

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Detecting chronic kidney disease through leveraging screening initiatives for other non-communicable diseases -A cross-sectional analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068672
Article Type:	Original research
Date Submitted by the Author:	27-Sep-2022
Complete List of Authors:	George, Cindy; South African Medical Research Council, Non- Communicable Diseases Research Unit Hill, Jillian; South African Medical Research Council, Non-Communicable Diseases Research Unit Nqebelele, Unati; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Peer, Nasheeta; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Peer, Nasheeta; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Kengne , AP; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine
Keywords:	Nephrology < INTERNAL MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

1	DETECTING CHRONIC KIDNEY DISEASE THROUGH
2	LEVERAGING SCREENING INITIATIVES FOR OTHER NON-
3	COMMUNICABLE DISEASES – A CROSS-SECTIONAL
4	ANALYSIS
5	
6	Corresponding author: Dr Cindy George; South African Medical Research Council, Non-
7	Communicable Disease Research Unit, Francie van Zijl Drive, Parow Valley, Cape Town, PO Box
8	19070, South Africa; +27 21 9380482; <u>cindy.george@mrc.ac.za</u>
9	
10	Cindy George ¹ , Jillian Hill ¹ , N. Unati Nqebelele ^{1,2,3} , Nasheeta Peer ^{1,2} , Andre P. Kengne ^{1,2}
11	
12	¹ Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape
13	Town, South Africa; ² Department of Internal Medicine, University of Cape Town, Cape Town,
14	South Africa; ³ Department of Internal Medicine, University of the Witwatersrand, Johannesburg,
15	South Africa
16	
17	Word count: 3,459
18	
19	Keywords: chronic kidney disease; screening; Africa
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Abstract

Introduction: Early diagnosis of chronic kidney disease (CKD) slows disease progression and reduces mortality; yet screening programmes are not advocated due to the high cost-implications. However, opportunities exist to implement CKD screening as an extension to existing screening programmes for hypertension and type 2 diabetes mellitus (T2DM), which are major CKD risk factors. Therefore, the aim of the study was to evaluate the viability of CKD screening, by assessing the yield of CKD cases in the South African Diabetes Prevention Programme (SA-DPP). Methods: The SA-DPP was conducted across 16 resource-poor communities in Cape Town, South Africa, between 2017 and 2019. Participants at high-risk for T2DM, aged 25-65 years, were identified using the African Diabetes Risk Score. Those identified underwent a confirmatory oral glucose tolerance test and other assessments. CKD was based on an estimated glomerular filtration rate of $<60 \text{ ml/min}/1.73\text{m}^2$ and/or albumin-to-creatinine ratio >3 mg/mmol.

Results: Of the 2,039 individuals screened in the community, 690 participants underwent further testing. Of these participants, 9.6% (n=66) and 18.1% (n=125) had screen-detected T2DM and CKD, respectively. Of those with CKD, 73.6% (n=92), 17.6% (n=22) and 8.8% (n=11) presented with stages 1, 2 and 3, respectively. Furthermore, 72.8%, 68.2% and 36.4% of those with CKD stages 1, 2 and 3 had microalbuminuria, with 27.2%, 31.8% and 27.3% presenting with macroalbuminuria, respectively. In those with T2DM and hypertension, 22.7% and 19.8% had CKD, respectively, with nearly all participants with CKD being overweight (23.2%) or obese (72.0%).

Conclusion: The fact that almost one in five participants identified as high-risk for T2DM had CKD underscores the value of including markers of kidney function in an existing screening programme. By utilizing an opportunistic approach to screen high-risk individuals, those with CKD can be identified and appropriately treated to reduce disease progression.

1 2		
3 4	62	Summary box
5 6	63	What is already known on this topic:
7	64	• Early diagnosis of chronic kidney disease (CKD) slows disease progression and reduces
8 9	65	mortality. However, population-based screening programmes are not advocated due to the
10 11	66	high cost-implications of such undertakings.
12 13	67	
14	68	What this study adds:
15 16	69	• This is the first study to show that utilizing an opportunistic approach to screen individuals
17 18	70	at high-risk of type 2 diabetes mellitus (T2DM), can identify people with CKD; allowing
19 20	71	for early referral for specialized testing to confirm diagnosis and subsequent care.
21	72	
22 23	73	How this study might affect research, practice, or policy:
24 25	74	• Our findings lend support to the view that capitalizing on existing resources and
26 27	75	capabilities is a more sustainable approach to screen for CKD as it could reduce overall
28	76	screening cost and avoid many limitations associated with community-based CKD
29 30	77	screening, but still identify individuals with CKD.
31 32	78	• This study has highlighted the importance of screening for albuminuria as the majority of
33 34	79	those with CKD would have gone undetected if CKD were based on eGFR alone.
35	80	
36 37	81	
38 39	82	
40 41	83	
42	84	
43 44	85	
45 46	86	
47 48	87	
49	88	
50 51	89	
52 53	90	
54 55	91	
56	92	
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

Chronic kidney disease (CKD) is a leading cause of morbidity and mortality globally ¹, affecting more than 840 million individuals worldwide². The increasing burden of CKD is demonstrated by its ascent in ranking among the global causes of disability-adjusted life years (DALYs), rising from 29th in 1990 to 18th in 2019 overall, and from 14th to 8th in the older aged groups (aged \geq 50 years)³. However, despite being a global problem, the prevalence of CKD is increasing most rapidly in low-and-middle income countries (LMICs) where the burden of disease is more pronounced ⁴. This is worrisome as the health care systems in most LMICs are already under pressure, and options for kidney replacement therapy are not frequently available or affordable ⁵, ⁶. Given the inequity in access to healthcare services, which disproportionally affects disadvantaged populations, and the costs of kidney replacement therapies, early detection of CKD followed by low-cost treatments should be encouraged 7.

Early-stage CKD presents with no or non-specific symptoms and is commonly diagnosed opportunistically from screening tests for other diseases, or when the disease has progressed, and symptoms appear⁸. Therefore, screening for CKD plays an important role in early detection, as implementing treatment on diagnosis can slow the rate of kidney function loss and reduce morbidity and mortality ^{9, 10}. However, there is often a strong argument against community-based CKD screening due to the potential harm arising from screening and the cost-implications of such an undertaking. According to a recent study, community-based CKD screening is unlikely to be effective or cost-effective anywhere in the world ¹¹. In contrast, community-based screening for CKD risk factors like hypertension and type 2 diabetes mellitus (T2DM) are deemed effective. Community-based screening programmes for hypertension and T2DM provide an opportunity to incorporate screening for CKD. Certainly, using the screening of hypertension and T2DM, which are common risk factors for CKD, as a gateway for CKD screening in clinical settings will involve minimal additional costs. Furthermore, (1) the yield of screen-detected cases is likely to be high, considering the high prevalence and incidence of CKD in the presence of these risk factors; (2) awareness of the presence of CKD with hypertension or T2DM can prompt the intensification or modification of treatments to enhance kidney protection and prevent CKD progression; and (3) a large proportion of people with CKD likely have a combination of sub-optimal risk factors with raised levels of blood pressure and/or glucose that fall below the threshold for disease

classification. These individuals with prediabetes and/or prehypertension are not generally targeted for CKD screening in routine practice but may already have CKD. The opportunistic incorporation of CKD testing in hypertension or T2DM screening programmes can therefore identify CKD that may otherwise be missed if only those with established hypertension or T2DM are screened for the condition.

The aim of this study was to evaluate the viability of CKD screening when incorporated into an existing disease screening programme. The yield of CKD cases in the South African Diabetes Prevention Programme (SA-DPP) was determined by assessing markers of kidney function (serum and urinary creatinine levels and urinary albumin) among participants at high-risk for T2DM.

MATERIAL AND METHODS

Study population and setting

The SA-DPP is a "real-world" randomised implementation trial, of a structured lifestyle intervention programme, adapted from programmes previously shown to be effective in Finland ¹², Australia ¹³, and India ¹⁴. The SA-DPP uses an open-labelled cluster randomized control design, conducted across 16 resource-poor communities in Cape Town, South Africa. In the current study, baseline data were obtained from black and mixed ancestry participants, aged between 25 and 65 years, who were at high-risk for T2DM¹⁵. The data were collected between 2017 and 2019 and the details have been previously described ¹⁵. The study was conducted in accordance with the Declaration of Helsinki and approved by the by the Research Ethics Committee of the South African Medical Research Council (SAMRC) (approval no. EC018-7/2015).

Community-based screening to identify high-risk individuals

For the community-based risk screening, the African Diabetes Risk Score (ADRS)¹⁶, which is a validated African screening tool comprising non-laboratory-based variables including age, waist circumference (WC) and the presence of hypertension, was used to identify adults at high-risk for T2DM. Trained fieldworkers administered a brief questionnaire, which included age, gender, population group, and measured anthropometry and blood pressure. Standard anthropometric methods were used to measure weight, height, and WC¹⁷. Body weight (nearest 0.1 kg) was measured with a calibrated Omron digital scale, with the participant in light clothing and without

Page 7 of 28

BMJ Open

shoes. A stadiometer was used to measure the participant height (nearest cm), with the participant standing in an upright position, on a flat surface. Waist circumference was measured using a non-elastic tape measure at the level of the umbilicus. Blood pressure measurements were taken in a seated position after five minutes of rest. The systolic and diastolic blood pressures (SBP and DBP, respectively) were recorded three times at 2-min intervals, using an appropriately sized cuff and an automated blood pressure monitor (Omron 711, Omron Health Care, Hamburg, Germany). An average of the last two readings was used in the analyses.

Clinic-based assessments of high-risk participants

Participants deemed at high-risk, based on the ADRS, were invited for further clinical and biochemical assessments. At the clinic, trained fieldworkers administered questionnaires to obtain information on participant sociodemographic and personal and family medical history. Anthropometric and blood pressure measurements were repeated using standardized techniques as described above.

As per the World Health Organization's (WHO) guidelines ¹⁸, blood samples were collected after a 10-hour overnight fast by a qualified nurse for the oral glucose tolerance test (OGTT). Following the administration of 75 g anhydrous glucose dissolved in 250 ml, blood samples were taken two hours later. Biochemical analyses were conducted at an ISO accredited laboratory (PathCare Laboratories, Cape Town, SA). Plasma glucose was determined by the glucose oxidase method (Glucose Analyzer 2, Beckman Instruments, Fullerton, CA, USA), serum insulin, determined by a Microparticle Enzyme Immunoassay (AxSym Insulin Kit, Abbot, IL, USA) and glycated haemoglobin (HbA1c) was analysed with high-performance liquid chromatography (Biorad Variant Turbo, BioRad, Johannesburg, SA). Vitamin D (25(OH)D3) was measured using liquid chromatography mass spectrometry and enzymatic colorimetric methods were used to measure serum calcium, phosphate, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Full blood counts, including total red blood cells (RBC), total white blood cells (WBC), haemoglobin, haematocrit, and platelets were measured on a Coulter LH 750 haematology analyser (Beckman Coulter, South Africa).

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

For the current study, we utilized the blood and urine samples in the SA-DPP biobank to conduct secondary laboratory analyses. To determine the levels of serum and urinary creatinine, the modified Jaffe-Kinetic method (calibrated to isotope dilution mass spectrometry standards) (Beckman AU, Beckman Coulter, SA) was used, and the colorimetric (using bromocresol purple) method (Beckman AU, Beckman Coulter, SA) was used to determine the level of urine albumin.

191 Classification of kidney function and co-morbidities

Kidney function was estimated using the serum creatinine-based CKD Epidemiology Collaboration equation ¹⁹, and CKD was defined as an estimated glomerular filtration rate (eGFR) of <60 ml/min/1.73 m² and/or urinary albumin-to-creatinine ratio (uACR) >3 mg/mmol. CKD staging was based on the Kidney Disease Improving Global Outcomes (KDIGO) guidelines ²⁰ as, stage 1 (eGFR \ge 90 ml/min/1.73m² and uACR >3 mg/mmol), stage 2 (eGFR 60–89 ml/min/1.73m² and uACR >3 mg/mmol) and stage 3 (eGFR <60 ml/min/1.73m²). Microalbuminuria was defined as uACR between 3 and 30 mg/mmol and macroalbuminuria as >30 mg/mmol ²¹.

Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m²). This was categorised as normal weight (BMI $\leq 24.9 \text{ kg/m}^2$), overweight (BMI 25.0–29.9) kg/m²) and obese (BMI \geq 30 kg/m²). Hypertension was defined as SBP \geq 140 mmHg and/or DBP \geq 90 mmHg, ²² or taking anti-hypertensive medications. We further categorized our study participants into four groups related to the level of blood pressure control, namely, 1) normotensive (defined as no use of anti-hypertensive medication and SBP/DBP <140/90mmHg), 2) treated and controlled blood pressure (defined as use of anti-hypertensive medication and SBP/DBP <140/90mmHg), 3) treated but uncontrolled blood pressure (defined as use of anti-hypertensive medication but SBP/DBP \geq 140/90mmHg), 4) newly detected hypertension (defined as no use of anti-hypertensive medication and SBP/DBP ≥140/90mmHg). Normal and dysglycaemia categories, based on the OGTT, were defined according to WHO criteria ¹⁸ as: (1) normal glucose tolerance [fasting glucose (FG) <6.1 mmol/L and 2-h glucose <7.8 mmol/L]; or (2) prediabetes including impaired FG (IFG) [6.1≤FG<7.0 mmol/L and 2-h glucose <7.8 mmol/L], impaired glucose tolerance (IGT) [FG <7.0 mmol/L and 7.8≤2-h glucose<11.1 mmol/L]; and (3) T2DM (FG≥7.0 mmol/L and/or 2-h glucose≥11.1 mmol/L). High GGT was defined as levels >38 IU/L, and based on the laboratory (PathCare, South Africa) reference standards. Liver fibrosis was

Page 9 of 28

BMJ Open

classified based on the fibrosis-4 (FIB-4) index, where FIB-4 index was calculated using the formula: [age (years) x AST (IU/L)]/ [platelet $(10^9/L)$ x \sqrt{ALT} (IU/L)]²³. Low risk for advanced fibrosis was defined a FIB-4 score <1.30, intermediate risk as a value between 1.30 and 2.67, and high risk as FIB-4 >2.67²⁴. Anaemia was defined using the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines as haemoglobin level <13.5 g/dL for men and <12 g/ dL for women²⁵.

223 Statistical analysis

Due to the non-Gaussian distribution of most variables, the participant characteristics were summarised as median (25th-75th percentile) or counts and percentages. Group comparisons were analysed by chi-square tests, Wilcoxon rank-sum and Kruskal-Wallis tests. The Dunn's test was used as nonparametric pairwise multiple-comparison post-hoc test when the Kruskal-Wallis test was rejected. All statistical analyses were performed using STATA version 17 (Statcorp, College Station, TX) and statistical significance was based on a p-value <0.05.

230 ²

Patient and public involvement: Participants and/or the public were not involved in the design,
or conduct, or reporting or dissemination plans of this research.

-3 233

RESULTS

Of the 2,039 individuals screened in the community, 690 participants, deemed at high-risk of T2DM based on the ADRS, presented at our research clinic for an OGTT and other assessments. The sociodemographic, clinical, and biochemical characteristics are summarised by CKD status in Table 1. Among the 690 participants included in this study, 80.9% were female, with a group median age of 52 years. Of these participants, 9.6% had screen-detected T2DM and 18.1% had CKD, with 2.2% presenting with both CKD and T2DM. Furthermore, there were high rates of obesity (77.1%), hypertension (55.0%), raised GGT levels (45.8%), intermediate risk of advanced liver fibrosis (21.4%) and anaemia (14.2%) among participants in this study. There were no significant differences in the sociodemographic and anthropometric variables between participants with and without CKD. However, SBP (128.0 vs. 123.5 mmHg; p=0.004) and DBP (86.0 vs. 83.0 mmHg; p=0.014) were higher in participants with CKD compared to those without. Although hypertension prevalence was not significantly different by CKD status (p=0.215), uncontrolled

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

hypertension on treatment was significantly higher in those with than without CKD (42.7% vs. 23.4%). The median levels of GGT (47.0 vs. 35.0 IU/L; p=0.008), AST (26.0 vs. 23.0 IU/L; p=0.004), and FIB-4 index (1.0 vs. 0.9; p=0.016), were higher in participants with CKD compared to those without CKD, while RBC count (4.5 vs. 4.6 x10¹²/L; p=0.046) was lower in CKD compared to those with normal kidney function. The prevalence of high GGT (p=0.008) and anaemia (p=0.042) were significantly higher in participants with CKD compared to those without CKD. All other biochemical variable were similar between groups.

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Page 11 of 28		BMJ Op	en	136/bmjopen-20	
1 2 3 278 4	Table 1: Sociodemographic, clinical, and bio	chemical characteristics	presented in the overall san	N	
5	Sociodemographic variables	Total (n=690)	Without CKD (n=565)	CKD (8=125)	p-value
6	Age (years)	52 (45-59)	52 (45-59)	53 (49-60)	0.241
7	Gender (n,% female)	558 (80.9)	460 (81.4)	98 (78.4)	0.438
8 9	African Diabetes Risk Score	2.3 (1.7-3.4)	2.3 (1.7-3.4)	2.4 (1.3-3.4)	0.882
10	Anthropometry	× /	· · · · · · · · · · · · · · · · · · ·	ary	
11	Weight (kg)	91.0 (79.6-103.6)	92.2 (80.4-104.6)	88.0 (76.8-101.3)	0.050
12	Waist circumference (cm)	102.7 (95.3-111.1)	103.4 (95.7-111.1)	101.3 (93 <u>4</u> -111.1)	0.242
13 14	Hip circumference (cm)	112.6 (103.2-121.7)	113.0 (104.3-122.4)	111.3 (102/1-118.3)	0.067
15	Body mass index (kg/m ²)	35.6 (30.5-40.5)	35.7 (30.6-40.6)	33.9 (2924-39.9)	0.185
16	Body mass index categories (n, %)			aded	0.316
17	Normal	29 (4.2)	23 (4.1)	6 (458)	
18 19	Overweight	129 (18.7)	100 (17.7)	29 (23.2)	
20	Obese	532 (77.1)	442 (78.2)	90 (72.0)	
21	Blood pressure			br	
22	Systolic blood pressure (mmHg)	124.5 (113.5-137.0)	123.5 (113.5-135.0)	128.0 (11 0-145.5)	0.004
23 24	Diastolic blood pressure (mmHg)	83.0 (77.0-91.5)	83.0 (77.0-90.3)	86.0 (785-94.5)	0.014
24	Hypertension	379 (55.0)	304 (53.9)	75 (🕺.0)	0.215
26	Among participants with hypertension (n=379):			S S S S S S S S S S S S S S S S S S S	< 0.0001
27	Treated and controlled BP	143 (37.7)	127 (41.8)	16 (2 .3)	
28	Treated and uncontrolled BP	103 (27.2)	71 (23.4)	32 (42.7)	
29 30	Screen-detected HPT	133 (35.1)	106 (34.9)	27 (3 (5.0)	
31	Biochemical			ų N	
32	Fasting blood glucose (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.5) 🗾	5.0 (4.8-5.6)	0.691
33	2-hour glucose (mmol/L)	6.0 (4.9-7.4)	6.0 (4.9-7.3)	6.3 (59-7.6)	0.205
34 35	Glucose categories (n, %)			92 (173.6)	0.600
36	Normoglycaemia	520 (75.6)	428 (76.0)	92 (193.6)	
37	Prediabetes (IFG/IGT)	102 (14.8)	84 (14.9)	18 (12.4)	
38	Type 2 diabetes	66 (9.6)	51 (9.1)	15 (B .0)	
39	HbA1c (%)	5.8 (5.6-6.1)	5.8 (5.6-6.1)	5.9 (5.8-6.2)	0.740
40 41	Fasting insulin (IU/L)	8.8 (6.2-12.6)	8.5 (5.9-12.1)	11.1 (7.3-14.8)	0.144
42 43 44			ni com/sita/about/quidalinas.yb	11.1 (73-14.8)	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			BMJ Open		1136/bmjopen-202	Page 12 of 28		
1					ijoper			
2					ר-20			
3		Vitamin D (ng/mL)	6.1 (5.0-7.8)	6.0 (5.0-7.7)	6.2 (5. 5 -8.1)	0.222		
4		Calcium (mmol/L)	2.3 (2.3-2.4)	2.3 (2.3-2.4)	2.4 (2.8-2.4)	0.644		
5 6		Phosphate (mmol/L)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	1.1 (1.1.1.2)	0.981		
7		Gamma-glutamyl transferase (IU/L)	36.0 (24.0-61.0)	35.0 (24.0-55.0)	47.0 (26-0-78.0)	0.008		
8		High gamma-glutamyl transferase	315 (45.8)	245 (43.4)	70 (55.5)	0.008		
9		Aspartate aminotransferase (IU/L)	24.0 (20.0-29.0)	23.0 (20.0-29.0)	26.0 (21 - 34.0)	0.004		
10 11		Alanine aminotransferase (IU/L)	22.0 (16.0-32.0)	22.0 (16.0-32.0)	22.0 (17,0-33.0)	0.372		
12		AST/ALT ratio	1.1 (0.9-1.4)	1.1 (0.9-1.4)	1.2 (0.8-1.5)	0.110		
13		Fibrosis-4 index	0.9 (0.7-1.3)	0.9 (0.7-1.3)	1.0 (0.8-1.4)	0.016		
14		Liver fibrosis (n, %)			Inwo	0.065		
15 16		No risk	497 (77.2)	413 (78.4)	84 (酒.8)			
17		Intermediate risk	138 (21.4)	109 (20.7)	29 (24.8)			
18		High risk	9 (1.4)	5 (0.9)	4 (至4)			
19		Red blood cells ($x10^{12}/L$)	4.6 (4.2-4.9)	4.6 (4.3-4.9)	4.5 (4.2-4.8)	0.046		
20		White blood cells $(x10^9/L)$	23.0 (18.0-28.0)	23.0 (18.3-28.0)	23.0(170-28.0)	0.270		
21 22		Platelet count $(x10^{9}/L)$	276 (235-325)	276.0 (234.5-322.5)	$276.0(23 \frac{3}{2} 0-333.0)$	0.705		
23		Haematocrit (volume %)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.442		
24		Haemoglobin (g/dL)	13.5 (12.6-14.3)	13.5 (12.7-14.3)	13.4 (124-14.4)	0.491		
25		Anaemia, n (%)	103 (14.9)	77 (13.6)	26 (20.8)	0.042		
26 27	279				om/ 0			
28	280	Data is presented as median (25th-75th per	centiles) or count and percent	tages. Abbreviations: Cl	KD, chronic Eidney disea	ase; BP, blood		
29 30	281							
31 32	282							
33	283				2024 by			
34 35	284				guest.			
36	285				st. P			
37 38	200				Protected by copyright			
39					ted			
40					by			
41					copy			
42 43					vrigh	11		
44					-	**		
45		For peer	review only - http://bmjopen.bmj.o	com/site/about/guidelines.>	khtml			
46 47								
7/								

Page 13 of 28

BMJ Open

The prevalence of CKD in the overall sample and grouped by glucose and blood pressure categories are shown in Figure 1. In those with prediabetes, T2DM, and hypertension, 17.6%, 22.7% and 19.8% had CKD, respectively. Of the participants with hypertension, the prevalence of CKD was highest in those on anti-hypertensive treatment but with uncontrolled blood pressure (31.1%), while 20.3% of those newly identified with hypertension and 11.2% of those on treatment with controlled blood pressure had CKD.

Figure 1

Table 2 describes the participant characteristics by CKD stage. The majority of individuals with CKD presented with stage 1 CKD (73.6%), with 17.6% and 7.2% presenting with stage 2 and 3, respectively. Of those with CKD stages 1, 2 and 3, 72.8%, 68.2% and 36.4% had microalbuminuria, with 27.2%, 31.8% and 27.3% presenting with macroalbuminuria, respectively. Four participants (36.4%) with an eGFR <60ml/min/1.73m² (CKD stage 3) had no albuminuria. Two participants (1.6% of CKD cases) had an eGFR value <30 ml/min/1.73m².

Participants with stage 3 CKD were older than those with normal kidney function and stage 1 CKD (p=0.030 for both). Levels of AST were significantly higher with stage 2 CKD compared with stage 3 CKD (p=0.042). SBP and DBP did not differ by stages of CKD but differed between those with normal kidney function and those with CKD as follows: normal kidney function vs. CKD stage 1 (SBP: p=0.007 and DBP: p=0.010), stage 2 (SBP: p=0.039) and stage 3 (DBP: p=0.013).

136/bmjopen-202

Sociodemographic variables	No CKD (n=565)	Stage 1 (n=92)	Stage 2 (n=22)	Stage 3 (n=11)	p-valu
Age (years)	52 (45-59)*	52 (45-59)*	56 (51-61)	g 57 (52-63)	0.029
Gender (n,% female)	460 (81.4)	75 (81.5)	15 (68.2)	o 8 (72 7)	0.408
African Diabetes Risk Score	2.3 (1.7-3.4)	2.4 (1.8-3.1)	2.2 (1.7-4.8)	2.8 (1.9-3.9)	0.865
Kidney function				Jan	
Serum creatinine (µmol/L)	57.0 (48.0-67.0)	54.0 (46.5-62.0)	78.5 (72.0-88.0)	≥122.0 (96.0-160.0)	0.0001
eGFR (ml/min/1.73m ²)	103.0 (95.0-114.0)	106.0 (98.0-117.5)	79.5 (75.0-83.0)	[№] 49.0 (32.0-57.0)	0.0001
uACR (mg/mmol)	0.6 (0.4-1.0)	6.0 (4.1-14.1)	6.5 (3.6-17.3)	Download 4 (36.4) 4 (36.4) 4 (36.4) 5 (27.3) 3 (27.3)	0.0001
uACR categories (n, %)				nlo	< 0.000
None	565 (100)	-	-	a 4 (36.4)	
Microalbuminuria		67 (72.8)	15 (68.2)	<u>4 (36.4)</u>	
Macroalbuminuria	- 44	25 (27.2)	7 (31.8)	3 (27.3)	
Anthropometry			, ,	http	
Weight (kg)	92.2 (80.4-104.6)	89.1 (77.8-101.7)	84.4 (70.6-95.3)	78.7 (63.2-102.4)	0.117
Waist circumference (cm)	103.4 (95.7-111.1)	101.6 (93.9-111.4)	97.2 (93.1-109.7)	100.6 (93.4-107.0)	0.497
Hip circumference (cm)	113.0 (104.3-122.4)	112.7 (102.3-120.9)	110.4 (99.4-117.9)	108.6 (96.4-108.9)	0.085
BMI (kg/m ²)	35.7 (30.6-40.6)	34.7 (30.5-40.7)	31.6 (26.9-39.5)	31.9 (27.2-36.9)	0.121
BMI categories (n, %)			, , , , , , , , , , , , , , , , , , ,	- <u></u> ,,,,,,,	0.039
Normal	23 (4.1)	2 (2.2)	2 (9.1)	2 (18.2)	
Overweight	100 (17.7)	19 (20.7)	8 (36.4)	⁹ 2 (18.2)	
Obese	442 (78.2)	71 (77.2)	12 (54.5)	2 (18.2) 2 (18.2) 2 (18.2) 7 (63.6)	
Blood pressure		· · · · · · · · · · · · · · · · · · ·			
SBP (mmHg)	123.5 (113.5-135.0)	129.5 (115.0-145.5)**	126.5 (123.5-153.0)***	N127.5 (106.5-156.0)	0.031
DBP (mmHg)	83.0 (77.0-90.3)	86.5 (78.3-94.0)#	80.8 (75.0-94.5)	¥90.5 (82.5-105.5)##	0.017
Hypertension	304 (53.9)	54 (58.7)	12 (54.5)		0.263
Among participants with				by 9 (81.8) guest	
hypertension (n=379):				st.	0.010
Treated and controlled BP	127 (41.8)	10 (18.5)	3 (25.0)	Point 3 (33.3) et 4 (44.4) et 2 (22.2)	
Treated and uncontrolled BP	71 (23.4)	23 (42.6)	5 (41.7)	<u>ē</u> 4 (44.4)	
Screen-detected HPT	106 (34.9)	21 (38.9)	4 (33.3)	<u>e</u> 2 (22.2)	
Biochemical				by	
				copyright.	
				/rig	13

Page	15 of 28			BMJ Open		136/bm	
1 2						136/bmjopen-2022-068672 4.8 (4.7-5.3) 6.4 (5.6-7.2)	
3		FBG (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.6)	4.9 (4.4-5.6)	^N 	0.886
4		2-hour glucose (mmol/L)	6.0 (4.9-7.3)	6.3 (5.1-7.6)	6.3 (4.7-8.5)	6.4 (5.6-7.2)	0.624
5 6		Glucose categories (n, %)					0.543
7		Normoglycaemia	428 (76.0)	70 (76.0)	13 (59.1)	9 (81.8)	
8		Prediabetes (IFG/IGT)	84 (14.9)	11 (12.0)	6 (27.3)	6 ພ 1 (9.1)	
9		Type 2 diabetes	51 (9.1)	11 (12.0)	3 (13.6)	1 (9.1)	
10		HbA1c (%)	5.8 (5.6-6.1)	5.9 (5.6-6.2)	5.7 (5.3-6.2)	$\begin{array}{c} 1 \ (9.1) \\ 1 \ (9.1) \\ 5.7 \ (5.6-6.2) \\ - \\ 2023 \\ - \\ 20$	0.591
11		Fasting insulin (IU/L)	8.5 (5.9-12.1)	11.1 (6.4-15.5)	11.0 (8.7-13.2)	202 -	0.334
12 13		Vitamin D (ng/mL)	6.0 (5.0-7.7)	6.2 (5.0-7.8)	6.7 (5.9-8.1)		0.361
14		Calcium (mmol/L)	2.3 (2.3-2.4)	2.3 (2.3-2.4)	2.4 (2.3-2.4)	0.8 (5.2-10.6) 2.3 (2.3-2.4) 1.2 (0.9-1.3) 49.0 (24.0-122.0)	0.794
15		Phosphate (mmol/L)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	<u>n</u> 1.2 (0.9-1.3)	0.777
16		GGT (IU/L)	35.0 (24.0-55.0)	45.0 (26.0-81.0)	46.5 (25.0-64.0)	^B / ₀ 49.0 (24.0-122.0)	0.071
17		High GGT	245 (43.4)	51 (56.0)	13 (59.1)	$\frac{d}{d}$ 6 (54.5)	0.071
18		AST (IU/L)	23.0 (20.0-29.0)	26.0 (21.1-34.0)	26.5 (22.0-34.0)###	B 21.0 (20.0-28.0)	0.009
19 20		ALT (IU/L)	22.0 (16.0-32.0)	23.0 (17.0-33.0)	21.0 (18.0-31.0)	18.5 (15.5-37.5)	0.799
20		AST/ALT ratio	1.1 (0.9-1.4)	1.2 (0.9-1.5)	1.3 (1.1-1.4)	18.5 (15.5-37.5) 1.3 (0.9-1.5) 1.3 (0.7-1.6) 4 (50.0) 4 (50.0) 0 (0)	0.413
22		Fibrosis-4 index	0.9 (0.7-1.3)	1.0 (0.8-1.3)	1.1 (0.9-1.5)	ə 1.3 (0.7-1.6)	0.063
23		Liver fibrosis (n, %)				pen	0.124
24		No risk	413 (78.4)	66 (75.0)	14 (66.7)	4 (50.0)	
25		Intermediate risk	109 (20.7)	19 (21.6)	6 (28.6)	4 (50.0)	
26 27		High risk	5 (0.9)	3 (3.4)	1 (4.8)	ž 0(0)	
27		Red blood cells ($x10^{12}/L$)	4.6 (4.3-4.9)	4.5 (4.2-4.9)	4.5 (4.2-4.6)	⁹ 4.7 (4.5-5.1)	0.071
29		White blood cells $(x10^{9}/L)$	23.0 (18.3-28.0)	22.0 (17.0-28.0)	26.0 (16.0-31.9)	₽ 25.0 (19.0-26.0)	0.550
30		Platelet count $(x10^{9}/L)$	276.0 (234.5-322.5)	276.5 (235.0-333.5)	271.0 (244.0-335.0)	$\frac{100}{52}$ 261.0 (217.0-325.0)	0.956
31 32		Haematocrit (volume %)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	No.4 (0.4-0.5)	0.433
33		Haemoglobin (g/dL)	13.5 (12.7-14.3)	13.3 (12.3-14.5)	13.5 (13.3-14.4)	¹⁶ / ₅ 13.7 (12.9-15.8)	0.390
34		Anaemia, n (%)	77 (13.6)	22 (23.9)	2 (9.1)	ي ي 2 (18.2)	0.063
35	318		· · · · ·	× /		est	
36	24.0	Data is massarted as median	(25th 75th managentiles) on as	wat and nanomia and	Abbrariational CKD abra	T D luidu av diasaaa a	TED
37 38	319	-	n (25^{th} - 75^{th} percentiles) or co			fe	
39	320	estimated glomerular filtration	on rate; uACR, urinary albun	nin-to-creatinine ratio	; BMI, body mass index; SI	Ble systolic blood press	sure;
40 41	321	DBP, diastolic blood pressur	re; FBG, fasting blood glucos	se; IFG, impaired fast	ting glucose; IGT, impaired	gucose tolerance; Hb.	A1c,

 DBP, diastolic blood pressure; FBG, fasting blood glucose; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; HbA1c,

		BMJ Open
1 2		BMJ Open 36/bmjopen 20
2 3 4	322	glycated haemoglobin; GGT, gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alaninegaminotransferase; eGFR,
5 6	323	estimated glomerular filtration rate; uACR, urinary albumin-to-creatinine ratio. Keys: *p=0.030 (CKD stage 🕉 vs. no CKD; CKD stage
6 7	324	3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); #p=0.01 (no CKD vs. CKD stage
8 9	325	1); ##p=0.013 (no CKD vs. CKD stage 3); ###p=0.042 (CKD stage 3 vs. CKD stage 2).
10	326	
11 12	327	2023. [
13 14 15	328	3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); *p=0.01@ (no CKD vs. CKD stage 3); ###p=0.042 (CKD stage 3 vs. CKD stage 2).
16 17	329	
18 19	330	riom H
20 21	331	tp://bm
22 23	332	
24 25	333	
26 27	334	O VÃO
28 29	335	April April
30 31	336	23, 2
32 33	337	
34 35	338	
36 37	339	5 5
38 39	340	guest. Protected by copyright 15
40 41	341	by co
42		
43 44		
45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

DISCUSSION

To our knowledge, this is the first study to show that by utilizing an opportunistic approach, CKD can be detected early, allowing for timely referral for specialized testing to confirm diagnosis and subsequent care. This was achieved through leveraging the information already collected in an existing screening programme that targeted individuals at high-risk for T2DM and included a few additional kidney-related biochemical markers to the variables for testing. The yield of screendetected cases was high for a low investment which cost ZAR 237.80 (USD 14.59) per person and highlights the potential cost-effectiveness of such a strategy.

By including a minimal number of markers of kidney function (namely serum and urinary creatinine, and urinary albumin) to the scope of markers already collected, we found that 18.1% of those at high-risk for developing T2DM had CKD with the majority (73.6%) having mild CKD (CKD stage 1). The CKD burden, at 22.7%, was even higher in participants with newly diagnosed T2DM, which underscores the need for frequent screening of individuals at high-risk for T2DM to avoid T2DM presenting with complications at diagnosis. Therefore, using T2DM as a gateway for CKD screening through existing screening programmes is justified as such an approach, together with diagnosing new T2DM, simultaneously identified those with complications i.e., CKD. The newly diagnosed T2DM may receive comprehensive care with tight control of both their T2DM and CKD. This intensification of treatment could contribute to a delay in CKD progression and consequently help reduce the risk of developing end-stage kidney disease (ESKD) or CVD-related complications ²⁶. Further support for CKD screening in individuals at high-risk for T2DM was the substantial CKD burden in prediabetes (17.6%). Notably, if screening for CKD was initiated only after the development of T2DM, the identification of CKD in individuals with prediabetes, which generally fall below the threshold for disease management in clinical practice, would have been missed. This would then have been a lost opportunity to identify and manage CKD early and delay progression of the disease in this high-risk group.

49 368

Our study also highlights the importance of screening for albuminuria as 91.2% of those with CKD would have gone undetected if CKD were based on eGFR alone. Guidelines recommend albuminuria testing using ACR, like we did in our study, however this is not always possible in many low-resource settings. In these instances, low-cost semiquantitative methods, like urinary dipsticks, can be used to measure albuminuria with subsequent confirmation of positive dipstick
result with a quantitative laboratory test to confirm CKD diagnosis ²⁰. Or repeated dipstick
assessments can be employed to reduce the possibility of false-negative results as this could delay
the timely diagnosis and management of CKD.

Given that this is the first study to report the prevalence of CKD in people at high-risk for developing T2DM, based on the ADRS, the prevalence estimates cannot be directly compared to other studies as no similar data have been published. Nevertheless, at a similar median age (52 vs. 53 years), the prevalence of CKD in those with prediabetes in our study was comparable to that reported in a large representative sample in the United States of America (17.6% vs. 17.7%, respectively)²⁷. Also, albeit an older population (median age of 68 years) with a higher prevalence of advanced CKD (stage 3-5), a South African study found that the prevalence of CKD in those with prediabetes was 19.8%²⁸. The similarly high CKD prevalence in prediabetes across several studies suggests that perhaps there should be regular CKD screening for all individuals with prediabetes.

29 388

A likely contributor to the substantial CKD burden in this study is the high prevalence of hypertension, which at 55% is higher than the 44%-46% reported for South Africa ²⁹. While the high reported prevalence of hypertension is consequent to the score used to identify high-risk individuals, a larger proportion of the participants with hypertension had CKD compared to those with normal blood pressure (19.8% vs. 16.1%, respectively). The prevalence of CKD may be related to the delayed detection of hypertension or the suboptimal control of blood pressure in treated hypertension, as reported in the current study and in several South African studies ^{29, 30}. Indeed, a high proportion of participants with treated but uncontrolled hypertension had CKD (31.1%) in this study as did participants with newly detected hypertension (20.3%). This further highlights the benefit of screening high-risk individuals for CKD. Notably, adequate blood pressure control is fundamental to slowing the progression of CKD ^{31, 32} and timeous treatment with anti-hypertensive medication can improve both kidney and cardiovascular outcomes ^{33, 34} thereby preventing the progression to ESKD and reducing the risk of all-cause and cardiovascular mortality 33, 35, 36.

Page 19 of 28

BMJ Open

Elevated GGT and the FIB-4 index, which are commonly used markers of liver injury and nonalcoholic fatty liver disease (NAFLD) ³⁷, have been linked to increased CKD risk in various populations ³⁸⁻⁴¹. In our study, 56.5% of the participants with CKD presented with higher-than-normal GGT levels, compared to 43.4% of participants without CKD. Also, a significant proportion of people with CKD presented with intermediate and high risk for advanced liver fibrosis, based on the FIB-4 index, compared to those without CKD (28.2% vs. 21.6%). Early recognition and interventions directed at reducing the risk of liver injury among individuals with CKD could reduce CKD progression.

Anaemia was prevalent in our study population (14.9% of total sample), with nearly twice as many participants with CKD having anaemia compared to those without CKD, as shown in other studies as well ^{42, 43}. Although the overall prevalence of anaemia in this study was not uncommon for South Africa ⁴⁴, the prevalence in participants with CKD is concerning. While erythropoiesis stimulating agents and iron supplementation to treat anaemia are unlikely to be prescribed to people in the early stages of CKD, anaemia can accelerate the decline in kidney function by causing kidney haemodynamic alterations and tissue hypoxia⁸. It is strongly predictive of all-cause and cardiovascular mortality ^{45, 46}, and should thus be closely monitored.

33 421

Although lifestyle interventions addressing unhealthy diets, physical inactivity, tobacco smoking and alcohol misuse are advocated to reduce the growing global burden of non-communicable diseases ^{47,48}, little is known about the impact of reducing unhealthy lifestyle behaviours on kidney health. The SA-DPP intervention, implemented in individuals with prediabetes, will provide a unique opportunity to examine the effects of improving lifestyle behaviours on changes in CKD status.

45 428

This is the first study to show that utilizing an opportunistic approach, through leveraging the information already collected in an existing screening programme is advantageous to screen for CKD. However, our study does have limitations. The SA-DPP study included participants at high-risk of T2DM and our findings might not be reproducible across other non-communicable diseases screening programmes. The small number of participants identified with CKD in this study reduced the statistical power of our analyses when stratifying by CKD stage. Our study findings

cannot be generalised to other South African populations because factors like socioeconomic status, lifestyle behaviours and disease prevalence (hypertension and T2DM) differ significantly across provinces and by urban-rural residence in South Africa²⁹. Another limitation is that CKD was defined based on a single time-point serum and urinary creatinine and albumin assessment and not on repeated measurements, at least three months apart, as per KDIGO guidelines ²⁰. However, a strength of our study is that both eGFR and albuminuria were used to define CKD, unlike most other population-based CKD prevalence studies in South Africa and Africa in general which rely on eGFR only for CKD classification.

19 444 CONCLUSION

The fact that almost one in five participants identified as high-risk for T2DM had CKD underscores the value of including markers of kidney function in existing disease screening programmes. Our findings provide support for key stakeholders and policy makers to adapt current strategies for hypertension and T2DM screening to include screening for CKD. Indeed, by utilizing an opportunistic approach to screen high-risk individuals, those with early-stage CKD can be identified and appropriately managed to reduce disease progression. Existing cardiovascular or non-communicable disease screening programmes should perhaps explore including markers for CKD evaluations to maximise limited resources without compromising on effectiveness.

Acknowledgements: We would like to acknowledge the South African Medical Research Council
 (SAMRC) for infrastructure and support. The authors would also like to acknowledge the entire
 South African Diabetes Prevention Programme team and collaborators for their continued support.

458 Contributors: Conceived and/or designed the work that led to the submission (CG, JH, NP, APK,
459 NUN), acquired data (JH), and/or played an important role in interpreting the results (CG), drafted
460 (CG) or revised the manuscript (all authors), and approved the final version (all authors).

48 461

462 Funding: The authors have not declared a specific grant for this research from any funding agency463 in the public, commercial or not-for-profit sectors.

Competing interest: No competing interest to declare

1 2		
3 4	466	
5	467	Patient consent for publication: Not required
6 7	468	
8 9	469	Ethics approval: Ethical clearance was obtained by the Research Ethics Committee of the South
10 11	470	African Medical Research Council (SAMRC) (approval no. EC018-7/2015).
12	471	
13 14	472	Data availability statement: The dataset depicted in this manuscript are available from the
15 16	473	corresponding author on reasonable request.
17	474	
18 19	475	ORCID IDs:
20 21	476	Cindy George http://orcid.org/0000-0002-4561-0529
22 23	477	Jillian Hill https://orcid.org/0000-0003-1646-6174
24	478	N. Unati Nqebelele https://orcid.org/0000-0003-1145-3446
25 26	479	Nasheeta Peer https://orcid.org/0000-0003-2131-8344
27 28	480	Andre P. Kengne https://orcid.org/0000-0002-5183-131X
29 30	481	
31	482	
32 33	483	
34 35		
36 37	484	
38	485	
39 40	486	
41 42	487	
43 44	488	
45 46	489	
47 48	490	
49 50	491	
51 52	492	
53 54	493	
55 56	494	
57 58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

495	Figure legends
496	Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure
497	categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT,
498	hypertension; BP, blood pressure
499	
500	
501	
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	
518	
519	
520	
521	
	21
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

2			
3 4	522	Refe	erences
5	523	1.	Global Burden of Disease Causes of Death Collaborators. Global, regional, and national
6	524		age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-
7	525		2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet.
8	526		2017: a systematic analysis for the Global Burden of Disease Study 2017. Earleet. 2018;392(10159):1736-88.
9 10	520 527	2.	Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for
10	528	4.	advocacy and communication-worldwide more than 850 million individuals have kidney
12	528 529		
13		2	diseases. Nephrol Dial Transplant. 2019;34(11):1803-5.
14	530	3.	Global Burden of Disease 2019 Diseases and Injuries Collaborators. Global burden of 369
15	531		diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for
16	532		the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204-22.
17	533	4.	Ameh OI, Ekrikpo UE, Kengne AP. Preventing CKD in Low- and Middle-Income
18	534	_	Countries: A Call for Urgent Action. Kidney international reports. 2020;5(3):255-62.
19 20	535	5.	Global Burden of Disease Chronic Kidney Disease Collaboration. Global, regional, and
20 21	536		national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global
22	537		Burden of Disease Study 2017. Lancet (London, England). 2020:S0140-6736(20)30045-3.
23	538	6.	Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low- and middle-
24	539		income countries. Nephrol Dial Transplant. 2016;31(6):868-74.
25	540	7.	Stanifer JW, Von Isenburg M, Chertow GM, Anand S. Chronic kidney disease care models
26	541		in low- and middle-income countries: a systematic review. BMJ Glob Health.
27	542		2018;3(2):e000728.
28	543	8.	Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet.
29 30	544		2017;389(10075):1238-52.
31	545	9.	Katz IJ, Gerntholtz TE, van Deventer M, Schneider H, Naicker S. Is there a need for early
32	546		detection programs for chronic kidney disease? Clin Nephrol. 2010;74 Suppl 1:S113-8.
33	547	10.	Levin A, Stevens PE. Early detection of CKD: the benefits, limitations and effects on
34	548		prognosis. Nat Rev Nephrol. 2011;7(8):446-57.
35	549	11.	Tonelli M, Dickinson JA. Early Detection of CKD: Implications for Low-Income, Middle-
36	550		Income, and High-Income Countries. Journal of the American Society of Nephrology :
37	551		JASN. 2020;31(9):1931-40.
38 39	552	12.	Absetz P, Valve R, Oldenburg B, Heinonen H, Nissinen A, Fogelholm M, Ilvesmaki V,
40	553		Talja M, Uutela A. Type 2 diabetes prevention in the "real world": one-year results of the
41	554		GOAL Implementation Trial. Diabetes Care. 2007;30(10):2465-70.
42	555	13.	Aziz Z, Absetz P, Oldroyd J, Pronk NP, Oldenburg B. A systematic review of real-world
43	556	10.	diabetes prevention programs: learnings from the last 15 years. Implementation science :
44	557		IS. 2015;10:172.
45	558	14.	Thankappan KR, Sathish T, Tapp RJ, Shaw JE, Lotfaliany M, Wolfe R, Absetz P, Mathews
46	559	17.	E, Aziz Z, Williams ED, Fisher EB, Zimmet PZ, Mahal A, Balachandran S, D'Esposito F,
47	560		Sajeev P, Thomas E, Oldenburg B. A peer-support lifestyle intervention for preventing
48 49	561		type 2 diabetes in India: A cluster-randomized controlled trial of the Kerala Diabetes
5 0	562		Prevention Program. PLoS medicine. 2018;15(6):e1002575.
51		15	e
52	563	15.	Hill J, Peer N, Jonathan D, Mayige M, Sobngwi E, Kengne AP. Findings from Community-
53	564		Based Screenings for Type 2 Diabetes Mellitus in at Risk Communities in Cape Town,
54	565		South Africa: A Pilot Study. International journal of environmental research and public
55	566		health. 2020;17(8).
56 57			
57 58			22

Mayige M. Derivation and Validation of a Simple Risk Score for Undiagnosed Diabetes
 for Tanzania and Other African Populations. Newcastle, UK: Newcastle University; 2014.

1 2 3

4

57 58

59

- 568 for failzania and Other Anrean Populations. Newcastle, OK. Newcastle Oniversity, 2014.
 569 17. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A
 570 Consensus Statement from the International Diabetes Federation. Diabetic medicine : a
 571 journal of the British Diabetic Association. 2006;23(5):469-80.
- 572 18. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic Association. 1998;15(7):539-53.
- 1257619.Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW,15577Eggers P, Van Lente F, Greene T, Coresh J, Chronic Kidney Disease Epidemiology16578Collaboration. A new equation to estimate glomerular filtration rate. Annals of internal17579medicine. 2009;150(9):604-12.
- 582 21. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT,
 583 Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney
 584 disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28.
- 24 585 22. World Health Organization. A global brief on Hypertension: Silent killer, global public
 25 586 health crisis. 2013.
- 587 23. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, M SS, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology (Baltimore, Md). 2006;43(6):1317-25.
- 591 24. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, Nash Clinical Research Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2009;7(10):1104-12.
- 35
36
37595
59625.KDIGO. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for
Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47(5 Suppl 3):S11-145.
- 3859726.Stevens PE, Levin A, KDIGO Chronic Kidney Disease Guideline Development Work39598Group Members. Evaluation and management of chronic kidney disease: synopsis of the
kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of
internal medicine. 2013;158(11):825-30.
- 601 27. Plantinga LC, Crews DC, Coresh J, Miller ER, Saran R, Yee J, Hedgeman E, Pavkov M,
 602 Eberhardt MS, Williams DE, Powe NR, CDC CKD Surveillance Team. Prevalence of
 603 chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am
 604 Soc Nephrol. 2010;5(4):673-82.
- 47 605 28. George C, Matsha TE, Korf M, Zemlin AE, Erasmus RT, Kengne AP. The agreement
 48 606
 49 607
 50 607
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
 50 200
- 608 29. National Department of Health, Statistics South Africa, South African Medical Research
 609 Council, ICF. South Africa Demographic and Health Survey 2016. 2019.
- 610 30. Peer NS, K.; Lombard, C.; Gwebushe, N.; Levitt, N. A high burden of hypertension in the urban black population of Cape Town: the cardiovascular risk in Black South Africans (CRIBSA) study. PloS one. 2013;8(11):e78567.
 - 23

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

BMJ Open

 Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. Journal of the American Society of Nephrology : JASN. 2012;23(12):1917-28. Maione A, Navancethan SD, Graziano G, Mitchell R, Johnson D, Mann JF, Gao P, Craig JC, Tognoni G, Perkovic V, Nicolucci A, De Cosmo S, Sasso A, Lamacchia O, Cignarelli M, Manfreda VM, Gentile G, Strippoli GF. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrol Dial Transplant. 2011;26(9):2827-47. Schmieder RE, Schutte R, Schumacher H, Bohm M, Mancia G, Weber MA, McQueen M, Teo K, Yusuf S, Ontarget Transcend investigators. Mortality and morbidity in relation to changes in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGET and TRANSCEND studies. Diabetologia. 2014;57(10):2019-29. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921-7. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, Roderick P, Sairenchi T, Schottker B, Shankar A, Shlipak M, Tonelli M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock DG, Woodward M, Arnlov J, CKD Prognosis Consortium. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. The lancet Diabetes & endocrinology. 2015;3(7):514-25. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS Group. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225-32.
2018;8(11):e025694.
Akinsola A, Durosinmi MO, Akinola NO. The haematological profile of Nigerians with chronic renal failure. Afr J Med Med Sci. 2000;29(1):13-6.
24
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

- BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright
- Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, Reddy P, Parker W, 44. Hoosain E, Naidoo P, Hongoro C, Mchiza Z, Steyn NP, Dwane N, Makoae M, Maluleke T, Ramlangan S, N. Z, Evans MG, Jacobs L, Faber M, SANHANES-1 Team. The South African National Health and Nutrition Examination Survey (SANHANES-1). 2013. 45. Babitt JL, Lin HY. Mechanisms of anemia in CKD. Journal of the American Society of
- Nephrology : JASN. 2012;23(10):1631-4.
 - Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379(9811):165-80. 46.
- Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the Prevention of Type 2 47. Diabetes: A Status Report. Am J Lifestyle Med. 2018;12(1):4-20.
- Alouki K, Delisle H, Bermudez-Tamayo C, Johri M. Lifestyle Interventions to Prevent 48. s: A J, sh. 2016,2016.. Type 2 Diabetes: A Systematic Review of Economic Evaluation Studies. Journal of diabetes research. 2016;2016:2159890.

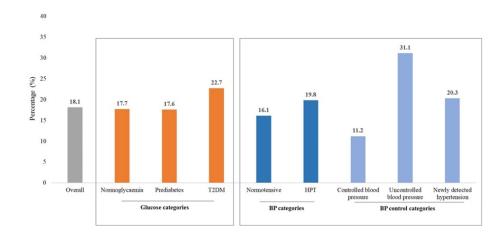


Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT, hypertension; BP, blood pressure

190x96mm (330 x 330 DPI)

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

c

1
2
3
-
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
~ '
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	1
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	4-5
C		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5
1		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-7
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	5-7
measurement	0	methods of assessment (measurement). Describe comparability of	0,
measurement		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	10	Explain how quantitative variables were handled in the analyses. If	8
Qualititative variables	11	applicable, describe which groupings were chosen and why	0
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8
Statistical methods	12	confounding	0
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of	NA
		sampling strategy	INA
		(e) Describe any sensitivity analyses	NA
D 1/		(<u>e</u>) Describe any sensitivity analyses	NA
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
	15	potentially eligible, examined for eligibility, confirmed eligible,	0
		included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
	144	(c) Consider use of a flow diagram	5.0
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	5-8
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	10-11
Outcome uala	15	Report numbers of outcome events of summary measures	and 1.
			anu 1.

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	NA
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	8-15
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	NA
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of	18-19
		potential bias or imprecision. Discuss both direction and magnitude of	
		any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	19
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	19
		study and, if applicable, for the original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

LEVERAGING THE SOUTH AFRICAN DIABETES PREVENTION PROGRAMME TO SCREEN FOR CHRONIC KIDNEY DISEASE – AN OBSERVATIONAL STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068672.R1
Article Type:	Original research
Date Submitted by the Author:	25-Nov-2022
Complete List of Authors:	George, Cindy; South African Medical Research Council, Non- Communicable Diseases Research Unit Hill, Jillian; South African Medical Research Council, Non-Communicable Diseases Research Unit Nqebelele, Unati; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Peer, Nasheeta; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Kengne , AP; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nephrology < INTERNAL MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

South Africa Word count: 3,735 Keywords: chronic kidney disease; screening; Africa

LEVERAGING **DIABETES** THE SOUTH AFRICAN PREVENTION PROGRAMME TO SCREEN FOR CHRONIC **KIDNEY DISEASE – AN OBSERVATIONAL STUDY**

Corresponding author: Dr Cindy George; South African Medical Research Council, Non-Communicable Disease Research Unit, Francie van Zijl Drive, Parow Valley, Cape Town, PO Box 19070, South Africa; +27 21 9380482; cindy.george@mrc.ac.za

Cindy George¹, Jillian Hill¹, N. Unati Nqebelele^{1,2,3}, Nasheeta Peer^{1,2}, Andre P. Kengne^{1,2}

¹Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa; ²Department of Internal Medicine, University of Cape Town, Cape Town, South Africa; ³Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa

BMJ Open

2 3	31	Abstract
4 5	32	Objective: To evaluate the viability of leveraging an existing screening programme (the South
6 7	33	African Diabetes Prevention Programme [SA-DPP]) to screen for chronic kidney disease (CKD),
8 9	34	by assessing the yield of CKD cases among those participating in the programme.
10 11	35	Design: Observational study conducted between 2017 and 2019.
11 12 13 14 15 16 17 18 19 20 21 21 22 23	36	Setting: 16 resource-poor communities in Cape Town, South Africa.
	37	Participants: 690 participants, aged between 25 and 65 years, identified as at high-risk for type 2
	38	diabetes mellitus (T2DM) by the African Diabetes Risk Score.
	39	Primary outcome measure: The prevalence of CKD among those participating in the SA-DPP.
	40	Results: Of the 2,173 individuals screened in the community, 690 participants underwent further
	41	testing. Of these participants, 9.6% (n=66) and 18.1% (n=125) had screen-detected T2DM and
	42	CKD (defined as an estimated glomerular filtration rate of <60 ml/min/1.73m ² (eGFR) and/or
24 25	43	albumin-to-creatinine ratio >3 mg/mmol), respectively. Of those with CKD, 73.6% (n=92), 17.6%
26	44	(n=22) and 8.8% (n=11) presented with stages 1, 2 and 3, respectively. Of the participants with an
27 28 29 30 31 32 33 34 35 36 37	45	eGFR <60 ml/min/1.73m ² , 36.4% had no albuminuria, and of those with normal kidney function
	46	(eGFR \geq 90 ml/min/1.73m ²), 10.2% and 3.8% had albuminuria stage 2 and 3, respectively. Of those
	47	with T2DM and hypertension, 22.7% and 19.8% had CKD, respectively.
	48	Conclusion: The fact that almost one in five participants identified as high-risk for T2DM had
	49	CKD underscores the value of including markers of kidney function in an existing screening
	50	programme. By utilizing an opportunistic approach to screen high-risk individuals, those with
38 39	51	CKD can be identified and appropriately treated to reduce disease progression.
40	52	
41 42	53	
43 44	54	
45 46	55	
47	56	
48 49	57	
50 51	58	
52 53	59	
54	60	
55 56		
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Strengths and limitations of this study

- The strength of our study is that both estimated glomerular filtration rate (eGFR) and albuminuria were used to define CKD, unlike most other population-based CKD prevalence studies in South Africa and Africa in general which rely on eGFR only.
- Due to the self-selection approach of recruitment and the disproportionate female participation, our study findings may not be generalisable.
- The small proportion of participants with chronic kidney disease (CKD) in this study resulted in reduced statistical power when analysis was stratifying by CKD stage.
 - CKD was defined based on a single time-point serum and urinary creatinine and albumin assessment and not on repeated measurements, at least three months apart, as per guidelines.

INTRODUCTION

Chronic kidney disease (CKD) is a leading cause of morbidity and mortality globally ¹, affecting more than 840 million individuals worldwide². The increasing burden of CKD is demonstrated by its ascent in ranking among the global causes of disability-adjusted life years (DALYs), rising from 29th in 1990 to 18th in 2019 overall, and from 14th to 8th in the older aged groups (aged \geq 50 years)³. However, despite being a global problem, the prevalence of CKD is increasing most rapidly in low-and-middle income countries (LMICs) where the burden of disease is more pronounced ⁴. This is worrisome as the health care systems in most LMICs are already under pressure, and options for kidney replacement therapy are not frequently available or affordable ⁵, ⁶. Given the inequity in access to healthcare services, which disproportionally affects disadvantaged populations, and the costs of kidney replacement therapies, early detection of CKD followed by low-cost treatments should be encouraged 7.

Early-stage CKD presents with no or non-specific symptoms and is commonly diagnosed opportunistically from screening tests for other diseases, or when the disease has progressed, and symptoms appear⁸. Therefore, screening for CKD plays an important role in early detection, as implementing treatment on diagnosis can slow the rate of kidney function loss and reduce morbidity and mortality ^{9, 10}. However, there is often a strong argument against community-based CKD screening due to the potential harm arising from screening and the cost-implications of such an undertaking. According to a recent study, community-based CKD screening is unlikely to be effective or cost-effective anywhere in the world ¹¹. In contrast, community-based screening for CKD risk factors like hypertension and type 2 diabetes mellitus (T2DM) are deemed effective. Community-based screening programmes for hypertension and T2DM provide an opportunity to incorporate screening for CKD. Certainly, using the screening of hypertension and T2DM, which are common risk factors for CKD, as a gateway for CKD screening in clinical settings will involve minimal additional costs. Furthermore, (1) the yield of screen-detected cases is likely to be high, considering the high prevalence and incidence of CKD in the presence of these risk factors; (2) awareness of the presence of CKD with hypertension or T2DM can prompt the intensification or modification of treatments to enhance kidney protection and prevent CKD progression; and (3) a large proportion of people with CKD likely have a combination of sub-optimal risk factors with raised levels of blood pressure and/or glucose that fall below the threshold for disease

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

122 classification. These individuals with prediabetes and/or prehypertension are not generally 123 targeted for CKD screening in routine practice but may already have CKD. The opportunistic 124 incorporation of CKD testing in hypertension or T2DM screening programmes can therefore 125 identify CKD that may otherwise be missed if only those with established hypertension or T2DM 126 are screened for the condition.

The aim of this study was to evaluate the viability of CKD screening when incorporated into an
existing disease screening programme. The yield of CKD cases in the South African Diabetes
Prevention Programme (SA-DPP) was determined by assessing markers of kidney function (serum
and urinary creatinine levels and urinary albumin) among participants at high-risk for T2DM.

23 133 MATERIAL AND METHODS

134 Study population and setting

The SA-DPP is a "real-world" randomised implementation trial, of a structured lifestyle intervention programme, adapted from programmes previously shown to be effective in Finland ¹², Australia ¹³, and India ¹⁴. The SA-DPP uses an open-labelled cluster randomized control design, conducted across 16 resource-poor communities in Cape Town, South Africa. Participants were recruited by self-selection approaches, by raising awareness of the study with flyers distributed in the community or through local councillors' offices, churches, and schools. Interested participants were invited to pre-determined venues in their community for community-based risk screening. In the current study, baseline data were obtained from black and mixed ancestry participants, aged between 25 and 65 years, who were at high-risk for T2DM ¹⁵. The data included in this study was collected between 2017 and 2019 and the details have been previously described ¹⁵. The study was conducted in accordance with the Declaration of Helsinki and approved by the by the Research Ethics Committee of the South African Medical Research Council (SAMRC) (approval no. EC018-7/2015).

49 148

149 Community-based screening to identify high-risk individuals

For the community-based risk screening, the African Diabetes Risk Score (ADRS) ¹⁶, which is a
 validated African screening tool comprising non-laboratory-based variables including age, waist
 circumference (WC) and the presence of hypertension, was used to identify adults at high-risk for

Page 7 of 30

1 2 3

4 5

6

7 8

9 10

11

12

13

14 15

16 17

18

19 20

21

24

BMJ Open

dv	V
nd	
to	
br	8
W	
nt p)
at	
fiv	(
ecc)
pre)
vo	1
me)
a	1
en	1
rtio	2
blo	С
alt	tl
fas	1
7	4
nic	2
Го	١
, I	3
zyr	r
lc))
lac	ł
SS	•
snl	1

T2DM. Trained field orkers administered a brief questionnaire, which included age, gender, 153 measured anthropometry and blood pressure. Standard anthropometric 154 population group, an methods were used measure weight, height, and WC¹⁷. Body weight (nearest 0.1 kg) was 155 ated Omron digital scale, with the participant in light clothing and without measured with a cali 156 as used to measure the participant height (nearest cm), with the participant 157 shoes. A stadiometer standing in an uprigh osition, on a flat surface. Waist circumference was measured using a non-158 elastic tape measure the level of the umbilicus. Blood pressure measurements were taken in a 159 seated position after e minutes of rest. The systolic and diastolic blood pressures (SBP and DBP, 160 rded three times at 2-min intervals, using an appropriately sized cuff and respectively) were re 161 an automated blood essure monitor (Omron 711, Omron Health Care, Hamburg, Germany). An 162 average of the last tw readings was used in the analyses. 163

22 23 164

165 Clinic-based assessments of high-risk participants

25 t high-risk, based on the ADRS, were invited for further clinical and 166 Participants deemed 26 27 biochemical assessm ts. At the clinic, trained fieldworkers administered questionnaires to obtain 167 28 29 168 information on par ipant sociodemographic and personal and family medical history. 30 ood pressure measurements were repeated using standardized techniques as Anthropometric and 31 169 32 170 described above. 33

34 35 171

57 58

59

60

th Organization's (WHO) guidelines ¹⁸, blood samples were collected after 36 172 As per the World He 37 a 10-hour overnight f t by a qualified nurse for the oral glucose tolerance test (OGTT). Following 173 38 39 174 the administration of 5 g anhydrous glucose dissolved in 250 ml, blood samples were taken two 40 41 al analyses were conducted at an ISO accredited laboratory (PathCare hours later. Biochen 175 42 43 176 Laboratories, Cape 1 wn, SA). Plasma glucose was determined by the glucose oxidase method 44 177 (Glucose Analyzer 2 Beckman Instruments, Fullerton, CA, USA), serum insulin, determined by 45 46 a Microparticle Enz ne Immunoassay (AxSym Insulin Kit, Abbot, IL, USA) and glycated 178 47 48 haemoglobin (HbA1 was analysed with high-performance liquid chromatography (Biorad 179 49 Variant Turbo, BioR l, Johannesburg, SA). Vitamin D (25(OH)D3) was measured using liquid 180 50 51 181 chromatography mas spectrometry and enzymatic colorimetric methods were used to measure 52 53 serum calcium, phosphate, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 182 54 55 and gamma-glutamyl transferase (GGT). Full blood counts, including total red blood cells (RBC), 183 56

total white blood cells (WBC), haemoglobin, haematocrit, and platelets were measured on a
Coulter LH 750 haematology analyser (Beckman Coulter, South Africa).

For the current study, we utilized the blood and urine samples in the SA-DPP biobank to conduct secondary laboratory analyses. To determine the levels of serum and urinary creatinine, the modified Jaffe-Kinetic method (calibrated to isotope dilution mass spectrometry standards) (Beckman AU, Beckman Coulter, SA) was used, and the colorimetric (using bromocresol purple) method (Beckman AU, Beckman Coulter, SA) was used to determine the level of urine albumin.

19 193 Classification of kidney function and co-morbidities

Kidney function was estimated using the serum creatinine-based CKD Epidemiology Collaboration 2009 (CKD-EPI) equation ¹⁹, with the race correction factor omitted. CKD was defined as an estimated glomerular filtration rate (eGFR) of <60 ml/min/1.73 m² and/or urinary albumin-to-creatinine ratio (uACR) >3 mg/mmol. CKD staging was based on the Kidney Disease Improving Global Outcomes (KDIGO) guidelines ²⁰ as, stage 1 (eGFR \geq 90 ml/min/1.73m² and uACR >3 mg/mmol), stage 2 (eGFR 60-89 ml/min/1.73m² and uACR >3 mg/mmol) and stage 3 (eGFR <60 ml/min/1.73m²). Albuminuria (stage 2) was defined as uACR between 3 and 30 mg/mmol and albuminuria (stage 3) as >30 mg/mmol²¹.

Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m²). This was categorised as normal weight (BMI $\leq 24.9 \text{ kg/m}^2$), overweight (BMI 25.0–29.9) kg/m²) and obese (BMI \geq 30 kg/m²). Hypertension was defined as SBP \geq 140 mmHg and/or DBP \geq 90 mmHg, ²² or taking anti-hypertensive medications. We further categorized our study participants into four groups related to the level of blood pressure control, namely, 1) normotensive (defined as no use of anti-hypertensive medication and SBP/DBP <140/90mmHg), 2) treated and controlled blood pressure (defined as use of anti-hypertensive medication and SBP/DBP <140/90mmHg), 3) treated but uncontrolled blood pressure (defined as use of anti-hypertensive medication but SBP/DBP \geq 140/90mmHg), 4) newly detected hypertension (defined as no use of anti-hypertensive medication and SBP/DBP ≥140/90mmHg). Normal and dysglycaemia categories, based on the OGTT, were defined according to WHO criteria ¹⁸ as: (1) normal glucose tolerance [fasting glucose (FG) $\leq 6.1 \text{ mmol/L}$ and 2-h glucose $\leq 7.8 \text{ mmol/L}$]; or (2) prediabetes

Page 9 of 30

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

including impaired FG (IFG) $[6.1 \le FG \le 7.0 \text{ mmol/L} \text{ and } 2\text{-h glucose } \le 7.8 \text{ mmol/L}]$, impaired glucose tolerance (IGT) [FG <7.0 mmol/L and 7.8<2-h glucose<11.1 mmol/L]; and (3) T2DM (FG≥7.0 mmol/L and/or 2-h glucose≥11.1 mmol/L). High GGT was defined as levels >38 IU/L, and based on the laboratory (PathCare, South Africa) reference standards. Liver fibrosis was classified based on the fibrosis-4 (FIB-4) index, where FIB-4 index was calculated using the formula: [age (years) x AST (IU/L)]/ [platelet $(10^{9}/L)$ x \sqrt{ALT} (IU/L)]²³. Low risk for advanced fibrosis was defined a FIB-4 score <1.30, intermediate risk as a value between 1.30 and 2.67, and high risk as FIB-4 >2.67²⁴. Anaemia was defined using the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines as haemoglobin level <13.5 g/dL for men and <12 g/ dL for women ²⁵.

22 226 Statistical analysis 23

The SA-DPP sample size was calculated based on the following assumptions, 1) a cumulative incident diabetes rate of 13.6% at 2–3 years, as observed in our Bellville South cohort ²⁶, 2) an expected relative risk of 0.51, which is the pooled effect estimate of efficacy trials comparing lifestyle intervention to usual care in diabetes prevention studies ²⁷, 3) an intra-cluster correlation coefficient for fasting glucose of 0.02 ²⁸, 4) a significance level of 5% with a type II error risk of 20%, and 5) an estimated 36-months loss to follow-up of 20–25%.

Due to the non-Gaussian distribution of most variables, the participant characteristics were summarised as median (25th-75th percentile) or counts and percentages. Group comparisons were analysed by chi-square tests, Wilcoxon rank-sum and Kruskal-Wallis tests. The Dunn's test was used as nonparametric pairwise multiple-comparison post-hoc test when the Kruskal-Wallis test was rejected. The age-standardized prevalence of CKD was calculated using the standard world population distribution as projected by the WHO for 2000–2025 ²⁹. All statistical analyses were performed using STATA version 17 (Statcorp, College Station, TX) and statistical significance was based on a p-value < 0.05.

50 242

Patient and public involvement: Participants and/or the public were not involved in the design,
or conduct, or reporting or dissemination plans of this research.

RESULTS

Of the 2,173 individuals screened in the community, 690 participants, deemed at high-risk of T2DM based on the ADRS, presented at our research clinic for an OGTT and other assessments (Supplementary File). The sociodemographic, clinical, and biochemical characteristics are summarised by CKD status in Table 1. Among the 690 participants included in this study, 80.9% were female, with a group median age of 52 years. Of these participants, 9.6% had screen-detected T2DM and 18.1% had CKD (crude estimate), with 2.2% presenting with both CKD and T2DM. The age-adjusted prevalence of CKD was lower, at 14.6%. Furthermore, there were high rates of obesity (77.1%), hypertension (55.0%), raised GGT levels (45.8%), intermediate risk of advanced liver fibrosis (21.4%) and anaemia (14.2%) among participants in this study. There were no significant differences in the sociodemographic and anthropometric variables between participants with and without CKD. However, SBP (128.0 vs. 123.5 mmHg; p=0.004) and DBP (86.0 vs. 83.0 mmHg; p=0.014) were higher in participants with CKD compared to those without. Although hypertension prevalence was not significantly different by CKD status (p=0.215), uncontrolled hypertension on treatment was significantly higher in those with than without CKD (42.7% vs. 23.4%). The median levels of GGT (47.0 vs. 35.0 IU/L; p=0.008), AST (26.0 vs. 23.0 IU/L; p=0.004), and FIB-4 index (1.0 vs. 0.9; p=0.016), were higher in participants with CKD compared to those without CKD, while RBC count (4.5 vs. 4.6 $\times 10^{12}$ /L; p=0.046) was lower in CKD compared to those with normal kidney function. The prevalence of high GGT (p=0.008) and anaemia (p=0.042) were significantly higher in participants with CKD compared to those without CKD. All other biochemical variable were similar between groups.

Page 11 of 30

277	Table 1: Sociodemographic, clinical, and biocl	hemical characteristics	presented in the overall san	nple and by	5
	Sociodemographic variables	Total (n=690)	Without CKD (n=565)	CKD (Ř=125)	p-value
	Age (years)	52 (45-59)	52 (45-59)	53 (49-60)	0.241
	Gender (n,% female)	558 (80.9)	460 (81.4)	98 (7.8.4)	0.438
	African Diabetes Risk Score	2.3 (1.7-3.4)	2.3 (1.7-3.4)	2.4 (1.2-3.4)	0.882
	Anthropometry			ary	
	Weight (kg)	91.0 (79.6-103.6)	92.2 (80.4-104.6)	88.0 (76.8-101.3)	0.050
	Waist circumference (cm)	102.7 (95.3-111.1)	103.4 (95.7-111.1)	101.3 (93 ^{;4} -111.1)	0.242
	Hip circumference (cm) (n=632)	112.6 (103.2-121.7)	113.0 (104.3-122.4)	111.3 (102/1-118.3)	0.067
	Body mass index (kg/m ²)	35.6 (30.5-40.5)	35.7 (30.6-40.6)	33.9 (29at-39.9)	0.185
	Body mass index categories (n, %)			ĩđ ec	0.316
	Normal	29 (4.2)	23 (4.1)	6 (458)	
	Overweight	129 (18.7)	100 (17.7)	29 (23.2)	
	Obese	532 (77.1)	442 (78.2)	90 (2.0)	
	Blood pressure			/bm	
	Systolic blood pressure (mmHg)	124.5 (113.5-137.0)	123.5 (113.5-135.0)	128.0 (11 20-145.5)	0.004
	Diastolic blood pressure (mmHg)	83.0 (77.0-91.5)	83.0 (77.0-90.3)	86.0 (785-94.5)	0.014
	Hypertension	379 (55.0)	304 (53.9)	75 (20.0)	0.215
	Among participants with hypertension (n=379):			COM M	< 0.000
	Treated and controlled BP	143 (37.7)	127 (41.8)	16 (2 .3)	
	Treated and uncontrolled BP	103 (27.2)	71 (23.4)	32 (42.7)	
	Screen-detected HPT	133 (35.1)	106 (34.9)	27 (衰.0)	
	Biochemical			, γ	
	Fasting blood glucose (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.5) 🗾	5.0 (4.8-5.6)	0.691
	2-hour glucose (mmol/L) (n=688)	6.0 (4.9-7.4)	6.0 (4.9-7.3)	6.3 (5 ⊈- 7.6)	0.205
	Glucose categories (n, %) (n=688)			92 (1 3.6)	0.600
	Normoglycaemia	520 (75.6)	428 (76.0)	92 (12.6)	
	Prediabetes (IFG/IGT)	102 (14.8)	84 (14.9)	18 (날.4)	
	Type 2 diabetes	66 (9.6)	51 (9.1)	15 (2.0)	
	HbA1c (%) (n=685)	5.8 (5.6-6.1)	5.8 (5.6-6.1)	5.9 (5. 8 -6.2)	0.740
	Fasting insulin (IU/L)	8.8 (6.2-12.6)	8.5 (5.9-12.1)	11.1 (7 ⁵ - 14.8)	0.144

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Oper	'n	136/bmjopen-202	Page 12 of
				jopen-í	
	Vitamin D (ng/mL)	6.1 (5.0-7.8)	6.0 (5.0-7.7)	6.2 (5.5-8.1)	0.222
	Calcium (mmol/L) (n=688)	2.3 (2.3-2.4)	2.3 (2.3-2.4)	2.4 (2.8)	0.644
	Phosphate (mmol/L) (n=688)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	1.1 (1.2-1.2)	0.981
	Gamma-glutamyl transferase (IU/L) (n=688)	36.0 (24.0-61.0)	35.0 (24.0-55.0)	47.0 (26) -78.0)	0.008
	High gamma-glutamyl transferase (n=688)	315 (45.8)	245 (43.4)	70 (\$5.5)	0.008
	Aspartate aminotransferase (IU/L) (n=688)	24.0 (20.0-29.0)	23.0 (20.0-29.0)	26.0 (2150-34.0)	0.004
	Alanine aminotransferase (IU/L) (n=646)	22.0 (16.0-32.0)	22.0 (16.0-32.0)	22.0 (17,0-33.0)	0.372
	AST/ALT ratio	1.1 (0.9-1.4)	1.1 (0.9-1.4)	1.2 (0.8-1.5)	0.110
	Fibrosis-4 index (n=644)	0.9 (0.7-1.3)	0.9 (0.7-1.3)	1.0 (0.8-1.4)	0.016
	Liver fibrosis (n, %)			Ň	0.065
	No risk	497 (77.2)	413 (78.4)	84 (2 .8)	
	Intermediate risk	138 (21.4)	109 (20.7)	29 (2.8)	
	High risk	9 (1.4)	5 (0.9)	4 (至4)	
	Red blood cells $(x10^{12}/L)$	4.6 (4.2-4.9)	4.6 (4.3-4.9)	4.5 (4.2-4.8)	0.046
	White blood cells $(x10^{9}/L)$	23.0 (18.0-28.0)	23.0 (18.3-28.0)	23.0 (170-28.0)	0.270
	Platelet count $(x10^{9}/L)$	276 (235-325)	276.0 (234.5-322.5)	276.0 (23 50-333.0)	0.705
	Haematocrit (volume %)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.442
	Haemoglobin (g/dL)	13.5 (12.6-14.3)	13.5 (12.7-14.3)	13.4 (124-14.4)	0.491
	Anaemia, n (%)	103 (14.9)	77 (13.6)	26 (20.8)	0.042
278				<u> </u>	
279	Data is presented as median (25th-75th percent	tiles) or count and nerce	ntages Abbreviations C	KD chronic Ridney dise	ase RP blood
				p -	
280	pressure; HPT, hypertension; IFG, impaired fas	sting glucose; IG1, impai	red glucose tolerance; Hb	Alc, glycategnaemogior	bin; ASI/ALI
281	ratio, aspartate aminotransferase to alanine am	inotransferase ratio.		202	
282				2024 by	
283				guest.	
284				st P	
204				Protected by copyright	
				cte	
				p d	
				, co	
				ругі	
				ght.	11
	For peer revie	ew onlv - http://bmjopen.bm	nj.com/site/about/guidelines.x	xhtml	
			,,		

 -

Page 13 of 30

BMJ Open

The prevalence of CKD in the overall sample and grouped by glucose and blood pressure categories are shown in Figure 1. In those with prediabetes, T2DM, and hypertension, 17.6%, 22.7% and 19.8% had CKD, respectively. Of the participants with hypertension, the prevalence of CKD was highest in those on anti-hypertensive treatment but with uncontrolled blood pressure (31.1%), while 20.3% of those newly identified with hypertension and 11.2% of those on treatment with controlled blood pressure had CKD.

292 Figure 1 to be included here

The stages of CKD according to eGFR and albuminuria following KDIGO classification are presented in Figure 2. Of the 11 participants with an eGFR <60 ml/min/ $1.73m^2$, four (36.4%) had no albuminuria, with 36.4% (n=4) and 27.3% (n=3) presenting with moderate (uACR: 3-30mg/mmol) and severe albuminuria (uACR: >30mg/mmol), respectively. Furthermore, of the those with normal kidney function (eGFR ≥90 ml/min/ $1.73m^2$), 67 (10.2%) and 25 (3.8%) had moderate and severe albuminuria, respectively.

- 301 Figure 2 to be included here
- 33 302

Table 2 describes the participant characteristics by CKD stage. The majority of individuals with CKD presented with stage 1 CKD (73.6%), with 17.6% and 8.8% presenting with stage 2 and 3, respectively. Participants with stage 3 CKD were older than those with normal kidney function and stage 1 CKD (p=0.030 for both). Levels of AST were significantly higher with stage 2 CKD compared with stage 3 CKD (p=0.042). SBP and DBP did not differ by stages of CKD but differed between those with normal kidney function and those with CKD as follows: normal kidney function vs. CKD stage 1 (SBP: p=0.007 and DBP: p=0.010), stage 2 (SBP: p=0.039) and stage 3 (DBP: p=0.013).

50 312 52 313

- 3 314

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

		BMJ Open		36/bn	Pa
				136/bmjopen-2022-06	
Table 2: Sociodemographic, clinic	al, and biochemical ch	naracteristics in particip	ants by CKD stages	22-06	
Sociodemographic variables	No CKD (n=565)	Stage 1 (n=92)	Stage 2 (n=22)	Stage 3 (n=11)	p-valu
Age (years)	52 (45-59)*	52 (45-59)*	56 (51-61)	g 57 (52-63)	0.029
Gender (n,% female)	460 (81.4)	75 (81.5)	15 (68.2)	on 8(72,7)	0.408
African Diabetes Risk Score	2.3 (1.7-3.4)	2.4 (1.8-3.1)	2.2 (1.7-4.8)	and 2.8 (1.9-3.9)	0.865
Kidney function				Jan	
Serum creatinine (µmol/L)	57.0 (48.0-67.0)	54.0 (46.5-62.0)	78.5 (72.0-88.0)	8122.0 (96.0-160.0)	0.0001
eGFR (ml/min/ $1.73m^2$)	103.0 (95.0-114.0)	106.0 (98.0-117.5)	79.5 (75.0-83.0)	No. 122.0 (96.0-160.0) 49.0 (32.0-57.0)	0.0001
uACR (mg/mmol)	0.6 (0.4-1.0)	6.0 (4.1-14.1)	6.5 (3.6-17.3)	§ 3.9 (0.8-43.2)	0.0001
Anthropometry	,		(111 (111)		
Weight (kg)	92.2 (80.4-104.6)	89.1 (77.8-101.7)	84.4 (70.6-95.3)	a 78.7 (63.2-102.4)	0.117
Waist circumference (cm)	103.4 (95.7-111.1)	101.6 (93.9-111.4)	97.2 (93.1-109.7)	$\frac{1}{3}$ 100.6 (93.4-107.0)	0.497
Hip circumference (cm) (n=632)	113.0 (104.3-122.4)	112.7 (102.3-120.9)	110.4 (99.4-117.9)	B 108.6 (96.4-108.9)	0.085
BMI (kg/m ²)	35.7 (30.6-40.6)	34.7 (30.5-40.7)	31.6 (26.9-39.5)		0.121
BMI categories (n, %)				31.9 (27.2-36.9) 2 (18.2) 2 (18.2) 7 (63.6)	0.039
Normal	23 (4.1)	2 (2.2)	2 (9.1)	<u>a</u> 2 (18.2)	
Overweight	100 (17.7)	19 (20.7)	8 (36.4)	2 (18.2)	
Obese	442 (78.2)	71 (77.2)	12 (54.5)	b 7 (63.6)	
Blood pressure			1	.co	
SBP (mmHg)	123.5 (113.5-135.0)	129.5 (115.0-145.5)**	126.5 (123.5-153.0)***	₹127.5 (106.5-156.0)	0.031
DBP (mmHg)	83.0 (77.0-90.3)	86.5 (78.3-94.0)#	80.8 (75.0-94.5)	⁹ _≥ 90.5 (82.5-105.5) ^{##}	0.017
Hypertension	304 (53.9)	54 (58.7)	12 (54.5)	April 9 (81.8)	0.263
Among participants with				1 23,	
hypertension (n=379):				20	0.010
Treated and controlled BP	127 (41.8)	10 (18.5)	3 (25.0)	× 3 (33.3)	
Treated and uncontrolled BP	71 (23.4)	23 (42.6)	5 (41.7)	ङ् 4 (44.4)	
Screen-detected HPT	106 (34.9)	21 (38.9)	4 (33.3)	<u>Gu</u> 2 (22.2)	
Biochemical					
FBG (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.6)	4.9 (4.4-5.6)	at 4.8 (4.7-5.3)	0.886
2-hour glucose (mmol/L) (n=688)	6.0 (4.9-7.3)	6.3 (5.1-7.6)	6.3 (4.7-8.5)	P 4.8 (4.7-5.3) 6c 6.4 (5.6-7.2)	0.624
Glucose categories (n, %) (n=688)				ä o	0.543
Normoglycaemia	428 (76.0)	70 (76.0)	13 (59.1)	by 9 (81.8) copyright	
				vyrigh	13

Page 15 of 30			BMJ Open		1136/bm	
1 2 3 4	Prediabetes (IFG/IGT)	84 (14.9) 51 (9.1)	11 (12.0)	6 (27.3)	136/bmjopen-2022-0686 1 (9.1)	
5 6 7 8 9 10 11 12 13 14 15	Type 2 diabetes HbA1c (%) (n=685) Fasting insulin (IU/L) Vitamin D (ng/mL) Calcium (mmol/L) (n=688) Phosphate (mmol/L) (n=688) GGT (IU/L) (n=688) High GGT (n=688) AST (IU/L) (n=646)	$5.8 (5.6-6.1) \\8.5 (5.9-12.1) \\6.0 (5.0-7.7) \\2.3 (2.3-2.4) \\1.1 (1.0-1.2) \\35.0 (24.0-55.0) \\245 (43.4) \\23.0 (20.0-29.0) \\22.0 (16.0-32.0)$	11 (12.0) $5.9 (5.6-6.2)$ $11.1 (6.4-15.5)$ $6.2 (5.0-7.8)$ $2.3 (2.3-2.4)$ $1.1 (1.0-1.2)$ $45.0 (26.0-81.0)$ $51 (56.0)$ $26.0 (21.1-34.0)$ $23.0 (17.0-33.0)$	$\begin{array}{c} 3 \ (13.6) \\ 5.7 \ (5.3-6.2) \\ 11.0 \ (8.7-13.2) \\ 6.7 \ (5.9-8.1) \\ 2.4 \ (2.3-2.4) \\ 1.1 \ (1.0-1.2) \\ 46.5 \ (25.0-64.0) \\ 13 \ (59.1) \\ 26.5 \ (22.0-34.0)^{\#\#} \\ 21.0 \ (18.0-31.0) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.591 0.334 0.361 0.794 0.777 0.071 0.071 0.009 0.799
16 17 18 19 20 21 22	AST/ALT ratio Fibrosis-4 index (n=644) Liver fibrosis (n, %) No risk Intermediate risk High risk	1.1 (0.9-1.4) 0.9 (0.7-1.3) 413 (78.4) 109 (20.7) 5 (0.9)	1.2 (0.9-1.5) 1.0 (0.8-1.3) 66 (75.0) 19 (21.6) 3 (3.4)	1.3 (1.1-1.4) 1.1 (0.9-1.5) 14 (66.7) 6 (28.6) 1 (4.8)	$\begin{array}{c} 0 & (54.5) \\ 21.0 & (20.0-28.0) \\ 18.5 & (15.5-37.5) \\ 1.3 & (0.9-1.5) \\ 1.3 & (0.7-1.6) \\ \end{array}$	0.413 0.063 0.124
23 24 25 26	Red blood cells $(x10^{12}/L)$ White blood cells $(x10^{9}/L)$ Platelet count $(x10^{9}/L)$	4.6 (4.3-4.9) 23.0 (18.3-28.0) 276.0 (234.5-322.5)	4.5 (4.2-4.9) 22.0 (17.0-28.0) 276.5 (235.0-333.5)	4.5 (4.2-4.6) 26.0 (16.0-31.9) 271.0 (244.0-335.0)	4.7 (4.5-5.1) 25.0 (19.0-26.0) 261.0 (217.0-325.0)	0.071 0.550 0.956
26 27 28 29 30 31 317	Haematocrit (volume %) Haemoglobin (g/dL) Anaemia, n (%)	0.4 (0.4-0.4) 13.5 (12.7-14.3) 77 (13.6)	0.4 (0.4-0.4) 13.3 (12.3-14.5) 22 (23.9)	0.4 (0.4-0.4) 13.5 (13.3-14.4) 2 (9.1)	$\begin{array}{c} 3261.0 (217.0-325.0) \\ 0 \\ 0.4 (0.4-0.5) \\ \hline \\ 13.7 (12.9-15.8) \\ \hline \\ 2 (18.2) \\ \hline \\ 3 \\ \hline \\ 3 \\ \hline \\ \end{array}$	0.938 0.433 0.390 0.063

Data is presented as median (25th-75th percentiles) or count and percentages. Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; uACR, urinary albumin-to-creatinine ratio; BMI, body mass index; SBB systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; HbA1c, glycated haemoglobin; GGT, gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; uACR, urinary albumin-to-creatinine ratio. Keys: *p=0.030 (CKD stage 2 vs. no CKD; CKD stage copyright

		BMJ Open 60	Pa
1		BMJ Open 3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); #p=0.0106 (no CKD vs. CKD stage	
2 3 4	323	3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); *p=0.01 (no CKD vs. CKD stage	
4 5 6	324	1); ##p=0.013 (no CKD vs. CKD stage 3); ###p=0.042 (CKD stage 3 vs. CKD stage 2).	
6 7	325	1); ##p=0.013 (no CKD vs. CKD stage 3); ###p=0.042 (CKD stage 3 vs. CKD stage 2).	
8 9	326		
10 11	327		
12 13	328	or 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest P	
14 15	329		
16 17	330	ded fr	
18 19	331	n n n n n n n n n n n n n n n n n n n	
20 21	332		
22 23	333		
24 25 26	334		
26 27	335	e e e e e e e e e e e e e e e e e e e	
28 29	336	April	
30 31	337	23, 22	
32 33	338	024 by	
34 35	339	guest. Protected by copyright. 15	
36 37			
38 39		ected	
40			
41 42			
43 44			
45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46 47			

BMJ Open

DISCUSSION

To our knowledge, this is the first study to show that by utilizing an opportunistic approach, CKD can be detected early, allowing for timely referral for specialized testing to confirm diagnosis and subsequent care. This was achieved through leveraging the information already collected in an existing screening programme that targeted individuals at high-risk for T2DM and included a few additional kidney-related biochemical markers to the variables for testing. The yield of screendetected cases was high for a low investment which cost ZAR 237.80 (USD 14.59) per person and highlights the potential cost-effectiveness of such a strategy.

- By including a minimal number of markers of kidney function (namely serum and urinary creatinine, and urinary albumin) to the scope of markers already collected, we found that 18.1% of those at high-risk for developing T2DM had CKD with the majority (73.6%) having mild CKD (CKD stage 1). The CKD burden, at 22.7%, was even higher in participants with newly diagnosed T2DM, which underscores the need for frequent screening of individuals at high-risk for T2DM to avoid T2DM presenting with complications at diagnosis. Therefore, using T2DM as a gateway for CKD screening through existing screening programmes is justified as such an approach, together with diagnosing new T2DM, simultaneously identified those with complications i.e., CKD. The newly diagnosed T2DM may receive comprehensive care with tight control of both their T2DM and CKD. This intensification of treatment could contribute to a delay in CKD progression and consequently help reduce the risk of developing end-stage kidney disease (ESKD) or CVD-related complications ³⁰. Further support for CKD screening in individuals at high-risk for T2DM was the substantial CKD burden in prediabetes (17.6%). Notably, if screening for CKD was initiated only after the development of T2DM, the identification of CKD in individuals with prediabetes, which generally fall below the threshold for disease management in clinical practice, would have been missed. This would then have been a lost opportunity to identify and manage CKD early and delay progression of the disease in this high-risk group.
- 49 366

Our study also highlights the importance of screening for albuminuria as 91.2% of those with CKD would have gone undetected if CKD were based on eGFR alone. Guidelines recommend albuminuria testing using ACR, like we did in our study, however this is not always possible in many low-resource settings. In these instances, low-cost semiquantitative methods, like urinary dipsticks, can be used to measure albuminuria with subsequent confirmation of positive dipstick
result with a quantitative laboratory test to confirm CKD diagnosis ²⁰. Or repeated dipstick
assessments can be employed to reduce the possibility of false-negative results as this could delay
the timely diagnosis and management of CKD.

Given that this is the first study to report the prevalence of CKD in people at high-risk for developing T2DM, based on the ADRS, the prevalence estimates cannot be directly compared to other studies as no similar data have been published. Nevertheless, at a similar median age (52 vs. 53 years), the prevalence of CKD in those with prediabetes in our study was comparable to that reported in a large representative sample in the United States of America (17.6% vs. 17.7%, respectively)³¹. Also, albeit an older population (median age of 68 years) with a higher prevalence of advanced CKD (stage 3-5), a South African study found that the prevalence of CKD in those with prediabetes was 19.8% ³². The similarly high CKD prevalence in prediabetes across several studies suggests that perhaps there should be regular CKD screening for all individuals with prediabetes.

28 383 29 386

A likely contributor to the substantial CKD burden in this study is the high prevalence of hypertension, which at 55% is higher than the 44%-46% reported for South Africa ³³. While the high reported prevalence of hypertension is consequent to the score used to identify high-risk individuals, a larger proportion of the participants with hypertension had CKD compared to those with normal blood pressure (19.8% vs. 16.1%, respectively). The prevalence of CKD may be related to the delayed detection of hypertension or the suboptimal control of blood pressure in treated hypertension, as reported in the current study and in several South African studies ^{33, 34}. Indeed, a high proportion of participants with treated but uncontrolled hypertension had CKD (31.1%) in this study as did participants with newly detected hypertension (20.3%). This further highlights the benefit of screening high-risk individuals for CKD. Notably, adequate blood pressure control is fundamental to slowing the progression of CKD ^{35, 36} and timeous treatment with anti-hypertensive medication can improve both kidney and cardiovascular outcomes ^{37, 38} thereby preventing the progression to ESKD and reducing the risk of all-cause and cardiovascular mortality 37, 39, 40.

55 401

Page 19 of 30

BMJ Open

Elevated GGT and the FIB-4 index, which are commonly used markers of liver injury and nonalcoholic fatty liver disease (NAFLD)⁴¹, have been linked to increased CKD risk in various populations ⁴²⁻⁴⁵. In our study, 56.5% of the participants with CKD presented with higher-than-normal GGT levels, compared to 43.4% of participants without CKD. Also, a significant proportion of people with CKD presented with intermediate and high risk for advanced liver fibrosis, based on the FIB-4 index, compared to those without CKD (28.2% vs. 21.6%). Early recognition and interventions directed at reducing the risk of liver injury among individuals with CKD could reduce CKD progression.

Anaemia was prevalent in our study population (14.9% of total sample), with nearly twice as many participants with CKD having anaemia compared to those without CKD, as shown in other studies as well ^{46, 47}. Although the overall prevalence of anaemia in this study was not uncommon for South Africa ⁴⁸, the prevalence in participants with CKD is concerning. While erythropoiesis stimulating agents and iron supplementation to treat anaemia are unlikely to be prescribed to people in the early stages of CKD, anaemia can accelerate the decline in kidney function by causing kidney haemodynamic alterations and tissue hypoxia⁸. It is strongly predictive of all-cause and cardiovascular mortality ^{49, 50}, and should thus be closely monitored.

Although lifestyle interventions addressing unhealthy diets, physical inactivity, tobacco smoking and alcohol misuse are advocated to reduce the growing global burden of non-communicable diseases ^{51, 52}, little is known about the impact of reducing unhealthy lifestyle behaviours on kidney health. The SA-DPP intervention, implemented in individuals with prediabetes, will provide a unique opportunity to examine the effects of improving lifestyle behaviours on changes in CKD status.

45 426

This is the first study to show that utilizing an opportunistic approach, through leveraging the information already collected in an existing screening programme is advantageous to screen for CKD. However, our study does have limitations. The SA-DPP study included participants at high-risk of T2DM and our findings might not be reproducible across other non-communicable diseases screening programmes. The small number of participants identified with CKD in this study reduced the statistical power of our analyses when stratifying by CKD stage. Based on the self-

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

> selection approaches used to recruit participants, the disproportionate greater number of females, the varying socioeconomic status, lifestyle behaviours and disease prevalence (hypertension and T2DM) across provinces and by urban-rural residence in South Africa ³³, our study findings cannot be generalised. Another limitation is that CKD was defined based on a single time-point serum and urinary creatinine and albumin assessment and not on repeated measurements, at least three months apart, as per KDIGO guidelines ²⁰. However, a strength of our study is that both eGFR and albuminuria were used to define CKD, unlike most other population-based CKD prevalence studies in South Africa and Africa in general which rely on eGFR only for CKD classification. Finally, as for all studies using eGFR to characterize CKD, instead of the gold standard of measured GFR, the over- or under-estimation of the estimate cannot be excluded.

444 CONCLUSION

The fact that almost one in five participants identified as high-risk for T2DM had CKD underscores the value of including markers of kidney function in existing disease screening programmes. Our findings provide support for key stakeholders and policy makers to adapt current strategies for hypertension and T2DM screening to include screening for CKD. Indeed, by utilizing an opportunistic approach to screen high-risk individuals, those with early-stage CKD can be identified and appropriately managed to reduce disease progression. Existing cardiovascular or non-communicable disease screening programmes should perhaps explore including markers for CKD evaluations to maximise limited resources without compromising on effectiveness.

454 Acknowledgements: We would like to acknowledge the South African Medical Research Council
455 (SAMRC) for infrastructure and support. The authors would also like to acknowledge the entire
456 South African Diabetes Prevention Programme team and collaborators for their continued support.
457

458 Contributors: Conceived and/or designed the work that led to the submission (CG, JH, NP, APK,
459 NUN), acquired data (JH), and/or played an important role in interpreting the results (CG), drafted
460 (CG) or revised the manuscript (all authors), and approved the final version (all authors).

Funding: The authors have not declared a specific grant for this research from any funding agencyin the public, commercial or not-for-profit sectors.

BMJ Open

2 3		
4	464	
5 6	465	Competing interest: No competing interest to declare
7	466	
8 9	467	Patient consent for publication: Not required
10 11	468	
12	469	Ethics approval: Ethical clearance was obtained by the Research Ethics Committee of the South
13 14	470	African Medical Research Council (SAMRC) (approval no. EC018-7/2015).
15 16	471	
17	472	Data availability statement: The dataset depicted in this manuscript are available from the
18 19	473	corresponding author on reasonable request.
20 21	474	
22	475	ORCID IDs:
23 24	476	Cindy George http://orcid.org/0000-0002-4561-0529
25 26	477	Jillian Hill https://orcid.org/0000-0003-1646-6174
27	478	N. Unati Nqebelele https://orcid.org/0000-0003-1145-3446
28 29	479	Nasheeta Peer https://orcid.org/0000-0003-2131-8344
30 31	480	Andre P. Kengne https://orcid.org/0000-0002-5183-131X
32		
33 34	481	
35 36	482	
37	483	
38 39	484	
40 41	485	
42		
43 44	486	
45	487	
46 47	488	
48 49	489	
50		
51 52	490	
53 54	491	
55	492	
56 57		
58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Figure legends

high risk"

Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT, hypertension; BP, blood pressure

Figure 2: Stages of chronic kidney disease according to estimated glomerular filtration rate and albuminuria following Kidney Disease Improving Global Outcomes (KDIGO) classification. Displayed are number of patients (%) within each category. The colour code indicates risk category according to KDIGO²⁰: green "low risk", yellow "moderate risk", orange "high risk" and red "very Noceteries only

7

8

9

521 **References**

 Global Burden of Disease Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88.

526 2. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for
 527 advocacy and communication-worldwide more than 850 million individuals have kidney diseases.
 528 Nephrol Dial Transplant. 2019;34(11):1803-5.

- ¹³
 ¹⁴
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹¹
 ¹⁰
 ¹⁰
 ¹¹
 ¹¹</l
- 4. Ameh OI, Ekrikpo UE, Kengne AP. Preventing CKD in Low- and Middle-Income
 533 Countries: A Call for Urgent Action. Kidney international reports. 2020;5(3):255-62.
- 534 5. Global Burden of Disease Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2020:S0140-6736(20)30045-3.
- 536 of Disease Study 2017. Earled (Eorleon, England). 2020.50110 0750(20)50015 5.
 537 6. Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low- and middleincome countries. Nephrol Dial Transplant. 2016;31(6):868-74.
- 539 7. Stanifer JW, Von Isenburg M, Chertow GM, Anand S. Chronic kidney disease care models
 540 in low- and middle-income countries: a systematic review. BMJ Glob Health. 2018;3(2):e000728.
 541 8. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet.
 542 2017;389(10075):1238-52.
- 543
 544
 544
 545
 546
 547
 547
 547
 548
 549
 549
 549
 540
 540
 540
 541
 541
 541
 542
 542
 543
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
 544
- 545 10. Levin A, Stevens PE. Early detection of CKD: the benefits, limitations and effects on
 546 prognosis. Nat Rev Nephrol. 2011;7(8):446-57.
- 547 11. Tonelli M, Dickinson JA. Early Detection of CKD: Implications for Low-Income, Middle 548 Income, and High-Income Countries. Journal of the American Society of Nephrology : JASN.
 549 2020;31(9):1931-40.
- 57
 550
 12. Absetz P, Valve R, Oldenburg B, Heinonen H, Nissinen A, Fogelholm M, Ilvesmaki V,
 551
 551
 551
 552
 552
 552
 553
 554
 555
 555
 556
 557
 557
 558
 559
 559
 559
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 551
 551
 551
 552
 552
 552
 553
 554
 555
 555
 555
 556
 557
 557
 557
 558
 559
 559
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 551
 551
 551
 552
 552
 552
 551
 552
 551
 552
 552
 552
 552
 552
 552
 552
 553
 554
 555
 554
 555
 555
 556
 557
 557
 557
 558
 558
 559
 559
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 551
 551
 551
 551
 551
 552
 551
 552
 551
 552
 552
 552
 552
 554
 555
 555
 556
 557
 557
 557
 558
 558
 558
 559
 559
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550</l
- 41 553 13. Aziz Z, Absetz P, Oldroyd J, Pronk NP, Oldenburg B. A systematic review of real-world
 42 554 diabetes prevention programs: learnings from the last 15 years. Implementation science : IS.
 43 555 2015;10:172.
- 44 14. Thankappan KR, Sathish T, Tapp RJ, Shaw JE, Lotfaliany M, Wolfe R, Absetz P, Mathews 556 45 E, Aziz Z, Williams ED, Fisher EB, Zimmet PZ, Mahal A, Balachandran S, D'Esposito F, Sajeev 557 46 558 P. Thomas E. Oldenburg B. A peer-support lifestyle intervention for preventing type 2 diabetes in 47 India: A cluster-randomized controlled trial of the Kerala Diabetes Prevention Program. PLoS 48 559 49 medicine. 2018;15(6):e1002575. 560
- 55 565 16. Mayige M. Derivation and Validation of a Simple Risk Score for Undiagnosed Diabetes
 56 566 for Tanzania and Other African Populations. Newcastle, UK: Newcastle University; 2014.
- 57 58

Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A 17. Consensus Statement from the International Diabetes Federation. Diabetic medicine : a journal of the British Diabetic Association. 2006;23(5):469-80. 18. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic Association. 1998;15(7):539-53. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, 19. Eggers P, Van Lente F, Greene T, Coresh J, Chronic Kidney Disease Epidemiology Collaboration. A new equation to estimate glomerular filtration rate. Annals of internal medicine. 2009;150(9):604-12. 20. KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(1). Levev AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, 21. Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28. 22. World Health Organization. A global brief on Hypertension: Silent killer, global public health crisis. 2013. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, M SS, Torriani FJ, 23. Dieterich DT, Thomas DL, Messinger D, Nelson M. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology (Baltimore, Md). 2006;43(6):1317-25. 24. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, Nash Clinical Research Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2009;7(10):1104-12. KDIGO. KDOOI Clinical Practice Guidelines and Clinical Practice Recommendations for 25. Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47(5 Suppl 3):S11-145. Matsha TE, Soita DJ, Hassan MS, Hon GM, Yako YY, Kengne AP, Erasmus RT. Three-26. year's changes in glucose tolerance status in the Bellville South cohort: Rates and phenotypes associated with progression. Diabetes Research and Clinical Practice. 2013;99(2):223-30. Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K. 27. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ (Clinical research ed). 2007;334(7588):299. Parker DR, Evangelou E, Eaton CB. Intraclass correlation coefficients for cluster 28. randomized trials in primary care: the cholesterol education and research trial (CEART). Contemp Clin Trials. 2005;26(2):260-7. 29. Ahmad O, Boschi-Pinto C, Lopez A, Murray C, Lozano R, Inoue M, editors. Age standardization of rates: a new WHO standard.2001; Geneva: World Health Organization. Stevens PE, Levin A, KDIGO Chronic Kidney Disease Guideline Development Work 30. Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal medicine. 2013;158(11):825-30. 31. Plantinga LC, Crews DC, Coresh J, Miller ER, Saran R, Yee J, Hedgeman E, Pavkov M, Eberhardt MS, Williams DE, Powe NR, CDC CKD Surveillance Team. Prevalence of chronic

60

BMJ Open

2		
3	613	kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol.
4	614	2010;5(4):673-82.
5	615	32. George C, Matsha TE, Korf M, Zemlin AE, Erasmus RT, Kengne AP. The agreement
6 7	616	between fasting glucose and markers of chronic glycaemic exposure in individuals with and
8	617	without chronic kidney disease: a cross-sectional study. BMC Nephrol. 2020;21(1):32.
9	618	33. National Department of Health, Statistics South Africa, South African Medical Research
10	619	Council, ICF. South Africa Demographic and Health Survey 2016. 2019.
11		
12	620	
13	621	urban black population of Cape Town: the cardiovascular risk in Black South Africans (CRIBSA)
14	622	study. PloS one. 2013;8(11):e78567.
15	623	35. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. Journal of the
16	624	American Society of Nephrology : JASN. 2012;23(12):1917-28.
17	625	36. Maione A, Navaneethan SD, Graziano G, Mitchell R, Johnson D, Mann JF, Gao P, Craig
18 10	626	JC, Tognoni G, Perkovic V, Nicolucci A, De Cosmo S, Sasso A, Lamacchia O, Cignarelli M,
19 20	627	Manfreda VM, Gentile G, Strippoli GF. Angiotensin-converting enzyme inhibitors, angiotensin
20	628	receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other
22	629	cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrol Dial
23	630	Transplant. 2011;26(9):2827-47.
24	631	37. Schmieder RE, Schutte R, Schumacher H, Bohm M, Mancia G, Weber MA, McQueen M,
25	632	Teo K, Yusuf S, Ontarget Transcend investigators. Mortality and morbidity in relation to changes
26	633	in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGET and
27	634	TRANSCEND studies. Diabetologia. 2014;57(10):2019-29.
28	635	38. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S,
29	636	Cooper ME, Mitch WE, Brenner BM. Albuminuria, a therapeutic target for cardiovascular
30 31	637	protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921-7.
32	638	39. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK,
33	639	Landman GW, Muntner P, Roderick P, Sairenchi T, Schottker B, Shankar A, Shlipak M, Tonelli
34	640	M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock
35		
36	641	DG, Woodward M, Arnlov J, CKD Prognosis Consortium. Estimated glomerular filtration rate
37	642	and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of
38	643	individual participant data. The lancet Diabetes & endocrinology. 2015;3(7):514-25.
39	644	40. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS Group.
40	645	Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective
41 42	646	Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225-32.
43	647	41. Niemela O, Alatalo P. Biomarkers of alcohol consumption and related liver disease. Scand
44	648	J Clin Lab Invest. 2010;70(5):305-12.
45	649	42. Ryu S, Chang Y, Kim DI, Kim WS, Suh BS. gamma-Glutamyltransferase as a predictor of
46	650	chronic kidney disease in nonhypertensive and nondiabetic Korean men. Clinical chemistry.
47	651	2007;53(1):71-7.
48	652	43. Targher G, Kendrick J, Smits G, Chonchol M. Relationship between serum gamma-
49	653	glutamyltransferase and chronic kidney disease in the United States adult population. Findings
50	654	from the National Health and Nutrition Examination Survey 2001-2006. Nutrition, metabolism,
51 52	655	and cardiovascular diseases : NMCD. 2010;20(8):583-90.
52 53	656	44. Kunutsor SK, Laukkanen JA. Gamma-glutamyltransferase and risk of chronic kidney
55 54	657	disease: A prospective cohort study. Clinica Chimica Acta. 2017;473:39-44.
55		
56		
57		
58		24
50		

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

Lee DY, Han K, Yu JH, Park S, Heo J-I, Seo JA, Kim NH, Yoo HJ, Kim SG, Kim SM, 45. Choi KM, Baik SH, Park YG, Kim NH. Gamma-glutamyl transferase variability can predict the development of end-stage of renal disease: a nationwide population-based study. Scientific reports. 2020;10(1):11668.

George C, Matsha TE, Erasmus RT, Kengne AP. Haematological profile of chronic kidney 46. disease in a mixed-ancestry South African population: a cross-sectional study. BMJ Open. 2018;8(11):e025694.

Akinsola A, Durosinmi MO, Akinola NO. The haematological profile of Nigerians with 47. chronic renal failure. Afr J Med Med Sci. 2000;29(1):13-6.

Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, Reddy P, Parker W, 48. Hoosain E, Naidoo P, Hongoro C, Mchiza Z, Steyn NP, Dwane N, Makoae M, Maluleke T, Ramlangan S, N. Z, Evans MG, Jacobs L, Faber M, SANHANES-1 Team. The South African National Health and Nutrition Examination Survey (SANHANES-1). 2013.

Babitt JL, Lin HY. Mechanisms of anemia in CKD. Journal of the American Society of 49. Nephrology : JASN. 2012;23(10):1631-4.

Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379(9811):165-80. 50.

51. Galaviz KI, Naravan KMV, Lobelo F, Weber MB, Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am J Lifestyle Med. 2018;12(1):4-20.

Alouki K, Delisle H, Bermudez-Tamayo C, Johri M. Lifestyle Interventions to Prevent 52. Type 2 Diabetes: A Systematic Review of Economic Evaluation Studies. Journal of diabetes research. 2016;2016:2159890.

terez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

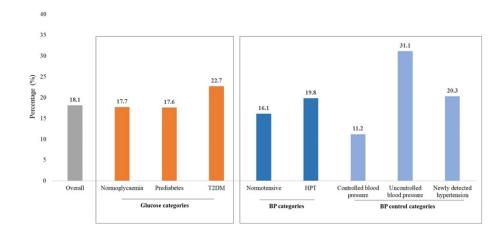
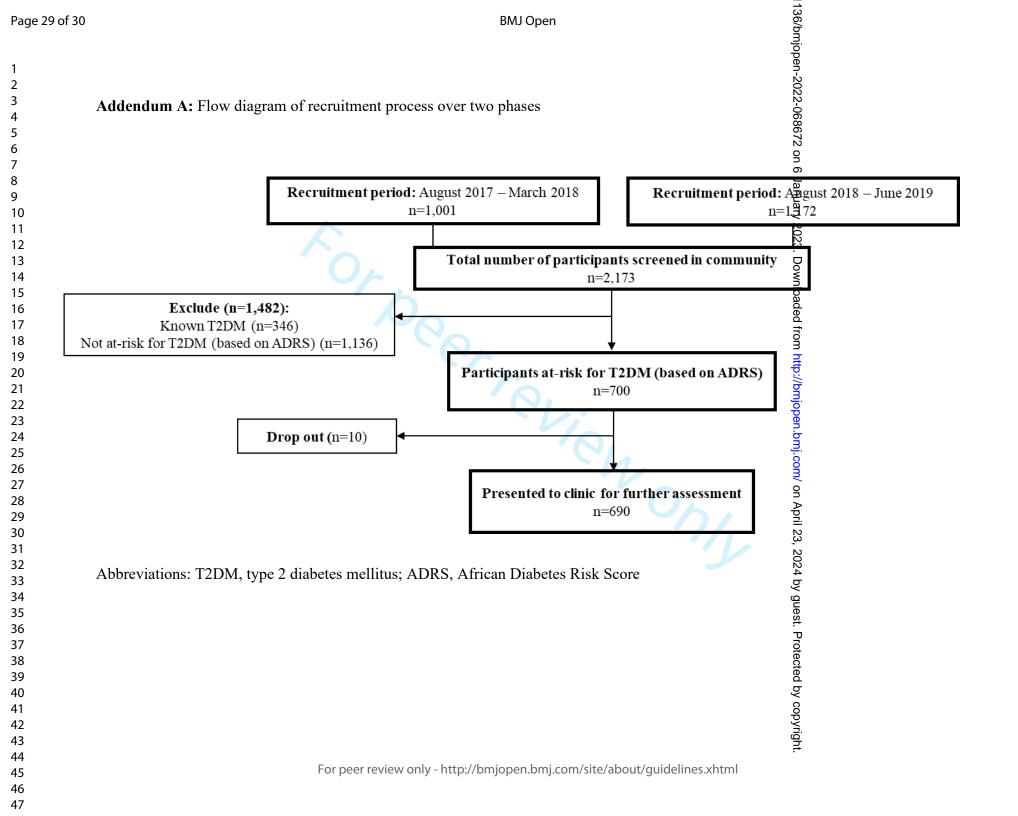


Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT, hypertension; BP, blood pressure

190x96mm (330 x 330 DPI)


BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

			Albuminuria		
CKD stages	eGFR (ml/min/1.73m ²)	A1	A2	A3	Total
CKD stages		(<3 mg/mmol)	(3-30 mg/mmol)	(>30 mg/mmol)	Total
G1	≥90	565 (86.0%)	67 (10.2%)	25 (3.8%)	657 (95.2%)
G2	60–89	0 (0%)	15 (68.2%)	7 (31.8%)	22 (3.2%)
G3 (a and b)	<60	4 (36.4%)	4 (36.4%)	3 (27.3%)	11 (1.6%)
	Total	569 (82.5%)	86 (12.5%)	35 (5.1%)	690 (100%)

Figure 2: Stages of chronic kidney disease according to estimated glomerular filtration rate and albuminuria following Kidney Disease Improving Global Outcomes (KDIGO) classification. Displayed are number of patients (%) within each category. The colour code indicates risk category according to KDIGO 20: green "low risk", yellow "moderate risk", orange "high risk" and red "very high risk"

196x42mm (300 x 300 DPI)

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	1
	-	title or the abstract	-
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	2
Introduction		what was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation	4-5
Duongroundrationare	-	being reported	1.5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including	5
-		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5
		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-8
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	5-8
measurement	0	methods of assessment (measurement). Describe comparability of	5 0
measurement		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	10	Explain how the study size was arrived at Explain how quantitative variables were handled in the analyses. If	8
Qualititative variables	11		0
Statistical methods	10	applicable, describe which groupings were chosen and why	0
Statistical methods	12	(a) Describe all statistical methods, including those used to control $c = c = 1$	8
		for confounding	0
		(b) Describe any methods used to examine subgroups and	8
		interactions	
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of	NA
		sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg	9
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Addendu
			А
		(c) Consider use of a flow diagram	Addendu
			А
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	5-8
		clinical, social) and information on exposures and potential	
		confounders	

		(b) Indicate number of participants with missing data for each variable of interest	10-11 and 13-14
Outcome data	15*	Report numbers of outcome events or summary measures	10-11 and 13-14
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA
		(b) Report category boundaries when continuous variables were categorized	7-8
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

LEVERAGING THE SOUTH AFRICAN DIABETES PREVENTION PROGRAMME TO SCREEN FOR CHRONIC KIDNEY DISEASE – AN OBSERVATIONAL STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068672.R2
Article Type:	Original research
Date Submitted by the Author:	20-Dec-2022
Complete List of Authors:	George, Cindy; South African Medical Research Council, Non- Communicable Diseases Research Unit Hill, Jillian; South African Medical Research Council, Non-Communicable Diseases Research Unit Nqebelele, Unati; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Peer, Nasheeta; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine Kengne , AP; South African Medical Research Council, Non- Communicable Diseases Research Unit; University of Cape Town Department of Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nephrology < INTERNAL MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

LEVERAGING DIABETES THE SOUTH AFRICAN PREVENTION PROGRAMME TO SCREEN FOR CHRONIC **KIDNEY DISEASE – AN OBSERVATIONAL STUDY**

Corresponding author: Dr Cindy George; South African Medical Research Council, Non-Communicable Disease Research Unit, Francie van Zijl Drive, Parow Valley, Cape Town, PO Box 19070, South Africa; +27 21 9380482; cindy.george@mrc.ac.za

Cindy George¹, Jillian Hill¹, N. Unati Nqebelele^{1,2,3}, Nasheeta Peer^{1,2}, Andre P. Kengne^{1,2}

¹Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa; ²Department of Internal Medicine, University of Cape Town, Cape Town, South Africa; ³Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa Word count: 3,779 Keywords: chronic kidney disease; screening; Africa South Africa

BMJ Open

2 3	31	Abstract
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	32	Objective: To evaluate the viability of leveraging an existing screening programme (the South
	33	African Diabetes Prevention Programme [SA-DPP]) to screen for chronic kidney disease (CKD),
	34	by assessing the yield of CKD cases among those participating in the programme.
	35	Design: Observational study conducted between 2017 and 2019.
	36	Setting: 16 resource-poor communities in Cape Town, South Africa.
	37	Participants: 690 participants, aged between 25 and 65 years, identified as at high-risk for type 2
	38	diabetes mellitus (T2DM) by the African Diabetes Risk Score.
	39	Primary outcome measure: The prevalence of CKD among those participating in the SA-DPP.
	40	Results: Of the 2,173 individuals screened in the community, 690 participants underwent further
	41	testing. Of these participants, 9.6% (n=66) and 18.1% (n=125) had screen-detected T2DM and
	42	CKD (defined as an estimated glomerular filtration rate of <60 ml/min/1.73m ² (eGFR) and/or
	43	albumin-to-creatinine ratio >3 mg/mmol), respectively. Of those with CKD, 73.6% (n=92), 17.6%
	44	(n=22) and 8.8% (n=11) presented with stages 1, 2 and 3, respectively. Of the participants with an
	45	eGFR <60 ml/min/1.73m ² , 36.4% had no albuminuria, and of those with normal kidney function
	46	$(eGFR \ge 90 \text{ ml/min}/1.73 \text{ m}^2)$, 10.2% and 3.8% had albuminuria stage 2 and 3, respectively. Of those
	47	with T2DM and hypertension, 22.7% and 19.8% had CKD, respectively.
	48	Conclusion: The fact that almost one in five participants identified as high-risk for T2DM had
	49	CKD underscores the value of including markers of kidney function in an existing screening
36 37	50	programme. By utilizing an opportunistic approach to screen high-risk individuals, those with
38 39	51	CKD can be identified and appropriately treated to reduce disease progression.
40	52	
41 42 43 44 45 46 47 48 49 50 51 52 53 54	53	
	54	
	55	
	56	
	57	
	58	
	59	
	60	
55 56		
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Strengths and limitations of this study

- The strength of our study is that both estimated glomerular filtration rate (eGFR) and albuminuria were used to define CKD, unlike most other population-based CKD prevalence studies in South Africa and Africa in general which rely on eGFR only.
- Due to the self-selection approach of recruitment and the disproportionate female participation, our study findings may not be generalisable.
- The small proportion of participants with chronic kidney disease (CKD) in this study resulted in reduced statistical power when analysis was stratifying by CKD stage.
 - CKD was defined based on a single time-point serum and urinary creatinine and albumin assessment and not on repeated measurements, at least three months apart, as per guidelines.

INTRODUCTION

Chronic kidney disease (CKD) is a leading cause of morbidity and mortality globally ¹, affecting more than 840 million individuals worldwide². The increasing burden of CKD is demonstrated by its ascent in ranking among the global causes of disability-adjusted life years (DALYs), rising from 29th in 1990 to 18th in 2019 overall, and from 14th to 8th in the older aged groups (aged \geq 50 years)³. However, despite being a global problem, the prevalence of CKD is increasing most rapidly in low-and-middle income countries (LMICs) where the burden of disease is more pronounced ⁴. This is worrisome as the health care systems in most LMICs are already under pressure, and options for kidney replacement therapy are not frequently available or affordable ⁵, ⁶. Given the inequity in access to healthcare services, which disproportionally affects disadvantaged populations, and the costs of kidney replacement therapies, early detection of CKD followed by low-cost treatments should be encouraged 7.

Early-stage CKD presents with no or non-specific symptoms and is commonly diagnosed opportunistically from screening tests for other diseases, or when the disease has progressed, and symptoms appear⁸. Therefore, screening for CKD plays an important role in early detection, as implementing treatment on diagnosis can slow the rate of kidney function loss and reduce morbidity and mortality ^{9, 10}. However, there is often a strong argument against community-based CKD screening due to the potential harm arising from screening and the cost-implications of such an undertaking. According to a recent study, community-based CKD screening is unlikely to be effective or cost-effective anywhere in the world ¹¹. In contrast, community-based screening for CKD risk factors like hypertension and type 2 diabetes mellitus (T2DM) are deemed effective. Community-based screening programmes for hypertension and T2DM provide an opportunity to incorporate screening for CKD. Certainly, using the screening of hypertension and T2DM, which are common risk factors for CKD, as a gateway for CKD screening in clinical settings will involve minimal additional costs. Furthermore, (1) the yield of screen-detected cases is likely to be high, considering the high prevalence and incidence of CKD in the presence of these risk factors; (2) awareness of the presence of CKD with hypertension or T2DM can prompt the intensification or modification of treatments to enhance kidney protection and prevent CKD progression; and (3) a large proportion of people with CKD likely have a combination of sub-optimal risk factors with raised levels of blood pressure and/or glucose that fall below the threshold for disease

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

122 classification. These individuals with prediabetes and/or prehypertension are not generally 123 targeted for CKD screening in routine practice but may already have CKD. The opportunistic 124 incorporation of CKD testing in hypertension or T2DM screening programmes can therefore 125 identify CKD that may otherwise be missed if only those with established hypertension or T2DM 126 are screened for the condition.

The aim of this study was to evaluate the viability of CKD screening when incorporated into an
existing disease screening programme. The yield of CKD cases in the South African Diabetes
Prevention Programme (SA-DPP) was determined by assessing markers of kidney function (serum
and urinary creatinine levels and urinary albumin) among participants at high-risk for T2DM.

23 133 MATERIAL AND METHODS

134 Study population and setting

The SA-DPP is a "real-world" randomised implementation trial, of a structured lifestyle intervention programme, adapted from programmes previously shown to be effective in Finland ¹², Australia ¹³, and India ¹⁴. The SA-DPP uses an open-labelled cluster randomized control design, conducted across 16 resource-poor communities in Cape Town, South Africa. Participants were recruited by self-selection approaches, by raising awareness of the study with flyers distributed in the community or through local councillors' offices, churches, and schools. Interested participants were invited to pre-determined venues in their community for community-based risk screening. In the current study, baseline data were obtained from black and mixed ancestry participants, aged between 25 and 65 years, who were at high-risk for T2DM ¹⁵. The data included in this study was collected between 2017 and 2019 and the details have been previously described ¹⁵. The study was conducted in accordance with the Declaration of Helsinki and approved by the by the Research Ethics Committee of the South African Medical Research Council (SAMRC) (approval no. EC018-7/2015).

49 148

149 Community-based screening to identify high-risk individuals

For the community-based risk screening, the African Diabetes Risk Score (ADRS) ¹⁶, which is a
 validated African screening tool comprising non-laboratory-based variables including age, waist
 circumference (WC) and the presence of hypertension, was used to identify adults at high-risk for

Page 7 of 30

1 2 3

4 5

6

7 8

9 10

11

12

13

14 15

16 17

18

19 20

21

24

BMJ Open

dw	2
nd	
to	
bra	8
w	
nt p)
at	
fiv	(
ecc)
pre)
vo]
me	,
a	1
en	1
rtic	2
blo	2
alt	
fas	1
7	5
nic	2
Го	ſ
, E	3
zyr	ľ
lc))
lad	l
SS	•
snł	1

T2DM. Trained field orkers administered a brief questionnaire, which included age, gender, 153 measured anthropometry and blood pressure. Standard anthropometric 154 population group, an methods were used measure weight, height, and WC¹⁷. Body weight (nearest 0.1 kg) was 155 ated Omron digital scale, with the participant in light clothing and without measured with a cali 156 as used to measure the participant height (nearest cm), with the participant 157 shoes. A stadiometer standing in an uprigh osition, on a flat surface. Waist circumference was measured using a non-158 elastic tape measure the level of the umbilicus. Blood pressure measurements were taken in a 159 seated position after e minutes of rest. The systolic and diastolic blood pressures (SBP and DBP, 160 rded three times at 2-min intervals, using an appropriately sized cuff and respectively) were re 161 an automated blood essure monitor (Omron 711, Omron Health Care, Hamburg, Germany). An 162 average of the last tw readings was used in the analyses. 163

22 23 164

165 Clinic-based assessments of high-risk participants

25 t high-risk, based on the ADRS, were invited for further clinical and 166 Participants deemed 26 27 biochemical assessm ts. At the clinic, trained fieldworkers administered questionnaires to obtain 167 28 29 168 information on par ipant sociodemographic and personal and family medical history. 30 ood pressure measurements were repeated using standardized techniques as Anthropometric and 31 169 32 170 described above. 33

34 35 171

57 58

59

60

th Organization's (WHO) guidelines ¹⁸, blood samples were collected after 36 172 As per the World He 37 a 10-hour overnight f t by a qualified nurse for the oral glucose tolerance test (OGTT). Following 173 38 39 174 the administration of 5 g anhydrous glucose dissolved in 250 ml, blood samples were taken two 40 41 al analyses were conducted at an ISO accredited laboratory (PathCare hours later. Biochen 175 42 43 176 Laboratories, Cape 1 wn, SA). Plasma glucose was determined by the glucose oxidase method 44 177 (Glucose Analyzer 2 Beckman Instruments, Fullerton, CA, USA), serum insulin, determined by 45 46 a Microparticle Enz ne Immunoassay (AxSym Insulin Kit, Abbot, IL, USA) and glycated 178 47 48 haemoglobin (HbA1 was analysed with high-performance liquid chromatography (Biorad 179 49 Variant Turbo, BioR l, Johannesburg, SA). Vitamin D (25(OH)D3) was measured using liquid 180 50 51 181 chromatography mas spectrometry and enzymatic colorimetric methods were used to measure 52 53 serum calcium, phosphate, aspartate aminotransferase (AST), alanine aminotransferase (ALT), 182 54 55 and gamma-glutamyl transferase (GGT). Full blood counts, including total red blood cells (RBC), 183 56

total white blood cells (WBC), haemoglobin, haematocrit, and platelets were measured on aCoulter LH 750 haematology analyser (Beckman Coulter, South Africa).

- For the current study, we utilized the blood and urine samples in the SA-DPP biobank to conduct
 secondary laboratory analyses. To determine the levels of serum and urinary creatinine, the
- modified Jaffe-Kinetic method (calibrated to isotope dilution mass spectrometry standards)
 (Beckman AU, Beckman Coulter, SA) was used, and the colorimetric (using bromocresol purple)
 method (Beckman AU, Beckman Coulter, SA) was used to determine the level of urine albumin.

19 193 Classification of kidney function and co-morbidities

Kidney function was estimated using the serum creatinine-based CKD Epidemiology Collaboration 2009 (CKD-EPI) equation ¹⁹, with the race correction factor omitted. CKD was defined as an estimated glomerular filtration rate (eGFR) of <60 ml/min/1.73 m² and/or urinary albumin-to-creatinine ratio (uACR) >3 mg/mmol. CKD staging was based on the Kidney Disease Improving Global Outcomes (KDIGO) guidelines ²⁰ as, stage 1 (eGFR \geq 90 ml/min/1.73m² and uACR >3 mg/mmol), stage 2 (eGFR 60-89 ml/min/1.73m² and uACR >3 mg/mmol) and stage 3 (eGFR <60 ml/min/1.73m²). Albuminuria (stage 2) was defined as uACR between 3 and 30 mg/mmol and albuminuria (stage 3) as >30 mg/mmol²¹.

35 202

Given that GFR declines with healthy aging without any overt signs of kidney damage, CKD was also defined by an age-adapted definition, as an eGFR <75ml/min/1.73m² for participants younger than 40 years, eGFR <60 ml/min/1.73m² for participants aged between 40 and 65 years and eGFR <45 ml/min/1.73m² for participants aged greater than 65 years ²². Additionally, the age-standardized prevalence of CKD was calculated, using the standard world population distribution as projected by the World Health Organization for 2000–2025²³.

Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m²). This was categorised as normal weight (BMI ≤ 24.9 kg/m²), overweight (BMI 25.0–29.9) kg/m²) and obese (BMI \geq 30 kg/m²). Hypertension was defined as SBP \geq 140 mmHg and/or DBP \geq 90 mmHg, ²⁴ or taking anti-hypertensive medications. We further categorized our study participants into four groups related to the level of blood pressure control, namely, 1) normotensive

Page 9 of 30

BMJ Open

(defined as no use of anti-hypertensive medication and SBP/DBP <140/90 mmHg), 2) treated and controlled blood pressure (defined as use of anti-hypertensive medication and SBP/DBP <140/90mmHg), 3) treated but uncontrolled blood pressure (defined as use of anti-hypertensive medication but SBP/DBP \geq 140/90mmHg), 4) newly detected hypertension (defined as no use of anti-hypertensive medication and SBP/DBP ≥140/90mmHg). Normal and dysglycaemia categories, based on the OGTT, were defined according to WHO criteria ¹⁸ as: (1) normal glucose tolerance [fasting glucose (FG) <6.1 mmol/L and 2-h glucose <7.8 mmol/L]; or (2) prediabetes including impaired FG (IFG) $[6.1 \le FG \le 7.0 \text{ mmol/L}]$ and 2-h glucose $\le 7.8 \text{ mmol/L}]$, impaired glucose tolerance (IGT) [FG <7.0 mmol/L and 7.8≤2-h glucose<11.1 mmol/L]; and (3) T2DM $(FG \ge 7.0 \text{ mmol/L and/or } 2-h \text{ glucose} \ge 11.1 \text{ mmol/L})$. High GGT was defined as levels >38 IU/L, and based on the laboratory (PathCare, South Africa) reference standards. Liver fibrosis was classified based on the fibrosis-4 (FIB-4) index, where FIB-4 index was calculated using the formula: [age (years) x AST (IU/L)]/ [platelet (10⁹/L) x \sqrt{ALT} (IU/L)]²⁵. Low risk for advanced fibrosis was defined a FIB-4 score <1.30, intermediate risk as a value between 1.30 and 2.67, and high risk as FIB-4 > 2.67 ²⁶. Anaemia was defined using the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) guidelines as haemoglobin level <13.5 g/dL for men and <12 g/ dL for women ²⁷.

Statistical analysis

The SA-DPP sample size was calculated based on the following assumptions, 1) a cumulative incident diabetes rate of 13.6% at 2–3 years, as observed in our Bellville South cohort ²⁸, 2) an expected relative risk of 0.51, which is the pooled effect estimate of efficacy trials comparing lifestyle intervention to usual care in diabetes prevention studies ²⁹, 3) an intra-cluster correlation coefficient for fasting glucose of 0.02^{30} , 4) a significance level of 5% with a type II error risk of 20%, and 5) an estimated 36-months loss to follow-up of 20–25%.

Due to the non-Gaussian distribution of most variables, the participant characteristics were summarised as median (25th-75th percentile) or counts and percentages. Group comparisons were analysed by chi-square tests, Wilcoxon rank-sum and Kruskal-Wallis tests. The Dunn's test was used as nonparametric pairwise multiple-comparison post-hoc test when the Kruskal-Wallis test

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

was rejected. All statistical analyses were performed using STATA version 17 (Statcorp, College Station, TX) and statistical significance was based on a p-value <0.05.

Patient and public involvement: Participants and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

RESULTS

Of the 2,173 individuals screened in the community, 690 participants, deemed at high-risk of T2DM based on the ADRS, presented at our research clinic for an OGTT and other assessments (Supplementary File). The sociodemographic, clinical, and biochemical characteristics are summarised by CKD status in Table 1. Among the 690 participants included in this study, 80.9% were female, with a group median age of 52 years. Of these participants, 9.6% had screen-detected T2DM and 18.1% had CKD, with 2.2% presenting with both CKD and T2DM. A similar CKD prevalence rate was observed with age-adapted eGFR thresholds (18.1%); however, the age-standardized prevalence of CKD was lower, at 14.6%. Furthermore, there were high rates of obesity (77.1%), hypertension (55.0%), raised GGT levels (45.8%), intermediate risk of advanced liver fibrosis (21.4%) and anaemia (14.2%) among participants in this study. There were no significant differences in the sociodemographic and anthropometric variables between participants with and without CKD. However, SBP (128.0 vs. 123.5 mmHg; p=0.004) and DBP (86.0 vs. 83.0 mmHg; p=0.014) were higher in participants with CKD compared to those without. Although hypertension prevalence was not significantly different by CKD status (p=0.215), uncontrolled hypertension on treatment was significantly higher in those with than without CKD (42.7% vs. 23.4%). The median levels of GGT (47.0 vs. 35.0 IU/L; p=0.008), AST (26.0 vs. 23.0 IU/L; p=0.004), and FIB-4 index (1.0 vs. 0.9; p=0.016), were higher in participants with CKD compared to those without CKD, while RBC count (4.5 vs. 4.6 $\times 10^{12}$ /L; p=0.046) was lower in CKD compared to those with normal kidney function. The prevalence of high GGT (p=0.008) and anaemia (p=0.042) were significantly higher in participants with CKD compared to those without CKD. All other biochemical variable were similar between groups.

Page 11 of 30		BMJ Op	en	136/bmjopen-20	
1 2 3 276 4	Table 1: Sociodemographic, clinical, and bio	chemical characteristics	presented in the overall sam	N	
5	Sociodemographic variables	Total (n=690)	Without CKD (n=565)	CKD (Ř=125)	p-value
6	Age (years)	52 (45-59)	52 (45-59)	53 (49-60)	0.241
7 8	Gender (n,% female)	558 (80.9)	460 (81.4)	98 (78.4)	0.438
o 9	African Diabetes Risk Score	2.3 (1.7-3.4)	2.3 (1.7-3.4)	2.4 (1.3-3.4)	0.882
10	Anthropometry		· · · · ·	ary	
11	Weight (kg)	91.0 (79.6-103.6)	92.2 (80.4-104.6)	88.0 (76.8-101.3)	0.050
12	Waist circumference (cm)	102.7 (95.3-111.1)	103.4 (95.7-111.1)	101.3 (93 <u>.4</u> -111.1)	0.242
13 14	Hip circumference (cm) (n=632)	112.6 (103.2-121.7)	113.0 (104.3-122.4)	111.3 (10221-118.3)	0.067
15	Body mass index (kg/m ²)	35.6 (30.5-40.5)	35.7 (30.6-40.6)	33.9 (2954-39.9)	0.185
16	Body mass index categories (n, %)			aded	0.316
17	Normal	29 (4.2)	23 (4.1)	6 (458)	
18 19	Overweight	129 (18.7)	100 (17.7)	29 (23.2)	
20	Obese	532 (77.1)	442 (78.2)	90 (72.0)	
21	Blood pressure			бът.	
22	Systolic blood pressure (mmHg)	124.5 (113.5-137.0)	123.5 (113.5-135.0)	128.0 (11 0-145.5)	0.004
23 24	Diastolic blood pressure (mmHg)	83.0 (77.0-91.5)	83.0 (77.0-90.3)	86.0 (785-94.5)	0.014
25	Hypertension	379 (55.0)	304 (53.9)	75 (🕺.0)	0.215
26	Among participants with hypertension (n=379):			S M	< 0.0001
27	Treated and controlled BP	143 (37.7)	127 (41.8)	16 (2 .3)	
28	Treated and uncontrolled BP	103 (27.2)	71 (23.4)	32 (42.7)	
29 30	Screen-detected HPT	133 (35.1)	106 (34.9)	27 (5.0)	
31	Biochemical			,ω N	
32	Fasting blood glucose (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.5) 🥏	5.0 (4.8-5.6)	0.691
33	2-hour glucose (mmol/L) (n=688)	6.0 (4.9-7.4)	6.0 (4.9-7.3)	6.3 (5 4 -7.6)	0.205
34 35	Glucose categories (n, %) (n=688)			92 (173.6)	0.600
36	Normoglycaemia	520 (75.6)	428 (76.0)	92 (12.6)	
37	Prediabetes (IFG/IGT)	102 (14.8)	84 (14.9)	18 (날.4)	
38	Type 2 diabetes	66 (9.6)	51 (9.1)	15 (2.0)	
39	HbA1c (%) (n=685)	5.8 (5.6-6.1)	5.8 (5.6-6.1)	5.9 (5.9-6.2)	0.740
40 41	Fasting insulin (IU/L)	8.8 (6.2-12.6)	8.5 (5.9-12.1)	11.1 (7.2-14.8)	0.144
42 43 44			ni com/sita/about/quidalinas.yb	11.1 (73-14.8)	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			ВМЈ Ор	en	l 136/bmjopen-202	Ρ
2						
3 4		Vitamin D (ng/mL)	6.1 (5.0-7.8)	6.0 (5.0-7.7)	6.2 (5. b -8.1)	0.222
4 5		Calcium (mmol/L) (n=688)	2.3 (2.3-2.4)	2.3 (2.3-2.4)	2.4 (2.3-2.4)	0.644
6		Phosphate (mmol/L) (n=688)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	1.1 (1.0-1.2)	0.981
7		Gamma-glutamyl transferase (IU/L) (n=688)	36.0 (24.0-61.0)	35.0 (24.0-55.0)	47.0 (26, 0-78.0)	0.008
8		High gamma-glutamyl transferase (n=688)	315 (45.8)	245 (43.4)	70 (5 5.5)	0.008
9		Aspartate aminotransferase (IU/L) (n=688)	24.0 (20.0-29.0)	23.0 (20.0-29.0)	26.0 (21ad -34.0)	0.004
10 11		Alanine aminotransferase (IU/L) (n=646)	22.0 (16.0-32.0)	22.0 (16.0-32.0)	22.0(170-33.0)	0.372
12		AST/ALT ratio	1.1 (0.9-1.4)	1.1 (0.9-1.4)	1.2 (0.8-1.5)	0.110
13		Fibrosis-4 index (n=644)	0.9 (0.7-1.3)	0.9 (0.7-1.3)	1.0 (0. §- 1.4)	0.016
14		Liver fibrosis (n, %)			nwn	0.065
15		No risk	497 (77.2)	413 (78.4)	84 (2 .8)	
16 17		Intermediate risk	138 (21.4)	109 (20.7)	29 (24.8)	
18		High risk	9 (1.4)	5 (0.9)	4 (至4)	
19		Red blood cells $(x10^{12}/L)$	4.6 (4.2-4.9)	4.6 (4.3-4.9)	4.5 (4.2-4.8)	0.046
20		White blood cells $(x10^{9}/L)$	23.0 (18.0-28.0)	23.0 (18.3-28.0)	23.0 (17 0-28.0)	0.270
21		Platelet count $(x10^{9}/L)$	276 (235-325)	276.0 (234.5-322.5)	276.0 (23 20-333.0)	0.705
22 23		Haematocrit (volume %)	0.4 (0.4-0.4)	0.4 (0.4-0.4)	0.4 (0.4 - 0.4)	0.442
23 24		Haemoglobin (g/dL)	13.5 (12.6-14.3)	13.5 (12.7-14.3)	13.4 (124-14.4)	0.491
25		Anaemia, n (%)	103 (14.9)	77 (13.6)	26 (20.8)	0.042
26	277	`````````````````````````````````	. ,		E	
27 28	278	Data is presented as median (25th-75th percent	iles) or count and nerce	entages Abbreviations: Ck	D chronic Ridney dises	se BP blood
28 29					ੇ ਹਿ	
30	279	pressure; HPT, hypertension; IFG, impaired fas	sting glucose; IG1, impa	aired glucose tolerance; Hb	AIC, glycateg naemoglot	oin; ASI/ALI
31 32	280	ratio, aspartate aminotransferase to alanine am	inotransferase ratio.		202	
33	281				2024 by	
34 35	282				gue	
36	283				St. P	
37 38 39 40 41	203				guest. Protected by copyright	
42 43					yrigh	11
44		For more veries	······································	ni.com/sito/about/quidalinas.v	·	**

Page 13 of 30

BMJ Open

The prevalence of CKD in the overall sample and grouped by glucose and blood pressure categories are shown in Figure 1. In those with prediabetes, T2DM, and hypertension, 17.6%, 22.7% and 19.8% had CKD, respectively. Of the participants with hypertension, the prevalence of CKD was highest in those on anti-hypertensive treatment but with uncontrolled blood pressure (31.1%), while 20.3% of those newly identified with hypertension and 11.2% of those on treatment with controlled blood pressure had CKD.

Figure 1 to be included here

The stages of CKD according to eGFR and albuminuria following KDIGO classification are presented in Figure 2. Of the 11 participants with an eGFR <60 ml/min/1.73m², four (36.4%) had no albuminuria, with 36.4% (n=4) and 27.3% (n=3) presenting with moderate (uACR: 3-30mg/mmol) and severe albuminuria (uACR: >30mg/mmol), respectively. Furthermore, of the those with normal kidney function (eGFR >90 ml/min/ $1.73m^2$), 67 (10.2%) and 25 (3.8%) had moderate and severe albuminuria, respectively.

- Figure 2 to be included here

Table 2 describes the participant characteristics by CKD stage. The majority of individuals with CKD presented with stage 1 CKD (73.6%), with 17.6% and 8.8% presenting with stage 2 and 3, respectively. Participants with stage 3 CKD were older than those with normal kidney function and stage 1 CKD (p=0.030 for both). Levels of AST were significantly higher with stage 2 CKD compared with stage 3 CKD (p=0.042). SBP and DBP did not differ by stages of CKD but differed between those with normal kidney function and those with CKD as follows: normal kidney function vs. CKD stage 1 (SBP: p=0.007 and DBP: p=0.010), stage 2 (SBP: p=0.039) and stage 3 (DBP: p=0.013).

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

		BMJ Open		36/bm	Pa
				136/bmjopen-2022-06	
Table 2: Sociodemographic, clinic	al, and biochemical ch	naracteristics in particip	ants by CKD stages	22-06	
Sociodemographic variables	No CKD (n=565)	Stage 1 (n=92)	Stage 2 (n=22)	Stage 3 (n=11)	p-valu
Age (years)	52 (45-59)*	52 (45-59)*	56 (51-61)	g 57 (52-63)	0.029
Gender (n,% female)	460 (81.4)	75 (81.5)	15 (68.2)	on 8(72,7)	0.408
African Diabetes Risk Score	2.3 (1.7-3.4)	2.4 (1.8-3.1)	2.2 (1.7-4.8)	an 2.8 (1.9-3.9)	0.865
Kidney function				Jany	
Serum creatinine (µmol/L)	57.0 (48.0-67.0)	54.0 (46.5-62.0)	78.5 (72.0-88.0)	<u>8</u> 122.0 (96.0-160.0)	0.0001
eGFR (ml/min/ $1.73m^2$)	103.0 (95.0-114.0)	106.0 (98.0-117.5)	79.5 (75.0-83.0)	No. 122.0 (96.0-160.0) 49.0 (32.0-57.0)	0.0001
uACR (mg/mmol)	0.6 (0.4-1.0)	6.0 (4.1-14.1)	6.5 (3.6-17.3)	§ 3.9 (0.8-43.2)	0.0001
Anthropometry	,		(111 (111)		
Weight (kg)	92.2 (80.4-104.6)	89.1 (77.8-101.7)	84.4 (70.6-95.3)	a 78.7 (63.2-102.4)	0.117
Waist circumference (cm)	103.4 (95.7-111.1)	101.6 (93.9-111.4)	97.2 (93.1-109.7)	$\frac{8}{3}$ 100.6 (93.4-107.0)	0.497
Hip circumference (cm) (n=632)	113.0 (104.3-122.4)	112.7 (102.3-120.9)	110.4 (99.4-117.9)	B 108.6 (96.4-108.9)	0.085
BMI (kg/m ²)	35.7 (30.6-40.6)	34.7 (30.5-40.7)	31.6 (26.9-39.5)		0.121
BMI categories (n, %)				31.9 (27.2-36.9) 2 (18.2) 2 (18.2) 7 (63.6)	0.039
Normal	23 (4.1)	2 (2.2)	2 (9.1)	<u> </u>	
Overweight	100 (17.7)	19 (20.7)	8 (36.4)	2 (18.2)	
Obese	442 (78.2)	71 (77.2)	12 (54.5)	b 7 (63.6)	
Blood pressure			1		
SBP (mmHg)	123.5 (113.5-135.0)	129.5 (115.0-145.5)**	126.5 (123.5-153.0)***	₹127.5 (106.5-156.0)	0.031
DBP (mmHg)	83.0 (77.0-90.3)	86.5 (78.3-94.0)#	80.8 (75.0-94.5)	⁹ _≥ 90.5 (82.5-105.5) ^{##}	0.017
Hypertension	304 (53.9)	54 (58.7)	12 (54.5)	<u>April</u> 9 (81.8)	0.263
Among participants with				1 23,	
hypertension (n=379):				20	0.010
Treated and controlled BP	127 (41.8)	10 (18.5)	3 (25.0)	^N ₄ 3 (33.3)	
Treated and uncontrolled BP	71 (23.4)	23 (42.6)	5 (41.7)	ङ् 4 (44.4)	
Screen-detected HPT	106 (34.9)	21 (38.9)	4 (33.3)	<u>Gu</u> 2 (22.2)	
Biochemical					
FBG (mmol/L)	5.0 (4.6-5.5)	5.0 (4.6-5.6)	4.9 (4.4-5.6)	a 4.8 (4.7-5.3)	0.886
2-hour glucose (mmol/L) (n=688)	6.0 (4.9-7.3)	6.3 (5.1-7.6)	6.3 (4.7-8.5)	P 4.8 (4.7-5.3) 60 6.4 (5.6-7.2)	0.624
Glucose categories (n, %) (n=688)				Ö D	0.543
Normoglycaemia	428 (76.0)	70 (76.0)	13 (59.1)	by 9 (81.8) copyright	
				yrigh	13

Page 15 of 30			BMJ Open		1136/bm	
1 2 3 4 5	Prediabetes (IFG/IGT) Type 2 diabetes	84 (14.9) 51 (9.1)	11 (12.0) 11 (12.0)	6 (27.3) 3 (13.6)	136/bmjopen-2022-0686 1 (9.1)	
6 7 8 9 10 11 12 13 14 15	HbA1c (%) (n=685) Fasting insulin (IU/L) Vitamin D (ng/mL) Calcium (mmol/L) (n=688) Phosphate (mmol/L) (n=688) GGT (IU/L) (n=688) AST (IU/L) (n=688) ALT (IU/L) (n=646)	5.8 (5.6-6.1) 8.5 (5.9-12.1) 6.0 (5.0-7.7) 2.3 (2.3-2.4) 1.1 (1.0-1.2) 35.0 (24.0-55.0) 245 (43.4) 23.0 (20.0-29.0) 22.0 (16.0-32.0)	5.9 (5.6-6.2) $11.1 (6.4-15.5)$ $6.2 (5.0-7.8)$ $2.3 (2.3-2.4)$ $1.1 (1.0-1.2)$ $45.0 (26.0-81.0)$ $51 (56.0)$ $26.0 (21.1-34.0)$ $23.0 (17.0-33.0)$	$5.7 (5.3-6.2)$ $11.0 (8.7-13.2)$ $6.7 (5.9-8.1)$ $2.4 (2.3-2.4)$ $1.1 (1.0-1.2)$ $46.5 (25.0-64.0)$ $13 (59.1)$ $26.5 (22.0-34.0)^{\#\#}$ $21.0 (18.0-31.0)$	$\begin{array}{c} 5.7 (5.6-6.2) \\ \hline \\ & - \\ \\ \hline \\ & - \\ \hline \\ \\ \\ \\ \\ & - \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \hline \\ \\ \\ \\$	0.591 0.334 0.361 0.794 0.777 0.071 0.071 0.009 0.799
16 17 18 19 20 21 22	AST/ALT ratio Fibrosis-4 index (n=644) Liver fibrosis (n, %) No risk Intermediate risk High risk	1.1 (0.9-1.4) 0.9 (0.7-1.3) 413 (78.4) 109 (20.7) 5 (0.9)	1.2 (0.9-1.5) 1.0 (0.8-1.3) 66 (75.0) 19 (21.6) 3 (3.4)	$ \begin{array}{c} 1.3 (1.1-1.4) \\ 1.1 (0.9-1.5) \\ 14 (66.7) \\ 6 (28.6) \\ 1 (4.8) \end{array} $	$\begin{array}{c} 0 & (54.3) \\ 21.0 & (20.0-28.0) \\ 18.5 & (15.5-37.5) \\ 1.3 & (0.9-1.5) \\ 1.3 & (0.7-1.6) \\ \end{array}$	0.413 0.063 0.124
23 24 25 26 27 28 29	Red blood cells (x10 ¹² /L) White blood cells (x10 ⁹ /L) Platelet count (x10 ⁹ /L) Haematocrit (volume %) Haemoglobin (g/dL)	4.6 (4.3-4.9) 23.0 (18.3-28.0) 276.0 (234.5-322.5) 0.4 (0.4-0.4) 13.5 (12.7-14.3)	4.5 (4.2-4.9) 22.0 (17.0-28.0) 276.5 (235.0-333.5) 0.4 (0.4-0.4) 13.3 (12.3-14.5)	4.5 (4.2-4.6) 26.0 (16.0-31.9) 271.0 (244.0-335.0) 0.4 (0.4-0.4) 13.5 (13.3-14.4)	25.0 (19.0-26.0) 261.0 (217.0-325.0) 9 0.4 (0.4-0.5)	0.071 0.550 0.956 0.433 0.390
30 31 316	Anaemia, n (%)	77 (13.6)	22 (23.9)	2 (9.1)	$ \begin{array}{c} 13.7 (12.9-15.8) \\ 2 (18.2) \\ \\ \end{array} $	0.063

Data is presented as median (25th-75th percentiles) or count and percentages. Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; uACR, urinary albumin-to-creatinine ratio; BMI, body mass index; SBB systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; HbA1c, glycated haemoglobin; GGT, gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; uACR, urinary albumin-to-creatinine ratio. Keys: *p=0.030 (CKD stage 2 vs. no CKD; CKD stage copyright

		BMJ Open 3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); #p=0.0106 (no CKD vs. CKD stage	Pa
1			
2 3 4	322	3 vs. CKD stage 1); **p=0.007 (no CKD vs. CKD stage 1); ***p=0.039 (no CKD vs. CKD stage 2); #p=0.01@(no CKD vs. CKD stage	;
5	323	1); $^{\#\#}p=0.013$ (no CKD vs. CKD stage 3); $^{\#\#\#}p=0.042$ (CKD stage 3 vs. CKD stage 2).	
6 7	324		
, 8 9	325		
9 10 11	326	uary 2	
12 13	327	023. D	
14 15	328	on 6 January 2023. Downloaded from http://bmippen.bmi.com/ on April 23, 2024 by guest. P	
16 17	329		
18 19	330		
20 21 22	331		
22 23 24	332	ppen.b	
25 26	333		
27	334	Reverse and the second s	
28 29	335	April	
30 31	336	23, 20	
32 33	337	024 by	
34 35	338	guest. Protected by copyright 15	
36 37			
38 39			
40		d by	
41			
42 43			
44			
45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46 47			

BMJ Open

DISCUSSION

To our knowledge, this is the first study to show that by utilizing an opportunistic approach, CKD can be detected early, allowing for timely referral for specialized testing to confirm diagnosis and subsequent care. This was achieved through leveraging the information already collected in an existing screening programme that targeted individuals at high-risk for T2DM and included a few additional kidney-related biochemical markers to the variables for testing. The yield of screendetected cases was high for a low investment which cost ZAR 237.80 (USD 14.59) per person and highlights the potential cost-effectiveness of such a strategy.

- By including a minimal number of markers of kidney function (namely serum and urinary creatinine, and urinary albumin) to the scope of markers already collected, we found that 18.1% of those at high-risk for developing T2DM had CKD with the majority (73.6%) having mild CKD (CKD stage 1). The CKD burden, at 22.7%, was even higher in participants with newly diagnosed T2DM, which underscores the need for frequent screening of individuals at high-risk for T2DM to avoid T2DM presenting with complications at diagnosis. Therefore, using T2DM as a gateway for CKD screening through existing screening programmes is justified as such an approach, together with diagnosing new T2DM, simultaneously identified those with complications i.e., CKD. The newly diagnosed T2DM may receive comprehensive care with tight control of both their T2DM and CKD. This intensification of treatment could contribute to a delay in CKD progression and consequently help reduce the risk of developing end-stage kidney disease (ESKD) or CVD-related complications ³¹. Further support for CKD screening in individuals at high-risk for T2DM was the substantial CKD burden in prediabetes (17.6%). Notably, if screening for CKD was initiated only after the development of T2DM, the identification of CKD in individuals with prediabetes, which generally fall below the threshold for disease management in clinical practice, would have been missed. This would then have been a lost opportunity to identify and manage CKD early and delay progression of the disease in this high-risk group.
- 49 365

Our study also highlights the importance of screening for albuminuria as 91.2% of those with CKD would have gone undetected if CKD were based on eGFR alone. Guidelines recommend albuminuria testing using ACR, like we did in our study, however this is not always possible in many low-resource settings. In these instances, low-cost semiquantitative methods, like urinary

dipsticks, can be used to measure albuminuria with subsequent confirmation of positive dipstick result with a quantitative laboratory test to confirm CKD diagnosis ²⁰. Or repeated dipstick assessments can be employed to reduce the possibility of false-negative results as this could delay the timely diagnosis and management of CKD.

Given that this is the first study to report the prevalence of CKD in people at high-risk for developing T2DM, based on the ADRS, the prevalence estimates cannot be directly compared to other studies as no similar data have been published. Nevertheless, at a similar median age (52 vs. 53 years), the prevalence of CKD in those with prediabetes in our study was comparable to that reported in a large representative sample in the United States of America (17.6% vs. 17.7%, respectively)³². Also, albeit an older population (median age of 68 years) with a higher prevalence of advanced CKD (stage 3-5), a South African study found that the prevalence of CKD in those with prediabetes was 19.8%³³. The similarly high CKD prevalence in prediabetes across several studies suggests that perhaps there should be regular CKD screening for all individuals with prediabetes.

A likely contributor to the substantial CKD burden in this study is the high prevalence of hypertension, which at 55% is higher than the 44%-46% reported for South Africa ³⁴. While the high reported prevalence of hypertension is consequent to the score used to identify high-risk individuals, a larger proportion of the participants with hypertension had CKD compared to those with normal blood pressure (19.8% vs. 16.1%, respectively). The prevalence of CKD may be related to the delayed detection of hypertension or the suboptimal control of blood pressure in treated hypertension, as reported in the current study and in several South African studies ^{34, 35}. Indeed, a high proportion of participants with treated but uncontrolled hypertension had CKD (31.1%) in this study as did participants with newly detected hypertension (20.3%). This further highlights the benefit of screening high-risk individuals for CKD. Notably, adequate blood pressure control is fundamental to slowing the progression of CKD ^{36, 37} and timeous treatment with anti-hypertensive medication can improve both kidney and cardiovascular outcomes ^{38, 39} thereby preventing the progression to ESKD and reducing the risk of all-cause and cardiovascular mortality 38, 40, 41.

Page 19 of 30

BMJ Open

Elevated GGT and the FIB-4 index, which are commonly used markers of liver injury and nonalcoholic fatty liver disease (NAFLD)⁴², have been linked to increased CKD risk in various populations ⁴³⁻⁴⁶. In our study, 56.5% of the participants with CKD presented with higher-than-normal GGT levels, compared to 43.4% of participants without CKD. Also, a significant proportion of people with CKD presented with intermediate and high risk for advanced liver fibrosis, based on the FIB-4 index, compared to those without CKD (28.2% vs. 21.6%). Early recognition and interventions directed at reducing the risk of liver injury among individuals with CKD could reduce CKD progression.

Anaemia was prevalent in our study population (14.9% of total sample), with nearly twice as many participants with CKD having anaemia compared to those without CKD, as shown in other studies as well ^{47, 48}. Although the overall prevalence of anaemia in this study was not uncommon for South Africa ⁴⁹, the prevalence in participants with CKD is concerning. While erythropoiesis stimulating agents and iron supplementation to treat anaemia are unlikely to be prescribed to people in the early stages of CKD, anaemia can accelerate the decline in kidney function by causing kidney haemodynamic alterations and tissue hypoxia⁸. It is strongly predictive of all-cause and cardiovascular mortality ^{50, 51}, and should thus be closely monitored.

33 418

Although lifestyle interventions addressing unhealthy diets, physical inactivity, tobacco smoking and alcohol misuse are advocated to reduce the growing global burden of non-communicable diseases ^{52, 53}, little is known about the impact of reducing unhealthy lifestyle behaviours on kidney health. The SA-DPP intervention, implemented in individuals with prediabetes, will provide a unique opportunity to examine the effects of improving lifestyle behaviours on changes in CKD status.

45 425

This is the first study to show that utilizing an opportunistic approach, through leveraging the information already collected in an existing screening programme is advantageous to screen for CKD. However, our study does have limitations. The SA-DPP study included participants at high-risk of T2DM and our findings might not be reproducible across other non-communicable diseases screening programmes. The small number of participants identified with CKD in this study reduced the statistical power of our analyses when stratifying by CKD stage. Based on the self-

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

selection approaches used to recruit participants, the disproportionate greater number of females, the varying socioeconomic status, lifestyle behaviours and disease prevalence (hypertension and T2DM) across provinces and by urban-rural residence in South Africa ³⁴, our study findings cannot be generalised. Another limitation is that CKD was defined based on a single time-point serum and urinary creatinine and albumin assessment and not on repeated measurements, at least three months apart, as per KDIGO guidelines ²⁰. However, a strength of our study is that both eGFR and albuminuria were used to define CKD, unlike most other population-based CKD prevalence studies in South Africa and Africa in general which rely on eGFR only for CKD classification. Finally, as for all studies using eGFR to characterize CKD, instead of the gold standard of measured GFR, the over- or under-estimation of the estimate cannot be excluded.

443 CONCLUSION

The fact that almost one in five participants identified as high-risk for T2DM had CKD underscores the value of including markers of kidney function in existing disease screening programmes. Our findings provide support for key stakeholders and policy makers to adapt current strategies for hypertension and T2DM screening to include screening for CKD. Indeed, by utilizing an opportunistic approach to screen high-risk individuals, those with early-stage CKD can be identified and appropriately managed to reduce disease progression. Existing cardiovascular or non-communicable disease screening programmes should perhaps explore including markers for CKD evaluations to maximise limited resources without compromising on effectiveness.

Acknowledgements: We would like to acknowledge the South African Medical Research Council
(SAMRC) for infrastructure and support. The authors would also like to acknowledge the entire
South African Diabetes Prevention Programme team and collaborators for their continued support.

457 Contributors: Conceived and/or designed the work that led to the submission (CG, JH, NP, APK,
458 NUN), acquired data (JH), and/or played an important role in interpreting the results (CG), drafted
459 (CG) or revised the manuscript (all authors), and approved the final version (all authors).

461 Funding: The authors have not declared a specific grant for this research from any funding agency462 in the public, commercial or not-for-profit sectors.

BMJ Open

2 3	462	
4	463	Competing interest. No competing interest to declare
5 6	464	Competing interest: No competing interest to declare
7 8	465	
9	466	Patient consent for publication: Not required
10 11	467	
12 13	468	Ethics approval: Ethical clearance was obtained by the Research Ethics Committee of the South
14	469	African Medical Research Council (SAMRC) (approval no. EC018-7/2015).
15 16	470	
17	471	Data availability statement: The dataset depicted in this manuscript are available from the
18 19	472	corresponding author on reasonable request.
20 21	473	
22	474	ORCID IDs:
23 24	475	Cindy George http://orcid.org/0000-0002-4561-0529
25 26	476	Jillian Hill https://orcid.org/0000-0003-1646-6174
27 28	477	N. Unati Nqebelele https://orcid.org/0000-0003-1145-3446
29	478	Nasheeta Peer https://orcid.org/0000-0003-2131-8344
30 31	479	Andre P. Kengne https://orcid.org/0000-0002-5183-131X
32 33	480	
34		
35 36	481	
37 38	482	
39	483	
40 41	484	
42 43	485	
44		
45 46	486	
47 48	487	
49	488	
50 51	489	
52 53	490	
54		
55 56	491	
57 58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends high risk"

Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT, hypertension; BP, blood pressure

Figure 2: Stages of chronic kidney disease according to estimated glomerular filtration rate and albuminuria following Kidney Disease Improving Global Outcomes (KDIGO) classification. Displayed are number of patients (%) within each category. The colour code indicates risk category en "io. according to KDIGO²⁰: green "low risk", yellow "moderate risk", orange "high risk" and red "very

7

8

9

1

520 **References**

 Global Burden of Disease Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88.

525 2. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for
 526 advocacy and communication-worldwide more than 850 million individuals have kidney diseases.
 527 Nephrol Dial Transplant. 2019;34(11):1803-5.

- ¹³
 ¹⁴
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁰
 ¹¹
 ¹⁰
 ¹⁰
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹</l
- 4. Ameh OI, Ekrikpo UE, Kengne AP. Preventing CKD in Low- and Middle-Income
 532 Countries: A Call for Urgent Action. Kidney international reports. 2020;5(3):255-62.
- 533 5. Global Burden of Disease Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2020:S0140-6736(20)30045-3.
- 535 of Disease Study 2017. Earleet (Eorland, England). 2020.50110 0750(20)50015 5.
 536 6. Stanifer JW, Muiru A, Jafar TH, Patel UD. Chronic kidney disease in low- and middleincome countries. Nephrol Dial Transplant. 2016;31(6):868-74.
- 538
 538
 538
 538
 538
 539
 540
 540
 540
 540
 541
 541
 541
 2017;389(10075):1238-52.
- 542
 543
 543
 544
 545
 545
 546
 547
 547
 548
 549
 549
 549
 549
 541
 541
 541
 542
 543
 544
 544
 544
 545
 545
 546
 547
 547
 547
 548
 549
 549
 549
 549
 549
 541
 541
 541
 542
 543
 544
 544
 544
 545
 545
 546
 547
 547
 547
 548
 549
 549
 549
 549
 549
 541
 541
 541
 541
 541
 542
 543
 544
 544
 544
 545
 545
 546
 547
 547
 547
 548
 548
 549
 549
 549
 549
 549
 549
 549
 541
 541
 541
 541
 542
 543
 544
 544
 544
 545
 546
 547
 547
 548
 548
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
 549
- 544 10. Levin A, Stevens PE. Early detection of CKD: the benefits, limitations and effects on
 545 prognosis. Nat Rev Nephrol. 2011;7(8):446-57.
- 546 11. Tonelli M, Dickinson JA. Early Detection of CKD: Implications for Low-Income, Middle 547 Income, and High-Income Countries. Journal of the American Society of Nephrology : JASN.
 548 2020;31(9):1931-40.
- 549 12. Absetz P, Valve R, Oldenburg B, Heinonen H, Nissinen A, Fogelholm M, Ilvesmaki V,
 550 Talja M, Uutela A. Type 2 diabetes prevention in the "real world": one-year results of the GOAL
 40 551 Implementation Trial. Diabetes Care. 2007;30(10):2465-70.
- 41 552 13. Aziz Z, Absetz P, Oldroyd J, Pronk NP, Oldenburg B. A systematic review of real-world
 42 553 diabetes prevention programs: learnings from the last 15 years. Implementation science : IS.
 43 554 2015;10:172.
- 44 14. Thankappan KR, Sathish T, Tapp RJ, Shaw JE, Lotfaliany M, Wolfe R, Absetz P, Mathews 555 45 E, Aziz Z, Williams ED, Fisher EB, Zimmet PZ, Mahal A, Balachandran S, D'Esposito F, Sajeev 556 46 557 P. Thomas E. Oldenburg B. A peer-support lifestyle intervention for preventing type 2 diabetes in 47 India: A cluster-randomized controlled trial of the Kerala Diabetes Prevention Program. PLoS 48 558 49 medicine. 2018;15(6):e1002575. 559
- 50 560 15. Hill J, Peer N, Jonathan D, Mayige M, Sobngwi E, Kengne AP. Findings from Community 561 Based Screenings for Type 2 Diabetes Mellitus in at Risk Communities in Cape Town, South
 562 562 Africa: A Pilot Study. International journal of environmental research and public health.
 563 2020;17(8).
- 56
 564
 564
 565
 565
 565
 566
 567
 568
 569
 569
 560
 560
 560
 560
 561
 561
 562
 563
 564
 565
 564
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 565
 <
- 57 58

Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A 17. Consensus Statement from the International Diabetes Federation. Diabetic medicine : a journal of the British Diabetic Association. 2006;23(5):469-80. 18. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic Association. 1998;15(7):539-53. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, 19. Eggers P, Van Lente F, Greene T, Coresh J, Chronic Kidney Disease Epidemiology Collaboration. A new equation to estimate glomerular filtration rate. Annals of internal medicine. 2009;150(9):604-12. 20. KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(1). Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, 21. Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28. 22. Delanave P, Jager KJ, Bökenkamp A, Christensson A, Dubourg L, Eriksen BO, Gaillard F, Gambaro G, van der Giet M, Glassock RJ, Indridason OS, van Londen M, Mariat C, Melsom T, Moranne O, Nordin G, Palsson R, Pottel H, Rule AD, Schaeffner E, Taal MW, White C, Grubb A, van den Brand J. CKD: A Call for an Age-Adapted Definition. Journal of the American Society of Nephrology : JASN. 2019;30(10):1785-805. Ahmad O, Boschi-Pinto C, Lopez A, Murray C, Lozano R, Inoue M, editors. Age 23. standardization of rates: a new WHO standard.2001; Geneva: World Health Organization. World Health Organization. A global brief on Hypertension: Silent killer, global public 24. health crisis. 2013. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, M SS, Torriani FJ, 25. Dieterich DT, Thomas DL, Messinger D, Nelson M. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology (Baltimore, Md). 2006;43(6):1317-25. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, Nash Clinical Research 26. Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2009;7(10):1104-12. KDIGO. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for 27. Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47(5 Suppl 3):S11-145. Matsha TE, Soita DJ, Hassan MS, Hon GM, Yako YY, Kengne AP, Erasmus RT. Three-28. year's changes in glucose tolerance status in the Bellville South cohort: Rates and phenotypes associated with progression. Diabetes Research and Clinical Practice. 2013;99(2):223-30. 29. Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ (Clinical research ed). 2007;334(7588):299. 30. Parker DR, Evangelou E, Eaton CB. Intraclass correlation coefficients for cluster randomized trials in primary care: the cholesterol education and research trial (CEART). Contemp Clin Trials. 2005;26(2):260-7.

BMJ Open

	BMJ (
Work kidney dicine.)pen: first pu
kov M, ehronic ephrol.	olished as 10.
eement th and	1136/bmjo
esearch	pen-20
n in the IBSA))22-06867;
of the	2 on 6 .
, Craig elli M, otensin d other ol Dial	BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyrigh
een M, hanges ET and	loaded from ht
oinn S, ascular	.tp://bmjop
al SK, Fonelli arnock on rate ysis of	en.bmj.com/ on Apri
Group. pective	23, 2024
Scand	oy gues
ctor of mistry.	st. Protected by
24	copyright

Stevens PE, Levin A, KDIGO Chronic Kidney Disease Guideline Development 31. Group Members. Evaluation and management of chronic kidney disease: synopsis of the disease: improving global outcomes 2012 clinical practice guideline. Annals of internal me 2013;158(11):825-30. Plantinga LC, Crews DC, Coresh J, Miller ER, Saran R, Yee J, Hedgeman E, Pavl 32. Eberhardt MS, Williams DE, Powe NR, CDC CKD Surveillance Team. Prevalence of c kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc No 2010;5(4):673-82. 33. George C, Matsha TE, Korf M, Zemlin AE, Erasmus RT, Kengne AP. The agree between fasting glucose and markers of chronic glycaemic exposure in individuals wi without chronic kidney disease: a cross-sectional study. BMC Nephrol. 2020;21(1):32. National Department of Health, Statistics South Africa, South African Medical Re 34. Council, ICF. South Africa Demographic and Health Survey 2016. 2019. Peer NS, K.; Lombard, C.; Gwebushe, N.; Levitt, N. A high burden of hypertension 35. urban black population of Cape Town: the cardiovascular risk in Black South Africans (CR study. PloS one. 2013;8(11):e78567. 36. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. Journal American Society of Nephrology : JASN. 2012;23(12):1917-28. Maione A, Navaneethan SD, Graziano G, Mitchell R, Johnson D, Mann JF, Gao P 37. JC, Tognoni G, Perkovic V, Nicolucci A, De Cosmo S, Sasso A, Lamacchia O, Cignard Manfreda VM, Gentile G, Strippoli GF. Angiotensin-converting enzyme inhibitors, angio receptor blockers and combined therapy in patients with micro- and macroalbuminuria and cardiovascular risk factors: a systematic review of randomized controlled trials. Nephro Transplant. 2011;26(9):2827-47. Schmieder RE, Schutte R, Schumacher H, Bohm M, Mancia G, Weber MA, McQu 38. Teo K, Yusuf S, Ontarget Transcend investigators. Mortality and morbidity in relation to cl in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGE TRANSCEND studies. Diabetologia. 2014;57(10):2019-29. 39. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snap Cooper ME, Mitch WE, Brenner BM, Albuminuria, a therapeutic target for cardiova protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921-7. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jass 40. Landman GW, Muntner P, Roderick P, Sairenchi T, Schottker B, Shankar A, Shlipak M, M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, W DG, Woodward M, Arnlov J, CKD Prognosis Consortium. Estimated glomerular filtration and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analy individual participant data. The lancet Diabetes & endocrinology. 2015;3(7):514-25. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS 41. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prosp Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225-32. Niemela O, Alatalo P. Biomarkers of alcohol consumption and related liver disease. 42. J Clin Lab Invest. 2010;70(5):305-12. Ryu S, Chang Y, Kim DI, Kim WS, Suh BS. gamma-Glutamyltransferase as a predi 43. chronic kidney disease in nonhypertensive and nondiabetic Korean men. Clinical cher 2007;53(1):71-7.

4
656
657
658
658
658
659
659
659
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
650
<l

- 660 45. Kunutsor SK, Laukkanen JA. Gamma-glutamyltransferase and risk of chronic kidney
 661 disease: A prospective cohort study. Clinica Chimica Acta. 2017;473:39-44.
- 46. Lee DY, Han K, Yu JH, Park S, Heo J-I, Seo JA, Kim NH, Yoo HJ, Kim SG, Kim SM,
 663 Choi KM, Baik SH, Park YG, Kim NH. Gamma-glutamyl transferase variability can predict the
 664 development of end-stage of renal disease: a nationwide population-based study. Scientific reports.
 665 2020;10(1):11668.
- 14 665 2020,10(1):11608.
 15 666 47. George C, Matsha TE, Erasmus RT, Kengne AP. Haematological profile of chronic kidney
 16 667 disease in a mixed-ancestry South African population: a cross-sectional study. BMJ Open.
 17 668 2018;8(11):e025694.
- ¹⁸
 ¹⁹
 ⁶⁰
 ⁶¹
 ⁶¹
 ⁶¹
 ⁶²
 ⁶³
 ⁶³
 ⁶⁴
 ⁶⁴
 ⁶⁵
 ⁶⁵
 ⁶⁵
 ⁶⁵
 ⁶⁵
 ⁶⁵
 ⁶⁶
 ⁶⁶
 ⁶⁶
 ⁶⁶
 ⁶⁶
 ⁶⁷
 <li
- 671 49. Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, Reddy P, Parker W,
- 672 Hoosain E, Naidoo P, Hongoro C, Mchiza Z, Steyn NP, Dwane N, Makoae M, Maluleke T,
 673 Ramlangan S, N. Z, Evans MG, Jacobs L, Faber M, SANHANES-1 Team. The South African
- 24 674 National Health and Nutrition Examination Survey (SANHANES-1). 2013.
- ²⁵
 ⁶⁷⁵
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷¹
 ⁶⁷¹
 ⁶⁷²
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷¹
 ⁶⁷¹
 ⁶⁷²
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷¹
 ⁶⁷¹
 ⁶⁷²
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷¹
 ⁶⁷¹
 ⁶⁷²
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁵
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁶
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁷
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁸
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁹
 ⁶⁷⁰
 ⁶⁷⁰
 ⁶⁷⁰
 ⁶⁷⁰
 ⁶⁷¹
 ⁶⁷¹
 ⁶⁷²
 ⁶⁷⁵

- ²⁷ 677 51. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379(9811):165-80.
- 678 52. Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the Prevention of Type 2
 679 Diabetes: A Status Report. Am J Lifestyle Med. 2018;12(1):4-20.
- 680 53. Alouki K, Delisle H, Bermudez-Tamayo C, Johri M. Lifestyle Interventions to Prevent
 681 Type 2 Diabetes: A Systematic Review of Economic Evaluation Studies. Journal of diabetes
 682 research. 2016;2016:2159890.

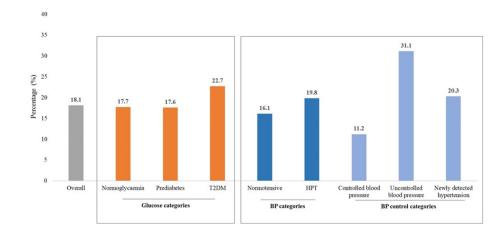
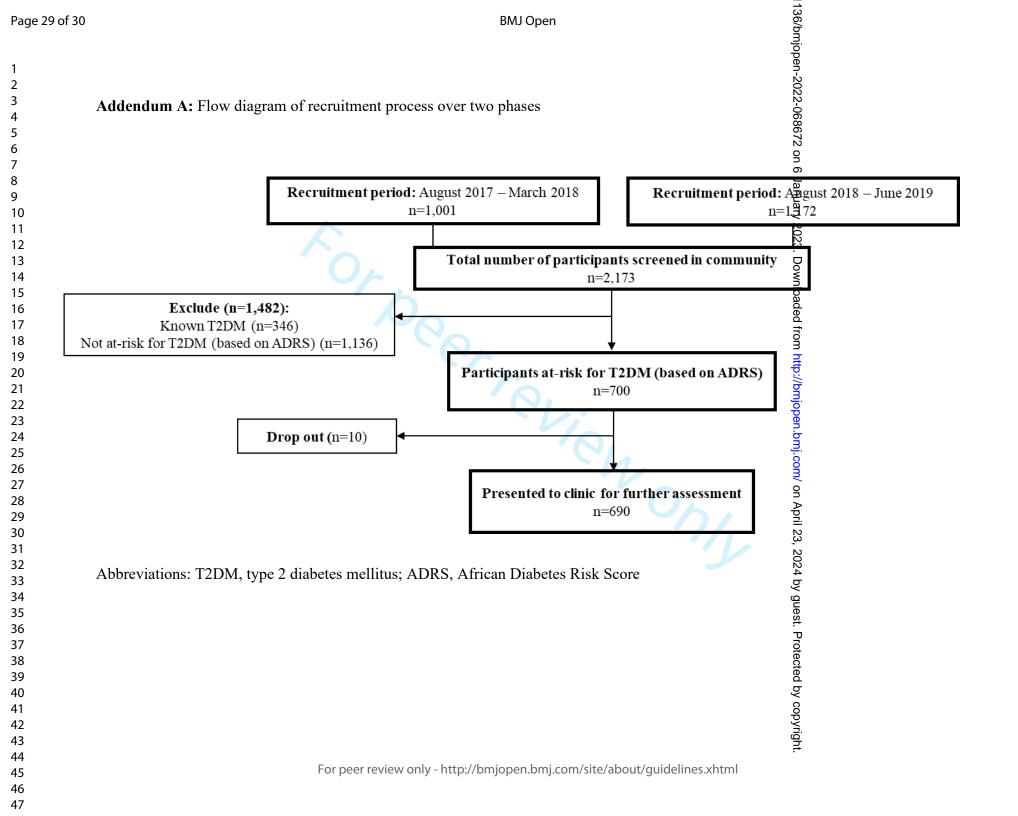


Figure 1: Prevalence (%) of chronic kidney disease overall and by glucose and blood pressure categories. Data presented as percentages. Abbreviations: T2DM, type 2 diabetes mellitus; HPT, hypertension; BP, blood pressure

190x96mm (330 x 330 DPI)


BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-068672 on 6 January 2023. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

			Albuminuria		
CKD stages	eGFR (ml/min/1.73m ²)	A1	A2	A3	Total
CKD stages	eGFK (III/IIII/1./5II-)	(<3 mg/mmol)	(3-30 mg/mmol)	(>30 mg/mmol)	Total
G1	≥90	565 (86.0%)	67 (10.2%)	25 (3.8%)	657 (95.2%)
G2	60-89	0 (0%)	15 (68.2%)	7 (31.8%)	22 (3.2%)
G3 (a and b)	<60	4 (36.4%)	4 (36.4%)	3 (27.3%)	11 (1.6%)
	Total	569 (82.5%)	86 (12.5%)	35 (5.1%)	690 (100%)

Figure 2: Stages of chronic kidney disease according to estimated glomerular filtration rate and albuminuria following Kidney Disease Improving Global Outcomes (KDIGO) classification. Displayed are number of patients (%) within each category. The colour code indicates risk category according to KDIGO 20: green "low risk", yellow "moderate risk", orange "high risk" and red "very high risk"

196x42mm (330 x 330 DPI)

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	1
	-	title or the abstract	-
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	2
Introduction		what was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation	4-5
Duongroundrationare	-	being reported	1.5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including	5
-		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5
I	-	selection of participants	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-8
	,	confounders, and effect modifiers. Give diagnostic criteria, if	00
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	5-8
	0	methods of assessment (measurement). Describe comparability of	5-0
measurement		assessment methods if there is more than one group	
D:	0		NA
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	-
Statistical methods	12	(a) Describe all statistical methods, including those used to control	8
		for confounding	
		(b) Describe any methods used to examine subgroups and	8
		interactions	
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of	NA
		sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg	9
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Addendu
			А
		(c) Consider use of a flow diagram	Addendu
		.,	A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	5-8
		clinical, social) and information on exposures and potential	
		entreary sociary and information on exposition and potential	

		(b) Indicate number of participants with missing data for each variable of interest	10-11 and 13-14
Outcome data	15*	Report numbers of outcome events or summary measures	10-11 and 13-14
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA
		(b) Report category boundaries when continuous variables were categorized	7-8
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.