Critical illness myopathy and trajectory of recovery in acute kidney injury requiring continuous renal replacement therapy: a prospective observational trial protocol

J Pedro Teixeira,1,2 Benjamin R Griffin,3 Chaitanya Anil Pal,4 Felipe González-Seguel,5,6 Nathanial Jenkins,7 Beth M Jones,8 Yuri Yoshida,8 Naomi George,2,9 Hayley Puffer Israel,2,10 Lama Ghazi,11 Javier A Neyra,12 Kirby P Mayer13

ABSTRACT

Introduction Acute kidney injury requiring renal replacement therapy (AKI-RRT) is common in the intensive care unit (ICU) and is associated with significant morbidity and mortality. Continuous RRT (CRRT) non-selectively removes large amounts of amino acids from plasma, lowering serum amino acid concentrations and potentially depleting total-body amino acid stores. Therefore, the morbidity and mortality associated with AKI-RRT may be partly mediated through accelerated skeletal muscle atrophy and resulting muscle weakness. However, the impact of AKI-RRT on skeletal muscle mass and function during and following critical illness remains unknown. We hypothesise that patients with AKI-RRT have higher degrees of muscle mass loss than patients without AKI-RRT and that AKI-RRT survivors are less likely to recover muscle mass and function when compared with other ICU survivors.

Methods and analysis This protocol describes a prospective, multicentre, observational trial assessing skeletal muscle size, quality and function in ICU patients with AKI-RRT. We will perform musculoskeletal ultrasound to longitudinally evaluate rectus femoris size and quality at baseline (within 48 hours of CRRT initiation), day 3, day 7 or at ICU discharge, at hospital discharge, and 1–3 months postdischarge. Additional skeletal muscle and physical function tests will be performed at hospital discharge and postdischarge follow-up. We will analyse the effect of AKI-RRT by comparing the findings in enrolled subjects to historical controls of critically ill patients without AKI-RRT using multivariable modelling.

Ethics and dissemination We anticipate our study will reveal that AKI-RRT is associated with greater degrees of muscle loss and dysfunction along with impaired postdischarge recovery of physical function. These findings could impact the in-hospital and postdischarge treatment plan for these patients to include focused attention on muscle strength and function. We intend to disseminate findings to participants, healthcare professionals, the public and other relevant groups via conference presentation and publication without any publication restrictions.

Trial registration number NCT05287204.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ This study has several notable strengths including the study design based on multidisciplinary collaboration, the multicentre patient representation, the collection of longitudinal in-hospital and outpatient measures and outcomes, and the wide range of skeletal muscle and physical function tests being performed.

⇒ Due to the pilot nature of this study, we will recruit critically ill patients with acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT) to collect a broad array of study measures and compare them with available datasets of recent historical controls of critically ill patients without AKI requiring RRT. While the use of these control groups enhances the feasibility of the project, it also represents a limitation.

⇒ The high morbidity and mortality inherent to the study population may introduce competing risk of death and selection bias when assessing the outpatient outcomes.

⇒ Differentiating the exact contributions of AKI, CRRT and underlying acute illness may not be possible in this observational study due to several confounding variables that could be better addressed with an interventional trial design in the future. Nonetheless, our pilot study will generate critical data for the design and sample size estimations of such future trials.

INTRODUCTION

Background and rationale

Acute kidney injury (AKI) complicates approximately 20% of all hospital admissions and up to 50% of all intensive care unit (ICU) admissions.1,2 Moreover, 13.5% of critically ill patients develop AKI requiring renal replacement therapy (AKI-RRT).3 AKI is associated with poor short-term and long-term
prognoses. Even stage 1 AKI—defined by as little as a 0.3 mg/dL increase or 50% rise in serum creatinine above baseline—is associated with up to a 10-fold increase in the odds of in-hospital mortality. Similarly, AKI-RRT has an in-hospital mortality rate >50%, making it one of the deadliest conditions encountered in the hospital. After discharge, AKI survivors are at increased risk of developing chronic kidney disease (CKD), end-stage kidney disease, cardiovascular disease and death. Other studies suggest that AKI predisposes to disparate sources of morbidity including infection, stroke, gastrointestinal haemorrhage and dementia. While muscle wasting is well described in patients with CKD, the contribution of AKI-RRT to muscle wasting in critically ill patients has not been previously studied.

Acute skeletal muscle wasting occurs in up to 65% of patients admitted to the ICU. Critical illness myopathy (CIM), defined as a deficit in muscle size and strength that develops as a result of an ICU admission, is associated with high rates of short-term and long-term mortality and morbidity, including decreased quality of life (QoL) due to persistent functional mobility impairments and inability to perform simple activities of daily living. AKI of any stage is known to alter tissue utilisation of amino acids, making it plausible that AKI exacerbates CIM. Studies have demonstrated that plasma amino acid levels are reduced and multiple non-essential amino acids become conditionally essential in the setting of AKI. In addition, AKI leads to a state of increased amino acid oxidation but reduced amino acid transport into muscle. RRT exacerbates this issue through non-selective removal of amino acids from plasma. Amino acids are small and easily filtered during RRT, and, as a result, daily losses of amino acids in effluent can be immense at up to 18 g daily with continuous RRT (CRRT).

The gold standards for assessing CIM are muscle biopsy or electrodiagnostic testing. Furthermore, the measurement of psas muscle area on a single cross-sectional CT image at the level of the L3 vertebra has been suggested as a standard clinical measure for skeletal muscle quantification. However, biopsy, electrodiagnostic testing and CT imaging present challenges which limit their clinical application. Musculoskeletal ultrasound (MSKUS), a relatively inexpensive, non-invasive alternative, has gained significant traction over the last decade for assessing muscle in ICU patients. Studies have demonstrated that MSKUS has excellent inter-rater reliability and high clinical utility and have suggested that MSKUS has strong construct validity. Recent data suggest that MSKUS can be reliably performed at the bedside in the ICU.

The primary objective of this study is to characterise longitudinal measures of muscle size (rectus femoris (RF) muscle cross-sectional area (CSA) and muscle thickness (mT)) and quality (echo intensity (EI)) in critically ill adults with AKI requiring CRRT and to compare these measurements with those of historical ICU controls without AKI-RRT.

Objectives

Aim 1: To characterise changes in RF muscle mass and quality at baseline and days 3 and 7 following study enrolment in critically ill adults with AKI requiring CRRT and to compare these measurements with those of historical ICU controls without AKI-RRT.

Hypothesis 1: RF muscle mass and muscle quality will be lower at 7 days in patients with AKI-RRT compared with the corresponding inpatient measurements of historical ICU controls without AKI-RRT.

Aim 2: To characterise changes in RF muscle mass and quality at hospital discharge and within 3 months post-discharge in survivors of AKI requiring CRRT in the ICU and to compare these measurements with those of historical ICU controls without AKI-RRT.

Hypothesis 2: The muscle mass and functional parameters of survivors of AKI-RRT obtained within 3 months of hospital discharge will be worse than the corresponding measurements from historical controls of ICU survivors without AKI-RRT obtained within a similar post-discharge timeframe.

Aim 3: To examine if changes in plasma or effluent amino acid levels correlate with skeletal muscle loss during CRRT or with skeletal muscle function at 1–3 months post-discharge.

Hypothesis 3: The concentrations of amino acids in blood and effluent during CRRT will correlate with MSKUS parameters of muscle mass and will be associated with muscle function following discharge.

METHODS: PARTICIPANTS, INTERVENTIONS AND OUTCOMES

Trial design

This is a prospective multicentre observational study to evaluate longitudinal inpatient and outpatient measures of muscle mass and function in critically ill adults with AKI requiring CRRT and to compare these measurements with those of historical ICU controls without AKI-RRT. The study will have two phases, an ICU phase and a recovery phase for subjects who survive to discharge.

Study setting

This study will be conducted at the adult ICUs at the academic medical centres of the University of Kentucky, University of Iowa and University of New Mexico. Following discharge, survivors will return for outpatient evaluation of skeletal muscle and physical function.

Eligibility criteria

To be included in the study, patients are required to be ≥18 years old and have AKI-RRT with enrolment within 48 hours of CRRT initiation. Exclusion criteria include: (1) ICU admission for >7 days; (2) RRT of any kind at any time before ICU admission; (3) CKD with estimated glomerular filtration rate <20 mL/min/1.73 m² as

in Epidemiology checklist for cohort studies whenever applicable.
calculated by the 2021 CKD-EPI equation;37 (4) underlying muscle disorders or muscle atrophy such as quadriplegia or hemiplegia, stroke with residual motor deficits, end-stage liver disease, active alcohol use disorder, active malignancy (other than non-melanoma skin cancer) within 1 year, burns or other baseline neuromuscular disease; (5) pregnancy; (6) concomitant use of other extracorporeal support devices such as ventricular assist devices or extracorporeal membrane oxygenation or (7) anticipated inability to engage in weight-bearing testing after discharge (eg, trauma or orthopaedic surgery). For outpatient testing, patients will be ineligible if they remain on RRT in the week prior to the research appointment.

Control population

Given the pilot nature of this study, we will use recent historical controls defined as critically ill adults without AKI-RRT in whom similar measurements of muscle size, quality and function were collected. Specifically, we have previously collected data on 41 ICU patients, of which 36 did not have AKI-RRT and will serve as the control group for the ICU phase of this study, and have published the results of MSKUS performed in the ICU and functional assessments performed at both ICU discharge and hospital discharge.38 The controls for the recovery phase will come from an ongoing prospective observational study being performed at the University of Kentucky, which will include outpatient functional assessments performed on 200 ICU survivors (NCT05537298). See table 1 for a summary of the demographic and clinical characteristics of the control cohorts which have been published thus far.21 38 39

Primary outcome (ICU phase)

The primary outcome is the change in RF CSA, mT and EI measured by MSKUS at baseline, assessed within 48 hours of CRRT initiation, to ICU days 3 and 7 of study enrolment (or at ICU discharge, if sooner). Operational and standardisation procedures have been previously published.35 38 In brief, patients are positioned supine with the lower extremity in neutral alignment. RF ultrasound images are acquired two-thirds of the distance from the anterior superior iliac spine to the superior border of the patella of the right lower extremity at all time points.

<table>
<thead>
<tr>
<th>Table 1 Demographic and clinical characteristics of the cohorts being used as our historical controls for this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort characteristic</td>
</tr>
<tr>
<td>ICU or admission type</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Primary inclusion</td>
</tr>
<tr>
<td>Timing of initial assessment</td>
</tr>
<tr>
<td>Timing of outpatient assessment</td>
</tr>
<tr>
<td>Age, median years (IQR)</td>
</tr>
<tr>
<td>Female, no (%)</td>
</tr>
<tr>
<td>No (%) mechanically ventilated</td>
</tr>
<tr>
<td>Duration of mechanical ventilation, median days (IQR)</td>
</tr>
<tr>
<td>No (%) requiring RRT</td>
</tr>
<tr>
<td>Disease severity (SOFA) scores</td>
</tr>
<tr>
<td>ICU LOS, median days (IQR)</td>
</tr>
<tr>
<td>Hospital LOS, median days (IQR)</td>
</tr>
<tr>
<td>Hospital mortality</td>
</tr>
</tbody>
</table>

Presented here are only previously published data. The two control cohorts for the recovery phase represented in the table are only a subset of the 200 patients in our ongoing registry that will serve as the control for the recovery phase.

*Data for this entire cohort are presented as published, including data from the five patients treated with RRT who will be excluded from the control group in our analysis.

†Though not reported in the published manuscript, RRT status is available for this cohort and any patients with AKI-RRT will be excluded from the control group in our analysis.

AKI, acute kidney injury; ICU, intensive care unit; LOS, length of stay; N/A, not applicable; NR, not reported; RRT, renal replacement therapy; SOFA, Sequential Organ Failure Assessment.
Sonographers will use a linear probe (5–15 Hz) with the same machine for all time points and a minimal-to-no-compression technique. Sonographers will obtain three images per assessment to reduce variations in EI. Ultrasound images will be assessed for CSA, mT and EI at baseline within 48 hours of CRRT initiation, at days 3 and 7 from enrolment (or at ICU discharge, if sooner). A representative ultrasound image and the techniques for landmarking and probe pressure are provided in figure 1.

Secondary outcomes (ICU phase)
Patients will have blood collected at baseline (within 48 hours of CRRT initiation), at study days 3 and 7 (or ICU discharge, if sooner). Creatinine and cystatin C will be measured at each time point. In addition, 5 mL blood samples and CRRT effluent samples at each time point will be sent for gas chromatography-mass spectrometry evaluating a panel of analytes including amino acids, carbohydrates and fatty acids. Remaining samples will be stored for future analysis, though no genetic analysis will be conducted now or in the future.

Patients will be scored at the same time points as above using the ICU Mobility Scale, an 11-point scale ranging from 0 to 10 which involves the clinician scoring the patient’s maximum level of mobility in the prior 24-hour period.40 41

Outcomes (recovery phase)
Survivors will participate in skeletal muscle and physical function testing at hospital discharge and during the outpatient visit at 1–3 months postdischarge. Measurements will include MSKUS to determine RF CSA, mT and EI. We will also conduct an array of standardised and validated tests including:

► Medical Research Council Sum-score (MRC-ss): MRC-ss is a measure of global peripheral muscle strength that is the current clinical standard for diagnosing ICU-acquired weakness (ICU-AW).42 Muscle strength is assessed by physical exam and rated on an ordinal scale (0–5) at six bilateral muscle groups: shoulder abductors, elbow flexors, wrist extensors, hip flexors, knee extensors and ankle dorsiflexors. A score<48 is considered indicative of ICU-AW, with a score<36 indicative of severe weakness with the inability to act against resistance.43

► Muscle strength using hand-held dynamometry for knee extension: Maximal isometric knee extensor strength will be measured as peak force production and rate of force development following previously published standardised positions (figure 2).44

► Muscle strength using hand-grip dynamometry: Hand-grip dynamometers will be used to measure maximum

Figure 1 Representative images of ultrasound acquisition techniques and the obtained image of the rectus femoris muscle. (A) is a representative ultrasound image with anatomical structures labelled for the quadriceps muscle. (B) demonstrates the technique to locate the anatomical landmarks for rectus femoris ultrasound (two-thirds of the distance from anterior superior iliac spine to the superior border of the patella). (C) depicts the minimal-to-no-compression technique using the ultrasound probe with adequate ultrasound transmission gel to obtain images. These images were staged by the authors to demonstrate appropriate technique and were not taken from a patient encounter.
isometric strength of the hand and forearm muscles at previously published standardised positions.42 43 The patient will undergo three repetitions with both the right and left hand, alternating between hands.

► Short Physical Performance Battery (SPPB): Physical function and physical frailty will be measured using the SPPB, a performance-based composite test with a total of 12 points including components of balance (side-by-side stand, semitandem stand and full-tandem stand), chair-to-stand test and 4 m habitual gait speed.45 46

► Timed Up and Go (TUG) Test: The TUG assesses the time (in seconds) for a subject to stand on command from a seated position, walk 3 m, turn around, walk back to the chair and sit down. The purpose of TUG is to assess mobility, physical function and fall risk. TUG has been validated in and recommended for patients with critical illness.47–49

► Six min walk test (6-MWT): The 6-MWT assesses the distance a subject can walk in 6 min, providing a global representation of physical function and cardiopulmonary endurance.50 51 Meta-analysis provides benchmark data for survivors of critical illness.32

► QoL testing using EuroQol Group 5-dimension 5-level (EQ-5D-5L) questionnaire: The EQ-5D is a standardised measure of health status developed by the Euro-Qol Group to provide an assessment of health for clinical and economic appraisal.53 It consists of two sections: the descriptive system and the Visual Analogue Scale (EQ VAS). The descriptive system assesses five dimensions: mobility, self-care, usual activities, pain/discomfort and anxiety/depression. The EQ VAS records the respondent’s self-rated health on a 20 cm vertical VAS with endpoints labelled the ‘best health you can imagine’ and the ‘worse health you can imagine’. This information can be used as a quantitative measure of health as judged by individual respondents.51 54 55

► Clinical Frailty Scale (CFS): The CFS is designed for clinical use and has been widely adopted as a judgement-based tool to screen for frailty and to broadly stratify degrees of fitness and frailty.56 57 It is not a questionnaire, but a way to summarise information from a clinical encounter to roughly quantify an individual’s overall health status. While CFS has traditionally been used specifically in older patients, recent data have demonstrated its utility in an ICU population demographically similar to our target population.58

Figure 2 Representative image of the performance of hand-held dynamometry to measure isometric knee extensor strength with a subject in the supine position with a towel roll keeping the knee in 20°–30° of flexion. This image was staged by the authors to demonstrate appropriate technique and was not taken from a patient encounter.
Functional Assessment of Chronic Illness Therapy Fatigue (FACT-F) Questionnaire: The FACT-F scale is a 13-item measure that assesses self-reported fatigue and its impact on daily activities and function.39 40

Thirty-six-Item Short Form Health Survey Physical Function Scale (SF-36 Physical Function): The SF-36 is a 36-item patient-reported survey of health commonly used to evaluate adult patients which contains 8 domains, including a physical function scale based on 10 of the 36 items which has been shown to have high reliability.41

Additional events: Finally, we will document the occurrence of the following events: return to driving, return to work or hobby, hospital readmission and need for emergency department care.

Assessor training
This multisite study is an interdisciplinary collaboration with expertise in critical care, nephrology, muscle biology and physical function. Physical therapist–scientists and exercise physiologists with established expertise in MSKUS and functional testing serve as coinvestigators at each site. Three 2-hour sessions of teleconference training will be performed to promote standardisation of ultrasound and outcome assessments. In addition, novice sonographers were instructed to perform and practice a minimum of 10 acquisitions of RF muscle images from healthy individuals before study initiation. To better establish inter-rater reliability of image acquisition, the first five patients at each site will have ultrasound studies conducted by two team members. The first sonographer will obtain images and leave the room, and the second will enter and repeat the test. After a 10-min wash-out period, the team members will sequentially repeat the ultrasound measurements, which will allow us to establish both interobserver and intraobserver variability. Finally, images will be blinded, coded (rater 1 or rater 2; site location) and sent securely to the University of Kentucky to be reviewed by an expert sonographer (KPM, who has >6 years of MSKUS experience) to ensure cross-site standardisation of measurements.45 All images will be analysed for muscle CSA, mT and EI by the same blinded expert sonographer. The images from the first five patients obtained by the two sonographers at each site will be examined with intra-class correlation coefficient (ICC). Sites with ICC<0.7 will receive additional training to improve reliability at each site. ICC values will be disseminated with our final results.

Participant timeline
Patients enrolled in the study will participate in up to two phases, an ICU phase and—for those who survive their critical illness—a recovery phase. The schedule of assessments for both phases is delineated in table 2.

Sample size
Our previous study reported a decrease in muscle RF CSA at ICU day 7 of 18.5%.38 To detect an absolute difference in per cent decrease in muscle size of 6% at 7 days (24.5% change at 7 days in AKI-RRT group vs 18.5% change in controls), 61 patients per group are needed assuming an alpha of 0.05 and a power of 80%. This will require inclusion of 20 AKI-RRT patients per site that provide all ICU datapoints. Our previous study also reported that RF CSA was 2.47±0.88 cm² at ICU day 7, down from a baseline on ICU day 1 of 2.99 cm².38 To detect a full return to baseline in the outpatient setting with an alpha of 0.05 and a power of 80%, 22 patients are required in each group. To detect a 75% recovery to baseline from day 7 values, 40 patients are required. We anticipate a 40%–50% in-hospital mortality rate which would leave 31–37 patients alive at discharge. Assuming 22 patients are needed, this provides room for attrition or lost to follow-up of 30%–40%.

Recruitment
Patients will be recruited in the multidisciplinary adult ICUs of the three sites involved in the study. Patients will be identified through communication with the nephrology consult services at each site, who will independently make decisions regarding indications for and timing of initiation of RRT. The enrolment will occur for a full year following institutional review board (IRB) approval at each site, with the funding dates ranging from 1 August 2022 to 31 July 2023, at the University of Kentucky and University of Iowa and from 1 October 2022 to 30 September 2023, at the University of New Mexico. To promote subject retention after discharge, we will allow for a 2-month window in which to schedule the postdischarge follow-up visit and subjects will be contacted by telephone a minimum of three times before being considered lost to follow-up. As stipulated in the informed consent form, though subjects may withdraw from the study at any point, all data collected prior to withdrawal will be retained for analysis.

Patient and public involvement
No formal patient advisory committee was established and there was no patient or public involvement in the design or planning of the study. However, to inform future study design, we will conduct a brief open-ended poststudy survey following the outpatient visit at 1–3 months to help discern which of the patient-reported outcome measures and functional assessments performed appear most valuable to the study subjects (online supplemental material 1).

METHODS: DATA COLLECTION, MANAGEMENT AND ANALYSIS

Data collection methods
Ultrasound images will be transferred through secure link to the data coordinating site (University of Kentucky). One expert sonographer with clinical and research experience (KPM) will analyse the images for CSA, mT and EI. All muscle analyses will be performed blinded with all images coded by a different research coordinator. The blinded assessor will be unaware of the patient identification, the investigator obtaining the images or the...
time point of the MSKUS. Blood and effluent fluid will be collected at the defined time points. Plasma samples will be collected in EDTA tubes, centrifuged at 1000 g for 10 min at 4°C. Following extraction of supernatant and transfer into storage tubes, samples will be stored at −80°C. The specimens will be shipped to the biospecimen site (University of Iowa) where we will perform the metabolomic analysis on all samples in one batch. Patient data including demographics, data related to acute illness and comorbidity, and test results will be recorded using standardised case report forms and then uploaded to REDCap.

Data management

Data will be stored using REDCap software at each site. REDCap is a secure web application for building and managing online databases. REDCap is HIPAA compliant and is specifically geared to support online and offline data capture for research studies and operations.

Statistical methods

We will summarise descriptive statistics at each time point using frequencies and proportions for categorical variables and means and SD or medians and IQRs, as appropriate, for continuous variables. Binary outcome variables include the diagnosis of ICU-AW (defined as MRC-ss≤48/60) and the additional recovery phase events (ie, return to driving, return to work or hobby, hospital readmission and need for emergency department care). Continuous variables include MSKUS parameters, strength testing and physical function testing. Ordinal variables include scores on the EQ-5D-5L, FACIT-F subquestion and CFS.

ICU Phase: The primary outcome in the ICU phase of the study, corresponding to aim 1, will be the change in RF CSA, mT and EI from baseline to day 7 (or ICU discharge) within AKI-RR T patients and in comparison to historical ICU controls without AKI-RR T. Repeated measures analysis will be used with muscle parameters as fixed effects. Of note, in the cohort to be used as the historical control for the ICU phase, MSKUS was performed on ICU days 1, 3, 5 and 7 and muscle strength assessment (by MRC-ss, hand-held dynamometry and hand-grip dynamometry) was performed at ICU and hospital discharge. For AKI-RRT patients, time 0 is study enrolment (which must be within 48 hours of CRRT initiation). To account...
Recovery Phase: The primary outcomes in the ICU phase and both the MSKUS parameters will include MRC-assessments of muscle strength at this phase will be included as covariables in our analyses. We will develop multivariable models for within-group comparisons (in AKI-RRT cases) and between-group comparisons (AKI-RRT cases vs controls). Additional variables entered in the analyses will include demographic variables including age and sex, Charlson Comorbidity Score, illness severity as measured by Sequential Organ Failure Assessment (SOFA) score and ICU variables (including mechanical ventilation, trauma, sepsis, corticosteroid use, use of paralytic agents and ICU type). We will conduct univariable analysis to determine if any of these variables are significantly associated with the primary outcomes. To avoid overfitting, only significant variables will be added in the subsequent adjusted model. We will use paired t-test to examine within-group differences and analysis of variance (ANOVA) for between-group differences of MSKUS parameters and other continuous measures. Binary outcomes will be compared by χ^2 test. Bonferroni adjustment will be used for multiple comparisons.

Recovery Phase: The primary outcomes in the recovery phase of the study, corresponding to aim 2, will include both (1) the detailed characterisation of longitudinal changes in muscle mass and quality and functional status in AKI-RRT survivors, including comparison of postdischarge recovery of RF size and quality assessed by MSKUS and of muscle strength in AKI-RRT survivors as measured within 1–3 months of discharge compared with in-hospital baselines and (2) comparison of MSKUS parameters and of muscle strength assessed at 1–3 months after discharge in AKI-RRT survivors with the same parameters in historical controls of ICU survivors without AKI-RRT. The assessments of muscle strength at this phase will include MRC-ss, hand-held dynamometry for knee extension and hand-grip dynamometry. Using the same methods and covariables as outlined for the ICU phase analysis, we will generate multivariable models for within-group and between-group comparisons of MSKUS parameters and muscle strength, with the exception that lengths of ICU and hospital stay and time from hospital discharge to outpatient assessment will be included as covariables in this phase. For the SPPB, TUG, 6-MWT, EQ-5D-5L, CFS, FACIT-F, SF-36 and additional recovery phase events, differences between the AKI-RRT survivors and the historical ICU survivor controls without AKI-RRT will be compared using t-test, Wilcoxon rank sum test, Mann-Whitney U test and χ^2 test, as appropriate.

Metabolomic analysis: The metabolomic analysis will have no control group. The primary outcome of the metabolomic analysis, corresponding to aim 3, will be the correlation between changes in plasma and effluent amino acid levels measured during CRRT treatment in the ICU phase and both the MSKUS parameters obtained throughout the study and muscle strength measured in AKI-RRT survivors at hospital discharge and 1–3-months postdischarge. The primary analysis will be performed using a mixed effects model with ANOVA using Sidak’s multiple comparison test for paired samples to compare baseline to subsequent samples. Correlations with muscle changes based on MSKUS measurements at days 3 and 7 and correlates with muscle mass, strength and function at hospital discharge and at 1–3 months will be assessed with Pearson correlation test for continuous variables and Spearman’s r test for non-parametric data.

ETHICS AND DISSEMINATION

Research ethics approval

This protocol was approved by the University of Kentucky Office of Research Integrity Medical IRB, which serves as the single IRB for this multisite study according to National Institutes of Health single IRB Policy. This protocol was approved by the University of Kentucky Office of Research Integrity Medical IRB, which serves as the single IRB for this multisite study according to National Institutes of Health single IRB Policy. Any further significant protocol revisions will be communicated to the IRB and BMJ Open and updated on the ClinicalTrials.gov registry.

Consent

Given the expectation that most AKI-RRT patients will be mechanically ventilated, consent will be obtained prior to enrolment from a legally authorised representative if necessary. Consent will be obtained by the local research team, which may include the site principal investigator, coinvestigators or research assistants. Patients will be identified based on discussion with nephrology consult teams regarding patients about to be initiated on CRRT. The patient or the patient’s legally authorised representative will undergo detailed consent and will be given a copy of the signed consent form (online supplemental material 2).

Confidentiality

Confidentiality of the data obtained from enrolled participants will be achieved by storing the data using REDCap data management to reduce the risk of accidental loss of confidentiality. Each patient will be assigned a unique research ID, which will be used to identify the REDCap record and the biospecimens in storage for each patient. Once all data are collected, the records will be deidentified by removing any identifying information including medical record numbers, names, and dates of birth and hospital admission.

Data access

The final deidentified dataset will be made fully accessible on reasonable request once the results are published.

Dissemination policy

We intend to disseminate results to participants, healthcare professionals, the public and other relevant groups via conference presentation and publication and without...
any publication restrictions. The final manuscript will be drafted by the primary investigators. We plan to grant public access to the full protocol, data collection forms, participant-level dataset and statistical code on reasonable request.

Author affiliations
1Divisions of Nephrology and Pulmonary, Critical Care, and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
2Center for Adult Critical Care, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
3Division of Nephrology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
4Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
5Servicio Medica Fisica y Rehabilitacion, Clinica Alemana de Santiago SA, Santiago, Region Metropolitana, Chile
6Facultad de Medicina, Universidad del Desarrollo, Santiago, Region Metropolitana, Chile
7Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
8Department of Orthopedics & Rehabilitation, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
9Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
10Division of Pulmonary, Critical Care, and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
11Department of Epidemiology, The University of Alabama School of Public Health, Birmingham, Alabama, USA
12Division of Nephrology, The University of Alabama Heersink School of Medicine, Birmingham, Alabama, USA
13Department of Physical Therapy, University of Kentucky College of Health Sciences, Lexington, Kentucky, USA

Twitter J Pedro Teixeira @NephCrit_NM, Chaitanya Anil Pal @ChCynthia, Felipe Gonzalez-Seguel @FGonzalezSeguel and Kirby P Mayer @KirbyMayerDPT

Contributors The study was conceptualized by JPT, BRG, JAN and KPM. The methodology was developed and reviewed by JPT, BRG, CAP, FG-S, NJ, BMJ, YY, NG, HPI, LG, JAN and KPM. Resources for developing and carrying out the protocol were provided by JPT, BRG, CAP, FG-S, NJ, BMJ, YY, NG, HPI, JAN and KPM. JPT, BRG, JAN and KPM wrote the original draft manuscript. Funding for the study was obtained by JPT, BRG, NJ, BMJ, YY, JAN and KPM. All authors reviewed and edited this final draft. This manuscript and all subsequent publications stemming from this trial protocol will adhere to the authorship eligibility guidelines of the International Committee of Medical Journal Editors (ICMJE) and will not involve professional writers.

Funding This work is supported by a Clinical and Translational Award (CTSA) Inter-Institutional Pilot Project Award (U24TR002260) from the National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS). JAN is supported by grants from the NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), including R01DK126208, U01DK129988, and P30DK079337. KPM is supported by the NIH National Institute of Arthritis and Musculoskeletal and Skin Disease under award number K23-AR079583.

Disclaimer The funder of the study had no role in study design and will have no role in the collection, management, analysis, and interpretation of data; writing of the final study report; and the decision to submit the report for publication.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID ids J Pedro Teixeira http://orcid.org/0000-0002-2466-9644
Benjamin R Griffin http://orcid.org/0000-0001-8599-5462
Chaitanya Anil Pal http://orcid.org/0000-0001-7956-7728
Felipe Gonzalez-Seguel http://orcid.org/0000-0001-9099-2389
Beth M Jones http://orcid.org/0000-0001-7895-0709
Hayley Puffer Israel http://orcid.org/0000-0001-8546-7803
Kirby P Mayer http://orcid.org/0000-0003-3844-3846

REFERENCES

End-of-study feedback survey for research study, “The Impact of Renal Replacement Therapy on the Development of Critical Illness Muscle Wasting”

Patient subject no.:____________________

Thank you for participating in our study about the effects of acute kidney injury in the intensive care unit on muscle loss and muscle weakness. We ask that you to please fill out this brief survey to help us determine what kind of research would be best in the future.

1. Of all the tests we completed, including the different surveys you took and the different types of functional tests we performed, which one do you think was the most important or valuable to you as a survivor of acute kidney injury? Multiple answers are okay.

2. Is there anything else about muscle strength and physical function that you think we should test or measure in future research in patients like yourself?
Official Title: Critical Illness Myopathy and Trajectory of Recovery in Acute Kidney Injury (AKI) Requiring Continuous Renal Replacement Therapy (CRRT): A Prospective Observational Trial

NCT05287204

Document Date: 1/7/2023
The University of New Mexico Health Sciences Center

Consent and Authorization to Participate in a Research Study

Key Information for “The Impact of Renal Replacement Therapy (RRT) on the Development of Critical Illness Muscle Wasting” (HRRC ID 21-438)

You are being invited to take part in a research study about the impact of Continuous Renal Replacement Therapy (CRRT) on muscle wasting in ICU patients. We are asking you because you have been administered CRRT during your stay in the ICU. This page is to give you key information to help you decide whether to participate. We have included detailed information after this page. Ask the research team questions. If you have questions later, the contact information for the research investigator in charge of the study is below.

WHAT IS THE PURPOSE, PROCEDURES, AND DURATION OF THE STUDY?

By doing this study, we hope to learn if CRRT has an impact on muscle loss in patients admitted to the ICU, a common consequence of ICU admission. The study will consist of 3 parts: (1) ultrasound of a muscle in the leg (rectus femoris) to detect decrease in muscle size, (2) physical function assessments performed by physical therapists or other study members, and (3) collection of blood and CRRT effluent samples for analysis. CRRT effluent is the yellow fluid that is removed the body by CRRT that is similar to urine normally removed from the body by healthy kidneys. Your participation in this research will last about 3 months.

WHAT ARE THE KEY REASONS YOU MIGHT CHOOSE TO VOLUNTEER FOR THIS STUDY?

By participating in this study, you will help provide important information that can add to the quality of care for ICU patients in the future. For a complete description of benefits, refer to the Detailed Consent.

WHAT ARE THE KEY REASONS YOU MIGHT NOT CHOOSE TO VOLUNTEER FOR THIS STUDY?

The study will involve collection of biologic samples, including small amounts of blood, and ultrasound imaging. While the risk of these procedures is minimal, you may experience some discomfort and risk of infection from the blood draw. For a complete description of risks, refer to the Detailed Consent and/or Appendix.

DO YOU HAVE TO TAKE PART IN THE STUDY?

If you decide to take part in the study, it should be because you really want to volunteer. You will not lose any services, benefits or rights you would normally have if you choose not to volunteer.

WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS OR CONCERNS?

The person in charge of this study is Dr. J. Pedro Teixeira of the University of New Mexico Health Sciences Center (UNM HSC), Department of Internal Medicine. If you have questions, suggestions, or concerns about this study or want to withdraw from the study, his contact information is 505-272-4751.

If you have any concerns or questions about your rights as a volunteer in this research, contact staff in the University of Kentucky (UK) Office of Research Integrity (ORI) between the business hours of 8am and 5pm Eastern Time, Monday-Friday at 859-257-9428 or toll free at 1-866-400-9428.
DETAILED CONSENT
Version 2 27Nov2022

Project Title: The Impact of Renal Replacement Therapy (RRT) on the Development of Critical Illness Muscle Wasting (HRRC ID 21-438)

Principal Investigator: J. Pedro Teixeira, MD
University of New Mexico
Department of Internal Medicine
MSC10-5550
1 University of New Mexico
Albuquerque, NM 87131-0001
505-272-4751

If you are the legally authorized representative of a person who is being invited to be in this study, the word “you” in this document refers to the person you represent. You will be asked to read and sign this document to give permission for the person you represent to participate in this research study.

This consent form describes the research study to help you decide if you want to participate. This form provides important information about what you will be asked to do during the study, about the risks and benefits of the study, and about your rights as a research subject.

- If you have any questions about or do not understand something in this form, you should ask the research team for more information.
- You should discuss your participation with anyone you choose such as family or friends.
- Do not agree to participate in this study unless the research team has answered your questions and you decide that you want to be part of this study.

WHAT IS THE PURPOSE OF THIS STUDY?

This is a research study. We are inviting you to participate in this research study because you have severe acute kidney injury (AKI), and will soon be initiated on dialysis, also called renal replacement therapy (RRT) (Cases).

OR- we are inviting you to participate in this research study because you have illness requiring intubation and are at risk for muscle loss while immobile in the intensive care unit (ICU) (Controls).

The purpose of this research study is to determine the impact of RRT on the rate of muscle loss in the intensive care unit (ICU), and the impact of RRT on the trajectory of muscle recovery following hospital discharge. The loss of muscle mass in the ICU can increase the risk of death while in the hospital, can prolong the time of recovery, and can lead to the development of more health problems in the future following hospital discharge.
HOW MANY PEOPLE WILL PARTICIPATE?

Approximately 20 cases and controls will take part in this study conducted by investigators at the University of New Mexico. Approximately 40 others will be enrolled at the University of Iowa and University of Kentucky.

HOW LONG WILL I BE IN THIS STUDY?

If you agree to take part in this study, your involvement will last for the duration of your hospitalization and for visits at 1 month and 3 months following hospital discharge. The time involved in the study in the hospital will be the time spent completing 2 muscle ultrasounds (each approximately 10-20 minutes in length) and the time spent collecting blood (and effluent for CRRT) samples, which will take 5-10 minutes per day for up to 7 days. We will collect data from the electronic medical record regarding outcomes like the number of days spend in the hospital. At the time of hospital discharge, you would undergo a series of muscle strength tests and muscle ultrasound, that are anticipated to take 30-60 minutes. These procedures will be repeated at your 1- and 3-month visits to determine the trend in muscle recovery.

WHAT WILL HAPPEN DURING THIS STUDY?

For the case population: Before you initiate RRT, or within 24 hours after initiation, you will undergo an ultrasound (US) to determine your muscle mass. The US will be repeated at 48 hours and again at 7 days or at ICU discharge, whichever comes first. The ultrasound will evaluate the size of your rectus femoris muscle, one of the muscles in your thigh. The ultrasound will take approximately 10-15 minutes to complete, and there should be no discomfort outside mild coolness from the ultrasound gel.

The first blood draw will take place before RRT initiation. After RRT is started, we will draw blood from the RRT machine daily while you are on CRRT. These blood draws can be taken directly from the RRT machine or from a central line, and so will not require additional needle sticks. The amount of blood taken at each time point is 5 mL (about 1 teaspoon). We will also collect effluent daily after RRT is initiated. Effluent is the waste fluid generated by the CRRT machine (akin to urine).

At the time of hospital discharge, you will undergo an ultrasound (US) to determine your muscle mass, and a series of muscle strength tests to determine the strength and functionality of your muscles. The ultrasound will take approximately 10-15 minutes to complete, and there should be no discomfort outside mild coolness from the ultrasound gel. The muscle strength testing will take 30-60 minutes, and there should be no discomfort other than discomfort from the use of your muscles. These tests will be repeated at visits scheduled to take place at 1 month and 3 months following hospital discharge.

For the control population: At the time of hospital discharge, you will undergo an ultrasound (US) to determine your muscle mass, and a series of muscle strength tests to determine the strength and functionality of your muscles. The ultrasound will take approximately 10-15 minutes to complete, and there should be no discomfort outside mild coolness from the ultrasound gel. The muscle strength testing will take 30-60 minutes, and there should be no discomfort other than discomfort from the use of your muscles. These tests will be repeated at visits scheduled to take place at 1 month and 3 months following hospital discharge.

For both groups, we would access your medical record to collect basic information about your case, such as why you developed acute kidney injury (cases), your vital signs, use of certain medications, and
laboratory data. We will not collect information like your social security number or any other information not directly related to this project.

Tissue/Blood/Data Storage for Future Use

As part of this study, we are obtaining blood (and effluent in RRT patients) samples and data from you. We may like to study your blood (and effluent in RRT patients) and data in the future, after this study is over without further consent. Your sample, information, and/or data may be stored for later use in a central repository or other national repositories sponsored by the National Institutes of Health or other Federal agencies. If this happens, it may be stripped of identifiers (such as name, date of birth, address, etc.). Other qualified researchers who obtain proper permission may gain access to your sample and/or data for use in approved research studies that may or may not be related to in the purpose of this study.

The samples will not be used for whole genome sequencing.

The tests we might want to use to study your blood or effluent and data may not even exist at this time. Therefore, we are asking for your permission to store your blood and effluent and data so that we can study them in the future. These future studies may provide additional information that will be helpful in understanding critical illness muscle loss, but it is unlikely that what we learn from these studies will have a direct benefit to you. It is possible that your blood and effluent data might be used to develop products tests, or discoveries that could be patented and licensed. In some instances, these may have potential commercial value and may be developed by the Investigators, University of Nex Mexico, commercial companies, organizations funding this research, or others that may not be working directly with this research team. However, donors of blood and effluent and data do not retain any property rights to the materials. Therefore, there are no plans to provide financial compensation to you should this occur.

Your blood samples and data will be stored with a code which may be linked to your medical record number. If you agree now to future use of your blood samples and data but decide in the future that you would like to have it removed from future research, you should contact Dr. J. Pedro Teixeira. However, if some research with your blood samples and data has already been completed, the information from that research may still be used.

Do you give permission for your identifiable samples (blood, effluent) to be stored, used, and shared for future research?

☐ Yes ☐ No Initials __________

Remember, you can still be in the main study even if you even if you do not wish to allow your information and/or specimens stored or shared for future research.

WILL I BE NOTIFIED IF THERE IS AN UNEXPECTED FINDING IN MY BLOOD (OR EFFLUENT, IN CRRT PATIENTS)?

The results from the blood and effluent and data we collect in this research study are not the same quality as what you would receive as part of your routine health care. The blood and effluent and data results will not be reviewed by a physician who normally reads such results. Due to this, you will not be informed of any unexpected findings. The results of your blood and effluent and data will not be placed in your medical record with your primary care physician or otherwise. If you believe you are having symptoms that may require care, you should contact your primary care physician.
WHAT ARE THE RISKS OF THIS STUDY?

You may experience one or more of the risks indicated below from being in this study. In addition to these, there may be other unknown risks, or risks that we did not anticipate, associated with being in this study.

Blood collection:
For RRT patients:
When RRT is initiated, there will be labs drawn as part of the usual care provided to patients undergoing this procedure. We will draw our first set of labs at the same time, so there shouldn’t be any additional venipuncture as part of this study. Subsequent labs after CRRT initiation will be taken directly from the machine circuit or arterial line. The total amount of blood that we take is 5 mL (or about 1 teaspoon) per day. This amount of blood is small and safe. It will not increase your need for a blood transfusion. Accessing the dialysis circuit or arterial line for obtaining the research blood samples may increase the risk of infection. However, we will try as much as possible to combine these draws with labs that will be drawn anyway as part of routine CRRT care, so additional risk should be minimal. Risks related to the muscle strength testing could include muscle injury, although these risks are low, and these tests are generally considered minimal risk within the medical community.

For Controls:
Risks related to the muscle strength testing could include muscle injury, although these risks are low, and these tests are generally considered minimal risk within the medical community.

Effluent collection (for RRT patients):
There should be no discomforts or risks associated with collection of effluent. The effluent will be collected directly from the dialysis circuit.

Ultrasound
Ultrasound is a non-invasive imaging procedure. There may be some mild discomfort related to the application of gel or pressure from the probe, but all discomforts are expected to be minimal. There are no known long-term health risks associated with ultrasound.

Confidentiality:
There is potential risk of loss of confidentiality. Efforts will be made to keep your personal information private and confidential. You will be identified by a code, and personal information from your records will not be released without your written permission. Data will be stored on a secure database (REDCap) supported by the University of Kentucky.

WHAT ARE THE BENEFITS OF THIS STUDY?

You will not benefit from being in this study. The study is designed for the researcher to learn more about the effect of kidney injury on the muscles in patients after CRRT initiation. However, we hope that, in the future, other people might benefit from this study from the knowledge gained.

WILL IT COST ME ANYTHING TO BE IN THIS STUDY?

You will not have any additional costs related to being in this research study. You and/or your medical/hospital insurance carrier will remain responsible for your regular medical care expenses.

Template Version December 2, 2019
WILL I BE PAID FOR PARTICIPATING?

You will not be paid for being in this research study.

WHO IS FUNDING THIS STUDY?

This study will be funded by a grant from the Western States Consortium, composed of six institutions with Clinical and Translational Sciences Award (CTSA) Program institutions. This means that the University of New Mexico is receiving payments to support the activities that are required to conduct the study. No one on the research team will receive a direct payment or increase in salary for conducting this study.

WHAT IF I AM INJURED AS A RESULT OF THIS STUDY?

If you believe you are hurt or if you get sick because of something that is due to the study, you should call Dr. J. Pedro Teixeira at 505-272-4751 immediately. Dr. Teixeira will determine what type of treatment, if any, is best for you at that time. It is important for you to understand that the University of New Mexico does not have funds set aside to pay for the cost of any care or treatment that might be necessary because you get hurt or sick while taking part in this study. Also, the University of New Mexico will not pay for any wages you may lose if you are harmed by this study.

Medical costs related to your care and treatment because of study-related harm will be your responsibility; or

- may be paid by your insurer if you are insured by a health insurance company (you should ask your insurer if you have any questions regarding your insurer’s willingness to pay under these circumstances); or

- may be paid by Medicare or Medicaid if you are covered by Medicare or Medicaid (If you have any questions regarding Medicare/Medicaid coverage you should contact Medicare by calling 1-800-Medicare (1-800-633-4227) or Medicaid 1-800-635-2570.).

A co-payment/deductible may be needed by your insurer or Medicare/Medicaid even if your insurer or Medicare/Medicaid has agreed to pay the costs. The amount of this co-payment/deductible may be costly. You do not give up your legal rights by signing this form.

WHAT ABOUT CONFIDENTIALITY?

We will keep your participation in this research study confidential to the extent permitted by law, and all signed consent forms will be retained and securely stored at the University of New Mexico. However, it is possible that other people such as those indicated below may become aware of your participation in this study and may inspect and copy records pertaining to this research. Some of these records could contain information that personally identifies you.

- Federal government regulatory agencies,
- Auditing departments of the University of New Mexico or the University of Kentucky
- The Institutional Review Board (IRB, a committee that reviews and approves research studies) at the University of Kentucky or the Institutional Review Board at the University of New Mexico

To help protect your confidentiality, you will be identified by a code known only to the research team. Data will be stored on a secure database supported by the University of Kentucky. Paper copies of this consent will be stored in a locked drawer in a secured office on the UNM HSC campus. Badge access is needed to enter the building after hours and only the study principal investigator (Dr. Teixeira) has access to the key to the locked drawer. Biospecimens will be stored in a secure lab requiring a UNM
HSC badge for entry. The biospecimens will be stored with a code, so samples cannot be linked to you without the master list secured on the University of New Mexico database site (secured access folder on HSC central IT managed network storage). Electronic data will be stored within REDCap, which is a secure data storage platform operated by the University of Kentucky. If data is transferred for statistical analysis, names and other identifying information will be removed beforehand.

If we write a report or article about this study or share the study data set with others, we will do so in such a way that you cannot be directly identified.

The University of New Mexico Hospital generally requires that we document your participation in research occurring in a UNM HSC facility. This documentation will be in either your medical record or a database maintained on behalf of the institution reflecting that you are participating in this study. The information included will provide contact information for the research team as well as information about the risks associated with this study. We will keep this Informed Consent Document in our research files; it will not be placed in your medical record chart.

IS BEING IN THIS STUDY VOLUNTARY?

Taking part in this research study is completely voluntary. You may choose not to take part at all. If you decide to be in this study, you may stop participating at any time. If you decide not to be in this study, or if you stop participating at any time, you won’t be penalized or lose any benefits for which you otherwise qualify.

CAN SOMEONE ELSE END MY PARTICIPATION IN THIS STUDY?

Under certain circumstances, the researchers might decide to end your participation in this research study earlier than planned. This might happen because in our judgment it would not be safe for you to continue, because your condition has become worse.

WHAT IF I HAVE QUESTIONS?

We encourage you to ask questions. If you have any questions about the research study itself, please contact: J. Pedro Teixeira, MD at 505-272-4751.

If you have questions, concerns, or complaints about your rights as a research subject or about research related injury, please contact the Office of Research Integrity, 405 Kinkead Hall, University of Kentucky, Lexington, KY 40506 (859) 257-9428, email: rs ORI@uky.edu General information about being a research subject can be found by clicking “Participants” on the Office of Research Integrity web site, https://www.research.uky.edu/office-research-integrity. To offer input about your experiences as a research subject or to speak to someone other than the research staff, call the Office of Research Integrity at the number above.

AUTHORIZATION TO USE OR DISCLOSE YOUR IDENTIFIABLE HEALTH INFORMATION

The privacy law, HIPAA (Health Insurance Portability and Accountability Act), requires researchers to protect your health information. The following sections of the form describe how researchers may use your health information.

Your health information that may be accessed, used and/or released includes:

Template Version December 2, 2019
• Physical exams, blood tests, and other diagnostic and medical procedures, as well as medical history.
• Demographic information, including: name, age, height/weight, address/telephone number, and medical record number (MRN)

The Researchers may use and share your health information with:
• The Institutional Review Boards at the University of Kentucky or the University of New Mexico;
• Law enforcement agencies when required by law;
• University of New Mexico representatives;
• UNM HSC and their representatives
• Health systems outside of UNM for which you have a patient relationship;
• Federal regulatory agencies [i.e., the Food and Drug Administration (FDA), National Institutes of Health (NIH)]
• Clinical & Translational Science Center (CTSC)

The researchers agree to only share your health information with the people listed in this document. Should your health information be released to anyone that is not regulated by the privacy law, your health information may be shared with others without your permission; however, the use of your health information may still be regulated by applicable federal and state laws.

You may not be allowed to participate in the research study if you do not sign this form. If you decide not to sign this form, it will not affect your:
• Current or future healthcare at the University of New Mexico;
• Current or future payments to the University of New Mexico;
• Ability to enroll in any health plans (if applicable); or
• Eligibility for benefits (if applicable).

After signing the form, you can change your mind and NOT let the researcher(s) collect or release your health information (revoke the Authorization). If you revoke the authorization:
• Send a written letter to: Dr. J. Pedro Teixeira (MSC10-5550, 1 University of New Mexico, Albuquerque, NM 87131-0001) to inform him of your decision.
• Researchers may use and release your health information already collected for this research study.
• Your protected health information may still be used and released should you have a bad reaction (adverse event).

The use and sharing of your information have no time limit.
If you have not already received a copy of the Privacy Notice, you may request one. If you have any questions about your privacy rights, you should contact the UNM HSC Privacy Officer between the business hours of 8am and 5pm MT, Monday-Friday at (505) 272-1493.
INFORMED CONSENT SIGNATURE PAGE (HRRC ID 21-438)

You are participating or are authorized to act on behalf of the participant. This consent includes the following:

- Key Information Page
- Detailed Consent

You will receive a copy of this consent form after it has been signed.

Signature of research subject, or if applicable, *research subject’s legal representative
Date

Printed name of research subject

*If applicable, printed name of research subject’s legal representative

*If applicable, please explain Representative’s relationship to subject and include a description of representative’s authority to act on behalf of subject:

Printed name of [authorized] person obtaining informed consent/HIPAA Authorization
Date

Signature of [authorized] person obtaining informed consent/HIPAA Authorization

Template Version December 2, 2019