

Polytobacco use and multiple-product smoking among a random community sample of African-American Adults

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003606
Article Type:	Research
Date Submitted by the Author:	16-Jul-2013
Complete List of Authors:	Corral, Irma; Brody School of Medicine, East Carolina University, Psychiatric Medicine Landrine, Hope; East Carolina University, Center for Health Disparities Bess, Jukelia; East Carolina University, Center for Health Disparities
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Epidemiology
Keywords:	PREVENTIVE MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE™ Manuscripts

Polytobacco use and multiple-product smoking among a random community sample of

African-American Adults ¹

Irma Corral, Ph.D., MPH²

Hope Landrine, Ph.D.³

and Jukelia J. Bess, BS ⁴

Key Words: Smoking, African-Americans, blunts, Philly, polytobacco use

Word Count Text: 2213

Tables: 5

¹ Supported by funds provided by Tobacco-Related Disease Research Program Grant No. 15-AT1300.

² Department of Psychiatric Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834.

³ To whom correspondence and reprint requests should be addressed at Center for Health

Disparities, East Carolina University, 1800 W. 5th Street, Greenville, NC 27834. Phone: 252-744-5535,

FAX: 252-744-2634, Email: landrineh@ecu.edu.

⁴ Center for Health Disparities, East Carolina University, Greenville, NC 27834

Conflicts of interests: The authors have no financial or other conflicts of interests.

Author Contributions

Irma Corral made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Hope Landrine made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Jukelia Bess made substantial contributions to 1) analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ARTICLE SUMMARY

Article Focus

- This study is the first to examine prevalence of smoking of cigars, bidis, kreteks, blunts, cigarillos (by brand name), and marijuana among a random, statewide sample of 2,118
 California Black adult cigarette smokers and non-smokers.
- We hypothesized a high prevalence of smoking blunts and cigarillos, two products that appear to be popular among U.S. Blacks but are rarely assessed in population tobacco surveillance.

Key Messages

- Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days, and this was unrelated to socioeconomic status.
- Smokers had a high prevalence of smoking cigarillos (28.7%) and blunts (27.7%).
- These findings reveal a potentially high yet unexamined prevalence of multiple-product smoking among Blacks that involves frequent smoking of the products that are rarely assessed by researchers. This suggests a need for changes in tobacco-use assessment, and in tobaccoprevention and cessation programs as well.

Strengths & Limitations

- Strengths include a large, random sample and a high survey response rate.
- Limitations are a California sample whose results may not generalize elsewhere, and use of self-reports that may underestimate tobacco use.

ABSTRACT

Background. Little is known about polytobacco use among African-American adults. This study is the first to examine this among a random, statewide, community sample of Black adults.

Method. Community-based sampling obtained a statewide, random-household sample of N = 2,118 California Black adults, surveyed door-to-door. Past 30-day smoking of cigarettes, blunts, bidis, kreteks, *Philly/Black & Mild*, marijuana, and cigars was examined.

Results. Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days. Smokers had substantial prevalence of smoking products such as *Phillies/Blacks* (28.7%) and blunts (27.7%). Logistic regressions revealed that the odds of smoking most non-cigarette products were higher for cigarette smokers and for men, inversely related to age, and unrelated to socioeconomic status. However, smoking of blunts, bidis, and kreteks was not predicted by cigarette smoking.

Conclusion. Smoking of cigarillos (e.g., *Phillies*, *Black & Mild*) and blunts may be somewhat prevalent among Black cigarette smokers and non-smokers alike, but such products are not examined in most population-level smoking research. Smoking of these products should be included in surveillance studies, in cancer prevention programs, and in healthcare providers= assessment of smoking, and addressed in smoking cessation programs as well.

INTRODUCTION

 Polytobacco use refers to the use of cigarettes in combination with another tobacco or smoked product such as cigars, kreteks (clove cigarettes), bidis (hand-rolled, flavored tobacco wrapped in temburi or tendu leaves), and pipes [1-4]. Compared to cigarette smoking, polytobacco use is associated with higher nicotine addiction, greater difficulty quitting tobacco, and increased incidence of smoking-related cancers[1-5]. These three outcomes are more prevalent among Black than White smokers [5-7] even though Blacks smoke significantly fewer cigarettes per day and initiate smoking later in life[5-7]. Possible polytobacco use among Blacks might be relevant to these puzzling tobacco-related racial disparities, and hence assessment of polytobacco use among Black smokers is needed.

Population surveillance studies reveal that polytobacco use among adults (ages ∃ 18) is low, i.e., 2.5% overall, 2.6% for Whites, 2.9% for Blacks [1]. However, most population studies of adults [1,3], unlike those of teens[4,8], did not assess smoking of bidis and kreteks. These products have 3-5 times higher nicotine, tar, and carbon monoxide than conventional US cigarettes[9-10], and incidence of smoking-related cancers is up to 112% higher among bidi- than among cigarette-smokers[11-12]. The sole study of bidi smoking among a large, random sample of adults (i.e., 18-24 year olds in the Behavioral Risk Factor Surveillance System) found that 25.4% of Blacks had ever-smoked bidis, a rate three times higher than that of Whites [13]. Likewise, a study of polytobacco use among military recruits found significantly higher use of bidis (but not of kreteks) among Blacks than Whites[14].

In addition to limited population-data on Black adult smoking of highly-carcinogenic products such as bidis, population studies usually do not assess smoking of the products that are popular in the Black community among cigarette smokers and non-smokers alike. Foremost among these are the thin, flavored, little cigars/cigarillos[15-17] such as *Philly* and *Black & Mild*, that Blacks often do not categorize as cigars[18], and blunts, i.e., *Phillies* emptied of their tobacco and filled with marijuana[8,15-17]. Studies of small convenience samples have found prevalence rates of up to 30% for both products among young Black adults[15-16].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Thus, little is known about Black-adult smoking of a variety of non-cigarette products. This study reports the first data on the prevalence and correlates of smoking blunts, cigarillos (*Philly/Black & Mild* by brand name), bidis, kreteks, standard-size cigars, and marijuana among a random, statewide, community sample of Black adult smokers (polytobacco use) and non-smokers (multiple-product smoking). We hypothesized a high prevalence of polytobacco use among Black cigarette smokers, and prevalent smoking of the products that typically are not examined in smoking research.

METHOD

Procedures

Black participation in telephone and household-interview health surveys is low (e.g., 0.2%-20% [19-21]; hence, community-based sampling (CBS) and community-based participatory research (CBPR) approaches were used to increase participation rates[22-24]. CBS is a 3-stage, random-household probability sampling procedure often used in population studies of minorities to assure inclusion of segregated, linguistically-isolated, and phoneless/cell-phone only households; hence CBS yields more representative ethnic-minority samples [23-24]. In CBS Stage 1, census data were used to identify the counties in which the majority of CA Blacks reside. This revealed that most (90%) of the CA Black population resides in 7 counties, e.g., Los Angeles (42%), Sacramento (10%), San Diego (6%). Blacks were sampled from these counties proportional to representation, i.e., 42% of the sample came from Los Angeles county and 6% from San Diego county (etc.), such that this sample matched the distribution of the CA Black population. This was achieved by sampling more or fewer census tracts in each county as needed [24].

In CBS Stage 2, 513 census tracts (CTS) within the 7 counties were randomly selected. In Stage 3, a smaller set of equal numbers of low- (20-50% Blacks) and high-segregated (60-92% Blacks) CTS were randomly-selected from the 513, and block-groups within those randomly-selected. Every household in the block-groups was sampled door-to-door on weekends, with one adult participant permitted per household.

The door-to-door method assured inclusion of phoneless/cell phone only households. Further details on the method are provided elsewhere[24]. Because cigarette-smoking rates are significantly higher among phoneless/cell phone only households[19], their inclusion here via the door-to-door survey method is likely to yield higher smoking rates than found in random telephone surveys.

The CBPR aspect of the study was co-sponsorship by the California Black Health Network (CBHN), a well-known, trusted organization that has conducted statewide tobacco assessment and tobacco-control programs for CA Blacks since the 1970s. Black-adult surveyors from the CBHN collected the data. Surveyors approached all households in the block groups, introduced themselves as CBHN staff, and asked if a Black adult who resided in the household might wish to complete the brief, anonymous, *California Black Health Network* health survey for \$10 cash. Using this approach, the response rate was 99%, i.e., of those who answered the door, 99% completed and only 1% refused the survey[24].

Because up to 68% of cotinine-determined Black smokers deny smoking (self-report non-smoking) in household interviews[25], a written survey was used instead. Anonymous written surveys decrease socially-desirable denial of smoking and substance use and yield higher smoking and substance-use prevalence rates[26]; hence higher smoking rates are expected here than found in random household surveys. Surveys were left with participants to complete in private, and retrieved 30 minutes later. The study had the approval of the Institutional Review Board of San Diego State University.

Materials/Measures.

 The survey assessed Past 30-day Smoking (yes/no) of cigarettes, blunts, bidis, kreteks/clove cigarettes, two cigarillos (small cigars) by brand name (*Philly*, *Black & Mild*), standard-size cigars, and marijuana. Type of cigarettes smoked (menthol, non-menthol, both) and demographic variables also were assessed. The survey took 20 minutes to complete.

RESULTS

Participants were a random, statewide, household-probability sample of N = 2118, US-born, self-identified African-American/Black adult residents of California (CA), 1214 women (57.3%) and 904 men For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Any 1 or more of the above

n = 690 (32.6%), p = 1284 (67.3%), p = .0005

Men Any 1 or more of the above

Women Any 1 or more of the above

(42.7%), whose ages ranged from 18 to 95 years (Mean = 43.8, s.d. = 16.2 years). Details of their demographics have been presented elsewhere[24], and revealed that this sample=s demographics are similar to those of the Black population in the CA Census. The prevalence of cigarette smoking among this sample was 32.6%, and significantly higher among men (37.2%) than women (29.7%; $\chi^2 = 10.651$, p < .001).

Table 1 displays Past 30-Day Smoking Prevalence Rates for 6 non-cigarette products among cigarette smokers and non-smokers. As shown, prevalence of smoking 1 or more non-cigarette product was 49.3% for cigarette smokers and 14.9% for non-smokers. Among Black men, prevalence of smoking 1 or more non-cigarette product was 57.3% for smokers, and 19.5% for non-smokers; among women, these rates were 40.6% (cigarette smokers) and 12.1% (non-smokers).

Table 1. Prevalence of Smoking Non-cigarette Products among a

random sample of Black Adult Cigarette Smokers and Non-Smokers

Past 30 day Smoking of	Overall %	Smokers ^a %	Non-Smokers b	χ²1 *
Philly; Black & Mild	13.0	28.7	5.3	176.389
Blunts	14.1	27.7	7.5	23.255
Standard Size Cigars	10.1	21.4	4.5	107.004
Marijuana	18.6	33.0	11.4	113.856
Bidis	2.0	5.0	0.5	35.97
Kreteks/Cloves	1.1	2.7	0.4	17.304

49.3

57.3

40.6

26.1

33.6

20.6

14.9

19.5

12.1

257.73

114.803

107.047

Table 2 displays the hierarchical logistic regression predicting smoking of any non-cigarette product from demographic and cigarette-smoking variables. As shown, smoking non-cigarette products was

predicted by age, gender, and cigarette smoking, but not by socioeconomic status (SES; education, income, employment). Men (OR=2.5), cigarette smokers (OR=3.2), and young adults (OR=7.4) were more likely to smoke non-cigarette products, and the odds of smoking the products increased with decreasing age.

Tabl	le 2. Logistic Regression Predict	ing Black	Adult Smo	king of No	n-Cigarette	Products
Model a	nd Variables Entered	β	Wald	P	OR	95% CI
STEP 1: DE	MOGRAPHIC VARIABLES					
Age	45 and older (REF)					
	18-24	1.997	38.442	.0005	7.37	3.919,13.856
	25-34	1.05	17.546	.0005	2.85	1.46,4.656
	35-44	.705	7.882	.005	2.02	1.237,3.311
Gender	Women (REF)					,
	Men	.931	22.023	.0005	2.54	1.720,3.742
Education Did	dn't Finish High School (REF)	.,,				
Zuucution Bic	High School Graduate/GED	.051	0.022	.882		
	College and higher	227	1.078	.299		
Income	Less than \$10,999 (REF)					
	\$11,000 - \$25,999	.330	1.156	.282		
	\$26,000-\$49,999	.524	3.445	.063		
	\$50,000 and higher	189	0.437	.508		
Employment	Employed (REF)					
	Unemployed	.075	0.109	.741		
STEP 2: 0	CIGARETTE SMOKING					
Smoking	Non-Smoker (REF)					
Smoking	Smoker	1.16	21.760	.0005	3.19	1.962,5.212
Cigarette Type	Non-Menthol(REF)	–		0.15		
	Menthol Both	.447 .851	3.469 7.166	.063 .007	2.34	1.256, 4.366
REF = Reference		.031	7.100	.007	2.34	1.230, 4.300

Table 3 displays separate regressions predicting smoking of Blunts and of the cigarillos *Philly* and *Black & Mild*. Age, gender, and higher incomes were predictors of smoking Blunts. The odds of Bluntsmoking were 2.5 times higher for men, and increased as age decreased, with young (ages 18-24) adults 6.3 times more likely than older ones (ages \exists 45) to smoke Blunts. *Philly/Black & Mild*- smoking was predicted by age, gender, and cigarette smoking. Men were 2.6 times more likely than women, young

 adults 15.9 times more likely than older ones, and cigarette smokers 5.3 times more likely than non-smokers to smoke *Philly/Black &Mild*.

Table 3. Logistic Regressions Predicting Black Adult Smoking of Blunts and of Philly/Black & Mild Cigarillos

			I	Blunts		Philly	/Black &	& Mild (Cigarillos
	riables Entered	Wald	p	OR	95% CI	Wald	р	OR	95% CI
STEP	1: Demographics								
Age	45 and older (REF)								
	18-24	29.69	.0005	6.25	3.23,12.08	51.69	.0005	15.90	7.48,33.81
	25-34	13.31	.0005	3.07	1.68,5.62	21.33	.0005	4.23	2.29,7.80
			.007		*				·
~ .	35-44	7.208	.007	2.38	1.26,4.48	14.22	.0005	3.38	1.79,6.36
Gender	Women (REF)								
	Men	14.10	.0005	2.49	1.55,4.02	14.02	.0005	2.57	1.57,4.21
Education	Not HS Grad (REF)								
	HS Grad/GED	0.82	.365			.928	.335		
	College and higher	1.066	.302			.616	.433		
Income L	ess than \$10,999(REF)								
	\$11,000 - \$25,999	3.925	.048	2.17	1.01,4.66	.375	.540		
	\$26,000-\$49,999	4.792	.029	2.18	1.09,4.37	.289	.591		
	\$50,000 and higher	0.051	.821			.089	.766		
Employm	ent								
	Employed(REF)								
	Unemployed	0.259	.611			1.29	.257		
STEP 2:	Cigarette Smoking								
	- 8								
Smoking	Non-Smoker (REF)								
	Smoker	3.767	.052	1.89	.994,3.59 a	19.75	.0005	5.34	2.55,11.18
Type	Non-Menthol(REF)	0.521	470			6.72	012	2.26	1 10 4 66
	Menthol Both	0.521 0.169	.470 .681			6.72 15.42	.013 .005	2.36 5.08	1.19,4.66 2.26,11.43
REF = Re	ference group; ^a = Not					10.14	.005	2.00	2.20,11.13

The separate regressions predicting Cigar-Smoking and Marijuana-Smoking (Table 4) found age, gender, and cigarette smoking to be the predictors of both. Men, young adults, and smokers were 2.5 to 3 times more likely to smoke Standard-size Cigars than their reference groups. For Marijuana-Smoking, men were twice as likely, the youngest age group 6 times more likely, and smokers 2.5 times more likely than For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

their reference groups to smoke Marijuana. A similar regression predicting Bidi-smoking (Table 5) revealed that age was the sole predictor, with those ages 18-24 (OR = 4.7) and 35-44 (OR 4.4) more likely to smoke Bidis than the \exists 45 age-group. The regression predicting smoking Kreteks/Cloves (Table 5) revealed that age and smoking menthol cigarettes were the predictors; those ages 35-44 were 11 times more likely, and menthol smokers (OR = 0.205) were less likely to smoke Kreteks/Cloves.

Table 4. Logistic Regression	ons Predicting Black Adult Smoking of	of Cigars and of Marijuana
	Standard-size Cigars	Marijuana

Va	riables Entered	Wald	p	OR	95% CI	Wald	p	OR	95% CI
Age	45 and older (REF)								
1160	18-24	0.022	002	2.99	1 46 6 00	20.69	0005	6.05	2 20 11 45
		9.023	.003	2.99	1.46,6.09	30.68	.0005	6.05	3.20,11.45
	25-34	.819	.365			25.30	.0005	4.13	2.38,7.17
	35-44	4.132	.042	1.98	1.03,3.82	6.85	.009	2.18	1.22,3.90
Gender	Women (REF)								
	Men	16.823	.0005	3.08	1.80,5.28	11.51	.001	2.14	1.38,3.32
Education	Not HS Grad (REF)								
	HS Grad/GED	.264	.607			1.03	.310		
	College and higher	.004	.947			.129	.719		
Income L	ess than \$10,999 (REF)		., .,			.12	., .,		
	\$11,000 - \$25,999	.518	.472			1.35	.245		
	\$26,000-\$49,999	2.065	.151			2.14	.143		
	\$50,000 and higher	.473	.492			.048	.826		
Employm	ent								
	Employed(REF)								
	Unemployed	.032	.858			1.08	.300		
STEP 2: C	igarette Smoking								
Smoking	Non-Smoker (REF)								
•	Smoker	6.305	.012	2.54	1.23,5.26	9.42	.002	2.55	1.40,4.64
Type	Non-Menthol(REF)								
	Menthol	.162	.687			3.83	.050	1.76	.999,3.09 a
DEE - D	$\frac{\text{Both}}{\text{ference group;}^{a} = \text{Not S}}$	1.887	.170			2.74	.098		

7	Table 5. Logistic Regres	sions Pre	dicting l	Black A	dult Smoking	of Bidis an	d of Kr	eteks/Clo	oves
		Bidis				Kreteks/Clove Cigarettes			
	riables Entered emographics	Wald	р	OR	95% CI	Wald	р	OR	95% CI
Age	45 and older (REF)								
	18-24	4.634	.031	4.74	1.15,19.55	0.000	.997		
	25-34	3.256	.071			3.540	.06	5.79	.929,36.04 ^a
	35-44	5.000	.025	4.43	1.20,16.32	7.265	.007	11.09	1.928,63.79
Gender	Women (REF)								
	Men	1.970	.160			0.179	.672		
Education	Not HS Grad (REF)								
	HS Grad/GED	.000	.990			0.033	.855		
	College and higher	.013	.910			1.447	.229		
IncomeLes	ss than \$10,999 (REF)								
	\$11,000 - \$25,999	1.044	.307			0.758	.384		
	\$26,000-\$49,999	.119	.731			0.812	.367		
	\$50,000 and higher	.089	.776			0.229	.632		
Employme									
	Employed(REF)								
	Unemployed	1.719	.190			0.116	.734		
STEP 2: Ci	garette Smoking								
Smoking	Non-Smoker (REF)	2.126	1.45			0.000	006		
Type	Smoker Non-Menthol(REF)	2.126	.145			0.000	.996		
- J PC	Menthol	.753	.386			4.365	.037	0.205	.046,.907
	Both	2.341	.126			0.488	.485		
REF = Refe	erence group; ^a = Not Si	gnificant							

DISCUSSION

As hypothesized, there was a high (49.3%) prevalence of polytobacco among Black adult cigarette smokers that held for men (57.3%) and women (40.6%). Substantial smoking of non-cigarette products also was found among non-cigarette smokers, with 19.5% of men and 12.1% of women non-smokers smoking at least one non-cigarette product in the past 30 days. The odds of smoking most non-cigarette products

 generally were higher for men than women (ORs = 2.5 to 3.0), and for cigarette smokers than non-smokers (ORs = 3.2 to 5.3); however, gender did not contribute to smoking bidis or kreteks, and cigarette smoking did not contribute to smoking bidis, kreteks, or blunts. Smoking of any non-cigarette product andof each specific product generally was highest among adults ages 18-24 years (ORs = 3 to 15.9), and decreased as age increased. The exception was smoking kreteks/cloves; for these, older adults were more likely to be users. Moreover, unlike the well-known relationship between cigarette smoking and low SES[1,3-5], for these non-cigarette products, SES was related only to smoking blunts, with higher incomes a predictor. Type of cigarette smoked contributed to smoking non-cigarette products in general, and to smoking *Phillies/Blacks* specifically, with higher odds for those who smoked both menthol and non-menthol cigarettes, rather than one or the other.

These findings suggest a problematically high prevalence of polytobacco use among Black smokers that is strongly associated with gender and young-adulthood but not associated with low income, low education, or menthol-smoking. Polytobacco users were mostly young men of varied SES who smoked all types of cigarettes along with non-cigarette products B i.e., a possible pattern of smoking whatever is available. Given that low-SES was not a risk factor for this, polytobacco use might perhaps instead be related to the social risk-factors for cigarette smoking among Blacks that have been identified in prior studies, i.e., racial segregation[27-29] and racial discrimination[30-32]. High levels of residential segregation (with high exposure to targeted tobacco advertising and easy access to single cigarettes in Black neighborhoods), and high levels of (the stress of) racial discrimination might be associated with smoking any cigarette and non-cigarette product available. Studies of the possible role of these factors in polytobacco use among Blacks are needed.

The 14.9% prevalence of past 30-day smoking of non-cigarette products by non-cigarette smokers also is a concern. Smoking blunts and bidis was not associated with cigarette smoking but was strongly associated with youth. This suggests that smoking blunts and bidis might reflect youthful experimentation[13,15,17], and raises questions about whether young Blacks try these before they try For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 cigarettes[13]. Studies of age of initiating smoking of cigarettes versus blunts and cigarillos among Blacks are needed to clarify this.

This study also found a substantial prevalence of smoking products that are not assessed in most population smoking surveys (e.g., cigarillos, blunts). Hence, it would be beneficial for surveillance studies to assess smoking of blunts, bidis, and cigarillos such as *Phillies, Black & Mild,* and *Swisher Sweets*. Smoking of cigarillos may need to be assessed by brand name because young Blacks often do not categorize them as cigars[18] B and hence their reports of cigar use increase significantly when these brand names are included[18]. That these cigarillos are sold individually and come in a variety of flavors (e.g., chocolate, apple, cherry) may contribute to not categorizing them as cigars or cigarettes. Such data will provide a more comprehensive picture of smoking in the Black community and its health risks.

Indeed, more comprehensive, population-level assessment of multiple-substance smoking might yield data that in part explain Black difficulty quitting tobacco despite smoking only a few cigarettes per day[5-6], and likewise might yield findings that in part explain the puzzling high-incidence of smoking-related cancers at young ages among Black men [7,33]. Similarly, it would be beneficial for healthcare providers to include non-cigarette products such as bidis and blunts in 5A (ask, advise, assess, assist, arrange) assessment of smoking[34] among cigarette smokers and non-smokers alike, young adults in particular. Smoking cessation interventions also might be enhanced by assessing and addressing cessation of smoking such products. However, whether evidence-based smoking cessation interventions and nicotine replacement therapy are effective with polytobacco users remains unknown. Studies are needed to assess the possibility that hidden polytobacco use might contribute to the relative failure of standard smoking cessation programs with Black smokers[5-6], and research on the possible need for new cessation interventions for polytobacco users is needed as well.

Limitations of this study include use of self-reports that may be lower than biologically-validated data[25], lack of assessment of some forms of tobacco use (e.g., pipes), and a California sample whose data might not generalize to other states. Despite these limitations, this study is the first to highlight the For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

magnitude and complexity of smoking among a random, community sample of Black adults, and the first to underscore the need to improve its assessment in research and practice.

FUNDING

Supported by *Tobacco-Related Disease Research Program* Grant No. 15AT-1300.

CONTRIBUTORSHIP

All authors made substantial contributions to 1) study conception and design, acquisition of data, or analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

DATA SHARING

There are no additional, unpublished data related to this study.

COMPETING INTERESTS

None

REFERENCES

- 1. Centers for Disease Control and Prevention. Any tobacco use in 13 states B Behavioral Risk Factor Surveillance System, 2008. *MMWR*. 2010; 59(30): 946-950.
- 2. Bombard JM, Pederson LL, Nelson DE, Malarcher AM. Are smokers only using cigarettes? *Addict Beh.* 2007; 32:2411-2419.
- 3. King BA, Dube SR, Tynan. MA. Current tobacco use among adults in the United States: Findings from the National Adult Tobacco Survey. *Am J Public Health*. 2012; 102(11):e99-e100.
- 4. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2000-2009. *MMWR*. 2010; 59(33):1063-8.
- 5. Fagan P, Moolchan ER, Lawrence D, Fernander A, Ponder PK. Identifying health disparities across the tobacco continuum. *Addiction*. 2007; *102* (Suppl.2): 5-29.
 - 6. Trinidad DR, Pérez-Stable EJ, White MM et al. A nationwide analysis of US racial/ethnic

 disparities in smoking behaviors, smoking cessation, and cessation-related factors. *Am J Public Health*. 2011; 101(4):699-706.

- 7. Haiman CA, Stram DO, Wilkens LR et al. Ethnic and racial differences in smoking-related risk of lung cancer. *New Eng J Med*. 2006; 354(4): 333-342.
- 8. Delneveo CD, Hrywna M. The relationship of cigars, marijuana, and blunts to adolescent bidi use. *Public Health Reports*. 2006; 121(5): 603-608.
- 9. Malson JL, Lee EM, Murty R, Moolchan ET, Pickworth WB. Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. *Pharm., Biochem. Beh.* 2003;74:739B745
- 10. Watson CH, Polzin GM, Calafat AM, et al. Determination of the Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes. *Nic. Tob. Research*. 2003;5:747B753.
- 11. Ganesh B, Sushama S, Monika S, Suvarna P. A case-control study of risk factors of lung cancer in Mumbai, India. *Asian Pac J Cancer Prev.* 2011; 12(2):357-362.
- 12. Jayalekshmi PA, Gangadharan P, Akiba S, et al. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India. *Cancer Sci.*2011; 102:460-67.
- 13. Delnevo CD, Pevzner ES, Myrwna M, Lewis MJ. Bidi cigarette use among young adults in 15 states. *Prev. Med.* 2004; 39: 207-211.
- 14. Vander Weg MW, Peterson, AL, Ebbert JO, et al. Prevalence of alternative forms of tobacco use in a population of young adult military recruits. *Addict Behav.* 2008; 33: 69-82.
- 15. Sinclair CF, Foushee HR, Pevear JS et al. Patterns of blunt use among young adult African American men. *Am J Prev Med*. 2012; 42(1): 61-64
- 16. Jolly DH. Exploring the use of little cigars by students at a historically Black university. *Prev Chronic Dis.* 2008; 5:3-11.
- 17. Page JB, Evans S. Cigars, cigarillos and youth: Emerging patterns and subcultural complexities. *J Ethn Subst Abuse*. 2003; 2(4): 63-76.
 - 18. Yerger VB, Pearson C, Malone R. When is a cigar not a cigar? *Am J Public Health*. For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

2001;91:316-7.

- 19. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: Evaluating the need for concern about wireless substitution. *Am J Public Health*. 2006;96: 926-31.
- 20. Link MW, Mokdad AH, Stackhouse HF, et al. Race, ethnicity, and linguistic isolation as determinants of participation in public health surveillance surveys. *Prev Chronic Dis.* 2006; 3:1-12.
- 21. Satia JA, Galanko JA, Rimer BK. Methods and strategies to recruit African-Americans into cancer prevention surveillance studies. *Cancer Epi Bio Prev.* 2005; 14(3):718-721.
- 22. Carroll, JK, Yancey, AK, Spring, B, et al. What are successful recruitment and retention strategies for underserved populations? *Translational Behav Med.* 2011; 234-251.
- 23. Cabral DN, Napoles-Springer AM, Miike R, et al. Population- and community-based recruitment of African Americans and Latinos. *Am J Epi*. 2003; 158: 272-279.
- 24. Pichon LC, Corral I, Landrine H., et al. Sun protection behaviors among African Americans. *Am J Prev Med*. 2010; 38(3): 288-295.
- 25. Fisher MA, Taylor GW, Shelton BJ, Debanne S. Age and race/ethnicity-gender predictors of denying smoking, United States. *J Health Care Poor Underserv*. 2008; *19*: 75-89.
- 26. Beebe TJ, McRae JA, Harrison PA, et al. Mail surveys result in more reports of substance use. *J Clinical* Epi. 2005; *58*: 421-424.
- 27. Liao Y, Tucker P, Okoro CA, et al. REACH 2010 Surveillance for Health Status in Minority Communities. *MMWR Surveillance Summaries*. 2004; *53*:1-36.
- 28. Landrine H, Klonoff EA. Racial segregation and cigarette smoking among Blacks. *J Health Psych*. 2000; 5(2): 211-219.
- 29. Datta GD, Subramanian SV, Colditz GA, et al. Individual, neighborhood, and state-level predictors of smoking among US Black women. *Soc Sci & Medicine*. 2006; *63*, 1034-1044.

- 30. Borrell LN, Diez Roux AV, Jacobs DR, et al. Perceived racial/ethnic discrimination, smoking, and alcohol consumption in the Multi-Ethnic Study of Atherosclerosis (MESA). *Prev. Med.* 2010; 51: 307-312.
- 31. Shariff-Marco S, Klassen AC, Bowie JV. Racial/ethnic differences in self-reported racism and its association with cancer-related health behaviors. *Am J Public Health*. 2010;100:364-74.
- 32. Corral I, Landrine H. Racial Discrimination and Health-Promoting vs. Damaging Behaviors among African-American Adults. *J Health Psych*. 2012; 17: 1176-1182.
 - 33. Elk R, Landrine H. Cancer Disparities. New York, NY: Springer; 2012.
- 34. Weglicki LS. Tobacco use assessment: What exactly is your patient using and why is it important to know? *Ethn Dis.* 2008; 18(3 Suppl 3): S3-6.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and
		what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any pre-specified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment
measurement		(measurement). Describe comparability of assessment methods if there is more than one
		group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe
		which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(\underline{e}) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study, completing
		follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted
		for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
		analyses

Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based

separately for expos. *Give information separately for exposed and unexposed groups.

Polytobacco use and multiple-product smoking among a random community sample of African-American Adults

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003606.R1
Article Type:	Research
Date Submitted by the Author:	22-Aug-2013
Complete List of Authors:	Corral, Irma; Brody School of Medicine, East Carolina University, Psychiatric Medicine Landrine, Hope; East Carolina University, Center for Health Disparities Bess, Jukelia; East Carolina University, Center for Health Disparities
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Epidemiology, Public health, Smoking and tobacco
Keywords:	PREVENTIVE MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE™ Manuscripts

 Polytobacco use and multiple-product smoking among a random community sample of

African-American Adults ¹

Irma Corral, Ph.D., MPH²

Hope Landrine, Ph.D.³

and Jukelia J. Bess, BS ⁴

Key Words: Smoking, African-Americans, blunts, Philly, polytobacco use

Word Count Text: 2504

Tables: 5

FAX: 252-744-2634, Email: landrineh@ecu.edu.

Conflicts of interests: The authors have no financial or other conflicts of interests.

Author Contributions

Irma Corral made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Hope Landrine made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Jukelia Bess made substantial contributions to 1) analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

¹ Supported by funds provided by Tobacco-Related Disease Research Program Grant No. 15-AT1300.

² Department of Psychiatric Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834.

³ To whom correspondence and reprint requests should be addressed at Center for Health Disparities, East Carolina University, 1800 W. 5th Street, Greenville, NC 27834. Phone: 252-744-5535,

⁴ Center for Health Disparities, East Carolina University, Greenville, NC 27834

ARTICLE SUMMARY

Article Focus

- This study is the first to examine prevalence of smoking of cigars, bidis, kreteks, blunts, cigarillos (by brand name), and marijuana among a random, statewide sample of 2,118
 California Black adult cigarette smokers and non-smokers.
- We hypothesized a substantial prevalence of smoking cigarillos and blunts, two products that appear to be popular among U.S. Blacks but are rarely assessed in population tobacco surveillance.

Key Messages

- Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days, and this was unrelated to socioeconomic status.
- Smokers had a high prevalence of smoking cigarillos (28.7%) and blunts (27.7%).
- These findings reveal a potentially high yet unexamined prevalence of multiple-product smoking among Blacks that involves frequent smoking of the products that are rarely assessed by researchers. This suggests a need for changes in tobacco-use assessment, and in tobacco prevention and cessation programs as well.

Strengths & Limitations

- Strengths include a large, random sample and a high survey response rate.
- Limitations are a California sample whose results may not generalize elsewhere, and use of self-reports that may underestimate tobacco use.

ABSTRACT

Background. Little is known about polytobacco use among African-American adults. This study is the first to examine this among a random, statewide, community sample of Black adults.

Method. Community-based sampling obtained a statewide, random-household sample of N = 2,118 California Black adults, surveyed door-to-door. Past 30-day smoking of cigarettes, blunts, bidis, kreteks, *Philly/Black & Mild*, marijuana, and cigars was examined.

Results. Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days. Smokers had substantial prevalence of smoking products such as *Phillies/Blacks* (28.7%) and blunts (27.7%). Logistic regressions revealed that the odds of smoking most non-cigarette products were higher for cigarette smokers and for men, inversely related to age, and unrelated to socioeconomic status. However, smoking of blunts, bidis, and kreteks was not predicted by cigarette smoking.

Conclusion. Smoking of cigarillos (e.g., *Phillies, Black & Mild*) and blunts may be somewhat prevalent among Black cigarette smokers and non-smokers alike, but such products are not examined in most population-level smoking research. Smoking of these products should be included in surveillance studies, in cancer prevention programs, and in healthcare provider-assessment of smoking, and addressed in smoking cessation programs as well.

INTRODUCTION

 Polytobacco use refers to the use of cigarettes in combination with another tobacco or smoked product such as cigars, kreteks (clove cigarettes), bidis (hand-rolled, flavored tobacco wrapped in temburi or tendu leaves), and pipes [1-4]. Compared to cigarette smoking, polytobacco use is associated with higher nicotine addiction, greater difficulty quitting tobacco, and increased incidence of smoking-related cancers[1-5]. These three outcomes are more prevalent among Black than White smokers [5-7] even though Blacks smoke significantly fewer cigarettes per day and initiate smoking later in life[5-7]. Possible polytobacco use among Blacks might be relevant to these puzzling tobacco-related racial disparities, and hence assessment of polytobacco use among Black smokers is needed.

Population surveillance studies reveal that polytobacco use among adults is low, i.e., 2.5% overall, 2.6% for Whites, 2.9% for Blacks [1]. However, most population studies of adults [1,3], unlike those of teens[4,8], did not assess smoking of bidis and kreteks. These products have 3-5 times higher nicotine, tar, and carbon monoxide than conventional US cigarettes[9-10], and incidence of smoking-related cancers is up to 112% higher among bidi- than among cigarette-smokers[11-12]. The sole study of bidi smoking among a large, random sample of adults (i.e., 18-24 year olds in the Behavioral Risk Factor Surveillance System) found that 25.4% of Blacks had ever-smoked bidis, a rate three times higher than that of Whites [13]. Likewise, a study of polytobacco use among military recruits found significantly higher use of bidis (but not of kreteks) among Blacks than Whites[14].

In addition to limited population-data on Black adult smoking of highly-carcinogenic products such as bidis, population studies usually do not assess smoking of the products that are popular in the Black community among cigarette smokers and non-smokers alike. Foremost among these are the thin, flavored, little cigars/cigarillos[15-17] such as *Philly* and *Black & Mild*, that Blacks often do not categorize as cigars[18], and blunts, i.e., *Phillies* emptied of their tobacco and filled with marijuana[8,15-17]. Studies of small convenience samples have found prevalence rates of up to 30% for both products among young Black adults[15-16].

 Thus, little is known about Black-adult smoking of a variety of non-cigarette products. This study reports the first data on the prevalence and correlates of smoking blunts, cigarillos (*Philly/Black & Mild* by brand name), bidis, kreteks, standard-size cigars, and marijuana among a random, statewide, community sample of Black adult smokers (polytobacco use) and non-smokers (multiple-product smoking).

METHOD

Procedures

Black participation in telephone and household-interview health surveys is low (e.g., 0.2%-20% [19-21]; hence, community-based sampling (CBS) and community-based participatory research (CBPR) approaches were used to increase participation rates[22-24]. CBS is a 3-stage, random-household probability sampling procedure often used in population studies of minorities to assure inclusion of segregated, linguistically-isolated, and phoneless/cell-phone only households; hence CBS yields more representative ethnic-minority samples [23-24]. In CBS Stage 1, census data were used to identify the counties in which the majority of CA Blacks reside. This revealed that most (90%) of the CA Black population resides in 7 counties, e.g., Los Angeles (42%), Sacramento (10%), San Diego (6%). Blacks were sampled from these counties proportional to representation, i.e., 42% of the sample came from Los Angeles county and 6% from San Diego county (etc.), such that this sample matched the distribution of the CA Black population. This was achieved by sampling more or fewer census tracts in each county as needed [24].

In CBS Stage 2, 513 census tracts (CTS) within the 7 counties were randomly selected. In Stage 3, a smaller set of equal numbers of low- (20-50% Blacks) and high-segregated (60-92% Blacks) CTS were randomly-selected from the 513, and block-groups within those randomly-selected. Every household in the block-groups was sampled door-to-door on weekends 2006-2008, with one adult participant permitted per household. The door-to-door method assured inclusion of phoneless/cell phone only households. Further details on the method are provided elsewhere[24]. Because cigarette-smoking rates are significantly higher

among phoneless/cell phone only households[19], their inclusion here via the door-to-door survey method is likely to yield higher smoking rates than found in random telephone surveys.

The CBPR aspect of the study was co-sponsorship by the California Black Health Network (CBHN), a well-known, trusted organization that has conducted statewide tobacco assessment and tobacco-control programs for CA Blacks since the 1970s. CBHN needed a statewide health-assessment to improve its programs, and so co-sponsored the study. CBHN staff (Black adult surveyors) in each county collected the data in their counties. Surveyors wore CBHN ID badges, approached all households in the block groups, introduced themselves as CBHN staff, and stated that the purpose of the survey was to acquire data needed to improve CBHN programs in each Black community. Surveyors handed potential participants an Informed Consent Letter that described the survey, stated this study purpose, and included CBHN phone numbers (in each county) to call. Surveyors then asked if a Black adult resided in the household who might wish to complete the anonymous, *California Black Health Network* health survey for \$10 cash. Using these CBPR approaches, the response rate was 99%, i.e., of those who answered the door, 99% completed and only 1% refused the survey [24].

Because up to 68% of cotinine-determined Black smokers deny smoking (self-report non-smoking) in household interviews[25], a written survey was used instead. Anonymous written surveys decrease socially-desirable denial of smoking and substance use and yield higher smoking and substance-use prevalence rates[26]; hence higher smoking rates are expected here than found in random household surveys. Surveys were left with participants to complete in private, and retrieved 30 minutes later. The study had the approval of the Institutional Review Board of San Diego State University.

Materials/Measures.

 The survey assessed the health behaviors on which CBHN desired data (diet, physical activity, sunsafety, smoking of a variety of products); only the smoking data are presented here. We explored Past 30-day Smoking (yes/no) of a variety of products for the first time, because smoking these might have implications for Black smoking-related disparities. Products included cigarettes, blunts, bidis, kreteks/clove

cigarettes, two cigarillos (small cigars) by brand name (*Philly*, *Black & Mild*), standard-size cigars, and marijuana. Type of cigarettes smoked (menthol, non-menthol, both) and demographic variables also were assessed. The survey took 15-30 minutes to complete.

RESULTS

Participants were a random, statewide, household-probability sample of N = 2118, US-born, self-identified African-American/Black adult residents of California (CA), 1214 women (57.3%) and 904 men (42.7%), whose ages ranged from 18 to 95 years (Mean = 43.8, s.d. = 16.2 years). Details of their demographics have been presented elsewhere[24], and revealed that the demographics of this 2006-2008 sample are similar to those of the 2006-2008 Black population in the CA Census. The prevalence of cigarette smoking among this sample was 32.6%, and significantly higher among men (37.2%) than women (29.7%; $\chi^2 = 10.651$, p < .001).

Table 1. Prevalence of Smoking Non-cigarette Products among a random sample of Black Adult Cigarette Smokers and Non-Smokers

Past 30 day Smoking of	Overall %	Smokers ^a	kers and Non-Smokers Non-Smokers %	$\chi^{2}_{1} *$
Philly; Black & Mild	13.0	28.7	5.3	176.389
Blunts	14.1	27.7	7.5	23.255
Standard Size Cigars	10.1	21.4	4.5	107.004
Marijuana	18.6	33.0	11.4	113.856
Bidis	2.0	5.0	0.5	35.97
Kreteks/Cloves	1.1	2.7	0.4	17.304
Any 1 or more of the above	26.1	49.3	14.9	257.73
Men Any 1 or more of the above	33.6	57.3	19.5	114.803
Women Any 1 or more of the above $\frac{\text{Women Any 1 or more of the above}}{\text{Moreover a n} = 690 (32.6\%), b n = 1284 (67.3\%)}$	$\frac{20.6}{p * p = .0005}$	40.6	12.1	107.047

Table 1 displays Past 30-Day Smoking Prevalence Rates for 6 non-cigarette products among cigarette smokers and non-smokers. As shown, prevalence of smoking 1 or more non-cigarette product was

49.3% for cigarette smokers and 14.9% for non-smokers. Among Black men, prevalence of smoking 1 or more non-cigarette product was 57.3% for smokers, and 19.5% for non-smokers; among women, these rates were 40.6% (cigarette smokers) and 12.1% (non-smokers). Table 2 displays the hierarchical logistic regression predicting smoking of any non-cigarette product from demographic and cigarette-smoking variables. As shown, smoking non-cigarette products was predicted by age, gender, and cigarette smoking, but not by socioeconomic status (SES; education, income, employment). Men (OR=2.5), cigarette smokers (OR = 3.2), and young adults (OR = 7.4) were more likely to smoke non-cigarette products, and the odds of smoking the products increased with decreasing age.

Table	2. Logistic Regression Predict	ting Black	Adult Smo	king of No	n-Cigarette P	Products
Model and	d Variables Entered	В	Wald	Р	OR	95% CI
STEP 1: DEM	OGRAPHIC VARIABLES					
Age	45 and older (REF)					
	18-24	1.997	38.442	.0005	7.37	3.919,13.856
	25-34	1.05	17.546	.0005	2.85	1.46,4.656
	35-44	.705	7.882	.005	2.02	1.237,3.311
Gender	Women (REF)					
	Men	.931	22.023	.0005	2.54	1.720,3.742
Education Didr	't Finish High School (REF)					
Income	High School Graduate/GED College and higher Less than \$10,999 (REF)	.051 227	0.022 1.078	.882 .299		
	\$11,000 - \$25,999	.330	1.156	.282		
	\$26,000-\$49,999 \$50,000 and higher	.524 189	3.445 0.437	.063 .508		
Employment	Employed (REF)					
	Unemployed	.075	0.109	.741		
STEP 2: C	IGARETTE SMOKING					
Smoking	Non-Smoker (REF) Smoker	1.16	21.760	.0005	3.19	1.962,5.212
Cigarette Type	Non-Menthol(REF)	4.47	2.460	0.62		
	Menthol Both	.447 .851	3.469 7.166	.063 .007	2.34	1.256, 4.366
REF = Reference g			,,,,,	,		200,00

Table 3 displays separate regressions predicting smoking of Blunts and of the cigarillos *Philly* and *Black & Mild*. Age, gender, and higher incomes were predictors of smoking Blunts. The odds of Bluntsmoking were 2.5 times higher for men, and increased as age decreased, with young (ages 18-24) adults 6.3 times more likely than older ones (ages 45 and older) to smoke Blunts. *Philly/Black & Mild*- smoking was predicted by age, gender, and cigarette smoking. Men were 2.6 times more likely than women, young adults 15.9 times more likely than older ones, and cigarette smokers 5.3 times more likely than non-smokers to smoke *Philly/Black &Mild*.

	<u> </u>	redicting Black Adult Smoking of Blunt Blunts				Philly/Black & Mild Cigarillos				
Variables Entered STEP 1: Demographics		Wald	P	OR	95% CI	Wald	p	OR	95% CI	
Age	45 and older (REF)									
Age	18-24	29.69	.0005	6.25	3.23,12.08	51.69	.0005	15.90	7.48,33.81	
	25-34	13.31	.0005	3.07	1.68,5.62	21.33	.0005	4.23	2.29,7.80	
									Í	
~ .	35-44	7.208	.007	2.38	1.26,4.48	14.22	.0005	3.38	1.79,6.36	
Gender	Women (REF)									
	Men	14.10	.0005	2.49	1.55,4.02	14.02	.0005	2.57	1.57,4.21	
Education	Not HS Grad (REF)									
	HS Grad/GED	0.82	.365			.928	.335			
Income I	College and higher ess than \$10,999(REF)	1.066	.302			.616	.433			
income D	\$11,000 - \$25,999	3.925	.048	2.17	1.01,4.66	.375	.540			
					·					
	\$26,000-\$49,999 \$50,000 and higher	4.792 0.051	.029 .821	2.18	1.09,4.37	.289	.591 .766			
Employm	•	0.051	.021			.007	.700			
	Employed(REF)									
	Unemployed	0.259	.611			1.29	.257			
STEP 2:	Cigarette Smoking	0.209	.011			1.2	0 ,			
Smoking	Non-Smoker (REF)									
	Smoker	3.767	.052	1.89	.994,3.59 a	19.75	.0005	5.34	2.55,11.13	
Туре	Non-Menthol(REF) Menthol	0.521	.470			6.72	.013	2.36	1 10 1 66	
	Both	0.321	.470 .681			15.42	.005	5.08	1.19,4.66 2.26,11.43	

Table 4. Logistic Regressions Predicting Black Adult Smoking of Cigars and of Marijuana

		Standard-size Cigars					Marijuana			
Variables Entered		Wald	P	OR	95% CI	Wald	р	OR	95% CI	
Age	45 and older (REF)									
8	18-24	9.023	.003	2.99	1.46,6.09	30.68	.0005	6.05	3.20,11.45	
	25-34	.819	.365			25.30	.0005	4.13	2.38,7.17	
	35-44	4.132	.042	1.98	1.03,3.82	6.85	.009	2.18	1.22,3.90	
Gender	Women (REF)				,				,	
	Men	16.823	.0005	3.08	1.80,5.28	11.51	.001	2.14	1.38,3.32	
Education Not HS Grad (REF)										
	HS Grad/GED	.264	.607			1.03	.310			
	College and higher	.004	.947			.129	.719			
Income Less than \$10,999 (REF)			., .,			.129	., .,			
	\$11,000 - \$25,999	.518	.472			1.35	.245			
	\$26,000-\$49,999	2.065	.151			2.14	.143			
	\$50,000 and higher	.473	.492			.048	.826			
Employment										
	Employed(REF)									
	Unemployed	.032	.858			1.08	.300			
STEP 2: Cigarette Smoking										
Smoking	Non-Smoker (REF)									
	Smoker	6.305	.012	2.54	1.23,5.26	9.42	.002	2.55	1.40,4.64	
Type	Non-Menthol(REF)	160	697			2.02	050	1.76	000 2 00 8	
	Menthol Both	.162 1.887	.687 .170			3.83 2.74	.050 .098	1.76	.999,3.09 ^a	
REF = Reference group; ^a = Not Significant										

The separate regressions predicting Cigar-Smoking and Marijuana-Smoking (Table 4) found age, gender, and cigarette smoking to be the predictors of both. Men, young adults, and smokers were 2.5 to 3 times more likely to smoke Standard-size Cigars than their reference groups. For Marijuana-Smoking, men were twice as likely, the youngest age group 6 times more likely, and smokers 2.5 times more likely than their reference groups to smoke Marijuana. A similar regression predicting Bidi-smoking (Table 5) revealed that age was the sole predictor, with those ages 18-24 (OR = 4.7) and 35-44 (OR 4.4) more likely to smoke Bidis than the older age-group. The regression predicting smoking Kreteks/Cloves (Table 5)

3 4

5 6

7 8 9

10 11

12

13 14

15

16 17

18

19

20

21 22

23 24

25

26 27

28

29 30

31

32 33

34

35

36 37

38 39

40

41 42

43

44

45

46

51 52

53 54

55 56 57

58 59

60

REF = Reference group; ^a = Not Significant

revealed that age and smoking menthol cigarettes were the predictors; those ages 35-44 were 11 times more likely, and menthol smokers (OR = 0.205) were less likely to smoke Kreteks/Cloves.

Table 5. Logistic Regressions Predicting Black Adult Smoking of Bidis and of Kreteks/Cloves **Bidis Kreteks/Clove Cigarettes** Variables Entered Wald P OR 95% CI Wald OR 95% CI STEP 1: Demographics Age 45 and older (REF) 18-24 4.634 0.000 .997 .031 4.74 1.15,19.55 25-34 5.79 3.256 .071 3.540 .06 .929,36.04^a 35-44 5.000 .025 4.43 1.20,16.32 7.265 .00711.09 1.928,63.79 Gender Women (REF) Men 1.970 .160 0.179 .672 **Education** Not HS Grad (REF) .990 .000 0.033 .855 HS Grad/GED .910 College and higher .013 1.447 .229 IncomeLess than \$10,999 (REF) \$11,000 - \$25,999 1.044 .307 0.758 .384 \$26,000-\$49,999 .119 .731 0.812 .367 \$50,000 and higher 0.229 .089 .776 .632 **Employment** Employed(REF) 1.719 .190 0.116 .734 Unemployed STEP 2: Cigarette Smoking **Smoking** Non-Smoker (REF) Smoker 2.126 .145 0.000 .996 **Type** Non-Menthol(REF) Menthol .753 .386 4.365 .037 0.205 .046,.907 Both 2.341 126 0.488 .485

DISCUSSION

There was a high (49.3%) prevalence of polytobacco among Black adult cigarette smokers that held for men (57.3%) and women (40.6%). Substantial smoking of non-cigarette products also was found among non-cigarette smokers, with 19.5% of men and 12.1% of women non-smokers smoking at least one non-cigarette product in the past 30 days. The odds of smoking most non-cigarette products generally were

 higher for men than women (ORs = 2.5 to 3.0), and for cigarette smokers than non-smokers (ORs = 3.2 to 5.3); however, gender did not contribute to smoking bidis or kreteks, and cigarette smoking did not contribute to smoking bidis, kreteks, or blunts. Smoking of any non-cigarette product and of each specific product generally was highest among adults ages 18-24 years (ORs = 3 to 15.9), and decreased as age increased. The exception was smoking kreteks/cloves; for these, older adults were more likely to be users. Moreover, unlike the well-known relationship between cigarette smoking and low SES[1,3-5], for these non-cigarette products, SES was related only to smoking blunts, with higher incomes a predictor. Type of cigarette smoked contributed to smoking non-cigarette products in general, and to smoking *Phillies/Blacks* specifically, with higher odds for those who smoked both menthol and non-menthol cigarettes, rather than one or the other; menthol smoking generally did not predict use of other products.

These findings suggest a problematically high prevalence of polytobacco use among Black smokers that is strongly associated with gender and young-adulthood but not associated with low income, low education, or menthol-smoking. Polytobacco users were mostly young men of varied SES who smoked all types of cigarettes along with non-cigarette products, i.e., a possible pattern of smoking whatever is available. Given that low-SES was not a risk factor for this, polytobacco use might perhaps instead be related to the social risk-factors for cigarette smoking among Blacks that have been identified in prior studies, i.e., racial segregation[27-29] and racial discrimination[30-32]. High levels of residential segregation (with high exposure to targeted tobacco advertising and easy access to single cigarettes in Black neighborhoods), and high levels of (the stress of) racial discrimination might be associated with smoking any cigarette and non-cigarette product available. Studies of the possible role of these factors in polytobacco use among Blacks are needed.

The 14.9% prevalence of past 30-day smoking of non-cigarette products by non-cigarette smokers also is a concern. Smoking blunts and bidis was not associated with cigarette smoking but was strongly associated with youth. This suggests that smoking blunts and bidis might reflect youthful experimentation [13,15,17], and raises questions about whether young Blacks try these before they try cigarettes [13].

 Studies of age of initiating smoking of cigarettes versus blunts and cigarillos among Blacks are needed to clarify this.

This study also found a substantial prevalence of smoking products that are not assessed in most population smoking surveys of adults (e.g., marijuana, cigarillos, blunts). Hence, it would be beneficial for surveillance studies to assess smoking of blunts, bidis, and (in particular) cigarillos such as *Phillies, Black & Mild,* and *Swisher Sweets*. Smoking of cigarillos may need to be assessed by brand name because young Blacks often do not categorize them as cigars[18], and hence their reports of cigar use increase significantly when these brand names are included[18]. That these cigarillos are sold individually and come in a variety of flavors (e.g., chocolate, apple, cherry) may contribute to not categorizing them as cigars or as cigarettes. Such assessment will provide a more comprehensive picture of smoking among Black adults, and would match the complexity of recent (2011) assessments of youth smoking that included bidis, kreteks and cigarillos [35].

This study has several limitations, including use of self-reports that may be lower than biologically-validated data[25], lack of assessment of some forms of tobacco use (e.g., pipes), and a California sample whose data might not generalize to other states. In addition, we used categorical instead of continuous demographic variables, and these may have limited the sensitivity of analyses. Moreover, to decrease the number of consecutive significance tests, potentially-interesting interaction effects (e.g., gender X education, gender X age, gender X income) were not examined; such effects however generally are not examined in basic, epidemiologic studies of product-use [e.g., 35] and is a limitation of this study and of similar studies. Likewise, because more than 90% of these Black cigarette smokers consumed 10 or fewer cigarettes per day, potential relationships between number of cigarettes smoked and smoking of other products were not examined. In addition, prevalence of smoking the products may have changed since this study. This is particularly the case for kreteks (clove cigarettes) that were banned by the 2009 *Family Smoking Prevention and Tobacco Control Act* [36]. The CDC's 2011 study of youth [35] revealed that youth still smoke kreteks despite the ban, and this suggests that adults also might still smoke them. How

youth and adults acquire banned and illegal products is worthy of investigation.

Despite these limitations, this study is the first to highlight the magnitude and complexity of smoking among a random, community sample of Black adults, and the first to underscore the need to improve its assessment in research and practice. More comprehensive, population-level assessment of multiple-substance smoking might yield data that in part explain Black difficulty quitting tobacco despite smoking only a few cigarettes per day[5-6], and likewise might yield findings that in part explain the puzzling high-incidence of smoking-related cancers at young ages among Black men [7,33]. Similarly, it would be beneficial for healthcare providers to include non-cigarette products such as bidis and blunts in 5A (ask, advise, assess, assist, arrange) assessment of smoking [34] among cigarette smokers and non-smokers alike, young adults in particular. Smoking cessation interventions also might be enhanced by assessing and addressing cessation of smoking such products. However, whether evidence-based smoking cessation interventions and nicotine replacement therapy are effective with polytobacco users remains unknown. Studies are needed to assess the possibility that hidden polytobacco use might contribute to the relative failure of standard smoking cessation programs with Black smokers[5-6], and research on the possible need for new cessation interventions for polytobacco users is needed as well.

FUNDING

Supported by *Tobacco-Related Disease Research Program* Grant No. 15AT-1300.

ACKNOWLEDGMENT

We are grateful to Denise Adams-Simms and the California Black Health Network.

REFERENCES

- 1. Centers for Disease Control and Prevention. Any tobacco use in 13 states B Behavioral Risk Factor Surveillance System, 2008. *MMWR*. 2010; 59(30): 946-950.
- 2. Bombard JM, Pederson LL, Nelson DE, Malarcher AM. Are smokers only using cigarettes? *Addict Beh.* 2007; 32:2411-2419.
 - 3. King BA, Dube SR, Tynan. MA. Current tobacco use among adults in the United States: Findings For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

 from the National Adult Tobacco Survey. Am J Public Health. 2012; 102(11):e99-e100.

- 4. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2000-2009. *MMWR*. 2010; 59(33):1063-8.
- 5. Fagan P, Moolchan ER, Lawrence D, Fernander A, Ponder PK. Identifying health disparities across the tobacco continuum. *Addiction*. 2007; *102* (Suppl.2): 5-29.
- 6. Trinidad DR, Pérez-Stable EJ, White MM et al. A nationwide analysis of US racial/ethnic disparities in smoking behaviors, smoking cessation, and cessation-related factors. *Am J Public Health*. 2011; 101(4):699-706.
- 7. Haiman CA, Stram DO, Wilkens LR et al. Ethnic and racial differences in smoking-related risk of lung cancer. *New Eng J Med*. 2006; 354(4): 333-342.
- 8. Delneveo CD, Hrywna M. The relationship of cigars, marijuana, and blunts to adolescent bidi use. *Public Health Reports*. 2006; 121(5): 603-608.
- 9. Malson JL, Lee EM, Murty R, Moolchan ET, Pickworth WB. Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. *Pharm., Biochem. Beh.* 2003;74:739B745
- 10. Watson CH, Polzin GM, Calafat AM, et al. Determination of the Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes. *Nic. Tob. Research*. 2003;5:747B753.
- 11. Ganesh B, Sushama S, Monika S, Suvarna P. A case-control study of risk factors of lung cancer in Mumbai, India. *Asian Pac J Cancer Prev.* 2011; 12(2):357-362.
- 12. Jayalekshmi PA, Gangadharan P, Akiba S, et al. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India. *Cancer Sci.*2011; 102:460-67.
- 13. Delnevo CD, Pevzner ES, Myrwna M, Lewis MJ. Bidi cigarette use among young adults in 15 states. *Prev. Med.* 2004; 39: 207-211.
- 14. Vander Weg MW, Peterson, AL, Ebbert JO, et al. Prevalence of alternative forms of tobacco use in a population of young adult military recruits. *Addict Behav.* 2008; 33: 69-82.
 - 15. Sinclair CF, Foushee HR, Pevear JS et al. Patterns of blunt use among young adult African

American men. Am J Prev Med. 2012; 42(1): 61-64

- 16. Jolly DH. Exploring the use of little cigars by students at a historically Black university. *Prev Chronic Dis.* 2008; 5:3-11.
- 17. Page JB, Evans S. Cigars, cigarillos and youth: Emerging patterns and subcultural complexities. *J Ethn Subst Abuse*. 2003; 2(4): 63-76.
- 18. Yerger VB, Pearson C, Malone R. When is a cigar not a cigar? *Am J Public Health*. 2001;91:316-7.
- 19. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: Evaluating the need for concern about wireless substitution. *Am J Public Health*. 2006;96: 926-31.
- 20. Link MW, Mokdad AH, Stackhouse HF, et al. Race, ethnicity, and linguistic isolation as determinants of participation in public health surveillance surveys. *Prev Chronic Dis.* 2006; 3:1-12.
- 21. Satia JA, Galanko JA, Rimer BK. Methods and strategies to recruit African-Americans into cancer prevention surveillance studies. *Cancer Epi Bio Prev.* 2005; 14(3):718-721.
- 22. Carroll, JK, Yancey, AK, Spring, B, et al. What are successful recruitment and retention strategies for underserved populations? *Translational Behav Med.* 2011; 234-251.
- 23. Cabral DN, Napoles-Springer AM, Miike R, et al. Population- and community-based recruitment of African Americans and Latinos. *Am J Epi*. 2003; 158: 272-279.
- 24. Pichon LC, Corral I, Landrine H., et al. Sun protection behaviors among African Americans. *Am J Prev Med*. 2010; 38(3): 288-295.
- 25. Fisher MA, Taylor GW, Shelton BJ, Debanne S. Age and race/ethnicity-gender predictors of denying smoking, United States. *J Health Care Poor Underserv*. 2008; *19*: 75-89.
- 26. Beebe TJ, McRae JA, Harrison PA, et al. Mail surveys result in more reports of substance use. *J Clinical* Epi. 2005; *58*: 421-424.
- 27. Liao Y, Tucker P, Okoro CA, et al. REACH 2010 Surveillance for Health Status in Minority Communities. *MMWR Surveillance Summaries*. 2004; *53*:1-36.

- 28. Landrine H, Klonoff EA. Racial segregation and cigarette smoking among Blacks. *J Health Psych*. 2000; 5(2): 211-219.
- 29. Datta GD, Subramanian SV, Colditz GA, et al. Individual, neighborhood, and state-level predictors of smoking among US Black women. *Soc Sci & Medicine*. 2006; *63*, 1034-1044.
- 30. Borrell LN, Diez Roux AV, Jacobs DR, et al. Perceived racial/ethnic discrimination, smoking, and alcohol consumption in the Multi-Ethnic Study of Atherosclerosis (MESA). *Prev. Med.* 2010; 51: 307-312.
- 31. Shariff-Marco S, Klassen AC, Bowie JV. Racial/ethnic differences in self-reported racism and its association with cancer-related health behaviors. *Am J Public Health*. 2010;100:364-74.
- 32. Corral I, Landrine H. Racial Discrimination and Health-Promoting vs. Damaging Behaviors among African-American Adults. *J Health Psych*. 2012; 17: 1176-1182.
 - 33. Elk R, Landrine H. Cancer Disparities. New York, NY: Springer; 2012.
- 34. Weglicki LS. Tobacco use assessment: What exactly is your patient using and why is it important to know? *Ethn Dis.* 2008; 18(3 Suppl 3): S3-6.
- 35. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2011. *MMWR*. 2012; 61(31):581-585.
 - 36. See http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and
		what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any pre-specified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment
measurement		(measurement). Describe comparability of assessment methods if there is more than one
		group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe
		which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(\underline{e}) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study, completing
		follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted
		for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
		analyses

18	Summarise key results with reference to study objectives
19	Discuss limitations of the study, taking into account sources of potential bias or
	imprecision. Discuss both direction and magnitude of any potential bias
20	Give a cautious overall interpretation of results considering objectives, limitations,
	multiplicity of analyses, results from similar studies, and other relevant evidence
21	Discuss the generalisability (external validity) of the study results
22	Give the source of funding and the role of the funders for the present study and, if
	applicable, for the original study on which the present article is based
	19 20 21

separately for expose. *Give information separately for exposed and unexposed groups.

Page 20 of 36

Polytobacco use and multiple-product smoking among a random community sample of

African-American Adults ¹

Irma Corral, Ph.D., MPH ²
Hope Landrine, Ph.D. ³
and Jukelia J. Bess, BS ⁴

Key Words: Smoking, African-Americans, blunts, Philly, polytobacco use

Word Count Text: 2504

Tables: 5

FAX: 252-744-2634, Email: landrineh@ecu.edu.

<u>Conflicts of interests</u>: The authors have no financial or other conflicts of interests.

Author Contributions

 Irma Corral made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Hope Landrine made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Jukelia Bess made substantial contributions to 1) analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

¹ Supported by funds provided by Tobacco-Related Disease Research Program Grant No. 15-AT1300.

² Department of Psychiatric Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834.

³ To whom correspondence and reprint requests should be addressed at Center for Health Disparities, East Carolina University, 1800 W. 5th Street, Greenville, NC 27834. Phone: 252-744-5535,

⁴ Center for Health Disparities, East Carolina University, Greenville, NC 27834

ARTICLE SUMMARY

Article Focus

- This study is the first to examine prevalence of smoking of cigars, bidis, kreteks, blunts, cigarillos (by brand name), and marijuana among a random, statewide sample of 2,118
 California Black adult cigarette smokers and non-smokers.
- We hypothesized a substantial prevalence of smoking cigarillos and blunts, two products that appear to be popular among U.S. Blacks but are rarely assessed in population tobacco surveillance.

Key Messages

- Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days, and this was unrelated to socioeconomic status.
- Smokers had a high prevalence of smoking cigarillos (28.7%) and blunts (27.7%).
- These findings reveal a potentially high yet unexamined prevalence of multiple-product smoking among Blacks that involves frequent smoking of the products that are rarely assessed by researchers. This suggests a need for changes in tobacco-use assessment, and in tobacco prevention and cessation programs as well.

Strengths & Limitations

- Strengths include a large, random sample and a high survey response rate.
- Limitations are a California sample whose results may not generalize elsewhere, and use of self-reports that may underestimate tobacco use.

ABSTRACT

Background. Little is known about polytobacco use among African-American adults. This study is the first to examine this among a random, statewide, community sample of Black adults.

Method. Community-based sampling obtained a statewide, random-household sample of N = 2,118 California Black adults, surveyed door-to-door. Past 30-day smoking of cigarettes, blunts, bidis, kreteks, *Philly/Black & Mild*, marijuana, and cigars was examined.

Results. Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days. Smokers had substantial prevalence of smoking products such as *Phillies/Blacks* (28.7%) and blunts (27.7%). Logistic regressions revealed that the odds of smoking most non-cigarette products were higher for cigarette smokers and for men, inversely related to age, and unrelated to socioeconomic status. However, smoking of blunts, bidis, and kreteks was not predicted by cigarette smoking.

Conclusion. Smoking of cigarillos (e.g., *Phillies, Black & Mild*) and blunts may be somewhat prevalent among Black cigarette smokers and non-smokers alike, but such products are not examined in most population-level smoking research. Smoking of these products should be included in surveillance studies, in cancer prevention programs, and in healthcare provider-assessment of smoking, and addressed in smoking cessation programs as well.

INTRODUCTION

Polytobacco use refers to the use of cigarettes in combination with another tobacco or smoked product such as cigars, kreteks (clove cigarettes), bidis (hand-rolled, flavored tobacco wrapped in temburi or tendu leaves), and pipes [1-4]. Compared to cigarette smoking, polytobacco use is associated with higher nicotine addiction, greater difficulty quitting tobacco, and increased incidence of smoking-related cancers[1-5]. These three outcomes are more prevalent among Black than White smokers [5-7] even though Blacks smoke significantly fewer cigarettes per day and initiate smoking later in life[5-7]. Possible polytobacco use among Blacks might be relevant to these puzzling tobacco-related racial disparities, and hence assessment of polytobacco use among Black smokers is needed.

Population surveillance studies reveal that polytobacco use among adults is low, i.e., 2.5% overall, 2.6% for Whites, 2.9% for Blacks [1]. However, most population studies of adults [1,3], unlike those of teens[4,8], did not assess smoking of bidis and kreteks. These products have 3-5 times higher nicotine, tar, and carbon monoxide than conventional US cigarettes[9-10], and incidence of smoking-related cancers is up to 112% higher among bidi- than among cigarette-smokers[11-12]. The sole study of bidi smoking among a large, random sample of adults (i.e., 18-24 year olds in the Behavioral Risk Factor Surveillance System) found that 25.4% of Blacks had ever-smoked bidis, a rate three times higher than that of Whites [13]. Likewise, a study of polytobacco use among military recruits found significantly higher use of bidis (but not of kreteks) among Blacks than Whites[14].

In addition to limited population-data on Black adult smoking of highly-carcinogenic products such as bidis, population studies usually do not assess smoking of the products that are popular in the Black community among cigarette smokers and non-smokers alike. Foremost among these are the thin, flavored, little cigars/cigarillos[15-17] such as *Philly* and *Black & Mild*, that Blacks often do not categorize as cigars[18], and blunts, i.e., *Phillies* emptied of their tobacco and filled with marijuana[8,15-17]. Studies of small convenience samples have found prevalence rates of up to 30% for both products among young Black adults[15-16].

Thus, little is known about Black-adult smoking of a variety of non-cigarette products. This study reports the first data on the prevalence and correlates of smoking blunts, cigarillos (*Philly/Black & Mild* by brand name), bidis, kreteks, standard-size cigars, and marijuana among a random, statewide, community sample of Black adult smokers (polytobacco use) and non-smokers (multiple-product smoking).

METHOD

Procedures

 Black participation in telephone and household-interview health surveys is low (e.g., 0.2%-20% [19-21]; hence, community-based sampling (CBS) and community-based participatory research (CBPR) approaches were used to increase participation rates[22-24]. CBS is a 3-stage, random-household probability sampling procedure often used in population studies of minorities to assure inclusion of segregated, linguistically-isolated, and phoneless/cell-phone only households; hence CBS yields more representative ethnic-minority samples [23-24]. In CBS Stage 1, census data were used to identify the counties in which the majority of CA Blacks reside. This revealed that most (90%) of the CA Black population resides in 7 counties, e.g., Los Angeles (42%), Sacramento (10%), San Diego (6%). Blacks were sampled from these counties proportional to representation, i.e., 42% of the sample came from Los Angeles county and 6% from San Diego county (etc.), such that this sample matched the distribution of the CA Black population. This was achieved by sampling more or fewer census tracts in each county as needed [24].

In CBS Stage 2, 513 census tracts (CTS) within the 7 counties were randomly selected. In Stage 3, a smaller set of equal numbers of low- (20-50% Blacks) and high-segregated (60-92% Blacks) CTS were randomly-selected from the 513, and block-groups within those randomly-selected. Every household in the block-groups was sampled door-to-door on weekends 2006-2008, with one adult participant permitted per household. The door-to-door method assured inclusion of phoneless/cell phone only households. Further details on the method are provided elsewhere[24]. Because cigarette-smoking rates are significantly higher

 among phoneless/cell phone only households[19], their inclusion here via the door-to-door survey method is likely to yield higher smoking rates than found in random telephone surveys.

The CBPR aspect of the study was co-sponsorship by the California Black Health Network (CBHN), a well-known, trusted organization that has conducted statewide tobacco assessment and tobacco-control programs for CA Blacks since the 1970s. CBHN needed a statewide health-assessment to improve its programs, and so co-sponsored the study. CBHN staff (Black adult surveyors) in each county collected the data in their counties. Surveyors wore CBHN ID badges, approached all households in the block groups, introduced themselves as CBHN staff, and stated that the purpose of the survey was to acquire data needed to improve CBHN programs in each Black community. Surveyors handed potential participants an Informed Consent Letter that described the survey, stated this study purpose, and included CBHN phone numbers (in each county) to call. Surveyors then asked if a Black adult resided in the household who might wish to complete the anonymous, *California Black Health Network* health survey for \$10 cash. Using these CBPR approaches, the response rate was 99%, i.e., of those who answered the door, 99% completed and only 1% refused the survey [24].

Because up to 68% of cotinine-determined Black smokers deny smoking (self-report non-smoking) in household interviews[25], a written survey was used instead. Anonymous written surveys decrease socially-desirable denial of smoking and substance use and yield higher smoking and substance-use prevalence rates[26]; hence higher smoking rates are expected here than found in random household surveys. Surveys were left with participants to complete in private, and retrieved 30 minutes later. The study had the approval of the Institutional Review Board of San Diego State University.

Materials/Measures.

The survey assessed the health behaviors on which CBHN desired data (diet, physical activity, sunsafety, smoking of a variety of products); only the smoking data are presented here. We explored Past 30-day Smoking (yes/no) of a variety of products for the first time, because smoking these might have implications for Black smoking-related disparities. Products included cigarettes, blunts, bidis, kreteks/clove

cigarettes, two cigarillos (small cigars) by brand name (*Philly*, *Black & Mild*), standard-size cigars, and marijuana. Type of cigarettes smoked (menthol, non-menthol, both) and demographic variables also were assessed. The survey took 15-30 minutes to complete.

RESULTS

Participants were a random, statewide, household-probability sample of N = 2118, US-born, self-identified African-American/Black adult residents of California (CA), 1214 women (57.3%) and 904 men (42.7%), whose ages ranged from 18 to 95 years (Mean = 43.8, s.d. = 16.2 years). Details of their demographics have been presented elsewhere[24], and revealed that the demographics of this 2006-2008 sample are similar to those of the 2006-2008 Black population in the CA Census. The prevalence of cigarette smoking among this sample was 32.6%, and significantly higher among men (37.2%) than women (29.7%; $\chi^2 = 10.651$, p < .001).

Table 1. Prevalence of Smoking Non-cigarette Products among a random sample of Black Adult Cigarette Smokers and Non-Smokers

Past 30 day Smoking of	Overall %	Smokers ^a	Non-Smokers b	χ ² 1 *
Philly; Black & Mild	13.0	28.7	5.3	176.389
Blunts	14.1	27.7	7.5	23.255
Standard Size Cigars	10.1	21.4	4.5	107.004
Marijuana	18.6	33.0	11.4	113.856
Bidis	2.0	5.0	0.5	35.97
Kreteks/Cloves	1.1	2.7	0.4	17.304
Any 1 or more of the above	26.1	49.3	14.9	257.73
Men Any 1 or more of the above Women Any 1 or more of the above	33.6 20.6	57.3 40.6	19.5 12.1	114.803 107.047
^a n = 690 (32.6%), ^b n = 1284 (67.3%)	* p = .0005			

Table 1 displays Past 30-Day Smoking Prevalence Rates for 6 non-cigarette products among cigarette smokers and non-smokers. As shown, prevalence of smoking 1 or more non-cigarette product was For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

49.3% for cigarette smokers and 14.9% for non-smokers. Among Black men, prevalence of smoking 1 or more non-cigarette product was 57.3% for smokers, and 19.5% for non-smokers; among women, these rates were 40.6% (cigarette smokers) and 12.1% (non-smokers). Table 2 displays the hierarchical logistic regression predicting smoking of any non-cigarette product from demographic and cigarette-smoking variables. As shown, smoking non-cigarette products was predicted by age, gender, and cigarette smoking, but not by socioeconomic status (SES; education, income, employment). Men (OR=2.5), cigarette smokers (OR = 3.2), and young adults (OR = 7.4) were more likely to smoke non-cigarette products, and the odds of smoking the products increased with decreasing age.

	Table 2. Logistic Regression Predict	ing Black	Adult Smo	king of No	n-Cigarette P	Products
Mod	del and Variables Entered	В	Wald	P	OR	95% CI
STEP 1	: DEMOGRAPHIC VARIABLES					
Age	45 and older (REF)					
	18-24	1.997	38.442	.0005	7.37	3.919,13.856
	25-34	1.05	17.546	.0005	2.85	1.46,4.656
	35-44	.705	7.882	.005	2.02	1.237,3.311
Gender	Women (REF)					,
	Men	.931	22.023	.0005	2.54	1.720,3.742
Education	Didn't Finish High School (REF)	.731	22.023	.0003	2.3 1	1.720,3.712
Education	•					
	High School Graduate/GED	.051	0.022	.882		
_	College and higher	227	1.078	.299		
Income	Less than \$10,999 (REF)					
	\$11,000 - \$25,999	.330	1.156	.282		
	\$26,000-\$49,999	.524	3.445	.063		
	\$50,000 and higher	189	0.437	.508		
Employment	Employed (REF)					
	Unemployed	.075	0.109	.741		
STE	P 2: CIGARETTE SMOKING					
Smoking	Non-Smoker (REF)					
	Smoker	1.16	21.760	.0005	3.19	1.962,5.212
Cigarette Ty	• • • • • • • • • • • • • • • • • • • •					
	Menthol	.447	3.469	.063		
REF = Refere	Both	.851	7.166	.007	2.34	1.256, 4.366

Table 3 displays separate regressions predicting smoking of Blunts and of the cigarillos *Philly* and *Black & Mild*. Age, gender, and higher incomes were predictors of smoking Blunts. The odds of Bluntsmoking were 2.5 times higher for men, and increased as age decreased, with young (ages 18-24) adults 6.3 times more likely than older ones (ages 45 and older) to smoke Blunts. *Philly/Black & Mild*- smoking was predicted by age, gender, and cigarette smoking. Men were 2.6 times more likely than women, young adults 15.9 times more likely than older ones, and cigarette smokers 5.3 times more likely than non-smokers to smoke *Philly/Black & Mild*.

		4]	Blunts		Philly	/Black	& Mild (Cigarillos
	riables Entered	Wald	P	OR	95% CI	Wald	p	OR	95% CI
STEP	1: Demographics								
Age	45 and older (REF)								
	18-24	29.69	.0005	6.25	3.23,12.08	51.69	.0005	15.90	7.48,33.8
	25-34	13.31	.0005	3.07	1.68,5.62	21.33	.0005	4.23	2.29,7.80
	35-44	7.208	.007	2.38	1.26,4.48	14.22	.0005	3.38	1.79,6.36
Gender	Women (REF)								
	Men	14.10	.0005	2.49	1.55,4.02	14.02	.0005	2.57	1.57,4.21
Education	Not HS Grad (REF)								,
	HS Grad/GED	0.82	.365			.928	.335		
_	College and higher	1.066	.302			.616	.433		
Income L	ess than \$10,999(REF)								
	\$11,000 - \$25,999	3.925	.048	2.17	1.01,4.66	.375	.540		
	\$26,000-\$49,999	4.792	.029	2.18	1.09,4.37	.289	.591		
	\$50,000 and higher	0.051	.821			.089	.766		
Employm	ent								
	Employed(REF)								
	Unemployed	0.259	.611			1.29	.257		
STEP 2:	Cigarette Smoking								
Smoking	Non-Smoker (REF)								
	Smoker	3.767	.052	1.89	.994,3.59 ^a	19.75	.0005	5.34	2.55,11.13
Type	Non-Menthol(REF) Menthol	0.521	.470			6.72	.013	2.36	1.19,4.66
	Both	0.321	.681			15.42	.015	5.08	2.26,11.43

Table 4. Logistic Regressions Predicting Black Adult Smoking of Cigars and of Marijuana

		Sta	andard-	size Ci	gars		Mai	ijuana	
Va	ariables Entered	Wald	P	OR	95% CI	Wald	p	OR	95% CI
Age	45 and older (REF)								
	18-24	9.023	.003	2.99	1.46,6.09	30.68	.0005	6.05	3.20,11.45
	25-34	.819	.365			25.30	.0005	4.13	2.38,7.17
	35-44	4.132	.042	1.98	1.03,3.82	6.85	.009	2.18	1.22,3.90
Gender	Women (REF)				, ,				, ,
Genuel	Men	16.823	.0005	3.08	1.80,5.28	11.51	.001	2.14	1.38,3.32
Education	n Not HS Grad (REF)								
	HS Grad/GED	.264	.607			1.03	.310		
Income I	College and higher Less than \$10,999 (REF)	.004	.947			.129	.719		
	\$11,000 - \$25,999	.518	.472			1.35	.245		
Employn	\$26,000-\$49,999 \$50,000 and higher	2.065 .473	.151 .492			2.14 .048	.143 .826		
Limpioyii	Employed(REF)								
	Unemployed	.032	.858			1.08	.300		
STEP 2: 0	Cigarette Smoking								
Smoking	Non-Smoker (REF) Smoker	6.305	.012	2.54	1.23,5.26	9.42	.002	2.55	1.40,4.64
Type	Non-Menthol(REF)				,				
	Menthol Both	.162 1.887	.687 .170			3.83 2.74	.050	1.76	.999,3.09 a
REF = Re	eference group; ^a = Not S		.1/0			2.14	.070		

The separate regressions predicting Cigar-Smoking and Marijuana-Smoking (Table 4) found age, gender, and cigarette smoking to be the predictors of both. Men, young adults, and smokers were 2.5 to 3 times more likely to smoke Standard-size Cigars than their reference groups. For Marijuana-Smoking, men were twice as likely, the youngest age group 6 times more likely, and smokers 2.5 times more likely than their reference groups to smoke Marijuana. A similar regression predicting Bidi-smoking (Table 5) revealed that age was the sole predictor, with those ages 18-24 (OR = 4.7) and 35-44 (OR 4.4) more likely

3 4

5 6

7 8 9

10 11

12 13

14 15

16

17 18

19 20

21 22

23 24

25

26 27

28 29

30

31 32

33 34

35

36 37

38

39

40 41

42

43

44 45

46

47

48

49

50 51

52 53 54

55 56 57

58 59

60

REF = Reference group; ^a = Not Significant

to smoke Bidis than the older age-group. The regression predicting smoking Kreteks/Cloves (Table 5) revealed that age and smoking menthol cigarettes were the predictors; those ages 35-44 were 11 times more likely, and menthol smokers (OR = 0.205) were less likely to smoke Kreteks/Cloves.

Table 5. Logistic Regressions Predicting Black Adult Smoking of Bidis and of Kreteks/Cloves **Bidis Kreteks/Clove Cigarettes** Variables Entered P Wald P Wald OR 95% CI OR 95% CI STEP 1: Demographics Age 45 and older (REF) 18-24 4.634 .031 0.000 .997 4.74 1.15,19.55 25-34 3.256 .071 3.540 .06 5.79 .929,36.04^a 35-44 5.000 .025 4.43 1.20,16.32 7.265 .007 11.09 1.928,63.79 Gender Women (REF) Men 1.970 .160 0.179 .672 **Education** Not HS Grad (REF) HS Grad/GED .000 .990 0.033 .855 College and higher .013 .910 1.447 .229 IncomeLess than \$10,999 (REF) \$11,000 - \$25,999 .307 0.758 .384 1.044 \$26,000-\$49,999 .119 .731 0.812 .367 \$50,000 and higher .089 .776 0.229 .632 **Employment** Employed(REF) Unemployed 1.719 .190 0.116 .734 STEP 2: Cigarette Smoking **Smoking** Non-Smoker (REF) Smoker 2.126 .145 0.000 996 **Type** Non-Menthol(REF) .753 .386 4.365 .037 0.205 .046,.907 Menthol 0.488 Both 2.341 .126 .485

DISCUSSION

There was a high (49.3%) prevalence of polytobacco among Black adult cigarette smokers that held for men (57.3%) and women (40.6%). Substantial smoking of non-cigarette products also was found among For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 non-cigarette smokers, with 19.5% of men and 12.1% of women non-smokers smoking at least one non-cigarette product in the past 30 days. The odds of smoking most non-cigarette products generally were higher for men than women (ORs = 2.5 to 3.0), and for cigarette smokers than non-smokers (ORs = 3.2 to 5.3); however, gender did not contribute to smoking bidis or kreteks, and cigarette smoking did not contribute to smoking bidis, kreteks, or blunts. Smoking of any non-cigarette product and of each specific product generally was highest among adults ages 18-24 years (ORs = 3 to 15.9), and decreased as age increased. The exception was smoking kreteks/cloves; for these, older adults were more likely to be users. Moreover, unlike the well-known relationship between cigarette smoking and low SES[1,3-5], for these non-cigarette products, SES was related only to smoking blunts, with higher incomes a predictor. Type of cigarette smoked contributed to smoking non-cigarette products in general, and to smoking *Phillies/Blacks* specifically, with higher odds for those who smoked both menthol and non-menthol cigarettes, rather than one or the other; menthol smoking generally did not predict use of other products.

These findings suggest a problematically high prevalence of polytobacco use among Black smokers that is strongly associated with gender and young-adulthood but not associated with low income, low education, or menthol-smoking. Polytobacco users were mostly young men of varied SES who smoked all types of cigarettes along with non-cigarette products, i.e., a possible pattern of smoking whatever is available. Given that low-SES was not a risk factor for this, polytobacco use might perhaps instead be related to the social risk-factors for cigarette smoking among Blacks that have been identified in prior studies, i.e., racial segregation[27-29] and racial discrimination[30-32]. High levels of residential segregation (with high exposure to targeted tobacco advertising and easy access to single cigarettes in Black neighborhoods), and high levels of (the stress of) racial discrimination might be associated with smoking any cigarette and non-cigarette product available. Studies of the possible role of these factors in polytobacco use among Blacks are needed.

The 14.9% prevalence of past 30-day smoking of non-cigarette products by non-cigarette smokers also is a concern. Smoking blunts and bidis was not associated with cigarette smoking but was strongly

 associated with youth. This suggests that smoking blunts and bidis might reflect youthful experimentation [13,15,17], and raises questions about whether young Blacks try these before they try cigarettes[13]. Studies of age of initiating smoking of cigarettes versus blunts and cigarillos among Blacks are needed to clarify this.

This study also found a substantial prevalence of smoking products that are not assessed in most population smoking surveys of adults (e.g., marijuana, cigarillos, blunts). Hence, it would be beneficial for surveillance studies to assess smoking of blunts, bidis, and (in particular) cigarillos such as *Phillies, Black & Mild,* and *Swisher Sweets*. Smoking of cigarillos may need to be assessed by brand name because young Blacks often do not categorize them as cigars[18], and hence their reports of cigar use increase significantly when these brand names are included[18]. That these cigarillos are sold individually and come in a variety of flavors (e.g., chocolate, apple, cherry) may contribute to not categorizing them as cigars or as cigarettes. Such assessment will provide a more comprehensive picture of smoking among Black adults, and would match the complexity of recent (2011) assessments of youth smoking that included bidis, kreteks and cigarillos [35].

This study has several limitations, including use of self-reports that may be lower than biologically-validated data[25], lack of assessment of some forms of tobacco use (e.g., pipes), and a California sample whose data might not generalize to other states. In addition, we used categorical instead of continuous demographic variables, and these may have limited the sensitivity of analyses. Moreover, to decrease the number of consecutive significance tests, potentially-interesting interaction effects (e.g., gender X education, gender X age, gender X income) were not examined; such effects however generally are not examined in basic, epidemiologic studies of product-use [e.g., 35] and is a limitation of this study and of similar studies. Likewise, because more than 90% of these Black cigarette smokers consumed 10 or fewer cigarettes per day, potential relationships between number of cigarettes smoked and smoking of other products were not examined. In addition, prevalence of smoking the products may have changed since this study. This is particularly the case for kreteks (clove cigarettes) that were banned by the 2009 *Family*

Smoking Prevention and Tobacco Control Act [36]. The CDC's 2011 study of youth [35] revealed that youth still smoke kreteks despite the ban, and this suggests that adults also might still smoke them. How youth and adults acquire banned and illegal products is worthy of investigation.

Despite these limitations, this study is the first to highlight the magnitude and complexity of smoking among a random, community sample of Black adults, and the first to underscore the need to improve its assessment in research and practice. More comprehensive, population-level assessment of multiple-substance smoking might yield data that in part explain Black difficulty quitting tobacco despite smoking only a few cigarettes per day[5-6], and likewise might yield findings that in part explain the puzzling high-incidence of smoking-related cancers at young ages among Black men [7,33]. Similarly, it would be beneficial for healthcare providers to include non-cigarette products such as bidis and blunts in 5A (ask, advise, assess, assist, arrange) assessment of smoking [34] among cigarette smokers and non-smokers alike, young adults in particular. Smoking cessation interventions also might be enhanced by assessing and addressing cessation of smoking such products. However, whether evidence-based smoking cessation interventions and nicotine replacement therapy are effective with polytobacco users remains unknown. Studies are needed to assess the possibility that hidden polytobacco use might contribute to the relative failure of standard smoking cessation programs with Black smokers[5-6], and research on the possible need for new cessation interventions for polytobacco users is needed as well.

FUNDING

Supported by *Tobacco-Related Disease Research Program* Grant No. 15AT-1300.

ACKNOWLEDGMENT

We are grateful to Denise Adams-Simms and the California Black Health Network.

REFERENCES

- 1. Centers for Disease Control and Prevention. Any tobacco use in 13 states B Behavioral Risk Factor Surveillance System, 2008. *MMWR*. 2010; 59(30): 946-950.
 - 2. Bombard JM, Pederson LL, Nelson DE, Malarcher AM. Are smokers only using cigarettes? For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

Addict Beh. 2007; 32:2411-2419.

- 3. King BA, Dube SR, Tynan. MA. Current tobacco use among adults in the United States: Findings from the National Adult Tobacco Survey. *Am J Public Health*. 2012; 102(11):e99-e100.
- 4. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2000-2009. *MMWR*. 2010; 59(33):1063-8.
- 5. Fagan P, Moolchan ER, Lawrence D, Fernander A, Ponder PK. Identifying health disparities across the tobacco continuum. *Addiction*. 2007; *102* (Suppl.2): 5-29.
- 6. Trinidad DR, Pérez-Stable EJ, White MM et al. A nationwide analysis of US racial/ethnic disparities in smoking behaviors, smoking cessation, and cessation-related factors. *Am J Public Health*. 2011; 101(4):699-706.
- 7. Haiman CA, Stram DO, Wilkens LR et al. Ethnic and racial differences in smoking-related risk of lung cancer. *New Eng J Med*. 2006; 354(4): 333-342.
- 8. Delneveo CD, Hrywna M. The relationship of cigars, marijuana, and blunts to adolescent bidi use. *Public Health Reports*. 2006; 121(5): 603-608.
- 9. Malson JL, Lee EM, Murty R, Moolchan ET, Pickworth WB. Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. *Pharm., Biochem. Beh.* 2003;74:739B745
- 10. Watson CH, Polzin GM, Calafat AM, et al. Determination of the Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes. *Nic. Tob. Research*. 2003;5:747B753.
- 11. Ganesh B, Sushama S, Monika S, Suvarna P. A case-control study of risk factors of lung cancer in Mumbai, India. *Asian Pac J Cancer Prev.* 2011; 12(2):357-362.
- 12. Jayalekshmi PA, Gangadharan P, Akiba S, et al. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India. *Cancer Sci.*2011; 102:460-67.
- 13. Delnevo CD, Pevzner ES, Myrwna M, Lewis MJ. Bidi cigarette use among young adults in 15 states. *Prev. Med.* 2004; 39: 207-211.
 - 14. Vander Weg MW, Peterson, AL, Ebbert JO, et al. Prevalence of alternative forms of tobacco

 use in a population of young adult military recruits. Addict Behav. 2008; 33: 69-82.

- 15. Sinclair CF, Foushee HR, Pevear JS et al. Patterns of blunt use among young adult African American men. *Am J Prev Med*. 2012; 42(1): 61-64
- 16. Jolly DH. Exploring the use of little cigars by students at a historically Black university. *Prev Chronic Dis.* 2008; 5:3-11.
- 17. Page JB, Evans S. Cigars, cigarillos and youth: Emerging patterns and subcultural complexities. *J Ethn Subst Abuse*. 2003; 2(4): 63-76.
- 18. Yerger VB, Pearson C, Malone R. When is a cigar not a cigar? *Am J Public Health*. 2001;91:316-7.
- 19. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: Evaluating the need for concern about wireless substitution. *Am J Public Health*. 2006;96: 926-31.
- 20. Link MW, Mokdad AH, Stackhouse HF, et al. Race, ethnicity, and linguistic isolation as determinants of participation in public health surveillance surveys. *Prev Chronic Dis.* 2006; 3:1-12.
- 21. Satia JA, Galanko JA, Rimer BK. Methods and strategies to recruit African-Americans into cancer prevention surveillance studies. *Cancer Epi Bio Prev.* 2005; 14(3):718-721.
- 22. Carroll, JK, Yancey, AK, Spring, B, et al. What are successful recruitment and retention strategies for underserved populations? *Translational Behav Med.* 2011; 234-251.
- 23. Cabral DN, Napoles-Springer AM, Miike R, et al. Population- and community-based recruitment of African Americans and Latinos. *Am J Epi*. 2003; 158: 272-279.
- 24. Pichon LC, Corral I, Landrine H., et al. Sun protection behaviors among African Americans. *Am J Prev Med*. 2010; 38(3): 288-295.
- 25. Fisher MA, Taylor GW, Shelton BJ, Debanne S. Age and race/ethnicity-gender predictors of denying smoking, United States. *J Health Care Poor Underserv*. 2008; *19*: 75-89.
- 26. Beebe TJ, McRae JA, Harrison PA, et al. Mail surveys result in more reports of substance use. *J Clinical* Epi. 2005; *58*: 421-424.

27. Liao Y, Tucker P, Okoro CA, et al. REACH 2010 Surveillance for Health Status in Minority Communities. *MMWR Surveillance Summaries*. 2004; *53*:1-36.

- 28. Landrine H, Klonoff EA. Racial segregation and cigarette smoking among Blacks. *J Health Psych*. 2000; 5(2): 211-219.
- 29. Datta GD, Subramanian SV, Colditz GA, et al. Individual, neighborhood, and state-level predictors of smoking among US Black women. *Soc Sci & Medicine*. 2006; *63*, 1034-1044.
- 30. Borrell LN, Diez Roux AV, Jacobs DR, et al. Perceived racial/ethnic discrimination, smoking, and alcohol consumption in the Multi-Ethnic Study of Atherosclerosis (MESA). *Prev. Med.* 2010; 51: 307-312.
- 31. Shariff-Marco S, Klassen AC, Bowie JV. Racial/ethnic differences in self-reported racism and its association with cancer-related health behaviors. *Am J Public Health*. 2010;100:364-74.
- 32. Corral I, Landrine H. Racial Discrimination and Health-Promoting vs. Damaging Behaviors among African-American Adults. *J Health Psych*. 2012; 17: 1176-1182.
 - 33. Elk R, Landrine H. Cancer Disparities. New York, NY: Springer; 2012.
- 34. Weglicki LS. Tobacco use assessment: What exactly is your patient using and why is it important to know? *Ethn Dis.* 2008; 18(3 Suppl 3): S3-6.
- 35. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2011. *MMWR*. 2012; 61(31):581-585.
 - $36. \ See \ http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation.$

Polytobacco use and multiple-product smoking among a random community sample of African-American Adults

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003606.R2
Article Type:	Research
Date Submitted by the Author:	31-Oct-2013
Complete List of Authors:	Corral, Irma; Brody School of Medicine, East Carolina University, Psychiatric Medicine Landrine, Hope; East Carolina University, Center for Health Disparities Simms, Denise; California Black Health Network, Bess, Jukelia; East Carolina University, Center for Health Disparities
Primary Subject Heading :	Smoking and tobacco
Secondary Subject Heading:	Epidemiology, Public health, Smoking and tobacco
Keywords:	PREVENTIVE MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE™ Manuscripts

Polytobacco use and multiple-product smoking among a random community sample of

African-American Adults ¹

Irma Corral, Ph.D., MPH ², Hope Landrine, Ph.D.³, Denise Adams Simms, MPH ⁴ and Jukelia J. Bess, BS ⁵

Key Words: Smoking, African-Americans, blunts, Philly, polytobacco use

Word Count Text: 2630, Tables: 5

¹ Supported by funds provided by Tobacco-Related Disease Research Program Grant No. 15-AT1300.

² Department of Psychiatric Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834.

³ To whom correspondence and reprint requests should be addressed at Center for Health Disparities, East Carolina University, 1800 W. 5th Street, Greenville, NC 27834. Phone: 252-744-5535, FAX: 252-744-2634, Email: landrineh@ecu.edu.

⁴ California Black Health Network, San Diego, California

⁵ Center for Health Disparities, East Carolina University, Greenville, NC 27834

ABSTRACT

Objectives. Little is known about polytobacco use among African-American adults. This study is the first to explore this among a random, statewide, community sample of Black adults.

Setting. Community-based sampling obtained a random, household-probability sample of California Black adults, surveyed door-to-door in randomly-selected census tracts, statewide

Participants. Participants were a statewide, random-household sample of N = 2,118 California Black adults who completed a survey on past 30-day smoking of cigarettes, blunts, bidis, kreteks, cigarillos, marijuana, and cigars.

Results. Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days. Smokers had substantial prevalence of smoking cigarillos (28.7%) and blunts (27.7%). Logistic regressions revealed that the odds of smoking most non-cigarette products were higher for cigarette smokers and for men, inversely related to age, and unrelated to socioeconomic status. However, smoking of blunts, bidis, and kreteks was not predicted by cigarette smoking.

Conclusion. Smoking of cigarillos (e.g., *Phillies, Black & Mild*) and blunts may be prevalent among Black cigarette smokers and non-smokers alike, but such products are not examined in most population-level smoking research. Smoking of these products should be included in surveillance studies, in cancer prevention programs, and in healthcare provider-assessment of smoking, and addressed in smoking cessation programs as well.

ARTICLE SUMMARY

Article Focus

- This study is the first to examine prevalence of smoking of cigars, bidis, kreteks, blunts, cigarillos (by brand name), and marijuana among a random, statewide sample of 2,118 California Black adult cigarette smokers and non-smokers.
- We hypothesized a substantial prevalence of smoking cigarillos and blunts, two products that appear to be popular among U.S. Blacks but are rarely assessed in population tobacco surveillance.

Key Messages

- Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days, and this was unrelated to socioeconomic status.
- Smokers had a high prevalence of smoking cigarillos (28.7%) and blunts (27.7%).
- These findings reveal a potentially high yet unexamined prevalence of multiple-product smoking among Blacks that involves frequent smoking of the products that are rarely assessed by researchers. This suggests a need for changes in tobacco-use assessment, and in tobacco prevention and cessation programs as well.

Strengths & Limitations

- Strengths include a large, random sample and a high survey response rate.
- Limitations are a California sample whose results may not generalize elsewhere, and use of selfreports that may underestimate tobacco use.

INTRODUCTION

Polytobacco use refers to the use of cigarettes in combination with another tobacco or smoked product such as cigars, kreteks (clove cigarettes), bidis (hand-rolled, flavored tobacco wrapped in temburi or tendu leaves), and pipes [1-4]. Compared to cigarette smoking, polytobacco use is associated with higher nicotine addiction, greater difficulty quitting tobacco, and increased incidence of smoking-related cancers[1-5]. These three outcomes are more prevalent among Black than White smokers [5-7] even though Blacks smoke significantly fewer cigarettes per day and initiate smoking later in life[5-7]. Possible polytobacco use among Blacks might be relevant to these puzzling tobacco-related racial disparities, and hence assessment of polytobacco use among Black smokers is needed.

Population surveillance studies reveal that polytobacco use among adults is low, i.e., 2.5% overall, 2.6% for Whites, 2.9% for Blacks [1]. However, most population studies of adults [1,3], unlike those of teens[4,8], did not assess smoking of bidis and kreteks. These products have 3-5 times higher nicotine, tar, and carbon monoxide than conventional US cigarettes[9-10], and incidence of smoking-related cancers is up to 112% higher among bidi- than among cigarette-smokers[11-12]. The sole study of bidi smoking among a large, random sample of adults (i.e., 18-24 year olds in the Behavioral Risk Factor Surveillance System) found that 25.4% of Blacks had ever-smoked bidis, a rate three times higher than that of Whites [13]. Likewise, a study of polytobacco use among military recruits found significantly higher use of bidis (but not of kreteks) among Blacks than Whites[14].

In addition to limited population-data on Black adult smoking of highly-carcinogenic products such as bidis, population studies usually do not assess smoking of the products that are popular in the Black community among cigarette smokers and non-smokers alike. Foremost among these are the thin, flavored, little cigars (i.e., cigarillos [15-17]) such as *Philly* and *Black & Mild* that Blacks often do not categorize as cigars[18], and blunts. The term blunts refers to two different products: Inexpensive, moderate-sized cigars (larger than cigarillos but smaller than standard-sized cigars) that are wrapped in a single tobacco-leaf and burn as fast as cigarettes, and moderate-sized cigars emptied of their tobacco, filled with marijuana, and wrapped in a single tobacco-leaf. Hence, irrespective of how the term is For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 defined, blunts are tobacco products and have been analyzed in tobacco studies [8,15-17]. Such studies found prevalence rates of up to 30% for both products among young Black adults [8,15-17].

Thus, little is known about Black-adult smoking of a variety of non-cigarette products. This study reports the first data on the prevalence and correlates of smoking blunts, cigarillos (*Philly/Black & Mild* by brand name), bidis, kreteks, standard-size cigars, and marijuana among a random, statewide, community sample of Black adult smokers (*polytobacco use*) and non-smokers (*multiple-product smoking*). Marijuana is not a tobacco-product, does not contain nicotine, and hence generally is excluded from studies of smoking. However, marijuana smoke contains many of the same carcinogens as cigarettes and is associated with increased cancer risk; hence, marijuana smoking may be relevant to understanding persistent, unexplained smoking-related cancer-disparities among Blacks [37].

METHOD

Procedures

Black participation in telephone and household-interview health surveys is low (e.g., 0.2%-20% [19-21]; hence, community-based sampling (CBS) and community-based participatory research (CBPR) approaches were used to increase participation rates[22-24]. CBS is a 3-stage, random-household probability sampling procedure often used in population studies of minorities to assure inclusion of segregated, linguistically-isolated, and phoneless/cell-phone only households; hence CBS yields more representative ethnic-minority samples [23-24]. In CBS Stage 1, census data were used to identify the counties in which the majority of CA Blacks reside. This revealed that most (90%) of the CA Black population resides in 7 counties, e.g., Los Angeles (42%), Sacramento (10%), San Diego (6%). Blacks were sampled from these counties proportional to representation, i.e., 42% of the sample came from Los Angeles county and 6% from San Diego county (etc.), such that this sample matched the distribution of the CA Black population. This was achieved by sampling more or fewer census tracts in each county as needed [24].

In CBS Stage 2, 513 census tracts (CTS) within the 7 counties were randomly selected. In Stage 3, a smaller set of equal numbers of low- (20-50% Blacks) and high-segregated (60-92% Blacks) CTS were randomly-selected from the 513, and block-groups within those randomly-selected. Every household in the block-groups was sampled door-to-door on weekends 2006-2008, with one adult participant permitted per household. The door-to-door method assured inclusion of phoneless/cell phone only households. Further details on the method are provided elsewhere[24]. Because cigarette-smoking rates are significantly higher among phoneless/cell phone only households[19], their inclusion here via the door-to-door survey method is likely to yield higher smoking rates than found in random telephone surveys.

The CBPR aspect of the study was co-sponsorship by the California Black Health Network (CBHN), a well-known, trusted organization that has conducted statewide tobacco assessment and tobacco-control programs for CA Blacks since the 1970s. CBHN needed a statewide health-assessment to improve its programs, and so co-sponsored the study. CBHN staff (Black adult surveyors) in each county collected the data in their counties. Surveyors wore CBHN ID badges, approached all households in the block groups, introduced themselves as CBHN staff, and stated that the purpose of the survey was to acquire data needed to improve CBHN programs in each Black community. Surveyors handed potential participants an Informed Consent Letter that described the survey, stated this study purpose, and included CBHN phone numbers (in each county) to call. Surveyors then asked if a Black adult resided in the household who might wish to complete the anonymous, *California Black Health Network* health survey for \$10 cash. Using these CBPR approaches, the response rate was 99%, i.e., of those who answered the door, 99% completed and only 1% refused the survey [24].

Because up to 68% of cotinine-determined Black smokers deny smoking (self-report non-smoking) in household interviews[25], a written survey was used instead. Anonymous written surveys decrease socially-desirable denial of smoking and substance use and yield higher smoking and substance-use prevalence rates[26]; hence higher smoking rates are expected here than found in random household surveys. Surveys were left with participants to complete in private, and retrieved 30 minutes later. The study had the approval of the Institutional Review Board of San Diego State University.

Materials/Measures.

The survey assessed the health behaviors on which CBHN desired data (diet, physical activity, sun-safety, smoking of a variety of products); only the smoking data are presented here. We explored Past 30-day Smoking (yes/no) of cigarettes, blunts, bidis, kreteks/clove cigarettes, two cigarillos by brand name (*Philly, Black & Mild*), standard-size cigars, and marijuana. Type of cigarettes smoked (menthol, non-menthol, both) and demographic variables also were assessed. The survey took 15-30 minutes.

RESULTS

Participants were a random, statewide, sample of N = 2118, US-born, self-identified African-American/Black adult residents of California (CA), 1214 women (57.3%) and 904 men (42.7%), whose ages ranged from 18 to 95 years (Mean = 43.8, s.d. = 16.2 years). Details of their demographics have been presented elsewhere[24], and revealed that this 2006-2008 sample is similar to the 2006-2008 Black population in the CA Census. The prevalence of cigarette smoking among this sample was 32.6%, and significantly higher among men (37.2%) than women (29.7%; $\chi^2 = 10.651$, p < .001).

Table 1. Prevalence of Smoking Non-cigarette Products among a	
random sample of Black Adult Cigarette Smokers and Non-Smokers	

Past 30 day Smoking of	Overall %	Smokers ^a	Non-Smokers b	χ ² 1 *
Philly; Black & Mild	13.0	28.7	5.3	176.389
Blunts	14.1	27.7	7.5	23.255
Standard Size Cigars	10.1	21.4	4.5	107.004
Marijuana	18.6	33.0	11.4	113.856
Bidis	2.0	5.0	0.5	35.97
Kreteks/Cloves	1.1	2.7	0.4	17.304
Any 1 or more of the above	26.1	49.3	14.9	257.73
Men Any 1 or more of the above	33.6	57.3	19.5	114.803
Women Any 1 or more of the above a n = 690 (32.6%), b n = 1284 (67.3%)	$\frac{20.6}{p, *p = .0005}$	40.6	12.1	107.047

Table 1 displays Past 30-Day Smoking Prevalence Rates for 6 non-cigarette products among cigarette smokers and non-smokers. As shown, prevalence of smoking 1 or more non-cigarette product was 49.3% for cigarette smokers and 14.9% for non-smokers. Among Black men, prevalence of smoking 1 or more non-cigarette product was 57.3% for smokers, and 19.5% for non-smokers; among women, these rates were 40.6% (cigarette smokers) and 12.1% (non-smokers).

Table 2 displays the hierarchical logistic regression predicting smoking of any non-cigarette product from demographic and cigarette-smoking variables. As shown, smoking non-cigarette products was predicted by age, gender, and cigarette smoking, but not by socioeconomic status (SES; education, income, employment). Men (OR=2.5), cigarette smokers (OR = 3.2), and young adults (OR = 7.4) were

	Table 2. Logistic Regression Predic	ting Black	Adult Smol	king of Non-	Cigarette Produ	acts
Mo	del and Variables Entered	В	Wald	P	OR	95% CI
STEP	1: DEMOGRAPHIC VARIABLES					
Age	45 and older (REF)					
	18-24	1.997	38.442	.0005	7.37	3.919,13.856
	25-34	1.05	17.546	.0005	2.85	1.46,4.656
	35-44	.705	7.882	.005	2.02	1.237,3.311
Gender	Women (REF)					,
	Men	.931	22.023	.0005	2.54	1.720,3.742
Education	Didn't Finish High School (REF)	.,,,,	0-0	.0000		1.720,5.77.2
Lucution	High School Graduate/GED	.051	0.022	.882		
	College and higher	227	1.078	.299		
Income	Less than \$10,999 (REF)					
	\$11,000 - \$25,999	.330	1.156	.282		
	\$26,000-\$49,999	.524	3.445	.063		
	\$50,000 and higher	189	0.437	.508		
Employment	Employed (REF)					
	Unemployed	.075	0.109	.741		
STE	EP 2: CIGARETTE SMOKING					
Smoking	Non-Smoker (REF)					
Ü	Smoker	1.16	21.760	.0005	3.19	1.962,5.212
Cigarette Type						
	Menthol	.447	3.469	.063	2.24	1 256 4 266
DEE D 0	Both	.851	7.166	.007	2.34	1.256, 4.366
REF = Referen	ce group					

decreasing age.

Table 3 displays separate regressions predicting smoking of Blunts and of the cigarillos *Philly* and *Black & Mild*. Age, gender, and higher incomes were predictors of smoking Blunts. The odds of Bluntsmoking were 2.5 times higher for men, and increased as age decreased, with young (ages 18-24) adults 6.3 times more likely than older ones (ages 45 and older) to smoke Blunts. *Philly/Black & Mild*- smoking was predicted by age, gender, and cigarette smoking. Men were 2.6 times more likely than women, young adults 15.9 times more likely than older ones, and cigarette smokers 5.3 times more likely than non-smokers to smoke *Philly/Black & Mild*.

Tabl	le 3. Logistic Regressions	Predicting	Black A	dult Smo	king of Blunts a	nd of Philly	/Black &	Mild Cig	arillos
]	Blunts		Phil	ly/Black o	& Mild C	igarillos
	ariables Entered P 1: Demographics	Wald	P	OR	95% CI	Wald	р	OR	95% CI
SIL	r r. Demograpmes								
Age	45 and older (REF)								
	18-24	29.69	.0005	6.25	3.23,12.08	51.69	.0005	15.90	7.48,33.81
	25-34	13.31	.0005	3.07	1.68,5.62	21.33	.0005	4.23	2.29,7.80
	35-44	7.208	.007	2.38	1.26,4.48	14.22	.0005	3.38	1.79,6.36
Gender	Women (REF)								
	Men	14.10	.0005	2.49	1.55,4.02	14.02	.0005	2.57	1.57,4.21
Education	Not HS Grad (REF)								
	HS Grad/GED College and higher	0.82 1.066	.365 .302			.928 .616	.335 .433		
Income Les	s than \$10,999(REF)								
	\$11,000 - \$25,999	3.925	.048	2.17	1.01,4.66	.375	.540		
	\$26,000-\$49,999	4.792	.029	2.18	1.09,4.37	.289	.591		
	\$50,000 and higher	0.051	.821		,	.089	.766		
Employme	ent								
	Employed(REF)								
	Unemployed	0.259	.611			1.29	.257		
STEP 2:	Cigarette Smoking								
Smoking	Non-Smoker (REF)								
	Smoker	3.767	.052	1.89	.994,3.59 ^a	19.75	.0005	5.34	2.55,11.18
Type	Non-Menthol(REF)	0.521	470			6.72	012	2.26	1 10 4 66
	Menthol Both	0.521	.470 .681			6.72 15.42	.013 .005	2.36 5.08	1.19,4.66 2.26,11.43
REE = Refe	rence group; ^a = Not Sigr		.001			13.72	.005	5.00	2.20,11.73

gender, and cigarette smoking to be the predictors of both. Men, young adults, and smokers were 2.5 to 3 times more likely to smoke Standard-size Cigars than their reference groups. For Marijuana-Smoking, men were twice as likely, the youngest age group 6 times more likely, and smokers 2.5 times more likely than their reference groups to smoke Marijuana. A similar regression predicting Bidi-smoking (Table 5) revealed that age was the sole predictor, with those ages 18-24 (OR = 4.7) and 35-44 (OR 4.4) more likely to smoke Bidis than the older age-group. The regression predicting smoking Kreteks/Cloves (Table 5) revealed that age and smoking menthol cigarettes were the predictors; those ages 35-44 were 11 times more likely, and menthol smokers (OR = 0.205) were less likely to smoke Kreteks/Cloves.

	Table 4. Logistic Re	egressions P	redicting	Black	Adult Smoking	of Cigars an	d of Mari	juana	
		St	andard-	size Ciş	gars		Mai	rijuana	
V	ariables Entered	Wald	P	OR	95% CI	Wald	p	OR	95% CI
Age	45 and older (REF)								
	18-24	9.023	.003	2.99	1.46,6.09	30.68	.0005	6.05	3.20,11.45
	25-34	.819	.365			25.30	.0005	4.13	2.38,7.17
	35-44	4.132	.042	1.98	1.03,3.82	6.85	.009	2.18	1.22,3.90
Gender	Women (REF)								
	Men	16.823	.0005	3.08	1.80,5.28	11.51	.001	2.14	1.38,3.32
Education	n Not HS Grad (REF)								
	HS Grad/GED	.264	.607			1.03	.310		
	College and higher	.004	.947			.129	.719		
Income I	Less than \$10,999 (REF)								
	\$11,000 - \$25,999	.518	.472			1.35	.245		
	\$26,000-\$49,999	2.065	.151			2.14	.143		
	\$50,000 and higher	.473	.492			.048	.826		
Employm	ent								
	Employed(REF)								
	Unemployed	.032	.858			1.08	.300		
STEP 2: 0	Cigarette Smoking								
Smoking	Non-Smoker (REF)								
	Smoker	6.305	.012	2.54	1.23,5.26	9.42	.002	2.55	1.40,4.64
Type	Non-Menthol(REF)								
	Menthol	.162	.687			3.83	.050	1.76	.999,3.09
	$\frac{\text{Both}}{\text{ference group;}} = \text{Not } S$	1.887	.170			2.74	.098		

	Table 5. Logistic Regress	sions Pre	dicting	Black A	dult Smoking	of Bidis an	d of Kr	eteks/Clo	oves
		Bidis				Kreteks/Clove Cigarettes			
Variables Entered STEP 1: Demographics		Wald	P	OR	95% CI	Wald	P	OR	95% CI
	.								
Age	45 and older (REF)								
	18-24	4.634	.031	4.74	1.15,19.55	0.000	.997		
	25-34	3.256	.071			3.540	.06	5.79	.929,36.04 ^a
	35-44	5.000	.025	4.43	1.20,16.32	7.265	.007	11.09	1.928,63.79
Gender	Women (REF)								
	Men	1.970	.160			0.179	.672		
Education	Not HS Grad (REF)								
	HS Grad/GED	.000	.990			0.033	.855		
	College and higher	.013	.910			1.447	.229		
IncomeLes	ss than \$10,999 (REF)								
	\$11,000 - \$25,999	1.044	.307			0.758	.384		
	\$26,000-\$49,999	.119	.731			0.812	.367		
	\$50,000 and higher	.089	.776			0.312	.632		
Employme									
	Employed(REF)								
	Unemployed	1.719	.190			0.116	.734		
STEP 2: Ci	garette Smoking								
Smoking	Non-Smoker (REF)								
s	Smoker	2.126	.145			0.000	.996		
Type	Non-Menthol(REF)	7.50	206			105-	225	0.00-	0.4.6.00=
	Menthol	.753	.386			4.365	.037	0.205	.046,.907
$\frac{\mathbf{DEE} - \mathbf{D} \circ \mathbf{f}}{\mathbf{D}}$	Both erence group; ^a = Not Si	2.341	.126			0.488	.485		
KLI - Kel	erence group, - not si	giiiiicaiil							

DISCUSSION

There was a high (49.3%) prevalence of polytobacco among Black adult cigarette smokers that held for men (57.3%) and women (40.6%). Substantial smoking of non-cigarette products also was found among non-cigarette smokers, with 19.5% of men and 12.1% of women non-smokers smoking at least one non-cigarette product in the past 30 days. The odds of smoking most non-cigarette products generally

were higher for men than women (ORs = 2.5 to 3.0), and for cigarette smokers than non-smokers (ORs = 3.2 to 5.3); however, gender did not contribute to smoking bidis or kreteks, and cigarette smoking did not contribute to smoking bidis, kreteks, or blunts. Smoking of any non-cigarette product and of each specific product generally was highest among adults ages 18-24 years (ORs = 3 to 15.9) as in prior studies [13-16], and decreased as age increased. The exception was smoking kreteks/cloves; for these, older adults were more likely to be users. Moreover, unlike the well-known relationship between cigarette smoking and low SES[1,3-5], for these non-cigarette products, SES was related only to smoking blunts, with higher incomes a predictor. Type of cigarette smoked contributed to smoking non-cigarette products in general, and to smoking *Phillies/Blacks* specifically, with higher odds for those who smoked both menthol and non-menthol cigarettes, rather than one or the other; menthol smoking generally did not predict use of other products.

These findings suggest a problematically high prevalence of polytobacco use among Black smokers that is strongly associated with gender and young-adulthood but not associated with low income, low education, or menthol-smoking. Polytobacco users were mostly young men of varied SES who smoked all types of cigarettes along with non-cigarette products, i.e., a possible pattern of smoking whatever is available. Given that low-SES was not a risk factor for this, polytobacco use might perhaps instead be related to the social risk-factors for cigarette smoking among Blacks that have been identified in prior studies, i.e., racial segregation[27-29] and racial discrimination[30-32]. High levels of residential segregation (with high exposure to targeted tobacco advertising and easy access to single cigarettes in Black neighborhoods), and high levels of (the stress of) racial discrimination might be associated with smoking any cigarette and non-cigarette product available. Studies of the possible role of these factors in polytobacco use among Blacks are needed.

The 14.9% prevalence of past 30-day smoking of non-cigarette products by non-cigarette smokers also is a concern. Smoking blunts and bidis was not associated with cigarette smoking but was strongly associated with youth. This suggests that smoking blunts and bidis might reflect youthful experimentation [13,15,17], and raises questions about whether young Blacks try these before they try cigarettes[13].

Studies of age of initiating smoking of cigarettes versus blunts and cigarillos among Blacks are needed to clarify this.

This study also found a substantial prevalence of smoking products that are not assessed in most population smoking surveys of adults (e.g., marijuana, cigarillos, blunts). Hence, it would be beneficial for surveillance studies to assess smoking of blunts, bidis, and (in particular) cigarillos such as *Phillies*, Black & Mild, and Swisher Sweets. Smoking of cigarillos may need to be assessed by brand name because young Blacks often do not categorize them as cigars[18], and hence their reports of cigar use increase significantly when these brand names are included [18]. That these cigarillos are sold individually and come in a variety of flavors (e.g., chocolate, apple, cherry) may contribute to not categorizing them as cigars or as cigarettes. Such assessment will provide a more comprehensive picture of smoking among Black adults, and would match the complexity of recent (2011) assessments of youth smoking that included bidis, kreteks and cigarillos [35].

This study has several limitations, including use of self-reports that may be lower than biologically-validated data[25], lack of assessment of some forms of tobacco use (e.g., pipes), and a California sample whose data might not generalize to other states. In addition, we treated age as a categorical instead of a continuous variable, and this may have limited the sensitivity of analyses. We note however that the age categories used here are similar to those used in prior studies of polytobacco use in which the highest prevalence found was for 18-24 year olds [e.g., 13-16]. Moreover, to decrease the number of consecutive significance tests, potentially-interesting interaction effects (e.g., gender X age, gender X income) were not examined; such effects however generally are not examined in basic, epidemiologic studies of product-use [e.g., 35] and is a limitation of this study and of similar studies. Likewise, because more than 90% of these Black cigarette smokers consumed 10 or fewer cigarettes per day, potential relationships between number of cigarettes smoked and smoking of other products were not examined. In addition, prevalence of smoking the products may have changed since this study. This is particularly the case for kreteks (clove cigarettes) that were banned by the 2009 Family Smoking Prevention and Tobacco Control Act [36]. The CDC's 2011 study of youth [35] revealed that youth still

smoke kreteks despite the ban, and this suggests that adults also might still smoke them. How youth and adults acquire banned and illegal products is worthy of investigation.

Despite these limitations, this study is the first to highlight the magnitude and complexity of smoking among a random, community sample of Black adults, and the first to underscore the need to improve its assessment in research and practice. More comprehensive, population-level assessment of multiple-substance smoking might yield data that in part explain Black difficulty quitting tobacco despite smoking only a few cigarettes per day[5-6], and likewise might yield findings that in part explain the puzzling high-incidence of smoking-related cancers at young ages among Black men [7,33]. Similarly, it would be beneficial for healthcare providers to include non-cigarette products such as bidis and blunts in 5A (ask, advise, assess, assist, arrange) assessment of smoking [34] among cigarette smokers and non-smokers alike, young adults in particular. Smoking cessation interventions also might be enhanced by assessing and addressing cessation of smoking such products. However, whether evidence-based smoking cessation interventions and nicotine replacement therapy are effective with polytobacco users remains unknown. Studies are needed to assess the possibility that hidden polytobacco use might contribute to the relative failure of standard smoking cessation programs with Black smokers[5-6], and research on the possible need for new cessation interventions for polytobacco users is needed as well.

Conflicts of interests:

The authors have no financial or other conflicts of interests.

Author Contributions

Irma Corral made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Hope Landrine made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Jukelia Bess made substantial contributions to 1) analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Denise Adams Simms made substantial contributions to 1) study conception and design, and acquisition of data, 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Funding

Supported by *Tobacco-Related Disease Research Program* Grant No. 15AT-1300.

Data sharing

There are no additional, unpublished data related to this study.

REFERENCES

- 1. Centers for Disease Control and Prevention. Any tobacco use in 13 states B Behavioral Risk Factor Surveillance System, 2008. *MMWR*. 2010; 59(30): 946-950.
- 2. Bombard JM, Pederson LL, Nelson DE, Malarcher AM. Are smokers only using cigarettes? *Addict Beh.* 2007; 32:2411-2419.
- 3. King BA, Dube SR, Tynan. MA. Current tobacco use among adults in the United States: Findings from the National Adult Tobacco Survey. *Am J Public Health*. 2012; 102(11):e99-e100.
- 4. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2000-2009. *MMWR*. 2010; 59(33):1063-8.
- 5. Fagan P, Moolchan ER, Lawrence D, et al. Identifying health disparities across the tobacco continuum. *Addiction*. 2007; *102* (Suppl.2): 5-29.
- 6. Trinidad DR, Pérez-Stable EJ, White MM et al. A nationwide analysis of US racial/ethnic disparities in smoking behaviors, smoking cessation, and cessation-related factors. *Am J Public Health*. 2011; 101(4):699-706.
- 7. Haiman CA, Stram DO, Wilkens LR et al. Ethnic and racial differences in smoking-related risk of lung cancer. *New Eng J Med*. 2006; 354(4): 333-342.
- 8. Delneveo CD, Hrywna M. The relationship of cigars, marijuana, and blunts to adolescent bidi use. *Public Health Reports*. 2006; 121(5): 603-608.
- 9. Malson JL, Lee EM, Murty R, et al. Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. *Pharm., Biochem. Beh.* 2003;74:739B745
- 10. Watson CH, Polzin GM, Calafat AM, et al. Determination of the Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes. *Nic. Tob. Research*. 2003;5:747B753.
- 11. Ganesh B, Sushama S, Monika S, et al. A case-control study of risk factors of lung cancer in Mumbai, India. *Asian Pac J Cancer Prev.* 2011; 12(2):357-362.
- 12. Jayalekshmi PA, Gangadharan P, Akiba S, et al. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India. *Cancer Sci.*2011; 102:460-67. For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 13. Delnevo CD, Pevzner ES, Myrwna M, et al. Bidi cigarette use among young adults in 15 states. *Prev. Med.* 2004; 39: 207-211.
- 14. Vander Weg MW, Peterson, AL, Ebbert JO, et al. Prevalence of alternative forms of tobacco use in a population of young adult military recruits. *Addict Behav.* 2008; 33: 69-82.
- 15. Sinclair CF, Foushee HR, Pevear JS et al. Patterns of blunt use among young adult African American men. *Am J Prev Med*. 2012; 42(1): 61-64
- 16. Jolly DH. Exploring the use of little cigars by students at a historically Black university. *Prev Chronic Dis.* 2008; 5:3-11.
- 17. Page JB, Evans S. Cigars, cigarillos and youth: Emerging patterns and subcultural complexities. *J Ethn Subst Abuse*. 2003; 2(4): 63-76.
- 18. Yerger VB, Pearson C, Malone R. When is a cigar not a cigar? *Am J Public Health*. 2001;91:316-7.
- 19. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: Evaluating the need for concern about wireless substitution. *Am J Public Health*. 2006;96: 926-31.
- 20. Link MW, Mokdad AH, Stackhouse HF, et al. Race, ethnicity, and linguistic isolation as determinants of participation in public health surveillance surveys. *Prev Chronic Dis.* 2006; 3:1-12.
- 21. Satia JA, Galanko JA, Rimer BK. Methods and strategies to recruit African-Americans into cancer prevention surveillance studies. *Cancer Epi Bio Prev.* 2005; 14(3):718-721.
- 22. Carroll, JK, Yancey, AK, Spring, B, et al. What are successful recruitment and retention strategies for underserved populations? *Translational Behav Med.* 2011; 234-251.
- 23. Cabral DN, Napoles-Springer AM, Miike R, et al. Population- and community-based recruitment of African Americans and Latinos. *Am J Epi*. 2003; 158: 272-279.
- 24. Pichon LC, Corral I, Landrine H., et al. Sun protection behaviors among African Americans. *Am J Prev Med.* 2010; 38(3): 288-295.
- 25. Fisher MA, Taylor GW, Shelton BJ, et al. Age and race/ethnicity-gender predictors of denying smoking, United States. *J Health Care Poor Underserv*. 2008; *19*: 75-89. For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

26. Beebe TJ, McRae JA, Harrison PA, et al. Mail surveys result in more reports of substance use. *J Clinical* Epi. 2005; *58*: 421-424.

- 27. Liao Y, Tucker P, Okoro CA, et al. REACH 2010 Surveillance for Health Status in Minority Communities. *MMWR Surveillance Summaries*. 2004; *53*:1-36.
- 28. Landrine H, Klonoff EA. Racial segregation and cigarette smoking among Blacks. *J Health Psych*. 2000; 5(2): 211-219.
- 29. Datta GD, Subramanian SV, Colditz GA, et al. Individual, neighborhood, and state-level predictors of smoking among US Black women. *Soc Sci & Medicine*. 2006; *63*, 1034-1044.
- 30. Borrell LN, Diez Roux AV, Jacobs DR, et al. Perceived racial/ethnic discrimination, smoking, and alcohol consumption in the Multi-Ethnic Study of Atherosclerosis (MESA). *Prev. Med.* 2010; 51: 307-312.
- 31. Shariff-Marco S, Klassen AC, Bowie JV. Racial/ethnic differences in self-reported racism and its association with cancer-related health behaviors. *Am J Public Health*. 2010;100:364-74.
- 32. Corral I, Landrine H. Racial Discrimination and Health-Promoting vs. Damaging Behaviors among African-American Adults. *J Health Psych*. 2012; 17: 1176-1182.
 - 33. Elk R, Landrine H. Cancer Disparities. New York, NY: Springer; 2012.
- 34. Weglicki LS. Tobacco use assessment: What exactly is your patient using and why is it important to know? *Ethn Dis.* 2008; 18(3 Suppl 3): S3-6.
- 35. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2011. *MMWR*. 2012; 61(31):581-585.
 - 36. See http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation.
- 37. Hashibe M, Straif K, Tashkin DP, et al. Epidemiologic review of marijuana use and cancer risk. 2005. *Alcohol*; 35(3): 265-275.

Polytobacco use and multiple-product smoking among a random community sample of

African-American Adults ¹

Irma Corral, Ph.D., MPH 2 , Hope Landrine, Ph.D. 3 , Denise Adams Simms, MPH 4 and Jukelia J. Bess, BS 5

Key Words: Smoking, African-Americans, blunts, Philly, polytobacco use

Word Count Text: 2630, Tables: 5

¹ Supported by funds provided by Tobacco-Related Disease Research Program Grant No. 15-AT1300.

² Department of Psychiatric Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834.

³ To whom correspondence and reprint requests should be addressed at Center for Health Disparities, East Carolina University, 1800 W. 5th Street, Greenville, NC 27834. Phone: 252-744-5535,

FAX: 252-744-2634, Email: landrineh@ecu.edu.

⁴ California Black Health Network, San Diego, California

⁵ Center for Health Disparities, East Carolina University, Greenville, NC 27834

ABSTRACT

Objectives. Little is known about polytobacco use among African-American adults. This study is the first to explore this among a random, statewide, community sample of Black adults.

Setting. Community-based sampling obtained a random, household-probability sample of California Black adults, surveyed door-to-door in randomly-selected census tracts, statewide

Participants. Participants were a statewide, random-household sample of N = 2,118 California Black adults who completed a survey on past 30-day smoking of cigarettes, blunts, bidis, kreteks, cigarillos, marijuana, and cigars.

Results. Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days. Smokers had substantial prevalence of smoking cigarillos (28.7%) and blunts (27.7%). Logistic regressions revealed that the odds of smoking most non-cigarette products were higher for cigarette smokers and for men, inversely related to age, and unrelated to socioeconomic status. However, smoking of blunts, bidis, and kreteks was not predicted by cigarette smoking.

Conclusion. Smoking of cigarillos (e.g., *Phillies, Black & Mild*) and blunts may be prevalent among Black cigarette smokers and non-smokers alike, but such products are not examined in most population-level smoking research. Smoking of these products should be included in surveillance studies, in cancer prevention programs, and in healthcare provider-assessment of smoking, and addressed in smoking cessation programs as well.

ARTICLE SUMMARY

Article Focus

- This study is the first to examine prevalence of smoking of cigars, bidis, kreteks, blunts, cigarillos (by brand name), and marijuana among a random, statewide sample of 2,118 California Black adult cigarette smokers and non-smokers.
- We hypothesized a substantial prevalence of smoking cigarillos and blunts, two products that appear to be popular among U.S. Blacks but are rarely assessed in population tobacco surveillance.

Key Messages

- Almost half (49.3%) of Black cigarette smokers, and 14.9 % of cigarette non-smokers had smoked at least one non-cigarette product in the past 30 days, and this was unrelated to socioeconomic status.
- Smokers had a high prevalence of smoking cigarillos (28.7%) and blunts (27.7%).
- These findings reveal a potentially high yet unexamined prevalence of multiple-product smoking among Blacks that involves frequent smoking of the products that are rarely assessed by researchers. This suggests a need for changes in tobacco-use assessment, and in tobacco prevention and cessation programs as well.

Strengths & Limitations

- Strengths include a large, random sample and a high survey response rate.
- Limitations are a California sample whose results may not generalize elsewhere, and use of selfreports that may underestimate tobacco use.

Polytobacco use refers to the use of cigarettes in combination with another tobacco or smoked product such as cigars, kreteks (clove cigarettes), bidis (hand-rolled, flavored tobacco wrapped in temburi or tendu leaves), and pipes [1-4]. Compared to cigarette smoking, polytobacco use is associated with higher nicotine addiction, greater difficulty quitting tobacco, and increased incidence of smoking-related cancers[1-5]. These three outcomes are more prevalent among Black than White smokers [5-7] even though Blacks smoke significantly fewer cigarettes per day and initiate smoking later in life [5-7]. Possible polytobacco use among Blacks might be relevant to these puzzling tobacco-related racial disparities, and hence assessment of polytobacco use among Black smokers is needed.

Population surveillance studies reveal that polytobacco use among adults is low, i.e., 2.5% overall, 2.6% for Whites, 2.9% for Blacks [1]. However, most population studies of adults [1,3], unlike those of teens[4,8], did not assess smoking of bidis and kreteks. These products have 3-5 times higher nicotine, tar, and carbon monoxide than conventional US cigarettes[9-10], and incidence of smoking-related cancers is up to 112% higher among bidi- than among cigarette-smokers[11-12]. The sole study of bidi smoking among a large, random sample of adults (i.e., 18-24 year olds in the Behavioral Risk Factor Surveillance System) found that 25.4% of Blacks had ever-smoked bidis, a rate three times higher than that of Whites [13]. Likewise, a study of polytobacco use among military recruits found significantly higher use of bidis (but not of kreteks) among Blacks than Whites[14].

In addition to limited population-data on Black adult smoking of highly-carcinogenic products such as bidis, population studies usually do not assess smoking of the products that are popular in the Black community among cigarette smokers and non-smokers alike. Foremost among these are the thin, flavored, little cigars (i.e., cigarillos [15-17]) such as *Philly* and *Black & Mild* that Blacks often do not categorize as cigars[18], and blunts. The term blunts refers to two different products: Inexpensive, moderate-sized cigars (larger than cigarillos but smaller than standard-sized cigars) that are wrapped in a single tobacco-leaf and burn as fast as cigarettes, and moderate-sized cigars emptied of their tobacco, filled with marijuana, and wrapped in a single tobacco-leaf. Hence, irrespective of how the term is

 defined, blunts are tobacco products and have been analyzed in tobacco studies [8,15-17]. Such studies found prevalence rates of up to 30% for both products among young Black adults [8,15-17].

Thus, little is known about Black-adult smoking of a variety of non-cigarette products. This study reports the first data on the prevalence and correlates of smoking blunts, cigarillos (*Philly/Black & Mild* by brand name), bidis, kreteks, standard-size cigars, and marijuana among a random, statewide, community sample of Black adult smokers (*polytobacco use*) and non-smokers (*multiple-product smoking*). Marijuana is not a tobacco-product, does not contain nicotine, and hence generally is excluded from studies of smoking. However, marijuana smoke contains many of the same carcinogens as cigarettes and is associated with increased cancer risk; hence, marijuana smoking may be relevant to understanding persistent, unexplained smoking-related cancer-disparities among Blacks [37].

METHOD

Procedures

Black participation in telephone and household-interview health surveys is low (e.g., 0.2%-20% [19-21]; hence, community-based sampling (CBS) and community-based participatory research (CBPR) approaches were used to increase participation rates[22-24]. CBS is a 3-stage, random-household probability sampling procedure often used in population studies of minorities to assure inclusion of segregated, linguistically-isolated, and phoneless/cell-phone only households; hence CBS yields more representative ethnic-minority samples [23-24]. In CBS Stage 1, census data were used to identify the counties in which the majority of CA Blacks reside. This revealed that most (90%) of the CA Black population resides in 7 counties, e.g., Los Angeles (42%), Sacramento (10%), San Diego (6%). Blacks were sampled from these counties proportional to representation, i.e., 42% of the sample came from Los Angeles county and 6% from San Diego county (etc.), such that this sample matched the distribution of the CA Black population. This was achieved by sampling more or fewer census tracts in each county as needed [24].

In CBS Stage 2, 513 census tracts (CTS) within the 7 counties were randomly selected. In Stage 3,

 a smaller set of equal numbers of low- (20-50% Blacks) and high-segregated (60-92% Blacks) CTS were randomly-selected from the 513, and block-groups within those randomly-selected. Every household in the block-groups was sampled door-to-door on weekends 2006-2008, with one adult participant permitted per household. The door-to-door method assured inclusion of phoneless/cell phone only households. Further details on the method are provided elsewhere[24]. Because cigarette-smoking rates are significantly higher among phoneless/cell phone only households[19], their inclusion here via the door-to-door survey method is likely to yield higher smoking rates than found in random telephone surveys.

The CBPR aspect of the study was co-sponsorship by the California Black Health Network (CBHN), a well-known, trusted organization that has conducted statewide tobacco assessment and tobacco-control programs for CA Blacks since the 1970s. CBHN needed a statewide health-assessment to improve its programs, and so co-sponsored the study. CBHN staff (Black adult surveyors) in each county collected the data in their counties. Surveyors wore CBHN ID badges, approached all households in the block groups, introduced themselves as CBHN staff, and stated that the purpose of the survey was to acquire data needed to improve CBHN programs in each Black community. Surveyors handed potential participants an Informed Consent Letter that described the survey, stated this study purpose, and included CBHN phone numbers (in each county) to call. Surveyors then asked if a Black adult resided in the household who might wish to complete the anonymous, *California Black Health Network* health survey for \$10 cash. Using these CBPR approaches, the response rate was 99%, i.e., of those who answered the door, 99% completed and only 1% refused the survey [24].

Because up to 68% of cotinine-determined Black smokers deny smoking (self-report non-smoking) in household interviews[25], a written survey was used instead. Anonymous written surveys decrease socially-desirable denial of smoking and substance use and yield higher smoking and substance-use prevalence rates[26]; hence higher smoking rates are expected here than found in random household surveys. Surveys were left with participants to complete in private, and retrieved 30 minutes later. The study had the approval of the Institutional Review Board of San Diego State University.

Materials/Measures.

The survey assessed the health behaviors on which CBHN desired data (diet, physical activity, sun-safety, smoking of a variety of products); only the smoking data are presented here. We explored Past 30-day Smoking (yes/no) of cigarettes, blunts, bidis, kreteks/clove cigarettes, two cigarillos by brand name (*Philly*, *Black & Mild*), standard-size cigars, and marijuana. Type of cigarettes smoked (menthol, non-menthol, both) and demographic variables also were assessed. The survey took 15-30 minutes.

RESULTS

Participants were a random, statewide, sample of N = 2118, US-born, self-identified African-American/Black adult residents of California (CA), 1214 women (57.3%) and 904 men (42.7%), whose ages ranged from 18 to 95 years (Mean = 43.8, s.d. = 16.2 years). Details of their demographics have been presented elsewhere[24], and revealed that this 2006-2008 sample is similar to the 2006-2008 Black population in the CA Census. The prevalence of cigarette smoking among this sample was 32.6%, and significantly higher among men (37.2%) than women (29.7%; $\chi^2 = 10.651$, p < .001).

Table 1. Prevalence of Smoking Non-cigarette Products among a random sample of Black Adult Cigarette Smokers and Non-Smokers

			N G I b	2 44
Past 30 day Smoking of	Overall %	Smokers ^a %	Non-Smokers ^b	χ^2_1 *
Philly; Black & Mild	13.0	28.7	5.3	176.389
Blunts	14.1	27.7	7.5	23.255
Standard Size Cigars	10.1	21.4	4.5	107.004
Marijuana	18.6	33.0	11.4	113.856
Bidis	2.0	5.0	0.5	35.97
Kreteks/Cloves	1.1	2.7	0.4	17.304
Any 1 or more of the above	26.1	49.3	14.9	257.73
Men Any 1 or more of the above	33.6	57.3	19.5	114.803
Women Any 1 or more of the above $\frac{a}{n} = 690 (32.6\%)$, $\frac{b}{n} = 1284 (67.3\%)$	20.6	40.6	12.1	107.047

cigarette smokers and non-smokers. As shown, prevalence of smoking 1 or more non-cigarette product was 49.3% for cigarette smokers and 14.9% for non-smokers. Among Black men, prevalence of smoking 1 or more non-cigarette product was 57.3% for smokers, and 19.5% for non-smokers; among women, these rates were 40.6% (cigarette smokers) and 12.1% (non-smokers).

 Table 2 displays the hierarchical logistic regression predicting smoking of any non-cigarette product from demographic and cigarette-smoking variables. As shown, smoking non-cigarette products was predicted by age, gender, and cigarette smoking, but not by socioeconomic status (SES; education, income, employment). Men (OR=2.5), cigarette smokers (OR=3.2), and young adults (OR=7.4) were

	Table 2. Logistic Regression Predic	ting Black	Adult Smol	king of Non-	Cigarette Prod	ucts
Mo	del and Variables Entered	В	Wald	P	OR	95% CI
STEP	1: DEMOGRAPHIC VARIABLES					
Age	45 and older (REF)					
	18-24	1.997	38.442	.0005	7.37	3.919,13.856
	25-34	1.05	17.546	.0005	2.85	1.46,4.656
	35-44	.705	7.882	.005	2.02	1.237,3.311
Gender	Women (REF)					
	Men	.931	22.023	.0005	2.54	1.720,3.742
Education	Didn't Finish High School (REF)					
	High School Graduate/GED	.051	0.022	.882		
	College and higher	227	1.078	.299		
Income	Less than \$10,999 (REF)					
	\$11,000 - \$25,999	.330	1.156	.282		
	\$26,000-\$49,999	.524	3.445	.063		
	\$50,000 and higher	189	0.437	.508		
Employment	Employed (REF)					
	Unemployed	.075	0.109	.741		
STE	EP 2: CIGARETTE SMOKING					
Smoking	Non-Smoker (REF)					
	Smoker	1.16	21.760	.0005	3.19	1.962,5.212
Cigarette Type	· · · · · · · · · · · · · · · · · · ·	4.47	2.460	0.62		
	Menthol Both	.447 .851	3.469 7.166	.063 .007	2.34	1.256, 4.366
REF = Referen		.051	7.100	.007	4.57	1.230, 4.300

more likely to smoke non-cigarette products, and the odds of smoking the products increased with decreasing age.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table 3 displays separate regressions predicting smoking of Blunts and of the cigarillos *Philly* and *Black & Mild*. Age, gender, and higher incomes were predictors of smoking Blunts. The odds of Bluntsmoking were 2.5 times higher for men, and increased as age decreased, with young (ages 18-24) adults 6.3 times more likely than older ones (ages 45 and older) to smoke Blunts. *Philly/Black & Mild*- smoking was predicted by age, gender, and cigarette smoking. Men were 2.6 times more likely than women, young adults 15.9 times more likely than older ones, and cigarette smokers 5.3 times more likely than non-smokers to smoke *Philly/Black &Mild*.

]	Blunts		and of Philly/Black & Mild Cigarillos Philly/Black & Mild Cigarillos				
Vo	ariables Entered	Wald	P	OR	95% CI	Wald		OR	95% CI	
	P 1: Demographics	waiu	1	OK	93 /0 C1	waiu	р	OK	9370 C1	
~	- 1. – 1 8. mp									
Age	45 and older (REF)									
	18-24	29.69	.0005	6.25	3.23,12.08	51.69	.0005	15.90	7.48,33.8	
	25-34	13.31	.0005	3.07	1.68,5.62	21.33	.0005	4.23	2.29,7.80	
	35-44	7.208	.007	2.38	1.26,4.48	14.22	.0005	3.38	1.79,6.36	
Gender	Women (REF)									
	Men	14.10	.0005	2.49	1.55,4.02	14.02	.0005	2.57	1.57,4.21	
Education	Not HS Grad (REF)								,	
2440441011	HS Grad/GED	0.82	.365			.928	.335			
	College and higher	1.066	.302			.616	.433			
Income Less	s than \$10,999(REF)									
	\$11,000 - \$25,999	3.925	.048	2.17	1.01,4.66	.375	.540			
	\$26,000-\$49,999	4.792	.029	2.18	1.09,4.37	.289	.591			
	\$50,000 and higher	0.051	.821			.089	.766			
Employme	ent									
	Employed(REF)									
	Unemployed	0.259	.611			1.29	.257			
STEP 2.	Cigarette Smoking									
DILI 2.	Cigarette billokilig									
Smoking	Non-Smoker (REF)									
_	Smoker	3.767	.052	1.89	.994,3.59 ^a	19.75	.0005	5.34	2.55,11.18	
Type	Non-Menthol(REF)									
	Menthol	0.521 0.169	.470			6.72	.013	2.36	1.19,4.66	

The separate regressions predicting Cigar-Smoking and Marijuana-Smoking (Table 4) found age, gender, and cigarette smoking to be the predictors of both. Men, young adults, and smokers were 2.5 to 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

times more likely to smoke Standard-size Cigars than their reference groups. For Marijuana-Smoking, men were twice as likely, the youngest age group 6 times more likely, and smokers 2.5 times more likely than their reference groups to smoke Marijuana. A similar regression predicting Bidi-smoking (Table 5) revealed that age was the sole predictor, with those ages 18-24 (OR=4.7) and 35-44 (OR=4.4) more likely to smoke Bidis than the older age-group. The regression predicting smoking Kreteks/Cloves (Table 5) revealed that age and smoking menthol cigarettes were the predictors; those ages 35-44 were 11 times more likely, and menthol smokers (OR=0.205) were less likely to smoke Kreteks/Cloves.

Table 4. Logistic Ro	~				of Cigars ar	nd of Mari	juana	
	St	tandard-	size Ciş	gars	Marijuana			
Variables Entered	Wald	P	OR	95% CI	Wald	p	OR	95% CI
Age 45 and older (REF)								
18-24	9.023	.003	2.99	1.46,6.09	30.68	.0005	6.05	3.20,11.45
25-34	.819	.365			25.30	.0005	4.13	2.38,7.17
35-44	4.132	.042	1.98	1.03,3.82	6.85	.009	2.18	1.22,3.90
Gender Women (REF)								
Men	16.823	.0005	3.08	1.80,5.28	11.51	.001	2.14	1.38,3.32
Education Not HS Grad (REF)								
HS Grad/GED	.264	.607			1.03	.310		
College and higher Income Less than \$10,999 (REF)	.004	.947			.129	.719		
\$11,000 - \$25,999	.518	.472			1.35	.245		
\$26,000-\$49,999	2.065	.151			2.14	.143		
\$50,000 and higher	.473	.492			.048	.826		
Employment Employed (REE)								
Employed(REF) Unemployed	.032	.858			1.08	.300		
STEP 2: Cigarette Smoking								
Smoking Non-Smoker (REF)								
Smoker	6.305	.012	2.54	1.23,5.26	9.42	.002	2.55	1.40,4.64
Type Non-Menthol(REF)								
Menthol	.162	.687			3.83	.050	1.76	.999,3.09
$\frac{\text{Both}}{\text{REF} = \text{Reference group;}} = \text{Not } S$	1.887	.170			2.74	.098		

	Table 5. Logistic Regress	sions Pre	dicting	Black A	dult Smoking	of Bidis an	d of Kre	eteks/Clo	oves
		Bidis			Kreteks/Clove Cigarettes				
	riables Entered emographics	Wald	P	OR	95% CI	Wald	P	OR	95% CI
Age	45 and older (REF)								
	18-24	4.634	.031	4.74	1.15,19.55	0.000	.997		
	25-34	3.256	.071			3.540	.06	5.79	.929,36.04 ^a
	35-44	5.000	.025	4.43	1.20,16.32	7.265	.007	11.09	1.928,63.79
Gender	Women (REF)								
	Men	1.970	.160			0.179	.672		
Education	Not HS Grad (REF)								
	HS Grad/GED	.000	.990			0.033	.855		
	College and higher	.013	.910			1.447	.229		
IncomeLes	ss than \$10,999 (REF)								
	\$11,000 - \$25,999	1.044	.307			0.758	.384		
	\$26,000-\$49,999	.119	.731			0.812	.367		
	\$50,000 and higher	.089	.776			0.229	.632		
Employme									
	Employed(REF)								
	Unemployed	1.719	.190			0.116	.734		
STEP 2: Ci	igarette Smoking								
Smoking	Non-Smoker (REF) Smoker	2.126	.145			0.000	.996		
Type	Non-Menthol(REF) Menthol	.753	.386			4.365	.037	0.205	.046,.907
	Both	2.341	.126			0.488	.485		
REF = Refe	erence group; ^a = Not Si	gnificant							

DISCUSSION

There was a high (49.3%) prevalence of polytobacco among Black adult cigarette smokers that held for men (57.3%) and women (40.6%). Substantial smoking of non-cigarette products also was found among non-cigarette smokers, with 19.5% of men and 12.1% of women non-smokers smoking at least one non-cigarette product in the past 30 days. The odds of smoking most non-cigarette products generally were higher for men than women (ORs = 2.5 to 3.0), and for cigarette smokers than non-smokers (ORs = 3.2 to 5.3); however, gender did not contribute to smoking bidis or kreteks, and cigarette smoking did not For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

contribute to smoking bidis, kreteks, or blunts. Smoking of any non-cigarette product and of each specific product generally was highest among adults ages 18-24 years (ORs = 3 to 15.9) as in prior studies [13-16], and decreased as age increased. The exception was smoking kreteks/cloves; for these, older adults were more likely to be users. Moreover, unlike the well-known relationship between cigarette smoking and low SES[1,3-5], for these non-cigarette products, SES was related only to smoking blunts, with higher incomes a predictor. Type of cigarette smoked contributed to smoking non-cigarette products in general, and to smoking *Phillies/Blacks* specifically, with higher odds for those who smoked both menthol and non-menthol cigarettes, rather than one or the other; menthol smoking generally did not predict use of other products.

These findings suggest a problematically high prevalence of polytobacco use among Black smokers that is strongly associated with gender and young-adulthood but not associated with low income, low education, or menthol-smoking. Polytobacco users were mostly young men of varied SES who smoked all types of cigarettes along with non-cigarette products, i.e., a possible pattern of smoking whatever is available. Given that low-SES was not a risk factor for this, polytobacco use might perhaps instead be related to the social risk-factors for cigarette smoking among Blacks that have been identified in prior studies, i.e., racial segregation[27-29] and racial discrimination[30-32]. High levels of residential segregation (with high exposure to targeted tobacco advertising and easy access to single cigarettes in Black neighborhoods), and high levels of (the stress of) racial discrimination might be associated with smoking any cigarette and non-cigarette product available. Studies of the possible role of these factors in polytobacco use among Blacks are needed.

The 14.9% prevalence of past 30-day smoking of non-cigarette products by non-cigarette smokers also is a concern. Smoking blunts and bidis was not associated with cigarette smoking but was strongly associated with youth. This suggests that smoking blunts and bidis might reflect youthful experimentation [13,15,17], and raises questions about whether young Blacks try these before they try cigarettes[13]. Studies of age of initiating smoking of cigarettes versus blunts and cigarillos among Blacks are needed to clarify this.

This study also found a substantial prevalence of smoking products that are not assessed in most population smoking surveys of adults (e.g., marijuana, cigarillos, blunts). Hence, it would be beneficial for surveillance studies to assess smoking of blunts, bidis, and (in particular) cigarillos such as *Phillies*, *Black & Mild*, and *Swisher Sweets*. Smoking of cigarillos may need to be assessed by brand name because young Blacks often do not categorize them as cigars[18], and hence their reports of cigar use increase significantly when these brand names are included[18]. That these cigarillos are sold individually and come in a variety of flavors (e.g., chocolate, apple, cherry) may contribute to not categorizing them as cigars or as cigarettes. Such assessment will provide a more comprehensive picture of smoking among Black adults, and would match the complexity of recent (2011) assessments of youth smoking that included bidis, kreteks and cigarillos [35].

This study has several limitations, including use of self-reports that may be lower than biologically-validated data[25], lack of assessment of some forms of tobacco use (e.g., pipes), and a California sample whose data might not generalize to other states. In addition, we treated age as a categorical instead of a continuous variable, and this may have limited the sensitivity of analyses. We note however that the age categories used here are similar to those used in prior studies of polytobacco use in which the highest prevalence found was for 18-24 year olds [e.g., 13-16]. Moreover, to decrease the number of consecutive significance tests, potentially-interesting interaction effects (e.g., gender X age, gender X income) were not examined; such effects however generally are not examined in basic, epidemiologic studies of product-use [e.g., 35] and is a limitation of this study and of similar studies. Likewise, because more than 90% of these Black cigarette smokers consumed 10 or fewer cigarettes per day, potential relationships between number of cigarettes smoked and smoking of other products were not examined. In addition, prevalence of smoking the products may have changed since this study. This is particularly the case for kreteks (clove cigarettes) that were banned by the 2009 Family Smoking Prevention and Tobacco Control Act [36]. The CDC's 2011 study of youth [35] revealed that youth still smoke kreteks despite the ban, and this suggests that adults also might still smoke them. How youth and adults acquire banned and illegal products is worthy of investigation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Despite these limitations, this study is the first to highlight the magnitude and complexity of smoking among a random, community sample of Black adults, and the first to underscore the need to improve its assessment in research and practice. More comprehensive, population-level assessment of multiple-substance smoking might yield data that in part explain Black difficulty quitting tobacco despite smoking only a few cigarettes per day[5-6], and likewise might yield findings that in part explain the puzzling high-incidence of smoking-related cancers at young ages among Black men [7,33]. Similarly, it would be beneficial for healthcare providers to include non-cigarette products such as bidis and blunts in 5A (ask, advise, assess, assist, arrange) assessment of smoking [34] among cigarette smokers and non-smokers alike, young adults in particular. Smoking cessation interventions also might be enhanced by assessing and addressing cessation of smoking such products. However, whether evidence-based smoking cessation interventions and nicotine replacement therapy are effective with polytobacco users remains unknown. Studies are needed to assess the possibility that hidden polytobacco use might contribute to the relative failure of standard smoking cessation programs with Black smokers[5-6], and research on the possible need for new cessation interventions for polytobacco users is needed as well.

FUNDING

Supported by *Tobacco-Related Disease Research Program* Grant No. 15AT-1300.

<u>Conflicts of interests</u>: The authors have no financial or other conflicts of interests.

Author Contributions

Irma Corral made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Hope Landrine made substantial contributions to 1) study conception and design, acquisition of data, and analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Jukelia Bess made substantial contributions to 1) analysis and interpretation of data; to 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

Denise Adams Simms made substantial contributions to 1) study conception and design, and acquisition of data, 2) drafting the article or revising it critically for important intellectual content; and gave 3) final approval of the version to be published.

REFERENCES

- 1. Centers for Disease Control and Prevention. Any tobacco use in 13 states B Behavioral Risk Factor Surveillance System, 2008. *MMWR*. 2010; 59(30): 946-950.
- 2. Bombard JM, Pederson LL, Nelson DE, Malarcher AM. Are smokers only using cigarettes? *Addict Beh.* 2007; 32:2411-2419.
- 3. King BA, Dube SR, Tynan. MA. Current tobacco use among adults in the United States: Findings from the National Adult Tobacco Survey. *Am J Public Health*. 2012; 102(11):e99-e100.
- 4. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2000-2009. *MMWR*. 2010; 59(33):1063-8.
- 5. Fagan P, Moolchan ER, Lawrence D, Fernander A, Ponder PK. Identifying health disparities across the tobacco continuum. *Addiction*. 2007; *102* (Suppl.2): 5-29.
- 6. Trinidad DR, Pérez-Stable EJ, White MM et al. A nationwide analysis of US racial/ethnic disparities in smoking behaviors, smoking cessation, and cessation-related factors. *Am J Public Health*. 2011; 101(4):699-706.
- 7. Haiman CA, Stram DO, Wilkens LR et al. Ethnic and racial differences in smoking-related risk of lung cancer. *New Eng J Med*. 2006; 354(4): 333-342.
- 8. Delneveo CD, Hrywna M. The relationship of cigars, marijuana, and blunts to adolescent bidi use. *Public Health Reports*. 2006; 121(5): 603-608.
- 9. Malson JL, Lee EM, Murty R, Moolchan ET, Pickworth WB. Clove Cigarette Smoking: Biochemical, Physiological, and Subjective Effects. *Pharm., Biochem. Beh.* 2003;74:739B745
- 10. Watson CH, Polzin GM, Calafat AM, et al. Determination of the Tar, Nicotine, and Carbon Monoxide Yields in the Smoke of Bidi Cigarettes. *Nic. Tob. Research*. 2003;5:747B753.
- 11. Ganesh B, Sushama S, Monika S, Suvarna P. A case-control study of risk factors of lung cancer in Mumbai, India. *Asian Pac J Cancer Prev.* 2011; 12(2):357-362.
- 12. Jayalekshmi PA, Gangadharan P, Akiba S, et al. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India. *Cancer Sci.*2011; 102:460-67. For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 13. Delnevo CD, Pevzner ES, Myrwna M, Lewis MJ. Bidi cigarette use among young adults in 15 states. *Prev. Med.* 2004; 39: 207-211.
- 14. Vander Weg MW, Peterson, AL, Ebbert JO, et al. Prevalence of alternative forms of tobacco use in a population of young adult military recruits. *Addict Behav.* 2008; 33: 69-82.
- 15. Sinclair CF, Foushee HR, Pevear JS et al. Patterns of blunt use among young adult African American men. *Am J Prev Med*. 2012; 42(1): 61-64
- 16. Jolly DH. Exploring the use of little cigars by students at a historically Black university. *Prev Chronic Dis.* 2008; 5:3-11.
- 17. Page JB, Evans S. Cigars, cigarillos and youth: Emerging patterns and subcultural complexities. *J Ethn Subst Abuse*. 2003; 2(4): 63-76.
- 18. Yerger VB, Pearson C, Malone R. When is a cigar not a cigar? *Am J Public Health*. 2001;91:316-7.
- 19. Blumberg SJ, Luke JV, Cynamon ML. Telephone coverage and health survey estimates: Evaluating the need for concern about wireless substitution. *Am J Public Health*. 2006;96: 926-31.
- 20. Link MW, Mokdad AH, Stackhouse HF, et al. Race, ethnicity, and linguistic isolation as determinants of participation in public health surveillance surveys. *Prev Chronic Dis.* 2006; 3:1-12.
- 21. Satia JA, Galanko JA, Rimer BK. Methods and strategies to recruit African-Americans into cancer prevention surveillance studies. *Cancer Epi Bio Prev.* 2005; 14(3):718-721.
- 22. Carroll, JK, Yancey, AK, Spring, B, et al. What are successful recruitment and retention strategies for underserved populations? *Translational Behav Med.* 2011; 234-251.
- 23. Cabral DN, Napoles-Springer AM, Miike R, et al. Population- and community-based recruitment of African Americans and Latinos. *Am J Epi*. 2003; 158: 272-279.
- 24. Pichon LC, Corral I, Landrine H., et al. Sun protection behaviors among African Americans. *Am J Prev Med*. 2010; 38(3): 288-295.
- 25. Fisher MA, Taylor GW, Shelton BJ, Debanne S. Age and race/ethnicity-gender predictors of denying smoking, United States. *J Health Care Poor Underserv*. 2008; *19*: 75-89. For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

26. Beebe TJ, McRae JA, Harrison PA, et al. Mail surveys result in more reports of substance use. *J Clinical* Epi. 2005; *58*: 421-424.

- 27. Liao Y, Tucker P, Okoro CA, et al. REACH 2010 Surveillance for Health Status in Minority Communities. *MMWR Surveillance Summaries*. 2004; *53*:1-36.
- 28. Landrine H, Klonoff EA. Racial segregation and cigarette smoking among Blacks. *J Health Psych*. 2000; 5(2): 211-219.
- 29. Datta GD, Subramanian SV, Colditz GA, et al. Individual, neighborhood, and state-level predictors of smoking among US Black women. *Soc Sci & Medicine*. 2006; *63*, 1034-1044.
- 30. Borrell LN, Diez Roux AV, Jacobs DR, et al. Perceived racial/ethnic discrimination, smoking, and alcohol consumption in the Multi-Ethnic Study of Atherosclerosis (MESA). *Prev. Med.* 2010; 51: 307-312.
- 31. Shariff-Marco S, Klassen AC, Bowie JV. Racial/ethnic differences in self-reported racism and its association with cancer-related health behaviors. *Am J Public Health*. 2010;100:364-74.
- 32. Corral I, Landrine H. Racial Discrimination and Health-Promoting vs. Damaging Behaviors among African-American Adults. *J Health Psych*. 2012; 17: 1176-1182.
 - 33. Elk R, Landrine H. Cancer Disparities. New York, NY: Springer; 2012.
- 34. Weglicki LS. Tobacco use assessment: What exactly is your patient using and why is it important to know? *Ethn Dis.* 2008; 18(3 Suppl 3): S3-6.
- 35. Centers for Disease Control and Prevention. Tobacco Use Among Middle and High School Students United States, 2011. *MMWR*. 2012; 61(31):581-585.
 - 36. See http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation.
- 37. Hashibe M, Straif K, Tashkin DP, et al. Epidemiologic review of marijuana use and cancer risk. 2005. *Alcohol*; 35(3): 265-275.

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and
		what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any pre-specified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment
measurement		(measurement). Describe comparability of assessment methods if there is more than one
		group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe
		which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(\underline{e}) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
•		eligible, examined for eligibility, confirmed eligible, included in the study, completing
		follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted
		for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
		analyses

Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based

eparately for expressions. *Give information separately for exposed and unexposed groups.