BMJ Open

Individualised versus standard duration of antibiotic therapy in children with acute uncomplicated febrile urinary tract infection: a study protocol and statistical analysis plan for a multicentre randomised clinical trial

Naqash Sethi 1,2,3, Emma Louise Malchau Carlsen,4 Ida Maria Schmidt,1 Dina Cortes,2,3 Ulrikka Nygaard,1,3 Line Thousig Sehested1

ABSTRACT

Introduction Febrile urinary tract infection is one of the most common bacterial infections in children. Currently, recommended antibiotic duration is 10 days. However, recent evidence suggests that 90%–95% of children with febrile urinary tract infections are afebrile and clinically improved 48–72 hours after treatment initiation. Accordingly, individualised duration of antibiotic therapy, according to the recovery time, might be more beneficial than current recommendations, but no evidence exists.

Methods and analysis An open-label randomised clinical trial equally randomising children aged 3 months to 12 years from eight Danish paediatric departments with uncomplicated febrile (≥38°C) urinary tract infection to either individualised or standard duration of antibiotic therapy. Children allocated to individualised duration of antibiotic therapy will terminate antibiotic therapy 3 days after clinical improvement with no fever, flank pain or dysuria. Children allocated to standard duration will receive 10 days of antibiotic therapy. Co-primary outcomes are non-inferiority for recurrent urinary tract infection or death within 28 days after the end of treatment (non-inferiority margin 7.5 percentage points) and superiority for the number of days with antibiotic therapy within 28 days after treatment initiation. Seven other outcomes will also be assessed. A total of 408 participants are needed to detect non-inferiority (one-sided alpha 2.5%; beta 80%).

Ethics and dissemination This trial has been approved by the Ethics Committee (H-21057310) and the Data Protection Agency (P-2022-68) in Denmark. Regardless of the trial’s findings (whether positive, negative or inconclusive), the results will be compiled into one or more manuscripts for publication in international peer-reviewed scientific journals and presented at conferences.

Trial registration number NCT05301023.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ Pragmatic trial with ‘hard patient-important outcomes’.
⇒ High external validity due to generalisable inclusion and exclusion criteria and multiple site inclusion.
⇒ Due to the experimental intervention’s nature, blinding personnel, parents and children will not be possible.
⇒ Our results will only be generalisable to sites that systematically conduct a follow-up when urine culture results are available and can conduct additional follow-ups if needed.

INTRODUCTION

Febrile urinary tract infection (UTI) is one of the most common bacterial infections in children overall and has a prevalence of approximately 7% in febrile children below 2 years of age.1 Febrile UTI is primarily caused by *Escherichia coli* (80%–90%)2-3 and is predominately treated with oral antibiotics for 10 days.6-10 However, observational evidence indicates that more than 90%–95% of children with febrile UTI are afebrile and clinically improved 48–72 hours after treatment initiation.11-15 Hence, the recommended 10 days of antibiotic therapy is presumably antibiotic overuse. Antibiotic overuse may result in unnecessary adverse effects (e.g., diarrhoea, nausea, vomiting, loss of appetite, abdominal pain),14-15 disruption of gut microbiota (multiple studies show a possible association between disrupted gut microbiota and allergy, cardiovascular disease and obesity),16-17 and increased risk of antimicrobial resistance.18-19 Additional adverse effects of antibiotic overuse are an increased burden on the healthcare system and more frequent absence days from daycare/school and work for the child and parents, respectively.
A recent randomised clinical trial (RCT) in the USA included 693 children aged 2–10 years with both afebrile and febrile UTI who were clinically improved after 5 days of antibiotic therapy and randomised them to terminating antibiotic therapy vs continuing for 5 more days. Both randomised groups showed high success rates (96% vs 99%) when assessing the risk of treatment failure (symptomatic UTI) within 9 days after randomisation. Likewise, a retrospective study including 791 children aged 6 months to 18 years found that the effect of a short antibiotic course (median 8 days) compared with a long course (median 11 days) was similar when assessing the odds of treatment failure within 30 days after the end of treatment (OR 1.22; 95% CI 0.75 to 1.98).

Other RCTs in paediatric infectious diseases have shown that antibiotic therapy is unnecessary for most cases with respiratory infections and that antibiotic duration can be significantly reduced in most cases with pneumonia and bone and joint infection.

Currently, two ongoing RCTs in children with febrile UTI are investigating shorter antibiotic therapy duration. Daniel et al from Poland have planned to assess the incidence of recurrent UTI within 90 days after the end of treatment after 7 vs 10 days of oral cefuroxime in 221 children aged 3 months to 5 years. Both ongoing trials focus on a specific antibiotic duration, which might be problematic for some children due to a more severe infection, leading to a too-short antibiotic course.

Accordingly, it is of utmost importance to investigate whether individualised duration of antibiotic therapy, according to the recovery time, can reduce antibiotic use without causing harm.

Objective
The trial objective is to assess whether a treatment strategy with defined rules for individualised duration of antibiotic therapy is non-inferior compared with standard 10 days of antibiotic therapy on the risk of recurrent UTI or death within 28 days after the end of treatment and superior on the number of days with antibiotic therapy within 28 days after treatment initiation in children aged 3 months to 12 years with uncomplicated febrile UTI.

METHODS AND ANALYSIS

Trial conduct
The trial will follow good clinical research practice and the latest Declaration of Helsinki. The Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklist was used when writing the protocol. The protocol was registered on ClinicalTrials.gov (NCT05301023) before trial inclusion was initiated. The trial registration data set can be found in online supplemental appendix 1. Data will be secured in the online database application Research Electronic Data Capture (REDCap) V.12.0.33. The principal investigator (NS) is responsible for managing and achieving data per current regulations.

Trial design
An investigator-initiated, parallel-group, open-label, multicentre RCT.

Setting
The children will be recruited from eight paediatric departments (Copenhagen University Hospital Hvidovre, Rigshospitalet, Herlev, Hillerød, Roskilde, Holbæk, Slagelse and Nykøbing Falster) in Denmark. Each department has a managing investigator responsible for the trial.

In Denmark, children are referred to the paediatric emergency department by their primary physician or a medical helpline (outside normal opening hours) if an upper UTI is suspected. According to Danish national guidelines, upper UTI should be suspected in children <2 years of age with suspected UTI regardless of fever; and all febrile children ≥2 years of age with suspected UTI.

Randomisation
Randomisation is computerised using a web-based randomisation module. The web-based randomisation will generate randomisation sequences with varying block sizes unknown to the investigators. No stratification will be conducted. Randomisation will be conducted by one of the investigators.

Blinding
Due to the experimental intervention’s nature, no blinding can be conducted. Hence, the personnel (ie, investigators, treatment providers and caregivers), parents and children will not be blinded. Likewise, the outcome assessor will also not be blinded.

Selection of participants
According to the inclusion and exclusion criteria below, children will be randomised once the urine culture is positive (figure 1).

Inclusion criteria
1. Clinical suspicion of febrile (≥38°C) UTI.
2. Positive urine culture of uropathogenic bacteria.
 a. Suprapubic bladder aspiration: monoculture with any growth of bacteria.
 b. Sterile intermittent catheterisation: monoculture with ≥10^5 colony-forming units per millilitre (CFU/mL).
 c. Midstream urine: monoculture with the same bacteria in two cultures with ≥10^4 CFU/mL.
 d. Midstream urine: monoculture with the same bacteria in two cultures with ≥10^5 CFU/mL in one culture and 10^4 CFU/mL in another.
 e. Midstream urine (≥10 years of age): monoculture in one culture with ≥10^5 CFU/mL.
3. Age 3 months to 12 years (corrected age in case of premature birth).
4. Parents fluent in Danish or English.
5. Informed consent from the holder(s) of parental authority.

Exclusion criteria
1. Non-Danish civil registration number.
2. Not resident in the Capital Region or Region Zealand in Denmark at the baseline visit.
3. Previous inclusion in the trial.
4. History of febrile (≥38°C) UTI in the last 28 days before the baseline visit.
5. Antibiotic treatment in the last 2 weeks before the baseline visit.
6. Three or more episodes with febrile (≥38°C) UTI within 1 year of the baseline visit (including the current episode).
7. Previous complicated episode of febrile (≥38°C) UTI (eg, renal abscess or urosepticaemia).
8. Non-compliance (≥3 doses of antibiotics during empirical therapy).
9. Elevated creatinine at the time of randomisation.
10. Prophylactic antibiotic treatment at the baseline visit.
11. Known urogenital abnormalities (ie, obstructing uropathies, vesicoureteral reflux, multicystic dysplasia, renal dysplasia, renal hypoplasia, renal agenesis, duplex kidney, polycystic kidney disease, neurogenic bladder dysfunction, hypospadias) at the time of randomisation.
12. Clinical suspicion of septicaemia at the time of randomisation.
13. Positive blood culture (if contamination is not suspected).
15. Systemic immunosuppressive therapy.

Children with a positive urine culture who have not received antibiotic therapy can be included if fever (≥38.0°C) is present at the time of randomisation. If the fever has subsided, the child cannot be included.

Children can be included regardless of whether intravenous or oral antibiotics are given as therapy.

Participant withdrawal
The parents can withdraw the consent at any time for any reason. The parents will be asked whether they will still allow future outcome assessments.

Study procedure
All febrile (≥38.0°C) children with suspected UTI will be examined and treated by doctors and nurses per current guidelines. The visit to the paediatric emergency department will include a medical history, medical examination, urine test strip, urine culture, blood tests and blood culture. Most children will begin empiric therapy with oral antibiotics. Empirical therapy consists of amoxicillin–clavulanic acid 50mg/kg/day divided into 3 doses or pivmecillinam 20–40mg/kg/day divided into 3 doses, in line with current recommendations (figure 2).35

Parents of children suspected of uncomplicated UTI will receive oral and written information about the trial (see online supplemental appendix 2). A follow-up by phone will take place approximately 72 hours after treatment initiation. If includable according to the inclusion and exclusion criteria mentioned above, oral and written consent will be obtained before randomisation. Based on the sensitivity pattern of the positive urine culture, the antibiotics will be changed to narrow-spectrum, if possible.

Treatment allocation
The children will be randomised to either individualised or standard duration of antibiotic therapy (figure 1).

Individualised duration of antibiotic therapy
Our individualised approach is based on the duration of illness after treatment initiation. The antibiotic therapy will be terminated 3 days after the child has fulfilled the termination criteria; clinically improved with no fever (<38.0°C) without using antipyretics, flank pain or dysuria.

In case of antibiotic resistance towards the empiric antibiotic:
- If the termination criteria are fulfilled: further 3 days of antibiotic therapy with a sensitive antibiotic.
If the termination criteria are not fulfilled: terminate antibiotic therapy with a sensitive antibiotic 3 days after the termination criteria have been fulfilled.

Standard duration of antibiotic therapy

The standard duration is based on current guidelines, that is, 10 days.

Co-intervention

Participants will receive the same outpatient clinical follow-up. Radiological and nuclear medical examinations will follow current national guidelines.

Participants with recurrent UTI after the baseline infection will be treated according to current guidelines.

Concomitant medication

Participants will be examined for constipation and external genital abnormalities (ie, phimosis and labia synechiae). If present, the treating physician will treat these conditions according to current guidelines. The use of any additional medical intervention will be recorded.

Outcomes

Co-primary outcomes

1. Recurrent UTI regardless of the pathogen or death of any cause within 28 days after the end of treatment.
2. Number of days with antibiotic therapy within 28 days after treatment initiation.

Secondary outcomes

3. Absence from school or daycare due to illness within 28 days after randomisation.
4. Recurrent UTI regardless of the pathogen or death of any cause within 100 days after the end of treatment.

Exploratory outcome

5. Number of hospital days related to UTI symptoms within 28 days after the end of treatment.
6. Number of days with a physical or virtual (phone or online) consultation during antibiotic therapy for the baseline infection.

7. Recurrent infection with a bacterium resistant to the antibiotic given for the baseline infection within 100 days after the end of treatment.

Safety outcomes

8. Antibiotic-related non-serious adverse events within 28 days after randomisation. We will include non-serious adverse events of the following types:
 a. Diarrhoea.
 b. Nausea or loss of appetite.
 c. Vomiting.
 d. Abdominal pain.

9. Serious adverse events within 100 days after randomisation. We will define a serious adverse event as any untoward medical occurrence that results in death, is life-threatening, requires hospitalisation or prolongation of existing hospitalisation, results in persistent or significant disability, or jeopardises the patient.

Follow-up and outcome events

Besides outcomes 3 and 8, all outcomes will be assessed using patient records at different time points. Outcomes 3 and 8 will be assessed weekly by having the parents answer an electronic questionnaire sent to their e-Boks (official Danish secure digital mailbox) through REDCap. In the case of missing data, parents will be contacted by phone.

Data collection

Besides ‘self-reported adherence’ and ‘parent satisfaction’, all data will be collected from patient records. ‘Self-reported adherence’ and ‘parent satisfaction’ will be assessed by having the parents answer an electronic questionnaire sent to their e-Boks through REDCap. In the case of missing data, parents will be contacted by phone. Each variable that will be assessed is listed in table 1 (excluding outcome data).

Data and safety monitoring Committee during trial

A data and safety monitoring committee (DSMC) independent of the investigators and the sponsor will be
created. The DSMC will consist of two paediatric nephrologists, and a biostatistician will be consulted if needed. The DSMC will have no conflicts of interest. The DSMC will immediately receive information on specific serious adverse events including death, septic shock, meningitis, urosepticaemia and renal abscess. Additionally, the DSMC will receive unblinded information on all serious adverse events in each randomised group every 6 months. The trial has no specific stopping rules. If the DSMC has clinical concerns about the safety of the participants, the trial will be paused until the DSMC and the steering committee (NS, ELMC, UN and LTS) have discussed whether the trial can continue or should be terminated.

Statistical analysis plan

Sample size determination

We have determined our needed sample size by assessing our first co-primary outcome (ie, recurrent UTI or death of any cause) based on a non-inferiority design. We anticipate the event proportion in the control group (ie, standard duration of antibiotic therapy) to be 7.5% based on a single-centre retrospective study (non-published data by Sethi et al). We assume no difference between the randomised groups. Our non-inferiority limit corresponds to a 7.5 percentage points higher proportion in the intervention group compared with the control group. The test will be conducted as a one-sided test with alpha of 2.5%. A total of 408 participants are needed to obtain a power of 80% to reject inferiority. We have accounted for a drop-out rate of 5%.

A sample size recalculation will be conducted if the overall observed event proportion is higher than 7.5% when follow-up is available for the first 204 participants to be able to achieve a power of at least 80%. The sample size recalculation will be blinded according to a United States Food & Drug Administration (FDA) rapport and Friede et al. The DSMC will oversee this analysis, and any changes will only be done after approval from both the DSMC and the ethics committee.

Statistical analyses

Subjects will be analysed in all analyses according to the randomised treatment allocation. Secondarily, per-protocol analyses will be conducted only including children who reported full adherence to the antibiotic therapy. To address the issue of multiplicity, both of our co-primary outcomes will be evaluated at an alpha of 2.5%. Nominal p values will be presented for secondary and exploratory analyses, but no statistical significance will be asserted. For safety analyses, a p value of less than 5% will be considered statistically significant. Clinically relevant, statistically non-significant differences will be addressed.

Co-primary outcomes

1. Recurrent UTI regardless of the pathogen or death of any cause within 28 days after the end of treatment.

 The population-level summary measure will be the risk difference (RD), calculated as the proportion in the intervention group minus the proportion in the control group, with the upper one-sided 97.5% confidence limit (CL). Inferiority will be rejected if the upper one-sided 97.5% CL for the RD shows a difference of less than the non-inferiority limit of 7.5 percentage points. If more than 5% of data are missing, data will be imputed based on available knowledge of the patient and the observations of...
the other patients in the same randomised group. Sensitivity analyses will include tipping point analyses for the imputation, and the potential importance of differences between hospitals will be evaluated in logistic regression models including the random effect of the hospital and the random treatment effect within the hospital. In case of deaths unrelated to infection and with no previous recurrent UTI, we will present analyses (1) excluding these children and (2) imputing that each child did not have recurrent UTI, respectively.

2. Number of days of antibiotic therapy within 28 days after treatment initiation

As the outcome, we will use the number of days the child was prescribed antibiotic therapy during the period. The two randomised groups will be compared using the Wilcoxon-Mann-Whitney test. The population-level summary measure will be the difference in the mean number of days with two-sided 97.5% CIs based on the normal approximation for the estimated mean difference. In case of death, we will add the remaining days up to 28 days after treatment initiation to the number of days with antibiotic therapy. In a secondary analysis, we will exclude the children who died.

Non-primary outcomes

The statistical analysis plan for the non-primary (ie, secondary, exploratory and safety outcomes) outcomes can be found in online supplemental appendix 3.

Subgroup presentations

These subgroup presentations will be regarded as hypothesis-generating and will only be used to facilitate the planning of future research. Hence, we will not base any conclusions on these subgroup presentations.

We will present summary statistics for both our co-primary outcomes for the following subgroups:

- Age:
 - 3–23 months old.
 - 2–5 years old.
 - 6–12 years old.
- Sex.
- First episode (yes/no) with febrile UTI.
- Empirical antibiotics given for the baseline infection:
 - Amoxicillin-clavulanic acid.
 - Pivmecillinam.
 - Gentamicin and ampicillin.
- Empirical antibiotics given intravenously or orally.
- Participants with different bacterial aetiology at baseline:
 - *E. coli*.
 - *Non-E. coli*.
- Urogenital abnormality diagnosed after randomisation (yes/no).
- The four groups given by the combination of a positive result (yes/no) of the urine test strip (leucocyturia and/or positive nitrite test) at baseline and whether the participants at baseline fulfilled at least one of the more restrictive criteria for uropathogenic bacterial growth:
 - Suprapubic bladder aspiration: monoculture with any growth of bacteria.
 - Sterile intermittent catheterisation: monoculture with ≥10⁴ CFU/mL.
 - Midstream urine (regardless of age): monoculture with the same bacteria in two cultures with ≥10² CFU/mL.

Patient and public involvement

Parents of patients were involved in designing the participant information. No patient, parent or the public was involved in designing, writing or editing the protocol.

Current status and protocol amendments after trial initiation

The trial was initiated on 1 April 2022 according to protocol V.1.0 preregistered on ClinicalTrials.gov (NCT05301023) 29 March 2022. All sites are active, and we anticipate completing inclusion within 24 months (1 April 2024).

Recently, the protocol was amended with the inclusion of outcome 6. Outcome 6 was added after initial trial registration and initiation and has been listed as an exploratory outcome.

Ethics and dissemination

The trial has been approved by the Ethics Committee (H-21057310) and the Data Protection Agency (P-2022-68) in Denmark. All personal data will be protected according to the Danish Data Protection Act and General Data Protection Regulation. Any protocol amendments will need to be approved by all relevant authorities. All participants’ parents will receive oral and written information, and oral and written consent will be obtained before trial inclusion and randomisation.

Regardless of the trial’s findings (whether positive, negative or inconclusive), the results will be compiled into one or more manuscripts for publication in international peer-reviewed scientific journals and presented at national and international conferences. Co-authors must fulfil the criteria for co-authorship according to the International Committee of Medical Journal Editors.

DISCUSSION

This investigator-initiated, multicentre RCT aims to assess the benefits and harms of individualised duration of antibiotic therapy, according to the recovery time, versus standard 10 days of antibiotic therapy in children aged 3 months to 12 years with uncomplicated febrile UTI. We hypothesise that our individualised approach is non-inferior on the risk of recurrent UTI or death within 28 days after the end of treatment and superior on the number of days with antibiotic therapy within 28 days after treatment initiation. Moreover, we presume that our individualised approach will lead to fewer absence days...
from daycare or school, fewer side effects and reduced risk of recurrent resistant infections.

Our trial has several strengths. It is a pragmatic trial that will consider ‘hard patient-important outcomes’. The external validity will be high due to our inclusion and exclusion criteria being established from national and international guidelines, consequently being generalisable nationally and internationally. Children will be included at multiple sites increasing the external validity. Our current sample size calculation is based on updated evidence from the largest site, and if necessary, we will conduct an updated sample size calculation halfway through inclusion to achieve enough power. We have evaluated the risk of multiplicity and planned a statistical approach that secures the 5% level for the type 1 error. Hence, the majority of analyses will be considered hypothesis-generating only. We have also taken measures to reduce the risk of bias by using computer-generated randomisation, registering our trial methodology on a clinical registry before initiating patient inclusion and having no funding or affiliation with the industry. Moreover, the risk of missing outcome data will be minimal because all Danish citizens have a unique number (Central Person Register) from which a complete follow-up of hospitalisation, urine culture assessment, antibiotic prescriptions and death are available.

Our trial also has limitations. Primarily, blinding the personnel, parents and children will not be possible due to the nature of the experimental intervention, which may introduce bias. The open-label design might result in parents of children randomised to standard duration of antibiotic therapy stopping therapy prematurely due to information about fewer days of antibiotics possibly being sufficient. We will assess this by questioning the parents about adherence and conducting per-protocol analyses only including the children with full adherence. Secondly, selection bias towards more seriously ill children is possible due to the lack of referral of clinically well febrile children suspected of UTI who are treated by their primary physician instead. However, if our individualised approach is proven safe, the findings of this study are also generalisable to a more clinically well population. Third, the non-inferiority margin of 7.5 percentage points might be assessed as too liberal, and it might be discussed whether a more restrictive margin is needed before our individualised approach can be used in clinical practice. Another limitation is that our results will only be generalisable to sites that systematically conduct a follow-up when urine culture results are available and can conduct additional follow-ups if needed. Yet another limitation is the lack of power to assess different subgroups, making it difficult to interpret whether specific subgroups might benefit more or less from our individualised approach.

We expect that the trial’s results will have an important impact on future recommendations on the duration of antibiotic therapy for children aged 3 months to 12 years with uncomplicated febrile UTIs.

Author affiliations
1Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
2Department of Pediatrics and Adolescent Medicine, Hvidovre Hospital, Hvidovre, Denmark
3Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
4Department of Neonatology, Rigshospitalet, Copenhagen, Denmark

Acknowledgements The authors thank all managing investigators (Simone Markaw, Hvidovre Hospital; Mette Marie Christensen, Herlev Hospital; Ann-Britt Kiholm Kirkedal, Herlev Hospital; Claudia Mau Kai, Hillerød Hospital; Charlotte Kjær Bjerre, Hillerød Hospital; Lise Heilmann Jensen, Roskilde Hospital; Maria Antonova, Roskilde Hospital; Maren Ryttter, Slagelse Hospital; Gry Tordrup, Slagelse Hospital; Signe Senderkær, Hulbæk Hospital and Tatjana Zaharov, Nykøbing Falster Hospital) for helping with preparing and informing the individual sites about the trial before initiation. We also thank Jakob Hjert, data manager, Department of Clinical Medicine, Aarhus University, for establishing the web-based randomisation module.

Contributors NS, ELMC, UN and LTS equally contributed to the conception and design of the protocol. IMS and DC commented on and constructively criticised the design of the protocol. NS drafted the first and subsequent versions of the protocol. ELMC, IMS, DC, UN and LTS amended the final manuscript. All authors read and approved the final manuscript.

Funding This project has received funding from the Danish Innovation Foundation (grant number: 0176-0002B; 2 mill DKK) and Copenhagen Health Science Partners (grant number: N/A; 0.5 mill DKK). The funding covers salaries for study doctors, statisticians, and additional expenses (eg, software and hardware). The funding is administered through research accounts at the Copenhagen University Hospital Rigshospitalet.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Nanqash Sethi http://orcid.org/0000-0002-8025-1939

REFERENCES

APPENDIX 1
Trial registration data set

<table>
<thead>
<tr>
<th>DATA CATEGORY</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary registry and trial identifying number</td>
<td>ClinicalTrials.gov: NCT05301023</td>
</tr>
<tr>
<td>Date of registration in primary registry</td>
<td>29. March 2022</td>
</tr>
<tr>
<td>Secondary identifying numbers</td>
<td>H-21057310</td>
</tr>
<tr>
<td>Source(s) of monetary or material support</td>
<td>Copenhagen University Hospital Rigshospitalet and Hvidovre</td>
</tr>
<tr>
<td>Primary sponsor</td>
<td>Copenhagen University Hospital Rigshospitalet</td>
</tr>
<tr>
<td>Secondary sponsor(s)</td>
<td>N/A</td>
</tr>
<tr>
<td>Contact for public queries</td>
<td>Naqash Sethi, MD, naqash.javaid.sethi.02@regionh.dk</td>
</tr>
<tr>
<td>Contact for scientific queries</td>
<td>Naqash Sethi, MD, naqash.javaid.sethi.02@regionh.dk</td>
</tr>
<tr>
<td>Public title</td>
<td>Individualized antibiotic therapy versus standard care in children with febrile urinary tract infection</td>
</tr>
<tr>
<td>Scientific title</td>
<td>Individualized versus standard duration of antibiotic therapy in children with acute uncomplicated febrile urinary tract infection. A multi-center randomized clinical trial</td>
</tr>
<tr>
<td>Countries of recruitment</td>
<td>Denmark</td>
</tr>
<tr>
<td>Health condition(s) or problem(s) studied</td>
<td>Duration of antibiotic therapy; urinary tract infection in children</td>
</tr>
<tr>
<td>Intervention(s)</td>
<td>Experimental: Individualized duration of antibiotic therapy</td>
</tr>
<tr>
<td></td>
<td>Control: Standard duration of antibiotic therapy</td>
</tr>
<tr>
<td>Key inclusion and exclusion criteria</td>
<td>Ages eligible for study: 3 months to 12 years</td>
</tr>
<tr>
<td></td>
<td>Sexed eligible for study: Both</td>
</tr>
<tr>
<td></td>
<td>Accepts healthy volunteers: No</td>
</tr>
<tr>
<td></td>
<td>Key inclusion criteria: Febrile (≥38 °C) urinary tract infection; positive urine culture with uropathogenic bacteria</td>
</tr>
<tr>
<td></td>
<td>Key exclusion criteria: febrile urinary tract infection the previous 28 days before the baseline visit; antibiotic treatment in the last two weeks before the baseline visit; known urogenital abnormality at the time of randomization</td>
</tr>
<tr>
<td>Study type</td>
<td>Interventional (non-inferiority)</td>
</tr>
<tr>
<td>Allocation: Randomized intervention model.</td>
<td></td>
</tr>
<tr>
<td>Parallel assignment masking: Open-label</td>
<td></td>
</tr>
<tr>
<td>Primary purpose: Prevention</td>
<td></td>
</tr>
<tr>
<td>Phase IV</td>
<td></td>
</tr>
<tr>
<td>Date of first enrolment</td>
<td>April 2022</td>
</tr>
<tr>
<td>Target sample size</td>
<td>408</td>
</tr>
<tr>
<td>Recruitment status</td>
<td>Recruiting</td>
</tr>
</tbody>
</table>
Primary outcomes

1. Recurrent UTI regardless of the pathogen or death of any cause within 28 days after the end of treatment.
2. Number of days with antibiotic therapy within 28 days after treatment initiation.

Key secondary outcomes

1. Absence from school or daycare due to illness within 28 days after randomization.
2. Recurrent UTI regardless of the pathogen or death of any cause within 100 days after the end of treatment.
Dear parents,

We would like to ask whether you would allow your child to enter a research project investigating whether we can shorten the antibiotic therapy for children with febrile urinary tract infection, who quickly gets healthy after treatment initiation. We plan to include about 400 children throughout East Denmark. Before you decide, we would like you to read this written information. It is of course voluntary to participate in the project, and you can always withdraw your consent.

Purpose

Currently, we treat all children with febrile urinary tract infections with 10 days of antibiotic therapy. No scientific studies exist that show that it is necessary to treat for 10 days. However, several studies have shown that the majority of children with febrile urinary tract infections are without any symptoms or fever 2-3 days after treatment initiation. Similar studies in children with e.g., pneumonia have shown that 3-5 days of antibiotic therapy is just as effective as 7-10 days. Currently, no study has assessed whether the duration of antibiotic therapy for children with febrile urinary tract infections can be shortened and if this can be done with an individualized approach.

Plan for project

We will contact you by phone about 3 days after your initial visit to the hospital. You will be able to ask questions about the project. If you accept that your child can participate in the project, he/she will randomly be selected for one of the following two treatment strategies:

- New treatment strategy: the duration of antibiotic therapy will be determined by how quickly the child gets healthy.
- Standard treatment: antibiotic therapy will be given for 10 days.

Overview

- Children with febrile urinary tract infection are currently treated with 10 days of antibiotics, regardless of whether the child gets healthy within few days.
- Newer studies show that it is safe to shorten the antibiotic therapy for children with other kind of infections, thus avoiding unnecessary antibiotics.
- We want to investigate whether shorter antibiotic therapy to a febrile urinary tract infection, where the treatment duration is determined by how quickly the child recovers, is as effective as standard care.
All other aspects of the treatment will be the same in both groups.

If you do not want your child to participate in the project, your child will receive standard antibiotic therapy for 10 days.

Side effects, risks, complications, and disadvantages

We would like your child to participate in the project, as we consider that he/she is among the children with febrile urinary tract infections who without any risk can get healthy with a shorter duration of antibiotics. There is a small risk that the new treatment strategy does not have sufficient effect leading to your child getting a relapse. You will, therefore, be thoroughly informed of which signs of infection to look for. If you suspect that your child has got a relapse, you can directly contact the pediatric emergency department around the clock.

There might be some risks with the project which we do not know of yet. However, we do not expect that the new treatment strategy will lead to a higher risk of side effects or complications, neither in the short nor long term.

Patient records and handling of personal information

The research group will collect relevant health information from your child’s patient record. The health information collected will include information on the current infection episode, including the child’s condition, blood tests, bacterial examinations, and possibly imaging examinations. We will use this information to continuously monitor the project and at the end compare the two treatment strategies. The collected data will be assigned a code (patient number) resulting in that the data cannot be traced back to your child’s CPR number. The data will be kept for 10 years. The anonymized data will be kept in a database made for the project. The Data Protection Act and the Data Protection Regulation will be complied with.

Electronic questionnaire

You will in your e-Boks receive an electronic questionnaire every week in the first month after inclusion. The questions will include whether your child has experienced any specific side effects the previous week, as well as the number of days your child has been away from school or daycare due to illness. In addition, we will in the last questionnaire ask what you thought about participating in the project and about your child’s treatment.

The benefits of the project

The expected benefit of the project is that children with febrile urinary tract infection who recovers quickly after treatment initiation can receive shorter treatment in the future. This will lead to less exposure to antibiotics and fewer side effects. Moreover, the risk of antibiotic resistance will fall. However, we cannot promise that your specific child will get all these beneficial effects.

Exclusion from the project

The project can be terminated if unexpected significant complications are observed.
Financial compensation
No financial compensation will be given for participation in the project.

Financial support
The project has received financial support from the Danish Innovation Foundation (2 million Danish kroner) and the Capital Region (0.5 million Danish kroner). The financial support will cover salaries for study doctors, statisticians, urine sample analysis, and dissemination. None of the investigators are financially attached to private enterprises, foundations, etc. that have interests in the research project.

The project has been approved by the Ethics committee from the Capital Region with protocol number H-21057310.

On the next page, you will find information on your rights as a research participant. We hope that you with this information can decide on your child’s possible participation. If you want to know more about the project, you are more than welcome to contact us.

With kind regards,

Project initiators, project doctors, and contact persons:

Naqash Javaid Sethi, doctor and Ph.D.-student
BørneUngeKlinikken, Rigshospitalet
Blegdamsvej 9, 2100 København Ø
Mail: naqash.javaid.sethi.02@regionh.dk
Tlf.: 28405083

Line Thousig Sehested, consultant
BørneUngeKlinikken, Rigshospitalet
Blegdamsvej 9, 2100 København Ø
Mail: line.thousig.sehested.01@regionh.dk
Tlf.: 23236326

Ulrikka Nygaard, consultant, ass. professor, Ph.D.
BørneUngeKlinikken, Rigshospitalet
Blegdamsvej 9, 2100 København Ø
Mail: ulrikka.nygaard@regionh.dk
Tlf.: 35459761
The rights of research participants in health science research projects

Information from the Ethics Committee

As a participant in a biomedical research project, you should know that:

- your child’s participation in the research project is completely voluntary and can only be done after you have received oral and written information about the research project and signed the declaration of consent.

- you at any time orally, in writing or by another clear statement can withdraw your consent. Withdrawing your consent will not affect your right to current or future treatment or any other rights you may have.

- you have the right to bring a family member, friend, or acquaintance to the information interview.

- you have the right to a period of reflection before you sign the declaration of consent.

- information about your child’s health conditions, other purely private matters, and other confidential information about your child that emerges in connection with the research project is subject to a duty of confidentiality.

- the storage of information about your child, including information from your child’s blood samples and tissue, will take place in accordance with the rules in the Personal Data Processing Act and the Health Act.

- it is possible to gain assess to document protocols in accordance with the provisions of the Public Assess Act. This means that you can assess all papers regarding your child’s participation in the experiment, except for the parts that contain trade secrets or confidential information about others.

- it is possible to complain and receive compensation in accordance with the rules in the Act on Access to Complaints and Compensation within the Health Service. If an injury should occur during the trial, you can contact the Danish Patient Compensation Association, see more at https://pebl.dk/en.
Declaration of consent for participation in a biomedical research project

Title of the research project:
Individualized versus standard duration of antibiotic therapy in children with acute uncomplicated febrile urinary tract infection

Statement from the holder of parental responsibility:
I/we have received oral and written information, and I/we know enough of the purpose, methods, advantages, and disadvantages to give my/our consent. I/we know that it is voluntary to participate and that I/we always can withdraw my/our consent without my/our daughter/son losing any of her/his current or future rights for treatment.

SIGNATURES

I/we give our consent to that __
Write child’s name (block letters) and CPR-number participates in the research project and that her/his biological material is taken for storage in a research biobank. I/we have received a copy of this consent sheet including a copy of the written information material about the project for own use.

Name/names of the holder(s) of parental responsibility:

____________________________________ ____________________________________
Write parents name (block letters) Write parents name (block letters)

Date_______________________Signatur___

Date_______________________Signatur___

Do you wish to get informed about the results of the research project including any consequences for your child?
Yes__________ (put x) No__________ (put x)

Statement from the person providing the information:
I declare that the parents/child have received oral and written information about the research project. In my opinion, sufficient information has been provided for the parents to decide on the child’s participation in the project.

SIGNATURE FROM INFORMING DOCTOR

Name__

Date_______________________ Signatur___
APPENDIX 3
Statistical analysis plan for non-primary outcomes

Two secondary, three exploratory, and two safety outcomes have been included in the protocol. Subjects will be analyzed in all analyses according to the randomized treatment allocation. Secondarily, per-protocol analyses will be conducted only including children who reported full adherence to the antibiotic therapy.

Nominal p-values will be presented for secondary and exploratory analyses, but no statistical significance will be asserted. For safety analyses, a p-value of less than 5% will be considered statistically significant. Clinically relevant, statistically non-significant differences will be addressed.

Secondary outcomes

3. Absence from school or daycare due to illness within 28 days after randomization
We will use the fraction of days the child is absent from school or daycare due to illness, calculated as the number of days the child is absent from school or daycare due to illness divided by the sum of the number of days the child is present at school or daycare plus the number of days the child is absent from school or daycare due to illness. The two randomized groups will be compared using the Wilcoxon-Mann-Whitney test. The population-level summary measure will be the difference between the means of the fractions with two-sided 95% confidence limits (CLs) based on the normal approximation for the estimated mean difference. Children not assigned to a school or daycare will be excluded from the analysis. In case of death, we will use the highest fraction observed in the trial as the outcome for the child. In a secondary analysis, we will exclude the children who died.

4. Recurrent UTI regardless of the pathogen or death of any cause within 100 days after the end of treatment
The population-level summary measure will be the risk difference (RD), calculated as the proportion in the intervention group minus the proportion in the control group, with the upper one-sided 97.5% CL. Inferiority will be rejected if the upper one-sided 97.5% CL for the RD shows a difference of less than the non-inferiority limit of 10 percentage points. If more than 5% of data is missing, data will be imputed based on available knowledge of the patient and the observations of the other patients in the same randomized group. In case of deaths unrelated to infection and with no previous recurrent UTI, we will present analyses i) excluding these children; and ii) imputing that each child did not have recurrent UTI, respectively.

Exploratory outcomes

5. Number of hospital days related to UTI symptoms within 28 days after the end of treatment
The two randomized groups will be compared using the Wilcoxon-Mann-Whitney test. Treatment effects will be evaluated as the difference between the number of days with two-sided 95% CLs based on the normal approximation for the estimated mean difference.
6. Number of days with a physical or virtual (phone or online) consultation during antibiotic therapy for the baseline infection.

The two randomized groups will be compared using the Wilcoxon-Mann-Whitney test. Treatment effects will be evaluated as the difference between the number of days with two-sided 95% CLs based on the normal approximation for the estimated mean difference.

7. Recurrent infection with a bacterium resistant to the antibiotic given for the baseline infection within 100 days after the end of treatment.

The population-level summary measure will be the RD, calculated as the proportion in the intervention group minus the proportion in the control group, with two-sided 95% CLs. Recurrent infections with a bacterium sensitive to the antibiotic given for the baseline infection will not lead to censoring.

Safety outcomes

8. Antibiotic-related non-serious adverse events within 28 days after randomization (see in the “Outcome” section for the definition)

As the outcome for each child, we will use the fraction of days the child is affected by one or more non-serious adverse events, calculated as the number of days the child is affected by one or more non-serious adverse events divided by the number of days observed. The two randomized groups will be compared using the Wilcoxon-Mann-Whitney test. The population-level summary measure will be the difference between the means of the fractions with two-sided 95% CLs based on the normal approximation for the estimated mean difference.

In addition, we will for each randomized group present the total number of non-serious adverse events, the number of children who had one or more non-serious adverse events, the number of non-serious adverse events per person-year at risk, and the total number of days with one or more non-serious adverse event. The same outcome measures will also be presented separately for each type of non-serious adverse event.

9. Serious adverse events within 100 days after randomization (see in the “Outcome” section for the definition)

For each randomized group, we will present the total number of serious adverse events and the number of children with one or more serious adverse events. The same outcome measures will also be presented separately for each type of serious adverse event.