ABSTRACT

Objectives To assess the effects of interventions authorised by the European Medicines Agency (EMA) or the US Food and Drug Administration (FDA) for prevention of COVID-19 progression to severe disease in outpatients: a systematic review with meta-analyses and trial sequential analyses (The LIVING Project).

Setting Outpatient treatment.

Participants Participants with a diagnosis of COVID-19 and the associated SARS-CoV-2 virus irrespective of age, sex and comorbidities.

Interventions Drug interventions authorised by EMA or FDA.

Primary outcome measures Primary outcomes were all-cause mortality and serious adverse events.

Results We included 17 clinical trials randomising 16 257 participants to 8 different interventions authorised by EMA or FDA. 15/17 of the included trials (88.2%) were assessed at high risk of bias. Only molnupiravir and ritonavir-boosted nirmatrelvir seemed to improve both our primary outcomes. Meta-analyses showed that molnupiravir reduced the risk of death (relative risk (RR) 0.11, 95% CI 0.02 to 0.64; p=0.0145, 2 trials; very low certainty of evidence) and serious adverse events (RR 0.63, 95% CI 0.47 to 0.84; p=0.0018, 5 trials; very low certainty of evidence). Fisher’s exact test showed that ritonavir-boosted nirmatrelvir reduced the risk of death (p=0.0002, 1 trial; very low certainty of evidence) and serious adverse events (p<0.0001, 1 trial; very low certainty of evidence) in 1 trial including 2246 patients, while another trial including 1140 patients reported 0 deaths in both groups.

Conclusions The certainty of the evidence was very low, but, from the results of this study, molnupiravir showed the most consistent benefit and ranked highest among the approved interventions for prevention of COVID-19 progression to severe disease in outpatients. The lack of certain evidence should be considered when treating patients with COVID-19 for prevention of disease progression.

PROSPERO registration number CRD42020178787.
sizes are relatively small. Therefore, there is a need for interventions preventing the progression of COVID-19 to severe disease—especially in patients with one or more risk factors.

For outpatient treatment of patients diagnosed with COVID-19, the European Medicines Agency (EMA) has authorised the use of sotrovimab (Xevudy), regdanvimab (Regkirona), remdesivir (Veklury), casirivimab/imdevimab (Ronapreve) and ritonavir-boosted nirmatrelvir (Paxlovid). The US Food and Drug Administration (FDA) has authorised the use of molnupiravir (Lagevrio), bamlanivimab/etesevimab and bebtelovimab in addition to the drugs authorised by EMA but with the exception of regdanvimab.

Sotrovimab, regdanvimab, casirivimab/imdevimab, bamlanivimab/etesevimab and bebtelovimab are monoclonal antibodies targeting parts of the spike protein of SARS-CoV-2. Remdesivir and molnupiravir inhibit the RNA-dependent RNA polymerase in SARS-CoV-2. Ritonavir-boosted nirmatrelvir targets the enzyme Mpro in SARS-CoV-2.

Based on our LIVING protocol, a protocol for living systematic reviews assessing interventions for COVID-19, this review aimed to assess the effects of interventions authorised by either EMA or FDA for prevention of the progression of COVID-19 to severe disease in outpatients.

Our hypothesis for dichotomous outcomes was that the included interventions would reduce the risk of all-cause mortality, serious adverse events, hospitalisations, mechanical ventilation, admission to intensive care unit, renal replacement therapy and non-serious adverse events with a relative risk reduction of 20%. Our hypothesis for continuous outcomes was that the included interventions would increase quality of life with a mean difference of the observed SD divided by 2.

METHODS

We report this systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (online supplemental file 1). The updated methodology used in this systematic review is conducted according to our protocol, which was registered in the PROSPERO database (PROSPERO ID: CRD42020178787) prior to the initiation of the literature searches.

Search strategy and selection criteria

Electronic searches

An information specialist searched the Cochrane Central Register of Controlled Trials in The Cochrane Library, Medical Literature Analysis and Retrieval System Online (MEDLINE Ovid), Excerpta Medica database (Embase Ovid), Latin American and Caribbean Health Sciences Literature (LILACS; Bireme), CINAHL (EBSCO host), BIOSIS (Web of Science), Science Citation Index Expanded (SCI-EXPANDED; Web of Science), Chinese Biomedical Literature Database, Conference Proceedings Citation Index—Science (Web of Science), China Network Knowledge Information, Chinese Science Journal Database (VIP) and Wanfang Database to identify relevant trials. We searched all databases from their inception to 19 April 2022. For all detailed search strategies, see online supplemental file 2.

Searching other resources

The reference lists of relevant trial publications were checked for any unidentified randomised clinical trials. To identify unpublished trials, we searched clinical trial registries (eg, ClinicalTrials.gov; clinicaltrialregister.eu; who.int/ictrp; chictr.org.cn) of Europe, the USA and China and websites of pharmaceutical companies, FDA and EMA. We also searched the COVID-19 Study Registry and the real-time dashboard of randomised trials.

We included unpublished and grey literature trials. We assessed relevant retraction statements and errata for included trials. We searched preprint servers (bioRxiv, medRxiv) for unpublished trials, and all corresponding authors were contacted to obtain individual patient data.

Inclusion and exclusion criteria

We only included trials assessing interventions authorised by EMA or FDA in outpatients, irrespective of publication status, year and language. We did not include quasirandomised studies or observational studies. We included participants of all ages with a diagnosis of COVID-19 and the associated SARS-CoV-2 virus confirmed by laboratory tests (such as reverse transcription PCR). Participants were included irrespective of sex and comorbidities.

Data extraction

Two authors independently screened relevant trials. Five authors working in pairs (JJP, CKJ, PF, FS and ATK) independently extracted data using a standardised data extraction sheet. Discrepancies were resolved through discussion or, if required, through discussion with the last author (JCJ). We contacted corresponding authors if relevant data were unclear or missing for data extraction.

Risk-of-bias assessment

Risk of bias was assessed with the Cochrane risk-of-bias tool V.2 (RoB 2). Five authors working in pairs (JJP, CKJ, PF, FS and ATK) independently assessed risk of bias. Discrepancies were resolved through discussion or, if required, through discussion with the last author (JCJ). Bias was assessed with the following domains: bias arising from the randomisation process, bias due to deviations from the intended interventions, bias due to missing outcome data, bias in measurement of outcomes and bias arising from selective reporting of results.

We contacted corresponding authors of trials in case of unclear or missing data for the risk-of-bias assessment.

Outcomes and subgroup analyses

Primary and secondary outcomes were predefined in our protocol. Primary outcomes were all-cause mortality and serious adverse events (as defined by the International
Conference on Harmonisation – Good Clinical Practice (ICH-GCP) guidelines. Secondary outcomes were admissions to intensive care (as defined by trialists), initiation of invasive or non-invasive mechanical ventilation (as defined by trialists), renal replacement therapy (as defined by trialists), quality of life and non-serious adverse events. We classified non-serious adverse events as any adverse event not classified as serious according to the ICH-GCP definition.

We chose to add hospitalisations as a post hoc outcome. We planned several subgroup analyses, which were described in detail in our protocol. We chose to add drug dose and trial population (low risk, high risk, mixed risk or unclear risk as defined by trialists) as post hoc subgroup analyses. For all outcomes, we used the results reported at maximum follow-up.

Assessment of statistical and clinical significance

Aggregate data meta-analyses were performed according to Cochrane, Keus et al. and the eight-step assessment by Jakobsen et al. for better validation of meta-analytic results in systematic reviews. We report the effect sizes using relative risk (RR) for dichotomous outcomes. We assessed a total of two primary outcomes per comparison and therefore adjusted our threshold for significance. A p value of 0.033 or less was used as the threshold for statistical significance.

Because we primarily considered results of secondary outcomes as hypothesis generating, we did not adjust the p value threshold for secondary outcomes. We conducted both random effects (inverse variance and DerSimonian-Laird) and fixed-effect (Mantel-Haenszel) meta-analyses for all analyses and chose the most conservative result as our primary result and the less conservative result as a sensitivity analysis.

We used trial sequential analysis (TSA) to control for random errors. TSA estimates the diversity-adjusted required information size (DARIS), which is the number of participants needed in a meta-analysis to detect or reject a certain intervention effect. Statistical heterogeneity was quantified by calculating heterogeneity (τ^2) for traditional meta-analyses and diversity (D2) for TSA. We used Grading Recommendations Assessment Development Evaluation (GRADE) to assess the certainty of evidence (risk of bias, inconsistency, indirectness, imprecision and publication bias). These assessments were based on the recommendations in the GRADE Handbook. We downgraded imprecision in GRADE by two levels if the accrued number of participants was below 50% of the DARIS and one level if the number was between 50% and 100% of DARIS. We did not downgrade if the boundary for benefit, harm, futility or DARIS was crossed. Publication bias was assessed based on visual inspection of a funnel plot if 10 or more trials were included. In addition to this, publication bias was assessed regarding the study design (only including randomised clinical trials), study size (small and large studies), lag bias and search strategy as recommended in the GRADE Handbook. We used Fisher’s exact test to calculate p values for all single trial results. Stata V.17 (StataCorp LLC, College Station, Texas, USA) was used for all statistical analyses.

Patient and public involvement

None.

RESULTS

Study characteristics

On 19 April 2022, our literature searches identified 435515 records after duplicates were removed. We included a total of 17 clinical trials randomising 16257 participants to 8 different experimental drug interventions versus placebo or no intervention (figure 1 and online supplemental table S1 and figure S1). For a detailed overview of excluded trials, see online supplemental table S2.

The characteristics of included trials and the trial results can be found in online supplemental table S1. Most trials were at high risk of bias (online supplemental table S3). The maximum follow-up time ranged from 14 to 85 days after randomisation. For several of our outcomes, it was not possible to conduct meta-analysis due to insufficient data. Specifically, no trials reported data on renal replacement therapy and quality of life. It was not possible to perform any sensitivity analyses to assess the potential impact of missing data due to unclear reporting in most of the included trials. See table 1 for a visual overview of all results with assessment of certainty.

Molnupiravir versus control

We identified 6 trials randomising 4393 participants to molnupiravir versus standard care (with or without placebo).

All-cause mortality

Six trials reported data on all-cause mortality. Four of these trials reported no deaths in either of the compared groups. These four trials were not included in the meta-analysis. Meta-analysis of the remaining two trials showed evidence of a beneficial effect of molnupiravir versus control on all-cause mortality (RR 0.11, 95% CI 0.02 to 0.64; $\tau^2=0.0$, $I^2=0.0$%; p=0.0145) (online supplemental figure S1). Visual inspection of the forest plot and measures to quantify heterogeneity ($\tau^2=0.0$, $I^2=0.0$%) indicated no heterogeneity. TSA showed that we did not have enough information to confirm or reject that molnupiravir versus control reduced the risk of all-cause mortality with a relative risk reduction of 20% (no graph produced). The time points of assessment were 14, 28, 29, 31 days or 31 days after randomisation. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S4).

It was not possible to perform any predefined subgroup analyses due to lack of relevant data

Serious adverse events

Six trials reported data on serious adverse events. One of these trials reported no serious adverse events.
Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow diagram.

Table 1 Visual overview of results with assessments of certainty

<table>
<thead>
<tr>
<th></th>
<th>ACM</th>
<th>SAE</th>
<th>HOS</th>
<th>MV</th>
<th>ICU</th>
<th>RRT</th>
<th>NSAE</th>
<th>QoL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molnupiravir</td>
<td>Very low</td>
<td>Very low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Ritonavir-boosted nirmatrelvir</td>
<td>Very low†</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Bamlanivimab/etesevimab</td>
<td>Very low†</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Sotrovimab</td>
<td>Very low†</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Casirivimab/imdevimab</td>
<td>Very low†</td>
<td>Very low*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>Very low†</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Regdanvimab</td>
<td>Very low</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
<tr>
<td>Bebtelovimab</td>
<td>Very low†</td>
<td>Very low†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
</tr>
</tbody>
</table>

No evidence of a difference
Evidence of a beneficial effect
Meta-analysis not possible due to no events

*TSA shows that the required information size has been reached.
†Results based on a single trial.
ACM, all-cause mortality; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HOS, hospitalisations; ICU, intensive care unit; MV, mechanical ventilation; NSAE, non-serious adverse events; QoL, quality of life; RRT, renal replacement therapy; SAE, serious adverse events; TSA, trial sequential analysis.
in either of the compared groups. This trial was not included in the meta-analysis. Meta-analysis of the remaining five trials showed evidence of a beneficial effect of molnupiravir versus control on serious adverse events (RR 0.63, 95% CI 0.47 to 0.84; \(\tau^2=0.0, I^2=0.0\% \); \(p=0.0018 \)) (online supplemental figure S2). Visual inspection of the forest plot and measures to quantify heterogeneity (\(\tau^2=0.0, I^2=0.0\% \)) indicated no heterogeneity. TSA showed that we did not have enough information to confirm or reject that molnupiravir versus control reduced the risk of serious adverse events with a relative risk reduction of 20% (online supplemental figure S3). The time points of assessment were 14, 28, 50 29, 43–45 or 31 days after randomisation. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S4).

None of the subgroup analyses comparing the effects in different trial populations (\(p=0.188 \)), comparators (\(p=0.101 \)) or drug dose (\(p=0.840 \)) showed evidence of a difference (online supplemental figures S4–S6). It was not possible to perform the remaining predefined subgroup analyses due to lack of relevant data.

Hospitalisations

Four trials reported data on hospitalisations. One of these trials reported no hospitalisations in either of the compared groups. This trial was not included in the meta-analysis. Meta-analysis of the remaining three trials showed evidence of a beneficial effect of molnupiravir versus control on hospitalisations (RR 0.44, 95% CI 0.26 to 0.74; \(\tau^2=0.0, I^2=0.0\% \); \(p=0.0019 \)) (online supplemental figure S7). Visual inspection of the forest plot and measures to quantify heterogeneity (\(\tau^2=0.0, I^2=0.0\% \)) indicated no heterogeneity. TSA showed that we did not have enough information to confirm or reject that molnupiravir versus control reduced the risk of hospitalisations with a relative risk reduction of 20% (online supplemental figure S8). The time points of assessment were 14, 28, 50, 29, 43–45 or 31 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3).

Ritonavir-boosted nirmatrelvir versus placebo

We identified 2 trials randomising 3386 participants to ritonavir-boosted nirmatrelvir versus placebo. Evaluation of Protease Inhibition for COVID-19 in Standard-Risk Patients (EPIC-SR) randomised patients with standard risk of COVID-19 progression to severe disease. Standard risk of COVID-19 was defined as unvaccinated adults who were at low risk of hospitalisation or death and vaccinated adults with one or more risk factors for progression to severe disease. Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients (EPIC-HR) randomised patients with high risk of COVID-19 progression to severe disease.

All-cause mortality

Two trials reported data on all-cause mortality. It was not possible to perform meta-analysis on ritonavir-boosted nirmatrelvir versus placebo on all-cause mortality due to insufficient data. In EPIC-HR, 0 out of 1039 participants (0.0%) died in the ritonavir-boosted nirmatrelvir group versus 13 out of 1046 participants (1.2%) in the placebo group (Fisher’s exact test: \(p=0.0002 \)). The time point of assessment was 34 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3). In EPIC-SR, 0 out of 428 participants (0.0%) died in the ritonavir-boosted nirmatrelvir group versus 0 out of 426 participants (0.0%) in the placebo group. The time point of assessment was unclear. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S5).

It was not possible to perform any predefined subgroup analyses due to lack of relevant data.

Serious adverse events

Two trials reported data on serious adverse events. It was not possible to perform meta-analysis on ritonavir-boosted nirmatrelvir versus placebo on serious adverse events due to insufficient data. In EPIC-HR, 18 out of 1109 participants (1.6%) had a serious adverse event in the ritonavir-boosted nirmatrelvir group versus 74 out of 1115 participants (6.6%) in the placebo group (Fisher’s exact test: \(p<0.0001 \)). The time point of assessment was 34 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3). In EPIC-SR, 1.4% had a serious adverse event in the ritonavir-boosted nirmatrelvir group versus 1.9% in the placebo group. The time point of assessment and the number of participants analysed were unclear. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S5).

It was not possible to perform any predefined subgroup analyses due to lack of relevant data.

Hospitalisations

Meta-analysis showed evidence of a beneficial effect of ritonavir-boosted nirmatrelvir versus placebo on hospitalisations (RR 0.16, 95% CI 0.07 to 0.36; \(\tau^2=0.11, I^2=28.2\% \); \(p<0.0001 \)) (online supplemental figure S9). Visual inspection of the forest plot and measures to quantify heterogeneity (\(\tau^2=0.11, I^2=28.2\% \)) indicated little heterogeneity that may not be important. TSA showed that we did not have enough information to confirm or reject that ritonavir-boosted nirmatrelvir versus placebo reduced the risk of hospitalisations with a relative risk reduction of 20% (online supplemental figure S10). The time points of assessment were unclear or 34 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3).
randomised participants with at least one risk factor of COVID-19 progression to 2800 mg bamlanivimab/2800 mg etesevimab versus placebo. This trial was assessed at overall low risk of bias (online supplemental table S3). It was not possible to perform any meta-analyses or subgroup analyses due to lack of relevant data.

All-cause mortality

In total, 0 out of 518 participants (0.0%) died in the bamlanivimab/etesevimab group versus 10 out of 527 participants (1.9%) in the placebo group (Fisher’s exact test: p=0.0076). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Hospitalisations

This trial only reported COVID-19-related hospitalisations. A total of 11 out of 518 participants (2.1%) were hospitalised related to COVID-19 in the bamlanivimab/etesevimab group versus 35 out of 517 participants (6.4%) in the placebo group (Fisher’s exact test: p=0.0006). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Sotrovimab versus placebo

We identified 1 trial randomising 1035 participants to sotrovimab versus placebo. This trial randomised participants with at least one risk factor of COVID-19 progression to 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Serious adverse events

In total, 11 out of 523 participants (2.1%) had a serious adverse event in the sotrovimab group versus 32 out of 526 participants (6.1%) in the placebo group (Fisher’s exact test: p=0.0015). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S7).

Hospitalisations

In total, 0 out of 528 participants (0.0%) were hospitalised in the sotrovimab group versus 29 out of 529 participants (5.5%) in the placebo group (Fisher’s exact test: p=0.0001). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Mechanical ventilation

In total, 0 out of 528 participants (0.0%) received mechanical ventilation in the sotrovimab group versus 6 out of 529 participants (1.1%) in the placebo group (Fisher’s exact test: p=0.0308). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Intensive care

In total, 0 out of 528 participants (0.0%) were admitted to intensive care in the sotrovimab group versus 10 out of 529 participants (1.9%) in the placebo group (Fisher’s exact test: p=0.0019). The time point of assessment was 29 days after randomisation. This outcome result was assessed as low risk of bias (online supplemental table S3).

Casirivimab/imdevimab versus placebo

We identified 3 trials randomising 5170 participants to casirivimab/imdevimab versus placebo. Meta-analysis showed evidence of a beneficial effect of casirivimab/imdevimab versus placebo on hospitalisations (RR 0.31, 95% CI 0.21 to 0.47; τ²=0.0, I²=0.0%; p<0.0001) (online supplemental figure S11). Visual inspection of the forest plot and measures to quantify heterogeneity (τ²=0.0, I²=0.0%) indicated no heterogeneity. TSA showed that we had enough information to confirm that casirivimab/imdevimab versus placebo reduced the risk of serious adverse events (online supplemental figure S12). The time points of assessment were unclear or 29 days after randomisation. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S8).

None of the subgroup analyses comparing the effects in different trial populations (p=0.892) or drug dose (p=0.621) showed evidence of a difference (online supplemental figures 13 and 14). It was not possible to perform the remaining predefined subgroup analyses due to lack of relevant data.

Hospitalisations

Meta-analysis showed evidence of a beneficial effect of casirivimab/imdevimab versus placebo on hospitalisations (RR 0.31, 95% CI 0.21 to 0.47; τ²=0.0, I²=0.0%; p<0.0001) (online supplemental figure S15). Visual inspection of the forest plot and measures to quantify heterogeneity (τ²=0.0, I²=0.0%) indicated no heterogeneity. TSA showed that we did not have enough information to confirm or reject that casirivimab/imdevimab versus placebo reduced the risk of hospitalisations with a relative risk reduction of 20% (online supplemental figure S16). The time point of assessment was 29 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3).

Intensive care

In total, 9 out of 2091 participants (0.4%) were admitted to intensive care in the casirivimab/imdevimab group versus 18 out of 1341 participants (1.3%) in the placebo group (Fisher’s exact test: p=0.0047). The time point...
of assessment was 29 days after randomisation. This outcome result was assessed at high risk of bias (online supplemental table S3).

Non-serious adverse events
In total, 52 out of 155 participants (33.5%) had a treatment-emergent non-serious adverse event in the casirivimab/imdevimab group versus 75 out of 156 participants (48.1%) in the placebo group (Fisher’s exact test: p=0.0111). The time point of assessment was unclear. This outcome result was assessed at high risk of bias (online supplemental table S3).

Remdesivir versus placebo
We identified 1 trial randomising 584 participants to remdesivir versus placebo. This trial randomised participants with at least one risk factor of COVID-19 progression to 200mg of remdesivir on day 1 and 100mg on days 2 and 3 versus placebo. This trial was assessed at overall high risk of bias (online supplemental table S3). It was not possible to perform any meta-analyses or subgroup analyses due to lack of relevant data.

Serious adverse events
In total, 5 out of 279 participants (1.8%) had a serious adverse event in the remdesivir group versus 19 out of 283 participants (6.7%) in the placebo group (Fisher’s exact test: p=0.0092). The time point of assessment was unclear. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S9).

Hospitalisations
In total, 5 out of 279 participants (1.8%) were hospitalised in the remdesivir group versus 18 out of 283 participants (6.4%) in the placebo group (Fisher’s exact test: p=0.0092). The time point of assessment was 28 days after randomisation. This outcome result was assessed at high risk of bias, and the certainty of the evidence was very low (online supplemental tables S3 and S9).

Remaining results
Due to the number of comparisons, we have reported non-significant results in online supplemental file 3 including online supplemental figures S17–S19 and tables S10–S11.

DISCUSSION
We conducted a systematic review assessing the effects of interventions authorised by EMA or FDA for outpatient treatment of COVID-19. Only molnupiravir and ritonavir-boosted nirmatrelvir improved both our primary outcomes, but molnupiravir showed the most consistent benefit and ranked highest among the approved interventions for prevention of COVID-19 progression to severe disease. Several others of the approved interventions showed indications of beneficial effects on different outcomes, but with less consistent results.

Our systematic review has several strengths. We used modern, up-to-date methods for assessing the methodological quality of the included trials. The methodology was based on the Cochrane Handbook for Systematic Reviews of Interventions, the eight-step assessment suggested by Jakobsen et al and TSA. Our methodology was predefined and described in detail before the literature searches were initiated. We assessed the risks of bias using the RoB 2 and the overall certainty of the evidence was assessed using GRADE (bias risk of the trials, consistency of effect, imprecision, indirectness and publication bias). Therefore, the present review takes into account both risks of random errors (‘play of chance’) and systematic errors (bias).

Our systematic review also has limitations. First, it must be considered that different variants of COVID-19 have emerged—different variants of COVID-19 may respond differently to a given intervention leading to different effects in different time periods. Many of the included trials were conducted between autumn 2020 and the spring 2021, and the current variant of concern, omicron, was not documented until November 2021. Second, the included trials randomised patients with different risk profiles, the definition of outcomes varied between trials, outcomes were assessed at different time points, and some trials were single centre trials, while others were multinational. We accounted for these issues by performing subgroup analyses and sensitivity analyses, when possible, but lack of relevant data limited the validity of these analyses. Third, trial sequential analyses showed that almost all of the present meta-analyses were underpowered, which increase the risks of type II errors—more data are needed to confirm or reject clinically important intervention effects. Forth, most included trials were at risk of systematic errors. Thus, our results presumably overestimate the beneficial effects and underestimate the harmful effects of the interventions.

Fifth, this review only included interventions already authorised by EMA or FDA, although other interventions with potential benefit have been suggested. Sixth, some trial data were extracted based only on preprints. Therefore, these trial results might change following peer-review, which could impact the meta-analyses, risk-of-bias assessments, and GRADE assessments. The above-mentioned limitations, and especially the continuous emergence of new COVID-19 variants and the clinical heterogeneity between trials, need to be considered when interpreting our results.

We conclude that the data on these preventive interventions are limited, and the evidence is of very low certainty. Concerns regarding the true effect sizes and possible long-term safety profile of the interventions have been raised. It is worth considering how these interventions have been granted emergency authorisation by EMA or FDA, and why the guidelines in, for example, the UK recommend molnupiravir, ritonavir-boosted nirmatrelvir, sotrovimab or remdesivir depending on patient characteristics in treatment of outpatients in high risk of disease progression. Even though COVID-19 continues to present a major health issue globally, it must
be emphasised how limited and uncertain the available evidence is. Promising interventions and newly proposed interventions should undergo continued evaluation through clinical trials, until the level of evidence is more certain.

Conclusions

The certainty of the evidence was very low, but, from the results of this study, molnupiravir showed the most consistent benefit and ranked highest among the approved interventions for prevention of COVID-19 progression to severe disease in outpatients. The lack of certain evidence should be considered when treating patients with COVID-19 for prevention of disease progression.

Differences between the protocol and the review

We erroneously reported the adjusted TSA alpha as 2% in our published protocol.21 This has been corrected to 3.3% according to two primary outcomes.22 Furthermore, we chose to add ‘hospitalisations’ as outcome post hoc, but before data analyses as this is a very patient-important outcome when focusing on prevention of disease progression in outpatients as well as the burden of the disease to society. We chose to add ‘drug dose’ and ‘trials population’ as subgroup analyses post hoc, but before data analyses to explore possible heterogeneity as many new drug doses are explored in possibly very different populations.

Author affiliations

1Copenhagen Trial Unit, Rigshospitalet, Copenhagen, Denmark
2Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
3Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
4Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
5Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
6Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund University, Lund, Sweden
7Department of Internal Medicine—Cardiology Section, Holbaek Hospital, Holbaek, Denmark
8Department of Health Research Methods, Evidence, and Impact, Hamilton, Stockholm, Sweden

Contributors JJC and SJ conceptualised the study. SK conducted the searches. EEN and JF screened the studies. JJP, FS, PF and ATK extracted the data. JJP conducted the analyses. All authors (JJP, CKJ, PF, FS, JF, EEN, ATK, SJ, JH, NN, PB, LT, SKK, SK, CG, JJC) contributed to writing the manuscript and approved the final version. JJC is the guarantor of the study.

Funding SJ, JJC and CG received a grant from The Grundfos Foundation (Grant number: 2020-025, URL: https://www.pfdj.dk/en/). NN received a grant from The Swedish Research Council (Grant number: N/A. URL: https://www.vr.se/english.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Ethics approval was not required for this study.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplemental information. Authors are willing to share data on request in accordance with data protection regulations and local information governance.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Johanne Juul Petersen http://orcid.org/0000-0001-9837-1958
Caroline Kamp Jørgensen http://orcid.org/0000-0002-7756-4694
Falza Siddiqui http://orcid.org/0000-0002-8358-6259
Joshua Feinberg http://orcid.org/0000-0003-1975-9300
Andreas Torg Kristensen http://orcid.org/0000-0002-4570-236X
Sophie Juul http://orcid.org/0000-0002-8117-2904
Lethana Thabane http://orcid.org/0000-0003-0355-9734

REFERENCES

18 Dougan M, Azzad M, Chen P, et al. N. Betelevolomab, alone or together with Bamlanivimab and Etesevimab, as a broadly neutralizing Monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. Infectious Diseases (except HIV/AIDS)

41 StataCorp LLC. Stata Statistical Software: Release 16 [program]. College Station, TX, 2019.

