Adaptive capacity of the Adjusted Clinical Groups Case-Mix System to the cost of primary healthcare in Catalonia (Spain): a observational study

Antoni Sicras-Mainar,1 Soledad Velasco-Velasco,1 Ruth Navarro-Artieda,2 Alexandra Prados-Torres,3 Buenaventura Bolibar-Ribas,4 Concepción Violan-Fors,4 for the ACG Study Group*

ABSTRACT

Objectives: To describe the adaptive capacity of the Adjusted Clinical Groups (ACG) system to the cost of care in primary healthcare centres in Catalonia (Spain).

Design: Retrospective study (multicentre) conducted using computerised medical records.

Setting: 13 primary care teams in 2008 were included.

Participants: All patients registered in the study centres who required care between 1 January and 31 December 2008 were finally studied. Patients not registered in the study centres during the study period were excluded.

Outcome measures: Demographic (age and sex), dependent (cost of care) and case-mix variables were studied. The cost model for each patient was established by differentiating the fixed and variable costs. To evaluate the adaptive capacity of the ACG system, Pearson’s coefficient of variation and the percentage of outliers were calculated. To evaluate the explanatory power of the ACG system, the authors used the coefficient of determination (R²).

Results: The number of patients studied was 227,235 (frequency: 5.9 visits per person per year), with a mean of 4.5 (3.2) episodes and 8.1 (8.2) visits per patient per year. The mean total cost was €654.2. The explanatory power of the ACG system was 36.9% for costs (56.5% without outliers). 10 ACG categories accounted for 60.1% of all cases and 19 for 80.9%. 5 categories represented 71% of poor performance (N=78,887, 34.7%), particularly category 0300-Acute Minor, Age 6+ (N=26,909, 11.8%), which had a coefficient of variation =139% and 6.6% of outliers.

Conclusions: The ACG system is an appropriate manner of classifying patients in routine clinical practice in primary healthcare centres in Catalonia, although improvements to the adaptive capacity through disaggregation of some categories according to age groups and, especially, the number of acute episodes in paediatric patients would be necessary to reduce intra-group variation.

INTRODUCTION

In health management, separating financing, purchasing and the provision of services requires more precise instruments and measurement of healthcare activity.1 2 Various countries are developing methods of per capita funding as a mechanism for allocating healthcare resources in a given region.3 The Adjusted Clinical Groups (ACG) Case-Mix System is a system of risk adjustment that classifies persons according to the diseases they present over a given period.

Key messages

- The ACG system is an appropriate manner of classifying patients in routine clinical practice in primary healthcare centres in Catalonia.
- Although improvements to the adaptive capacity through disaggregation of some categories according to age groups and, especially, the number of acute episodes in paediatric patients would be necessary to reduce intra-group variation.

Strengths and limitations of this study

- The greatest limitations of the study are related to the quality of the records and information systems.
- Without standardisation of methodologies in terms of patient characteristics and the number and measurement of variables, the results and their generalisability should be interpreted with caution.

BMJ Open
Accessible medical research

Open Access
Research
period. The main objective is to measure the degree of
disease in patient populations according to different
levels of morbidity.4,5

Classification systems for ambulatory patients, espe-
cially primary healthcare (PHC) patients, have not been
widely used even in the USA, where they mainly origi-
nated. In addition, there is some uncertainty about the
adaptive capacity of these instruments in health fields
other than that for which they were designed. These
classification systems relate the burden of disease,
consumption of resources and the real costs of care.6–11
Therefore, studies aimed at improving knowledge of the
relationships between these factors can provide valuable
evidence.

In general, ACG are accepted as useful in our setting
and their use is increasing in various areas. However,
some ACG categories seem to have excess variability and
therefore we decided to study the performance of each
ACG category in PHC centres in Catalonia.6,12,13

The aim of this study was to identify the retrospective
adaptive capacity and poorly performing categories
of the ACG system according to the cost of care in
various PHC centres in Catalonia (Spain) in daily clinical
practice.

METHODS

Design and study population
We conducted a retrospective, multicentre study based
on computerised medical records of PHC patients. All
records were dissociated to ensure the confidentiality of
the data. The study population consisted of all patients
(N=310,235) assigned to 13 PHC centres in Catalonia
belonging to four service providers. The patient popu-
lation was predominantly urban, lower-middle class,
with industrial occupations. All centres included
provide universal free-at-the-point-of care healthcare
with private provision of services in concert with the
Catalan Health Service. All patients registered in the
study centres who required care between 1 January and
31 December 2008 were finally studied. Patients not
registered in the study centres during the study period
were excluded.

Data retrieval and processing
Dependent variables were defined as the mean number
of episodes and the direct costs of PHC. The independ-
ent variables analysed were age, sex, care provider and
clinical service (family medicine (age \(\geq 15 \) years) and
paediatrics (age 0–14 years)). An episode or reason for
consultation was considered as a care process equivalent
to a diagnosis. The health problems diagnosed were
coded using the International Classification for Primary
Care (ICPC-2).14 A conversion (mapping) from ICPC-2
codes to ICD-9-CM was made by a working group (one
documentalist, two clinicians and two technical consul-
tants). Relationships between the ICPC-2 and ICD-9-CM
were divided into three groups: (1) no relationship
(ICPC-2 code with no equivalent in ICD-9-CM), (2) one-
way relationship (one ICPC-2 code with a single equiva-
 lent in ICD-9-CM, the optimal situation) and (3) multiple relationships (one ICPC-2 code with several
possible equivalents in ICD-9-CM).

The following measures were used to calculate overall
morbidity: (1) the Charlson comorbidity index15 as an
approximation of severity and (2) the individual case-
mix index obtained using the ACG. The operating
algorithm of the ACG Grouper V.8.2 (http://www.acg.
jhsph.edu)16 consists of a series of consecutive steps that
result in 106 ACG, which are mutually exclusive groups
for each patient treated.

To construct an ACG, the age, sex and the reasons for
consultation or diagnosis according to ICD-9-CM are
required. The first stage groups the diagnoses of the
ICD-9-CM in 32 Ambulatory Diagnostic Groups (ADG)
(a patient may have one or more ADG), the second step
groups the ADG into 12 Collapsed Ambulatory Diag-
nostic Groups, the third step transforms these into 25
Major Ambulatory Categories and finally these are
transformed into an ACG category. At the end of the
process, each patient is assigned to a single group with
similar resource consumption. The application provides
resource utilisation bands (RUB), with each patient
being grouped into one of the five mutually exclusive
categories according to their morbidity (1: healthy users,
2: low morbidity, 3: moderate morbidity, 4: high
morbidity and 5: very high morbidity).4,5

To measure the performance or adaptive capacity of
each ACG category (intra-group variability of the total
cost of care), we used: (1) the Pearson’s coefficient of
variation (CV), in which a coefficient >100% was
considered poor performance and (2) the percentage
of outliers obtained through data refining of variables.
The cut-off point (T) for outliers was established using
the formula: T = Q₃ + 1.5 (Q₃ - Q₁), where Q₃ and Q₁
are the third and first quartile of the distribution,
respectively.

Use of resources and cost model
The design of the system of costs took into account the
information requirements and degree of development
of available information systems. The unit of care
product used as the basis for the final calculation was the
cost per patient treated during the study period. For
each patient, we differentiated fixed costs and variable
costs. The main fixed costs were staff (salaries and
wages), purchases (drugs, medical supplies, etc),
outsourced services (building repair and maintenance,
professional services, etc) and a set of costs relating to
structural services and centre management according to
the General Accounting Plan for Health Care Centers.
Fixed costs were allocated per visit (mean/unit: fixed
costs/total number of visits). Variable costs per patient
were calculated according to diagnostic petitions (labo-
ratory, radiology, diagnostic or therapeutic, referrals to
specialists and drug prescriptions). The tariffs used to
calculate costs came from analytical cost-accounting
studies (see table 1). Finally, the cost per patient was
calculated as: \(C_p = (\text{mean cost per visit} \times \text{number of visits} \times \text{fixed costs}) + (\text{variable costs}) \).

Data confidentiality

According to Spanish law, being a retrospective design and because it is not investigated the effectiveness of any medicine, the study does not need specific approval from an institutional review board or the patient’s consent but instead required the dissociation of the data. The confidentiality of records according to the Organic Law on Data Protection (15/1999, 13 December) was respected by dissociating the data.

Data quality and statistical analysis

In a preliminary analysis, we carefully reviewed the medical records to observe their frequency and distribution and to search for possible errors in recording or coding. We performed a descriptive univariate analysis including mean values, SD, proportions and percentiles. The normal distribution of variables was confirmed using the Kolmogorov–Smirnov test. In the bivariate analysis, we used the \(\chi^2 \) test, the Student t test, ANOVA, Pearson’s linear correlation and the Mann–Whitney–Wilcoxon non-parametric test. To evaluate the explanatory power of the ACG system, we used the coefficient of determination (\(R^2 \)) obtained from the ratio intra-group variability/total variability (ANOVA). The analysis was made using the SPSS for Windows V.18 statistical package. Statistical significance was established as \(p<0.05 \).

RESULTS

A total of 227,235 patients were registered in the study centres in 2008 (86.5% in family medicine and 13.5% in paediatrics). Table 2 details the general characteristics of the patient population, the comorbidity and the total costs. Patients had a mean of 4.5 (3.2) episodes and 8.1 (8.2) visits per year. The percentage of men (51.1% vs 49.3%, \(p<0.001 \)) and visits (9.7 vs 7.8, \(p<0.001 \)) were higher in paediatric patients. The mean age of women was higher than that of men, 39.2 vs 37.8 (\(p<0.001 \)). The total cost was €148.7 million (93.3% for family medicine and €106.29 in paediatric (\(p<0.001 \)). A total of 6.2% of patients were considered outliers, and after data refining, the mean unitary cost per year was €556.7. The association between the mean/unit cost according to age is shown in figure 1.

The performance (patient distribution) and adaptive capacity (intra-group variation in categories) of the ACG classification are shown in table 3. All patients were grouped in a category. However, no patients were grouped in 37 of the 106 categories, meaning that all patients were grouped in the remaining 69 categories. Furthermore, 61% of all patients were grouped in 10 categories and 80.9% in 19 (\(N=183,721 \), table 3). This distribution showed no significant differences according to the service provider. In 10 ACG categories, a poor
Adaptive capacity of the Adjusted Clinical Groups Case-Mix System

Figure 1 Correlation of the cost of care according to age. R²: coefficient of determination.

performance (poor adaptive capacity) was observed (CV >100%, N=110 917, 48.8% of patients, table 3 and figure 2). The two categories with the highest CV were 1600-Preventive/Administrative (N=8527, 3.8%, outliers: 12.5%) and 1300-Psychosocial, w/o Psychosocial Unstable (N=3653, 1.6%, outliers: 10.7%).

We carried out a more-detailed analysis according to poor performance and the number of patients in each category. Table 4 shows the distribution of five ACG categories (making up 71% of poorly performing categories, N=78 887). Compared with the total of 69 categories (N=227 235), these five categories had a lower explanatory power (coefficient of determination, R²) in episodes (44.3% vs 77.4%) and total costs (18.8% vs 36.9%), p<0.001. For refined data, the results were 46.4% vs 78.4% for episodes and 36.5% vs 56.5% for total costs, p<0.001. Category 0900-Acute Minor, Age 6+ (N=26 909; 11.8%) had a CV =139% and 6.6% of outliers and showed significant differences before and after data refining. Categories 0400-Acute Major (N=8 160) and 1800-Acute Minor/Acute Major (N=9 077) performed similarly. Category 4100-2-3 Other ADG Combinations, Age 35+, had the highest number of patients (N=28 864, 12.7%), with a high mean number of episodes (3.9 of total cases compared with 4.5 in outliers, p<0.001), resulting in increased costs in these patients. The R² of the five poorly performing categories was 34.7%.

DISCUSSION

This study determined the retrospective adaptive capacity of the ACG classification system according to the cost of PHC in Catalonia (Spain) in daily clinical practice, identifying 10 categories that performed poorly in the Catalan health system. In Catalonia, the use of capitation-based funding is still in its infancy compared with other European healthcare systems. The focus is on incorporating risk adjustment indicators in order to provide unbiased estimates of the expected costs of an individual patient in each health plan.2–17 There is abundant published evidence on the use and overall performance of the ACG classification, but evidence on categories that perform poorly is very limited.1–7 9 12 18–24 It is expected that persons with similar morbidity and demographic characteristics will have a similar use of resources. In this respect, the available empirical evidence shows that it is technically possible to find an adjustment formula to predict at least a portion of the variation in health expenditure per person and also that the highest predictive values are

Table 3 Distribution of ACG categories with the most patients: variability of categories

<table>
<thead>
<tr>
<th>ACG</th>
<th>ACG description</th>
<th>N</th>
<th>%</th>
<th>Cost*</th>
<th>CV</th>
<th>Outliers†</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>2-3 Other ADG Combinations, Age 35+</td>
<td>28 864</td>
<td>12.7</td>
<td>776.3</td>
<td>107</td>
<td>6.5</td>
</tr>
<tr>
<td>0300</td>
<td>Acute Minor, Age 6+</td>
<td>26 909</td>
<td>11.8</td>
<td>169.6</td>
<td>139</td>
<td>6.6</td>
</tr>
<tr>
<td>4910</td>
<td>6-9 Other ADG Combinations, Age 35+, 0-1 Major ADGs</td>
<td>14 876</td>
<td>6.5</td>
<td>1624.4</td>
<td>67</td>
<td>4.5</td>
</tr>
<tr>
<td>2100</td>
<td>Acute Minor/Likely to Recur, Age 6+, w/o Allergy</td>
<td>11 867</td>
<td>5.2</td>
<td>304.7</td>
<td>91</td>
<td>5.3</td>
</tr>
<tr>
<td>4410</td>
<td>4-5 Other ADG Combinations, Age 45+, no Major ADGs</td>
<td>10 551</td>
<td>4.6</td>
<td>1025.4</td>
<td>74</td>
<td>5.3</td>
</tr>
<tr>
<td>4420</td>
<td>4-5 Other ADG Combinations, Age 45+, 1 Major ADGs</td>
<td>10 137</td>
<td>4.5</td>
<td>1336.2</td>
<td>79</td>
<td>4.6</td>
</tr>
<tr>
<td>0500</td>
<td>Likely to Recur, w/o Allergies</td>
<td>9 872</td>
<td>4.3</td>
<td>187.2</td>
<td>140</td>
<td>6.6</td>
</tr>
<tr>
<td>1800</td>
<td>Acute Minor/Acute Major</td>
<td>9 077</td>
<td>4.0</td>
<td>353.2</td>
<td>104</td>
<td>5.9</td>
</tr>
<tr>
<td>1600</td>
<td>Preventive/Administrative</td>
<td>8 527</td>
<td>3.8</td>
<td>229.5</td>
<td>215</td>
<td>12.5</td>
</tr>
<tr>
<td>0400</td>
<td>Acute Major</td>
<td>8 160</td>
<td>3.6</td>
<td>237.3</td>
<td>160</td>
<td>8.1</td>
</tr>
<tr>
<td>0900</td>
<td>Chronic Medical: Stable</td>
<td>6 319</td>
<td>2.8</td>
<td>506.7</td>
<td>114</td>
<td>6.2</td>
</tr>
<tr>
<td>3900</td>
<td>2-3 Other ADG Combinations, Males Age 18 to 34</td>
<td>5 877</td>
<td>2.6</td>
<td>341.7</td>
<td>117</td>
<td>6.0</td>
</tr>
<tr>
<td>3200</td>
<td>Acute Minor/Acute Major/Likely to Recur, Age 12+, w/o Allergy</td>
<td>5 785</td>
<td>2.5</td>
<td>525.0</td>
<td>89</td>
<td>6.3</td>
</tr>
<tr>
<td>2300</td>
<td>Acute Minor/Chronic Medical: Stable</td>
<td>5 756</td>
<td>2.5</td>
<td>612.6</td>
<td>95</td>
<td>6.3</td>
</tr>
<tr>
<td>3600</td>
<td>Acute Minor/Acute Major/Likely to Recur/Chronic Medical: Stable</td>
<td>5 575</td>
<td>2.5</td>
<td>1022.1</td>
<td>72</td>
<td>5.0</td>
</tr>
<tr>
<td>4310</td>
<td>4-5 Other ADG Combinations, Age 18 to 44, no Major ADGs</td>
<td>4 168</td>
<td>1.8</td>
<td>554.8</td>
<td>86</td>
<td>6.4</td>
</tr>
<tr>
<td>4920</td>
<td>6-9 Other ADG Combinations, Age 35+, 2 Major ADGs</td>
<td>4 089</td>
<td>1.8</td>
<td>2102.5</td>
<td>67</td>
<td>3.5</td>
</tr>
<tr>
<td>2800</td>
<td>Acute Major/Likely to Recur</td>
<td>3 659</td>
<td>1.6</td>
<td>351.0</td>
<td>102</td>
<td>6.9</td>
</tr>
<tr>
<td>1300</td>
<td>Psychosocial, w/o Psychosocial Unstable</td>
<td>3 653</td>
<td>1.6</td>
<td>340.4</td>
<td>175</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Nineteen ACG categories contain 80.9% of patients (N=183 721). No patient was grouped in 37 ACG categories; ACG, Adjusted Clinical Groups (Code):* Gross cost (mean/unit in euros), CV: Pearson’s coefficient of variation;† outliers: percentage of patients, cut-off: T = Q3 + 1.5 (Q3 – Q1), where Q3 and Q1 are the third and first quartiles of the distribution, respectively. Total sample: N=227 235, CV =130.0%, outliers: 6.2%.
achieved by systems that incorporate diagnostic information. This has been proven in our study since the number of episodes showed a greater explanatory power with respect to ACG categories than the total costs. Furthermore, data refining may lessen the weight of random factors in predicting expenditure, although it is known that no system of classification of patients into RUB explains all the variation in the use of resources.

In general, the Grouper requires a limited number of variables for each patient: age, sex and diagnosis (not necessarily correlated in time). This simplicity of use is compatible with the needs of PHC, which must work with large daily volumes of information, limited time for each patient, professional cooperation (doctors, nurses, social workers, etc) and repeated visits from the same patient. However, a greater degree of computerisation of PHC and the establishment of mechanisms for consensus between health professionals would be required to increase data quality and the consistency of records, especially in the identification of diagnoses.

The general results of the study (demographic variables (age and sex), case mix (morbidity) and resource use levels (RUB)) fall within the parameters expected in PHC in Spain. Furthermore, the distribution of patients within ACG categories is similar to the results obtained in other studies (60% of patients are grouped in 10 ACG categories) and stable over time.

This may be because the grouping works by binary combinations of ADG, regardless of the number of recurrences and the type of disorder. For example, a patient with one or more episodes of upper respiratory

Table 4 Distribution of five poorly performing ACG categories according to age, episodes and cost

<table>
<thead>
<tr>
<th>ACG categories (coding and description)</th>
<th>Variables</th>
<th>Total</th>
<th>No outliers</th>
<th>Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean</td>
<td>N Mean</td>
<td>N Mean</td>
<td>N Mean</td>
</tr>
<tr>
<td>4100: 2-3 Other ADG Combinations, Age 35+</td>
<td>28864</td>
<td>26992</td>
<td>1872</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>60.5 (14.8)</td>
<td>59.7 (14.6)</td>
<td>70.9 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>3.9 (1.3)</td>
<td>3.9 (1.2)</td>
<td>4.5 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>776.3 (828.2)</td>
<td>620.3 (448.7)</td>
<td>3026.1 (1504.4)</td>
<td></td>
</tr>
<tr>
<td>0300: Acute Minor, Age 6+</td>
<td>26909</td>
<td>25142</td>
<td>1767</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>33.1 (16.5)</td>
<td>31.9 (15.4)</td>
<td>50.5 (22.1)</td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>1.7 (1.1)</td>
<td>1.7 (0.9)</td>
<td>2.5 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>169.5 (236.5)</td>
<td>125.2 (91.7)</td>
<td>800.0 (554.3)</td>
<td></td>
</tr>
<tr>
<td>1800: Acute Minor/Acute Major</td>
<td>9077</td>
<td>8538</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>32.1 (19.8)</td>
<td>30.8 (18.5)</td>
<td>51.6 (27.1)</td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>3.6 (1.5)</td>
<td>3.6 (1.4)</td>
<td>4.8 (2.3)</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>353.2 (366.2)</td>
<td>288.7 (166.5)</td>
<td>1374.2 (843.8)</td>
<td></td>
</tr>
<tr>
<td>0400: Acute Major</td>
<td>8160</td>
<td>7503</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>38.5 (18.2)</td>
<td>36.6 (16.7)</td>
<td>59.9 (20.6)</td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>1.6 (0.8)</td>
<td>1.5 (0.7)</td>
<td>2.1 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>237.3 (379.5)</td>
<td>158.3 (108.7)</td>
<td>1139.1 (877.8)</td>
<td></td>
</tr>
<tr>
<td>3900: 2-3 Other ADG Combinations, Males Age 18 to 34</td>
<td>5877</td>
<td>5523</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>28.1 (4.5)</td>
<td>28.0 (4.5)</td>
<td>28.7 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Episodes</td>
<td>3.3 (1.0)</td>
<td>3.3 (1.1)</td>
<td>3.8 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>341.6 (399.1)</td>
<td>273.7 (154.1)</td>
<td>1401.2 (1040.1)</td>
<td></td>
</tr>
</tbody>
</table>

Contrast statistic: χ^2 test or Mann–Whitney–Wilcoxon test; p<0.001 in all cases.

ADG, Ambulatory Diagnostic Groups.
tract infection over time, with or without concomitant pharyngitis, may remain grouped in the same ACG category, resulting in widely differing use of resources and degree of variation in costs. This point has been suggested by some authors as a limitation of the ACG system, although recent years have seen an expansion of categories from 51 to 103 to avoid such problems.23

Poor performance or adaptive capacity was observed in 10 ACG categories (N = 110917, 48.8% of patients). The two categories with the highest CV were Preventive/ Administrative and Psychosocial, w/o Psychosocial Unstable. These results are difficult to compare for several reasons: (1) these categories include many different circumstances and conditions (administrative processes, preventive actions and health promotion, unstable conditions with an unpredictable risk of recurrence, etc), (2) these conditions tend to be associated with poor-quality medical records (prescriptions not linked to a diagnosis, etc) and (3) the presence of different organisational models between centres (patient circuits, etc) as a result of health policies, causing a high degree of variability that affects the use of resources and their costs.

We found that five categories accounted for 71% of poor performance. In general, acute disease (0300-Acute Minor, Age 6+, 0400-Acute Major and 1800-Acute Minor/Acute Major), representing a large number of paediatric patients, had a poor adaptive capacity. The ACG classification in Catalonia might be improved by expanding some of these categories according to age groups and, especially, by quantifying the number of episodes occurring during the study period. However, in the categories 4100-2-3 Other ADG Combinations, Age 35+ and 3900-2-3 Other ADG Combinations, Males Age 18–34, the performance with respect to classification into RUB could be improved by separating different ranges of episodes or ADG.

Therefore, a possible scenario for the debate on the funding model for PHC teams could be developed using a combination of factors: (1) the weighting of structural costs related to accessibility; (2) the variable costs according to the case mix (ACG) and patient complexity, adapting the classification to the country and (3) quality targets derived from the policy sought by the purchaser and expected by the customer. In this aspect, the adaptive capacity of the ACG system to the Catalan setting could be bettered by improving the definitions of some categories. This would facilitate policy making using benchmarking with respect to the complexity (case mix) and efficiency of PHC centres with the population served, enabling capitation payments (risk adjustment).4 26

The greatest limitations of the study are related to the quality of the records and information systems. Without standardisation of methodologies in terms of patient characteristics and the number and measurement of variables, the results and their generalisability should be interpreted with caution.24 In addition, possible differences between health professionals in the selection of diagnoses may contaminate the comparison of costs between groups. However, strength of the study is that the large sample size could minimise these drawbacks. The ACG system was designed to measure the health status and medical resources consumed in a set of patients and, therefore, population-based studies of risk-adjusted capitation payments and the clinical management of PHC centres may be of considerable interest in Catalonia.23 29

Conclusions

The ACG system is an appropriate manner of classifying patients in routine clinical practice in PHC centres in Catalonia, although improvements to the adaptive capacity through disaggregation of some categories according to age groups and, especially, the number of acute episodes in paediatric patients would be necessary to reduce intra-group variation.

Author affiliations

1Directorate of Planning, Badalona Serveis Assistencials SA, Badalona, Barcelona, Spain
2Medical Documentation, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
3Health Sciences Institute of Aragon, Zaragoza, Spain
4Jordi Gol i Gurina Primary Health Care Research Institute, IDIAP, Barcelona, Spain

Author footnote

*The ACG Study Group is formed by: Catalonia (Alba Aguado Joda, Milagrosa Blanca-Tamayo, Esperanza Escribano-Herranz, Ferran Flor-Serra, Josep Ramón Llopart-López, Daniel Rodríguez-López, Encarna Sánchez-Fontcuberta, Josep Maria Vilaseca-Llobet), Balearic Islands (Josep Maria Vilaseca-Llobet), Alava (Jordi Gol i Gurina, Primary Health Care Research Institute), Zaragoza, Spain

Contributors

AS-M, SV-V, RN-A, CV-F and AP-T planned the study. AS-M, RN-A and SV-V supervised the campaign registration, data entry and follow-up. AS-M was responsible for the statistical analysis with help from SV-V. AS-M wrote the first draft of the paper and has the primary responsibility for the final content. All authors contributed to and approved the final manuscript. AS-M is the head of the Catalan study.

Funding

This work was supported by Fondo de Investigaciones Sanitarias de la Seguridad Social (Instituto Carlos III, Majahonda, Madrid, Spain), grant number PI 08/1567.

Competing interests

None.

Ethics approval

The study project was approved by the Ethics and Clinical Research Committee of the Jordi Gol Clinical Research Institute (IDIAP Jordi Gol).

Provenance and peer review

Not commissioned; externally peer reviewed.

REFERENCES

Adaptive capacity of the Adjusted Clinical Groups Case-Mix System

28. Kuo R, Lai MS. Comparison of Rx-defined morbidity groups and diagnosis based risk adjusters for predicting healthcare costs in Taiwan. BMC Health Serv Res 2010;10:126.
<table>
<thead>
<tr>
<th>Section/Topic</th>
<th>Item #</th>
<th>Recommendation</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td>1</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>X</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>X</td>
</tr>
<tr>
<td>Methods</td>
<td>3</td>
<td>State specific objectives, including any pre-specified hypotheses</td>
<td>X</td>
</tr>
<tr>
<td>Study design</td>
<td>4</td>
<td>Present key elements of study design early in the paper</td>
<td>X</td>
</tr>
<tr>
<td>Setting</td>
<td>5</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</td>
<td>X</td>
</tr>
<tr>
<td>Participants</td>
<td>6</td>
<td>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—For matched studies, give matching criteria and the number of controls per case</td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>7</td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
<td>X</td>
</tr>
<tr>
<td>Data sources/ measurement</td>
<td>8</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group</td>
<td>X</td>
</tr>
<tr>
<td>Bias</td>
<td>9</td>
<td>Describe any efforts to address potential sources of bias</td>
<td>X</td>
</tr>
<tr>
<td>Study size</td>
<td>10</td>
<td>Explain how the study size was arrived at</td>
<td>NA</td>
</tr>
<tr>
<td>Quantitative variables</td>
<td>11</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why</td>
<td>X</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>12</td>
<td>(a) Describe all statistical methods, including those used to control for confounding</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Describe any methods used to examine subgroups and interactions</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Explain how missing data were addressed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) Cohort study—If applicable, explain how loss to follow-up was addressed</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Case-control study—If applicable, explain how matching of cases and controls was addressed</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>13*
 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed X
 (b) Give reasons for non-participation at each stage X
 (c) Consider use of a flow diagram NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive data</td>
<td>14*
 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders X
 (b) Indicate number of participants with missing data for each variable of interest X
 (c) Cohort study—Summarise follow-up time (eg, average and total amount) X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome data</td>
<td>15*
 Cohort study—Report numbers of outcome events or summary measures over time X
 Case-control study—Report numbers in each exposure category, or summary measures of exposure X
 Cross-sectional study—Report numbers of outcome events or summary measures X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main results</td>
<td>16
 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included X
 (b) Report category boundaries when continuous variables were categorized X
 (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other analyses</td>
<td>17
 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key results</td>
<td>18
 Summarise key results with reference to study objectives X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limitations</td>
<td>19
 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation</td>
<td>20
 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalisability</td>
<td>21
 Discuss the generalisability (external validity) of the study results X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>22
 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.