs for coronary artery disease. *Eur J Cardiovasc Prev Rehabil* 2010; Jun;17(3):261-70.
- 32. Whalley B, Rees K, Davies P, et al. Psychological interventions for coronary heart disease. *Cochrane Database Syst Rev* 2011; Aug 10;(8)(8):CD002902.
- 33. Berg SK. *Comprehensive rehabilitation for patients with ICD: PhD dissertation.*[Aarhus]: Faculty of Health Sciences, Aarhus University; 2011.
- 34. Creswell JW, Plano Clark VL. *Designing and conducting mixed methods research.*Thousand Oaks, Calif.: SAGE Publications; 2007.
- 35. O'Cathain A, Murphy E, Nicholl J. Three techniques for integrating data in mixed methods studies. *BMJ* 2010; Sep 17;341:c4587.
- 36. Carter RE, Lubinsky J, Domholdt E. *Rehabilitation research: principles and applications.* 4. ed. ed. St. Louis, Mo.: Elsevier Saunders; 2011.

- 37. Law MC, MacDermid J. *Evidence-based rehabilitation: A guide to practice.* 2. edition ed. Thorofare, NJ: Slack; 2008.
- 38. Clark N, Boyd NR, Goodman RM, et al. *Evaluation of health promotion, health education, and disease prevention programs.* 3. ed. ed. Boston: McGraw-Hill; 2004.
- 39. Hammell KW, Carpenter C. *Qualitative research in evidence-based rehabilitation*. Edinburgh: Churchill Livingstone; 2004.
- 40. Lewin S, Glenton C, Oxman AD. Use of qualitative methods alongside randomised controlled trials of complex healthcare interventions: methodological study. *BMJ* 2009; Sep 10;339:b3496.
- 41. Neubeck L, Freedman SB, Clark AM, et al. Participating in cardiac rehabilitation: a systematic review and meta-synthesis of qualitative data. *Eur J Prev Cardiol* 2012; Jun;19(3):494-503.

- 42. Chan A, Tetzlaff J, Altman D, et al. The SPIRIT initiative: Defining Standard Protocol Items for Randomized Trials [conference abstract]. *German J Evid Quality Health Care* (Suppl) 2008;(102:S27).
- 43. Boutron I, Moher D, Altman DG, et al. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. *Ann Intern Med* 2008; Feb 19;148(4):295-309.
- 44. Mertens DJ, Kavanagh T. Exercise training for patients with chronic atrial fibrillation. *J Cardiopulm Rehabil* 1996; May-Jun;16(3):193-6.
- 45. Berg SK, Svendsen JH, Zwisler AD, et al. COPE-ICD: a randomised clinical trial studying the effects and meaning of a comprehensive rehabilitation programme for ICD recipients -design, intervention and population. *BMC Cardiovasc Disord* 2011; Jun 17;11:33.
- 46. Zwisler A, Madsen M, Konstantin Nissen N. *Hjerterehabilitering: en medicinsk* teknologivurdering: evidens fra litteraturen og DANREHAB-forsøget. http://www.si-nummer.nd/

folkesundhed.dk/upload/hjerterehabilitering_001.pdf. Version: 1,0 ed. Kbh.:

Sundhedsstyrelsen; 2006.

 47. Anbefalinger for fysisk aktivitet. Available at:

http://www.sst.dk/Sundhed%20og%20forebyggelse/Fysisk%20aktivitet/Anbefalinger%20til

%20voksne.aspx. Accessed 09/13, 2011.

- 48. Oerkild B, Frederiksen M, Hansen JF, et al. Home-based cardiac rehabilitation is as effective as centre-based cardiac rehabilitation among elderly with coronary heart disease: results from a randomised clinical trial. *Age Ageing* 2011; Jan;40(1):78-85.
- 49. Fitchet A, Doherty PJ, Bundy C, et al. Comprehensive cardiac rehabilitation programme for implantable cardioverter-defibrillator patients: a randomised controlled trial. Heart 2003; Feb;89(2):155-60.
- 50. Lampman RM, Knight BP. Prescribing exercise training for patients with defibrillators.

 Am J Phys Med Rehabil 2000; May-Jun;79(3):292-7.

- 51. Parse RR. *The human becoming school of thought: a perspective for nurses and other health professionals.* Thousand Oaks, Calif.: Sage; 1998.
- 52. Berg SK, Pedersen BD, Svendsen JH, et al. COPE-ICD: Patient experience of participation in an ICD specific rehabilitation programme. *Eur J Cardiovasc Nurs* 2011; Apr 22:.
- 53. Mezzani A, Agostoni P, Cohen-Solal A, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2009; Jun;16(3):249-67.
- 54. Gibbons L, Blair SN, Kohl HW, et al. The safety of maximal exercise testing.

 Circulation 1989; Oct;80(4):846-52.
- 55. Bjørner JB, Trab Damsgaard M, Watt T, et al. *Dansk manual til SF-36: et spørgeskema om helbredsstatus.* [S.I.]: Lif; 1997.

Conceptual framework and item selection. *Med Care* 1992; Jun;30(6):473-83.

- 57. McHorney CA, Ware JE,Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. *Med Care* 1993; Mar;31(3):247-63.
- 58. Andersen TF, Madsen M, Jorgensen J, et al. The Danish National Hospital Register. A valuable source of data for modern health sciences. *Dan Med Bull* 1999; Jun;46(3):263-8.
- 59. Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. *Scand J Public Health* 2011; Jul;39(7 Suppl):30-3.
- 60. Andersen JS, Olivarius Nde F, Krasnik A. The Danish National Health Service Register. Scand J Public Health 2011; Jul;39(7 Suppl):34-7.
- 61. Kildemoes HW, Sorensen HT, Hallas J. The Danish National Prescription Registry.

 Scand J Public Health 2011; Jul;39(7 Suppl):38-41.

- 62. Helweg-Larsen K. The Danish Register of Causes of Death. *Scand J Public Health* 2011; Jul;39(7 Suppl):26-9.
- 63. ATS Committee on Proficiency Standards for Clinical Pulmonary Function

 Laboratories. ATS statement: guidelines for the six-minute walk test. *Am J Respir Crit*Care Med 2002; Jul 1;166(1):111-7.
- 64. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc* 1982;14(5):377-81.
- 65. Rikli RE, Jones CJ. Senior fitness test manual. Champaign, Ill.: Human Kinetics; 2001.
- 66. Ekholm O, Hesse U, Davidsen M, et al. The study design and characteristics of the Danish national health interview surveys. *Scand J Public Health* 2009; Sep;37(7):758-65.
- 67. Ware JE, Kosinski M, Gandek B. SF-36 Health Survey.: Manual and Interpretation guide 2005; The Health Institute, New England Medical Center, Boston, Massachussetts.
- 68. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. *Acta Psychiatr Scand* 1983; Jun;67(6):361-70.

69. Ferrans CE, Powers MJ. Quality of life index: development and psychometric properties. *ANS Adv Nurs Sci* 1985; Oct;8(1):15-24.

- 70. Bowman G, Watson R, Trotman-Beasty A. Primary emotions in patients after myocardial infarction. *J Adv Nurs* 2006; Mar;53(6):636-45.
- 71. Bøgelund M, Mønsted C. *Hjertepatienters brug og oplevelse af rehabilitering 2010.*Kbh.: Hjerteforeningen; 2010.
- 72. Oldridge N, Saner H, McGee HM, et al. The Euro Cardio-QoL Project. An international study to develop a core heart disease health-related quality of life questionnaire, the HeartQoL. *Eur J Cardiovasc Prev Rehabil* 2005; Apr;12(2):87-94.
- 73. Drummond MF. *Methods for the economic evaluation of health care programmes.* 3rd edition ed. Oxford: Oxford University Press; 2005.
- 74. Hallal PC, Victora CG. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). *Med Sci Sports Exerc* 2004; Mar;36(3):556.

- 75. Schwartz JE, Jandorf L, Krupp LB. The measurement of fatigue: a new instrument. *J Psychosom Res* 1993; Oct;37(7):753-62.
- 76. Buysse DJ, Reynolds CF,3rd, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res* 1989; May;28(2):193-213.
- 77. Spertus J, Dorian P, Bubien R, et al. Development and validation of the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT) Questionnaire in patients with atrial fibrillation. *Circ Arrhythm Electrophysiol* 2011; Feb;4(1):15-25.
- 78. DeSouza CM, Legedza AT, Sankoh AJ. An overview of practical approaches for handling missing data in clinical trials. *J Biopharm Stat* 2009; Nov;19(6):1055-73.
- 79. Dmitrienko A, Wiens BL, Tamhane AC, et al. Tree-structured gatekeeping tests in clinical trials with hierarchically ordered multiple objectives. *Stat Med* 2007; May 30;26(12):2465-78.

- 81. Schweikert B, Hahmann H, Leidl R. Validation of the EuroQol questionnaire in cardiac rehabilitation. *Heart* 2006; Jan;92(1):62-7.
- 82. Polit DF, Beck CT. Essentials of nursing research: methods, appraisal, and utilization.
- 6. edition ed. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2006.
- 83. Ricoeur P. Interpretation theory: discourse and the surplus of meaning. 5. print. ed.

Fort Worth, Tex.: Texas Christian University Press; 1976.

- 84. EuroQol--a new facility for the measurement of health-related quality of life. The EuroQol Group. *Health Policy* 1990; Dec;16(3):199-208.
- 85. Brooks R. EuroQol: the current state of play. Health Policy 1996; Jul;37(1):53-72.
- 86. Wittrup-Jensen KU, Lauridsen J, Gudex C, et al. Generation of a Danish TTO value set for EQ-5D health states. *Scand J Public Health* 2009; Jul;37(5):459-66.

- 87. Fox-Rushby JA, Cairns J. *Economic evaluation*. Maidenhead: Open University Press; 2005.
- 88. Fenwick E, Claxton K, Sculpher M. Representing uncertainty: the role of cost-effectiveness acceptability curves. *Health Econ* 2001; Dec;10(8):779-87.
- 89. Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. *Am J Med* 2004; May 15;116(10):682-92.
- 90. Rees K, Taylor RS, Singh S, et al. Exercise based rehabilitation for heart failure.

 Cochrane Database Syst Rev 2004;(3)(3):CD003331.
- 91. Wood L, Egger M, Gluud LL, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ* 2008; Mar 15;336(7644):601-5.
- 92. Gluud L. Bias in clinical intervention research. *Am J Epidemiol* 2006;163(6):493-501.

 94. Rowland T, Unnithan V, Barker P, et al. Time-of-day effect on cardiac responses to progressive exercise. *Chronobiol Int* 2011; Aug;28(7):611-6.

The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeart $_{RFA}$ trial protocol

Signe S. Risom, RN, MSc^{1,§}, Ann-Dorthe Zwisler, MD, Ph.D.^{1,2}, Trine B. Rasmussen RN, MScN^{1,4}, Kirstine Lærum Sibilitz, MD¹, Jesper Hastrup Svendsen, MD, DMSc, FESC ^{1,3}, Christian Gluud, MD, DMSc⁵, Jane Lindschou Hansen, MSc⁵, Per Winkel, MD, DMSc⁵, Lau Caspar Thygesen, MSc, Ph.D.², Merja Perhonen MD, Ph.D.⁶, Jim Hansen, MD⁴, Sandra B. Dunbar, RN, DSN, FAAN, FAHA⁷, Selina Kikkenborg Berg, RN, MScN, Ph.D. FESC ^{1,4}.

Hospital, Denmark

Atlanta, Georgia, United States

§Corresponding author:

Signe Stelling Risom, RN, MSc,

The Heart Centre, Department of Cardiology,

Copenhagen University Hospital,

Blegdamsvej 9, DK-2100 Copenhagen.

¹ Rigshospitalet, The Heart Centre, Copenhagen University Hospital, Denmark

² National Institute of Public Health, University of Southern Denmark

³ Gentofte Hospital, Department of Cardiology, Denmark

⁴ The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC)

⁵ Copenhagen Trial Unit, Centre for Clinical Intervention Research. Copenhagen University

⁶ CorusFit, Heikinkatu 3 B, 40100 Jyväskylä, Finland

⁷Nell Hodgson Woodruff School of Nursing, Emory University

Signe.stelling.risom@rh.regionh.dk

Word count:

Abstract: 300, Body: 7.035 6.833

Keywords: atrial fibrillation, cardiac rehabilitation, physical exercise, psycho-education

Article summary

Article focus

- The CopenHeart_{RFA} trial is a randomised clinical trial investigating the effects of comprehensive cardiac rehabilitation versus usual care for patients treated for atrial fibrillation (AF) with ablation.
- The hypothesis is that comprehensive cardiac rehabilitation improves physical capacity and mental health.
- Using a mixed methods approach, a broad range of outcome measures are collected to evaluate the intervention.

Key messages

- AF affects 1-2% of the population. Patients with AF experience diminished quality of life and are afraid to do physical exercise after treatment with ablation.
- No studies exploring the effects of rehabilitation of patients treated for AF with ablation have been published.
- This trial is the first to examine physical functioning and to test a comprehensive rehabilitation programme on a large population of patients treated for AF with ablation.

CopenHeart_{RFA} will provide much needed evidence and insight on the post-discharge status and rehabilitation needs of patients treated for AF with ablation.

Strengths and limitations of this study

- The study has been designed to meet the criteria for high quality in non-pharmacological randomised clinical trials with central randomisation, multi-centre participation, blinded assessment and analysis.
- We are aware of the day to day variation that can appear when carrying out ergospirometry, in testing and that the performance can depend on the individual tester. Accordingly, we will interpret the findings conservatively.

Abstract

Introduction

Atrial fibrillation affects almost 2% of the population in the Western world. To preserve sinus rhythm, ablation is undertaken in symptomatic patients. Observational studies show that patients with atrial fibrillation often report low quality of life and are less prone to be physically active due to fear of triggering fibrillation. Small trials indicates that exercise training has a positive effect on exercise capacity and mental health, and both patients with recurrent atrial fibrillation and in sinus rhythm may benefit from rehabilitation in managing life after ablation. No randomised trials have been published on cardiac rehabilitation for atrial fibrillation patients treated with ablation that includes exercise and psycho-educational components.

Aim

To test the effects of an integrated cardiac rehabilitation programme versus treatment as usual for patients with atrial fibrillation treated with ablation.

Methods and analysis design

The trial is a multicentre parallel arm design with 1:1 randomisation to the intervention and control group with blinded outcome assessment. 210 patients treated for atrial fibrillation with radiofrequency ablation will be included. The intervention consists of a rehabilitation programme including four psycho-educative consultations with a specially trained nurse and 12 weeks of individualised exercise training, plus the standard medical follow-up. Patients in the control group will receive the standard medical follow-up. The primary outcome measure is exercise capacity measured by VO₂ peak. The secondary outcome measure is self-rated mental health measured by the Short Form 36 questionnaire. Post intervention, qualitative interviews will be conducted in 10% of the intervention group.

Ethics and dissemination

The protocol is approved by the regional research ethics committee (number, H-1-2011-135), the Danish Data Protection Agency (reg. nr. 2007-58-0015) and follows the latest version of the Declaration of Helsinki. The results will be published in peer-reviewed journals and may possibly impact on rehabilitation guidelines.

Registration: Clinicaltrials.gov identifier: NCT01523145

Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia and affects 2% of the population in the Western world. 1-3 Typical symptoms are palpitations, dyspnoea, fatigue, dizziness, and syncope. Patients' symptoms and the length of periods in AF are highly variable both for the individual and between patients. 4-6 AF is associated with increased risk of stroke, other thromboembolic events, and heart failure. 6-8 Hospitalisations due to AF account for one third of all admissions for cardiac arrhythmias. As the prevalence of AF increases with age, the incidence of AF is increasing due to an ageing population. After 40 years of age, the lifetime risk of developing AF is 25%. The annual cost of AF is high in comparison with other diseases. Therefore, AF has become an economic burden and this will continue to increase over the coming decades. Thus, AF has now become a health, social and economic challenge in the Western world.

Primary treatment goals for individuals with AF are re-establishing and maintaining sinus rhythm, decreasing AF symptoms, and prevention of complications. In accordance with current national and international guidelines, radiofrequency ablation (RFA) is often undertaken in symptomatic patients. RFA is an invasive treatment, intended to cure AF and has a success rate of 77% versus 52% for antiarrhythmic medication. In Denmark, around 600 RFAs are conducted annually at two heart centres.

A cohort study of 655 patients from a randomised trial found that AF symptoms are a negative predictor for patients' physical capacity, ¹⁶ and in the presence of AF, patients do fewer physical activities. ¹⁷ Smaller observational studies and a randomised trial investigating the effect of exercise

training on AF patients found increased exercise capacity and a decreased resting heart rate after training. 18-20

Previous studies show significantly impaired quality of life in patients with AF compared to healthy controls measured by the questionnaire Short Form 36 (SF-36). The general health component (± standard deviation) was 54±21 in AF patients compared to 78±17 in healthy controls. A qualitative study demonstrated that educational help after AF treatment is lacking, even though symptoms of distress and lack of self-management regarding symptoms like palpitations, dyspnoea, and fatigue are common. Furthermore, small observational studies indicate a positive effect of exercise training on patients with AF in terms of mental health and physical activity (15% increase of VO₂). Note that the particular studies in larger randomised clinical trials.

Secondary prevention initiatives including cardiac rehabilitation are recommended by the European Society of Cardiology (ESC).²³ Studies exploring the effects of rehabilitation for patients treated for AF are lacking. As there is no evidence of its efficacy, rehabilitation is not systematically provided in Denmark and most often patients treated for AF with RFA are not offered any rehabilitation at all. The evidence for general cardiac rehabilitation is strong, but it is found that it is poorly implemented and only selected patient groups are offered full comprehensive cardiac rehabilitation programmes, even though ESC recommends such programmes.²⁴ Research has mainly been conducted within patients with coronary heart disease and heart failure, where rehabilitation has been proven to reduce hospital re-admissions and mortality in a cost-effective way, ^{25, 26} as well as improve quality of life.²⁷ More specifically, studies on the effect of exercise training have demonstrated an increase in exercise capacity of up to 38% in patients after valve replacement surgery. ²⁸ and an increase in peak VO₂ of 2.3±2.2 (SD) ml/kg per minute in the intervention group

in quality of life in older patients with heart failure.²⁹ Although evidence of its efficacy is strong, general cardiac rehabilitation is still poorly implemented and often only on selected populations thus the development of full comprehensive preventive programmes, according to the ESC recommendations is warranted.²⁴ Studies exploring the effects rehabilitation provided is presumably often suboptimal or totally lacking. Lessons, however, might be learned from rehabilitation studies in patients with related cardiac conditions. The positive effects of cardiac rehabilitation have been well documented, particularly in patients with coronary heart disease and heart failure, where rehabilitation has been proven to reduce hospital readmissions and mortality in a cost effective way; 25, 26 as well as improve quality of life. 27 More specifically, studies on the effect of exercise training have demonstrated an increase in exercise capacity of up to 38% in patients after valve replacement surgery 28 and an increase in peak VO₂ of 2.3±2.2 (SD) ml/kg per minute in the intervention group compared with =0.3±2.1 (SD) ml/kg per minute in the control group, as well as a significant change in quality of life in older patients with heart failure.²⁹-Traditional cardiac rehabilitation has focused on physical training and standardized programmes, but studies now indicate that individualized content and supervised exercise components can are key design characteristics for improving outcomes.³⁰ In addition to exercise training, there is evidence to support interventions that include patient education, which in patients with coronary heart disease has been shown to improve health related quality of life and decrease healthcare costs, ³¹ and psychological support, which has been shown to improve psychological symptoms in patients with coronary heart disease, such as depression and anxiety.³² Evidence on the efficacy of comprehensive interventions for patients treated for AF, however, is needed.

compared with -0.3±2.1 (SD) ml/kg per minute in the control group, as well as a significant change

BMJ Open: first published as 10.1136/bmjopen-2012-002377 on 20 February 2013. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Interventions designed to cover both physical and psychological problems may provide the best method for optimising functioning and enhancing quality of life. ³³ We have not been able to identify randomised trials or observational studies in patients who have undergone RFA for AF that offer both psycho-educational intervention and physical training. Therefore, the CopenHeart_{RFA} trial was undertaken with the aim of testing a rehabilitation programme consisting of physical exercise and a psycho-educational intervention versus treatment as usual for RFA treated AF patients.

Methods

Design

Major parts of the method section and trial design in this paper are similar to two other randomised clinical trials, CopenHeart_{VR} and CopenHeart_{IE}, and therefore sections from this paper will be copied in these trial protocols (Sibilitz KL et al. *Effect of integrated cardiac rehabilitation versus treatment as usual for patients with isolated heart valve surgery: The randomised CopenHeart valvular trial protocol*. drafted October 2012; and Rasmussen TB et al. *A randomised clinical trial of comprehensive cardiac rehabilitation versus usual care for patients treated for infective endocarditis – the CopenHeart_{IE}. Accepted for publication, BMJ Open, October 2012).*

The CopenHeart_{RFA} trial is a multi-centre, multidisciplinary randomised clinical superiority trial.

Secondary, qualitative data are also collected and the two methods are integrated by applying a mixed method embedded experimental design (Figure 1). 34, 35 Quantitative methods are applied, with specified quantitative pre- and post-measures to evaluate the effect of the experimental intervention. Alongside quantitative measurements, qualitative data will be collected. The premise of mixed methods research is that the use of qualitative and quantitative approaches in combination

Formatted: Highlight

Formatted: Highlight

provides a better understanding of the research problems than either approach alone, because different types of questions require different types of data and that mixed methods research provides strengths that offset the weaknesses of both qualitative and quantitative research.³⁴ The methods are integrated by applying a mixed method embedded experimental design and include qualitative data to develop the intervention and to examine the process of the intervention and the results of the trial (see Figure 1). 34, 35 The rationale for this approach is that the quantitative findings provide a general understanding of the research problem through statistical results while qualitative findings refine and explain the results by exploring participants' views in greater detail and will be presented by themes of patient thoughts or concerns about the intervention. Evaluation using qualitative research methods is increasingly promoted in evidence-based rehabilitation.³⁶⁻³⁹ Qualitative research alongside randomised controlled trials can contribute in several ways to the development and evaluation of complex healthcare interventions and may be particularly useful in evaluating interventions that involve social and behavioural processes that are difficult to explore or capture using quantitative methods alone. 40 As patient participation is paramount for the efficacy of the rehabilitation,⁴¹ we find it highly valuable to include the patients' perspective in the development and evaluation of the intervention. This paper presents the study protocol for the CopenHeart_{RFA} randomised clinical trial. The complementary studies, including the qualitative part of the trial are briefly described in a separate section.

The trial is described in accordance with the current SPIRIT guidelines (Standard Protocol Items:

Recommendations for Interventional Trials). 42 Results will be reported following the CONSORT

(CONsolidated Standards Of Reporting Trials) guidelines for non-pharmacological interventions. 43

Formatted: Highlight

Formatted: Not Highlight

Formatted: Font color: Red, Not Highlight

BMJ Open: first published as 10.1136/bmjopen-2012-002377 on 20 February 2013. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Formatted: Highlight

Trial hypotheses

The primary hypothesis is that the rehabilitation program increases physical capacity among AF patients treated with RFA after 4 months measured by VO₂ peak, which is expected to be 20% more than in the control group receiving standard treatment alone. The estimate of 20% is based on findings from pilot studies including patients with permanent AF which found an increase of 15% in VO₂ peak. We therefore expect a VO₂ peak in the intervention group of 18 ml/kg/min and of 15 ml/kg/min in the control group, corresponding to a difference of 20% (3 ml/kg/min).⁴⁴

The secondary hypothesis is that the rehabilitation programme increases quality of life and self-rated mental health among AF patients treated with RFA after 6 months by 3 points on the Medical Outcome Study Short Form 36 (SF-36) questionnaire mental component scale, compared with control participants receiving standard treatment.¹⁹

Exploratory hypotheses are that the experimental intervention decreases AF recurrence; improves self-rated health and sleep-quality; reduces early retirement from work, use of health care services and mortality, and is cost efficient.

Trial participants

Consecutive patients hospitalised for AF and treated with RFA at two heart centres in Denmark (Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital) will be screened for inclusion and approached for trial participation (Figure 2). Regardless of RFA outcome, both patients with recurrent AF and patients in sinus rhythm after the ablation will be included in the trial. Patients 18 years of age or older, Danish speaking, and providing verbal and written informed consent will be eligible for participation. Patients unable to understand trial instructions, pregnant or

breastfeeding, with reduced ability to follow the planned programme due to other physical illness, who prior to RFA have been doing intense physical exercise or sports at competitive level several times a week, or do not wish to participate, and patients already enrolled in clinical trials that prohibit participation in additional trials are excluded.

Trial procedure, randomisation, and follow-up

Patients will be approached for participation during their hospitalisation for RFA. Information will be given by a nurse or physician from the research team, who will obtain informed written consent after the RFA procedure. A brief oral introduction is initially given together with written information describing the trial and implications for the patient in detail. The patient is given ample time to read the information and if necessary involve a relative in the decision making. The enrolling nurse or physician will return after the RFA or call the patient to answer any questions the patient or their relative might have. The patient should subsequently be able to provide informed consent or reject participation. After the informed consent form is signed, baseline data will be collected including the baseline questionnaire package, demographic variables, and clinical characteristics (Table 2). Then the Copenhagen Trial Unit (http://www.ctu.dk/) is contacted for central randomisation of the participant. Randomisation is conducted according to a computergenerated allocation sequence with a varying block size kept unknown to the investigators. Participants are randomised 1:1 to the experimental intervention group or the control group and stratified according to sex and type of AF (persistent or paroxysmal). Thus, neither investigators nor patients or relatives can influence to which group the patients are allocated. For both groups, the follow-up assessment will take place at 1 month, 4 months, 6 months, and 12 months postdischarge, and a register-based follow-up assessment will be conducted at 24 months (Table 2). In

case of complications to the RFA after enrolment in the trial, the patients will be handled individually (e.g., arrhythmia or inguinal haematoma).

The patients answer questionnaires independently of the researchers, and before randomisation. All questionnaires are distributed electronically, thus data management is handled independently from the researchers that interpret data. All data are stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart group.

Personal information about potential and enrolled patients will be collected electronically and shared in a database only accessible to those within the project group responsible for patient recruitment, in order to protect confidentiality before, during and after the trial.

Due to the nature of rehabilitation, the intervention group is not blinded for the patients or the investigators, but the outcome assessment of the primary outcome, the statistical analyses, and drawing of conclusions will be conducted blinded for the allocated intervention group.

The experimental intervention group

Patients in the experimental intervention group will follow the integrated cardiac rehabilitation programme consisting of a psycho-educational component and an exercise training component alongside standard treatment (described below). The patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

The physical exercise training component

The intervention has been developed and partly tested in a clinical rehabilitation trial, the COPE-ICD trial ⁴⁵, which included patients with an implantable cardioverter defibrillator. We here observed a significant impact of the intervention on peak VO₂, physical capacity and self-assessed mental health. The intervention has been modified for patients treated for atrial fibrillation with

ablation as described below. The CopenHeart physical exercise intervention meets European ²⁴ and Danish guidelines ⁴⁶ for physical exercise in patients with heart disease, and complies with The National Danish Board of Health recommendations for physical exercise in daily living for heart patients. ⁴⁷

The physical exercise starts one month after the ablation and after the first ergospirometry test and comprises the following three elements:

Individually planned physical exercise by specially trained physiotherapists. Integrating detailed information concerning AF symptoms and RFA, co-morbidity, hospitalisation, activities of daily living, and level of physical activity prior to RFA, a specially trained physiotherapist conducts a patient telephone consultation up to 30 minutes. The consultation is based on initial testing of the patient including a cardiopulmonary exercise test, a 6 minutes walking test and a 'sit and stand' test, described in the outcome section. For all patients, a rehabilitation plan is prepared as an individual training diary, and all patients are instructed in the use of a heart rate monitor (Polar Watch provided by Rigshospitalet). The heart rate monitor and diary is essential to ensure CopenHeart training protocol compliance and they are returned for data collection at the end of the exercise training intervention.

Intensive exercise training programme. Physical exercise is initiated at Rigshospitalet four weeks after RFA to ensure optimal rest and healing. Using wireless electrodes integrated into t-shirts (Corus-Fit, CardioCardio and Corus Exercise Assistant, CEA, version 2.0.16, Finland) potential cardiac arrhythmias, electrocardiographic abnormalities such as ST-depression, ST-elevation, Q- or T-wave altering, atrial fibrillation, and ventricular arrhythmias and training intensity level are monitored.

After 1-3 exercise training sessions at Rigshospitalet, the patient continues the programme at a local CopenHeart certified training facility supervised by physiotherapists or as supervised home-based training. Supervised home-based exercise training has shown similar results to hospital-based exercise training ³¹ and has been confirmed in a Danish setting. ⁴⁸

The physical exercise training continues for 12 weeks, comprising three sessions weekly of 60 minutes, in total, 36 sessions. The training protocol consists of cardiovascular training and strength

exercises to improve endurance and muscular strength.

An exercise session consists of 10 minutes warm up, 20 minutes bicycling, 20 minutes strength, and a 10 minutes stretching and cool-down period. Using the results from the cardiopulmonary exercise test performed prior to the initial training session, in combination with the Borg scale measuring subjective exhaustion, the aerobic exercise is performed with gradually increasing intensity throughout the exercise intervention period, corresponding to 13 to 17 on the Borg Scale and 50% to 80% of the maximum heart rate. The anaerobic resistance training is initiated at 30% to 40 % of 1 repetition maximum (RM) for the upper body, and 40% to 50 % of 1 RM for the lower body, with an increasing work load during the training sessions. To achieve cardiovascular adjustment and reduce the risk of malignant cardiac arrhythmias and ischemia, the training session is initiated and terminated with a warm up and a cool down period to gradually increase and decrease training intensity and heart rate. This cardiovascular adjustment has been proven to reduce the risk of ischemia and arrhythmia in relation to exercise training. ^{49,50} Training is predominantly performed in the upright position to reduce left ventricle preload (diastolic volume) and the risk of ischemia and arrhythmias due to heart failure. ⁵⁰

Sustained moderate physical exercise daily. Participants are instructed to perform moderate physical

exercise at least 30 minutes a day during the intervention period, e.g., bicycling, walking,

gardening, jogging or recreational sports. Participants are encouraged to continue with moderate physical exercise throughout life.

The psycho-educational component

The aim of the psycho-educational intervention is to provide emotional support and improve coping skills and illness appraisal in order for the patient to respond appropriately to physical and psychological symptoms. Education and information about the disease prepare the patient for expected symptoms and sensations. Dialogue and shared reflection facilitate strategies for coping with symptoms and experiences associated with the condition, e.g., anxiety and fear. Cardiac care nurses with specific training will perform the psycho-educational intervention. Some of the most commonly reported concerns of patients treated for AF with RFA, such as recurrent AF, and concerns about being able to manage a working life are outlined in a guide which nurses use to address when and if relevant (see Table 1). Information given will also be based on national guidelines and standard treatment of patients treated for AF. The consultations focus on managing life after AF treated with RFA by establishing a joint approach to disease management and coping strategies, taking a holistic view. The psycho-educational intervention is inspired by R.R. Parse's Human Becoming Practice Methodologies' three dimensions. 51 These are interpreted as: 1) discuss and give meaning to the past, present and future, 2) explore and discuss events and possibilities and 3) move along with envisioned possibilities. According to this theory, there are three ways of changing health: creative imaging, that is to see, hear and feel what a situation might be like if lived in a different way, affirming personal patterns and value priorities, and shedding light on paradoxes, that is, looking at the incongruence in a situation and changing the view held of something. The nurse is present in the process through discussions, silent immersion and reflection. The human becoming practice methodology was chosen to apply a holistic patient approach, focusing on the coping and transformation process of the individual person. Furthermore, the method is already

extensively used in the outpatient heart clinics at the heart centre at Rigshospitalet, such as for patients with inherited heart diseases and adults with congenital heart disease and is documented in the COPE-ICD trial. 45,52 The consultations take place in a quiet setting at the out-patient clinic and will last for approximately one hour. The nurse is able to facilitate contact with or seek advice from a physician if needed. The first consultation will be approximately one month after discharge, and then once every four to six weeks, with a total of four consultations. Consultations can be done by telephone, in accordance with the patient's wishes. The primary investigator will attend the consultations regularly to ensure protocol compliance.

Table1. Guide to the psycho-educative consultation.

24		
Table1. Guide to the psycho-educative consultation.		
26		
27Number visit	1 2 3 4	
28		
29Ask the patient how he/she has been since the ablation.		
30		
31What has happened since last time he/she was here?	X X X X	
32		
33Invite the patient to talk about his/her thoughts and questions.	X X X X	
34		
35 _{Ask} about the time leading up to RFA	X	
36 Shak about the time leading up to Ri A	Α	
37 and his/her AF history. Experiences before, under and		
38		
39after the hospitalization and RFA.		
40		
41Talk about how it is to have had/ have AF and	X	
42		
43been through RFA, how that have affected the patient's		
44		
45life. Is there something he/she avoids or feel like		
46		
47he/she cannot do anymore? This in relation to family		
48		
49 relations, friends and free time/ leisure activities.		
50	v v v	
51Make sure that the patient has started the physical	XXX	
52		
53		1.6
54		16
55		
56		
57		
58		
59		

8 training and talk about how it is going. Are training

10appointments booked?

12Talk about if the patient has changed his/her

X

14feelings or thoughts of the body and its functions.

16Talk about recognition of symptoms, how the patient

X X (X) (X)

18is feeling about recurrence of AF and opinions about

20 future AF treatment. Worries about recurrence of AF,

21_{strategies} of prevention.

 $\begin{array}{c} 23 \\ \text{Information/recommendations in relation to the} \\ 24 \end{array}$

X X X X

25_{subjects/problems discussed.}

Intervention deviations

Both components of the intervention will be supervised regularly by the primary investigator to ensure protocol compliance. Modification of the allocated intervention due to surgery complications, rehospitalisation or emerging co-morbidities (e.g. recurrent AF, musculoskeletal problems) will be individually assessed, and the time of the primary outcome assessment at four months (described in section below) will be corrected in accordance with changes in the intervention.

Control group: treatment as usual

Patients in the control group will follow standard treatment for patients treated for AF with RFA including 3-6 months follow-up with a physician and a 12 months follow-up with a nurse. Furthermore, patients will be contacted at 1, 4, 6 and 12 months for outcome assessment including clinical data collection.

Outcomes and data collection

Data will be collected to evaluate the effect and meaning of the intervention. The primary and secondary outcomes reflect the primary modifiable factors of the intervention. Since this is a complex intervention with two main components, an exercise component and a psycho-educational component, this is reflected in the primary and secondary outcome. The intervention has been tested in ICD patients (unpublished data in the COPE-ICD trail, available on request) and the intervention reflects well in the chosen measures that have found to be sensitive to changes based on the intervention. Since almost no evidence exists for rehabilitation programmes for patients treated for AF with RFA, data on a number of outcomes will be collected for exploratory analyses.

Primary outcome

Physical capacity measured by peak VO_2 according to a standardised protocol developed in accordance with guidelines 53,54 1, 4 and 12 months after randomisation (Table 1).

Physical capacity is measured by peak VO₂ using cardiopulmonary exercise testing (Ergo-Spiro CS-200, Schiller, Schweiz). This is chosen as a primary outcome since this is standard in exercise based rehabilitation trails. The test is performed according to current guidelines for ergospirometry testing, and by ergometer bicycle, simultaneously monitoring heart-rhythm, blood pressure, electrocardiogram (ECG), and measuring gas-exchange during workload and in the following recovery period. The average test duration is 10-15 minutes including pre- and post- test phase without work load. Before each session calibration is performed to address changes in room temperature, humidity and air oxygen content. A standardised ramp-protocol is used with initial work load of 25 or 50 watts, increasing gradually by 12.5 watts every minute until peak exhaustion. Peak exhaustion is evaluated by a respiratory exchange ratio (RER) \geq T 1.10 or subjective

exhaustion of the patient. In order to equally encourage the patients, independent of the tester, a standardised guide has been developed. During the test period, clinical manifestations, ECG abnormalities (ST depression, ST elevation, Q- and T-wave changes, supraventricular or ventricular arrhythmias), blood pressure response, and several physiological variables are observed and documented. The test will be performed by either a cardiac care nurse or a physician. For safety reasons preset criteria for initiation and/or termination of the test have been defined.

Secondary outcome

Self-rated mental health is measured by the SF-36 questionnaire, ⁵⁵⁻⁵⁷ mental component score, after 1 month, 4 months, 6 months and 12 months (Table 2).

Exploratory outcomes

Long-term follow-up: Register data regarding mortality, causes of death, hospitalisation/re-hospitalisation, emergency room visits, outpatient visits, health care costs, visits to the general practitioner, medication use, employment status and payment of welfare benefits (sick leave payment and early retirement pension) will be collected at 24 months to assess long term effects of the intervention (Table 2). Danish recording keeping for the data mentioned above functions well, with only a small percentage of lost data. ⁵⁸ Consequently the method is well suited as an outcome measure in small patient populations. Data will be extracted from the Danish National Patient Register, the Danish National Health Service Register, the Danish National Prescription Registry, the Danish National Causes of Death Register and records of transfer payments and labour market affiliation. ⁵⁹⁻⁶²

<u>6 minutes walking test</u>: The maximum walking distance (in meters) within 6 minutes is measured, using standardized instructions, ⁶³ while subjective exhaustion with regard to fatigue and dyspnoea using the Borg scale ⁶⁴ is registered.

<u>Sit and stand test</u>: The maximum amount of times a patient can sit and rise from a normal chair within 30 seconds is recorded. Subjective exhaustion is measured using the Borg exhaustion scale.⁶⁴ <u>Biochemical screening:</u> Potassium, sodium, haemoglobin and creatinine. 1 EDTA plasma heparin tube will be frozen (80°) for further analyses (pro-BNP, BNP, copeptin).

Other exploratory outcomes: AF recurrence, self-rated health and sleep-quality, retirement from work, use of health care services, mortality and cost efficiency (Table 2).

Table 2. Exploratory quantities subjected to post-hoc analysis

•			
Quantity	Time of measure (months)	Type of quantity	
Demographic			
Sex	BL	Binary (M/F)	
Age, height, weight,	BL, 1,4,12	Continuous	
Marital, occupational, educational status	BL	Categorical	
Clinical			
NYHA- classification	BL, 1, 4, 12	Continuous	
Previous heart disease, diabetes mellitus, kidney disease, pulmonary disease (COPD), co-morbidities, hypertension, dyslipidaemia, smoking	BL	Binary (Y/N)	
Medication	BL, 1, 4, 12	Binary (Y/N)	
AF specific data:			
Type of atrial fibrillation	BL	Categorical	
Number of ablations	BL, 1,4,12	Binary (Y/N)	
Atrial fibrillation symptoms	BL, 1,4,12	Continuous	
CHA ₂ DS ₂ VASc score	BL, 1,4, 12	Continuous	
The European Heart Rhythm Association symptom score	BL, 1,4, 12	Continuous	
Paraclinical and imaging			
Blood work (Haemoglobin, infection-, kidney- liver and selected nutritional parameters, electrolytes, cholesterol- and thyroid	BL, 1, 4, 12	Continuous	

status, ProBNP)		
Electrocardiogram	BL, 4, 12	Continuous
Physical function		
6 minute walking test ⁶³	BL, 1, 4, 12	Continuous
Sit to stand test ⁶⁵	1, 4, 12	Continuous
EVO recording	1,4,12	Categorical
Questionnaires		
Physical activity level ⁶⁶	BL, 1, 4, 6, 12, 24	Binary (Y/N)
SF-36 ⁶⁷ HADS ⁶⁸ , QoL-CV ⁶⁹	BL, 1, 4, 6, 12, 24	Continuous
Emotions and Health ⁷⁰	BL	Continuous
Rehabilitation ⁷¹	12	Continuous
HeartQoL R 72, EQ-5D 73	BL, 6, 12, 24	Continuous
IPAQ ⁷⁴	1, 4, 12, 24	Continuous
MFI-20 ⁷⁵	BL, 1, 4, 12	Continuous
PSQI ⁷⁶	1, 6	Continuous
AFEQT ⁷⁷	BL, 1,4,12,24	Continuous

AFEQT, Atrial Fibrillation Effect on Quality-of-life; BL, baseline; CHA₂DS₂VASc, score for Atrial Fibrillation Stroke Risk; EQ-5D, EuroQoL; HADS, Hospital Anxiety and Depression Scale; HeartQoL R, Heart-Related Quality of Life; IPAQ, International Physical Activity Questionnaire; PSQI, Pittsburgh Sleep Quality Index; QoL-CV, Quality of Life - Cardiac Version; SF-36, Short Form 36.

Sample size calculation for the primary outcome

We are performing a randomised trial where the continuous variable VO₂ peak is the primary outcome. The control and the intervention group are independent and the ratio of patients in the intervention group to the patients in the control group is 1:1. A previous trial of patients with permanent AF found that VO₂ peak was normally distributed with a standard deviation of 3.8 ml/kg/min.⁴⁴ As the CopenHeart_{RFA} trial has a more varied patient population who have all been treated for AF with RFA, which means that the majority of the patients will have sinus rhythm and the rest will have AF, the patients are not directly comparable with the patients in the previous trial, and we assume a standard deviation of 6 ml/kg/min to be more relevant. We consider a 0.5 standard

deviation to be the minimal relevant difference, equivalent to 3 ml/kg/min. Therefore, if the true difference between the intervention group and control group is 3 ml/kg/min and the standard deviation is 6 ml/kg/min in the control group, 105 patients in the intervention group and 105 in the control group (a total of 210 patients) are needed to reject the null hypothesis, stating that the mean in the intervention group and the control group is the same, with a power of 95%. The type I error probability associated with this test of this null hypothesis is 5%.

Power calculation for the secondary outcome

The secondary outcome measure is the continuous variable mental component, SF 36. If the true difference between the intervention and control group is 7 points, and the standard deviation in the control group is 18 points, 21 www will be able to reject the null hypothesis that the population means of the experimental and control groups are equal with a probability of (power) 0.80. The type I error probability associated with this test of this null hypothesis is 5%.

Statistical analyses

Data will be pseudo-anonymised and analysed blinded by a trial-independent statistician using intention-to-treat analyses and a mixed model with repeated measures (MMRM) for continuous outcome measures. Using MMRM ensures that missing data values (in case of the primary and secondary outcome) will not create bias as long as the values are missing at random. Two-sided tests are performed. The level of significance is set at 5%. With regard to multiplicity, gate keeping will be used to adjust the observed P values for primary and secondary outcomes. Both unadjusted and adjusted P values will be reported.

For the primary and secondary outcomes, sensitivity analysis will be conducted to assess the potential impact of values missing not at random. For each intervention group (A and B) some

quantities (imputing quantities) are computed to be used to impute missing values in a group (A or B) as follows. A comparison between group A and group B where missing values in group A are imputed using imputing quantities obtained from group A and missing values from group B are imputed using imputing quantities obtained from group B is referred to as a best case analysis. If missing values in group A are imputed using imputing quantities obtained from group B and vice versa the comparison is called a worst case analysis. The imputing quantities for the primary outcome are the group mean at T1 (X1-bar), the group mean at T4 (X4-bar), the group mean at T6 (X6-bar), the mean difference between the value measured at T4 and that measured at T1 (delta 1), and the mean difference between the value measured at T6 and that measured at T4 (delta-2). Table 3 explains how the quantities are used to impute missing values in a group (either the same group or the other intervention group). If the standard error (SE) of a parameter estimate calculated using imputed data is smaller than that of the corresponding parameter calculated using complete case data it is replaced by the latter SE when the P value is calculated (Table 3).

Long-term register-based outcomes will be analysed by two different models: non-negative count outcomes (e.g., number of contacts with hospital or number of visits to general practitioners) will be analysed by a Poisson model or a zero-inflated Poisson model if the number of zeros are large, and time-to-event data (e.g., cause-specific mortality and leaving the labor market) will be analysed with survival methods (Kaplan-Meier estimator and Cox regression model). Especially for socio-economic outcomes, competing risks due to mortality will be considered if a large proportion of patients die during follow-up.

Exploratory data will be analysed using appropriate statistical methods according to the type of data (see Table 2). SPSS version 17.0 and SAS version 9.3 will be used.

Observed pattern in group B at Imputed value in group B at Imp			Imputed value in group B at
1, 4, and 6 months	1 month	4 month	6 months
mis ^A , mis, mis	X1-bar ^B	X4-bar ^c	X6-bar ^D
mis, mis, Y3 ^E	Y3 – (delta1 ^F + delta2 ^G) ^H	Y3 – delta2	
mis, Y2, mis	Y2 – delta1		Y2 + delta2
Y1, mis, mis		Y1 + delta1	Y1 + delta1 + delta2
Y1, Y2, mis		2	Y2 + delta2
Y1, mis, Y3		(Y1 + delta1 + Y3 - delta2)/2	
mis, Y2, Y3	Y2 – delta1		

Table to explain the use of imputing quantities derived from observed values in a group (group A) to impute missing values in a group (group B). mis=missing value. X1=value at month 1. X4=value at month 4. X6=value at month 6.

Interim analysis and Data Monitoring Safety Committee (DMSC)

The DMSC works independently from the funder and has no competing interests, and consists of two clinicians and a statistician. The committee is responsible for safeguarding the interests of trial participants, assessing the safety and efficacy of the interventions during the trial, and for monitoring the overall conduct of the clinical trial. In line with the terms of the Data Monitoring and Safety Committee charter, one formal interim analysis meeting will be held to review data relating to treatment efficacy, participant safety, and quality of trial conduct. The three members of

^AThe value at 4 months is missing in group B, ^BMean of values observed in group A at time 1 month. ^CMean of values observed in group A at time 4 months. ^DMean of values observed in group A at time 6 months. ^EObserved value in group B at time 6 months. ^EThe mean of difference between values observed at time 4 months and value observed at time 1 month in group A, ^EThe mean of difference between value observed at time 6 months and value observed at time 9 months and value observed a

the Data Monitoring and Safety Committee will meet when the 12 week follow-up data of about 50% of the trial participants have been obtained. Any serious adverse events will be registered as part of the data collection and the overall number of adverse events will be reported at the meeting.

Complementary studies

The Surveysbased study. The post-discharge status of the patients treated with RFA will be explored through a national survey. The standardised questionnaires SF-36, ⁶⁷ Hospital Anxiety and Depression Scale (HADS), ⁶⁸ EuroQoL-EQ-5D, ^{69, 70} Heart Related Quality of Life (HeartQoL R), ⁷¹ International Physical Activity Questionnaire (IPAQ), ^{72, 73} and a questionnaire developed by the Danish Heart Foundation on the extent and quality of rehabilitation offered will be sent to patients having undergone treatment for RFA, 6-12 months post-discharge. The instruments are all validated and have good reliability and responsiveness. ^{68, 72, 74, 75, 80, 81} The data will provide knowledge on patients' self-rated health, quality of life, anxiety and depression, economic situation and the extent and quality of the rehabilitation currently received. Patients were identified through the National Patient Register ⁵⁹ and questionnaires were sent out to 608 patients. We anticipate 25% will decline participation, leaving an estimated 456 questionnaire respondents. Data will be anonymised and analysed by relevant descriptive statistical methods.

Qualitative post intervention study

After the intervention, 10% of the participants from the intervention group will be strategically chosen for an interview in order to explore the experiences and processes behind the potential effects of the intervention. The qualitative study will explore patient experiences of participating in the CopenHeart_{RFA} programme and investigate which components were meaningful.

Formatted: Highlight

BMJ Open: first published as 10.1136/bmjopen-2012-002377 on 20 February 2013. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

To achieve maximum variation, qualified interviewees are chosen on the basis of sex, AF type, and current heart rhythm. The analysis will be inspired by Ricoeur's theory of interpretation consisting of three levels: naive reading, structured analysis and critical interpretation and discussion. The results will be presented in themes based on patient experience and evaluation of the intervention. As an example we will look for explanations for the results in physical capacity and mental health as described by the patients. We are using mixed method to explore all aspects of the intervention, but the qualitative findings are seen as a complementary study to the primary randomised clinical trial.

An economic evaluation will be conducted alongside the trial to assess the cost-utility of cardiac

Economic evaluation

rehabilitation compared with treatment as usual in the study population. The economic evaluation will compare the costs to quality adjusted life years (QALY) and take a societal perspective, as recommended nationally. QALYs and costs will be assessed at the end of the intervention, 6 months from randomisation, and later after 24 months from randomisation using register-based follow up.

QALYs will be estimated using the self-completed EQ-5D instrument, which is a standardised instrument assessing 5 dimensions of self-reported health status (mobility, self-care, usual activities, pain/discomfort and anxiety/depression). The estimated calculations will be valued using Danish preference weights. Information on costs will only include costs that are expected to differ between the intervention and usual care group. Costs included in the evaluation are health costs associated with the rehabilitation programme, other health care costs (health care utilization besides rehabilitation), patient costs and costs of productivity losses. Information on costs will be collected by a mixture of activity-based costing, surveys, patient diary and by the use of public records.

Results from the analysis will be reported as an incremental cost-effectiveness analysis (ICER).

Sensitivity analysis will be conducted to express uncertainty in the estimates. ⁸⁷ The reporting of the ICER is presented using Bayesian methods, including bootstrapping and presented as cost-effectiveness acceptability curves. ⁸⁸

Ethics

The inclusion started December 2011 and is approved by the Regional Ethics Committee (number H-1-2011-135) and the Danish Data Protection Agency (no. 2007-58-0015). All eligible patients will be informed about the trial verbally and in writing, and the patients are included after informed consent has been obtained. All data will be handled confidentially and patients ensured anonymity. The trial complies with the latest Declaration of Helsinki and is registered at ClinicalTrials.gov (NCT01523145). An independent international safety committee monitors the trial. All serious and adverse events will be registered and reported in accordance with the safety charter.

Not providing rehabilitation to the control group can be ethically justified as current national and international guidelines give no specific recommendations on cardiac rehabilitation for patients treated for AF with RFA. The scope and quality of rehabilitation offered to this population is unknown, but suspicions are that generally no rehabilitation is offered in Denmark. The only way patients can get supervised exercise training is if they voluntarily enrol in a programme e.g. through non-profit organisations. The survey based complementary study, described previously in this paper, will hopefully provide more insight into this. In screening patients for participation, the enrolling nurse or physician will exclude those with a compelling rehabilitation need. Furthermore, patients are informed of the study design before giving their consent, and are free to decline participation.

Discussion

Due to the difference in the three patient groups that are included in the overall CopenHeart trial, patients treated for infective endocarditis, heart valve surgery and patients treated for AF with RFA, the intervention and outcome measures differ slightly, most importantly in the case of the psychoeducational intervention, which is longer for patients treated for infective endocarditis and heart valve surgery, because of the complexity of the diseases and the longer hospitalisation. Biochemical markers are similarly chosen differently to address the various co-morbidities of the three diseases and some disease specific questionnaires are chosen to capture the specific disease relevant issues.

To our knowledge no previous randomised clinical trials or observational studies have been conducted focusing on integrated cardiac rehabilitation for AF patients treated with RFA, so therefore it is not known what effect, if any, rehabilitation has on these patients. However, in the light of evidence from other groups of patients with heart disease a positive effect can be expected.^{23, 89, 90}

This trial is different from previous trials because we apply a comprehensive rehabilitation intervention which consists of both a physical training component and a psycho-educational component. This combination is hypothesised to strengthen the patient both physically and mentally even if the patient has AF. Also we use mixed methods, which has its strengths in both using qualitative and quantitative research design.³⁴

The major strengths of this randomised clinical trial are that it includes consecutive patients with a reasonable number of inclusion and exclusion criteria securing external validity for the results. The trial employs central, stratified randomisation which secures against selection bias. 91-93 The primary outcome is assessed blinded to intervention and so are all statistical analyses, which should reduce

detection and interpretation bias. 91-93 The long-term outcomes are based on data taken from public registry data, which are also likely not to include biased reporting of outcomes.

The secondary outcomes of self-rated mental health are by nature subjective and are likely to be biased. 91-93 The patients answer questionnaires independently of the researchers. Data management is handled independently from the researchers that interpret data. All questionnaires are distributed electronically. All data entry is stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart Group.

Trial limitations include the fact that it is known from previous rehabilitation trials ³³ that patients in the control group have a tendency to do physical training due to the focus on the subject in the recruitment process. We will be aware of that when we recruit and not focus on giving extensive information about the exercise programme, or encourage patients to do physical training before knowing what group they are randomised to. Any difference between patients completing the intervention and those not completing (drop-outs) will be carefully discussed when evaluating the intervention, results and the suitability for implementation. The trial is designed with multiple statistical comparisons so results will be interpreted with caution. Further limitations of the trial and methods used are similar to those of other trials including physical exercise and physical testing, namely time-of-day, and day-to-day variation using exercise testing. ⁹⁴ To ensure standard testing of all physical exercise tests in the trial, standardised instructions for patients have been developed as described in the methods section. Conversely, the trial population will be representative for the true RFA population, meaning that some patients will have AF and some sinus rhythm while exercising and testing, and this will facilitate implementation of The CopenHeart_{RFA} trial rehabilitation programme in daily clinical practice. We are aware that patients treated with RFA are a highly

selected group of patients with paroxysmal or persistent AF, and they are properly more likely to participate and complete a rehabilitation programme, compared to patients with e.g. permanent AF since patients with permanent AF often are older and suffer from co-morbidity ⁴. Therefore we do not expect to generalize the results to all AF patients.

The challenge with the set-up is that patients come from considerable distances and therefore some will decline participation. Also, due to the nature of rehabilitation trials, the patients have to meet at the hospital frequently, especially when randomised to the experimental intervention group.

The trial will, to our knowledge, be the largest trial conducted dealing with rehabilitation AF ablation recipients. If a positive effect of integrated rehabilitation is found, it may have an impact on the rehabilitation offered to patients treated for AF with RFA at international level. The trial is expected to identify an intervention which can improve health and quality of life for the patients, and subsequently reduce healthcare utilization and costs, as well as mortality.

Publication policy

The results of the trial will be published in appropriate peer-reviewed journals regardless of the outcome. Authorship will be determined according to the guidelines of the International Committee of Medical Journal Editors.

The outcome data will be analysed and published in the short term of 4 and 6 months and the long term of 24 months. Due to the comprehensiveness of the outcome measures further post hoc analysis will be published in separate papers. Economic and long term follow up will be reported as data becomes accessible.

Timetable

Recruitment started in December 2011 in one heart centre and in July 2012 in the other participating heart centre and is planned to finish in December 2013. To achieve adequate participant enrolment, patients in doubt are contacted after hospital discharge by phone. The inclusion rate is closely monitored every week.

Acknowledgements and Funding

The rehabilitation team responsible for the intervention programme and trial administration is:

Rikke Brandt Jakobsen, Lone Siersbæk-Hansen, Lars Tang, Helena Tjalk Sørensen, Signe Gills,

Helle Tauby, Katrine Haase and Line Ellemann-Jensen.

The trial is partly funded by The Danish Council for Strategic Research, The Lundbeck Foundation, and The Heart Centre at Rigshospitalet. The funders have no influence on the trial design, the execution of the trial or the interpretation of data.

Authors' contributions

SKB and ADZ in collaboration with SSR, JLH, MP, LCT, PW and CG designed the trial. SSR in collaboration with SKB, ADZ, TBR, KLS, JHS, CG, LCT, SD, JLH and SD drafted the manuscript. All revised the manuscript critically. All authors have given their final approval of the version to be published.

Competing interests

None.

 Stewart S, Hart CL, Hole DJ, McMurray JJV. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. *Heart* 2001; November 01;86(5):516-21.

- 2. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *JAMA* 2001; May 9;285(18):2370-5.
- 3. Ruigomez A, Johansson S, Wallander MA, Garcia Rodriguez LA. Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK. *BMC Cardiovasc Disord* 2005; Jul 11;5:20.
- 4. European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery, Camm AJ, Kirchhof P, Lip GY, Schotten U, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). *Europace* 2010; Oct;12(10):1360-420.

- Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, Bergman. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atral fibrillation (Review) 2009;The Cochrane Libraly(1).
- 6. Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener HC, et al. Outcome parameters for trials in atrial fibrillation: recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork and the European Heart Rhythm Association. *Europace* 2007; Nov;9(11):1006-23.
- 7. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. *Am J Med* 2002; Oct 1;113(5):359-64.
- 8. Camm J. Antiarrhythmic drugs for the maintenance of sinus rhythm: Risks and benefits.

 Int J Cardiol 2011; Jun 25;.
- Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al.
 Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. *Eur Heart* J2006; Apr;27(8):949-53.

10. Naccarelli GV, Varker H, Lin J, Schulman KL. Increasing prevalence of atrial fibrillation and flutter in the United States. *Am J Cardiol* 2009; Dec 1;104(11):1534-9.

- 11. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. *Circulation* 2004; Aug 31;110(9):1042-6.
- 12. Ericson L, Bergfeldt L, Bjorholt I. Atrial fibrillation: the cost of illness in Sweden. *Eur J Health Econ* 2011; Oct;12(5):479-87.
- 13. Wolowacz SE, Samuel M, Brennan VK, Jasso-Mosqueda JG, Van Gelder IC. The cost of illness of atrial fibrillation: a systematic review of the recent literature. *Europace* 2011; Oct;13(10):1375-85.
- 14. Brenyo AJ, Aktas MK. Non-pharmacologic management of atrial fibrillation. *Am J Cardiol* 2011; Jul 15;108(2):317-25.

- 15. Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. *Circ Arrhythm Electrophysiol* 2009; Aug;2(4):349-61.
- 16. Atwood JE, Myers JN, Tang XC, Reda DJ, Singh SN, Singh BN. Exercise capacity in atrial fibrillation: a substudy of the Sotalol-Amiodarone Atrial Fibrillation Efficacy Trial (SAFE-T). *Am Heart J* 2007; Apr;153(4):566-72.
- 17. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: a study based on interviews with 100 patients seeking hospital assistance. *BMC Cardiovasc Disord* 2004; Aug 3;4:13.
- 18. Hegbom F, Sire S, Heldal M, Orning OM, Stavem K, Gjesdal K. Short-term exercise training in patients with chronic atrial fibrillation: effects on exercise capacity, AV conduction, and quality of life. *J Cardiopulm Rehabil* 2006; Jan-Feb;26(1):24-9.
- 19. Hegbom F, Stavem K, Sire S, Heldal M, Orning OM, Gjesdal K. Effects of short-term exercise training on symptoms and quality of life in patients with chronic atrial fibrillation.

 Int J Cardiol 2007; Mar 2;116(1):86-92.

20. Osbak PS, Mourier M, Kjaer A, Henriksen JH, Kofoed KF, Jensen GB. A randomized study of the effects of exercise training on patients with atrial fibrillation. *Am Heart J* 2011; Dec;162(6):1080-7.

- 21. Dorian P, Jung W, Newman D, Paquette M, Wood K, Ayers GM, et al. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: implications for the assessment of investigational therapy. *J Am Coll Cardiol* 2000; Oct;36(4):1303-9.
- 22. McCabe PJ, Schumacher K, Barnason SA. Living with atrial fibrillation: a qualitative study. *J Cardiovasc Nurs* 2011; Jul-Aug;26(4):336-44.
- 23. Piepoli MF, Corra U, Benzer W, Bjarnason-Wehrens B, Dendale P, Gaita D, et al.

 Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2010; Feb;17(1):1-17.
- 24. Piepoli MF, Corra U, Adamopoulos S, Benzer W, Bjarnason-Wehrens B, Cupples M, et
- al. Secondary prevention in the clinical management of patients with cardiovascular

diseases. Core components, standards and outcome measures for referral and delivery.

Eur J Prev Cardiol 2012; Jun 20;.

25. Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, et al. Exercise-

based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev

2011; Jul 6;(7)(7):CD001800.

26. Davies EJ, Moxham T, Rees K, Singh S, Coats AJ, Ebrahim S, et al. Exercise based

rehabilitation for heart failure. Cochrane Database Syst Rev 2010; Apr

14;(4)(4):CD003331.

27. Shepherd CW, While AE. Cardiac rehabilitation and quality of life: a systematic review.

Int J Nurs Stud 2012; Jun;49(6):755-71.

28. Sire S. Physical training and occupational rehabilitation after aortic valve replacement.

Eur Heart J 1987; Nov;8(11):1215-20.

29. Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. *Circ Heart Fail* 2010; Nov 1;3(6):659-67.

- 30. Clark AM, Catto S, Bowman G, Macintyre PD. Design matters in secondary prevention: individualization and supervised exercise improves the effectiveness of cardiac rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2011; Oct;18(5):761-9.
- 31. Clark AM, Haykowsky M, Kryworuchko J, MacClure T, Scott J, DesMeules M, et al. A meta-analysis of randomized control trials of home-based secondary prevention programs for coronary artery disease. *Eur J Cardiovasc Prev Rehabil* 2010; Jun;17(3):261-70.
- 32. Whalley B, Rees K, Davies P, Bennett P, Ebrahim S, Liu Z, et al. Psychological interventions for coronary heart disease. *Cochrane Database Syst Rev* 2011; Aug 10;(8)(8):CD002902.
- 33. Berg SK. *Comprehensive rehabilitation for patients with ICD: PhD dissertation.*[Aarhus]: Faculty of Health Sciences, Aarhus University; 2011.

- 34. Creswell JW, Plano Clark VL. Designing and conducting mixed methods research.
- Thousand Oaks, Calif.: SAGE Publications; 2007.
- 35. O'Cathain A, Murphy E, Nicholl J. Three techniques for integrating data in mixed methods studies. *BMJ* 2010; Sep 17;341:c4587.
- 36. Carter RE, Lubinsky J, Domholdt E. *Rehabilitation research: principles and applications*. 4. ed. ed. St. Louis, Mo.: Elsevier Saunders; 2011.
- 37. Law MC, MacDermid J. *Evidence-based rehabilitation: A guide to practice*. 2. edition ed. Thorofare, NJ: Slack; 2008.
- 38. Clark N, Boyd NR, Goodman RM, Windsor RA. *Evaluation of health promotion, health education, and disease prevention programs.* 3. ed. ed. Boston: McGraw-Hill; 2004.
- 39. Hammell KW, Carpenter C. *Qualitative research in evidence-based rehabilitation*.

Edinburgh: Churchill Livingstone; 2004.

40. Lewin S, Glenton C, Oxman AD. Use of qualitative methods alongside randomised controlled trials of complex healthcare interventions: methodological study. *BMJ* 2009; Sep 10;339:b3496.

- 41. Neubeck L, Freedman SB, Clark AM, Briffa T, Bauman A, Redfern J. Participating in cardiac rehabilitation: a systematic review and meta-synthesis of qualitative data. *Eur J Prev Cardiol* 2012; Jun;19(3):494-503.
- 42. Chan A, Tetzlaff J, Altman D, Gotzsche P, Hrobjartsson A, et al. The SPIRIT initiative:

 Defining Standard Protocol Items for Randomized Trials [conference abstract]. *German J Evid Quality Health Care (Suppl)* 2008;(102:S27).
- 43. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P, CONSORT Group. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. *Ann Intern Med* 2008; Feb 19;148(4):295-309.
- 44. Mertens DJ, Kavanagh T. Exercise training for patients with chronic atrial fibrillation. *J*Cardiopulm Rehabil 1996; May-Jun;16(3):193-6.

- 45. Berg SK, Svendsen JH, Zwisler AD, Pedersen BD, Preisler P, Siersbaek-Hansen L, et al. COPE-ICD: a randomised clinical trial studying the effects and meaning of a comprehensive rehabilitation programme for ICD recipients -design, intervention and population. *BMC Cardiovasc Disord* 2011; Jun 17;11:33.
- 46. Zwisler A, Madsen M, Konstantin Nissen N. *Hjerterehabilitering: en medicinsk* teknologivurdering: evidens fra litteraturen og DANREHAB-forsøget. http://www.si-folkesundhed.dk/upload/hjerterehabilitering_001.pdf. Version: 1,0 ed. Kbh.:

Sundhedsstyrelsen; 2006.

http://www.sst.dk/Sundhed%20og%20forebyggelse/Fysisk%20aktivitet/Anbefalinger%20til

%20voksne.aspx. Accessed 09/13, 2011.

47. Anbefalinger for fysisk aktivitet. Available at:

48. Oerkild B, Frederiksen M, Hansen JF, Simonsen L, Skovgaard LT, Prescott E. Home-based cardiac rehabilitation is as effective as centre-based cardiac rehabilitation among elderly with coronary heart disease: results from a randomised clinical trial. *Age Ageing* 2011; Jan;40(1):78-85.

- 49. Fitchet A, Doherty PJ, Bundy C, Bell W, Fitzpatrick AP, Garratt CJ. Comprehensive cardiac rehabilitation programme for implantable cardioverter-defibrillator patients: a randomised controlled trial. *Heart* 2003; Feb;89(2):155-60.
- 50. Lampman RM, Knight BP. Prescribing exercise training for patients with defibrillators.
- Am J Phys Med Rehabil 2000; May-Jun; 79(3):292-7.

programme. Eur J Cardiovasc Nurs 2011; Apr 22;.

- 51. Parse RR. *The human becoming school of thought: a perspective for nurses and other health professionals.* Thousand Oaks, Calif.: Sage; 1998.
- 52. Berg SK, Pedersen BD, Svendsen JH, Zwisler AD, Kristensen L, Pedersen PU. COPE-ICD: Patient experience of participation in an ICD specific rehabilitation
- 53. Mezzani A, Agostoni P, Cohen-Solal A, Corra U, Jegier A, Kouidi E, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2009; Jun;16(3):249-67.

54. Gibbons L, Blair SN, Kohl HW, Cooper K. The safety of maximal exercise testing.

Circulation 1989; Oct;80(4):846-52.

55. Bjørner JB, Trab Damsgaard M, Watt T, Bech P, Rasmussen NK, Søndergaard

Kristensen T, et al. Dansk manual til SF-36: et spørgeskema om helbredsstatus. [S.I.]: Lif;

1997.

56. Ware JE,Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I.

Conceptual framework and item selection. Med Care 1992; Jun;30(6):473-83.

57. McHorney CA, Ware JE, Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey

(SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental

health constructs. Med Care 1993; Mar;31(3):247-63.

58. Andersen TF, Madsen M, Jorgensen J, Mellemkjoer L, Olsen JH. The Danish National

Hospital Register. A valuable source of data for modern health sciences. Dan Med Bull

1999; Jun;46(3):263-8.

- 59. Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J
- Public Health 2011; Jul;39(7 Suppl):30-3.

- 60. Andersen JS, Olivarius Nde F, Krasnik A. The Danish National Health Service
- Register. Scand J Public Health 2011; Jul;39(7 Suppl):34-7.
- 61. Kildemoes HW, Sorensen HT, Hallas J. The Danish National Prescription Registry.
- Scand J Public Health 2011; Jul;39(7 Suppl):38-41.
- 62. Helweg-Larsen K. The Danish Register of Causes of Death. Scand J Public Health
- 2011; Jul;39(7 Suppl):26-9.
- 63. ATS Committee on Proficiency Standards for Clinical Pulmonary Function
- Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit
- Care Med 2002; Jul 1;166(1):111-7.
- 64. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc*
- 1982;14(5):377-81.
- 65. Rikli RE, Jones CJ. Senior fitness test manual. Champaign, III.: Human Kinetics; 2001.

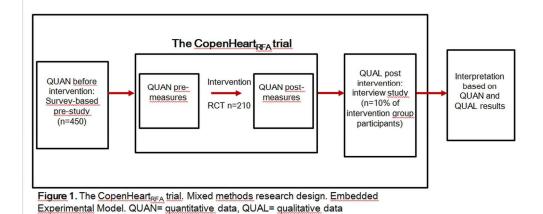
- 66. Ekholm O, Hesse U, Davidsen M, Kjoller M. The study design and characteristics of the Danish national health interview surveys. *Scand J Public Health* 2009; Sep;37(7):758-65.
- 67. Ware JE, Kosinski M, Gandek B. SF-36 Health Survey.: Manual and Interpretation guide 2005; The Health Institute, New England Medical Center, Boston, Massachussetts.
- 68. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. *Acta Psychiatr Scand* 1983; Jun;67(6):361-70.
- 69. Ferrans CE, Powers MJ. Quality of life index: development and psychometric properties. *ANS Adv Nurs Sci* 1985; Oct;8(1):15-24.
- 70. Bowman G, Watson R, Trotman-Beasty A. Primary emotions in patients after myocardial infarction. *J Adv Nurs* 2006; Mar;53(6):636-45.
- 71. Bøgelund M, Mønsted C. *Hjertepatienters brug og oplevelse af rehabilitering 2010.*Kbh.: Hjerteforeningen; 2010.

72. Oldridge N, Saner H, McGee HM, HeartQoL Study Investigators. The Euro Cardio-QoL Project. An international study to develop a core heart disease health-related quality of life questionnaire, the HeartQoL. *Eur J Cardiovasc Prev Rehabil* 2005; Apr;12(2):87-94.

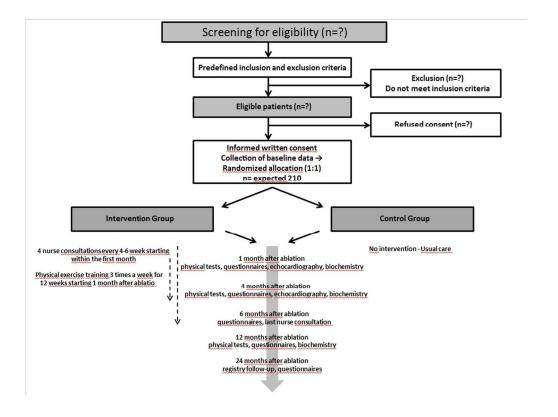
- 73. Drummond MF. *Methods for the economic evaluation of health care programmes.* 3rd edition ed. Oxford: Oxford University Press; 2005.
- 74. Hallal PC, Victora CG. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). *Med Sci Sports Exerc* 2004; Mar;36(3):556.
- 75. Schwartz JE, Jandorf L, Krupp LB. The measurement of fatigue: a new instrument. *J Psychosom Res* 1993; Oct;37(7):753-62.
- 76. Buysse DJ, Reynolds CF,3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res* 1989; May;28(2):193-213.
- 77. Spertus J, Dorian P, Bubien R, Lewis S, Godejohn D, Reynolds MR, et al.

 Development and validation of the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT)

Questionnaire in patients with atrial fibrillation. Circ Arrhythm Electrophysiol 2011;


Feb;4(1):15-25.

- 78. DeSouza CM, Legedza AT, Sankoh AJ. An overview of practical approaches for
- handling missing data in clinical trials. J Biopharm Stat 2009; Nov;19(6):1055-73.
- 79. Dmitrienko A, Wiens BL, Tamhane AC, Wang X. Tree-structured gatekeeping tests in
- clinical trials with hierarchically ordered multiple objectives. Stat Med 2007; May
- 30;26(12):2465-78.
- 80. McHorney CA, Ware JE, Rogers W, Raczek A, Lu JFR. The validity and relative
- precision of MOS short- and long-form health status scales and Dartmouth COOP charts:
- results from the Medical Outcomes Study.
- 81. Schweikert B, Hahmann H, Leidl R. Validation of the EuroQol questionnaire in cardiac
- rehabilitation. Heart 2006; Jan;92(1):62-7.
- 82. Polit DF, Beck CT. Essentials of nursing research: methods, appraisal, and utilization.
- 6. edition ed. Philadelphia, Pa.: Lippincott Williams & Wilkins; 2006.


- 83. Ricoeur P. *Interpretation theory: discourse and the surplus of meaning.* 5. print. ed.
- Fort Worth, Tex.: Texas Christian University Press; 1976.
- 84. EuroQol--a new facility for the measurement of health-related quality of life. The
- EuroQol Group. Health Policy 1990; Dec;16(3):199-208.
- 85. Brooks R. EuroQol: the current state of play. Health Policy 1996; Jul;37(1):53-72.
- 86. Wittrup-Jensen KU, Lauridsen J, Gudex C, Pedersen KM. Generation of a Danish TTO
- value set for EQ-5D health states. Scand J Public Health 2009; Jul;37(5):459-66.
- 87. Fox-Rushby JA, Cairns J. *Economic evaluation*. Maidenhead: Open University Press;
- 2005.

- 88. Fenwick E, Claxton K, Sculpher M. Representing uncertainty: the role of cost-
- effectiveness acceptability curves. Health Econ 2001; Dec;10(8):779-87.
- 89. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, et al. Exercise-based
- rehabilitation for patients with coronary heart disease: systematic review and meta-
- analysis of randomized controlled trials. Am J Med 2004; May 15;116(10):682-92.

- 90. Rees K, Taylor RS, Singh S, Coats AJ, Ebrahim S. Exercise based rehabilitation for heart failure. *Cochrane Database Syst Rev* 2004;(3)(3):CD003331.
- 91. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ* 2008; Mar 15;336(7644):601-5.
- 92. Gluud L. Bias in clinical intervention research. Am J Epidemiol 2006;163(6):493-501.
- 93. Savovic J, Jones H, Altman D, Harris R, Juni P, Pildal J, et al. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. *Health Technol Assess* 2012; Sep;16(35):1-82.
- 94. Rowland T, Unnithan V, Barker P, Lindley M, Roche D, Garrard M. Time-of-day effect on cardiac responses to progressive exercise. *Chronobiol Int* 2011; Aug;28(7):611-6.

192x90mm (300 x 300 DPI)

119x90mm (300 x 300 DPI)

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	Item No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	3-4
Introduction			
Background and	2a	Scientific background and explanation of rationale	5-8
objectives	2b	Specific objectives or hypotheses	10
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	8-9
Ū	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	N/A
Participants	4a	Eligibility criteria for participants	10-11
	4b	Settings and locations where the data were collected	10-11
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	12-17
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	18-21
	6b	Any changes to trial outcomes after the trial commenced, with reasons	N/A
Sample size	7a	How sample size was determined	21-22
	7b	When applicable, explanation of any interim analyses and stopping guidelines	24-25
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	11-12
generation	8b	Type of randomisation; details of any restriction (such as blocking and block size)	11-12
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	N/A
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	11
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	11 + 22

CONSORT 2010 checklist Page 1

		assessing outcomes) and how	
	11b	If relevant, description of the similarity of interventions	N/A
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	22-24
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	25-26
Results			
Participant flow (a diagram is strongly	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome	N/A
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	N/A
Recruitment	14a	Dates defining the periods of recruitment and follow-up	N/A
	14b	Why the trial ended or was stopped	N/A
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	N/A
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	N/A
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	N/A
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	N/A
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	N/A
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	N/A
Discussion			
Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	29-30
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	30
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	N/A
Other information			27
Registration	23	Registration number and name of trial registry	
Protocol	24	Where the full trial protocol can be accessed, if available	N/A
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	31

^{*}We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see www.consort-statement.org.

CONSORT 2010 checklist Page 2