

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062098
Article Type:	Original research
Date Submitted by the Author:	23-Feb-2022
Complete List of Authors:	Hayden, Jenny; RCPI O'Donnell, Gill; University Hospital Limerick, Department of Paediatrics deLaunois, Isabelle; University of Limerick O'Gorman, Clodagh; Graduate Entry Medical School, University of Limerick, Paediatrics; University Hospital Limerick,
Keywords:	PAEDIATRICS, Community child health < PAEDIATRICS, Paediatric endocrinology < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3	1	
4 5		
6	2	Title page
7	2	The page
8		
9	3	
10		
11 12	4	
12 13		
14	-	Ende Derinkensel Astroial Terrorectory (Terde DAT 2000) and in Derikatis Detients
15	5	Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic
16	6	review.
17	0	
18		
19 20	7	
20		
22	8	Authors: Jenny Hayden ¹ , Gill O'Donnell ¹ , Isabelle deLaunois ² , Clodagh O'Gorman ¹³
23		
24	0	Affiliation a
25	9	Affiliations:
26 27		
28	10	1 Department of Paediatrics, University Hospital Limerick (UHL), Limerick, Ireland.
29		
30	11	2 Medical Librarian, University of Limerick (UL), Limerick, Ireland.
31		
32		
33 34	12	3 Department of Paediatrics, School of Medicine, University of Limerick (UL), Limerick, Ireland.
35		
36	13	
37		
38	14	Corresponding author: Jenny Hayden, Department of paediatrics, UHL, Limerick, Ireland,
39 40		Corresponding authors tennis may ach, Deparation of pacalautics, erre, Enterier, Helana,
40	15	jennyhayden40@gmail.com, 083 8391478
42		jemynayden40(a/gman.com, 085/8591478
43	16	
44	10	
45		
46 47	17	Key words: Endo-PAT 2000, peripheral artery tonometry, Endothelial dysfunction, paediatric
48		
49	18	diabetes mellitus, chronic diseases
50		
51	19	Word count: 2644
52		
53 54	20	
54 55	20	
56		
57	21	
58		
59	22	
60	-	

1 2		
3 4	23	Abstract:
5 6 7	24	Objectives: Endo Peripheral Artery Tonometry (EndoPAT-2000) is a non-invasive technology for
7 8 9	25	measuring endothelial dysfunction (ED). The reactive hyperaemia index (RHI) is resulted and is low
10 11	26	when endothelial dysfunction is present. Microvascular ED, the early stage of atherosclerosis,
12 13	27	precedes macrovascular ED and can be detected in children and adolescents.
14 15 16	28	Design:
17 18 19	29	A comprehensive systematic review was conducted to identify publications that investigated the use
20 21	30	of Endo-PAT 2000 from 2015 to present.
22 23 24	31	Results:
25 26	32	156 articles were identified in our review. We have subdivided these papers into different systems for
27 28 29	33	ease of reference and have reported our findings in 6 tables.
30 31	34	Conclusions:
32 33 34	35	A number of papers using Endo-PAT for children with various chronic diseases have evidence of ED.
35 36	36	It should be concerning to paediatricians that children with various chronic diseases have evidence of
37 38	37	ED. However, in many cases, there has only been a single cohort study using Endo-PAT. Further
39 40	38	studies are required to validate these findings and to help characterise the cardiovascular risk profile
41 42	39	of children with chronic disease. Further studies are also required that will characterise more
43 44 45	40	completely the cardiovascular risk profile of these children with chronic disease.
46 47	41	Consensus on other vascular risk markers that could be included in future studies is ideal and if
48 49	42	accomplished, this would facilitate meta-analyses of studies of conditions with relatively rare
50 51 52	43	conditions.
53 54	44	
55 56 57	45	
58 59 60	46	

3
4 5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 24
34 35
35 36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3

47	Strengths and limitations:
48	• Comprehensive literature review on paediatric endothelial dysfunction from 2015 to present.
49	• All study types were reviewed and even the studies without results but had interesting points
50	were included in our discussion.
51	• Awareness of ED in paediatric patients can aid an approach to cardiovascular risk assessment
52	for young children and adolescents, in particular those with chronic diseases.
53	• Separate paediatric results were obtained where possible from studies with combined adult
54	and paediatric data.
55	• Further studies would help characterise the cardiovascular risk profile of children with
56	chronic diseases.
57 58	
59	Introduction:
60	Endothelial dysfunction (ED) is an early predictor of cardiovascular disease(1). ED occurs when the
61	endothelium loses its ability to promote vasodilation, fibrinolysis and anti-aggregation(2). It can be
62	caused by oxidative stress with loss of vaso-active or inflammatory homeostasis within the body's
63	vascular system. It may be secondary to mechanical stimuli, for example increased intraluminal
64	pressure within the blood vessel or metabolic factors such as hormones (oestrogen's vasodilation
65	action)(3). Damaged endothelium can release a cascade of substances which pose a risk of
66	thrombosis, inflammation and ultimately atherosclerosis(4).
66 67	thrombosis, inflammation and ultimately atherosclerosis(4). ED in paediatric populations has been associated with several conditions including type 1 diabetes

progress to atherosclerosis which is a chronic condition that poses severe risk of coronary arterydisease, stroke, peripheral arterial disease, etc.

71 Improving glucose control can protect endothelial function. Persistent high sugars can impair

read the rea

BMJ Open

the outcomes of retinopathy, neuropathy and peripheral vascular neuropathy. Subclinical evidence of these complications can be seen in paediatric patients, especially in those with poor glycaemic control. In patients with T2D, obesity and metabolic syndrome, insulin resistance is one of the most importance factors contributing to ED(6). Metabolic syndrome is a pro-inflammatory state where dyslipidaemia, hyperuricemia, and hypertension occur and can predispose to ED(7). Unfortunately, there have been reports of T2D paediatric patients diagnosed with microangiopathic complications, particularly nephropathy(8). This early endothelial damage can be linked with increased morbidity and mortality(9). New onset diabetes after transplantation (NODAT) is characterised by insulin resistance and T2D(10).

In recent decades, the number of childhood cancer survivors is increasing(11). Treatments utilized such as haematopoietic stem cell transplantation have increased risk of cardiovascular disease(12, 13). Following chemotherapy, radiotherapy, immunosuppressive treatments the risk of insulin resistance has been noted(14). With advances in treating malignant paediatric conditions there are long term complications emerging in survivors. High dose chemotherapy including anthracyclines, alkylating agents and vinca alkaloids may disrupt the substances on the surface of the endothelium and impair its ability to dilate and constrict. Moreover, total body radiation poses a risk by damaging the elastic matrix. Heart disease in long-term cancer survivors is 5-10 times higher than their siblings(14).

91 Endo-PAT 2000:

92 Endo Peripheral Artery Tonometry (Endo-PAT 2000) is a non-invasive technology for measuring ED 93 developed by Itamar Ltd. Non-invasive pneumatic probes which are placed on the both index fingers, 94 which continuously records pulse wave amplitude. A blood pressure cuff is inflated to occlude blood 95 flow and response after deflation is recorded. The reactive hyperaemic index (RHI) is resulted 96 following this mini-ischemic stress to the vessel. The pulse wave amplitude (PWA) is measured and 97 computes a RHI result automatically. RHI is calculated as the ratio of average PWA divided by the

average amplitude during the equilibration period. To compensate for any systemic changes, this ratio is normalized to a concurrent signal from the contralateral finger. Numerous studies in both adult and paediatric literature reveal Endo-PAT's excellent reproducibility and reliability(15, 16). In ED, the RHI is low and pulse amplitude is high. PAT also provides results on the peripheral augmentation index (PAT-AIx). Bonetti et al report a RHI of <1.35 as indicative of coronary ED in adults(17). However, there is no reported RHI cut off value in paediatric patients. Endo-PAT can be used at the patient's bedside, without extensive training required of the operator. Prior to Endo-PAT, ED had been assessed by flow-mediated vasodilation (FMD). FMD uses an ultrasound to assess the change in brachial artery diameter in response to increased flow after a period of vascular occlusion by a blood pressure cuff. A reduction in FMD represents ED. FMD is technically challenging to perform, user-dependent and requires training. FMD results macro blood vessel reactivity whereas Endo-PAT results micro, which may account for the challenges in comparing the two techniques. Endo-PAT is easier to set up, is automated and less user-dependent. **Objective:** The aim of this study is to conduct a systematic review of the use of Endo-PAT 2000 with particular emphasis on paediatric populations. **Methods:** A comprehensive systematic review was conducted to identify publications that investigated Endo-PAT 2000. All papers published from 2015 to March 2021 in paediatric populations age birth to 16 years of age were analysed. PRIMSA study design was used. The following scientific databases were searched: The Cochrane Database, MEDLINE EBSCO, EMBASE (Ovid), PUBMED and CINAHL EBSCO. The search was not limited by language. The search was limited by type of subjects (human), date (2015 to March 2021) and included all study types. Snowballing method was used. Authors of joint adult and paediatric papers were contacted by email to obtain separate paediatric data.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
	~
	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	, 8
1	0
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	0 7
2	/
2	8
2	9
	0
3	1
3	2
3	
	4
	5
3	
3	
3	
3	9
4	0
4	
4	
4	
4	
4	
4	
4	
4	8
4	
	0
5	
5	
5	
-	4
5	
	6
5	
5	8
	9

60

124 The database search was repeated several times using the combinations of keywords, MeSH terms and 125 filters (child: birth-16 years). The following MeSH terms or key words were used for searching: Peripheral arterial tonometry, PAT test, endopat, adolescent, ado*, child, paediatric, pediatric, 126 127 preschool, schoolboy, schoolgirl, boy, girl, teen, toddler, infant, baby. Exclusion criteria were: 1. If a study used a different device for example 'Watch-PAT;' 2. If the study 128 had no results. Inclusion criteria were: 1. Published in the English; 2. More than 50% of study 129 130 subjects were in the paediatric age range; 3. Data relevant to paediatric age range children could be 131 extrapolated from all data, where not all study subjects were children. A child was defined as up to 16 132 years, and this is consistent with PubMed's definition of a child. Where data relevant to children 133 could not be extrapolated from the whole dataset, the study authors were contacted for additional 134 information prior to study inclusion or exclusion. Patient and public involvement: 135 136 No patient involved. Data collection and analysis: 137 A total of 290 articles were obtained via the online database search (Figure 1: flow diagram). 138 Following removal of duplicates, 158 articles remained. The second screening was conducted by 139 'Rayyan- systematic review software' Copyright © 2021 Rayyan. Two further duplicate articles were 140 removed, with 156 remaining for review. 141 Two independent authors separately performed a blind screen on the 156 abstracts. 65 articles were 142 143 initially excluded based on title or abstract: 37 adult studies, 18 'PAT' did not represent peripheral 144 arterial tonometry (e.g. prism adaptation test, psychosocial assessment tool), 6 Watch-PAT, 2 sleep studies and 2 had no results available. 145 The remaining 91 articles were analysed viewing full text articles for further information. A further 20 146 147 were screened out as did not fit inclusion criteria or have results to report. Some of these articles that 148 included Endo-PAT 2000 in paediatrics were referenced in the discussion.

2 3 4 5 6	
7 8 9 10	
11 12 13 14 15	
16 17 18 19	
20 21 22 23	
24 25 26 27	
28 29 30 31 32	
33 34 35 36	
37 38 39 40 41	
42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58	
59 60	

1 2

149 Twenty-eight authors of studies including both adults and paediatric patients were contacted twice by 150 email to gather separate information on the paediatric participants. Twenty authors did not reply and 151 were thus excluded. Eight authors replied: three providing results, four unable to give separate 152 paediatric data and one author's research was on adult patients so was excluded. Three of the articles 153 whose authors replied with data were included in our review.

Four studies were obtained via snow balling searching. Some articles did not have results for the
systematic review but had reviews and conclusions that were relevant to the paper and so were
excluded from analysis.

A total of 50 articles were included in our results and are represented in tables 1-6. For each eligible
study the following data was reported: author, year of publication, design of the study, population

- 159 studied, control group (if available), RHI results.
- 160

161 Discussion

162 This literatures search identified 156 articles in the published paediatric literature on ED in children.

163 We have subdivided these papers into different systems for ease of reference (*Tables 1-5*,

39 40	Title, lead author	Year	Study	Population:	Control group:	Results: RHI	Outcomes
41			design	n=sample size,	n=sample size,	reported. If RHI not	
42				age; mean ± SD	age; mean ± 🧹	specified, we reported	
43				or median	SD or median	p/r values	
44				(range), [F/M]	(range), [F/M]		
44 45	Adolescents and	2015	Cohort	n=73 T1D	No controls.	56 (76.7%) had ED,	T1D adolescents
	young adults with		prospective	adolescents,	Results at	with lower mean RHI	had evidence of
46	type 1 diabetes		observationa	diagnosed > 1	baseline and	scores (1.26 ± 0.22)	ED. Good
47	display a		l study	year, 16.2 +/- 3.5	after a 1-year	versus 2.24 ± 0.48 ,	metabolic control
48	high prevalence of			years, [F/M	follow-up	p < 0.0001). More with	(HbA1c ≤7.5%)
49	endothelial			25/48]		ED had abnormal	and regular
50	dysfunction.					cardiac autonomic tests	physical activity
51	Scaramuzza et al					(p = 0.02) and were	might be
52	(18)					more sedentary. After 1	protective. ED
53						year follow-up in 64/73	progression
54						patients, 81.8% had	despite some
55						ED, despite some	improvement to
56						improvement in	HbA1c.
57	165						

164 *supplementary material, supplementary table 1*).

					HbA1c. ED rate recorded at baseline was 76.7%.	
Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. Scaramuzza et al (19)	2015	Double- blind, randomized controlled trial – snow balling	n=71 T1D patients, followed for at least 1 year, age 16.3 ± 3.4 years, [F/M 29/42]	Results at baseline and after follow-up.	3 double-blind study arms: 10,000 ORAC antioxidant diet +/- lipoic acid: RHI 1.40 \pm 0.68 vs 1.72 \pm 0.66 (P<0.05) (baseline vs af ter 6 months). 10,000 ORAC antioxidant diet + placebo: RHI 1.39 \pm 0.41 vs 1.58 \pm 0.40 (P>0.05) (baseline vs af ter 6 months). Controls: RHI 1.58 \pm 0.64 vs 1.54 \pm 0.42 (P>0.05).	Positive association between ED parameters and alpha-lipoic acid administration.
Effect of metformin on endothelial function in overweight adolescents with type 1 diabetes (T1D). Nadeau et al(20)	2016	Conference abstract	Total n=70 overweight T1D patients. n= 41 on metformin (up to 2000 mg/day), 12- 19 years (mean 15.8)	n=29 placebo group. Endo- PAT scores at baseline and 13 weeks	Mean baseline RHI score was 1.8 ± -0.6 in the metformin group and 1.7 ± -0.6 placebo group. At 13 weeks, no significant change from baseline RHI (± 0.1 in metformin vs. -0.0 in placebo, P = 0.08). There was some improvement in endothelial function among males.	Metformin may improve endothelial function in overweight T1D males.
Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. Babar et al (21)	2019	Cross- sectional study	T1D adolescents \geq 12 years. Two groups based on different HbA1c ranges. (HbA1c) \leq 8.5% (n=27)	HbA1c ≥9.5% (n=25)	PAT results were not significantly different between the groups. Pearson correlation showed a significant direct relationship between rising HbA1c and PAT (p=0.03, r=0.31).	Suboptimal glycemic contro as evidenced by rising HbA1c causes early atherosclerosis.
Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. Deda et al (22)	2018	Research article – snow balling	n=21 T1D patients followed for ~2 years. 25- OH-Vit. D levels < 37.5 nmol/L. Age 15.7 ± 1.4 years, [F/M 19/12]	Controls: matched age, sex and T1D tested spring and in fall (no significant difference noted).	After 4.8 ± 1.3 months of Vit. D supplementation RHI improved: $1.83 \pm$ 0.42 vs 2.02 ± 0.68 (P<0.05).	Vit. D supplementation associated with improvement to endothelial function and reduced expression of urinary inflammatory markers.
		-			ts (5 studies). Reactive hyp	

Title, lead author	Year	Study	BM. Population:	Control group:	Results: RHI	Page 10 c Outcomes
		design	n=sample size, age; mean ± SD or median (range), [F/M]	n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values	
Nocturnal blood pressure dipping as a marker of endothelial and cardiac function in pediatric-onset systemic lupus erythematosus (SLE). Chang et al (23)	2020	Cross- sectional study – author contacted for separate paeds data	n=20, 9-19 years (mean 16.5), (7 were age 16 or under). Average disease duration 3.2 years (± 2.1). [F/M 17/3]	Separated into 2 groups based on nocturnal BP dipping status.	Mean In(RHI) for n=7 (aged 16 and under): 0.529. 22% had ED. Reduced diastolic BP dipping was associated with poorer endothelial function $(r \ 0.5, p = 0.04)$.	SLE cohort, isolated nocturnal BP non- dipping is prevalent and associated with ED and atherosclerotic changes. Potential role for routine ABPM for youth with SLE.
 Endothelial Function and Arterial Stiffness Relate to Functional Outcomes in Adolescent and Young Adult Fontan Survivors. Goldstein et al (24) 5 6 7 8 9 0 	2016	Cross- sectional prospective observationa l study	n=60, 8-25 years (mean 13.9±4.1), [F/M 29/31]	No controls	AI (P<0.05) was negatively associated with peak VO2 (02 consumption). PAT derived baseline pulse amplitude (P<0.05) was negatively associated with the ratio of minute ventilation to C02 at anaerobic threshold. PAT-AI (P<0.05) was negatively associated with parent-reported Paeds QOL total and physical heath summary scores.	Worse vascular measures were associated with worse functional measures. Increased arterial stiffness and decreased endothelial function are associated with lower aerobic capacity, physical activity, and quality of life in Fontan survivors.
 Natural history of vascular function in adolescent and young adult Fontan survivors: A longitudinal ass essment of endothelial function and arterial stiffness. Goldstein et al (25) 	2017	Prospective single- centre longit udinal study, conference abstract	n=50, mean 13.7 +/- 4.2 years, [F/M 23/27]	Paired testing at a mean interval of 2.0 +/- 0.2 years of Fontan survivors.	Decreases in RHI ($0.002 +/- 0.01/yr$) were not significant. AIx improved by 0.74 +/- 0.3/yr (p=0.02). Changes RHI and AI did not correlate with change in peak VO (peak 02 consumption). Change in BMI was a predictor for RHI (R 0.17, p=0.007). Change in resting O2 saturation was the only predictor of the rate of change in AI (R 0.09, p=0.04).	Vascular function does not change uniformly in Fontan survivors. Changes in vascular function do not relate to changes in aerobic capacity but are associated with changes in anthropometric measures and O2 saturation.
 6 Vascular function 7 long term after 8 Kawasaki disease: 9 another piece of 0 the puzzle? Pinto 1 et al (26) 2 3 4 	2017	Single- centre prospective study	n=43 Kawasaki patients, age >11 years, diagnosed >5 years ago, with no coronary lesions or any other risk factors for cardiovascular disease.	n= 43 control group of individuals without cardiovascular risk factors.	Kawasaki patients had decreased RHI compared with controls (1.59±0.45 versus 1.98±0.41; p<0.001). AI was similar in both groups (-4.5±7 versus - 5±9%; p 0.6).	Children with Kawasaki disease may have long-term sequelae, even when there is no discernible coronary artery involvement in the acute stage of the disease.
5 Endothelial6 function in	2017	Observation al	n=19 with HSP, 13.5 ± 3.9 years,	n=23 healthy children, $12.8 \pm$	Mean RHI 1.81 in the study group and 1.87 in	This study suggests that HSP causes short

children with a history of Henoch Schonlein purpura (HSP). Butbul Aviel et al (27) 170 Table 2:		prospective study	[F/M 8/11]	4.5 years, [F/M 7/16]	the control group (p = 0.18). RHI was higher in patients who had endothelial function measured >6 years since HSP diagnosis compared with those patients with less than 6 years follow up (1.98 + 0.74 vs. $1.38 \pm 0.43 P = 0.037$).	term endothelial dysfunction that improves with time.
		-	•		conditions (5 studies). Read	
Title, lead author	Year	Study design	Population: n=sample size, age; mean ± SD or median (range), [F/M]	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	Results: RHI reported. If RHI not specified, we reported p/r values	Outcomes
Vascular function in asthmatic children and adolescents. Augusto et al (28)	2017	Cross- sectional controlled study	n=19 asthmatic patients, age 13.6±0.6 years. [F/M 0/19]	n=18 controls. 14.9±0.7 years. [F/M 0/18]	LnRHI were similar between groups (p = 0.23). The augmentation index (AIx@75%) was significantly higher in the asthmatic group (- 7.75 ± 1.7) compared to the control group (- 15.25 ± 1.8), p < 0.04.	The increased AIx@75 without changes in LnRHI in asthmatic patients could mean that an early detection of vascular impairment may precede ED.
The effect of weight loss on endothelial function and sleep disordered breathing (SDB) in obese children. Ysebaert et al(29)	2018	Conference abstract	n=62 obese, age 11-19 (mean 15.8) years, [F/M 20/42]	No controls. Children reassessed after 6-month weight loss programme.	Endo-Pat used. At baseline 39% had SDB. After 6 months, 86% had resolution of earlier diagnosed SDB. All showed significant improvement of endothelial function after programme ($p < 0.001$). No correlations between presence of SDB and improvement in endothelial function found.	Endothelial function significantly improves after weigh loss.
Polysomnographi c correlates of endothelial function in children with obstructive sleep	2018	Cross sectional study	n=121 mild OSA, 6.2 \pm 1.6 years, [F/M 37/84]. n=127 moderate- severe OSA, 6.0 \pm 1.6 years, [F/M 31/96]	n=107 primary snorers (PS), age 6.4 ± 1.8 years, [F/M 37/70]	OSA groups lower RHI than PS ($P < 0.001$, $P = 0.001$). RHI positively correlated with age ($r = 0.17$, $P = 0.002$), BMI z score ($r = 0.14$, $P = 0.008$) and oxygen saturation ($r = 0.15$, $P = 0.006$).	Children with OSA are at increased risk for abnormal endothelial function than habitually snoring children.
apnoea (OSA). Zhang et al (30) Endothelial					OSAS had lower RHI	OSAS have

1 2							
2 3 4 5 6 7 8 9 10 11	dysfunction in children with obstructive sleep apnoea syndrome (OSAS). Xu et al(31)		sectional study	3-11 years	snorers (PS). No significant differences in age/gender.	1.1 \pm 0.1 vrs 1.2 \pm 0.2 (P<0.01). RHI independently correlated with age, gender, obstructive apnoea hypopnea index, oxygen desaturation index (P<0.01).	significant ED compared with PS. Frequent arousals due to obstructive respiratory events during sleep may be a candidate risk factor for ED.
12 13	174 Table 3:	Endo-PA	AT 2000 in paed	liatric patients with re	spiratory conditions	s (4 studies). Natural logari	thm of RHI
14	175 (LnRHI)	, endothe	elial dysfunction	n (ED), reactive hyper	raemia index (RHI),	augmentation index (AI),	heart rate-
15 16	176 corrected	augmer	ntation index (A	Ix@75), primary snot	rers (PS), obstructiv	e sleep apnoea (OSA), obs	tructive
17 18	177 sleep ap	noea syn	drome (OSAS).				
19 20 21	178						
22 23	179						
24 25							
26	180						
27 28	181						
29 30 31 32	Title, lead author	Year	Study design	Population: n=sample size,	Control group: n=sample size,	Results: RHI reported. If RHI not	Outcomes
33				age; mean ± SD or median (range) [F/M]	age; mean ± SD or median (range) [F/M]	specified, we reported p/r values	
 33 34 35 36 37 38 39 40 41 42 43 44 	Do self-reported stress and depressive symptoms effect endothelial function in healthy youth? The LOOK longitudin al study. Olive et al(32)	2018	Longitudinal cohort study				Contrast to previous findings in adolescents, little evidence between current or previous psychosocial stress or depression and endothelial function in 16-year-old adolescents.
 33 34 35 36 37 38 39 40 41 42 43 	stress and depressive symptoms effect endothelial function in healthy youth? The LOOK longitudin al study. Olive et	2018		or median (range), [F/M] n=203, 7.6 ± 0.3 years, [F/M	SD or median (range), [F/M] LOOK longitudi nal study, who were followed through to adolescence (16	p/r values All relationships occurred in the hypothesised direction, but no cross-sectional or prospective evidence of early psychological stress or depression was associated with ED	findings in adolescents, little evidence between current or previous psychosocial stress or depression and endothelial function in 16-year-old

+ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Cerebrovascular reactivity is associated with peripheral endothelial function (EF) among adolescents. Urback et al(33)	2016	Conference abstract	n=11 with bipolar disorder. EF measured by PAT and cerebrovascular reactivity (CVR) by blood-oxygen- level dependent fMRI.	n=35 healthy controls	EF was positively correlated with CVR in grey matter (r=0.41, p=0.012), and a peak voxel in the left- medial-frontal gyrus (r=0.35, p=0.036).	Breath-hold CVR and peripheral EF are linked, suggesting that vascular function may be a multi- systemic phenotype. EF may be a potential proxy for cerebral blood vessel function with greater accessibility and lower cost than fMRI.
5 7 3 9 1 2 3 4 5	Retinal-vascular photography as a window into the cardiovascular and neurocognitive burden of adolescent bipolar disorder (BD). Naiberg et al (34)	2017	Cross- sectional study, author emailed for separate paeds data- most were teenagers	n=30 with bipolar disorder, 17.97±1.86 years	n=32 healthy controls, 16.00±1.62 years	In BD group, higher endothelial function associated with higher arterio-venular ratio (r=0.375, p=0.041).	Retinal photography may help assessing cardiovascular and neurocognitive burden of BD.
6 7 9 0 1 2 3 4 5 6	Impact of psychological health on peripheral endothelial function and the HPA-axis activity in healthy adolescents. Chen et al(35)	2017	Longditudin al 3-year follow-up study	n=162, 14.5 ± 1 years. [F/M 94/68].	Baseline and three-year follow-up.	Lower peripheral endothelial function was associated with high level of anger $(\beta = -0.332, p = 0.018)$ and disruptive behaviour $(\beta = -0.390, p = 0.006)$ over three years in males, but not in females, adjusted for covariates.	High amounts of negative emotions may have adverse effects on peripheral endothelial function and regulation of the HPA-axis activity. High level of self- concept might be protective.
7 L 3	183 Table 4:	Endo-PA	AT 2000 in paedi	iatric patients with ps	ychiatric condition	s (4 studies). Endothelial d	ysfunction
	184 (ED), en	dothelial	function (EF), c	erebrovascular reacti	vity (CVR), bipola	r disorder (BD), functional	magnetic
) I	185 resonance	e imagin	g (fMRI), hypot	halamic–pituitary–ad	renal HPA.		
) 2 	185 resonanc	e imagin	g (fMRI), hypot	halamic–pituitary–ad	renal HPA.		
) 2 3 5 7 3		ee imagin Year	g (fMRI), hypot Study design	halamic–pituitary–ad Population: n=sample size, age; mean ± SD or median (range), [F/M]	renal HPA. Control group: n=sample size, age; mean ± SD or median (range), [F/M]	Results: RHI reported. If RHI not specified, we reported p/r values	Outcomes
9 0 1 2 3 4 5 6 7 8 9 0	186		Study	Population: n=sample size, age; mean ± SD or median	Control group: n=sample size, age; mean ± SD or median	reported. If RHI not specified, we reported	Outcomes
0 1 2 3 4 5 5 7 8 9 1 2 3 4	186 Title, lead author		Study	Population: n=sample size, age; mean ± SD or median	Control group: n=sample size, age; mean ± SD or median	reported. If RHI not specified, we reported	Outcomes
	186 Title, lead author		Study	Population: n=sample size, age; mean ± SD or median	Control group: n=sample size, age; mean ± SD or median	reported. If RHI not specified, we reported	Outcomes
	186 Title, lead author		Study	Population: n=sample size, age; mean ± SD or median	Control group: n=sample size, age; mean ± SD or median	reported. If RHI not specified, we reported	Outcomes

Vascular endothelial function in inflammator bowel disea (IBD). Winderman 0 al(36)	se	Case- control study	n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7]	n=16, age 15.1 +/- 2.8 years, [F/M 7/8]	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67).	IBD group lower RHI compared with controls. IBD patients may need to be monitored for thromboembolic phenomena.
 Endothelial in childhood lymphoid leukaemia (survivors: p evaluation v peripheral a tonometry. 	1 acute ALL) ilot vith rtery	Case control study	n=16 ALL survivors, age 8- 20 years (12.9+/- 0.9), [F/M 8/8].	n=16 healthy sibling pairs 13.8 (0.9), [F/M 10/6].	Both groups similar in cardiovascular risk measures but survivors had lower RHI (1.54 vs. sibling 1.77; P=0.0474).	Evidence of poorer vascular health in cancer survivors.
Microvascu endothelial function in Japanese ea adolescents Odanaka et Odanaka et	rly al (38)	Control study	n=157 healthy adolescents divided by gender. Females n=82, median age 14 (1), 13.7 \pm 0.9 years	Males n= 75, median age 14 (2) years	No difference in RHI according to sex: boys and girls 1.85 ± 0.6 , 1.82 ± 0.66 and 1.87 ± 0.54 . RHI was significantly associated with systolic and diastolic BP, and had no correlation with anthropometric parameters and arterial stiffness markers.	RHI among adolescents were similar to those reported in previous studies on children and early adolescents.
 Endothelial Dysfunction the Effect o Arginine an Citrulline Supplement in Children Adolescents Mitochondr Diseases. A Jasmi, et al 	f d ation and s With ial l	Case control study	9 participants, age 6-17 years (mean 9.6).	3-15 years (mean 9.4). Baseline endothelial dysfunction was assessed in control individuals.	Lower RHI with mitochondrial diseases. RHI increased with arginine or citrulline supplementation	Supplementation with NO precursors may improve ED by enhancing NO production. First study to use Endo- PAT methodology in mitochondrial diseases.
Assessment traditional a non-traditio risk factors premature atherosclerc children wite juvenile dermatomys (JDM) and pediatric co Wahezi et a	of 2020 nd nal for osis in h soitis ntrols. 1 (40)	Retrospectiv e controlled study	n=40 JDM, age 6- 22 (mean 12.4± 4.1) years, [F/M 28/12]	n=20 controls, age 12.7± 3.9 years, [F/M 14/8]	75% controls had ED compared to 50% JDM group. RHI controls and JDM groups: 1.43 [1.2, 1.7] and 1.57 [1.2,1.9]. When controlled for lipoprotein A (atherogenic confounder), JDM patients had 41% RHI increase, thus indicating less ED compared to controls.	Rheumatology childhood disorders may be at increased risk of developing premature atherosclerosis, but traditional and sociodemographic features may play a greater role in the ultimate development of cardiovascular disease.
 5 Vascular He 6 of Children 7 Conceived v 8 In Vitro 9 Fertilization 60 (IVF). Zhan 	via	Cross- sectional pilot study	n=17 IVF children, 10-14 years. Also used carotid ultrasound and pulse wave velocity	Compared to published norms or to historical Stanford controls	Mean Endo-PAT index in the IVF cohort was 1.66+/-0.52, 71% had abnormal values (<1.9). Mean RHI was not significantly	Children conceived by IVF seem to have evidence of abnormal vascular health.

1 2											
3	(41)				measurements.		different between IVF				
4							and controls.				
5 6	Endothelia dysfunctio		2020	Case control study	n=431 PHIV, median 14.1	n=93 without HIV, median	PHIV had higher rates of ED (50% vs 34%; P	PHIV appear to have increased risk of ED.			
7	South Afr			study	(12.8, 15.5) years,	13.9 (12.1,	= .01); relationship	These findings have			
8	youth living				[F/M 213/218]	15.3) years,	persisted after adjusting	important			
9 10	perinatally acquired h					[F/M 53/40]	for age, sex, BMIZ, elevated BP, and	implications as HIV has increased risk of			
11	immunode						hypercholesterolemia	premature CVD and			
12	y virus (P						(RR, 1.43; P =0.02).	complications.			
13 14	antiretrov therapy. N						PHIV, CD4 count, viral load and current ART				
14	et al (42)	lando					class were not				
16							associated with ED				
17	Soluble C	D14	2020	Case control	n=283 perinatally	n=69 age-	after adjustment. PHIVs had lower RHI	Higher sCD14 is			
18 19	(sCD14) i	s	2020	study	acquired HIV	matched	despite viral	independently			
20	associated				(PHIV), 9-14	without HIV	suppression (RHI=1.36	associated with ED in			
21	endothelia dysfunctio				years.		vs 1.52, p<0.01). sCD14 at 24 months	PHIVs.			
22 23	South Afr	ican					correlated with ED				
24	youth on A Dirajlal-F						($p \le 0.04$). PHIV with ED, sCD14 was				
25	al (43)	aigo et					associated with lower				
26 27							RHI (β-0.05, p=0.01).				
28	188	Table 5:	Endo-PA	AT 2000 in paed	iatric patients with ot	her miscellaneous	paediatric conditions (8 stud	dies).			
29 30	189	Reactive hyperemia index (RHI), augmentation index (AIx) (vascular stiffness), endothelial dysfunction (ED),									
31 32	190	inflamm	atory boy	wel disease (IBD), acute lymphoid let	ukaemia (ALL), nit	tric oxide (NO), perinatally	acquired			
33 34	191	human i	mmunod	eficiency virus (PHIV), In Vitro Ferti	lization (IVF), solu	uable CD 14 (sCD14).				
35											
36	192										
37 38											
39	193	Many o	f the pap	pers did not inc	elude other factors t	hat would be imp	oortant in a cardiovascula	r			
40 41	194	assessm	nent of c	hildren for exa	ample family histor	v cholesterol and	d blood pressure parameter	ers and			
41				-							
43 44	195	Body M	lass Inde	ex (BMI) and s	tandardised BMI (S	SDS) measureme	nts. So, in many studies i	t cannot be			
45	196	exclude	d that th	ere were confo	ounding variables as	ffecting the ED s	core. Regardless, this stu	dy			
46 47	197	indicate	es that th	ere are a signif	icant number of nu	hlished naediatri	c papers that indicate the	nresence			
48	157	marcate	5 that th	ere are a signi	fiedine number of pu	bilished paediau	e papers that increate the	presence			
49 50	198	of ED i	n childre	en as young as	8 years old.						
50 51											
52 53	199	Several	factors	may impact mi	crovascular function	on. For example,	puberty, which is of parti	cular			
55 55	200	interest	in our p	aediatric review	w. Bhangoo et al re	port improved R	HI in correlation with an	increase in			
56	201	Tanner	stages a	nd postulated t	hat this may be due	to sex steroids(4	4).				
57 58											
59											
60											

Strengths of the paper include a comprehensive literature search including contacting authors by email for separate paediatric results in studies with combined adult and paediatric data. All study types were reviewed and even the studies without results but had interesting points were included in our discussion. Also, we do not think that this paediatric Endo-PAT review has been done before. Weaknesses of the paper include there may be significant findings in studies in the grey literature or in conference presentations that was not included, for example in the studies where 25 authors did not respond to emails. Only papers from 2015 to date were included. Endothelial dysfunction in paediatric type 1 diabetes mellitus patients: Table 1 presents 5 studies in T1D patients. 3/5 studies reported RHI changes in the T1D group. 1/5 studies included only adolescent and reported that RHI negatively correlates with impaired metabolic control and subclinical signs of autonomic neuropathy. However, regular physical activity is protective(18). Suggesting that good metabolic control (HbA1c \leq 7.5%) and regular physical activity might be protective against ED. 1/5 studies report the positive association between ED parameters and alpha-lipoic acid administration and antioxidant diet(19). 1/5 reported RHI values after metformin use and this may improve endothelial function in overweight T1D males(20). Barber et al report suboptimal glycaemic control as evidenced by a rising HbA1c causes early atherosclerosis(21). 1/5 studies noted an improvement in RHI post vitamin D supplementation in T1D patients with vitamin D deficiency(22). **Endothelial dysfunction and Metabolic Syndrome:** 24 studies (Supplementary Table 1) describe the use of Endo-PAT 2000 for metabolic syndrome. These studies included measurement of the following parameters: BMI, T1D, T2D, gender, pubertal stage, age, polycystic ovary syndrome, blood pressure values, non-alcoholic fatty liver disease,

BMJ Open

∠ 3	
3 4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

227 obstructive sleep apnoea, lipid profile, insulin, plasma glucose levels, inflammatory markers (urinary
228 markers, CNP, micro-RNA-126, E-Selectin).

19 studies focused on obesity/overweight paediatric patients. In numerous studies, RHI was
significantly lower in the obese group(45-50). ED may mediate the link between obesity-related
insulin resistance and early microalbuminuria(51). Exercise and diet control improves glycolipid
metabolism. Noma et al (2017) report the beneficial effects of exercise in paediatric patients and is an
important message in reducing future endothelial complications(52).

6 studies focused on patients with impaired glucose tolerance or T2D. Studies also compared RHI in
T1D and T2D patients. Kochummen *et al* (2019) mean RHI in obese adolescents without diabetes was
similar to T1D and T2D patients(45). Tomsa et al (2016) RHI was higher if HbA1c was less than
5.5%, and was lower in T2D obese(53).

Lower insulin sensitivity in these patients poses a risk of diabetic nephropathy(6). Microangiopathic renal damage increases oxygen consumption and increases resistance in the afferent arterioles. Shah et al (2017) report T2D patients have greater vascular thickness and stiffness and worse endothelial function compared to obese and lean children(54). This is raising concern that adolescents with T2D are already at risk of developing early onset cardiovascular disease.

Berardinelli-Seip syndrome is a rare condition characterized by severe insulin resistance and absence
of subcutaneous fat since birth or early childhood. Lipids can deposit in muscle, liver and arterial
walls; explaining its clinical complications of diabetes, hepatic injury, hyperlipidaemia and premature
atherosclerosis. Fernandes et al (2015) used Endo-PAT 2000 in a cohort with this syndrome(55). 50%
had ED (natural logarithm RHI index of 0.49±0.15). Their results support the risk of ED in this cohort
and highlights the necessity of early intervention to avoid cardiovascular complications.

3 249 Endoth

Endothelial dysfunction in cardiac and vascular conditions:

Dietz et al (2015) systematic review and metanalysis on peripheral ED in Kawasaki disease, report
that patients with coronary arterial aneurysms had higher surrogate markers for cardiovascular disease
risk(56). This may indicate these patients should be monitored for CVD in adulthood, however

significant heterogeneity was reported. Two studies include ED in patients with systemic lupuserythematosus (SLE) and Henoch Schonlein purpura (HSP).

Goldstein et al (2016) by using Endo-PAT identified multiple patient and procedural factors for
Fontan survivors(57). Some determinants of RHI included prior Norwood procedure, systolic blood
pressure, resting heart rate and oxygen saturation. Targeted intervention of modifiable risk factors
may improve long-term vascular health and functional status in Fontan survivors. Further research by
Goldstein et al (2015) noted increased arterial stiffness and decreased endothelial function are
associated with lower aerobic capacity, quality of life (QOL) and physical activity in adolescent and
young adult Fontan survivors(58).

262 'The LOVE-COARCT study' (Long-term Outcomes and Vascular Evaluation After Successful
263 Coarctation of the Aorta Treatment) compares vascular function in patients with coarctation of the
264 aorta treated with surgery, balloon dilation or stenting. Endothelial function was similar among
265 groups(59).

266 Negishi et al (2016) used Endo-PAT to compare Fontan survivors and healthy controls. The Fontan
267 patients were aged 15 to 32 years. Mean RHI 0.56+ /- 0.26 in Fontan patients and 0.78+ /- 0.31 in
268 controls (p= 0.09). RHI in Fontan patients was associated with diastolic blood pressure, heart rate and
269 haemoglobin A1c level(60). Endothelial function in Fontan patients was associated with abnormal
270 glucose tolerance and arterial stiffness and therefore concluded that glucose regulation might be a
271 potential target to improve ED in this cohort.

Adult patients with repaired coarctation of aorta have a high risk of late HTN. Nozaki et al (2018)
 assessed ED in conduit and resistance arteries and used FMD and Endo-PAT in paediatric patients
 with repaired coarctation of aorta(61).

3 275

Endothelial dysfunction in respiratory conditions:

Augusto et al noted an increased augmentation index without changes in LnRHI in asthmatic patients;

indicating early detection of vascular impairment may precede ED, and different mechanisms may

0 278 contribute to the pathogenesis and progression of cardiovascular events in this population(28).

BMJ Open

1/4 reported an improvement in sleep disordered breathing post weight loss(29). Also, endothelial
function significantly improves after weight loss. 2/4 studies report children with OSA compared to
habitual snorers are at increased risk for ED(30, 31). Frequent wakening due to obstructive respiratory
events may be a risk factor for ED in OSA.

283 Endothelial dysfunction and psychological conditions:

Potential limitations in this area are self-reported methods for detecting psychological distress of
children, for example in the LOOK longitudinal study(32). Naiberg et al (2017) utilised retinal
vascular photography, a proxy for cerebral microvasculature, and Endo-PAT to assess cardiovascular
and neurocognitive burden in bipolar disorder (BD) adolescents (mean age 16-17 years)(34). In the
BD group, better endothelial function was associated with higher arterio-venular ratio (r=0.375,
p=0.041). Retinal vascular calibre was significantly associated with endothelial function in BD and it
has been suggested that it may be used as an assessment tool in this cohort.

Olive L.S. (2017) published 'The emerging field of paediatric psycho-cardiology' highlighting the importance of the childhood origins of adult CVD(62). This article highlights that psychological distress can influence CVD risk, directly by physiological change that can negatively impact the integrity of the cardiovascular system.

295 Conclusion:

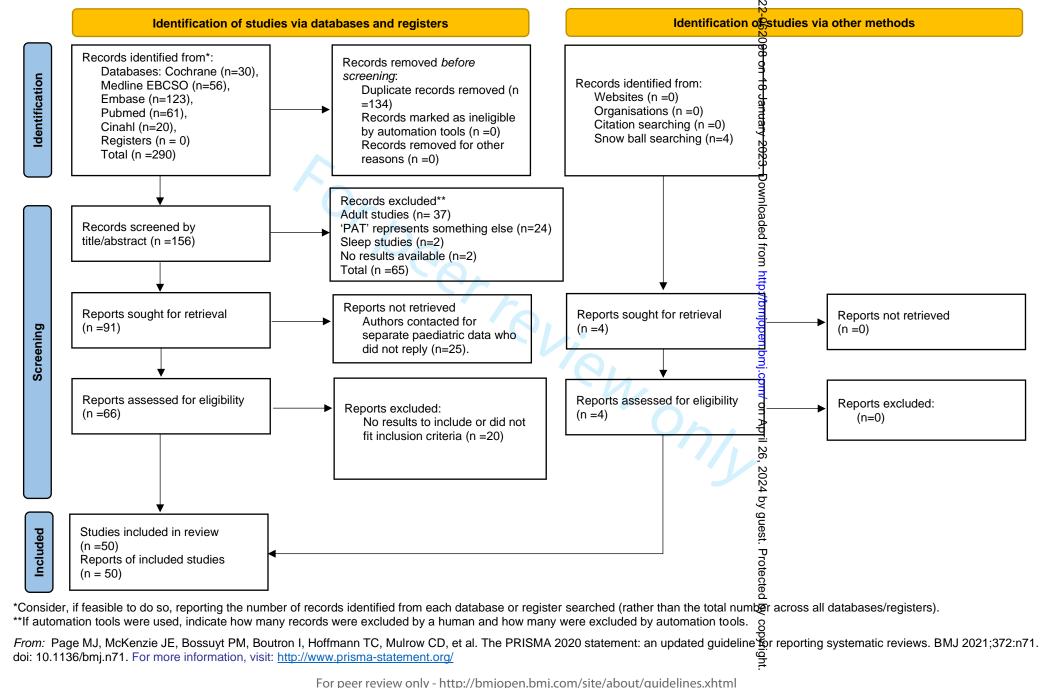
There are a number of papers in the paediatric literature describing ED at young ages using Endo-PAT. It should be concerning to paediatricians that children with various chronic diseases have evidence of ED. However, in many cases, there has only been a single cohort study using Endo-PAT. Further studies are required to validate these findings. Additionally, longitudinal studies are required to evaluate how this ED may change as the child ages and their chronic conditions changes. Further studies are also required that will characterise more completely the cardiovascular risk profile of these children with chronic disease. Consensus on other vascular risk markers that could be included in future studies is ideal and if accomplished, this would facilitate meta-analyses of studies of conditions with relatively rare conditions. Paediatricians should start to include an approach to cardiovascular

1 2		
3 4	305	risk assessments in their assessments of young children and adolescents, including but not limited to
5 6 7	306	those with chronic diseases.
8 9	307	
10 11 12	308	
13 14 15	309	
16 17	310	Statements and declarations:
18 19 20	311	a. Authorship contributions:
21 22 23	312	All authors contributed to the initial search strategy protocol. I deLaunois performed the online
24 25	313	database search. J Hayden and G McDonnell separately performed a blind screen of the abstracts and
26 27	314	analysed the papers. G McDonnell contacted the authors of joint adult and paediatric papers to obtain
28 29	315	separate paediatric data. J Hayden wrote the initial manuscript which was revised by C O'Gorman.
30 31 32	316	All authors reviewed the manuscript prior to submission.
33 34	317	b. There are no competing interests to declare.
35 36 37	318	c. Funding: This research received no specific grant from any funding agency in the public,
38 39	319	commercial or not-for-profit sectors.
40 41 42	320	d. Data sharing: search technique and data analysis are available from Rayyan software and the
43 44	321	corresponding author.
45 46 47	322	e. Competing Interest: None declared
48 49 50	323	
51 52	324	References:
53 54	325	1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of
55	326	atherosclerosis. Cardiovasc J Afr. 2012;23(4):222-31.
56 57	327	2. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial Dysfunction
57 58	328	in Diabetes. Diabetes Care. 2011;34(Supplement 2):S285.
59 60	329 330	3. Taylor MS, Choi CS, Bayazid L, Glosemeyer KE, Baker CCP, Weber DS. Changes in vascular reactivity and endothelial Ca(2+) dynamics with chronic low flow. Microcirculation. 2017;24(3).
		19

BMJ Open

4. Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology. 2020;71(5):397-410. Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, et al. Radial Artery 5. Tonometry Demonstrates Arterial Stiffness in Children With Type 1 Diabetes. Diabetes Care. 2004;27(12):2911. Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin Sensitivity and 6. Diabetic Kidney Disease in Children and Adolescents With Type 2 Diabetes: An Observational Analysis of Data From the TODAY Clinical Trial. Am J Kidney Dis. 2018;71(1):65-74. 7. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485-93. 8. Naylor LH, Davis EA, Kalic RJ, Paramalingam N, Abraham MB, Jones TW, et al. Exercise training improves vascular function in adolescents with type 2 diabetes. Physiol Rep. 2016;4(4). Tryggestad JB, Willi SM. Complications and comorbidities of T2DM in adolescents: findings 9. from the TODAY clinical trial. J Diabetes Complications. 2015;29(2):307-12. Jodele S, Dandoy CE, Myers KC, El-Bietar J, Nelson A, Wallace G, et al. New approaches in the 10. diagnosis, pathophysiology, and treatment of pediatric hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transfus Apher Sci. 2016;54(2):181-90. Leisenring WM, Mertens AC, Armstrong GT, Stovall MA, Neglia JP, Lanctot JQ, et al. Pediatric 11. cancer survivorship research: experience of the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2319-27. 12. Rajendran R, Abu E, Fadl A, Byrne CD. Late effects of childhood cancer treatment: severe hypertriglyceridaemia, central obesity, non alcoholic fatty liver disease and diabetes as complications of childhood total body irradiation. Diabet Med. 2013;30(8):e239-42. 13. Baker KS, Chow E, Steinberger J. Metabolic syndrome and cardiovascular risk in survivors after hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47(5):619-25. Friedman DN, Hilden P, Moskowitz CS, Suzuki M, Boulad F, Kernan NA, et al. Cardiovascular 14. Risk Factors in Survivors of Childhood Hematopoietic Cell Transplantation Treated with Total Body Irradiation: A Longitudinal Analysis. Biol Blood Marrow Transplant. 2017;23(3):475-82. Selamet Tierney ES, Newburger JW, Gauvreau K, Geva J, Coogan E, Colan SD, et al. 15. Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr. 2009;154(6):901-5. Moerland M, Kales AJ, Schrier L, van Dongen MGJ, Bradnock D, Burggraaf J. Evaluation of the 16. EndoPAT as a Tool to Assess Endothelial Function. International Journal of Vascular Medicine. 2012:2012:904141. 17. Bonetti PO, Pumper GM, Higano ST, Holmes DR, Jr., Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol. 2004;44(11):2137-41. Scaramuzza AE, Redaelli F, Giani E, Macedoni M, Giudici V, Gazzarri A, et al. Adolescents and 18. young adults with type 1 diabetes display a high prevalence of endothelial dysfunction. Acta Paediatrica. 2015;104(2):192-7. Scaramuzza A, Giani E, Redaelli F, Ungheri S, Macedoni M, Giudici V, et al. Alpha-Lipoic Acid 19. and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. J Diabetes Res. 2015;2015:474561. 20. Nadeau KM, K.; Nathan, B.; Bacha, F.; Katz, M.; Simmons, J.; Gottschalk, M.; Tsalikian, E.; Tansey, M.; Copeland, K.; Linda, D.; Cree-Green, M.; Libman, I.; Haller, M. Effect of metformin on endothelial function in overweight adolescents with type 1 diabetes (T1D). Pediatric Diabetes. 2016;17(0):152-3. Babar G, Clements M, Dai H, Raghuveer G. Assessment of biomarkers of inflammation and 21. premature atherosclerosis in adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab. 2019;32(2):109-13.

22. Deda L, Yeshayahu Y, Sud S, Cuerden M, Cherney DZ, Sochett EB, et al. Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. Pediatr Diabetes. 2018;19(3):457-63. 23. Chang JC, Xiao R, Meyers KE, Mercer-Rosa L, Natarajan SS, Weiss PF, et al. Nocturnal blood pressure dipping as a marker of endothelial function and subclinical atherosclerosis in pediatric-onset systemic lupus erythematosus. Arthritis Research & Therapy. 2020;22(1):129. 24. Bryan HG, Elaine MU, Philip RK, Zhigian G, Michelle AA, Wayne AM, et al. Endothelial Function and Arterial Stiffness Relate to Functional Outcomes in Adolescent and Young Adult Fontan Survivors. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2016;5(9). 25. Goldstein BHG, Z.; Khoury, P. R.; Marino, B. S.; Amos, M. A.; Mays, W. A.; Veldtman, G. R.; Redington, A. N.; Urbina, E. M. Natural history of vascular function in adolescent and young adult Fontan survivors: A longitudinal assessment of endothelial function and arterial stiffness. Circulation 2017;136(0). 26. Pinto FF, Gomes I, Loureiro P, Laranjo S, Timóteo AT, Carmo MM. Vascular function long term after Kawasaki disease: another piece of the puzzle? Cardiol Young. 2017;27(3):488-97. Butbul Aviel Y, Dafna L, Pilar G, Brik R. Endothelial function in children with a history of 27. henoch schonlein purpura. Pediatric rheumatology online journal. 2017;15(1):3. 28. Augusto LS, Silva GC, Pinho JF, Aires RD, Lemos VS, Ramalho LF, et al. Vascular function in asthmatic children and adolescents. Respir Res. 2017;18(1):17. Ysebaert M. K VE, A, Bruyndonckx, L, De Winter, B, De Guchtenaere, A Vantieghem, S, 29. Provyn S, Van Hoorenbeeck, K, Verhulst, S. The effect of weight loss on endothelial function and sleepdisordered breathing in obese children. Obesity Facts. 2018;11(0):225-6. 30. Zhang F, Wu Y, Feng G, Ni X, Xu Z, Gozal D. Polysomnographic correlates of endothelial function in children with obstructive sleep apnea. Sleep Medicine. 2018;52:45-50. 31. Xu ZF, Zhang FJ, Ge WT, Feng GS, Wu YX, Ni X. [Endothelial dysfunction in children with obstructive sleep apnea syndrome]. Zhonghua Er Ke Za Zhi. 2020;58(1):13-8. 32. Olive LS, Abhayaratna WP, Byrne D, Richardson A, Telford RD. Do self-reported stress and depressive symptoms effect endothelial function in healthy youth? The LOOK longitudinal study. PLOS ONE. 2018;13(4):e0196137. Urback ALM, A. W. S.; Islam, A. H.; Korczak, D. J.; Macintosh, B. J.; Goldstein, B. I. 33. Cerebrovascular reactivity is associated with peripheral endothelial function among adolescents. Biological Psychiatry 2016;79(9):112S. Naiberg MR, Hatch JK, Selkirk B, Fiksenbaum L, Yang V, Black S, et al. Retinal photography: A 34. window into the cardiovascular-brain link in adolescent bipolar disorder. J Affect Disord. 2017;218:227-37. 35. Chen Y, Osika W, Dangardt F, Friberg P. Impact of psychological health on peripheral endothelial function and the HPA-axis activity in healthy adolescents. Atherosclerosis. 2017;261:131-7. 36. Winderman R RS, Vaidy K, Schwarz S. Vascular endothelial function in inflammatory bowel disease (IBD). Journal of Pediatric Gastroenterology and Nutrition. 2018;67(0):S79-S80. 37. Ruble K, Davis CL, Han H-R. Endothelial health in childhood acute lymphoid leukemia survivors: pilot evaluation with peripheral artery tonometry. J Pediatr Hematol Oncol. 2015;37(2):117-20. 38. Odanaka Y, Takitani K, Katayama H, Fujiwara H, Kishi K, Ozaki N, et al. Microvascular endothelial function in Japanese early adolescents. J Clin Biochem Nutr. 2017;61(3):228-32. 39. Al Jasmi F, Al Zaabi N, Al-Thihli K, Al Teneiji AM, Hertecant J, El-Hattab AW. Endothelial Dysfunction and the Effect of Arginine and Citrulline Supplementation in Children and Adolescents With Mitochondrial Diseases. Journal of Central Nervous System Disease. 2020;12:1-6.


1		
2		
3	430	40. Wahezi DM, Liebling EJ, Choi J, Dionizovik-Dimanovski M, Gao Q, Parekh J. Assessment of
4	431	traditional and non-traditional risk factors for premature atherosclerosis in children with juvenile
5	432	dermatomyositis and pediatric controls. Pediatric rheumatology online journal. 2020;18(1):25
6	433	41. Zhang WY, Selamet Tierney ES, Chen AC, Ling AY, Fleischmann RR, Baker VL. Vascular Health
7 8	434	of Children Conceived via In Vitro Fertilization. J Pediatr. 2019;214:47-53.
9	435	42. Mahtab S, Zar H, Ntusi N, Joubert S, Asafu-Agyei N, Luff N, et al. Endothelial dysfunction in
10	436	South African youth living with perinatally acquired HIV on antiretroviral therapy. Clinical infectious
11	437	diseases : an official publication of the Infectious Diseases Society of America. 2020;71.
12	438	43. Dirajlal-Fargo S, Yu J, Albar Z, Sattar A, Mahtab S, Jao J, et al. Monocyte activation and gut
13	439	barrier dysfunction in South African youth on antiretroviral therapy and their associations with
14 15	440	endothelial dysfunction. Aids. 2020;34(11):1615-23.
16	441	44. Bhangoo A, Sinha S, Rosenbaum M, Shelov S, Ten S. Endothelial function as measured by
17	442	peripheral arterial tonometry increases during pubertal advancement. Horm Res Paediatr.
18	443	2011;76(4):226-33.
19	444	45. Kochummen E, Umpaichitra V, Marwa A, Joshi K, Chin VL, Perez-Colon S. Assessment of
20	445	Microvascular Function in Children and Adolescents with Diabetes and Obesity. International journal
21 22	446	of endocrinology and metabolism. 2019;18(1):e90094.
22	447	46. Djurica D, Holt RR, Ren J, Shindel AW, Hackman RM, Keen CL. Effects of a dietary strawberry
24	448	powder on parameters of vascular health in adolescent males. Br J Nutr. 2016;116(4):639-47.
25	449	47. Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty
26	450	Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc.
27	451	2017;1(8):1029-40.
28	452	48. Hussid MF, Jordão CP, Lopes-Vicente WR, Virmondes L, Cepeda F, Katayama K, et al. Flow-
29 30	453	Mediated Dilation in Obese Adolescents: Correlation with Waist Circumference and Systolic Blood
31	454 455	Pressure. The FASEB Journal. 2018;32(S1):713.77.
32	455 456	49. Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126
33	450 457	in obese adolescents. Microvasc Res. 2019;123:86-91.
34	458	50. Mu K, Zhang Y, Niu DY, Ye Y, Yan WL. [Distribution of peripheral arterial stiffness and
35	459	endothelial function as well as their correlations with cardiovascular risk factors in children and
36 37	460	adolescents]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2016;37(6):805-9.
38	461	51. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine Albumin-to-Creatinine Ratio:
39	462	A Marker of Early Endothelial Dysfunction in Youth. Journal of Clinical Endocrinology & Metabolism.
40	463	2015;100(9):3393-9.
41	464	52. Noma K, Kihara Y, Higashi Y. Outstanding Effect of Physical Exercise on Endothelial Function
42	465	Even in Children and Adolescents. Circulation Journal. 2017;81(5):637-9.
43 44	466	53. Tomsa A, Klinepeter Bartz S, Krishnamurthy R, Krishnamurthy R, Bacha F. Endothelial
45	467	Function in Youth: A Biomarker Modulated by Adiposity-Related Insulin Resistance. J Pediatr.
46	468	2016;178:171-7.
47	469	54. Shah AS, Urbina EM. Vascular and Endothelial Function in Youth with Type 2 Diabetes
48	470	Mellitus. Current Diabetes Reports. 2017;17(6):1-7.
49 50	471	55. Fernandes VO, Montenegro APDR, Ponte CMM, de Azevedo Souza Karbage LB, de Carvalho
50 51	472	MMD, Gadelha DD, et al. Precocious endothelial dysfunction in patients with congenital generalized
51 52	473	lipodystrophy (Berardinelli-Seip syndrome) evaluated by two different methods. Diabetol Metab
53	474	Syndr. 2015;7(Suppl 1):A111-A.
54	475	56. Dietz SM, Tacke CE, Hutten BA, Kuijpers TW. Peripheral Endothelial (Dys)Function, Arterial
55	476	Stiffness and Carotid Intima-Media Thickness in Patients after Kawasaki Disease: A Systematic
56	477	Review and Meta-Analyses. PLoS One. 2015;10(7):e0130913.
57	478	57. Goldstein BH, Marino BS, Gao Z, Khoury PR, Amos MA, Mays WA, et al. Abstract 13486:
58 59	479	Patient and Procedural Factors Are Associated With Autonomic and Endothelial Dysfunction in
60	480	Adolescent and Young Adult Fontan Survivors. Circulation. 2016;134(suppl_1):A13486-A.

2		
3	481	58. Goldstein BHU, E. M.; Khoury, P. R.; Gao, Z.; Amos, M. A.; Mays, W. A.; Redington, A.;
4	482	Marino, B. S. Vascular function is predictive of functional outcomes in adolescent and young adult
5 6	483	fontan survivors. Circulation 2015;132(0).
7	484	59. Martins JD, Zachariah J, Selamet Tierney ES, Truong U, Morris SA, Kutty S, et al. Impact of
8	485	Treatment Modality on Vascular Function in Coarctation of the Aorta: The LOVE-COARCT Study.
9	486	Journal of the American Heart Association. 2019;8(7):e011536.
10	487	60. Negishi JO, H.; Hayama, Y.; Noritake, K.; Tsukada, M.; Iwasa, T.; Miyazaki, A.; Tsuda, E.;
11	488	Yamada, O.; Shiraishi, I. Digital assessment of endothelial function and its association with clinical
12	489	variable in patients with Fontan operation. Cardiology in the Young 2016;26(0):S134.
13	490	61. Nozaki Y, Nakayama-Inaba K, Ishizu T, Iida N, Kato Y, Hiramatsu Y, et al. Endothelial
14	491	Dysfunction of Conduit Arteries in Patients with Repaired Coarctation of the Aorta. International
15	492	heart journal. 2018;59(6):1340-5.
16	493	62. Olive LS. Youth psychological distress and intermediary markers of risk for CVD: The
17	495 494	emerging field of pediatric psychological distress and intermedially markers of risk for CVD. The
18 10	494	energing field of pediatric psychocardiology. Atheroscierosis. 2017,201.158-9.
19 20	495	
20		
22	100	
23	496	
24		
25	497	Figure 1: PRISMA 2020 Flow diagram of systematic search for Endo-PAT 2000 in paediatric
26		
27	498	populations.
28		
29	400	
30 31	499	
32		
33		
34		
35		
36		
37		
38		
39		
40 41		
41		
42		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		
58		
59		
60		

BMJ Open

bmjope

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

Supplemental material:

Endothelial dysfunction and other paediatric conditions

Childhood cancer survivors:

Chemotherapy causes cardiomyocyte damage and also negatively affects endothelial function. Broberg et al (2018) utilised Endo-PAT 2000 in childhood cancer survivors and noted a lower RHI in this cohort compared to controls(1). Brouwer et al (2013) studied cancer survivor patients after potential cardiovascular toxic treatment (e.g. anthracyclines, platinum) and/or radiotherapy and noted a higher risk of ED compared with sibling controls(2). Broberg et al (2016) identified one-third of cancer survivors (31.2%) compared to 8% of controls (p= 0.02) had ED in their study(3). They concluded this may be a useful screening tool of cardiovascular disease in asymptomatic cancer survivor patients.

Pao et al (2018) assessed the relationship between blood pressure and ED using Endo-PAT 2000 in haematopoietic stem cell transplant recipients. Hypertension on ambulatory blood pressure monitoring (p=0.045) and blunted nocturnal dipping (p=0.04) were associated with a lower Endo-PAT scores(4). Jehlicka et al (2011) used Endo-PAT and noted ALL patients had lower RHI compared to controls (1.57 ± 0.50 , 1.96 ± 0.63 ; $p\leq0.05$)(5).

Autoimmune conditions:

Children with autoimmune diseases may have a high tendency to develop ED which was highlighted in a study using a novel technique(6). Atherosclerosis is an emerging cause of morbidity and mortality in patients with rheumatological conditions such as juvenile idiopathic arthritis, systemic lupus erythematous (SLE), dermatomyositis, etc. Borenstein-Levin et al assessed a cohort with autoimmune conditions compared to controls and 29% in the study group had ED compared to 6% in the control group (p < 0.05)(6).

BMJ Open

In SLE patients, ED may occur from impaired clearance of apoptotic cells, oxidative stress, B cell activation with different circulating autoantibodies, etc(7). Regular ED assessment in SLE patients has been recommended due to risk of subclinical atherosclerosis(7).

Metabolic diseases:

Yano et al research in Fabry disease patients demonstrated that early diagnosis of ED can help determine the timing of initiating enzyme replacement therapy(8). Utilizing RH-PAT as a screening tool for early renal involvement may be helpful as it may detect abnormalities even prior to microalbuminuria(9). This can provide guidance on enzyme replacement therapy which is required to prevent irreversible progressive renal failure.

Al Jasmi et al research in mitochondrial diseases reported that arginine or citrulline supplementation may improve ED, which provides evidence that these amino acids may be therapeutic(10).

Turner syndrome:

Turner syndrome (TS) patients have increased cardiovascular risk factors which predispose to cardiac and cerebrovascular complications. A literature review concluded that TS have unfavourable cardiometabolic risk factors which predispose them to adverse cardiac and cerebrovascular outcomes in young adulthood(11). It is unclear whether this is secondary to the syndrome itself or from modifiable risk factors such as obesity, hypertension, etc. Moreover, congenital heart disease is a clinical feature in 30% of cases of TS patients. There is a huge emphasis on the importance of regular screening in this cohort and also further research into whether any variables could potentially be altered to reduce the atherosclerosis risk in adulthood.

O'Gorman et al (2012) published a case-control study on TS patients(12). This paper excluded any with structural congenital heart disease. Lower RHI scores in TS compared with controls 1.64 (0.34) vs 2.08 (0.32) (P<0.005). Growth hormone may protect endothelial function in TS patients as GH-untreated RHI 1.44 (0.26) versus GH-treated 1.86 (0.28) (p P<0.05).

Inflammatory bowel disease:

One study in our review (*Table 6*) highlights that IBD patients had lower RHI compared with controls(13). Petr et al (2014) provided evidence of increased ED in children with Crohn's disease compared to healthy controls(14). RHI values were significantly lower in the patients with Crohn's than controls (p < 0.05).

Infectious diseases:

Dirajlal-Fargo et al (2017) used Endo-PAT 2000 to assess ED in perinatally acquired HIV patients. Perinatally acquired HIV patients appear to have higher levels of ED (lower RHI 1.34 (1.20, 1.42) compared with control group 1.52 (1.27, 1.80) (p<0.01))(15).

The pathogenesis of severe Plasmodium vivax malaria is poorly understood. ED and reduced nitric oxide (NO) bioavailability characterize severe falciparum malaria. Barber et al (2016) identified that endothelial function was impaired in proportion to disease severity. Those with severe vivax malaria, non-severe and healthy controls median RH-PAT index 1.49, 1.73, and 1.97 respectively (p=0.018)(16). ED in this cohort was associated with reduced L-arginine bioavailability, which may contribute to microvascular pathogenesis.

Haematological conditions:

Sivamurthy et al (2009) reported lower RHI in the majority sickle cell disease in a paediatric population (1.53 and 1.71; p value .032). RHI was not normal in children with chronic transfusions or hydroxyurea(17).

Very low birthweight babies:

Harris et al (2020) assessed cardiovascular outcomes for those born with very low birth weights (VLBW) < 1500g. The VLBW cohort (n = 229; 71% of survivors) and term-born controls (n = 100), were assessed at age 26-30 years. The VLBW cohort had lower RHI compared to controls(18).

1. Broberg O. MA, Ora I., Liuba P. Peripheral arterial structure and function in young survivors of childhood cancer. . Cardiol Young. 2018;28(0):118.

2. Brouwer CAJ, Postma A, Hooimeijer HLH, Smit AJ, Vonk JM, van Roon AM, et al. Endothelial Damage in Long-Term Survivors of Childhood Cancer. Journal of Clinical Oncology. 2013;31(31):3906-13.

3. Broberg O. OI, Maxedius A., Wiebe T., Liuba P. Peripheral vascular endothelial function is impaired in childhood cancer survivors. . Cardiol Young. 2016;26(0):36.

4. Pao E, Gove NE, Flynn JT, Hingorani S. Ambulatory Blood Pressure and Endothelial Dysfunction in Hematopoietic Cell Transplantation Recipients. Biol Blood Marrow Transplant. 2018;24(8):1678-84.

5. Jehlicka P, Huml M, Votava T, Kobr J. P8.05 REACTIVE HYPEREMIA INDEX AND DETECTION OF ENDOTHELIAL DYSFUNCTION IN PAEDIATRIC HEMATO/ONCOLOGY PATIENTS. Artery Research. 2011;5(4):184-.

6. Borenstein-Levin L, Brik R, Pillar G, Butbul Aviel Y. [EARLY DETECTION OF ENDOTHELIAL DYSFUNCTION IN CHILDREN WITH AUTOIMMUNE DISEASES BY A NOVEL NONINVASIVE TECHNIQUE]. Harefuah. 2017;156(7):411-4.

 Sciatti E, Cavazzana I, Vizzardi E, Bonadei I, Fredi M, Taraborelli M, et al. Systemic Lupus Erythematosus and Endothelial Dysfunction: A Close Relationship. Curr Rheumatol Rev. 2019;15(3):177-88.

8. Yano S MK, Azen C. Detection of early end-organ damage by endothelial dysfunction with reactive hyperemia-digital peripheral arterial tonometry in patients with Fabry disease. Molecular Genetics and Metabolism Conference: 13th Annual WORLDSymposium 2017. 2017;120(1-2):S143.

9. Yano S MK, Azen C. Evaluation of endothelial function with reactive hyperemia-digital peripheral arterial tonometry as a non-invasive biomarker to reflect vascular pathology in patients with fabry disease. Journal of Inborn Errors of Metabolism and Screening. 2017;5(0):306-7.

10. Al Jasmi F, Al Zaabi N, Al-Thihli K, Al Teneiji AM, Hertecant J, El-Hattab AW. Endothelial Dysfunction and the Effect of Arginine and Citrulline Supplementation in Children and Adolescents With Mitochondrial Diseases. Journal of Central Nervous System Disease. 2020;12:1-6.

11. Mavinkurve M, O'Gorman CS. Cardiometabolic and vascular risks in young and adolescent girls with Turner syndrome. BBA Clin. 2015;3:304-9.

12. O'Gorman CS, Syme C, Bradley T, Hamilton J, Mahmud FH. Impaired endothelial function in pediatric patients with turner syndrome and healthy controls: a case-control study. Int J Pediatr Endocrinol. 2012;2012(1):5.

13. Winderman R RS, Vaidy K, Schwarz S. Vascular endothelial function in inflammatory bowel disease (IBD). Journal of Pediatric Gastroenterology and Nutrition. 2018;67(0):S79-S80.

14. Petr J, Michal H, Jan S, Ladislav T, Jiri K, Josef S. Reactive hyperaemia index as a marker of endothelial dysfunction in children with Crohn's disease is significantly lower than healthy controls. Acta Paediatr. 2014;103(2):e55-60.

15. Dirajlal-Fargo S, Sattar A, Kulkarni M, Bowman E, Funderburg N, McComsey GA. HIV-positive youth who are perinatally infected have impaired endothelial function. AIDS. 2017;31(14).

16. Barber BE, William T, Grigg MJ, Piera KA, Chen Y, Wang H, et al. Nitric Oxide-Dependent Endothelial Dysfunction and Reduced Arginine Bioavailability in Plasmodium vivax Malaria but No Greater Increase in Intravascular Hemolysis in Severe Disease. J Infect Dis. 2016;214(10):1557-64.

17. Sivamurthy KM, Dampier C, MacDermott M, Maureen M, Cahill M, Hsu LL. Peripheral arterial tonometry in assessing endothelial dysfunction in pediatric sickle cell disease. Pediatr Hematol Oncol. 2009;26(8):589-96.

18. Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, et al. Cardiovascular Outcomes in Young Adulthood in a Population-Based Very Low Birth Weight Cohort. J Pediatr. 2020;225:74-9.e3.

Title, lead author	Year	Study	Population:	Open Control group:	Results: RHI	Page 3 Outcomes
They four units	1 cui	design	n=sample size,	n=sample size,	reported. If RHI not	outcomes
		0	age; mean ± SD	age; mean ±	specified, we reported	
			or median	SD or median	p/r values	
			(range), [F/M]	(range), [F/M]	-	
Assessment of	2019	Cross-	DM group.	n=17 obese,	For every 1% increase	Poorly-controlled
Microvascular		sectional	n=33 T1D with	non-DM	in HbA1C, RHI	DM (HbA1C \geq
Function in		study	normal weight.	children	decreased by 0.097 (P	10%) had lower
Children and			n=8 obese T2D,	(normal BGL,	= 0.01). RHI of DM	RHI. RHI
Adolescents with			age 12.7 (3.8)	BP and lipid	group with HbA1C	negatively related
Diabetes and			years, [F/M	profile), 12.8	<10% (1.70 ± 0.58)	with HbA1C. RH
Obesity.			25/16]	(2.7) years,	versus those with $\geq 10\%$	similar between
Kochummen et				[F/M 9/8]	$(1.21 \pm 0.19) (p=0.02).$	obese and normal
al(1)						weight with T1D. Similar between
						T1D and T2D.
Effects of a	2016	Randomised,	n=15 overweight	10 control	Acute plasma	Strawberries can
dietary strawberry	2010	double-	/obese males, 14-	powder, 14-18	nitrate/nitrite levels	provide vascular
powder on		blind, cross-	18 years (mean	years (mean	increased 1 h after	health benefits to
parameters of		over study	16 years (mean 16).	16).	consuming the FDSP	heavier adolescen
vascular health in			1 week of 50 g of		(P<0.001). When	males.
adolescent males.			a freeze-dried		nitrate levels increased	
Djurica et al (2)			strawberry		after FDSP intake	
			powder (FDSP) or		compared to controls,	
		· · ·	a control powder,		had an increase in RHI	
			daily. Before and		(P=0·014).	
			after plasma			
			nitrate/nitrite			
Non-alcoholic	2017	Cross-	levels measured. n=23 overweight/	n=13	NAFLD group had	Hepatic fat and
Fatty Liver	2017	sectional	obese with	overweight/	lower RHI (1.4 ± 0.05)	AST/ALT levels
Disease in		study	NAFLD, age 15.3	obese without	$vs 1.7 \pm 0.09, p=$	were inversely
Hispanic Youth		5	± 0.4 years.	NAFLD, age	0.002), greater AIx (-	related with RHI.
with			n=20 prediabetes,	15.3 ± 0.4 years,	6.0 ± 1.6 vs -12.0 ± 2.1 ,	If dysglycemia,
Dysglycemia:			n=16 T2D, [F/M	with pre-	P = 0.03). Hepatic fat	NAFLD is
Risk for			12/11]	diabetes or	inversely related to	associated with
Subclinical				T2D, [F/M	RHI (r = -0.49, P =	worse endothelial
Atherosclerosis?				3/10]	0.002) and positively	function.
Bacha et al (3)					related to AIx ($r = 0.45$, $P = 0.006$)	
Circulating	2017	Conference	Obese adolescents	Control group:	P = 0.006). Lower RHI in NAFLD	Circulating FGF-
fibroblast growth	2017	abstract	with NAFLD,	no NAFLD.	group and higher AIx-	21 levels are
factor-21 (FGF-		assuur	15.4 + / -0.3 years.	No difference in	75. FGF-21	elevated in obese
21): A biomarker			n=13 normal	age/gender	concentrations were	youth with
of subclinical			glucose tolerance,	between groups.	related to RHI (r=-0.33,	NAFLD and are
atherosclerosis in			n=19 prediabetes,		p=0.03) and AIx	associated with
obese youth with			n=16		(r=0.45, p=0.02).	measures of
non-alcoholic			T2D patients			insulin sensitivity
fatty liver disease						and ED. FGF-21
(NAFLD)? Bacha						may constitute a
et al (4)						biomarker of
						higher risk for vascular
						dysfunction in
						these youth.
Flow-mediated	2018	Case control	n=20 obese	n=10 normal	No difference in RHI	Obese group had
dilation in obese		study	patients, median	weight, median	between groups. 35%	evidence of ED
adolescents:			age 14 years	age 15 years,	obese group had	and metabolic
Correlation with				paired for	metabolic syndrome,	syndrome.
waist				gender	none in control group.	Increased WC and
circumference					OSA in 86.6% obese	SBP seem to be
(WC) and systolic					and 50% of normal	involved in this
blood pressure					weight group.	finding.

2 3	(SBP). Hussid et			Γ	Γ		
4	al (5)						
5 6 7 8 9 10 11 12 13 14 15 16	Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Donghui et al (6)	2019	Quasi- randomized study	n=57 obese male adolescents, 12-18 (15.38 \pm 2.82) years, [F/M = 0/57], 6-week exercise program with dietary intervention.	n=10 normal weight adolescents, 15.38 ± 2.82 years, maintained sedentary. Age 12-20, <i>n</i> = 10 [F/M 0/10]	Obese group 1.43 (0.35) vs controls 1.67 (0.36) (p< 0.05). After 6 weeks intervention RHI increased (p < 0.01), while microRNA-126 significantly decreased (p<0.01). miRNA-126 positively correlated with Δ RHI (r = 0.69, p<0.05).	RHI higher in controls. RHI improved in obese group after exercise and diet interventions. Findings might be related to changes in serum miRNA- 126.
17 18 19 20 21 22 23 24 25 26 27 28	Distribution of peripheral arterial stiffness and endothelial function as well as their correlations with cardiovascular risk factors in children and adolescents. Mu et al (7)	2016	Cross- sectional population- based study, conference abstract	n=94 obese, 7-17 years, used automatic waveform analyser (BP- 203RPE-I) and Endo-PAT 2000.	n=452 normal- weight	In normal weight group, RHI increased with age (r=0.33, P<0.01; r=0.36, P<0.01). RHI positively correlated with BMI (r=0.10, P=0.018) but negatively correlated with DBP (r=-0.10, P= 0.016). RHI did not differ between genders.	Brachial-ankle pulse wave velocity (baPWV) and RHI increased along with age; arterial stiffness and endothelial function continued to develop in the normal weight group.
29 30 31 32 33 34 35 36	Urine Albumin- to-Creatinine Ratio (UACR): A Marker of Early Endothelial Dysfunction in Youth. Bartz et al(8)	2015	Control study	15.6 ± 0.2 years, n=25 overweight with normal glucose tolerance, [F/M 17/8]. n=20 overweight with prediabetes, [F/M 11/9].	n=13 normal weight, 16.3 ± 0.4, [F/M 7/6].	Fasting UACR was analysed. Normal weight group had higher RHI (1.84 ± 0.1 , 1.56 ± 0.1 , and $1.56 \pm$ 0.1, P = .04). UACR was related to RHI (r = -0.33, p = .01).	UACR is an early marker of endothelial dysfunction in youth, independent of glycemia.
 37 38 39 40 41 42 43 44 45 	Urinary biomarkers as indicator of chronic inflammation and endothelial dysfunction in obese adolescents. Singh et al(9)	2017	Research article, control study	n=63 total. n=14 overweight (OW), n=29 obese, age 13.8 (2.4), [F/M 23/20]	n=20 normal weight (NW), age 13.9 (2), [F/M 8/12]	There were no differences in RHI levels among the study groups. NW 1.6 (0.1), OW 1.66 (0.1) and obese 1.67(0.1). NW girls RHI 1.9 vs NW boys 1.25.	No significant correlation between RHI and urinary markers. RHI higher in NW female adolescents.
45 46 47 48 49 50 51 52	Prevalence of Type D personality in obese adolescents and associated cardiovascular risk. Bruyndonckx et al(10)	2018	Control study, conference abstract	Obese adolescents-no definite numbers (conference abstract only)	Healthy normal weight children	Positive correlation in obese adolescents between negative affectivity and vascular stiffness (r= 0.28; p= .04)	Obese adolescents have worse cardiovascular risk profile with ED.
53 54 55 56 57 58 59	Endothelial function and arterial stiffness in obese adolescents - A relation to barorefex function.	2017	Conference abstract	n=22 obese, 15.28 +/- 2.8 years, [F/M 10/12]	n=22 non- obese, 15.98 +/- 2.46 years, [F/M 10/12]	No significant difference in RHI (p = 0.473). Baro-reflex sensitivity was also calculated.	No difference in RHI between groups. Findings require further study.

<u>)</u>							
} 	Czippelova et al(11)						
5 7 9 0 1 2 3	Obesity in children and adolescents: A relation to endothelial function and arterial stiffness. Czippelova et al(12)	2016	Conference abstract	n=16 obese adolescents,15.22 +/- 2.2 years, [F/M 7/9]	n=16 non- obese, 16.22 +/- 1.5 years, [F/M 7/9]	Significant difference in RHI ($p = 0.018$) with RHI higher in obese group (1.66 +/- 0.28 vrs 1.4 +/- 0.25).	Less early atherosclerotic changes in obese group which was in contrast to expectations: requires further study.
4 5 7 8 9 20 21 22 23 24	Endothelial function in youth: A Biomarker modulated by adiposity-related insulin resistance. Tomsa et al (13)	2016	Cross sectional study	Total n = 60. n=25 obese without DM, n=19 obese with impaired glucose tolerance, n=16 obese T2D but HB1Ac < 8%. Age 15.5 (0.2), [F/M 37/23]	n=21 normal weight, age 15.5 (0.2), [F/M 9/12]	RHI inversely related to % body fat (r = - 0.29, P = .008), total (r = - 0.37 , P = .004), subcutaneous (r = - 0.39, P = .003), and visceral abdominal fat (r = - 0.26 , P = .04). AIx at heart rate 75 bpm was higher (worse) in the lower RHI groups (P = .04).	Childhood obesity is associated with ED: lower RHI and higher AIx. RHI lower in obese and T2D. RHI negatively related with percentage body fat, WC, Leptin, TNF-alpha, blood glucose.
25 26 27 28 29 30 31 32	Free Vitamin D: Relationship to Insulin Sensitivity and Vascular Health in Youth. Bacha et al (14)	2019	Cross- sectional study	n=79, age 15.4 \pm 0.2 years, [F/M 45/34]. n=30 overweight. n=31 overweight with prediabetes	n=18 normal weight and normal glucose tolerance. Across tertiles of free 25(OH)D concentrations	The lowest tertile group had lower RHI $(1.42 \pm 0.06, 1.54 \pm 0.06, and 1.77 \pm 0.09, P = 0.002)$, compared with the second and third tertiles.	Youth with low free 25(OH)D or BioD concentrations have lower insulin sensitivity and worse endothelial function.
33 34 35 36 37 38 39 40	Preclinical vascular alterations in obese adolescents detected by Laser- Doppler Flowmetry technique. Fusco et al (15)	2020	Research article	n=22 obese adolescents, 14.11 +/-2.53, [F/M 13/9]	n=24 normal- weight, 15.2 +/- 1.56, [F/M 11/13]	Similar RHI between obese and non-obese groups (1.80 +/- 0.62 and 1.86 +/- 0.51).	RHI not different between groups. RHI did not correlate with LDF (that is impaired in obese).
11 12 13 14 15 16 17 18 19 10 17 12 13 14 15 16 17 18 19 10 17 15 16 17 18 19 10 17 15 16 17 17 18 19 10 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Impaired endothelial function in adolescents with overweight or obesity measured by peripheral artery tonometry. Pareyn et al (16)	2015	Cross sectional study	n=27 overweight or obesity, 14.7 (13.0–16.4) years, [F/M 11/16]	n=25 normal weight controls, 15.5 (13.9– 16.2) years, [F/M 13/12]	RHI normal weight 1.88 (1.7- 2.4) vs OW/obese 1.5 (1.3-1.9) (P< 0.05). Lower RHI if OW/obese, and higher baseline pulse amplitude ($p = 0.027$ and $p < 0.0001$). Significant positive correlation between baseline pulse amplitude and BMI in OW/obese group. RHI positively correlated with age and tanner stage (P< 0.05). RHI negatively correlated with DBP (P< 0.05).	ED measured by lower RH-PAT score and higher baseline pulse amplitude, was present in OW group. First time in the literature to report significant difference in baseline pulse amplitude between OW adolescents compared to their peers.

1 2							
3 4 5 6 7 8 9 10 11 12 13	C-type natriuretic peptide (CNP) plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Del Bu et el(17)	2020	Research article -snow balling	n=16 primary obesity, not DM, age 13.3 (0.5) years, [F/M 8/8].	n=24 normal weight, age 14.3 (0.4) years, [F/M 14/10].	RHI normal weight 2.1 (0) vs obese 1.4 (0) (P< 0.005). RHI negatively associated with CNP and diastolic BP (P< 0.005).	RHI significantly lower in obese group. RHI negatively related with CNP, DBP, fat mass and HbA1C.
14 15 16 17 18 19 20 21 22	Ry et al(17) C-type natriuretic peptide (CNP) is closely associated to obesity in Caucasian adolescents. Del Ry et al (17)	2016	Research article -snow balling	n=10 overweight, age 12.8 (1.6) years, [F/M 5/5]. n=45 obese, 12.8 (1.6) years, [F/M 19/26]	n=27 normal weight, age 12.8 (1.4) years, [F/M 14/13]	Normal weight group RHI 2.1 (0.2) vs OW 1.6 (0.4) (P< 0.05). Normal weight vs obese group RHI 1.4 (0.3) (P< 0.005). RHI negatively associated with CNP (P< 0.005).	RHI significantly lower in overweight/obese groups. CNP negatively related with RHI.
22 23 24 25 26 27 28 29 30 31	Arterial Stiffness and Endothelial Function in Young Obese Patients - Vascular Resistance Matters. Czippelova et al (18)	2019	Research article	Author contacted for separate paeds data. n=16 obese group, age <16 years, [F/M 7/9]	n=15 controls, age <16 years, [F/M 7/8]	RHI control vrs obese groups: 1.320 ± 0.427 and 1.457 ± 0.280 . RHI obese girls and boys: 1.410 ± 0.253 and 1.494 ± 0.308 . RHI control girls and boys: 1.171 ± 0.210 and 1.436 ± 0.524	RHI was influenced by vascular tone and resistance. RHI in obese positively related with SVR. RHI is influenced by vascular tone.
32 33 34 35 36 37 38 39 40 41 42	Physiological changes in blood pressure (BP) impact peripheral endothelial function during adolescence. Deda et al (19)	2015	Control study	n =90 healthy adolescents to assess normal RHI response, 14.2±1.91 years, [F/M 46/44].	No controls. Assessing association between RHI and known cardiovascular risk factors.	Mean arterial pressure significantly associated with RHI (p=0.01). Positive correlation between RHI and age in the females (r=0.33, p<0.02). RHI correlated with pubertal status in males (r=0.411, p=0.03) and females (r=0.36, p =0.03).	Physiological changes in BP significantly impact PAT results.
43 44 45 46 47 48 49 50 51 52 53 54	Role of insulin resistance and hyperandrogenem ia in early vascular dysfunction in adolescents with PCOS. Bartz et al (20)	2015	Conference abstract	14 adolescents with PCOS (on no treatment).	7 non-PCOS. Both groups had similar age, tanner stage, race, glucose tolerance status, BMI (34.1 +/- 1.1 vs. 30.4 +/- 1.6 kg/m ²).	Despite higher peripheral and hepatic insulin resistance in adolescents with PCOS, RHI is not significantly lower when compared with controls of similar total body and abdominal adiposity.	PCOS has evidence of increased vascular inflammation. Hyperandrogenem ia, as well as insulin resistance, may play an important role in modulating vascular inflammation.
55 56 57 58 59 60	Cardiovascular adaptations after 10 months of intense school- based physical training for 8- to	2018	Randomised control study	n=93 small-sided games group, 9.3+/-0.4 years. n=83 circuit strength training group, 9.3+/-0.3	n = 115 controls, 9.3+/- 0.3 years	No significant differences in RHI. Pubertal status is a main predictor of RHI; positive correlation	10 months of 3×40 minutes/we ek decreased DBP and elicited discrete cardiac adaptations,

1 2							
3 4 5 6 7	10-year-old children. Larsen et al (21)			years (10- 16 years)		between Tanner stages and RHI.	suggesting intense exercise classes can have effects on cardiovascular health.
8 9 10 11 12 13 14 15 16 17 18 19 20 21	Endothelial Function in Children and Adolescents Is Mainly Influenced by Age, Sex and Physical Activity- An Analysis of Reactive Hyperemic Peripheral Artery Tonometry. Mueller et al (22)	2017	Randomised controlled study, Leipzig School Project followed over 5-year period.	n=931 RHI measurements in 445 students, age 10-17 years (baseline 11.66±0.93). n=247: 60 minutes physical exercise (PE) daily (intervention group).	n=181: 2 units of 45 minutes PE weekly (control group).	Main influential factors were age, gender and PE. RHI was higher in the intervention group by 0.09 [-0.05, 0.23]. Increase RHI from 1.53 ± 0.42 in the youngest to 1.96 ± 0.59 in the oldest students. This increase adjusted by age and sex was estimated as 0.11 [0.08, 0.14] per year.	If RH-PAT is used in research in adolescents, the shown age- and sex-dependence of RHI have to be taken in account.
21 22 23 24 25 26 27 28 29 30	Reactive hyperaemia index and detection of endothelial dysfunction in children with familial hypercholesterola emia (FH). Jehlicka et al(23)	2015	Conference abstract	n=24 with FH, 13.9+/-2 years. Biochemical markers of endothelial function were assessed.	n=17 healthy controls, 15.2+/- 2.2 years	Significantly lower RHI in FH group (1.63+/-0.50 and 2.03+/-0.54; p<0.05). Lower RHI and elevated E-selectin in children with FH.	Possible relationship of ED in children with FH, highlighting the importance of early detection of ED when the atherosclerotic process is still reversible.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Supplemen obesity, ty (AIx) (vas endothelia	pe 2 diab cular stif l dysfund	betes (T2D) and fness), freeze-duction (ED), over	hypercholesterolemia ried strawberry powde	. Reactive hyperem er (FDSP), non-alco l hypercholesterola Flowmetry (LDF).	lic syndrome (24 studies) i nia index (RHI), augmentat oholic fatty liver disease (N emia (FH), waist circumfer	ncluding ion index (AFLD),

Kochummen E, Umpaichitra V, Marwa A, Joshi K, Chin VL, Perez-Colon S. Assessment of 1. Page 35 of 40 Microvascular Function in Children and Adolescents with Diabetes and Obesity. International journal of endocrinology and metabolism. 2019;18(1):e90094. Djurica D, Holt RR, Ren J, Shindel AW, Hackman RM, Keen CL. Effects of a dietary strawberry 2. 1 powder on parameters of vascular health in adolescent males. Br J Nutr. 2016;116(4):639-47. 2 Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty 3. 3 4 Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc. 5 2017;1(8):1029-40. 6 10th Individual Abstracts for International Meeting of Pediatric Endocrinology: Free 4. 7 Communication and Poster Sessions, Abstracts. Hormone Research in Paediatrics. 2017;88(suppl 8 1)(Suppl. 1):1-628. 9 Hussid MF, Jordão CP, Lopes-Vicente WR, Virmondes L, Cepeda F, Katayama K, et al. Flow-5. 10 Mediated Dilation in Obese Adolescents: Correlation with Waist Circumference and Systolic Blood 11 Pressure. The FASEB Journal. 2018;32(S1):713.7-.7. 12 Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of 6. 13 14 microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 15 in obese adolescents. Microvasc Res. 2019;123:86-91. 16 Mu K, Zhang Y, Niu DY, Ye Y, Yan WL. [Distribution of peripheral arterial stiffness and 7. 17 endothelial function as well as their correlations with cardiovascular risk factors in children and 18 adolescents]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2016;37(6):805-9. 19 Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine Albumin-to-Creatinine Ratio: 8. 20 A Marker of Early Endothelial Dysfunction in Youth. Journal of Clinical Endocrinology & Metabolism. 21 2015;100(9):3393-9. 22 23 Singh R, Verma A, Aljabari S, Vasylyeva TL. Urinary biomarkers as indicator of chronic 9. 24 inflammation and endothelial dysfunction in obese adolescents. BioMed Central; 2017. 25 Bruyndonckx LM, F.; Verhulst, S.; De Guchtenaere, A.; Vrints, C.; Denollet, J. Prevalence of 10. 26 Type D personality in obese adolescents and associated cardiovascular risk. . Cardiology in the Young 27 2018;28(0). 28 Czippelova BT, Z.; Krohova, J.; Lazarova, Z.; Javorka, M. Endothelial function and arterial 11. 29 stifness in obese adolescents - A relation to barorefex function. Obesity Facts 2017;10(0). 30 Czippelova BT, Z.; Lazarova, Z.; Krohova, J.; Javorka, M. Obesity in children and adolescents: 12. 31 32 A relation to endothelial function and arterial stiffness. Acta Physiologica 2016;217(0). 33 Tomsa A, Klinepeter Bartz S, Krishnamurthy R, Krishnamurthy R, Bacha F. Endothelial 13. 34 Function in Youth: A Biomarker Modulated by Adiposity-Related Insulin Resistance. J Pediatr. 35 2016;178:171-7. 36 Bacha F, Bartz SK, Tomsa A, Sharma S. Free Vitamin D: Relationship to Insulin Sensitivity and 14. 37 Vascular Health in Youth. J Pediatr. 2019;212:28-34.e2. 38 Fusco E, Pesce M, Bianchi V, Randazzo E, Del Ry S, Peroni D, et al. Preclinical vascular 15. 39 alterations in obese adolescents detected by Laser-Doppler Flowmetry technique. Nutrition, 40 Metabolism & Cardiovascular Diseases. 2020;30(2):306-12. 41 42 Pareyn A, Allegaert K, Verhamme P, Vinckx J, Casteels K. Impaired endothelial function in 16. 43 adolescents with overweight or obesity measured by peripheral artery tonometry. Pediatr Diabetes. 44 2015;16(2):98-103. 45 Del Ry S, Cabiati M, Bianchi V, Caponi L, Maltinti M, Caselli C, et al. C-type natriuretic peptide 17. 46 is closely associated to obesity in Caucasian adolescents. Clin Chim Acta. 2016;460:172-7. 47 Czippelova B, Turianikova Z, Krohova J, Wiszt R, Lazarova Z, Pozorciakova K, et al. Arterial 18. 48 Stiffness and Endothelial Function in Young Obese Patients - Vascular Resistance Matters. J 49 Atheroscler Thromb. 2019;26(11):1015-25. 50 Deda L, Sochett EB, Mahmud FH. Physiological changes in blood pressure impact peripheral 51 19. 52 endothelial function during adolescence. Cardiol Young. 2015;25(4):777-9. 53 Bartz SKC, M. C.; Krishnamurthy, R.; Bacha, F. F. Role of insulin resistance and 20. 54 hyperandrogenemia in early vascular dysfunction in adolescents with PCOS. Endocrine Reviews 55 2015;36(0). 56 Larsen MN, Nielsen CM, Madsen M, Manniche V, Hansen L, Bangsbo J, et al. Cardiovascular 21. 57 adaptations after 10 months of intense school-based physical training for 8- to 10-year-old children. 58 Scandinavian Journal of Medicine & Science in Sports. 2018;28(S1):33-41. 59 22. Mueller UM, Walther C, Adam J, Fikenzer K, Erbs S, Mende M, et al. Endothelial Function in 60 Children and Adolescents Is Mainly Influenced by Age, Sex and Physical Activity - An Analysis of Reactive Hyperemic Peripheral Artery Tonometry. Circulation journal : official journal of the Japanese Circulation Society. 2017;81(5):717-25. Jehlicka PH, M.; Masopustova, A.; Trefil, L.; Kobr, J.; Sykora, J. Reactive hyperaemia index

23. Jehlicka PH, M.; Masopustova, A.; Trefil, L.; Kobr, J.; Sykora, J. Reactive hyperaemia index and detection of endothelial dysfunction in children with familial hypercholesterolaemia. European Heart Journal 2015;36(0):262

PRISMA 2020 Checklist

ge 37 of 40		BMJ Open				
PRISM	1A 20	BMJ Open 36/bmjopen-202				
Section and Topic	ltem #	Checklist item	Location where iten is reported			
TITLE		or and the second se	Pag			
Title	1	Identify the report as a systematic review.	2			
ABSTRACT						
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2			
INTRODUCTION						
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2			
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	2			
METHODS			0			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	6 5			
Information sources						
Search strategy	y 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used.					
Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each review, and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.						
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	6			
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	6			
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	6			
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed eac study and whether they worked independently, and if applicable, details of automation tools used in the process.	h 6			
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Tables			
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	5			
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	5			
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses. 각	7			
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	7			
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	N/A			
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	N/A			
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	6			
Certainty	15		6			

PRISMA 2020 Checklist

		BMJ Open 36, bm, op)20 Checklist	Page 38 of				
PRISM	MA 20	020 Checklist					
Section and	ltem		Location				
Торіс	#	Checklist item	where iter is reporte				
assessment		оп					
RESULTS		18					
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the mumber of studies included in the review, ideally using a flow diagram.	Flow diagram				
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	6				
Study characteristics	17	Cite each included study and present its characteristics.	Tables 1				
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Nil				
Results of individual studies							
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	N/A				
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	N/A				
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/A				
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A				
Reporting biases	orting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.						
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A				
DISCUSSION							
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	16				
	23b	Discuss any limitations of the evidence included in the review.	17				
	23c	Discuss any limitations of the review processes used.	17				
	23d	Discuss implications of the results for practice, policy, and future research.	20				
OTHER INFORMA	TION						
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the regiser was not registered.	No response				
24		Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Prospero no response				
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A				
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the eview.	Nil				
Competing interests	26	Declare any competing interests of review authors.	Nil				
Availability of data, code and	27	হ Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all ফোলাস্ড্ৰান্ড্ৰাজ্য কোলা বিশেষ বিশেষ কোনো কোনো কোনো কোনো কোনো কোনো কোনো কোন	With authors				

Pag	e 39 of 40				BMJ Open		136/bmiopen-202	
1	PRIS MA	PRISMA 20)20 Checklist					
2								
3 j	Section ar	nd Item					<u>v</u>	Location
4 5	Topic	#	Checklist item				-062063	where item is reported
6	other mate	erials					<u>»</u> 0 5	
7 [±]		I					<u> </u>	<u> </u>
8 9	From: Page N	MJ, McKenzie JE, I	Bossuyt PM, Boutron I, Hoffr	ann TC, Mulrow CD, et al. The PRISM	A 2020 statement: an updated guideline for sit: http://www.prisma-statement.org/	r reporting systematic	views. BMJ 2021;372:n71. doi: 10.	.1136/bmj.n71
10					an <u>mip<i>in</i> www.phoma otatement.org/</u>			
11 12							202	
13								
14								
15 16								
17								
18							from	
19 20							5	
20 21							o.//h	
22						-		
23								
24 25							5	
26							2 2	
27							0	
28 29						6	o Ar	
30							oril >	
31							ກ \	
32 33							024	
33 34							b< 2	
35								
36							<u>~</u> ∪	
37 38								
39							crea d	
40							- by	
41 42							nuest Protected by convright	
42 43								
44							<u>+</u>	
45				For peer review only - http://bm	jopen.bmj.com/site/about/guidelin	ies.xhtml		
46 47								

SEARCH PLANNING FORM

bmjopen-2022-062098 on 18

Use this form to identify/clarify the key concepts and the scope of your research to be a sco

DATE RECEIVED: 08/02/20		H COMPLETED:	03/03/2021	y 2023. Down	
OUR RESEARCH TOPIC				nloade	
	ren with any condition or healthy children.			ed from	
	60.				
PICO AND SEARCH TERMS	S			tp://b	
				njop	
Patient/Population and/or problem	Exposure	Outcomes	Study type	oen.bmj.	Search limits
Under 16's	Peripheral Arterial tonometry		All studies	n/	Under 16 only
				on A	From 2015 to currer
	-		UN1	A pril	
				26, 2024 by guest.	

NATIONAL HEALTH LIBRARY & KNOWLEDGE SERVICE

錮

bmjopen-2022-062098 on

18 January 2023. Downloaded from http://bn

NATIONAL HEALTH LIBRARY & KNOWLEDGE SERVICE

SOURCES TO SEARCH

Resources	•	Number of results	Date searched
Cochrane		30	03/03/2021
Embase		123	03/03/2021
Medline EBCSO		56	03/03/2021
Pubmed	6	61	03/03/2021
Cinahl		20	03/03/2021
Total		290	
Total after deduplication		158	
			r_

SEARCH STRATEGY

P opulation	exp adolescent/ or exp child/ OR exp pediatrics/ OR (ado* or child* or preschool* or schoolboy* or schoolgirl* or boy or boys or girl or girls or teen* or
•	toddler*).ab,ti,tw. OR (infant or infants or baby or babies or "pre-school").ab,ti,tw. OR (pediatric* or paediatric*).ab,ti,tw.
	on
Intervention	exp *peripheral arterial tonometry/ OR (peripheral adj3 tonometry).ab,ti,tw. OR exp peripheral arterial tonometry/ OR (PAT adj2 (analys* or
	test*)).ab,ti,tw. OR endopat.ab,ti,tw. ⊒ B
Outcomes	202
Date filter	2015 to current
	g
	St.
	o te
	d by
	Ϋ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́
	copyright

BMJ Open

Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062098.R1
Article Type:	Original research
Date Submitted by the Author:	26-Aug-2022
Complete List of Authors:	Hayden, Jenny; RCPI O'Donnell, Gill; University Hospital Limerick, Department of Paediatrics deLaunois, Isabelle; University of Limerick O'Gorman, Clodagh; Graduate Entry Medical School, University of Limerick, Paediatrics; University Hospital Limerick,
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Diabetes and endocrinology, Evidence based practice, Nutrition and metabolism, Sports and exercise medicine, Medical management
Keywords:	PAEDIATRICS, Community child health < PAEDIATRICS, Paediatric endocrinology < PAEDIATRICS, EDUCATION & TRAINING (see Medical Education & Training), Change management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Organisational development < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1		
2		
3	1	
4 5		
6	2	Title page
7	2	The page
8		
9	3	
10		
11	4	
12 13		
13 14	_	
15	5	Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic
16	c	
17	6	review.
18		
19	7	
20 21		
22	8	Authors: Jenny Hayden ¹ , Gill O'Donnell ¹ , Isabelle deLaunois ² , Clodagh O'Gorman ¹³
23	0	Authors, Jenny Hayden, Oni O Donnen, Isabene deLaunois, elodagn O Gorman
24		
25	9	Affiliations:
26		
27	10	1 Department of Paediatrics, University Hospital Limerick (UHL), Limerick, Ireland.
28 29		
30	4.4	2 Madian I Librarian II Stranich and (III) Librariah Indand
31	11	2 Medical Librarian, University of Limerick (UL), Limerick, Ireland.
32		
33	12	3 Department of Paediatrics, School of Medicine, University of Limerick (UL), Limerick, Ireland.
34		
35 36	13	
37	10	
38		
39	14	Corresponding author: Jenny Hayden, Department of paediatrics, UHL, Limerick, Ireland,
40	15	jennyhayden40@gmail.com, 083 8391478
41	15	jennynayden40@gman.com, 083 8391478
42 43		
43 44	16	jennynayden40(@gmail.com, 083 8391478
45		
46	17	Key words: Endo-PAT 2000, peripheral artery tonometry, Endothelial dysfunction, paediatric
47		
48	18	diabetes mellitus, chronic diseases
49 50		
51	19	Word count: 3881
52	19	
53		
54	20	
55		
56 57	21	
57 58		
59		
60	22	

BMJ Open

23 Abstract:

Objectives: Endo Peripheral Artery Tonometry (EndoPAT-2000) is a non-invasive technology for
measuring endothelial dysfunction (ED). The reactive hyperaemia index (RHI) is resulted and is low
when ED is present. We aim to synthesise the literature on paediatric ED that utilised Endo-PAT
analysis.

28 Design:

A comprehensive systematic review was conducted from January 2015 to March 2021. The databases
included Cochrane, MEDLINE EBSCO, EMBASE (Ovid), PUBMED and CINAHL EBSCO.
Exclusion criteria were: 1. If a study used a different device for example. 2. If the study had no
results. Inclusion criteria were: 1. Published in the English; 2. More than 50% of study subjects were
in the paediatric age range; 3. Data relevant to paediatric age range children could be extrapolated
from all data, where not all study subjects were children.

Results:

Following the removal of duplicates, 156 articles were initially identified . Following exclusion, 50
articles were included for review. We have subdivided these papers into different systems for ease of
reference and have reported our findings in 6 tables: patients with type 1/2 diabetes, obesity,
cardiovascular, respiratory, psychiatric conditions and miscellaneous diseases. For each, the study
design, population, control group (if available), RHI results and conclusions were reported.

41 Conclusions:

A number of papers using Endo-PAT for children with various chronic diseases have evidence of ED.
However, in many cases, there has only been a single cohort study using Endo-PAT. Further studies
are required to validate these findings and to help characterise the cardiovascular risk profile of
children with chronic disease. Further studies are also required that will characterise more completely
the cardiovascular risk profile of these children.

2 3 4	47	Consensus on other vascular risk markers that could be included in future studies is ideal and if
5 6	48	accomplished, this would facilitate meta-analyses of studies of relatively rare conditions.
7 8 9	49	
10 11 12	50	
13 14	51	
15 16 17	52	Strengths and limitations:
18		
19 20	53	• Comprehensive systematic review to synthesise the literature on endothelial dysfunction
21 22	54	using Endo-PAT in paediatric patients
23 24	55	• All study types were reviewed and even the studies without results but were relevant were
25 26	56	included in our discussion.
27 28 20	57	• In many cases, there has only been a single cohort study using Endo-PAT for a particular
29 30 31	58	disease
32 33	59	• Separate paediatric results were obtained where possible from studies with combined adult
34 35	60	and paediatric data; however, some papers were of poor quality and had limited results
36 37	61	available
38 39	62	• Only papers from January 2015 to March 2021 were included in our review.
40 41	63	
42 43	64	
44 45 46	65	Introduction:
47 48	66	Endothelial dysfunction (ED) is an early predictor of cardiovascular disease(1). ED occurs when the
49 50	67	endothelium loses its ability to promote vasodilation, fibrinolysis and anti-aggregation(2). It can be
51 52 53	68	caused by oxidative stress with loss of vaso-active or inflammatory homeostasis within the body's
53 54 55	69	vascular system. It may be secondary to mechanical stimuli, for example increased intraluminal
56 57 58 59 60	70	pressure within the blood vessel or metabolic factors such as hormones (oestrogen's vasodilation

BMJ Open

action)(3). Damaged endothelium can release a cascade of substances which pose a risk of
thrombosis, inflammation and ultimately atherosclerosis(4).

ED in paediatric populations has been associated with several conditions including type 1 diabetes
(T1D), type 2 diabetes (T2D), renal impairment, obesity and metabolic syndrome(5-8). ED can
progress to atherosclerosis which is a chronic condition that poses severe risk of certain diseases
including coronary artery disease, stroke and peripheral arterial disease.

Improving glucose control can protect endothelial function. Persistent high sugars can impair endothelial function via oxidative stress and production of free-radicals(2). Diabetic microangiopathy can result in the outcomes of retinopathy, neuropathy and peripheral vascular neuropathy. Subclinical evidence of these complications can be seen in paediatric patients, especially in those with poor glycaemic control. In patients with T2D, obesity and metabolic syndrome, insulin resistance is one of the most importance factors contributing to ED(8). Metabolic syndrome is a pro-inflammatory state where dyslipidaemia, hyperuricemia, and hypertension occur and can predispose to ED(9). Unfortunately, there have been reports of T2D paediatric patients diagnosed with microangiopathic complications, particularly nephropathy(10). This early endothelial damage can be linked with increased morbidity and mortality(11). New onset diabetes after transplantation (NODAT) is characterised by insulin resistance and T2D(12).

In recent decades, the number of childhood cancer survivors is increasing(13). Treatments utilized such as haematopoietic stem cell transplantation have increased risk of cardiovascular disease(14, 15). Following chemotherapy, radiotherapy, immunosuppressive treatments the risk of insulin resistance has been noted(16). With advances in treating malignant paediatric conditions there are long term complications emerging in survivors. High dose chemotherapy including anthracyclines, alkylating agents and vinca alkaloids may disrupt the substances on the surface of the endothelium and impair its ability to dilate and constrict. Moreover, total body radiation poses a risk by damaging the elastic matrix. Heart disease in long-term cancer survivors is 5-10 times higher than their siblings(16).

97 Endo-PAT 2000:

Endo Peripheral Artery Tonometry (Endo-PAT 2000) is a non-invasive technology for measuring ED developed by Itamar Ltd. Non-invasive pneumatic probes which are placed on the both index fingers, which continuously records pulse wave amplitude. A blood pressure cuff is inflated to occlude blood flow and response after deflation is recorded. The reactive hyperaemic index (RHI) is resulted following this mini-ischemic stress to the vessel. The pulse wave amplitude (PWA) is measured and computes a RHI result automatically. RHI is calculated as the ratio of average PWA divided by the average amplitude during the equilibration period. To compensate for any systemic changes, this ratio is normalized to a concurrent signal from the contralateral finger.

Numerous studies in both adult and paediatric literature reveal Endo-PAT's excellent reproducibility and reliability(17, 18). In ED, the RHI is low and pulse amplitude is high. PAT also provides results on the peripheral augmentation index (PAT-AIx). Bonetti et al report a RHI of <1.35 as indicative of coronary ED in adults(19). However, there is no reported RHI cut off value in paediatric patients.

110 Endo-PAT can be used at the patient's bedside, without extensive training required of the operator.

111 Prior to Endo-PAT, ED had been assessed by flow-mediated vasodilation (FMD). FMD uses an

112 ultrasound to assess the change in brachial artery diameter in response to increased flow after a period

113 of vascular occlusion by a blood pressure cuff and is highly dependent on nitric oxide (NO)

114 bioavailability. ED is identified by less vasodilatation (reduced FMD) of the brachial artery. FMD is

technically challenging to perform, user-dependent and requires training. FMD results macro blood

116 vessel reactivity whereas Endo-PAT results micro, which may account for the challenges in

117 comparing the two techniques. Endo-PAT is easier to set up, is automated and less user-

118 dependent. Wilk et al reported that RHI correlated with FMD (r = 0.35, P <0.01)(20) however there 119 are other studies who have not reported a correlation between the two techniques.

Objective:

The aim of this study is to conduct a systematic review to synthesise the literature on the use of Endo PAT 2000 in paediatric populations in assessing the risk of ED in chronic diseases.

1 2								
2 3 4	123							
5 6	124	Methods:						
7 8 9	125	A comprehensive systematic review was conducted to identify publications that investigated Endo-						
10 11	126	PAT 2000. All papers published from January 2015 to March 2021 in paediatric populations age birth						
12 13	127	to 16 years of age were analysed. PRIMSA study design was used.						
14 15 16	128	The following scientific databases were searched: The Cochrane Database, MEDLINE EBSCO,						
17 18	129	EMBASE (Ovid), PUBMED and CINAHL EBSCO. The search was limited by to English studies.						
19 20	130	The search was limited by type of subjects (human), date (2015 to March 2021) and included all study						
21 22	131	types. Snowballing method was used. Authors of joint adult and paediatric papers were contacted by						
23 24 25	132	email to obtain separate paediatric data.						
25 26 27	133	The database search was repeated several times using the combinations of keywords, MeSH terms and						
28 29	134	filters (child: birth-16 years). The following MeSH terms or key words were used for searching:						
30 31	135	Peripheral arterial tonometry, PAT test, endopat, adolescent, ado*, child, paediatric, pediatric,						
32 33 34	136	preschool, schoolboy, schoolgirl, boy, girl, teen, toddler, infant, baby.						
35 36	137	Exclusion criteria were: 1. If a study used a different device for example 'Watch-PAT;' 2. If the study						
37 38	138	had no results. Inclusion criteria were: 1. Published in the English; 2. More than 50% of study						
39 40	139	subjects were in the paediatric age range; 3. Data relevant to paediatric age range children could be						
41 42	140	extrapolated from all data, where not all study subjects were children. A child was defined as up to 16						
43 44	141	years, and this is consistent with PubMed's definition of a child. Where data relevant to children						
45 46	142	could not be extrapolated from the whole dataset, the study authors were contacted for additional						
47 48 49	143	information prior to study inclusion or exclusion.						
50 51 52	144	Patient and public involvement:						
53 54	145	No patient involved.						
55 56 57 58 59 60	146	Data collection and analysis:						

A total of 290 articles were obtained via the online database search (*Figure 1*: flow diagram).
Following removal of duplicates, 158 articles remained. The second screening was conducted by
'Rayyan- systematic review software.' Two further duplicate articles were removed, with 156
remaining for review.

151 Two independent authors separately performed a blind screen on the 156 abstracts. 65 articles were 152 initially excluded based on title or abstract: 37 adult studies, 18 'PAT' did not represent peripheral 153 arterial tonometry (e.g. prism adaptation test, psychosocial assessment tool), 6 Watch-PAT, 2 sleep 154 studies and 2 had no results available.

155 The remaining 91 articles were analysed viewing full text articles for further information. A further 20 156 were excluded as they did not fit inclusion criteria or have results to report. Some of these articles that 157 included Endo-PAT 2000 in paediatrics did not have results for the systematic review but had 158 conclusions that were relevant to the paper were referenced in the results section.

Twenty-eight authors of studies including both adults and paediatric patients were contacted twice by email to gather separate information on the paediatric participants. Twenty authors did not reply and were thus excluded. Eight authors replied: three providing results, four unable to give separate paediatric data and one author's research was on adult patients so was excluded. Three of the articles whose authors replied with data were included in our review. Four studies were obtained via snow balling searching.

A total of 50 articles were included in our results and are represented in tables 1-6. For each eligible
study the following data was reported: author, year of publication, design of the study, population

studied, control group (if available), RHI results.

Results: RHI Title, lead author Year Study **Population: Control group:** Outcomes design n=sample size, n=sample size, reported. If RHI not age; mean ± SD age; mean ± specified, we reported or median SD or median p/r values

Page 9 of 46

2										
3 4				(range), [F/M]	(range), [F/M]					
5 6	Adolescents and	2015	Cohort	n=73 T1D	No controls.	56 (76.7%) had ED,	T1D adolescents			
7 8	young adults with		prospective	adolescents,		with lower mean RHI	had evidence of			
9 10	type 1 diabetes		observationa	diagnosed > 1		scores (1.26 ± 0.22)	ED. Good			
10 11 12	display a		l study.	year, 16.2 +/- 3.5		versus 2.24 ± 0.48 ,	metabolic control			
13	high prevalence of		Results at	years, [F/M		p < 0.0001). More with	(HbA1c ≤7.5%)			
14 15	endothelial		baseline and	25/48]		ED had abnormal	and regular			
16 17	dysfunction.		after a 1-			cardiac autonomic tests	physical activity			
18 19	Scaramuzza et al		year follow-			(p = 0.02) and were	might be			
20 21	(21)		up			more sedentary. After 1	protective. ED			
22 23				6		year follow-up in 64/73	progression			
24 25						patients, 81.8% had	despite some			
26 27						ED, despite some	improvement to			
28 29						improvement in	HbA1c.			
30 31						HbA1c.				
32 33	Alpha-Lipoic Acid	2015	Double-	n=71 T1D	(c) controls .	3 double-blind study	Improved RHI			
34 35	and Antioxidant		blind,	patients, followed		arms: (a) antioxidant	with alpha-lipoic			
36	Diet Help to		randomized	for at least 1 year,		diet 10,000 ORAC +	acid in T1D			
37 38	Improve		controlled	age 16.3 ± 3.4	2	lipoic acid: RHI 1.40 ±	patients.			
39 40	Endothelial		trial – snow	years, [F/M	C	$0.68 \text{ vs } 1.72 \pm 0.66$				
41 42	Dysfunction in		balling.	29/42]. (a)		(P<0.05) (baseline vs af				
43 44	Adolescents with		Results at	antioxidant diet		ter 6 months).				
45 46	Type 1 Diabetes: A		baseline and	10.000 ORAC +		(b) antioxidant diet				
47 48	Pilot Trial.		after follow-	alpha-lipoic acid;		10,000 ORAC +				
49 50	Scaramuzza et al		up	(b) antioxidant		placebo: RHI 1.39 ±				
51 52	(22)			diet 10.000		$0.41 \text{ vs } 1.58 \pm 0.40$				
53 54				ORAC + placebo;		(P>0.05)				
55 56						(c) Controls: RHI 1.58				
57 58						$\pm 0.64 \text{ vs } 1.54 \pm 0.42$				
59						(P>0.05).				
60		1								

1 2							
3 4	Effect of metformin	2016	Conference	Total n=70	n=29 placebo	Mean baseline RHI 1.8	No significant
- 5 6	on endothelial		abstract.	overweight T1D	group.	+/- 0.6 in metformin	RHI change with
7 8	function in		Endo-PAT	patients. n= 41 on		group and 1.7 +/- 0.6	metformin overall
9 10	overweight		scores at	metformin (up to		placebo group. At 13	but some
10 11 12	adolescents with		baseline and	2000 mg/day), 12-		weeks, no significant	improvement in
13	type 1 diabetes		13 weeks.	19 years (mean		change from baseline	overweight T1D
14 15	(T1D). Nadeau et			15.8)		RHI (+0.1 in	males.
16 17	al(23)					metformin vs0.0 in	
18 19						placebo, $P = 0.08$).	
20 21						There was some	
22 23				6		improvement in	
24 25						endothelial function	
26 27						among males.	
28 29	Assessment of	2019	Cross-	T1D adolescents	(b) HbA1c	PAT results were not	Suboptimal
30 31	biomarkers of		sectional	≥12 years. Two	≤8.5% (n=27).	significantly different	glycemic control
32 33	inflammation and		study	groups based on		between the groups.	(rising HbA1c)
34 35	premature			different HbA1c		Pearson correlation	causes early
36 37	atherosclerosis in			ranges. (a) HbA1c		showed a significant	atherosclerosis.
38	adolescents with			≥9.5% (n=25)	7	direct relationship	
39 40	type-1 diabetes				C	between rising HbA1c	
41 42	mellitus. Babar et al					and PAT (p=0.03,	
43 44	(24)					r=0.31).	
45 46	Improvements in peripheral vascular	2018	Research	n=21 T1D	Controls:	After 4.8 ± 1.3 months	Vit. D
47 48	function with vitamin D treatment		article –	patients followed	matched age,	of Vit. D	supplementation
49 50	in deficient adolescents with		snow	for ~2 years. 25-	sex and T1D.	supplementation RHI	associated with
51 52	type 1 diabetes. Deda et al (25)		balling.	OH-Vit. D levels		improved: $1.83 \pm$	improvement to
53 54			Tested at	< 37.5 nmol/L.		$0.42 \text{ vs } 2.02 \pm 0.68$	endothelial
55 56			two different	Age 15.7 ± 1.4		(P<0.05).	function and
57 58			time points.	years, [F/M			reduced urinary
59 60				19/12]			inflammatory
55		1	1	I	I	1	<u> </u>

2							
3 4							markers.
5 6 7	Non-alcoholic Fatty	2017	Cross-	n=23 overweight/	n=13	NAFLD group had	Hepatic fat and
7 8 9	Liver Disease in Hispanic Youth		sectional	obese with	overweight/	lower RHI (1.4 ± 0.05)	AST/ALT levels
9 10 11	with Dysglycemia: Risk for Subclinical Atherosclerosis?		study	NAFLD, age 15.2	obese without	vs 1.7 ± 0.09, p=	inversely related
12 13	Bacha et al (26)			± 0.5 years.	NAFLD, age	0.002), greater AIx (-	to RHI. <mark>I</mark> f
13 14 15				n=12 prediabetes,	15.7 ± 0.4 years.	6.0 ± 1.6 vs -12.0 ± 2.1,	dysglycemia,
15 16 17				n=11 T2D, [F/M	n=8 pre-	P = 0.03). Hepatic fat is	NAFLD is
18				13/10]	diabetes, n=5	inversely related to	associated with
19 20			0		T2D, [F/M	RHI (r = -0.49, P =	worse ED.
21 22					3/10]	0.002) and positively	
23 24				0		related to AIx ($r = 0.45$,	
25 26				0		P = 0.006).	
27 28	Endothelial function in youth: A	2016	Cross	Total $n = 60$.	n=21 normal	RHI inversely related	Childhood obesity
29 30	Biomarker modulated by		sectional	n=25 obese	weight, age 15.5	to % body fat (r = -	is associated with
31 32	adiposity-related insulin resistance.		study	without DM,	(0.2), [F/M	0.29, P = .008), total	ED (lower RHI
33 34	Tomsa et al (27)			n=19 obese with	9/12]	(r = -0.37, P = .004),	and higher AIx).
35 36				impaired glucose		subcutaneous (r = -	RHI lower in
37 38				tolerance,	4	0.39, P = .003), and	obese and T2D.
39 40				n=16 obese T2D		visceral abdominal fat	RHI negatively
41				but HB1Ac $< 8\%$.		(r = -0.26, P = .04).	related with
42 43				Age 15.5 (0.2),		AIx at heart rate	percentage body
44 45				[F/M 37/23]		75 bpm was higher	fat, WC, Leptin,
46 47						(worse) in the lower	TNF-alpha, blood
48 49						RHI groups ($P = .04$).	glucose.
50 51	Circulating fibroblast growth	2017	Conference	Obese adolescents	Control group:	Lower RHI in NAFLD	Increased FGF-21
52 53	factor-21 (FGF-21): A biomarker of		abstract	with NAFLD,	no NAFLD.	group and higher AIx-	in obese
54 55	subclinical atherosclerosis in			15.4+/-0.3 years.	No difference in	75. FGF-21	adolescents with
56 57	obese youth with non-alcoholic fatty			n=13 normal	age/gender	concentrations were	NAFLD and
58 59	liver disease (NAFLD)? Bacha et al (28)			glucose tolerance,	between groups.	related to RHI (r=-0.33,	associated with
60	ai (20)		1				

					I		
				n=19 prediabetes,		p=0.03) and AIx	insulin sensitivity
				n=16 T2D		(r=0.45, p=0.02).	and ED. FGF-21
				patients			may constitute a
0							biomarker ED.
1 Asses	sment of ovascular	2019	Cross-	DM group.	n=17 obese,	For every 1% increase	Poorly-controlled
3 Funct	ion in ren and		sectional	n=33 T1D with	non-DM	in HbA1C, RHI	DM (HbA1C \geq
5 Adole	escents with etes and		study	normal weight.	children	decreased by 0.097 (P	10%) had lower
7 Obesi				n=8 obese T2D,	(normal BGL,	= 0.01). RHI of DM	RHI. RHI
$\frac{1}{9}$ al(29)				age 12.7 (3.8)	BP and lipid	group with HbA1C	negatively related
0 1				years, [F/M	profile), 12.8	<10% (1.70 ± 0.58)	with HbA1C. RHI
2 3				25/16]	(2.7) years,	versus those with $\geq 10\%$	similar between
4 5					[F/M 9/8]	$(1.21 \pm 0.19) (p=0.02).$	obese and normal
6 7				Ň.			weight with T1D.
8							Similar between
0							T1D and T2D.
2 Free V	Vitamin D: ionship to	2019	Cross-	n=79, age	n=18 normal	The lowest tertile	Youth with low
4 Insuli	n Sensitivity ascular Health		sectional	15.4 ± 0.2 years,	weight and	group had lower RHI	free 25(OH)D or
6 in Yo	uth. Bacha et		study.	[F/M 45/34].	normal glucose	$(1.42 \pm 0.06,$	BioD
8)		Comparison	n=30 overweight.	tolerance.	1.54 ± 0.06 , and	concentrations
9			across	n=31 overweight	C	$1.77 \pm 0.09,$	have lower insulin
1 2			tertiles of	with prediabetes		P = 0.002), compared	sensitivity and
3 4			free			with the second and	worse endothelial
5			25(OH)D			third tertiles.	function.
7			concentratio				
9			ns				
1 Urine	Albumin-to- inine Ratio	2015	Control	n=25 overweight	n=13 normal	Normal weight group	UACR is an early
3 UAC	CR): A Marker rly Endothelial		study.	(OW) with	weight, $16.3 \pm$	RHI 1.84 ± 0.1. OW	marker of
5 Dysfu	Inction in Bartz et		Fasting	normal glucose	0.4, [F/M 7/6].	with normal glucose	endothelial
7 al(31)			UACR	tolerance, $15.6 \pm$		tolerance 1.56 ± 0.1 .	dysfunction in
9			analysed.	0.2 years, [F/M		OW with prediabetes	youth,

				17/8].		$1.56 \pm 0.1 (P = .04).$	independent of
				n=20 OWwith		UACR was related to	glycemia.
				prediabetes, [F/M		RHI (r = -0.33, p =	
				11/9].		.01).	
	169 Table 1: T	otal of 1	1 studies include	ed. Endo-PAT 2000 in	n paediatric type 1 c	liabetes mellitus (T1D) pat	tients (5
	170 studies), ty	pe 2 dia	betes and predia	betes (6 studies). Rea	active hyperemia in	dex (RHI), type 1 diabetes	mellitus
	171 (T1D), typ	e 2 diabo	etes mellitus (T2	2D), augmentation inc	lex (AIx) (vascular	stiffness), endothelial dysf	unction
	172 (ED), Oxy	gen radio	cal absorbance c	apacity units (ORAC), non-alcoholic fatt	ty liver disease (NAFLD),	
	173 overweigh	t (OW),	Urine Albumin-	to-Creatinine Ratio (I	UACR).		
	174						
	174						
	175						
	Fitle, lead author	Year	Study	Population:	Control group:	Results: RHI	Outcomes
			design	n=sample size,	n=sample size,	reported. If RHI not	
				age; mean ± SD	age; mean ±	specified, we reported	
				or median	SD or median	p/r values	
				(range), [F/M]	(range), [F/M]		
E	Effects of a	2016	Randomised,	n=15 OW/obese	10 control	Acute plasma	Strawberries car
d	lietary strawberry		double-	males, 14-18	powder, 14-18	nitrate/nitrite levels	provide vascula
p	oowder on		blind, cross-	years (mean 16).	years (mean	increased 1 h after	health benefits t
p	parameters of		over study	1-week daily 50g	16).	consuming the FDSP	OW/obese
v	ascular health in			of freeze-dried		(P<0.001). When	adolescent male
a	dolescent males.			strawberry		nitrate levels increased	
I	Djurica et al (32)			powder (FDSP) or		after FDSP intake	
				control powder.		compared to controls,	
				Before/after		had an increase in RHI	
				plasma		(P=0·014).	
				nitrate/nitrite			
							1
	176			I			1

¢

1 2	
3 4	
5 6	F
7	d
8 9	a
10 11	C
12 13	v
14 15	с
16 17	(
18 19	b
20 21	(
22 23	a
24 25	I
26 27	n
28 29	e
30 31	d
32 33	i
34 35	e
36 37	i
38	n
39 40	0
41 42	Ι
43 44	
45 46	Ι
47 48	p
49 50	s
51 52	e
53 54	f
55 56	a
50 57 58	с
58 59 60	с

			levels measured.			
Flow-mediated	2018	Case control	n=20 obese	n=10 normal	No RHI difference	Obese group had
dilation in obese		study	patients, median	weight, median	between groups. 35%	evidence of ED
adolescents:			age 14 years	age 15 years,	obese group had	and metabolic
Correlation with				paired for	metabolic syndrome,	syndrome.
waist				gender	none in control group.	Increased WC and
circumference					OSA in 86.6% obese	SBP seem to be
(WC) and systolic					and 50% of normal	related to this
blood pressure					weight group.	finding.
(SBP). Hussid et		O				
al (33)						
Improvement of	2019	Quasi-	n=57 obese male	n=10 normal	Obese group RHI 1.43	RHI improved in
microvascular		randomized	adolescents, 12-18	weight	(0.35) vs controls 1.67	obese group after
endothelial		study	(15.38 ± 2.82)	adolescents,	(0.36) (p< 0.05). After	exercise and diet
dysfunction			years, [F/M =	15.38 ± 2.82	6 weeks intervention	interventions.
induced by			0/57], 6-week	years, [F/M	RHI increased (p	Findings might be
exercise and diet			exercise program	0/10],	< 0.01) and microRNA-	related to changes
is associated with			with dietary	maintained	126 decreased	in serum miRNA-
microRNA-126 in			intervention.	sedentary	(p<0.01). miRNA-126	126.
obese adolescents.				C	positively correlated	
Donghui et al (34)					with ΔRHI (r = 0.69,	
					p<0.05).	
Distribution of	2016	Cross-	n=94 obese, 7-17	n=452 normal-	In normal weight	Brachial-ankle
peripheral arterial		sectional	years, used	weight	group, RHI increased	pulse wave
stiffness and		population-	automatic		with age (r=0.33,	velocity (baPWV)
endothelial		based study,	waveform		P<0.01; r=0.36,	and RHI increased
function as well		conference	analyser (BP-		P<0.01). RHI	along with age;
as their		abstract	203RPE-I) and		positively correlated	arterial stiffness
correlations with			Endo-PAT 2000.		with BMI (r=0.10,	and endothelial
cardiovascular					P=0.018) but	function

1 2							
3 4	risk factors in					negatively correlated	continued to
5	children and					with DBP (r=-0.10, P=	develop in the
6 7	adolescents. Mu					0.016). RHI did not	normal weight
8 9	et al (35)					differ between genders.	group.
10 11							
12 13	Urinary	2017	Control	n=63 total. n=14	n=20 normal	There were no	No significant
14 15	biomarkers as		study,	overweight (OW),	weight (NW),	differences in RHI	correlation
16 17	indicator of		research	n=29 obese, age	age 13.9 (2),	levels: NW 1.6 (0.1),	between RHI and
17 18 19	chronic		article	13.8 (2.4), [F/M	[F/M 8/12]	OW 1.66 (0.1) and	urinary markers.
20	inflammation and		0	23/20]		obese 1.67(0.1). NW	RHI higher in
21 22	endothelial					girls RHI 1.9 vs NW	NW female
23 24	dysfunction in			0		boys 1.25.	adolescents.
25 26	obese adolescents.			0		0093 1.25.	adorescents.
27 28							
29	Singh et al(36)						
30 31	Prevalence of	2018	Control	Obese	Healthy normal	Positive correlation in	Obese adolescents
32 33	Type D		study,	adolescents-no	weight children	obese adolescents	have worse
34 35	personality in		conference	definite numbers	0	between negative	cardiovascular
36 37	obese adolescents		abstract			affectivity and vascular	risk profile with
38	and associated				1	stiffness (r= 0.28; p=	ED.
39 40	cardiovascular				C	.04)	
41 42	risk. Bruyndonckx					0,	
43 44	et al(37)						
45 46	Endothelial	2017	Conference	n=22 obese, 15.28	n=22 non-	No significant	No difference in
47 48	function and		abstract	+/- 2.8 years,	obese, 15.98 +/-	difference in RHI (p =	RHI between
49 50	arterial stiffness in			[F/M 10/12]	2.46 years,	0.473). Baro-reflex	groups. Findings
51	obese adolescents				[F/M 10/12]	sensitivity was also	require further
52 53	- A relation to					calculated.	study.
54 55	barorefex						
56 57	function.						
58 59	Czippelova et						
60							

al(38)						
Obesity in	2016	Conference	n=16 obese	n=16 non-	Significant difference	Less early
children and		abstract	adolescents,15.22	obese, 16.22 +/-	in RHI ($p = 0.018$) with	atherosclerotic
adolescents: A			+/- 2.2 years,	1.5 years, [F/M	RHI higher in obese	changes in obese
relation to			[F/M 7/9]	7/9]	group (1.66 +/- 0.28 vrs	group which was
endothelial					1.4 +/- 0.25).	in contrast to
function and						expectations.
arterial stiffness.						Findings require
Czippelova et						further study.
al(39)		0	4			
Preclinical	2020	Research	n=22 obese	n=24 normal-	Similar RHI between	RHI not differen
vascular		article	adolescents, 14.11	weight, 15.2 +/-	obese and non-obese	between groups.
alterations in			+/-2.53, [F/M	1.56, [F/M	groups (1.80 +/- 0.62	RHI did not
obese adolescents			13/9]	11/13]	and 1.86 +/- 0.51).	correlate with
detected by Laser-						LDF. LFD
Doppler				1		detected
Flowmetry				6		preclinical
technique. Fusco						vascular
et al (40)				7		dysfunction by
				C		impaired skin
					2/	microcirculation
Impaired	2015	Cross	n=27 overweight	n=25 normal	RHI normal weight	ED and higher
endothelial		sectional	(OW)/obesity,	weight controls,	1.88 (1.7-2.4) vs OW/	baseline pulse
function in		study	14.7 (13.0–16.4)	15.5 (13.9–	obese 1.5 (1.3-1.9) (P<	amplitude in OV
adolescents with			years, [F/M	16.2) years,	0.05). Lower RHI if	group. First time
overweight or			11/16]	[F/M 13/12]	OW /obese and higher	literature reports
obesity measured					baseline pulse	significant
by peripheral					amplitude ($p = 0.027$	difference in
artery tonometry.					and p < 0.0001).	baseline pulse
Pareyn et al (41)					RHI positively	amplitude

2							
3 4						correlated with age and	between OW
5 6						tanner stage (P< 0.05).	adolescents
7 8						RHI negatively	compared to
9						correlated with DBP	peers.
10 11						(P< 0.05).	
12 13	C-type natriuretic	2020	Research	n=16 primary	n=24 normal	RHI normal weight 2.1	RHI significantly
14 15	peptide (CNP)		article -snow	obesity, not DM,	weight, age 14.3	(0) vs obese 1.4 (0) (P<	lower in obese
16 17	plasma levels and		balling	age 13.3 (0.5)	(0.4) years,	0.005). RHI negatively	group. RHI
18 19	whole blood			years, [F/M 8/8].	[F/M 14/10].	associated with CNP	negatively related
20 21	mRNA expression		0			and diastolic BP (P<	with CNP, DBP,
22 23	show different					0.005).	fat mass and
24 25	trends in						HbA1C.
26 27	adolescents with						
28 29	different degree of						
30 31	endothelial						
32 33	dysfunction. Del			C			
34 35	Ry et al(42)				1		
36	C-type natriuretic peptide (CNP) is	2016	Research	n=10 overweight,	n=27 normal	Normal weight group	RHI significantly
37 38	closely associated		article -snow	age 12.8	weight, age 12.8	RHI 2.1 (0.2) vs OW	lower in
39 40	to obesity in Caucasian adolescents. Del		balling	(1.6) years, [F/M	(1.4) years,	1.6 (0.4) (P< 0.05).	overweight/obese
41 42	Ry et al (43)			5/5].	[F/M 14/13]	Normal weight	groups. CNP
43 44				n=45 obese, 12.8		vs obese group RHI 1.4	negatively related
45 46				(1.6) years, [F/M		(0.3) (P< 0.005). RHI	with RHI.
47 48				19/26]		negatively associated	
49 50						with CNP (P< 0.005).	
51 52	Arterial Stiffness and Endothelial	2019	Research	Author contacted	n=15 controls,	RHI control vrs obese	RHI is influenced
53 54	Function in Young Obese		article	for separate	age <16 years,	groups: 1.320 ± 0.427	by vascular tone
55 56	Patients - Vascular			paediatric data.	[F/M 7/8]	and 1.457 ± 0.280. RHI	and resistance.
57 58	Resistance Matters.			n=16 obese group,		obese girls and boys:	RHI in obese
59	Czippelova et al (6)			age <16 years,		1.410 ± 0.253 and	positively related
60	(0)		<u> </u>				

			[F/M 7/9]		1.494 ± 0.308. RHI	with SVR.
					control girls and boys:	
					1.171 ± 0.210 and	
					1.436 ± 0.524	
	2010	D 1 1		115		
Cardiovascular	2018	Randomised	n=93 small-sided	n = 115	No significant	10 months of
adaptations after		control study	games group,	controls, 9.3+/-	differences in RHI.	3×40 minutes/w
10 months of			9.3+/-0.4 years.	0.3 years	Pubertal status is a	ek decreased DB
intense			n=83 circuit		main predictor of RHI;	and elicited
school-based			strength training		positive correlation	discrete cardiac
physical training			group, 9.3+/-0.3		between Tanner stages	adaptations,
for 8- to			years (10-		and RHI.	suggesting inten
10-year-old			16 years)			exercise classes
children. Larsen						can have effects
et al (44)						on cardiovascula
						health.
177 Table 2	2: Endo-PA	T 2000 in paedi	atric patients who are	e overweight (OW).	obese (14 studies) Reactiv	
		-	•		obese (14 studies). Reactiv	ve
178 hyperen	mia index	(RHI), augmenta	tion index (AIx) (vas	scular stiffness), fre	eze-dried strawberry powd	ler (FDSP),
178 hyperen	mia index	(RHI), augmenta	tion index (AIx) (vas	scular stiffness), fre		ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), ove e (CNP), Laser-E	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (J	scular stiffness), fre al weight (NW), wa LDF).	eze-dried strawberry powd	ler (FDSP),
178 hyperen179 endothe	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), over e (CNP), Laser-E Study	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (1 Population:	scular stiffness), fre al weight (NW), wa LDF). Control group:	eze-dried strawberry powd nist circumference (WC), C Results: RHI	ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), ove e (CNP), Laser-E	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (J	scular stiffness), fre al weight (NW), wa LDF).	eze-dried strawberry powd	ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), over e (CNP), Laser-E Study	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (1 Population:	scular stiffness), fre al weight (NW), wa LDF). Control group:	eze-dried strawberry powd nist circumference (WC), C Results: RHI	ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), over e (CNP), Laser-E Study	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (1 Population: n=sample size,	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size,	eze-dried strawberry powd hist circumference (WC), C Results: RHI reported. If RHI not	ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), over e (CNP), Laser-E Study	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (I Population: n=sample size, age; mean ± SD	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size, age; mean ±	eze-dried strawberry powd hist circumference (WC), C Results: RHI reported. If RHI not specified, we reported	ler (FDSP),
178 hyperen 179 endothe 180 natriure	mia index elial dysfu etic peptido	(RHI), augmenta nction (ED), ove e (CNP), Laser-E Study design	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (I Population: n=sample size, age; mean ± SD or median	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size, age; mean ± SD or median	eze-dried strawberry powd hist circumference (WC), C Results: RHI reported. If RHI not specified, we reported	/e ler (FDSP), 2-type Outcomes
178 hyperen 179 endothe 180 natriure Title, lead author	mia index elial dysfu etic peptide Vear	(RHI), augmenta nction (ED), ove e (CNP), Laser-E Study design	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (I Population: n=sample size, age; mean ± SD or median (range), [F/M]	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size, age; mean ± SD or median (range), [F/M]	eze-dried strawberry powd aist circumference (WC), C Results: RHI reported. If RHI not specified, we reported p/r values	/e ler (FDSP), 2-type Outcomes
178hyperen179endothe180natriureTitle, leadauthor	mia index elial dysfu etic peptide Vear	(RHI), augmenta nction (ED), ove e (CNP), Laser-E Study design Cross-	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (I Population: n=sample size, age; mean ± SD or median (range), [F/M] n=20, 9-19 years	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size, age; mean ± SD or median (range), [F/M] Separated into 2	eze-dried strawberry powd hist circumference (WC), C Results: RHI reported. If RHI not specified, we reported p/r values Mean In(RHI) for n=7	ler (FDSP), 2-type Outcomes Isolated nocturnal non-dipping is
178hyperen179endothe180natriureTitle, leadauthor	mia index elial dysfu etic peptide Vear	(RHI), augmenta nction (ED), ove e (CNP), Laser-E Study design Cross- sectional	tion index (AIx) (vas rweight (OW), norm Doppler Flowmetry (I Population: n=sample size, age; mean ± SD or median (range), [F/M] n=20, 9-19 years (mean 16.5), (7	scular stiffness), fre al weight (NW), wa LDF). Control group: n=sample size, age; mean ± SD or median (range), [F/M] Separated into 2 groups based on	eze-dried strawberry powd aist circumference (WC), C Results: RHI reported. If RHI not specified, we reported p/r values Mean In(RHI) for n=7 (aged 16 and under):	ler (FDSP), 2-type Outcomes Isolated nocturnal

- 58 59
- 60

1 2							
3 4	cardiac function		contacted for	disease duration		diastolic BP dipping	changes. Potential
5 6	in pediatric-onset		separate	3.2 years (± 2.1).		was associated with	role for routine
7 8	systemic lupus		paeds data	[F/M 17/3]		poorer endothelial	ABPM for youth with
9 10	erythematosus					function	SLE.
10 11 12	(SLE). Chang et					$(r \ 0.5, p = 0.04).$	
13	al (7)						
14 15	Physiological	2015	Control	n =90 healthy	No controls	Mean arterial pressure	Physiological
16 17	changes in blood		study.	adolescents to		significantly associated	changes in BP
18 19	pressure (BP)		Assessing	assess		with RHI (p=0.01).	significantly impact
20 21	impact peripheral		association	normal RHI		Positive correlation	RHI results.
22 23	endothelial		between	response,		RHI and age in females	
24 25	function during		RHI and	14.2±1.91 years,		(r=0.33, p<0.02). RHI	
26 27	adolescence. Deda		known	[F/M 46/44].		correlated with pubertal	
28 29	et al (45)		cardiovascul			status: males (r=0.411,	
30 31			ar risk		°C	p=0.03), females	
32 33			factors.			(r=0.36, p=0.03).	
34 35							
36	Endothelial	2016	Cross-	n=60, 8-25 years	No controls	AIx (P<0.05)	Worse vascular
37 38	Function and		sectional	(mean 13.9±4.1),	2	negatively associated	measures associated
39 40	Arterial Stiffness		prospective	[F/M 29/31]	(with peak VO2. PAT	with worse functional
41 42	Relate to		observationa			derived baseline pulse	measures. Increased
43 44	Functional		l study			amplitude (P<0.05)	arterial stiffness and
45 46	Outcomes in					negatively associated	decreased endothelial
47 48	Adolescent and					with minute ventilation	function are
49 50	Young Adult					to C02 ratio. PAT-AIx	associated with lower
51 52	Fontan Survivors.					(P<0.05) negatively	aerobic capacity,
53 54	Goldstein et al					associated with parent-	physical activity, and
55 56	(46)					reported Paeds QOL	QOL in Fontan
57						total and physical heath	survivors.
58 59						scores.	
60							

2							
3 4	Natural history of	2017	Prospective	n=50, mean 13.7	No controls	Decreases in RHI	Vascular function
5 6	vascular function		single-	+/- 4.2 years,		(0.002 +/- 0.01/yr)	does not change
7 8	in adolescent and		centre longit	[F/M 23/27]		were not significant.	uniformly in Fontan
9 10	young adult		udinal study,			AIx improved by 0.74	survivors. Changes in
10 11 12	Fontan survivors:		conference			+/- 0.3/yr (p=0.02).	vascular function do
13	A longitudinal ass		abstract.			Changes RHI and AIx	not relate to changes
14 15	essment of		Paired			did not correlate with	in aerobic capacity
16 17	endothelial		testing at a			peak VO changes. BMI	but are associated
18 19	function and		mean			was a predictor for RHI	with changes in
20 21	arterial stiffness.		interval of	~		(R 0.17, p=0.007).	anthropometric
22 23	Goldstein et al		2.0 +/- 0.2	6		Change in resting O2	measures and O2
24 25	(47)		years of			saturation was the only	saturation.
26 27			Fontan	N N		predictor of change in	
28 29			survivors.			AIx (R 0.09, p=0.04).	
30 31	Vascular function	2017	Single-	n=43 Kawasaki	n= 43 control	Kawasaki patients had	Children with
32 33	long term after		centre	patients, age >11	group of	decreased RHI	Kawasaki disease
34 35	Kawasaki disease:		prospective	years, diagnosed	individuals	compared with controls	may have long-term
36	another piece of		study	>5 years ago, with	without	(1.59±0.45 versus	sequelae, even when
37 38	the puzzle? Pinto			no coronary	cardiovascular	1.98±0.41; p<0.001).	there is no detectable
39 40	et al (48)			lesions or any	risk factors.	AI was similar in both	coronary artery
41 42				other risk factors		groups (-4.5±7 versus -	involvement in the
43 44				for cardiovascular		5±9%; p 0.6).	acute stage of
45 46				disease.			disease.
47 48	Endothelial	2017	Observation	n=19 with HSP,	n=23 healthy	Mean RHI 1.81 study	This study suggests
49 50	function in		al	13.5 ± 3.9 years,	children, $12.8 \pm$	group and 1.87 control	that HSP causes short
51 52	children with a		prospective	[F/M 8/11]	4.5 years, [F/M	group (p=0.18). RHI	term endothelial
53 54	history of Henoch		study		7/16]	higher in patients who	dysfunction that
55 56	Schonlein purpura					had endothelial	improves with time.
57 58	(HSP). Butbul					function measured	
59	Aviel et al (49)					>6 years since HSP	
60							

					diagnosis compared	
					with <6 years	
					(1.98 + 0.74 vs.	
0					$1.38 \pm 0.43 \text{ P} = 0.037$).	
1 Reactive	2015	Conference	n=24 with FH,	n=17 healthy	Significantly lower	Possible relationship
3 hyperaemia index		abstract	13.9+/-2 years.	controls, 15.2+/-	RHI in FH group	of ED in children
4 and detection of			Biochemical	2.2 years	(1.63+/-0.50 and	with FH, highlighting
6 7 endothelial			markers of		2.03+/-0.54; p<0.05).	the importance of
8 9 dysfunction in			endothelial		Lower RHI and	early detection of ED
0 1 children with		C	function were		elevated E-selectin in	when the
2 3 familial			assessed.		children with FH.	atherosclerotic
4 hypercholesterola						process is still
6 emia (FH).						reversible.
7						
7 8 Jehlicka et al(50) 9						
8 9 0 182 Table 3: 1		-			conditions (7 studies). Rea	
8 9 182 Table 3: 1 2 183 hyperem 3 4 184 VO (pea 5 6 185 pressure	nia index 1k 02 con	(RHI), waist ci sumption), qua	rcumference (WC), sy lity of life (QOL), sys	estolic blood pressur	conditions (7 studies). Rear re (BP), augmentation inde natosus (SLE), ambulatory urpura (HSP), familial	x (AI), peak
 Behlicka et al(50) 182 Table 3: 183 hyperem 184 VO (pease 185 pressure 78 	nia index ak 02 con e monitor	(RHI), waist ci sumption), qua ing (ABPM), qu	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), H	vstolic blood pressur temic lupus erythen Ienoch Schonlein pu	re (BP), augmentation inde natosus (SLE), ambulatory urpura (HSP), familial	x (AI), peak blood
 ⁸ Jehlicka et al(50) ⁰ 182 Table 3: ¹ 1 ² 183 hyperem ³ 4 184 VO (pease) ⁶ 185 pressure ⁷ 8 ⁸ 7 ⁸ 7 ⁹ Title, lead author ⁶ 185 pressure 	nia index 1k 02 con	(RHI), waist ci sumption), qua ing (ABPM), qu Study	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population:	estolic blood pressur temic lupus erythen Ienoch Schonlein pu Control group:	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI	x (AI), peak
 ⁸ Jehlicka et al(50) ⁰ 182 Table 3: ¹ 183 hyperem ³ 4 184 VO (pea ⁵ 5 ⁶ 185 pressure ⁷ 7 ⁸ Title, lead author ¹ 2 	nia index ak 02 con e monitor	(RHI), waist ci sumption), qua ing (ABPM), qu	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size,	vstolic blood pressur temic lupus erythen Ienoch Schonlein pu Control group: n=sample size,	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not	x (AI), peak blood
 Jehlicka et al(50) 182 Table 3: 183 hyperem 184 VO (pease 185 pressure 7 7 7 7 7 7 7 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 1 1	nia index ak 02 con e monitor	(RHI), waist ci sumption), qua ing (ABPM), qu Study	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size, age; mean ± SD	vstolic blood pressur temic lupus erythem Ienoch Schonlein pu Control group: n=sample size, age; mean ±	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported	x (AI), peak blood
 ⁸ Jehlicka et al(50) ¹ 182 Table 3: ² 183 hyperem ³ 184 VO (peator 185 pressure) ⁶ 185 pressure ⁷ 7 ⁸ 7 ⁷ 7 ⁸ 7 ⁶ 7 ⁶ 185 pressure ⁷ 7 ⁸ 7 ⁸ 7 ⁶ 8 ⁶ 185 pressure ⁷ 8 ⁸ 7 ⁸ 7 ⁸ 8 ⁶ 185 pressure ⁸ 7 ⁸ 8 ⁹ 7 ⁹ 7 ⁹ 8 ⁹ 7 ⁹ 8 ⁹ 7 ⁹ 8 ⁹ 8 ⁹ 7 ⁹ 8 ⁹ 8 ⁹ 8 ⁹ 8 ⁹ 9 ⁹ 9<td>nia index ak 02 con e monitor</td><td>(RHI), waist ci sumption), qua ing (ABPM), qu Study</td><td>rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size,</td><td>vstolic blood pressur temic lupus erythen Ienoch Schonlein pu Control group: n=sample size,</td><td>re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not</td><td>x (AI), peak blood</td>	nia index ak 02 con e monitor	(RHI), waist ci sumption), qua ing (ABPM), qu Study	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size,	vstolic blood pressur temic lupus erythen Ienoch Schonlein pu Control group: n=sample size,	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not	x (AI), peak blood
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (pea) 6 185 pressure 7 7 8 Title, lead author 1 2 3 4 5 5 6 7 8 Vascular function	nia index ak 02 con e monitor	(RHI), waist ci sumption), qua ing (ABPM), qu Study	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size, age; mean ± SD or median	estolic blood pressur temic lupus erythen Ienoch Schonlein pu Control group: n=sample size, age; mean ± SD or median	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported	x (AI), peak blood
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (pea) 5 185 pressure 7 7 7 8 Title, lead author 7 12 3 4 5 5 7 6 185 pressure 7 7 7 8 Vascular function 1 0 in asthmatic 1	nia index ak 02 con monitor Year	(RHI), waist ci sumption), qua ing (ABPM), qu Study design	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size, age; mean ± SD or median (range), [F/M]	estolic blood pressur temic lupus erythen lenoch Schonlein pu Control group: n=sample size, age; mean ± SD or median (range), [F/M]	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported p/r values	x (AI), peak blood Outcomes
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (peatric scheme sche	nia index ak 02 con monitor Year	(RHI), waist ci sumption), qua ing (ABPM), qu Study design Cross-	rcumference (WC), sy lity of life (QOL), sys uality of life (QOL), F Population: n=sample size, age; mean ± SD or median (range), [F/M] n=19 asthmatic	estolic blood pressur temic lupus erythem lenoch Schonlein pu Control group: n=sample size, age; mean ± SD or median (range), [F/M] n=18 controls.	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported p/r values LnRHI were similar	x (AI), peak blood Outcomes The increased
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (peater state s	nia index ak 02 con monitor Year	(RHI), waist ci sumption), qua ing (ABPM), qu Study design Cross- sectional	rcumference (WC), sy lity of life (QOL), sys aality of life (QOL), F Population: n=sample size, age; mean ± SD or median (range), [F/M] n=19 asthmatic patients, age	Astolic blood pressur temic lupus erythem lenoch Schonlein pu Control group: n=sample size, age; mean ± SD or median (range), [F/M] n=18 controls. 14.9 ± 0.7 years.	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported p/r values LnRHI were similar between groups	x (AI), peak blood Outcomes The increased AIx@75 without
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (pea) 6 185 pressure 7 7 8 Title, lead author 0 1 12 3 3 4 5 6 7 7 8 Vascular function 1 adolescents. 6 186	nia index ak 02 con monitor Year 2017	(RHI), waist ci sumption), qua ing (ABPM), qu Study design Cross- sectional controlled	rcumference (WC), sy lity of life (QOL), sys aality of life (QOL), F Population: n=sample size, age; mean ± SD or median (range), [F/M] n=19 asthmatic patients, age 13.6 ± 0.6 years.	Astolic blood pressur temic lupus erythem lenoch Schonlein pu Control group: n=sample size, age; mean ± SD or median (range), [F/M] n=18 controls. 14.9 ± 0.7 years.	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported p/r values LnRHI were similar between groups (p = 0.23). The	x (AI), peak blood Outcomes The increased AIx@75 without changes in LnRHI in
8 Jehlicka et al(50) 0 182 Table 3: 1 183 hyperem 3 184 VO (pea) 6 185 pressure 7 7 8 Title, lead author 0 1 12 3 3 4 5 6 6 185 7 8 9 Vascular function 1 1 2 3 4 5 6 1 7 8 9 Vascular function 1 1 2 1 3 4 5 6 7 7 8 Vascular function 1 1 1 2 3 4 5 6 6 7 8 Vascular function 1 1 2 1 4	nia index ak 02 con monitor Year 2017	(RHI), waist ci sumption), qua ing (ABPM), qu Study design Cross- sectional controlled study	rcumference (WC), sy lity of life (QOL), sys aality of life (QOL), F Population: n=sample size, age; mean ± SD or median (range), [F/M] n=19 asthmatic patients, age 13.6 ± 0.6 years.	Astolic blood pressur temic lupus erythem lenoch Schonlein pu Control group: n=sample size, age; mean ± SD or median (range), [F/M] n=18 controls. 14.9 ± 0.7 years.	re (BP), augmentation indenatosus (SLE), ambulatory urpura (HSP), familial Results: RHI reported. If RHI not specified, we reported p/r values LnRHI were similar between groups (p = 0.23). The	x (AI), peak blood Outcomes The increased AIx@75 without changes in LnRHI in

1 2							
3 4	Augusto et al (51)					(AIx@75%) was	could mean that an
4 5 6						significantly higher in	early detection of
7						the asthmatic group (-	vascular impairment
8 9 10						7.75 ± 1.7) compared to	may precede ED.
11						the control group (-	
12 13						15.25 ± 1.8), p < 0.04.	
14 15	The effect of	2018	Conference	n=62 obese, age	No controls.	Endo-Pat used. At	Endothelial function
16 17	weight loss on		abstract.	11-19 (mean 15.8)		baseline 39% had SDB.	significantly
18 19	endothelial		Reassessed	years, [F/M		After 6 months, 86%	improves after weight
20 21	function and sleep		after 6-	20/42]		had resolution of earlier	loss.
22 23	disordered		month	6		diagnosed SDB. All	
24 25	breathing (SDB)		weight loss			showed significant	
26 27	in obese		programme.			improvement of	
28 29	children. Ysebaert					endothelial function	
30 31	et al(52)				0	after programme (p <	
32 33						0.001). No correlations	
34 35						between presence of	
36						SDB and improvement	
37 38					2	in endothelial function	
39 40					(found.	
41 42	Polysomnographi	2018	Cross	n=121 mild OSA,	n=107 primary	OSA groups lower RHI	Children with OSA
43 44	c correlates of		sectional	6.2 ± 1.6 years,	snorers (PS),	than PS (P < 0.001, P =	are at increased risk
45 46	endothelial		study	[F/M 37/84].	age 6.4 ± 1.8	0.001). RHI positively	for abnormal
47 48	function in			n=127 moderate-	years, [F/M	correlated with age (r =	endothelial function
49 50	children with			severe OSA,	37/70]	0.17, P = 0.002), BMI z	than habitually
50 51 52	obstructive sleep			6.0 ± 1.6 years,		score (r = 0.14 , P =	snoring children.
53 54	apnoea (OSA).			[F/M 31/96]		0.008) and oxygen	
55 56	Zhang et al (53)					saturation (r = 0.15 , P =	
57 58						0.006).	
58 59 60	Endothelial	2020	Cross	n=248 OSAS, age	n=107 primary	OSAS had lower RHI	OSAS have
00		I		1	1	1	

Page 23 of 46

1 2							
3 4	dysfunction in		sectional	3-11 years	snorers (PS). No	1.1±0.1 vrs 1.2±0.2	significant ED
5 6	children with		study		significant	(P<0.01). RHI	compared with PS.
7 8	obstructive sleep				differences in	independently	Frequent arousals due
9 10	apnoea syndrome				age/gender.	correlated with age,	to obstructive
11 12	(OSAS). Xu et					gender, obstructive	respiratory events
13	al(54)					apnoea hypopnea	during sleep may be a
14 15						index, oxygen	candidate risk
16 17						desaturation index	factor for ED.
18 19						(<i>P</i> <0.01).	
20 21	188 Table 4:	Endo-PA	AT 2000 in paed	iatric patients with re	spiratory conditions	s (4 studies). Natural logar	thm of RHI
22 23	189 (LnRHI)), endothe	elial dysfunction	(ED), reactive hyper	aemia index (RHI),	augmentation index (AIx)	, heart rate-
24 25	190 corrected	d augmer	ntation index (Al	Ix@75), primary snot	rers (PS), obstructiv	e sleep apnoea (OSA), obs	tructive
26 27	191 sleep ap	noea syn	drome (OSAS).				
28 29 30	192						
31	193						
32 33	193						
33 34 35	193 194						
33 34							
33 34 35 36	194	Year	Study	Population:	Control group:	Results: RHI	Outcomes
33 34 35 36 37 38 39 40	194 195	Year	Study design			Results: RHI reported. If RHI not	Outcomes
 33 34 35 36 37 38 39 40 41 42 	194 195	Year		Population:	Control group:		Outcomes
 33 34 35 36 37 38 39 40 41 42 43 44 	194 195	Year		Population: n=sample size,	Control group: n=sample size,	reported. If RHI not	Outcomes
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	194 195	Year		Population: n=sample size, age; mean ± SD	Control group: n=sample size, age; mean ±	reported. If RHI not specified, we reported	Outcomes
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	194 195	Year 2018		Population: n=sample size, age; mean ± SD or median	Control group: n=sample size, age; mean ± SD or median	reported. If RHI not specified, we reported	Contrast to previous
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	194 195 Title, lead author		design	Population: n=sample size, age; mean ± SD or median (range), [F/M]	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values	Contrast to previous findings in adolescents, little
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	194 195 Title, lead author		design	Population: n=sample size, age; mean ± SD or median (range), [F/M] n=203, 7.6 ± 0.3	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values All relationships	Contrast to previous findings in adolescents, little evidence between current or previous
$\begin{array}{c} 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\end{array}$	194 195 Title, lead author Do self-reported stress and		design Longitudinal cohort study.	Population: n=sample size, age; mean ± SD or median (range), [F/M] n=203, 7.6 ± 0.3 years, [F/M	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values All relationships occurred in the	Contrast to previous findings in adolescents, little evidence between current or previous psychosocial stress or depression and endothelial function
$\begin{array}{c} 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	194 195 Title, lead author Do self-reported stress and depressive		design Longitudinal cohort study. LOOK longi	Population: n=sample size, age; mean ± SD or median (range), [F/M] n=203, 7.6 ± 0.3 years, [F/M	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values All relationships occurred in the hypothesised direction,	Contrast to previous findings in adolescents, little evidence between current or previous psychosocial stress or depression and
$\begin{array}{c} 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\end{array}$	194 195 Title, lead author Do self-reported stress and depressive symptoms effect		design Longitudinal cohort study. LOOK longi	Population: n=sample size, age; mean ± SD or median (range), [F/M] n=203, 7.6 ± 0.3 years, [F/M	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values All relationships occurred in the hypothesised direction,	Contrast to previous findings in adolescents, little evidence between current or previous psychosocial stress or depression and endothelial function

2							
3	endothelial		, who were			or prospective evidence	adolescents.
4 5 6	function in		followed			of early psychological	
7 8	healthy youth?		through to			stress or depression	
9	The		adolescence			was associated with ED	
10 11	LOOK longitudin		(16 years).			(all p > 0.05).	
12 13	al study. Olive et						
14 15	al(55)						
16 17	Cerebrovascular	2016	Conference	n=11 with bipolar	n=35 healthy	EF was positively	Breath-hold CVR and
18 19	reactivity is		abstract	disorder. EF	controls	correlated with CVR in	peripheral EF are linked, suggesting that vascular function
20 21	associated with		O	measured by PAT		grey matter (r=0.41,	may be a multi-
22 23	peripheral			and		p=0.012), and a peak	systemic phenotype. EF may be a potential
24 25	endothelial			cerebrovascular		voxel in the left-	proxy for cerebral blood vessel function with greater
26 27	function (EF)			reactivity (CVR)		medial-frontal gyrus	accessibility and lower cost than fMRI.
28 29	among			by blood-oxygen-		(r=0.35, p=0.036).	lower cost than hviki.
30 31	adolescents.			level dependent	6		
32 33	Urback et al(56)			fMRI.	2.		
34	Retinal-vascular	2017	Cross-	n=30 with bipolar	n=32 healthy	In BD group, higher	Retinal photography
35 36	photography as a		sectional	disorder,	controls,	endothelial function	may help assessing cardiovascular and
37 38	window into the		study, author	17.97±1.86 years	16.00±1.62	associated with higher	neurocognitive burden of BD.
39 40	cardiovascular		emailed for		years	arterio-venular ratio	
41 42	and		separate			(r=0.375, p=0.041).	
43 44	neurocognitive		paeds data-				
45 46	burden of		most were				
47 48	adolescent bipolar		teenagers				
49 50	disorder (BD).						
51 52	Naiberg et al (57)						
53 54	Impact of	2017	Longditudin	$n=162, 14.5 \pm 1$	No controls.	Lower peripheral	High amounts of negative emotions
55 56	psychological		al 3-year	years. [F/M		endothelial function	may have adverse effects on peripheral
50 57 58	health on		follow-up	94/68].		was associated with	endothelial function and regulation of the
58 59 60	peripheral		study.			high level of anger	HPA-axis activity. High level of self-

1 2							
3	endothelial		Baseline and			$(\beta = -0.332, p = 0.018)$	concept might be
4 5 6	function and the		three-year			and disruptive	protective.
7 8	HPA-axis activity		follow-up.			behaviour	
9 10	in healthy					$(\beta = -0.390, p = 0.006)$	
11 12	adolescents. Chen					over three years in	
13 14	et al(58)					males, but not in	
15 16						females, adjusted for	
17 18						covariates.	
19	197 Table 5:	Endo-PA	AT 2000 in paed	iatric patients with ps	sychiatric condition	s (4 studies). Endothelial d	ysfunction
20 21	198 (ED), en	dothelial	function (EF), o	cerebrovascular react	ivity (CVR), bipola	r disorder (BD), functional	magnetic
22 23	199 resonance	e imagir	ng (fMRI), hypot	thalamic–pituitary–ac	Irenal HPA.		
24 25	200						
26	Title, lead author	Year	Study	Population:	Control group:	Results: RHI	Outcomes
27 28			design	n=sample size,	n=sample size,	reported. If RHI not	
29 30				age; mean ± SD	age; mean ±	specified, we reported	
31 32							
				or median	SD or median	p/r values	
33 34				or median (range), [F/M]	SD or median (range), [F/M]	p/r values	
33	Vascular	2018	Case-		(range), [F/M]	-	IBD group lower RHI
33 34 35	Vascular endothelial	2018	Case-	(range), [F/M]	6.	p/r values RHI IBD vs controls 1.66 vs 2.02 (P	IBD group lower RHI compared with
33 34 35 36 37		2018		(range), [F/M] n=16 with IBD	(range), [F/M] n=16, age 15.1	RHI IBD vs controls	
33 34 35 36 37 38 39	endothelial	2018		(range), [F/M] n=16 with IBD (all in clinical	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P	compared with
33 34 35 36 37 38 39 40 41	endothelial function in	2018		(range), [F/M] n=16 with IBD (all in clinical remission), age	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group	compared with controls. IBD patients
 33 34 35 36 37 38 39 40 41 42 43 	endothelial function in inflammatory	2018		(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years,	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within	compared with controls. IBD patients may need to be
 33 34 35 36 37 38 39 40 41 42 43 44 45 	endothelial function in inflammatory bowel disease	2018		(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years,	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated	compared with controls. IBD patients may need to be monitored for
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	endothelial function in inflammatory bowel disease (IBD).	2018		(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years,	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults	compared with controls. IBD patients may need to be monitored for thromboembolic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	endothelial function in inflammatory bowel disease (IBD). Winderman et	2018		(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years,	(range), [F/M] n=16, age 15.1 +/- 2.8 years,	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults	compared with controls. IBD patients may need to be monitored for thromboembolic
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	endothelial function in inflammatory bowel disease (IBD). Winderman et al(59)		control study	(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7]	(range), [F/M] n=16, age 15.1 +/- 2.8 years, [F/M 7/8]	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67).	compared with controls. IBD patients may need to be monitored for thromboembolic phenomena.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	endothelial function in inflammatory bowel disease (IBD). Winderman et al(59) Endothelial health		control study Case control	(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7] n=16 ALL	(range), [F/M] n=16, age 15.1 +/- 2.8 years, [F/M 7/8] n=16 healthy	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67). Both groups similar in	compared with controls. IBD patients may need to be monitored for thromboembolic phenomena. Evidence of poorer
$\begin{array}{c} 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	endothelial function in inflammatory bowel disease (IBD). Winderman et al(59) Endothelial health in childhood acute		control study Case control	(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7] n=16 ALL	(range), [F/M] n=16, age 15.1 +/- 2.8 years, [F/M 7/8] n=16 healthy	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67). Both groups similar in	compared with controls. IBD patients may need to be monitored for thromboembolic phenomena. Evidence of poorer
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	endothelial function in inflammatory bowel disease (IBD). Winderman et al(59) Endothelial health in childhood acute		control study Case control	(range), [F/M] n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7] n=16 ALL	(range), [F/M] n=16, age 15.1 +/- 2.8 years, [F/M 7/8] n=16 healthy	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67). Both groups similar in	compared with controls. IBD patients may need to be monitored for thromboembolic phenomena. Evidence of poorer

1	
י ר	
2	_
3	
4	
5	
6 7 8	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17 18	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26 27	
27	
28	
29	
30	
31	
32 33 34	
33	
34	
35	
36	
37	
38	
39	_
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2							
3 4	lymphoid			20 years (12.9+/-	13.8 (0.9), [F/M	measures but survivors	cancer survivors.
5 6	leukaemia (ALL)			0.9), [F/M 8/8].	10/6].	had lower RHI (1.54	
7 8	survivors: pilot					vs. sibling 1.77;	
9 10	evaluation with					P=0.0474).	
10 11 12	peripheral artery						
12 13 14	tonometry. Ruble						
14 15 16	et al (60)						
17	Microvascular	2017	Control	n=157 healthy	Males n= 75,	No difference in RHI	RHI among
18 19	endothelial		study	adolescents	median age 14	according to sex: boys	adolescents were
20 21	function in			divided by	(2) years	and girls 1.85	similar to those
22 23	Japanese early			gender. Females		±0.6, 1.82	reported in previous
24 25	adolescents.		· · · · · · · · · · · · · · · · · · ·	n=82, median age		± 0.66 and 1.87 ± 0.54 .	studies on children
26 27	Odanaka et al (61)			14 (1), 13.7 ± 0.9		RHI was significantly	and early adolescents.
28 29				years		associated with systolic	
30 31					0	and diastolic BP, and	
32 33					1	had no correlation with	
34 35					4.	anthropometric	
36 37						parameters and arterial	
37 38 39					2	stiffness markers.	
40	Endothelial	2020	Case control	9 participants, age	3-15 years	Lower RHI with	Supplementation with
41 42	Dysfunction and		study	6-17 years (mean	(mean 9.4).	mitochondrial diseases.	NO precursors may
43 44	the Effect of			9.6).	Baseline	RHI increased with	improve ED by
45 46	Arginine and				endothelial	arginine or citrulline	enhancing NO
47 48	Citrulline				dysfunction was	supplementation	production. First
49 50	Supplementation				assessed in		study to use Endo-
51 52	in Children and				controls.		PAT methodology in
53 54	Adolescents With						mitochondrial
55 56	Mitochondrial						diseases.
57 58	Diseases. Al						
59 60	Jasmi, et al (62)						

Page 27 of 46

1

BMJ Open

2							
3 4	Assessment of	2020	Retrospectiv	n=40 JDM, age 6-	n=20 controls,	RHI controls 1.43 [1.2,	Rheumatological
5 6	traditional and		e controlled	22 (mean 12.4±	age 12.7± 3.9	1.7] and JDM 1.57	childhood disorders
7 8	non-traditional		study	4.1) years, [F/M	years, [F/M	[1.2,1.9]. If controlled	may be at increased
9 10	risk factors for			28/12]	14/8]	for lipoprotein A	risk of developing
11	premature					(atherogenic	ED, but
12 13	atherosclerosis in					confounder), JDM	sociodemographic
14 15	children with					patients had 41% RHI	factors may have a
16 17	juvenile					increase, thus	greater role in
18 19	dermatomysoitis					indicating less ED	developing
20 21	(JDM) and		O	4		compared to controls.	cardiovascular
22 23	pediatric controls.			6			disease.
24 25	Wahezi et al (63)						
26 27	Vascular Health	2019	Cross-	n=17 IVF	Compared	Mean Endo-PAT index	Children conceived
28 29	of Children		sectional	children, 10-14	to published	in the IVF cohort was	by IVF seem to have evidence of abnormal vascular health.
30 31	Conceived via		pilot study	years. Also used	norms or to	1.66+/-0.52, 71% had	vasculai neattii.
32 33	In Vitro			carotid ultrasound	historical	abnormal values	
34 35	Fertilization			and pulse wave	Stanford	(<1.9). Mean RHI was	
36	(IVF). Zhang et al			velocity	controls	not significantly	
37 38	(64)			measurements.	2	different between IVF	
39 40					(and controls.	
41 42	Endothelial	2020	Case control	n= 431 PHIV,	n=93 without	PHIV had higher rates	PHIV appear to have increased risk of ED.
43 44	dysfunction in		study	median 14.1	HIV, median	of ED (50% vs 34%; P	These findings have important
45 46	South African			(12.8, 15.5) years,	13.9 (12.1,	= .01); relationship	implications as HIV has increased risk of
47 48	youth living with			[F/M 213/218]	15.3) years,	persisted after adjusting	premature CVD and complications.
49 50	perinatally				[F/M 53/40]	for age, sex, BMI, high	complications.
51 52	acquired human					BP and	
53 54	immunodeficienc					hypercholesterolemia	
55 56	y virus (PHIV) on					(RR, 1.43; P =0.02).	
57 58	antiretroviral					PHIV, CD4 count, viral	
58 59 60	therapy. Mahtab					load and current ART	

2							
3 4	et al (65)					class were not	
5 6						associated with ED	
7 8						after adjustment.	
9 10	Soluble CD14	2020	Case control	n=283 perinatally	n=69 age-	PHIVs had lower RHI	Higher sCD14 is independently
10 11 12	(sCD14) is		study	acquired HIV	matched	despite viral	associated with ED in PHIVs.
13	associated with			(PHIV), 9-14	without HIV	suppression (RHI=1.36	1111 V 5.
14 15	endothelial			years.		vs 1.52, p<0.01).	
16 17	dysfunction in					sCD14 at 24 months	
18 19	South African					correlated with ED	
20 21	youth on ART.					($p\leq 0.04$). PHIV with	
22 23	Dirajlal-Fargo et					ED, sCD14 was	
24 25	al (66)					associated with lower	
26 27						RHI (β-0.05, p=0.01).	
28 29	Role of insulin	2015	Conference	n=14 PCOS	n=7 non-PCOS.	Despite higher	PCOS has evidence of increased vascular
30 31	resistance and		abstract	adolescents PCOS	Both groups had	peripheral and hepatic	inflammation. Hyperandrogenemia
32 33	hyperandrogenem			(on no treatment).	similar age,	insulin resistance with	and insulin resistance may play an
34 35	ia in early				tanner stage,	PCOS, RHI is not	important role in vascular
36 37	vascular				race, glucose	significantly lower	inflammation.
38	dysfunction in				tolerance status.	when compared	
39 40	adolescents with				(with controls of similar	
41 42	PCOS. Bartz et al					total body and	
43 44	(67)					abdominal adiposity.	
45 46	Endothelial	2017	Randomised	n=931 RHI	n=181: 2 units	Higher RHI in the	If Endo-PAT is used for research in
47 48	Function in		controlled	measurements in	of 45 minutes	intervention group:	adolescents, age and sex must to be taken
49 50	Children and		study,	445 students, age	PE weekly	0.09 [-0.05, 0.23].	in account when reporting RHI results.
51 52	Adolescents Is		Leipzig	10-17 years	(control group).	Increase RHI from	reporting iviti results.
53 54	Mainly Influenced		School	(baseline		1.53±0.42 in the	
55 56	by Age, Sex and		Project	11.66±0.93).		youngest to 1.96±0.59	
57 58	Physical Activity-		followed	n=247: 60		in the oldest students.	
59 60	An Analysis of		over 5-year	minutes physical		This increase adjusted	
							ı

1 2											
3	Reactive			period.	exercise (PE)		by age and sex was				
4 5 6	Hyperemic				daily (intervention		estimated as 0.11 [0.08,				
7 8	Peripheral Artery			group).		0.14] per year.					
9	Tonometry.										
10 11 12	Mueller e	t al (68)									
13	202	Table 6:	Endo-PA	T 2000 in paed	iatric patients with oth	her miscellaneous p	paediatric conditions (10 st	udies).			
14 15 16	203	Reactive hyperemia index (RHI), augmentation index (Aix) (vascular stiffness), endothelial dysfunction (ED),									
17	204	inflamm	atory boy	wel disease (IBI), acute lymphoid leu	ıkaemia (ALL), niti	ric oxide (NO), perinatally	acquired			
18 19	205	human i	nmunode	eficiency virus (PHIV), In Vitro Ferti	lization (IVF), solu	able CD 14 (sCD14), polyo	cystic			
20 21	206	ovarian	syndrome	e (PCOS), physi	cal exercise (PE).						
22 23 24	207										
25 26 27	208	Results:									
28 29 30	209	Endothelial dysfunction in paediatric diabetes mellitus patients (Table 1):									
31 32	210	Five studies involve only type 1 diabetes (T1D) patients (<i>Table 1</i>). 2/5 studies reported lower RHI									
33 34	211	results in the T1D group(21, 24). One study which included only adolescent patients, reported RHI									
35 36 37	212	negatively correlates with impaired metabolic control and subclinical signs of autonomic									
38 39	213	neuropathy(21). They concluded that good metabolic control (HbA1c \leq 7.5%) and regular physical									
40 41	214	activity might be protective against ED. One study reports an improved RHI result with an alpha-									
42 43	215	lipoic acid and antioxidant diet(22). Nadeau et al reported no significant RHI change with metformin									
44 45	216	overall but some improvement in overweight T1D males(23). Barber et al report suboptimal									
46 47	217	glycaemic control causes early atherosclerosis(24). One study noted an improvement in RHI post									
48 49 50	218	vitamin	D supp	lementation in	T1D patients with v	vitamin D deficier	ncy(25).				
51 52	219	6 studie	s focuse	d on type 2 dia	abetes (T2D) and im	paired glucose to	lerance or 'prediabetes.'	Tomsa et			
53 54	220	al note a	a link be	tween insulin	resistance and obesi	ty by utilising En	do-PAT(27). They also	noted that			
55 56	221	RHI is l	nigher if	HbA1c is less	than 5.5%(27). Tw	o studies compare	e on Non-alcoholic fatty	liver			
57 58	222	disease	(NAFLI	D), T2D and p	rediabetes patients(2	26, 28). If dysglyc	emia, NAFLD is associa	ated with			
59 60	223	worse e	ndotheli	al function. Ci	rculating FGF-21 le	evels are elevated	in obese youth with NA	FLD and			

are associated ED and therefore may be a biomarker for ED(28). Bartz et al report urine albumin
creatinine ratio (UACR) may be an early marker of ED independent of glycemia(31). Endothelial
dysfunction may mediate the link between obesity-related insulin resistance and early
microalbuminuria.(31). Kochummen *et al* reported a mean RHI in obese adolescents without diabetes
was similar to T1D and T2D patients(29). Bacha et al report lower vitamin D concentrations are
associated with lower insulin sensitivity and worse endothelial function(30).

Endothelial dysfunction and Obesity (Table 2):

14 studies describe the use of Endo-PAT 2000 in overweight or obese patients (Table 2). Studies included measurement of the following parameters: BMI, T1D, T2D, gender, pubertal stage, age, blood pressure values, non-alcoholic fatty liver disease, obstructive sleep apnoea, insulin, plasma glucose levels, inflammatory markers (urinary markers, CNP, micro-RNA-126, E-Selectin). In numerous studies, RHI was significantly lower in obese groups (6, 29, 32-35, 42, 43, 69). ED may mediate the link between obesity-related insulin resistance and early microalbuminuria(31). Exercise and diet control improves glycolipid metabolism(44). Two studies by Czippelova et al did not find a lower RHI in obese groups, but recommended further studies(38, 39). Noma et al (2017) report the beneficial effects of exercise in paediatric patients and is an important message in reducing future endothelial complications(70). Fusco et al noted pre-clinical microvascular changes in obese patients compared to controls using LDF but noted no RHI change(40).

6 243 Endothelial dysfunction in cardiac and vascular conditions (Table 3):

244 7 studies report the use of Endo-PAT and cardiovascular conditions (*Table 3*). Lower RHI is seen
245 with patients with familial hypercholesterolaemia(50). Studies assess ED in patients with systemic
246 lupus erythematosus (SLE) and Henoch Schonlein purpura (HSP)(7, 49, 71). Negishi et al (2016) used
247 Endo-PAT to compare Fontan survivors and healthy controls. The Fontan patients were aged 15 to 32
248 years. Mean RHI 0.56+ /- 0.26 in Fontan patients and 0.78+ /- 0.31 in controls (p= 0.09). RHI in

Fontan patients was associated with diastolic blood pressure, heart rate and haemoglobin A1c

BMJ Open

level(72). Endothelial function in Fontan patients was associated with abnormal glucose tolerance and
arterial stiffness and therefore concluded that glucose regulation might be a potential target to
improve ED in this cohort. Nozaki et al (2018) assessed ED in conduit and resistance arteries and
used FMD and Endo-PAT in paediatric patients with repaired coarctation of aorta(73). Adult patients
with repaired coarctation of aorta have a high risk of late hypertension.

255 Endothelial dysfunction in respiratory conditions (Table 4):

4 studies used Endo-PAT in respiratory conditions (Table 4). Augusto et al noted an increased augmentation index (AIx) without changes in RHI in asthmatic patients; indicating early detection of vascular impairment may precede ED, and different mechanisms may contribute to the pathogenesis and progression of cardiovascular events in this population(51). One study reported an improvement in sleep disordered breathing post weight loss(52). Also, endothelial function significantly improves after weight loss. Two studies report children with OSA compared to habitual snorers are at increased risk for ED(53, 54). Frequent wakening due to obstructive respiratory events may be a risk factor for ED in OSA.

264 Endothelial dysfunction and psychological conditions (Table 5):

4 studies report the use of Endo-PAT in psychiatric conditions (Table 5). Potential limitations in this area are self-reported methods for detecting psychological distress of children, for example in the LOOK longitudinal study(55). Naiberg et al (2017) utilised retinal vascular photography as a proxy for cerebral microvasculature, and Endo-PAT to assess cardiovascular and neurocognitive burden in adolescents with bipolar disorder (BD)(57). In the BD group, better endothelial function was associated with higher arterio-venular ratio (r=0.375, p=0.041). Retinal vascular calibre was significantly associated with endothelial function in BD and it has been suggested that it may be used as an assessment tool in this cohort. Olive L.S. (2017) published 'The emerging field of paediatric psycho-cardiology' highlighting the importance of the childhood origins of adult CVD(74). This article highlights that psychological distress can influence CVD risk, directly by physiological change that can negatively impact the integrity of the cardiovascular system.

Endothelial dysfunction and other paediatric conditions (Table 6 – Miscellaneous) Childhood cancer survivors: There is evidence of ED in cancer survivors (*Table 6*)(60). Chemotherapy causes cardiomyocyte damage and also negatively affects endothelial function. Broberg et al (2018) utilised Endo-PAT in childhood cancer survivors and noted a lower RHI in this cohort compared to controls(75). Brouwer et al (2013) studied cancer survivor patients after potential cardiovascular toxic treatment (e.g. anthracyclines, platinum) and/or radiotherapy and noted a higher risk of ED compared with sibling controls(76). Broberg et al (2016) identified one-third of cancer survivors (31.2%) compared to 8% of controls (p=0.02) had ED in their study(77). They concluded this may be a useful screening tool of cardiovascular disease in asymptomatic cancer survivor patients. Pao et al (2018) assessed the relationship between blood pressure and ED using Endo-PAT in haematopoietic stem cell transplant recipients. Hypertension on ambulatory blood pressure monitoring (p=0.045) and blunted nocturnal dipping (p=0.04) were associated with a lower Endo-PAT scores(78). Jehlicka et al (2011) used Endo-PAT and noted ALL patients had lower RHI compared to controls (1.57±0.50, 1.96±0.63; p≤0.05)(79).

Autoimmune conditions:

Children with autoimmune diseases may have a high tendency to develop ED which was highlighted
in a study using a novel technique(80). Atherosclerosis is an emerging cause of morbidity and
mortality in patients with rheumatological conditions such as juvenile idiopathic arthritis, SLE and
dermatomyositis. Borenstein-Levin et al assessed a cohort with autoimmune conditions compared to
controls: 29% in the study group had ED compared to 6% (p <0.05)(80). Chang et al noted nocturnal
blood pressure (BP) non-dipping is associated with ED in SLE patients highlighting a potential role
for ambulatory BP monitoring in these patients(*Table 3*)(7).

Metabolic diseases:

BMJ Open

Yano et al research in Fabry disease patients demonstrated that early diagnosis of ED can help
determine the timing of initiating enzyme replacement therapy(81). Utilizing RH-PAT as a screening
tool for early renal involvement may be helpful as it may detect abnormalities even prior to
microalbuminuria(82). This can provide guidance on enzyme replacement therapy which is required
to prevent irreversible progressive renal failure. Al Jasmi et al research in mitochondrial diseases
reported that arginine or citrulline supplementation may improve ED, which provides evidence that
these amino acids may be therapeutic (*Table 6*)(62).

308 Inflammatory bowel disease:

One study (*Table 6*) highlights that IBD patients had lower RHI compared with controls(59). Petr et al
(2014) provided evidence of increased ED in children with Crohn's disease compared to healthy
controls(83). RHI values were significantly lower in the patients with Crohn's than controls (p
0.05).

313 Infectious diseases:

Dirajlal-Fargo et al used Endo-PAT to assess ED in human immunodeficiency virus (HIV) patients (Table 6)(66, 84). Perinatally acquired HIV patients appear to have higher levels of ED (RHI 1.34 (1.20, 1.42) compared with controls (1.52, (1.27, 1.80), (p<0.01))(84). The pathogenesis of severe Plasmodium vivax malaria is poorly understood. ED and reduced nitric oxide (NO) bioavailability characterize severe falciparum malaria. Barber et al (2016) identified that endothelial function was impaired in proportion to disease severity. Those with severe vivax malaria, non-severe and healthy controls median RH-PAT index 1.49, 1.73, and 1.97 respectively (p=0.018)(85). ED in this cohort was associated with reduced L-arginine bioavailability, which may contribute to microvascular pathogenesis.

324 Discussion:

Weaknesses of the paper include the quality of the papers are limited and varied; 11 are conference abstracts that had little information available on methods or results and have limited analysis. Observational studies are also limited in research value. Many are case-control studies which are not as valuable as randomised controlled trials (RCT). Only 4 studies are RCTs. The studies cannot be compared for a meta-analysis as most are not RCT level research of high enough quality. Therefore, the conclusions drawn from many of these studies are limited. There may be significant findings in studies in the grey literature or in conference presentations that was not included, for example in the studies where 25 authors did not respond to emails. Only papers from 2015 to March 2021 were included. Papers using other methods of ED assessment such as flow-mediated dilatation are not included. Many of the papers did not include other factors that would be important in a cardiovascular assessment of children, for example family history, cholesterol and blood pressure parameters and Body Mass Index (BMI) and standardised BMI (SDS) measurements. So, in many studies it cannot be excluded that there were confounding variables affecting the ED score. Regardless, this study indicates that there are a significant number of published paediatric papers that indicate the presence of ED in children as young as 8 years old. Strengths of the paper include a comprehensive literature search including contacting authors by email

for separate paediatric results in studies with combined adult and paediatric data. All study types were
reviewed and even the studies without results but had interesting points were included in our
discussion. Also, we do not think that this paediatric Endo-PAT review has been done before.

The potential future role of Endo-PAT for paediatric patients may be an adjunct tool to in screening for cardiovascular risk factors as well other factors such as family history, cholesterol, blood pressure. If atherosclerosis is identified early, it can be halted in its process in certain conditions. There is huge potential for use in diabetic patients. Lower insulin sensitivity poses a risk of diabetic nephropathy(8). Microangiopathic renal damage increases oxygen consumption and increases resistance in the afferent arterioles. Shah et al report T2D patients have greater vascular thickness and stiffness and worse endothelial function compared to obese and lean children(86). This is raising concern that adolescents with T2D are already at risk of developing early onset cardiovascular disease.

BMJ Open

Endo-PAT has multiple benefits in obesity (*Table 2*)(6, 34, 39). Berardinelli-Seip syndrome is a rare condition characterized by severe insulin resistance and absence of subcutaneous fat since birth or early childhood. Lipids can deposit in muscle, liver and arterial walls; explaining its clinical complications of diabetes, hepatic injury, hyperlipidaemia and premature atherosclerosis. Fernandes et al (2015) reported 50% with this syndrome had ED (RHI 0.49±0.15)(87). Their results support the risk of ED in this cohort and highlights the necessity of early intervention to avoid cardiovascular complications.

Turner syndrome (TS) patients have increased cardiovascular risk factors which predispose to cardiac and cerebrovascular complications. A literature review concluded that TS have unfavourable cardiometabolic risk factors which predispose them to adverse cardiac and cerebrovascular outcomes in young adulthood(88). It is unclear whether this is secondary to the syndrome itself or from modifiable risk factors such as obesity, hypertension, etc. Moreover, congenital heart disease is a clinical feature in 30% of cases of TS patients. There is a huge emphasis on the importance of regular screening in this cohort and also further research into whether any variables could potentially be altered to reduce the atherosclerosis risk in adulthood. O'Gorman et al (2012) published a case-control study on TS patients(89). This paper excluded any with structural congenital heart disease. Lower RHI scores in TS compared with controls 1.64 (0.34) vs 2.08 (0.32) (P<0.005). Growth hormone may protect endothelial function in TS patients as GH-untreated RHI 1.44 (0.26) versus GH-treated 1.86 (0.28) (p P<0.05). There are countless other paediatric syndromes, that could benefit from ED screening.

Furthermore, in cardiac diseases and post-cardiac surgery Endo-PAT has been proven useful in multiple studies (Table 3)(48, 73, 88). Dietz et al (2015) systematic review and metanalysis on peripheral ED in Kawasaki disease, report coronary arterial aneurysms had higher surrogate markers for cardiovascular disease risk(90). This may indicate these patients should be monitored for CVD in adulthood, however significant heterogeneity was noted. Goldstein et al (2016) by using Endo-PAT identified multiple patient and procedural factors for Fontan survivors(91). Some determinants of RHI included prior Norwood procedure, systolic blood pressure, resting heart rate and oxygen saturation.

Targeted intervention of modifiable risk factors may improve long-term vascular health and functional status in Fontan survivors. Further research by Goldstein et al (2015) noted increased arterial stiffness and decreased endothelial function are associated with lower aerobic capacity, quality of life (QOL) and physical activity in adolescent and young adult Fontan survivors(92). 'The LOVE-COARCT study' (Long-term Outcomes and Vascular Evaluation After Successful Coarctation of the Aorta Treatment) compares vascular function in patients with coarctation of the aorta treated with surgery, balloon dilation or stenting and endothelial function was similar among groups(93).

With the rising premature population, Endo-PAT may prove useful in this cohort. Harris et al (2020) assessed cardiovascular outcomes for those born with very low birth weights (VLBW) <1500g. The VLBW cohort (n = 229; 71% of survivors) and term-born controls (n = 100), were assessed at age 26-30 years. The VLBW cohort had lower RHI compared to controls(94). Endo-PAT is also used in haematological conditions. Sivamurthy et al (2009) reported lower RHI in the majority sickle cell disease in a paediatric population (1.53 and 1.71; p value .032). RHI was not normal in children with chronic transfusions or hydroxyurea(95).

Finally, many paediatric autoimmune conditions are linked with ED(7, 80). In SLE patients, ED may occur from impaired clearance of apoptotic cells, oxidative stress, or B cell activation with different circulating autoantibodies(71). Regular ED assessment in SLE patients has been recommended due to risk of subclinical atherosclerosis(71). Moreover, several factors may impact microvascular function in children, for example puberty, which is of particular interest in our paediatric review. Bhangoo et al report improved RHI in correlation with an increase in Tanner stages and postulated that this may be due to sex steroids(96). If Endo-PAT is used in research in adolescents, age, sex and tanner staging must to be taken in account when reporting RHI results(68).

402 Conclusion:

403 There are a number of papers in the paediatric literature describing ED at young ages using Endo404 PAT. However, in many cases, there has only been a single cohort study using Endo-PAT. Further

BMJ Open

studies are required to validate these findings. Additionally, longitudinal studies are required to evaluate how this ED may change as the child ages and their chronic conditions changes. Further studies are also required that will characterise more completely the cardiovascular risk profile of these children with chronic disease. Consensus on other vascular risk markers that could be included in future studies is ideal and if accomplished, this would facilitate meta-analyses of studies of conditions with relatively rare conditions. Paediatricians should start to include an approach to cardiovascular rents r r r r r trategy r risk assessments in their assessments of young children and adolescents, including but not limited to those with chronic diseases. **Statements and declarations:** a. Authorship contributions: All authors contributed to the initial search strategy protocol. I deLaunois performed the online database search. J Hayden and G McDonnell separately performed a blind screen of the abstracts and analysed the papers. G McDonnell contacted the authors of joint adult and paediatric papers to obtain separate paediatric data. J Hayden wrote the initial manuscript which was revised by C O'Gorman. All authors reviewed the manuscript prior to submission. **b.** Competing interests: There are no competing interests to declare. c. Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. d. Data sharing: search technique and data analysis are available from Rayyan software and the corresponding author. e. Competing Interest: No competing interests to declare

Page 38 of 46

BMJ Open

429	f. Ethical approval: this wa	s not needed as this study was	s a systematic review	and did not involve
-----	------------------------------	--------------------------------	-----------------------	---------------------

- human participants.

References:

Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of 1. atherosclerosis. Cardiovasc J Afr. 2012;23(4):222-31.

Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial Dysfunction 2. in Diabetes. Diabetes Care. 2011;34(Supplement 2):S285.

3. Taylor MS, Choi CS, Bayazid L, Glosemeyer KE, Baker CCP, Weber DS. Changes in vascular reactivity and endothelial Ca(2+) dynamics with chronic low flow. Microcirculation. 2017;24(3). Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel 4.

Biomarkers for Evaluation of Endothelial Dysfunction. Angiology. 2020;71(5):397-410.

Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, et al. Radial Artery 5. Tonometry Demonstrates Arterial Stiffness in Children With Type 1 Diabetes. Diabetes Care. 2004;27(12):2911.

Czippelova B, Turianikova Z, Krohova J, Wiszt R, Lazarova Z, Pozorciakova K, et al. Arterial 6. Stiffness and Endothelial Function in Young Obese Patients - Vascular Resistance Matters. J Atheroscler Thromb. 2019;26(11):1015-25.

Chang JC, Xiao R, Meyers KE, Mercer-Rosa L, Natarajan SS, Weiss PF, et al. Nocturnal blood 7. pressure dipping as a marker of endothelial function and subclinical atherosclerosis in pediatric-onset systemic lupus erythematosus. Arthritis Research & Therapy. 2020;22(1):129.

Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin Sensitivity and 8. Diabetic Kidney Disease in Children and Adolescents With Type 2 Diabetes: An Observational Analysis of Data From the TODAY Clinical Trial. Am J Kidney Dis. 2018;71(1):65-74.

Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, 9. other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485-93.

Naylor LH, Davis EA, Kalic RJ, Paramalingam N, Abraham MB, Jones TW, et al. Exercise 10. training improves vascular function in adolescents with type 2 diabetes. Physiol Rep. 2016;4(4). Tryggestad JB, Willi SM. Complications and comorbidities of T2DM in adolescents: findings 11.

from the TODAY clinical trial. J Diabetes Complications. 2015;29(2):307-12.

Jodele S, Dandoy CE, Myers KC, El-Bietar J, Nelson A, Wallace G, et al. New approaches in the 12. diagnosis, pathophysiology, and treatment of pediatric hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transfus Apher Sci. 2016;54(2):181-90.

Leisenring WM, Mertens AC, Armstrong GT, Stovall MA, Neglia JP, Lanctot JQ, et al. Pediatric 13. cancer survivorship research: experience of the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2319-27.

14. Rajendran R, Abu E, Fadl A, Byrne CD. Late effects of childhood cancer treatment: severe hypertriglyceridaemia, central obesity, non alcoholic fatty liver disease and diabetes as complications of childhood total body irradiation. Diabet Med. 2013;30(8):e239-42.

15. Baker KS, Chow E, Steinberger J. Metabolic syndrome and cardiovascular risk in survivors after hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47(5):619-25.

Friedman DN, Hilden P, Moskowitz CS, Suzuki M, Boulad F, Kernan NA, et al. Cardiovascular 16. Risk Factors in Survivors of Childhood Hematopoietic Cell Transplantation Treated with Total Body Irradiation: A Longitudinal Analysis. Biol Blood Marrow Transplant. 2017;23(3):475-82.

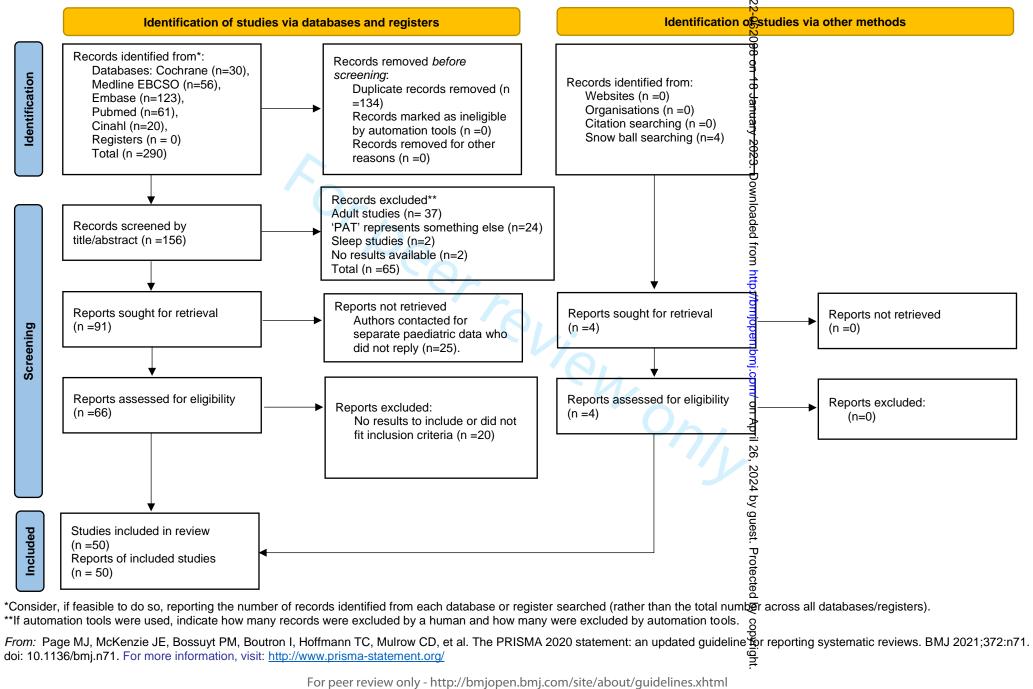
BMJ Open

Selamet Tierney ES, Newburger JW, Gauvreau K, Geva J, Coogan E, Colan SD, et al. 17. Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr. 2009;154(6):901-5. 18. Moerland M, Kales AJ, Schrier L, van Dongen MGJ, Bradnock D, Burggraaf J. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function. International Journal of Vascular Medicine. 2012;2012:904141. 19. Bonetti PO, Pumper GM, Higano ST, Holmes DR, Jr., Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol. 2004;44(11):2137-41. 20. Wilk G, Osmenda G, Matusik P, Nowakowski D, Jasiewicz-Honkisz B, Ignacak A, et al. Endothelial function assessment in atherosclerosis: comparison of brachial artery flow-mediated vasodilation and peripheral arterial tonometry. Pol Arch Med Wewn. 2013;123(9):443-52. Scaramuzza AE, Redaelli F, Giani E, Macedoni M, Giudici V, Gazzarri A, et al. Adolescents and 21. young adults with type 1 diabetes display a high prevalence of endothelial dysfunction. Acta Paediatrica. 2015;104(2):192-7. 22. Scaramuzza A, Giani E, Redaelli F, Ungheri S, Macedoni M, Giudici V, et al. Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. J Diabetes Res. 2015;2015:474561. 23. Nadeau KM, K.; Nathan, B.; Bacha, F.; Katz, M.; Simmons, J.; Gottschalk, M.; Tsalikian, E.; Tansey, M.; Copeland, K.; Linda, D.; Cree-Green, M.; Libman, I.; Haller, M. Effect of metformin on endothelial function in overweight adolescents with type 1 diabetes (T1D). Pediatric Diabetes. 2016;17(0):152-3. 24. Babar G, Clements M, Dai H, Raghuveer G. Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab. 2019;32(2):109-13. 25. Deda L, Yeshayahu Y, Sud S, Cuerden M, Cherney DZ, Sochett EB, et al. Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. Pediatr Diabetes. 2018;19(3):457-63. Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty 26. Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc. 2017;1(8):1029-40. Tomsa A, Klinepeter Bartz S, Krishnamurthy R, Krishnamurthy R, Bacha F. Endothelial 27. Function in Youth: A Biomarker Modulated by Adiposity-Related Insulin Resistance. J Pediatr. 2016;178:171-7. 28. Bacha. Circulating fibroblast growth factor-21 (FGF-21): A biomarker of subclinical atherosclerosis in obese youth with non-alcoholic fatty liver disease (NAFLD)? 2017;88(1-628). Kochummen E, Umpaichitra V, Marwa A, Joshi K, Chin VL, Perez-Colon S. Assessment of 29. Microvascular Function in Children and Adolescents with Diabetes and Obesity. International journal of endocrinology and metabolism. 2019;18(1):e90094. 30. Bacha F, Bartz SK, Tomsa A, Sharma S. Free Vitamin D: Relationship to Insulin Sensitivity and Vascular Health in Youth. J Pediatr. 2019;212:28-34.e2. 31. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine Albumin-to-Creatinine Ratio: A Marker of Early Endothelial Dysfunction in Youth. Journal of Clinical Endocrinology & Metabolism. 2015;100(9):3393-9. 32. Djurica D, Holt RR, Ren J, Shindel AW, Hackman RM, Keen CL. Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. Br J Nutr. 2016;116(4):639-47. 33. Hussid MF, Jordão CP, Lopes-Vicente WR, Virmondes L, Cepeda F, Katayama K, et al. Flow-Mediated Dilation in Obese Adolescents: Correlation with Waist Circumference and Systolic Blood Pressure. The FASEB Journal. 2018;32(S1):713.7-.7.

Page 40 of 46

BMJ Open

34. Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86-91. 35. Mu K, Zhang Y, Niu DY, Ye Y, Yan WL. [Distribution of peripheral arterial stiffness and endothelial function as well as their correlations with cardiovascular risk factors in children and adolescents]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2016;37(6):805-9. 36. Singh R, Verma A, Aljabari S, Vasylyeva TL. Urinary biomarkers as indicator of chronic inflammation and endothelial dysfunction in obese adolescents. BioMed Central; 2017. 37. Bruyndonckx LM, F.; Verhulst, S.; De Guchtenaere, A.; Vrints, C.; Denollet, J. Prevalence of Type D personality in obese adolescents and associated cardiovascular risk. . Cardiology in the Young 2018;28(0). 38. Czippelova BT, Z.; Krohova, J.; Lazarova, Z.; Javorka, M. Endothelial function and arterial stifness in obese adolescents - A relation to barorefex function. Obesity Facts 2017;10(0). Czippelova BT, Z.; Lazarova, Z.; Krohova, J.; Javorka, M. Obesity in children and adolescents: 39. A relation to endothelial function and arterial stiffness. Acta Physiologica 2016;217(0). 40. Fusco E, Pesce M, Bianchi V, Randazzo E, Del Ry S, Peroni D, et al. Preclinical vascular alterations in obese adolescents detected by Laser-Doppler Flowmetry technique. Nutrition, Metabolism & Cardiovascular Diseases. 2020;30(2):306-12. 41. Pareyn A, Allegaert K, Verhamme P, Vinckx J, Casteels K. Impaired endothelial function in adolescents with overweight or obesity measured by peripheral artery tonometry. Pediatr Diabetes. 2015;16(2):98-103. Del Ry S, Cabiati M, Bianchi V, Randazzo E, Peroni D, Clerico A, et al. C-type natriuretic 42. peptide plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Peptides. 2020;124:170218. Del Ry S, Cabiati M, Bianchi V, Caponi L, Maltinti M, Caselli C, et al. C-type natriuretic peptide 43. is closely associated to obesity in Caucasian adolescents. Clin Chim Acta. 2016;460:172-7. Larsen MN, Nielsen CM, Madsen M, Manniche V, Hansen L, Bangsbo J, et al. Cardiovascular 44. adaptations after 10 months of intense school-based physical training for 8- to 10-year-old children. Scandinavian Journal of Medicine & Science in Sports. 2018;28(S1):33-41. 45. Deda L, Sochett EB, Mahmud FH. Physiological changes in blood pressure impact peripheral endothelial function during adolescence. Cardiol Young. 2015;25(4):777-9. Bryan HG, Elaine MU, Philip RK, Zhiqian G, Michelle AA, Wayne AM, et al. Endothelial 46. Function and Arterial Stiffness Relate to Functional Outcomes in Adolescent and Young Adult Fontan Survivors. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2016;5(9). 47. Goldstein BHG, Z.; Khoury, P. R.; Marino, B. S.; Amos, M. A.; Mays, W. A.; Veldtman, G. R.; Redington, A. N.; Urbina, E. M. Natural history of vascular function in adolescent and young adult Fontan survivors: A longitudinal assessment of endothelial function and arterial stiffness. Circulation 2017;136(0). 48. Pinto FF, Gomes I, Loureiro P, Laranjo S, Timóteo AT, Carmo MM. Vascular function long term after Kawasaki disease: another piece of the puzzle? Cardiol Young. 2017;27(3):488-97. 49. Butbul Aviel Y, Dafna L, Pilar G, Brik R. Endothelial function in children with a history of henoch schonlein purpura. Pediatric rheumatology online journal. 2017;15(1):3. 50. Jehlicka PH, M.; Masopustova, A.; Trefil, L.; Kobr, J.; Sykora, J. Reactive hyperaemia index and detection of endothelial dysfunction in children with familial hypercholesterolaemia. European Heart Journal 2015;36(0):262. 51. Augusto LS, Silva GC, Pinho JF, Aires RD, Lemos VS, Ramalho LF, et al. Vascular function in asthmatic children and adolescents. Respir Res. 2017;18(1):17. 52. Ysebaert M. K VE, A, Bruyndonckx, L, De Winter, B, De Guchtenaere, A Vantieghem, S, Provyn S, Van Hoorenbeeck, K, Verhulst, S. The effect of weight loss on endothelial function and sleepdisordered breathing in obese children. Obesity Facts. 2018;11(0):225-6.


Zhang F, Wu Y, Feng G, Ni X, Xu Z, Gozal D. Polysomnographic correlates of endothelial 53. function in children with obstructive sleep apnea. Sleep Medicine. 2018;52:45-50. Xu ZF, Zhang FJ, Ge WT, Feng GS, Wu YX, Ni X. [Endothelial dysfunction in children with 54. obstructive sleep apnea syndrome]. Zhonghua Er Ke Za Zhi. 2020;58(1):13-8. Olive LS, Abhayaratna WP, Byrne D, Richardson A, Telford RD. Do self-reported stress and 55. depressive symptoms effect endothelial function in healthy youth? The LOOK longitudinal study. PLOS ONE. 2018;13(4):e0196137. Urback ALM, A. W. S.; Islam, A. H.; Korczak, D. J.; Macintosh, B. J.; Goldstein, B. I. 56. Cerebrovascular reactivity is associated with peripheral endothelial function among adolescents. Biological Psychiatry 2016;79(9):112S. 57. Naiberg MR, Hatch JK, Selkirk B, Fiksenbaum L, Yang V, Black S, et al. Retinal photography: A window into the cardiovascular-brain link in adolescent bipolar disorder. J Affect Disord. 2017;218:227-37. 58. Chen Y, Osika W, Dangardt F, Friberg P. Impact of psychological health on peripheral endothelial function and the HPA-axis activity in healthy adolescents. Atherosclerosis. 2017;261:131-7. 59. Winderman R RS, Vaidy K, Schwarz S. Vascular endothelial function in inflammatory bowel disease (IBD). Journal of Pediatric Gastroenterology and Nutrition. 2018;67(0):S79-S80. 60. Ruble K, Davis CL, Han H-R. Endothelial health in childhood acute lymphoid leukemia survivors: pilot evaluation with peripheral artery tonometry. J Pediatr Hematol Oncol. 2015;37(2):117-20. 61. Odanaka Y, Takitani K, Katayama H, Fujiwara H, Kishi K, Ozaki N, et al. Microvascular endothelial function in Japanese early adolescents. J Clin Biochem Nutr. 2017;61(3):228-32. 62. Al Jasmi F, Al Zaabi N, Al-Thihli K, Al Teneiji AM, Hertecant J, El-Hattab AW. Endothelial Dysfunction and the Effect of Arginine and Citrulline Supplementation in Children and Adolescents With Mitochondrial Diseases. Journal of Central Nervous System Disease. 2020;12:1-6. Wahezi DM, Liebling EJ, Choi J, Dionizovik-Dimanovski M, Gao Q, Parekh J. Assessment of 63. traditional and non-traditional risk factors for premature atherosclerosis in children with juvenile dermatomyositis and pediatric controls. Pediatric rheumatology online journal. 2020;18(1):25-. 64. Zhang WY, Selamet Tierney ES, Chen AC, Ling AY, Fleischmann RR, Baker VL. Vascular Health of Children Conceived via In Vitro Fertilization. J Pediatr. 2019;214:47-53. Mahtab S, Zar H, Ntusi N, Joubert S, Asafu-Agyei N, Luff N, et al. Endothelial dysfunction in 65. South African youth living with perinatally acquired HIV on antiretroviral therapy. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020;71. 66. Dirajlal-Fargo S, Yu J, Albar Z, Sattar A, Mahtab S, Jao J, et al. Monocyte activation and gut barrier dysfunction in South African youth on antiretroviral therapy and their associations with endothelial dysfunction. Aids. 2020;34(11):1615-23. Bartz SKC, M. C.; Krishnamurthy, R.; Bacha, F. F. Role of insulin resistance and 67. hyperandrogenemia in early vascular dysfunction in adolescents with PCOS. Endocrine Reviews 2015;36(0). Mueller UM, Walther C, Adam J, Fikenzer K, Erbs S, Mende M, et al. Endothelial Function in 68. Children and Adolescents Is Mainly Influenced by Age, Sex and Physical Activity - An Analysis of Reactive Hyperemic Peripheral Artery Tonometry. Circulation journal : official journal of the Japanese Circulation Society. 2017;81(5):717-25. 69. Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc. 2017;1(8):1029-40. Noma K, Kihara Y, Higashi Y. Outstanding Effect of Physical Exercise on Endothelial Function 70. Even in Children and Adolescents. Circulation Journal. 2017;81(5):637-9.

71. Sciatti E, Cavazzana I, Vizzardi E, Bonadei I, Fredi M, Taraborelli M, et al. Systemic Lupus Erythematosus and Endothelial Dysfunction: A Close Relationship. Curr Rheumatol Rev. 2019;15(3):177-88. 72. Negishi JO, H.; Hayama, Y.; Noritake, K.; Tsukada, M.; Iwasa, T.; Miyazaki, A.; Tsuda, E.; Yamada, O.; Shiraishi, I. Digital assessment of endothelial function and its association with clinical variable in patients with Fontan operation. Cardiology in the Young 2016;26(0):S134. 73. Nozaki Y, Nakayama-Inaba K, Ishizu T, Iida N, Kato Y, Hiramatsu Y, et al. Endothelial Dysfunction of Conduit Arteries in Patients with Repaired Coarctation of the Aorta. International heart journal. 2018;59(6):1340-5. 74. Olive LS. Youth psychological distress and intermediary markers of risk for CVD: The emerging field of pediatric psychocardiology. Atherosclerosis. 2017;261:158-9. Broberg O. MA, Ora I., Liuba P. Peripheral arterial structure and function in young survivors 75. of childhood cancer. . Cardiol Young. 2018;28(0):118. Brouwer CAJ, Postma A, Hooimeijer HLH, Smit AJ, Vonk JM, van Roon AM, et al. Endothelial 76. Damage in Long-Term Survivors of Childhood Cancer. Journal of Clinical Oncology. 2013;31(31):3906-13. 77. Broberg O. OI, Maxedius A., Wiebe T., Liuba P. Peripheral vascular endothelial function is impaired in childhood cancer survivors. . Cardiol Young. 2016;26(0):36. 78. Pao E, Gove NE, Flynn JT, Hingorani S. Ambulatory Blood Pressure and Endothelial Dysfunction in Hematopoietic Cell Transplantation Recipients. Biol Blood Marrow Transplant. 2018;24(8):1678-84. Jehlicka P, Huml M, Votava T, Kobr J. P8.05 REACTIVE HYPEREMIA INDEX AND DETECTION OF 79. ENDOTHELIAL DYSFUNCTION IN PAEDIATRIC HEMATO/ONCOLOGY PATIENTS. Artery Research. 2011;5(4):184-. Borenstein-Levin L, Brik R, Pillar G, Butbul Aviel Y. [EARLY DETECTION OF ENDOTHELIAL 80. DYSFUNCTION IN CHILDREN WITH AUTOIMMUNE DISEASES BY A NOVEL NONINVASIVE TECHNIQUE]. Harefuah. 2017;156(7):411-4. 81. Yano S MK, Azen C. Detection of early end-organ damage by endothelial dysfunction with reactive hyperemia-digital peripheral arterial tonometry in patients with Fabry disease. Molecular Genetics and Metabolism Conference: 13th Annual WORLDSymposium 2017. 2017;120(1-2):S143. Yano S MK, Azen C. Evaluation of endothelial function with reactive hyperemia-digital 82. peripheral arterial tonometry as a non-invasive biomarker to reflect vascular pathology in patients with fabry disease. Journal of Inborn Errors of Metabolism and Screening. 2017;5(0):306-7. Petr J, Michal H, Jan S, Ladislav T, Jiri K, Josef S. Reactive hyperaemia index as a marker of 83. endothelial dysfunction in children with Crohn's disease is significantly lower than healthy controls. Acta Paediatr. 2014;103(2):e55-60. 84. Dirajlal-Fargo S, Sattar A, Kulkarni M, Bowman E, Funderburg N, McComsey GA. HIV-positive youth who are perinatally infected have impaired endothelial function. AIDS. 2017;31(14). 85. Barber BE, William T, Grigg MJ, Piera KA, Chen Y, Wang H, et al. Nitric Oxide-Dependent Endothelial Dysfunction and Reduced Arginine Bioavailability in Plasmodium vivax Malaria but No Greater Increase in Intravascular Hemolysis in Severe Disease. J Infect Dis. 2016;214(10):1557-64. 86. Shah AS, Urbina EM. Vascular and Endothelial Function in Youth with Type 2 Diabetes Mellitus. Current Diabetes Reports. 2017;17(6):1-7. 87. Fernandes VO, Montenegro APDR, Ponte CMM, de Azevedo Souza Karbage LB, de Carvalho MMD, Gadelha DD, et al. Precocious endothelial dysfunction in patients with congenital generalized lipodystrophy (Berardinelli-Seip syndrome) evaluated by two different methods. Diabetol Metab Syndr. 2015;7(Suppl 1):A111-A. Mavinkurve M, O'Gorman CS. Cardiometabolic and vascular risks in young and adolescent 88. girls with Turner syndrome. BBA Clin. 2015;3:304-9.

1		
2		
3	671	89. O'Gorman CS, Syme C, Bradley T, Hamilton J, Mahmud FH. Impaired endothelial function in
4	672	pediatric patients with turner syndrome and healthy controls: a case-control study. Int J Pediatr
5	673	Endocrinol. 2012;2012(1):5.
6 7	674	90. Dietz SM, Tacke CE, Hutten BA, Kuijpers TW. Peripheral Endothelial (Dys)Function, Arterial
7 8	675	Stiffness and Carotid Intima-Media Thickness in Patients after Kawasaki Disease: A Systematic
o 9	676	Review and Meta-Analyses. PLoS One. 2015;10(7):e0130913.
9 10	677	91. Goldstein BH, Marino BS, Gao Z, Khoury PR, Amos MA, Mays WA, et al. Abstract 13486:
11	678	
12		Patient and Procedural Factors Are Associated With Autonomic and Endothelial Dysfunction in
13	679	Adolescent and Young Adult Fontan Survivors. Circulation. 2016;134(suppl_1):A13486-A.
14	680	92. Goldstein BHU, E. M.; Khoury, P. R.; Gao, Z.; Amos, M. A.; Mays, W. A.; Redington, A.;
15	681	Marino, B. S. Vascular function is predictive of functional outcomes in adolescent and young adult
16	682	fontan survivors. Circulation 2015;132(0).
17	683	93. Martins JD, Zachariah J, Selamet Tierney ES, Truong U, Morris SA, Kutty S, et al. Impact of
18	684	Treatment Modality on Vascular Function in Coarctation of the Aorta: The LOVE-COARCT Study.
19	685	Journal of the American Heart Association. 2019;8(7):e011536.
20	686	94. Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, et al. Cardiovascular
21	687	Outcomes in Young Adulthood in a Population-Based Very Low Birth Weight Cohort. J Pediatr.
22	688	2020;225:74-9.e3.
23	689	95. Sivamurthy KM, Dampier C, MacDermott M, Maureen M, Cahill M, Hsu LL. Peripheral arterial
24	690	tonometry in assessing endothelial dysfunction in pediatric sickle cell disease. Pediatr Hematol
25	691	Oncol. 2009;26(8):589-96.
26	692	96. Bhangoo A, Sinha S, Rosenbaum M, Shelov S, Ten S. Endothelial function as measured by
27	693	peripheral arterial tonometry increases during pubertal advancement. Horm Res Paediatr.
28 29		
29 30	694	2011;76(4):226-33.
31	695	
32		
33		
34	696	
35		
36	697	Figure 1: PRISMA 2020 Flow diagram of systematic search for Endo-PAT 2000 in paediatric
37	097	rigure 1. 1 Kiswia 2020 Flow diagram of systematic scaren for Endo-1 AT 2000 m paculatic
38	698	populations.
39	098	
40		
41	699	
42		
43		
44	700	
45		
46 47		
47		
48 49		
49 50		
50 51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

bmjoper

PRISMA 2020 Checklist

age 45 of 46		BMJ Open	136/bn	
PRISM	MA 20	020 Checklist	36/bmjopen-2022	
Section and Topic	ltem #	Checklist item	N-062098	Location where item is reported
TITLE		I	<u>0</u>	Page
Title	1	Identify the report as a systematic review.	- 18	2
ABSTRACT	1		Jan	
Abstract	2	See the PRISMA 2020 for Abstracts checklist.		2
INTRODUCTION			< <u>202</u>	
Rationale	3		023 3	2
B Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.		2
METHODS Eligibility criteria				•
	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.		6
Sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted t date when each source was last searched or consulted.	ੴidentify studies. Specify the ਤੋ	5
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	3	6
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many re and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in		6
2 Data collection 3 process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each rep independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of process.		6
5 Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which resu		6
3	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, fund assumptions made about any missing or unclear information.	ng sources). Describe any	6
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how n' study and whether they worked independently, and if applicable, details of automation tools used in the process.	A Any reviewers assessed each ⊵	6
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation	ion of results.	Tables
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study inte comparing against the planned groups for each synthesis (item #5)).	्र evention characteristics and जु	5
4 5	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing sum conversions.	ary statistics, or data	5
5	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	<u>ר</u> ד	7
3	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was per model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.		7
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analy	0	N/A
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.		N/A
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias	overseter state s	6
Cortainty	15	Describe any methods used to assesse containty (or contridence) in the body of evidence for an outcoment	•	6
5 Certainty	10			5

PRISMA 2020 Checklist

		BMJ Open 36/bmj open 920 Checklist	Page 46 of			
PRISM	MA 20	020 Checklist				
Section and	Item		Location			
Торіс	#	Checklist item	where iter is reporte			
assessment		S S				
RESULTS		18				
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the mumber of studies included in the review, ideally using a flow diagram.	Flow diagram			
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	6			
Study characteristics	17	Cite each included study and present its characteristics.	Tables 1			
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Nil			
Results of individual studies						
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	N/A			
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	N/A			
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/A			
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A			
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis asses	N/A			
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A			
DISCUSSION						
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	16			
	23b	Discuss any limitations of the evidence included in the review.	17			
	23c	Discuss any limitations of the review processes used.	17			
	23d	Discuss implications of the results for practice, policy, and future research.	20			
OTHER INFORMA	TION	v v v v v v v v v v v v v v v v v v v				
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the register was not registered.	No response			
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared. די ס מ מ מ מ	Prospero no response			
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A			
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the eview.	Nil			
Competing interests	26	Declare any competing interests of review authors.	Nil			
Availability of data, code and	27	হ Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all ফিল্লায়ঙ্গুৰুণাৰাগুৰ্দ্ধে বিষয় প্ৰিণাল্লা কৰি বিষয় জেৱৰণ গাঁ কৰি দলগাঁও প্ৰথা বি	With authors			

Page 47 of 4	BMJ Open	136/bmjopen-202	
ERIS MA	PRISMA 2020 Checklist	joper	
2		1-202	
3	and Item Charliet item	N	Location
4 Section 5 Topic	# Checklist item	-06209	where item is reported
6 other ma	terials	<u>0</u> 0	13 reported
7		4	<u> </u>
8 From: Pag	MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting system	atic reviews. BMJ 2021;372:n71. doi: 10	.1136/bmj.n71
10	Tor more information, visit. <u>mtp.//www.phsma-statement.org/</u>	uary	
11 12		202	
12		ü D	
14		owr	
15 16		nloac	
17		d t	
18		from	
19 20		http	
20		o://br	
22		njop	
23 24		oen.t	
25		omj	
26			
27 28		/ on	
29		Apr	
30		26	
31 32		, 20	
33		24 b	
34 25	MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting system For more information, visit: http://www.prisma-statement.org/	y gu	
35 36		guest. Protected by copyright	
37		Prot	
38		tect	
39 40		d b	
41		y co	
42		р угі	
43 44		ght.	
44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
46			
47			

BMJ Open

Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic review.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-062098.R2
Article Type:	Original research
Date Submitted by the Author:	12-Nov-2022
Complete List of Authors:	Hayden, Jenny; RCPI O'Donnell, Gill; University Hospital Limerick, Department of Paediatrics deLaunois, Isabelle; University of Limerick O'Gorman, Clodagh; Graduate Entry Medical School, University of Limerick, Paediatrics; University Hospital Limerick,
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Diabetes and endocrinology, Evidence based practice, Nutrition and metabolism, Sports and exercise medicine, Medical management
Keywords:	PAEDIATRICS, Community child health < PAEDIATRICS, Paediatric endocrinology < PAEDIATRICS, EDUCATION & TRAINING (see Medical Education & Training), Change management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Organisational development < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1		
2		
3	1	
4		
5	2	
6 7	2	Title page
8		
9	3	
10		
11		
12	4	
13		
14	5	Endo Peripheral Arterial Tonometry (Endo-PAT 2000) use in Paediatric Patients – a systematic
15	5	Endo Feripherar Arteriar Fonometry (Endo FAT 2000) ase in Facalatric Facences - a systemate
16	6	review.
17	-	
18		
19 20	7	
20		
22	8	Authors: Jenny Hayden ¹ , Gill O'Donnell ¹ , Isabelle deLaunois ² , Clodagh O'Gorman ¹³
23	0	
24		
25	9	Affiliations:
26		
27	10	1 Department of Paediatrics, University Hospital Limerick (UHL), Limerick, Ireland.
28	10	T Department of Faculatiles, Oniversity Hospital Enhence (OTE), Enhence, netand.
29		
30	11	2 Medical Librarian, University of Limerick (UL), Limerick, Ireland.
31		
32 33	10	2 Department of Departments School of Medicine University of Lineariels (UL) Lineariely Independ
34	12	3 Department of Paediatrics, School of Medicine, University of Limerick (UL), Limerick, Ireland.
35		
36	13	
37		
38		
39	14	Corresponding author: Jenny Hayden, Department of paediatrics, UHL, Limerick, Ireland,
40	1 Г	innubaudan 10 annail ann 082 8201 178
41	15	jennyhayden40@gmail.com, 083 8391478
42		Jennynayden40(@gmail.com, 083 8391478
43 44	16	
44 45		
46	47	
47	17	Key words: Endo-PAT 2000, peripheral artery tonometry, Endothelial dysfunction, paediatric
48	10	Jekster verlikter storenis diserver
49	18	diabetes mellitus, chronic diseases
50		
51	19	Word count:
52		
53	20	
54 57	20	
55 56		
56 57	21	
57		
59		
60	22	

BMJ Open

23 Abstract:

Objectives: Endo Peripheral Artery Tonometry (EndoPAT-2000) is a non-invasive technology for
measuring endothelial dysfunction (ED). The reactive hyperaemia index (RHI) is resulted and is low
when ED is present. We aim to synthesise the literature on paediatric ED that utilised Endo-PAT
analysis.

28 Design:

A comprehensive systematic review was conducted from January 2015 to March 2021. The databases
included Cochrane, MEDLINE EBSCO, EMBASE (Ovid), PUBMED and CINAHL EBSCO.
Exclusion criteria were: 1. If a study used a different device for example. 2. If the study had no
results. Inclusion criteria were: 1. Published in the English; 2. More than 50% of study subjects were
in the paediatric age range; 3. Data relevant to paediatric age range children could be extrapolated
from all data, where not all study subjects were children.

Results:

Following the removal of duplicates, 156 articles were initially identified . Following exclusion, 50
articles were included for review. We have subdivided these papers into different systems for ease of
reference and have reported our findings in 6 tables: patients with type 1/2 diabetes, obesity,
cardiovascular, respiratory, psychiatric conditions and miscellaneous diseases. For each, the study
design, population, control group (if available), RHI results and conclusions were reported.

41 Conclusions:

A number of papers using Endo-PAT for children with various chronic diseases have evidence of ED.
However, in many cases, there has only been a single cohort study using Endo-PAT. Further studies
are required to validate these findings and to help characterise the cardiovascular risk profile of
children with chronic disease. Further studies are also required that will characterise more completely
the cardiovascular risk profile of these children.

2 3 4	47	Consensus on other vascular risk markers that could be included in future studies is ideal and if
5 6	48	accomplished, this would facilitate meta-analyses of studies of relatively rare conditions.
7 8 9	49	
10 11 12	50	
13 14	51	
15 16 17	52	Strengths and limitations:
18 19 20	53	• Comprehensive systematic review to synthesise the literature on endothelial dysfunction
21 22	54	using Endo-PAT in paediatric patients.
23 24	55	• All study types were reviewed and even the studies without results but were relevant were
25 26	56	included in our discussion.
27 28	57	• In many cases, there has only been a single cohort study using Endo-PAT for a particular
29 30 21	58	disease
31 32 33	59	• Separate paediatric results were obtained where possible from studies with combined adult
34 35	60	and paediatric data; however, some papers were of poor quality and had limited results
36 37	61	available
38 39	62	• Only papers from January 2015 to March 2021 were included in our review.
40 41	63	
42 43	64	
44 45 46	65	Introduction:
47 48	66	Endothelial dysfunction (ED) is an early predictor of cardiovascular disease(1). Negative alterations
49 50	67	in endothelial physiology, also known as ED, cause the endothelium to lose its ability to promote
51 52 53	68	vasodilation, fibrinolysis and anti-aggregation(2). It is the beginning of atherosclerosis formation
55 55	69	which can lead to plaque progression and luminal narrowing(3). There is an imbalance between
56 57	70	vasodilation and vasoconstriction, abnormal reactive oxygen species, and nitric oxide (NO)
58 59 60	71	bioavailability(2). ED is a complication of cardiovascular risk factors such as smoking,

Page 5 of 36

BMJ Open

hypercholesterolemia, hypertension, hyperglycaemia and family history of premature atherosclerosis.
ED can be caused by oxidative stress with loss of vaso-active or inflammatory homeostasis within the
body's vascular system. It may be secondary to mechanical stimuli, for example increased
intraluminal pressure within the blood vessel or metabolic factors such as hormones (oestrogen's
vasodilation action)(4).

77 Damaged endothelium can release a cascade of substances which pose a risk of thrombosis,

inflammation and ultimately atherosclerosis(5). ED in paediatric populations has been associated with
several conditions including type 1 diabetes (T1D), type 2 diabetes (T2D), renal impairment, obesity
and metabolic syndrome(6-9). In patients with T2D, obesity and metabolic syndrome, insulin
resistance is one of the most importance factors contributing to ED(9). Metabolic syndrome is a proinflammatory state where dyslipidaemia, hyperuricemia, and hypertension occur and can predispose
to ED(10).

ED can progress to atherosclerosis which is a chronic condition that poses severe risk of certain
diseases including coronary artery disease, stroke and peripheral arterial disease. If detected early and
specific patient modifications are made, the progression to permanent vessel damage may be halted.
ED can be detected by invasive techniques assessing the coronary vessels or by non-invasive
techniques via the peripheral circulation. The gold standard test would utilise coronary angiography
and assess response to vasodilators. However, this is not feasible in practice as a screening tool,
especially in paediatrics.

91 This review highlights the variety of conditions that Endothelial Peripheral Artery Tonometry (Endo92 PAT) can be useful in paediatric patients. This systematic review will add to other reviews of
93 endothelial function assessments in paediatric populations as it includes further studies and an
94 increasing variety of paediatric conditions as well(11).

95 Endo-PAT 2000:

96 Endo-PAT 2000 is a non-invasive technology for measuring ED developed by Itamar Ltd. Non97 invasive pneumatic probes which are placed on the both index fingers, which continuously records

pulse wave amplitude. A blood pressure cuff is inflated to occlude blood flow and response after deflation is recorded. The reactive hyperaemic index (RHI) is resulted following this mini-ischemic stress to the vessel. The pulse wave amplitude (PWA) is measured and computes a RHI result automatically. RHI is calculated as the ratio of average PWA divided by the average amplitude during the equilibration period. To compensate for any systemic changes, this ratio is normalized to a concurrent signal from the contralateral finger. Numerous studies in both adult and paediatric literature reveal Endo-PAT's excellent reproducibility and reliability (12-14). However, RHI has limitations as a reliable method for defining ED, especially in paediatric patients due to the metabolic change's children go through throughout childhood including growth and puberty. There is no RHI cut off value in paediatric patients. In ED, the RHI is low and pulse amplitude is high. PAT also provides results on the peripheral augmentation index (PAT-AIx). Bonetti et al report a RHI of $\leq 1.35 - 1.49$ as indicative of coronary ED in adults(14, 15). Prior to Endo-PAT, ED had been assessed by flow-mediated vasodilation (FMD). FMD uses an ultrasound to assess the change in brachial artery diameter in response to increased flow after a period of vascular occlusion by a blood pressure cuff and is highly dependent on nitric oxide (NO) bioavailability. ED is identified by less vasodilatation (reduced FMD) of the brachial artery. FMD is technically challenging to perform, user-dependent and requires training. FMD results macro blood vessel reactivity whereas Endo-PAT results micro, which may account for the challenges in comparing the two techniques. Endo-PAT is easier to set up, is automated and less user-dependent. It can be used at the patient's bedside, without extensive training required of the operator. Wilk et al reported that RHI correlated with FMD (r = 0.35, P < 0.01) however there are other studies who have not reported a correlation between the two techniques(16). **Objective:**

A systematic review was conducted on the use of Endo-PAT 2000 in paediatric populations in
assessing the risk of ED, with the aim of synthesising the literature, to determine a cohort of paediatric
patients at high risk of ED and who may benefit from screening.

1		
2 3	124	
4 5 6	125	Methods:
7 8 9	126	A comprehensive systematic review was conducted to identify publications that investigated Endo-
10 11	127	PAT 2000. All papers published from January 2015 to March 2021 in paediatric populations age birth
12 13	128	to 16 years of age were analysed. PRIMSA study design was used.
14 15	129	The following scientific databases were searched: The Cochrane Database, MEDLINE EBSCO,
16 17 18	130	EMBASE (Ovid), PUBMED and CINAHL EBSCO. The search was limited by to English studies.
19 20	131	The search was limited by type of subjects (human), date (2015 to March 2021) and included all study
21 22	132	types. Snowballing method was used. Authors of joint adult and paediatric papers were contacted by
23 24	133	email to obtain separate paediatric data.
25 26 27	134	The database search was repeated several times using the combinations of keywords, MeSH terms and
27 28 29	135	filters (child: birth-16 years). The following MeSH terms or key words were used for searching:
30 31	136	Peripheral arterial tonometry, PAT test, endopat, adolescent, ado*, child, paediatric, pediatric,
32 33	137	preschool, schoolboy, schoolgirl, boy, girl, teen, toddler, infant, baby.
34 35 36	138	Exclusion criteria were: 1. If a study used a different device for example 'Watch-PAT;' 2. If the study
37 38	139	had no results. Inclusion criteria were: 1. Published in the English; 2. More than 50% of study
39 40	140	subjects were in the paediatric age range; 3. Data relevant to paediatric age range children could be
41 42	141	extrapolated from all data, where not all study subjects were children. A child was defined as up to 16
43 44	142	years, and this is consistent with PubMed's definition of a child. Where data relevant to children
45 46 47	143	could not be extrapolated from the whole dataset, the study authors were contacted for additional
48 49	144	information prior to study inclusion or exclusion.
50 51 52	145	Patient and public involvement:
53 54	146	No patient involved.
55 56 57 58 59 60	147	Data collection and analysis:

1

A total of 290 articles were obtained via the online database search (*Figure 1*: flow diagram).
Following removal of duplicates, 158 articles remained. The second screening was conducted by
'Rayyan- systematic review software.' Two further duplicate articles were removed, with 156
remaining for review.

Two independent authors separately performed a blind screen on the 156 abstracts. 65 articles were initially excluded based on title or abstract: 37 adult studies, 18 'PAT' did not represent peripheral arterial tonometry (e.g. prism adaptation test, psychosocial assessment tool), 6 Watch-PAT, 2 sleep studies and 2 had no results available.

The remaining 91 articles were analysed viewing full text articles for further information. A further 20 were excluded as they did not fit inclusion criteria or have results to report. Some of these articles that included Endo-PAT 2000 in paediatrics did not have results for the systematic review but had conclusions that were relevant to the paper were referenced in the results section.

Twenty-eight authors of studies including both adults and paediatric patients were contacted twice by email to gather separate information on the paediatric participants. Twenty authors did not reply and were thus excluded. Eight authors replied: three providing results, four unable to give separate paediatric data and one author's research was on adult patients so was excluded. Three of the articles whose authors replied with data were included in our review. Four studies were obtained via snow balling searching.

A total of 50 articles were included in our results and are represented in tables 1-6. For each eligible
study the following data was reported: author, year of publication, design of the study, population

studied, control group (if available), RHI results.

Title, lead author Year Study **Population: Results: RHI** Outcomes **Control group:** design n=sample size, n=sample size, reported. If RHI not age; mean ± SD age; mean ± specified, we reported or median SD or median p/r values (range), [F/M] (range), [F/M] Adolescents and 2015 Cohort n=73 T1D 56 (76.7%) had ED, T1D adolescents No controls. had evidence of young adults with prospective adolescents. with lower mean RHI 169

Page 9 of 36

1 2							
3 4 5 6 7 8 9 10 11 12 13 14	type 1 diabetes display a high prevalence of endothelial dysfunction. Scaramuzza et al (17)		observationa l study. Results at baseline and after a 1- year follow- up	diagnosed > 1 year, 16.2 +/- 3.5 years, [F/M 25/48]		scores (1.26 \pm 0.22 versus 2.24 \pm 0.48, p < 0.0001). More with ED had abnormal cardiac autonomic tests (p = 0.02) and were more sedentary. After 1 year follow-up in 64/73 patients, 81.8% had ED, despite some improvement in HbA1c.	ED. Good metabolic control (HbA1c ≤7.5%) and regular physical activity might be protective. ED progression despite some improvement to HbA1c.
15 16 17 18 20 21 22 23 24 25 26 27	Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. Scaramuzza et al (18)	2015	Double- blind, randomized controlled trial – snow balling. Results at baseline and after follow- up	n=71 T1D patients, followed for at least 1 year, age 16.3 \pm 3.4 years, [F/M 29/42]. (a) antioxidant diet 10.000 ORAC + alpha-lipoic acid; (b) antioxidant diet 10.000 ORAC + placebo;	(c) controls	3 double-blind study arms: (a) antioxidant diet 10,000 ORAC + lipoic acid: RHI 1.40 \pm 0.68 vs 1.72 \pm 0.66 (P<0.05) (baseline vs af ter 6 months). (b) antioxidant diet 10,000 ORAC + placebo: RHI 1.39 \pm 0.41 vs 1.58 \pm 0.40 (P>0.05). (c) Controls: RHI 1.58 \pm 0.64 vs 1.54 \pm 0.42 (P>0.05).	Improved RHI with alpha-lipoic acid in T1D patients.
28 29 30 31 32 33 34 35 36 37 38 39	Effect of metformin on endothelial function in overweight adolescents with type 1 diabetes (T1D). Nadeau et al(19)	2016	Conference abstract. Endo-PAT scores at baseline and 13 weeks.	Total n=70 overweight T1D patients. n= 41 on metformin (up to 2000 mg/day), 12- 19 years (mean 15.8)	n=29 placebo group.	Mean baseline RHI 1.8 +/- 0.6 in metformin group and 1.7 +/- 0.6 placebo group. At 13 weeks, no significant change from baseline RHI (+0.1 in metformin vs0.0 in placebo, $P = 0.08$). Some improvement in endothelial function in males.	No significant RHI change with metformin overall but some improvement in overweight T1D males.
40 41 42 43 44 45 46 47	Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. Babar et al (20)	2019	Cross- sectional study	T1D adolescents \geq 12 years. Two groups based on different HbA1c ranges. (a) HbA1c \geq 9.5% (n=25)	(b) HbA1c ≤8.5% (n=27).	PAT results were not significantly different between the groups. Pearson correlation showed a significant direct relationship between rising HbA1c and PAT (p=0.03, r=0.31).	Suboptimal glycemic control (rising HbA1c) causes early atherosclerosis.
48 49 50 51 52 53 54 55 56	Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. Deda et al (21)	2018	Research article – snow balling. Tested at two different time points.	n=21 T1D patients followed for ~2 years. 25- OH-Vit. D levels < 37.5 nmol/L. Age 15.7 \pm 1.4 years, [F/M 19/12]	Controls: matched age, sex and T1D.	After 4.8 ± 1.3 months of Vit. D supplementation RHI improved: $1.83 \pm$ 0.42 vs 2.02 ± 0.68 (P<0.05).	Vit. D supplementation associated with improvement to endothelial function and reduced urinary inflammatory markers.
57 58 59 60	Non-alcoholic Fatty Liver Disease in Hispanic Youth with Dysglycemia:	2017	Cross- sectional study	n=23 overweight/ obese with NAFLD, age 15.2 \pm 0.5 years.	n=13 overweight/ obese without NAFLD, age	NAFLD group had lower RHI $(1.4 \pm 0.05 \text{ vs } 1.7 \pm 0.09, \text{ p}=$ 0.002) Hepatic fat is	Hepatic fat and AST/ALT levels inversely related to RHI. If

3 4 5 6 7	Risk for Subclinical Atherosclerosis? Bacha et al (22)			n=12 prediabetes, n=11 T2D, [F/M 13/10]	15.7 ± 0.4 years. n=8 pre- diabetes, n=5 T2D, [F/M 3/10]	inversely related to RHI (r = -0.49, P = 0.002).	dysglycemia, NAFLD is associated with worse ED.
8 9 10 11 12 13 14 15 16 17 18	Endothelial function in youth: A Biomarker modulated by adiposity-related insulin resistance. Tomsa et al (23)	2016	Cross sectional study	Total n = 60. n=25 obese without DM, n=19 obese with impaired glucose tolerance, n=16 obese T2D but HB1Ac < 8%. Age 15.5 (0.2), [F/M 37/23]	n=21 normal weight, age 15.5 (0.2), [F/M 9/12]	RHI inversely related to % body fat (r = - 0.29, P = .008), total (r = -0.37, P = .004), subcutaneous (r = - 0.39, P = .003), and visceral abdominal fat (r = -0.26, P = .04).	Childhood obesity is associated with ED (lower RHI). RHI lower in obese and T2D. RHI negatively related with percentage body fat, WC, Leptin, TNF-alpha, blood glucose.
19 20 21 22 23 24 25 26 27 28	Circulating fibroblast growth factor-21 (FGF-21): A biomarker of subclinical atherosclerosis in obese youth with non-alcoholic fatty liver disease (NAFLD)? Bacha et al (24)	2017	Conference abstract	Obese adolescents with NAFLD, 15.4+/-0.3 years. n=13 normal glucose tolerance, n=19 prediabetes, n=16 T2D patients	Control group: no NAFLD. No difference in age/gender between groups.	Lower RHI in NAFLD group. High FGF-21 concentrations related to RHI (r=-0.33, p=0.03).	Increased FGF-21 in obese adolescents with NAFLD associated with insulin sensitivity and ED. FGF-21 may constitute a biomarker ED.
 29 30 31 32 33 34 35 36 37 38 39 	Assessment of Microvascular Function in Children and Adolescents with Diabetes and Obesity. Kochummen et al(25)	2019	Cross- sectional study	DM group. n=33 T1D with normal weight. n=8 obese T2D, age 12.7 (3.8) years, [F/M 25/16]	n=17 obese, non-DM children (normal BGL, BP and lipid profile), 12.8 (2.7) years, [F/M 9/8]	For every 1% increase in HbA1C, RHI decreased by 0.097 (P = 0.01). RHI of DM group with HbA1C $<10\%$ (1.70 \pm 0.58) versus those with $\ge10\%$ (1.21 \pm 0.19) (p= 0.02).	Poorly-controlled DM (HbA1C \geq 10%) had lower RHI. RHI negatively related with HbA1C. RHI similar between obese and normal weight with T1D. Similar between T1D and T2D.
40 41 42 43 44 45 46 47 48	Free Vitamin D: Relationship to Insulin Sensitivity and Vascular Health in Youth. Bacha et al (26)	2019	Cross- sectional study. Comparison across tertiles of free 25(OH)D concentratio ns	n=79, age 15.4 ± 0.2 years, [F/M 45/34]. n=30 overweight. n=31 overweight with prediabetes	n=18 normal weight and normal glucose tolerance.	The lowest tertile group had lower RHI $(1.42 \pm 0.06, 1.54 \pm 0.06, and 1.77 \pm 0.09, P = 0.002)$, compared with the second and third tertiles.	Youth with low free 25(OH)D or BioD concentrations have lower insulin sensitivity and worse endothelial function.
49 50 51 52 53 54 55 56 57 58	Urine Albumin-to- Creatinine Ratio (UACR): A Marker of Early Endothelial Dysfunction in Youth. Bartz et al(27) 170 Table 1: To	2015	Control study. Fasting UACR analysed.	n=25 overweight (OW) with normal glucose tolerance, $15.6 \pm$ 0.2 years, [F/M 17/8]. n=20 OWwith prediabetes, [F/M 11/9].	n=13 normal weight, 16.3 ± 0.4, [F/M 7/6].	Normal weight group RHI 1.84 \pm 0.1. OW with normal glucose tolerance 1.56 \pm 0.1. OW with prediabetes 1.56 \pm 0.1 (P = .04). UACR was related to RHI (r = -0.33, p = .01).	UACR is an early marker of endothelial dysfunction in youth, independent of glycemia.

60 171 studies), type 2 diabetes and prediabetes (6 studies). Reactive hyperemia index (RHI), type 1 diabetes mellitus

- 172 (T1D), type 2 diabetes mellitus (T2D),, endothelial dysfunction (ED), Oxygen radical absorbance capacity units
- 173 (ORAC), non-alcoholic fatty liver disease (NAFLD), overweight (OW), Urine Albumin-to-Creatinine Ratio
- 174 (UACR).

10 11 12 13 14 15	Title, lead author	Year	Study design	Population: n=sample size, age; mean ± SD or median (range), [F/M]	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	Results: RHI reported. If RHI not specified, we reported p/r values	Outcomes
16 17 18 19 20 21 22 23 24	Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. Djurica et al (28)	2016	Randomise d, double- blind, cross-over study	n=15 OW/obese males, 14-18 years (mean 16). 1-week daily 50g freeze- dried strawberry powder (FDSP) Before/after nitrate/nitrite levels measured.	n=10 control powder, 14-18 years (mean 16).	Acute plasma nitrate/nitrite levels increased 1 h after consuming the FDSP (P <0.001). When nitrate levels increased after FDSP intake compared to controls, had an increase in RHI (P =0.014).	Strawberries can provide vascular health benefits to OW/obese adolescent males.
25 26 27 28 29 30 31 32 33	Flow-mediated dilation in obese adolescents: Correlation with waist circumference (WC) and systolic blood pressure (SBP). Hussid et al (29)	2018	Case control study	n=20 obese patients, median age 14 years	n=10 normal weight, median age 15 years, paired for gender	No RHI difference between groups. 35% obese group had metabolic syndrome, none in control group. OSA in 86.6% obese and 50% of normal weight group.	Obese group had evidence of ED and metabolic syndrome. Increased WC and SBP seem to be related to this finding.
 34 35 36 37 38 39 40 41 42 43 	Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Donghui et al (30)	2019	Quasi- randomize d study	n=57 obese male adolescents, 12-18 (15.38 \pm 2.82) years, [F/M = 0/57], 6-week exercise program with dietary intervention.	n=10 normal weight adolescents, 15.38 ± 2.82 years, [F/M 0/10], maintained sedentary	Obese group RHI 1.43 (0.35) vs controls 1.67 (0.36) (p< 0.05). After 6 weeks RHI increased (p<0.01) and microRNA-126 decreased (p<0.01). miRNA-126 positively correlated with Δ RHI (r = 0.69, p<0.05).	RHI improved in obese group after exercise and diet interventions. Findings might be related to changes in serum miRNA- 126.
44 45 46 47 48 49 50 51 52	Distribution of peripheral arterial stiffness and endothelial function as well as their correlations with cardiovascular risk factors in children and adolescents. Mu et al (31)	2016	Cross- sectional population- based study, conference abstract	n=94 obese, 7-17 years, used automatic waveform analyser (BP-203RPE-I) and Endo-PAT 2000.	n=452 normal- weight	In normal weight group, RHI increased with age (r=0.33, P<0.01; r=0.36, P<0.01). RHI positively correlated with BMI (r=0.10, P=0.018) but negatively with DBP (r=-0.10, P= 0.016).	RHI increased along with age. Arterial stiffness and endothelial function continued to develop in the normal weight group.
53 54 55 56 57	Urinary biomarkers as indicator of chronic inflammation and 176	2017	Control study, research	n=63 total. n=14 overweight (OW), n=29 obese, age	n=20 normal weight (NW), age 13.9 (2),	There were no differences in RHI levels: NW 1.6 (0.1),	No significant correlation between RHI

1 2							
- 3 4 5 6 7	endothelial dysfunction in obese adolescents. Singh et al(32)		article	13.8 (2.4), [F/M 23/20]	[F/M 8/12]	OW 1.66 (0.1) and obese 1.67(0.1). NW girls RHI 1.9 vs NW boys 1.25.	and urinary markers. RHI higher in NW female adolescents.
8 9 10 11 12 13	Prevalence of Type D personality in obese adolescents and associated cardiovascular risk. Bruyndonckx et al(33)	2018	Control study, conference abstract	Obese adolescents- no definite numbers	Healthy normal weight children	Positive correlation in obese adolescents between negative affectivity and vascular stiffness (r= 0.28; p= .04)	Obese adolescents have worse cardiovascular risk profile with ED.
14 15 16 17 18 19	Endothelial function and arterial stiffness in obese adolescents - A relation to barorefex function. Czippelova et al(34)	2017	Conference abstract	n=22 obese, 15.28 +/- 2.8 years, [F/M 10/12]	n=22 non-obese, 15.98 +/- 2.46 years, [F/M 10/12]	No significant difference in RHI (p = 0.473). Baro-reflex sensitivity was also calculated.	No difference in RHI between groups. Findings require further study.
20 21 22 23 24 25 26	Obesity in children and adolescents: A relation to endothelial function and arterial stiffness. Czippelova et al(35)	2016	Conference abstract	n=16 obese adolescents,15.22 +/- 2.2 years, [F/M 7/9]	n=16 non-obese, 16.22 +/- 1.5 years, [F/M 7/9]	Significant difference in RHI ($p = 0.018$) with RHI higher in obese group (1.66 +/- 0.28 vrs 1.4 +/- 0.25).	Less early atherosclerotic changes in obese group; in contrast to expectations. Findings require further study.
27 28 29 30 31 32	Preclinical vascular alterations in obese adolescents detected by Laser-Doppler Flowmetry technique. Fusco et al (36)	2020	Research article	n=22 obese adolescents, 14.11 +/-2.53, [F/M 13/9]	n=24 normal- weight, 15.2 +/- 1.56, [F/M 11/13]	Similar RHI between obese and non-obese groups (1.80 +/- 0.62 and 1.86 +/- 0.51).	RHI did not differ between groups. RHI did not correlate with LDF.
 33 34 35 36 37 38 39 40 	Impaired endothelial function in adolescents with overweight or obesity measured by peripheral artery tonometry. Pareyn et al (37)	2015	Cross sectional study	n=27 overweight (OW)/obesity, 14.7 (13.0–16.4) years, [F/M 11/16]	n=25 normal weight controls, 15.5 (13.9–16.2) years, [F/M 13/12]	RHI normal weight 1.88 (1.7-2.4) vs OW/ obese 1.5 (1.3-1.9) (p< 0.05). Lower RHI if OW/obese ($p = 0.027$). RHI positively correlated with age and tanner stage (P< 0.05).	ED and higher baseline pulse amplitude in OW group.
41 42 43 44 45 46 47 48 49	C-type natriuretic peptide (CNP) plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Del Ry et al(38)	2020	Research article - snow balling	n=16 primary obesity, not DM, age 13.3 (0.5) years, [F/M 8/8].	n=24 normal weight, age 14.3 (0.4) years, [F/M 14/10].	RHI normal weight 2.1 (0) vs obese 1.4 (0) (P< 0.005). RHI negatively associated with CNP and diastolic BP (P< 0.005).	RHI significantly lower in obese group. RHI negatively related with CNP, DBP, fat mass and HbA1C.
50 51 52 53 54 55 56 57	C-type natriuretic peptide (CNP) is closely associated to obesity in Caucasian adolescents. Del Ry et al (39)	2016	Research article - snow balling	n=10 overweight, age 12.8 (1.6) years, [F/M 5/5]. n=45 obese, 12.8 (1.6) years, [F/M 19/26]	n=27 normal weight, age 12.8 (1.4) years, [F/M 14/13]	Normal weight group RHI 2.1 (0.2) vs OW 1.6 (0.4) (P< 0.05). Normal weight vs obese group RHI 1.4 (0.3) (P< 0.005). RHI negatively associated with CNP (P< 0.005).	RHI lower in overweight/ obese groups. CNP negatively related with RHI.
58 59 60	Arterial Stiffness and Endothelial Function in Young Obese Patients -	2019	Research article	Author contacted for separate paediatric data.	n=15 controls, age <16 years, [F/M 7/8]	RHI control vrs obese groups: 1.320 ± 0.427 and 1.457 ± 0.280 . RHI	RHI is influenced by vascular tone

Vascular Resistance Matters. Czippelova al (7)			n=16 obese grou age <16 years, [F/M 7/9]	ıp,	obese girls and boy 1.410 ± 0.253 and 1.494 ± 0.308 . RH control girls and boy 1.171 ± 0.210 and 1.436 ± 0.524	RHI in obese I positively
Cardiovascular adaptations after 10 months of intense school-based physica training for 8- to 10-year-old children Larsen et al (40)	al	18 Randomi d control study	games group, 9. 0.4 years. n=83 circuit strength training group, 9.3+/-0.3 years (16 years)	3+/- controls, 9.3 0.3 years	Pubertal status is a main predictor of F positive correlation between Tanner sta and RHI.	RHI; decreased DBF and had effects ages on cardiovascular health.
178 hyperemi	ia index ormal we	(RHI), freeze-dr	ied strawberry powde	er (FDSP), endothe	/obese (14 studies). React ial dysfunction (ED), ove c peptide (CNP), Laser-D	rweight
Title, lead author	Year	Study design	Population: n=sample size, age; mean ± SD or median (range), [F/M]	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	Results: RHI reported. If RHI not specified, we reported p/r values	Outcomes
Nocturnal blood pressure dipping as a marker of endothelial and cardiac function in pediatric-onset systemic lupus erythematosus (SLE). Chang et al (8)	2020	Cross- sectional study – author contacted for separate paeds data	n=20, 9-19 years (mean 16.5), (7 were age 16 or under). Average disease duration 3.2 years (± 2.1). [F/M 17/3]	Separated into 2 groups based on nocturnal BP dipping status.	Mean RHI for n=7 (aged 16/under): 0.529. 22% had ED. Reduced diastolic BP dipping was associated with poorer endothelial function (r 0.5, p = 0.04).	Isolated nocturnal E non-dipping is associated with ED and atherosclerotic changes. Potential role for routine ABPM for youth we SLE.
Physiological changes in blood pressure (BP) impact peripheral endothelial function during adolescence. Deda et al (41)	2015	Control study. Assessing association between RHI and known cardiovascul ar risk factors.	n =90 healthy adolescents to assess normal RHI response, 14.2±1.91 years, [F/M 46/44].	No controls	Mean arterial pressure significantly associated with RHI (p=0.01). Positive correlation RHI and age in females (r=0.33, p<0.02). RHI correlated with pubertal status: males (r=0.411, p=0.03), females (r=0.36, p=0.03).	Physiological changes in BP significantly impac RHI results.
Endothelial Function and Arterial Stiffness Relate to Functional Outcomes in	2016	Cross- sectional prospective observationa l study	n=60, 8-25 years (mean 13.9±4.1), [F/M 29/31]	No controls	PAT derived baseline pulse amplitude (P<0.05) negatively associated with minute ventilation to C02 ratio. RHI 1.2 (0.2–4.8).	Worse vascular measures associated with worse function measures. Increased arterial stiffness and decreased endothelin function are

1 2							
3 4 5 6	Fontan Survivors. Goldstein et al (42)						aerobic capacity, physical activity, and QOL in Fontan survivors.
7 8 9 10 11 12 13 14 15 16 17 18 19 20	Natural history of vascular function in adolescent and young adult Fontan survivors: A longitudinal ass essment of endothelial function and arterial stiffness. Goldstein et al (43)	2017	Prospective single- centre longit udinal study, conference abstract. Paired testing at a mean interval of 2.0 +/- 0.2 years of Fontan survivors.	n=50, mean 13.7 +/- 4.2 years, [F/M 23/27]	No controls	Decreases in RHI (0.002 +/- 0.01/yr) were not significant. BMI was a predictor for RHI (R 0.17, p=0.007).	Vascular function does not change uniformly in Fontan survivors. Changes in vascular function do not relate to changes in aerobic capacity but are associated with changes in anthropometric measures and O2 saturation.
21 22 23 24 25 26 27 28	Vascular function long term after Kawasaki disease another piece of the puzzle? Pinto et al (44)	2017	Single- centre prospective study	n=43 Kawasaki patients, age >11 years, diagnosed >5 years ago, with no coronary lesions or any other risk factors for cardiovascular disease.	n= 43 control group of individuals without cardiovascular risk factors.	Kawasaki patients had decreased RHI compared with controls (1.59±0.45 versus 1.98±0.41; p<0.001).	Children with Kawasaki disease may have long-term sequelae, even when there is no detectable coronary artery involvement in the acute stage of disease.
29 30 31 32 33 34 35 36 37 38 39	Endothelial function in children with a history of Henoch Schonlein purpura (HSP). Butbul Aviel et al (45)		Observation al prospective study	n=19 with HSP, 13.5 ± 3.9 years, [F/M 8/11]	n=23 healthy children, 12.8 ± 4.5 years, [F/M 7/16]	Mean RHI 1.81 study group and 1.87 control group ($p = 0.18$). RHI higher in patients who had endothelial function measured >6 years since HSP diagnosis compared with <6 years (1.98 + 0.74 vs. 1.38 ± 0.43 P = 0.037).	This study suggests that HSP causes short term endothelial dysfunction that improves with time.
40 41 42 43 44 45 46 47 48 49	Reactive hyperaemia index and detection of endothelial dysfunction in children with familial hypercholesterola emia (FH). Jehlicka et al(46)		Conference abstract	n=24 with FH, 13.9+/-2 years. Biochemical markers of endothelial function were assessed.	n=17 healthy controls, 15.2+/- 2.2 years	Significantly lower RHI in FH group (1.63+/-0.50 and 2.03+/-0.54; p<0.05). Lower RHI and elevated E-selectin in children with FH.	Possible relationship of ED in children with FH, highlighting the importance of early detection of ED when the atherosclerotic process is still reversible.
49 50	182 Table	3: Endo-P	AT 2000 in paed	iatric patients with ca	rdiac and vascular	conditions (7 studies). Read	ctive
51 52	183 hypere	mia index	(RHI), waist cire	cumference (WC), sy	stolic blood pressur	re (BP),, peak VO (peak 02	
53 54	184 consur	nption), qu	uality of life (QO	DL), systemic lupus er	ythematosus (SLE)	, ambulatory blood pressur	e
54 55 56	185 monito	oring (ABI	PM), quality of li	fe (QOL), Henoch Sc	chonlein purpura (H	SP), familial hypercholeste	erolaemia
56 57 58	186 (FH).						
58 59 60	187						

Ť	e 15 of 36 Title, lead author	Year	Study	Population:	J Open Control group:	Results: RHI	Outcomes			
_			design	n=sample size, age; mean ± SD or median (range), [F/M]	n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values				
0	Vascular function in asthmatic children and adolescents. Augusto et al (47)	2017	Cross- sectional controlled study	n=19 asthmatic patients, age 13.6 ± 0.6 years. [F/M 0/19]	n=18 controls. 14.9±0.7 years. [F/M 0/18]	RHI were similar between groups (p = 0.23). Asthmatic group RHI did not correlate with the different variables.	The increased AIx@75 without changes in RHI in asthmatic patients could mean that an early detection of vascular impairment may precede ED.			
2 3 4 5 6 7 8 9 0 1 2 3	The effect of weight loss on endothelial function and sleep disordered breathing (SDB) in obese children. Ysebaert et al (48)	2018	Conference abstract. Baseline and reassessed after 6- month weight loss programme.	n=62 obese, age 11-19 (mean 15.8) years, [F/M 20/42]	No controls.	Baseline: 39% had SDB. After 6 months: 86% had resolution of earlier diagnosed SDB. All had significant improvement of endothelial function after programme (p < 0.001). No correlations between SDB and improvement in endothelial function found.	Endothelial function significantly improves after weight loss.			
4 5 7 8 9 0 1	Polysomnographi c correlates of endothelial function in children with obstructive sleep apnoea (OSA). Zhang et al (49)	2018	Cross sectional study	n=121 mild OSA, 6.2 \pm 1.6 years, [F/M 37/84]. n=127 moderate- severe OSA, 6.0 \pm 1.6 years, [F/M 31/96]	n=107 primary snorers (PS), age 6.4 ± 1.8 years, [F/M 37/70]	OSA groups lower RHI than PS ($P < 0.001$, $P = 0.001$). RHI positively correlated with age ($r = 0.17$, $P = 0.002$), BMI z score ($r = 0.14$, $P = 0.008$) and oxygen saturation ($r = 0.15$, $P = 0.006$).	Children with OSA are at increased risk for abnormal endothelial function than habitually snoring children.			
3 4 5 7 8 9 0	Endothelial dysfunction in children with obstructive sleep apnoea syndrome (OSAS). Xu et al(50)	2020	Cross sectional study	n=248 OSAS, age 3-11 years	n=107 primary snorers (PS). No significant differences in age/gender.	OSAS had lower RHI 1.1 \pm 0.1 vrs 1.2 \pm 0.2 (P<0.01). RHI independently correlated with age, gender, obstructive apnoea hypopnea index, oxygen desaturation index (P<0.01).	OSAS have significant ED compared with PS. Frequent arousals due to obstructive respiratory events during sleep may be a candidate risk factor for ED.			
2└ 3	188Table 4: Endo-PAT 2000 in paediatric patients with respiratory conditions (4 studies). Endothelial dysfunction									
ŀ	189 (ED), reactive hyperaemia index (RHI), heart rate-corrected augmentation index (AIx@75), primary snorers									
5 5 7	190 (PS), obstructive sleep apnoea (OSA), obstructive sleep apnoea syndrome (OSAS).									
3)	191									
) <u>2</u> 	192									
1 5	193									
5 7 3 9	194									
9 0	195									

Title, lead author	Year	Study	Population:	Control group:	Results: RHI	Page 16 c Outcomes
		design	n=sample size, age; mean ± SD or median (range), [F/M]	n=sample size, age; mean ± SD or median (range), [F/M]	reported. If RHI not specified, we reported p/r values	
Do self-reported stress and depressive symptoms effect endothelial function in healthy youth? The LOOK longitudin al study. Olive et al(51)	2018	Longitudinal cohort study. LOOK longi tudinal study , who were followed through to adolescence (16 years).	n=203, 7.6 ± 0.3 years, [F/M 111/92].	No controls.	All relationships occurred in the hypothesised direction, but no cross-sectional or prospective evidence of early psychological stress or depression was associated with ED (all $p > 0.05$).	Contrast to previous findings in adolescents, little evidence between current or previous psychosocial stress or depression and endothelial function in 16-year-old adolescents.
Cerebrovascular reactivity is associated with peripheral endothelial function (EF) among adolescents. Urback et al(52)	2016	Conference abstract	n=11 with bipolar disorder. EF measured by PAT and cerebrovascular reactivity (CVR) by blood-oxygen- level dependent fMRI.	n=35 healthy controls	EF was positively correlated with CVR in grey matter (r=0.41, p=0.012), and a peak voxel in the left- medial-frontal gyrus (r=0.35, p=0.036).	Breath-hold CVR and peripheral EF are linked, suggesting that vascular function may be a multi- systemic phenotype. EF may be a potential proxy for cerebral blood vessel function with greater accessibility and lower cost than fMRI.
Retinal-vascular photography as a window into the cardiovascular and neurocognitive burden of adolescent bipolar disorder (BD). Naiberg et al (53)	2017	Cross- sectional study, author emailed for separate paeds data- most were teenagers	n=30 with bipolar disorder, 17.97±1.86 years	n=32 healthy controls, 16.00±1.62 years	In BD group, higher endothelial function associated with higher arterio-venular ratio (r=0.375, p=0.041).	Retinal photography may help assessing cardiovascular and neurocognitive burden of BD.
Impact of psychological health on peripheral endothelial function and the HPA-axis activity in healthy adolescents. Chen et al(54)	2017	Longditudin al 3-year follow-up study. Baseline and three-year follow-up.	n=162, 14.5 ± 1 years. [F/M 94/68].	No controls.	Lower peripheral endothelial function was associated with high level of anger ($\beta = -0.332$, p = 0.018) and disruptive behaviour ($\beta = -0.390$, p = 0.006) over three years in males, but not in females, adjusted for covariates.	High amounts of negative emotions may have adverse effects on peripheral endothelial function and regulation of the HPA-axis activity. High level of self- concept might be protective.
196 Table 5:	Endo-PA	T 2000 in paed	iatric patients with ps	ychiatric conditions	s (4 studies). Endothelial d	ysfunction
197 (ED), en	dothelial	function (EF), c	cerebrovascular reacti	vity (CVR), bipola	disorder (BD), functional	magnetic
198 resonance	e imagin	g (fMRI), hypot	halamic–pituitary–ad	renal HPA.		
199						
200						

Pag	Page 17 of 36 BMJ Open								
1 2 3	Title, lead author	Year	Study design	Population: n=sample size, age; mean ± SD or median (range), [F/M]	Control group: n=sample size, age; mean ± SD or median (range), [F/M]	Results: RHI reported. If RHI not specified, we reported p/r values	Outcomes		
4 5 7 8 9 10	Vascular endothelial function in inflammatory bowel disease (IBD). Winderman et al(55)	2018	Case- control study	n=16 with IBD (all in clinical remission), age 16.7 +/- 2.6 years, [F/M 8/7]	n=16, age 15.1 +/- 2.8 years, [F/M 7/8]	RHI IBD vs controls 1.66 vs 2.02 (P =0.036). IBD group had a mean RHI within the range associated with VD risk in adults (1.67).	IBD group lower RHI compared with controls. IBD patients may need to be monitored for thromboembolic phenomena.		
11 12 13 14 15 16 17 18 19	Endothelial health in childhood acute lymphoid leukaemia (ALL) survivors: pilot evaluation with peripheral artery tonometry. Ruble et al (56)	2015	Case control study	n=16 ALL survivors, age 8- 20 years (12.9+/- 0.9), [F/M 8/8].	n=16 healthy sibling pairs 13.8 (0.9), [F/M 10/6].	Both groups similar in cardiovascular risk measures but survivors had lower RHI (1.54 vs. sibling 1.77; P=0.0474).	Evidence of poorer vascular health in cancer survivors.		
20 21 22 23 24 25 26 27 28 29 30 31	Microvascular endothelial function in Japanese early adolescents. Odanaka et al (57)	2017	Control study	n=157 healthy adolescents divided by gender. Females n=82, median age 14 (1), 13.7 \pm 0.9 years	Males n= 75, median age 14 (2) years	No difference in RHI according to sex: boys and girls 1.85 ± 0.6 , 1.82 ± 0.66 and 1.87 ± 0.54 . RHI was significantly associated with systolic and diastolic BP, and had no correlation with anthropometric parameters and arterial stiffness markers.	RHI among adolescents were similar to those reported in previous studies on children and early adolescents.		
32 33 34 35 36 37 38 39 40 41	Endothelial Dysfunction and the Effect of Arginine and Citrulline Supplementation in Children and Adolescents With Mitochondrial Diseases. Al Jasmi, et al (58)	2020	Case control study	9 participants, age 6-17 years (mean 9.6).	3-15 years (mean 9.4). Baseline endothelial dysfunction was assessed in controls.	Lower RHI with mitochondrial diseases. RHI increased with arginine or citrulline supplementation	Supplementation with NO precursors may improve ED by enhancing NO production. First study to use Endo- PAT methodology in mitochondrial diseases.		
42 43 44 45 46 47 48 49 50 51 52 53	Assessment of traditional and non-traditional risk factors for premature atherosclerosis in children with juvenile dermatomysoitis (JDM) and pediatric controls. Wahezi et al (59)	2020	Retrospectiv e controlled study	n=40 JDM, age 6- 22 (mean 12.4± 4.1) years, [F/M 28/12]	n=20 controls, age 12.7± 3.9 years, [F/M 14/8]	RHI controls 1.43 [1.2, 1.7] and JDM 1.57 [1.2,1.9]. If controlled for lipoprotein A (atherogenic confounder), JDM patients had 41% RHI increase, thus indicating less ED compared to controls.	Rheumatological childhood disorders may be at increased risk of developing ED, but sociodemographic factors may have a greater role in developing cardiovascular disease.		
54 55 56 57	Vascular Health of Children Conceived via	2019	Cross- sectional pilot study	n=17 IVF children, 10-14 years. Also used	Compared to published norms or to	Mean Endo-PAT index in the IVF cohort was 1.66+/-0.52, 71% had	Children conceived by IVF seem to have evidence of abnormal		

2							
3 4 5 6 7	In Vitro Fertilization (IVF). Zhang et al (60)			carotid ultrasound and pulse wave velocity measurements.	historical Stanford controls	abnormal values (<1.9). Mean RHI was not significantly different between IVF and controls.	vascular health.
8 9 10 11 12 13 14 15 16 17 18 19	Endothelial dysfunction in South African youth living with perinatally acquired human immunodeficienc y virus (PHIV) on antiretroviral therapy. Mahtab et al (61)	2020	Case control study	n= 431 PHIV, median 14.1 (12.8, 15.5) years, [F/M 213/218]	n=93 without HIV, median 13.9 (12.1, 15.3) years, [F/M 53/40]	PHIV had higher rates of ED (50% vs 34%; P = .01); relationship persisted after adjusting for age, sex, BMI, high BP, high cholesterol (RR, 1.43; P =0.02). PHIV, CD4 count, viral load and current ART class were not associated with ED after adjustment.	PHIV appear to have increased risk of ED. These findings have important implications as HIV has increased risk of premature CVD and complications.
20 21 22 23 24 25 26 27 28	Soluble CD14 (sCD14) is associated with endothelial dysfunction in South African youth on ART. Dirajlal-Fargo et al (62)	2020	Case control study	n=283 perinatally acquired HIV (PHIV), 9-14 years.	n=69 age- matched without HIV	PHIVs had lower RHI despite viral suppression (RHI=1.36 vs 1.52, p<0.01). sCD14 at 24 months correlated with ED (p \leq 0.04). PHIV with ED, sCD14 was associated with lower RHI (β -0.05, p=0.01).	Higher sCD14 is independently associated with ED in PHIVs.
29 30 31 32 33 34 35 36 37 38	Role of insulin resistance and hyperandrogenem ia in early vascular dysfunction in adolescents with PCOS. Bartz et al (63)	2015	Conference abstract	n=14 PCOS adolescents PCOS (on no treatment).	n=7 non-PCOS. Both groups had similar age, tanner stage, race, glucose tolerance status.	Despite higher peripheral and hepatic insulin resistance with PCOS, RHI is not significantly lower when compared with controls of similar total body and abdominal adiposity.	PCOS has evidence of increased vascular inflammation. Hyperandrogenemia and insulin resistance may play an important role in vascular inflammation.
 39 40 41 42 43 44 45 46 47 48 49 50 51 	Endothelial Function in Children and Adolescents Is Mainly Influenced by Age, Sex and Physical Activity- An Analysis of Reactive Hyperemic Peripheral Artery Tonometry. Mueller et al (64)	2017	Randomised controlled study, Leipzig School Project followed over 5-year period.	n=931 RHI measurements in 445 students, age 10-17 years (baseline 11.66±0.93). n=247: 60 minutes physical exercise (PE) daily (intervention group).	n=181: 2 units of 45 minutes PE weekly (control group).	Higher RHI in the intervention group: 0.09 [-0.05, 0.23]. Increase RHI from 1.53 ± 0.42 in the youngest to 1.96 ± 0.59 in the oldest students. This increase adjusted by age and sex was estimated as 0.11 [0.08, 0.14] per year.	If Endo-PAT is used for research in adolescents, age and sex must to be taken in account when reporting RHI results.
51 52		· Endo D/	AT 2000 in pood	intria nationta with at	har misaallanaays r		udios)
52 53 54			1		1	baediatric conditions (10 str tory bowel disease (IBD),	,
55 56	203 lympho	id leukaeı	mia (ALL), nitrio	c oxide (NO), perinat	ally acquired huma	n immunodeficiency virus	(PHIV),
5758 204 In Vitro Fertilization (IVF), soluable CD 14 (sCD14), polyc			polycystic ovarian s	syndrome (PCOS), physica	l exercise		
59 60	205 (PE).						

1 2		
3 4	206	
5 6 7	207	Results:
8 9 10	208	Endothelial dysfunction in paediatric diabetes mellitus patients (Table 1):
11 12	209	Five studies involve only type 1 diabetes (T1D) patients (Table 1). 2/5 studies reported lower RHI
13 14	210	results in the T1D group(17, 20). One study which included only adolescent patients, reported RHI
15 16	211	negatively correlates with impaired metabolic control and subclinical signs of autonomic
17 18	212	neuropathy(17). They concluded that good metabolic control (HbA1c \leq 7.5%) and regular physical
19 20 21	213	activity might be protective against ED. One study reports an improved RHI result with an alpha-
22 23	214	lipoic acid and antioxidant diet(18). Nadeau et al reported no significant RHI change with metformin
24 25	215	overall but some improvement in overweight T1D males(19). Barber et al report suboptimal
26 27	216	glycaemic control causes early atherosclerosis(20). One study noted an improvement in RHI post
28 29	217	vitamin D supplementation in T1D patients with vitamin D deficiency(21).
30 31 32 33 34 35 36 37 38 39 40	218	6 studies focused on type 2 diabetes (T2D) and impaired glucose tolerance or 'prediabetes.' Tomsa et
	219	al note a link between insulin resistance and obesity by utilising Endo-PAT(23). They also noted that
	220	RHI is higher if HbA1c is less than 5.5%(23). Two studies compare on Non-alcoholic fatty liver
	221	disease (NAFLD), T2D and prediabetes patients(22, 24). If dysglycemia, NAFLD is associated with
	222	worse endothelial function. Circulating FGF-21 levels are elevated in obese youth with NAFLD and
41 42	223	are associated ED and therefore may be a biomarker for ED(24). Bartz et al report urine albumin
43 44 45	224	creatinine ratio (UACR) may be an early marker of ED independent of glycemia(27). Endothelial
45 46 47	225	dysfunction may mediate the link between obesity-related insulin resistance and early
48 49	226	microalbuminuria.(27). Kochummen et al reported a mean RHI in obese adolescents without diabetes
50 51	227	was similar to T1D and T2D patients(25). One study noted an improvement in RHI post vitamin D
52 53 54 55	228	supplementation in T1D patients with vitamin D deficiency(21). Another study noted lower vitamin D
	229	concentrations are associated with lower insulin sensitivity and worse endothelial function (26).
56 57 58	230	
59 60	231	Endothelial dysfunction and Obesity (Table 2):

14 studies describe the use of Endo-PAT 2000 in overweight or obese patients (Table 2). Studies included measurement of the following parameters: BMI, T1D, T2D, gender, pubertal stage, age, blood pressure values, non-alcoholic fatty liver disease, obstructive sleep apnoea (OSA), insulin, plasma glucose levels, inflammatory markers (urinary markers, CNP, micro-RNA-126, E-Selectin). In numerous studies, RHI was significantly lower in obese groups (7, 25, 28-31, 38, 39, 65). ED may mediate the link between obesity-related insulin resistance and early microalbuminuria(27). Exercise and diet control improves glycolipid metabolism(40). Two studies by Czippelova et al did not find a lower RHI in obese groups, but recommended further studies (34, 35). Noma et al (2017) report the beneficial effects of exercise in paediatric patients and is an important message in reducing future endothelial complications(66). Fusco et al noted pre-clinical microvascular changes in obese patients compared to controls using LDF but noted no RHI change(36).

243 Endothelial dysfunction in cardiac and vascular conditions (Table 3):

7 studies report the use of Endo-PAT and cardiovascular conditions (Table 3). Lower RHI is seen with patients with familial hypercholesterolaemia(46). Studies assess ED in patients with systemic lupus erythematosus (SLE) and Henoch Schonlein purpura (HSP)(8, 45, 67). Negishi et al (2016) used Endo-PAT to compare Fontan survivors and healthy controls. The Fontan patients were aged 15 to 32 years. Mean RHI 0.56+ /- 0.26 in Fontan patients and 0.78+ /- 0.31 in controls (p= 0.09). RHI in Fontan patients was associated with diastolic blood pressure, heart rate and haemoglobin A1c level(68). Endothelial function in Fontan patients was associated with abnormal glucose tolerance and arterial stiffness and therefore concluded that glucose regulation might be a potential target to improve ED in this cohort. Nozaki et al (2018) assessed ED in conduit and resistance arteries and used FMD and Endo-PAT in paediatric patients with repaired coarctation of aorta(69). Endothelial dysfunction in respiratory conditions (Table 4):

4 studies used Endo-PAT in respiratory conditions (*Table 4*). Augusto et al noted an increased
 augmentation index (AIx) without changes in RHI in asthmatic patients (47). One study reported an
 improvement in sleep disordered breathing post weight loss and also, endothelial function

BMJ Open

3
4
5
6
7
7 8
9
-
10 11 12
11
12
13
12 13 14 15 16
15
16 17 18
17
18
19
20
21
22
~~ 72
20 21 22 23 24 25 26 27 28 29 30
24
25
26
27
28
29
30
31
32
33
34
34 35
26
36 37
37
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
50
51
52
53
54
55
56
57
58
59

60

significantly improved after weight loss(48). Two studies report children with OSA compared to
habitual snorers are at increased risk for ED(49, 50). Frequent wakening due to obstructive respiratory
events may be a risk factor for ED in OSA.

261 Endothelial dysfunction and psychological conditions (Table 5):

262 4 studies report the use of Endo-PAT in psychiatric conditions (*Table 5*). Potential limitations in this area are self-reported methods for detecting psychological distress of children, for example in the 263 264 LOOK longitudinal study(51). Naiberg et al (2017) utilised retinal vascular photography as a proxy for cerebral microvasculature, and Endo-PAT to assess cardiovascular and neurocognitive burden in 265 adolescents with bipolar disorder (BD)(53). In the BD group, better endothelial function was 266 267 associated with higher arterio-venular ratio (r=0.375, p=0.041). Olive L.S. (2017) published 'The emerging field of paediatric psycho-cardiology' highlighting the importance of the childhood origins 268 of adult CVD(70). This article highlights that psychological distress can influence CVD risk, directly 269 270 by physiological change that can negatively impact the integrity of the cardiovascular system.

271

272 Endothelial dysfunction and other paediatric conditions (Table 6 – Miscellaneous)

273 Childhood cancer survivors:

There is evidence of ED in cancer survivors (Table 6)(56). Chemotherapy causes cardiomyocyte 274 275 damage and also negatively affects endothelial function. Broberg et al (2018) utilised Endo-PAT in childhood cancer survivors and noted a lower RHI in this cohort compared to controls(71). Broberg et 276 277 al (2016) identified one-third of cancer survivors (31.2%) compared to 8% of controls (p=0.02) had 278 ED in their study(72). They concluded this may be a useful screening tool of cardiovascular disease in asymptomatic cancer survivor patients. Pao et al (2018) assessed the relationship between blood 279 280 pressure and ED using Endo-PAT in haematopoietic stem cell transplant recipients. Hypertension on 281 ambulatory blood pressure monitoring (p=0.045) and blunted nocturnal dipping (p=0.04) were associated with a lower Endo-PAT scores(73). 282

283 Autoimmune conditions:

 Children with autoimmune diseases may have a high tendency to develop ED which was highlighted in a study using a novel technique(74). Atherosclerosis is an emerging cause of morbidity and mortality in patients with rheumatological conditions such as juvenile idiopathic arthritis, SLE and dermatomyositis. Borenstein-Levin et al assessed a cohort with autoimmune conditions compared to controls: 29% in the study group had ED compared to 6% (p <0.05)(74). Chang et al noted nocturnal blood pressure (BP) non-dipping is associated with ED in SLE patients highlighting a potential role for ambulatory BP monitoring in these patients(*Table 3*)(8).

291 Metabolic diseases:

Yano et al research in Fabry disease patients demonstrated that early diagnosis of ED can help
determine the timing of initiating enzyme replacement therapy(75). Utilizing RH-PAT as a screening
tool for early renal involvement may be helpful as it may detect abnormalities even prior to
microalbuminuria(76). This can provide guidance on enzyme replacement therapy which is required
to prevent irreversible progressive renal failure. Al Jasmi et al research in mitochondrial diseases
reported that arginine or citrulline supplementation may improve ED, which provides evidence that
these amino acids may be therapeutic (*Table 6*)(58).

299 Inflammatory bowel disease:

One study (*Table 6*) highlights that IBD patients had lower RHI compared with controls(55). Petr et al
(2014) provided evidence of increased ED in children with Crohn's disease compared to healthy
controls(77). RHI values were significantly lower in the patients with Crohn's than controls (p
0.05).

304 Infectious diseases:

305 Dirajlal-Fargo et al used Endo-PAT to assess ED in human immunodeficiency virus (HIV) patients
306 (*Table 6*)(62, 78). Perinatally acquired HIV patients appear to have higher levels of ED (RHI 1.34
307 (1.20, 1.42) compared with controls (1.52 (1.27, 1.80) (p<0.01))(78). The pathogenesis of severe

Page 23 of 36

BMJ Open

Plasmodium vivax malaria is poorly understood. ED and reduced nitric oxide (NO) bioavailability
characterize severe falciparum malaria. Barber et al (2016) identified that endothelial function was
impaired in proportion to disease severity. Those with severe vivax malaria, non-severe and healthy
controls median RH-PAT index 1.49, 1.73, and 1.97 respectively (p=0.018)(79). ED in this cohort
was associated with reduced L-arginine bioavailability, which may contribute to microvascular
pathogenesis.

Discussion:

To our knowledge, this study is the first to conduct a rigorous systematic review of published and presented literature on the results of RHI as measured by Endo-PAT 2000 as a measure of endothelial dysfunction in children and adolescents. One of the benefits of RHI as a measure of ED is that it is an easy test to conduct, is well-tolerated by children and adolescents and it can be performed at the point of care.

Weaknesses of the paper include the quality of the papers are limited and varied; 11 are conference abstracts that had little information available on methods or results and have limited analysis. Observational studies are also limited in research value. Many are case-control studies which are not as valuable as randomised controlled trials (RCT). Only 4 studies are RCTs. The studies cannot be compared for a meta-analysis as most are not RCT level research of high enough quality. Therefore, the conclusions drawn from many of these studies are limited. There are also limitations of RHI as reliable method for defining ED. There is no defined RHI cut off value in paediatric populations. Moreover, there may be significant findings in studies in the grey literature or in conference presentations that was not included, for example in the studies where 25 authors did not respond to emails. Only papers from 2015 to March 2021 were included. Many of the papers did not include other factors that would be important in a cardiovascular assessment of children, for example family history, cholesterol and blood pressure parameters and Body Mass Index (BMI) and standardised BMI (SDS) measurements. So, in many studies it cannot be excluded that there were confounding variables

affecting the ED score. Regardless, this study indicates that there are a significant number of published paediatric papers that indicate the presence of ED in children as young as 8 years old. Strengths of the paper include a comprehensive literature search including contacting authors by email for separate paediatric results in studies with combined adult and paediatric data. All study types were reviewed and even the studies without results but had interesting points were included in our discussion. Also, we do not think that this paediatric Endo-PAT review has been done before. Our results highlight that Endo-PAT has benefits including point-of-care and ease of conduct of test for assessor.

The potential future role of Endo-PAT for paediatric patients may be an adjunct tool in screening for cardiovascular risk factors. If atherosclerosis is identified early, it can be halted in its process in certain conditions. There is huge potential for its use in diabetic patients. Improving glucose control can protect endothelial function. Persistent high sugars can impair endothelial function via oxidative stress and production of free-radicals(2). Lower insulin sensitivity poses a risk of diabetic nephropathy(9). Microangiopathic renal damage increases oxygen consumption and increases resistance in the afferent arterioles. Shah et al report T2D patients have greater vascular thickness and stiffness and worse endothelial function compared to obese and lean children(80). This is raising concern that adolescents with T2D are already at risk of developing early onset cardiovascular disease.

Diabetic microangiopathy can result in retinopathy, neuropathy and peripheral vascular neuropathy. Subclinical evidence of these complications can be seen in paediatric patients, especially in those with poor glycaemic control. Unfortunately, there have been reports of T2D paediatric patients diagnosed with microangiopathic complications, particularly nephropathy(81). This early endothelial damage can be linked with increased morbidity and mortality(82). Moreover, new onset diabetes after transplantation (NODAT) is characterised by insulin resistance and T2D(83). Endo-PAT has multiple benefits in obesity as it can identify if early ED is present and therefore strategies to reverse or halt this process can be made (*Table 2*)(7, 30, 35).

Page 25 of 36

BMJ Open

In recent decades, the number of childhood cancer survivors is increasing(84). Treatments utilized such as haematopoietic stem cell transplantation have increased risk of cardiovascular disease(85, 86). Following chemotherapy, radiotherapy, immunosuppressive treatments the risk of insulin resistance has been noted(87). With advances in treating malignant paediatric conditions there are long term complications emerging in survivors. High dose chemotherapy including anthracyclines, alkylating agents and vinca alkaloids may disrupt the substances on the surface of the endothelium and impair its ability to dilate and constrict. Moreover, total body radiation poses a risk by damaging the elastic matrix. Heart disease in long-term cancer survivors is 5-10 times higher than their siblings(87). Brouwer et al (2013) studied cancer survivor patients after potential cardiovascular toxic treatment (e.g. anthracyclines, platinum) and/or radiotherapy and noted a higher risk of ED compared with sibling controls(88). Jehlicka et al (2011) used Endo-PAT and noted acute lymphoblastic leukaemia (ALL) patients had lower RHI compared to controls $(1.57\pm0.50, 1.96\pm0.63; p \le 0.05)(89)$. Turner syndrome (TS) patients have increased cardiovascular risk factors which predispose to cardiac and cerebrovascular complications(90). A case-control study on TS patients noted a statistically significant increase in RHI in GH-treated girls(91). There are countless other paediatric syndromes with risk of ED that could benefit from screening. Furthermore, in cardiac diseases and post-cardiac surgery Endo-PAT has been proven useful in multiple studies (Table 3)(44, 69, 90). Dietz et al (2015) systematic review and metanalysis on peripheral ED in Kawasaki disease, report coronary arterial aneurysms had higher surrogate markers for cardiovascular disease risk(92). This may indicate these patients should be monitored for CVD in adulthood, however significant heterogeneity was noted. Endo-PAT has been shown to be beneficial postoperatively in Fontan survivors and comparing surgical techniques like in the 'The LOVE-COARCT study' (Long-term Outcomes and Vascular Evaluation After Successful Coarctation of the Aorta Treatment) (93-95). With the rising premature population, Endo-PAT may prove useful in this cohort. Harris et al (2020) assessed cardiovascular outcomes for those born with very low birth weights (VLBW) <1500g. The

VLBW cohort (n = 229; 71% of survivors) and term-born controls (n = 100), were assessed at age 2630 years. The VLBW cohort had lower RHI compared to controls(96). Endo-PAT is also used in
haematological conditions. Sivamurthy et al (2009) reported lower RHI in the majority sickle cell
disease in a paediatric population (1.53 and 1.71; p value .032). RHI was not normal in children with
chronic transfusions or hydroxyurea(97).

The psychological studies in our paper raise an interesting link between the vascular system and the psychiatric diagnoses. Retinal vascular calibre was shown to be associated with endothelial function in bipolar disorder patients and it has been suggested that it may be used as an assessment tool in this cohort.

Finally, many paediatric autoimmune conditions are linked with ED(8, 74). In SLE patients, ED may occur from impaired clearance of apoptotic cells, oxidative stress, or B cell activation with different circulating autoantibodies(67). Regular ED assessment in SLE patients has been recommended due to risk of subclinical atherosclerosis(67). Moreover, several factors may impact microvascular function in children, for example puberty, which is of particular interest in our paediatric review. Bhangoo et al report improved RHI in correlation with an increase in Tanner stages and postulated that this may be due to sex steroids(98). If Endo-PAT is used in research in adolescents, age, sex and tanner staging must to be taken in account when reporting RHI results(64).

2 403

404 Conclusion:

There are a number of papers in the paediatric literature describing ED at young ages using EndoPAT. However, in many cases, there has only been a single cohort study using Endo-PAT. Further
studies are required to validate these findings. Additionally, longitudinal studies are required to
evaluate how this ED may change as the child ages and their chronic conditions changes. Further
studies are also required that will characterise more completely the cardiovascular risk profile of these
children with chronic disease. Consensus on other vascular risk markers that could be included in

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
59	

60

421

422

423

411 future studies is ideal and if accomplished, this would facilitate meta-analyses of studies of conditions 412 with relatively rare conditions.

The establishment of a threshold RHI for normal or abnormal would be helpful if it correlated well 413 with clinical outcomes. This might be achieved in the future either by meta-analysis of the literature, 414 if outcomes are measured and reported in a standardised manner, or by the conduct of a prospective 415 longitudinal study that follows RHI in childhood to adulthood along with identification of cardiac 416 outcomes. The latter would by its nature require to be a long-term study and would require a repeated 417 iterative process to establish the threshold of normal for RHI, as a continuous variable. Therefore, a 418 419 meta-analysis may be preferable. In the short term, a systematic approach to cardiovascular risk 420 assessments should be promoted.

Statements and declarations: 424

a. Authorship contributions: 425

eer eu.eu. 426 All authors contributed to the initial search strategy protocol. I deLaunois performed the online 427 database search. J Hayden and G McDonnell separately performed a blind screen of the abstracts and analysed the papers. G McDonnell contacted the authors of joint adult and paediatric papers to obtain 428 separate paediatric data. J Hayden wrote the initial manuscript which was revised by C O'Gorman. 429 All authors reviewed the manuscript prior to submission. 430 431 **b.** Competing interests: There are no competing interests to declare.

c. Funding: This research received no specific grant from any funding agency in the public, 432

commercial or not-for-profit sectors. 433

d. Data sharing: search technique and data analysis are available from Rayyan software and the

corresponding author.

e. Competing Interest: No competing interests to declare

f. Ethical approval: this was not needed as this study was a systematic review and did not involve

human participants.

> **References:**

1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23(4):222-31. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial Dysfunction 2. in Diabetes. Diabetes Care. 2011;34(Supplement 2):S285.

3. Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183-98.

Taylor MS, Choi CS, Bayazid L, Glosemeyer KE, Baker CCP, Weber DS. Changes in vascular 4. reactivity and endothelial Ca(2+) dynamics with chronic low flow. Microcirculation. 2017;24(3). Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel 5.

Biomarkers for Evaluation of Endothelial Dysfunction. Angiology. 2020;71(5):397-410. 6. Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, et al. Radial Artery Tonometry Demonstrates Arterial Stiffness in Children With Type 1 Diabetes. Diabetes Care. 2004;27(12):2911.

Czippelova B, Turianikova Z, Krohova J, Wiszt R, Lazarova Z, Pozorciakova K, et al. Arterial 7. Stiffness and Endothelial Function in Young Obese Patients - Vascular Resistance Matters. J Atheroscler Thromb. 2019;26(11):1015-25.

Chang JC, Xiao R, Meyers KE, Mercer-Rosa L, Natarajan SS, Weiss PF, et al. Nocturnal blood 8. pressure dipping as a marker of endothelial function and subclinical atherosclerosis in pediatric-onset systemic lupus erythematosus. Arthritis Research & Therapy. 2020;22(1):129.

Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin Sensitivity and 9. Diabetic Kidney Disease in Children and Adolescents With Type 2 Diabetes: An Observational Analysis of Data From the TODAY Clinical Trial. Am J Kidney Dis. 2018;71(1):65-74.

10. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485-93.

11. La Valle A, Crocco M, Chiarenza DS, Maghnie M, d'Annunzio G. Endothelial impairment evaluation by peripheral arterial tonometry in pediatric endocrinopathies: A narrative review. World J Diabetes. 2021;12(6):810-26.

12. Selamet Tierney ES, Newburger JW, Gauvreau K, Geva J, Coogan E, Colan SD, et al. Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr. 2009;154(6):901-5.

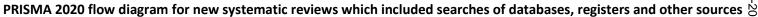
Moerland M, Kales AJ, Schrier L, van Dongen MGJ, Bradnock D, Burggraaf J. Evaluation of the 13. EndoPAT as a Tool to Assess Endothelial Function. International Journal of Vascular Medicine. 2012;2012:904141.

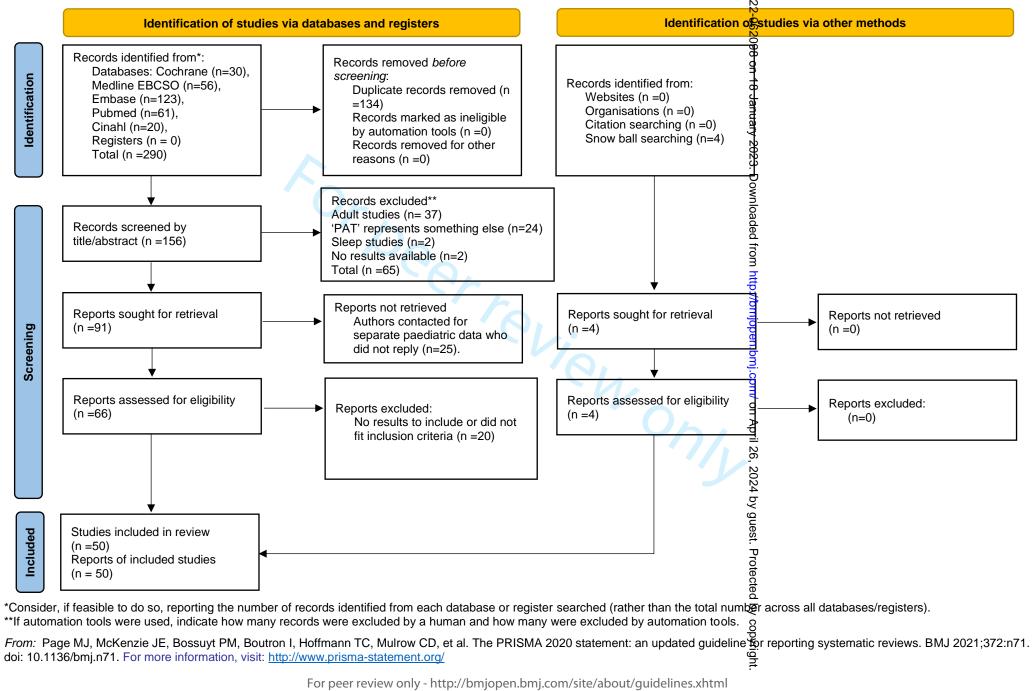
1		
2		
3	474	14. Fatihoglu SG, Jam F, Okutucu S, Oto A. Noninvasive Investigation of the Presence and Extent
4 5	475	of Coronary Artery Disease by the Evaluation of Fingertip-Reactive Hyperemia. Medical Principles
6	476	and Practice. 2022;31(3):262-8.
7	477	15. Bonetti PO, Pumper GM, Higano ST, Holmes DR, Jr., Kuvin JT, Lerman A. Noninvasive
8	478	identification of patients with early coronary atherosclerosis by assessment of digital reactive
9	479	hyperemia. J Am Coll Cardiol. 2004;44(11):2137-41.
10	480	16. Wilk G, Osmenda G, Matusik P, Nowakowski D, Jasiewicz-Honkisz B, Ignacak A, et al.
11 12	481	Endothelial function assessment in atherosclerosis: comparison of brachial artery flow-mediated
12 13	482	vasodilation and peripheral arterial tonometry. Pol Arch Med Wewn. 2013;123(9):443-52.
14	483	17. Scaramuzza AE, Redaelli F, Giani E, Macedoni M, Giudici V, Gazzarri A, et al. Adolescents and
15	484	young adults with type 1 diabetes display a high prevalence of endothelial dysfunction. Acta
16	485	Paediatrica. 2015;104(2):192-7.
17	486	18. Scaramuzza A, Giani E, Redaelli F, Ungheri S, Macedoni M, Giudici V, et al. Alpha-Lipoic Acid
18	487	and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes:
19 20	488	A Pilot Trial. J Diabetes Res. 2015;2015:474561.
20 21	489	19. Nadeau KM, K.; Nathan, B.; Bacha, F.; Katz, M.; Simmons, J.; Gottschalk, M.; Tsalikian, E.;
22	490 491	Tansey, M.; Copeland, K.; Linda, D.; Cree-Green, M.; Libman, I.; Haller, M. Effect of metformin on
23	491 492	endothelial function in overweight adolescents with type 1 diabetes (T1D). Pediatric Diabetes. 2016;17(0):152-3.
24	492 493	2016,17(0).152-5. 20. Babar G, Clements M, Dai H, Raghuveer G. Assessment of biomarkers of inflammation and
25	493 494	premature atherosclerosis in adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab.
26	494	2019;32(2):109-13.
27 28	496	21. Deda L, Yeshayahu Y, Sud S, Cuerden M, Cherney DZ, Sochett EB, et al. Improvements in
20	497	peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes.
30	498	Pediatr Diabetes. 2018;19(3):457-63.
31	499	22. Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty
32	500	Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc.
33	501	2017;1(8):1029-40.
34 35	502	23. Tomsa A, Klinepeter Bartz S, Krishnamurthy R, Krishnamurthy R, Bacha F. Endothelial
35 36	503	Function in Youth: A Biomarker Modulated by Adiposity-Related Insulin Resistance. J Pediatr.
37	504	2016;178:171-7.
38	505	24. Bacha. Circulating fibroblast growth factor-21 (FGF-21): A biomarker of subclinical
39	506	atherosclerosis in obese youth with non-alcoholic fatty liver disease (NAFLD)? 2017;88(1-628).
40	507	25. Kochummen E, Umpaichitra V, Marwa A, Joshi K, Chin VL, Perez-Colon S. Assessment of
41	508	Microvascular Function in Children and Adolescents with Diabetes and Obesity. International journal
42	509	of endocrinology and metabolism. 2019;18(1):e90094.
43 44	510	26. Bacha F, Bartz SK, Tomsa A, Sharma S. Free Vitamin D: Relationship to Insulin Sensitivity and
45	511	Vascular Health in Youth. J Pediatr. 2019;212:28-34.e2.
46	512	27. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine Albumin-to-Creatinine Ratio:
47	513	A Marker of Early Endothelial Dysfunction in Youth. Journal of Clinical Endocrinology & Metabolism.
48	514	2015;100(9):3393-9.
49 50	515	28. Djurica D, Holt RR, Ren J, Shindel AW, Hackman RM, Keen CL. Effects of a dietary strawberry
50 51	516	powder on parameters of vascular health in adolescent males. Br J Nutr. 2016;116(4):639-47.
51 52	517	29. Hussid MF, Jordão CP, Lopes-Vicente WR, Virmondes L, Cepeda F, Katayama K, et al. Flow-
52	518	Mediated Dilation in Obese Adolescents: Correlation with Waist Circumference and Systolic Blood
54	519	Pressure. The FASEB Journal. 2018;32(S1):713.77.
55	520	30. Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of
56	521	microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126
57	522	in obese adolescents. Microvasc Res. 2019;123:86-91.
58 59		
59 60		
1		

Mu K, Zhang Y, Niu DY, Ye Y, Yan WL. [Distribution of peripheral arterial stiffness and 31. endothelial function as well as their correlations with cardiovascular risk factors in children and adolescents]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2016;37(6):805-9. 32. Singh R, Verma A, Aljabari S, Vasylyeva TL. Urinary biomarkers as indicator of chronic inflammation and endothelial dysfunction in obese adolescents. BioMed Central; 2017. 33. Bruyndonckx LM, F.; Verhulst, S.; De Guchtenaere, A.; Vrints, C.; Denollet, J. Prevalence of Type D personality in obese adolescents and associated cardiovascular risk. . Cardiology in the Young 2018;28(0). 34. Czippelova BT, Z.; Krohova, J.; Lazarova, Z.; Javorka, M. Endothelial function and arterial stifness in obese adolescents - A relation to barorefex function. Obesity Facts 2017;10(0). 35. Czippelova BT, Z.; Lazarova, Z.; Krohova, J.; Javorka, M. Obesity in children and adolescents: A relation to endothelial function and arterial stiffness. Acta Physiologica 2016;217(0). Fusco E, Pesce M, Bianchi V, Randazzo E, Del Ry S, Peroni D, et al. Preclinical vascular 36. alterations in obese adolescents detected by Laser-Doppler Flowmetry technique. Nutrition, Metabolism & Cardiovascular Diseases. 2020;30(2):306-12. 37. Pareyn A, Allegaert K, Verhamme P, Vinckx J, Casteels K. Impaired endothelial function in adolescents with overweight or obesity measured by peripheral artery tonometry. Pediatr Diabetes. 2015;16(2):98-103. 38. Del Ry S, Cabiati M, Bianchi V, Randazzo E, Peroni D, Clerico A, et al. C-type natriuretic peptide plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Peptides. 2020;124:170218. 39. Del Ry S, Cabiati M, Bianchi V, Caponi L, Maltinti M, Caselli C, et al. C-type natriuretic peptide is closely associated to obesity in Caucasian adolescents. Clin Chim Acta. 2016;460:172-7. 40. Larsen MN, Nielsen CM, Madsen M, Manniche V, Hansen L, Bangsbo J, et al. Cardiovascular adaptations after 10 months of intense school-based physical training for 8- to 10-year-old children. Scandinavian Journal of Medicine & Science in Sports. 2018;28(S1):33-41. Deda L, Sochett EB, Mahmud FH. Physiological changes in blood pressure impact peripheral 41. endothelial function during adolescence. Cardiol Young. 2015;25(4):777-9. 42. Bryan HG, Elaine MU, Philip RK, Zhiqian G, Michelle AA, Wayne AM, et al. Endothelial Function and Arterial Stiffness Relate to Functional Outcomes in Adolescent and Young Adult Fontan Survivors. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2016;5(9). Goldstein BHG, Z.; Khoury, P. R.; Marino, B. S.; Amos, M. A.; Mays, W. A.; Veldtman, G. R.; 43. Redington, A. N.; Urbina, E. M. Natural history of vascular function in adolescent and young adult Fontan survivors: A longitudinal assessment of endothelial function and arterial stiffness. Circulation 2017;136(0). 44. Pinto FF, Gomes I, Loureiro P, Laranjo S, Timóteo AT, Carmo MM. Vascular function long term after Kawasaki disease: another piece of the puzzle? Cardiol Young. 2017;27(3):488-97. Butbul Aviel Y, Dafna L, Pilar G, Brik R. Endothelial function in children with a history of 45. henoch schonlein purpura. Pediatric rheumatology online journal. 2017;15(1):3. 46. Jehlicka PH, M.; Masopustova, A.; Trefil, L.; Kobr, J.; Sykora, J. Reactive hyperaemia index and detection of endothelial dysfunction in children with familial hypercholesterolaemia. European Heart Journal 2015;36(0):262. 47. Augusto LS, Silva GC, Pinho JF, Aires RD, Lemos VS, Ramalho LF, et al. Vascular function in asthmatic children and adolescents. Respir Res. 2017;18(1):17. Ysebaert M. K VE, A, Bruyndonckx, L, De Winter, B, De Guchtenaere, A Vantieghem, S, 48. Provyn S, Van Hoorenbeeck, K, Verhulst, S. The effect of weight loss on endothelial function and sleepdisordered breathing in obese children. Obesity Facts. 2018;11(0):225-6. 49. Zhang F, Wu Y, Feng G, Ni X, Xu Z, Gozal D. Polysomnographic correlates of endothelial function in children with obstructive sleep apnea. Sleep Medicine. 2018;52:45-50.

BMJ Open

50. Xu ZF, Zhang FJ, Ge WT, Feng GS, Wu YX, Ni X. [Endothelial dysfunction in children with obstructive sleep apnea syndrome]. Zhonghua Er Ke Za Zhi. 2020;58(1):13-8. Olive LS, Abhayaratna WP, Byrne D, Richardson A, Telford RD. Do self-reported stress and 51. depressive symptoms effect endothelial function in healthy youth? The LOOK longitudinal study. PLOS ONE. 2018;13(4):e0196137. 52. Urback ALM, A. W. S.; Islam, A. H.; Korczak, D. J.; Macintosh, B. J.; Goldstein, B. I. Cerebrovascular reactivity is associated with peripheral endothelial function among adolescents. Biological Psychiatry 2016;79(9):112S. 53. Naiberg MR, Hatch JK, Selkirk B, Fiksenbaum L, Yang V, Black S, et al. Retinal photography: A window into the cardiovascular-brain link in adolescent bipolar disorder. J Affect Disord. 2017;218:227-37. 54. Chen Y, Osika W, Dangardt F, Friberg P. Impact of psychological health on peripheral endothelial function and the HPA-axis activity in healthy adolescents. Atherosclerosis. 2017;261:131-7. 55. Winderman R RS, Vaidy K, Schwarz S. Vascular endothelial function in inflammatory bowel disease (IBD). Journal of Pediatric Gastroenterology and Nutrition. 2018;67(0):S79-S80. 56. Ruble K, Davis CL, Han H-R. Endothelial health in childhood acute lymphoid leukemia survivors: pilot evaluation with peripheral artery tonometry. J Pediatr Hematol Oncol. 2015;37(2):117-20. Odanaka Y, Takitani K, Katayama H, Fujiwara H, Kishi K, Ozaki N, et al. Microvascular 57. endothelial function in Japanese early adolescents. J Clin Biochem Nutr. 2017;61(3):228-32. 58. Al Jasmi F, Al Zaabi N, Al-Thihli K, Al Teneiji AM, Hertecant J, El-Hattab AW. Endothelial Dysfunction and the Effect of Arginine and Citrulline Supplementation in Children and Adolescents With Mitochondrial Diseases. Journal of Central Nervous System Disease. 2020;12:1-6. Wahezi DM, Liebling EJ, Choi J, Dionizovik-Dimanovski M, Gao Q, Parekh J. Assessment of 59. traditional and non-traditional risk factors for premature atherosclerosis in children with juvenile dermatomyositis and pediatric controls. Pediatric rheumatology online journal. 2020;18(1):25-. 60. Zhang WY, Selamet Tierney ES, Chen AC, Ling AY, Fleischmann RR, Baker VL. Vascular Health of Children Conceived via In Vitro Fertilization. J Pediatr. 2019;214:47-53. 61. Mahtab S, Zar H, Ntusi N, Joubert S, Asafu-Agyei N, Luff N, et al. Endothelial dysfunction in South African youth living with perinatally acquired HIV on antiretroviral therapy. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020;71. Dirajlal-Fargo S, Yu J, Albar Z, Sattar A, Mahtab S, Jao J, et al. Monocyte activation and gut 62. barrier dysfunction in South African youth on antiretroviral therapy and their associations with endothelial dysfunction. Aids. 2020;34(11):1615-23. Bartz SKC, M. C.; Krishnamurthy, R.; Bacha, F. F. Role of insulin resistance and 63. hyperandrogenemia in early vascular dysfunction in adolescents with PCOS. Endocrine Reviews 2015;36(0). 64. Mueller UM, Walther C, Adam J, Fikenzer K, Erbs S, Mende M, et al. Endothelial Function in Children and Adolescents Is Mainly Influenced by Age, Sex and Physical Activity - An Analysis of Reactive Hyperemic Peripheral Artery Tonometry. Circulation journal : official journal of the Japanese Circulation Society. 2017;81(5):717-25. Bacha F, Tomsa A, Bartz SK, Barlow SE, Chu ZD, Krishnamurthy R, et al. Nonalcoholic Fatty 65. Liver Disease in Hispanic Youth With Dysglycemia: Risk for Subclinical Atherosclerosis? J Endocr Soc. 2017;1(8):1029-40. Noma K, Kihara Y, Higashi Y. Outstanding Effect of Physical Exercise on Endothelial Function 66. Even in Children and Adolescents. Circulation Journal. 2017;81(5):637-9. Sciatti E, Cavazzana I, Vizzardi E, Bonadei I, Fredi M, Taraborelli M, et al. Systemic Lupus 67. Erythematosus and Endothelial Dysfunction: A Close Relationship. Curr Rheumatol Rev. 2019;15(3):177-88.


68. Negishi JO, H.; Hayama, Y.; Noritake, K.; Tsukada, M.; Iwasa, T.; Miyazaki, A.; Tsuda, E.; Yamada, O.; Shiraishi, I. Digital assessment of endothelial function and its association with clinical variable in patients with Fontan operation. Cardiology in the Young 2016;26(0):S134. 69. Nozaki Y, Nakayama-Inaba K, Ishizu T, Iida N, Kato Y, Hiramatsu Y, et al. Endothelial Dysfunction of Conduit Arteries in Patients with Repaired Coarctation of the Aorta. International heart journal. 2018;59(6):1340-5. 70. Olive LS. Youth psychological distress and intermediary markers of risk for CVD: The emerging field of pediatric psychocardiology. Atherosclerosis. 2017;261:158-9. 71. Broberg O. MA, Ora I., Liuba P. Peripheral arterial structure and function in young survivors of childhood cancer. . Cardiol Young. 2018;28(0):118. 72. Broberg O. OI, Maxedius A., Wiebe T., Liuba P. Peripheral vascular endothelial function is impaired in childhood cancer survivors. . Cardiol Young. 2016;26(0):36. 73. Pao E, Gove NE, Flynn JT, Hingorani S. Ambulatory Blood Pressure and Endothelial Dysfunction in Hematopoietic Cell Transplantation Recipients. Biol Blood Marrow Transplant. 2018;24(8):1678-84. 74. Borenstein-Levin L, Brik R, Pillar G, Butbul Aviel Y. [EARLY DETECTION OF ENDOTHELIAL DYSFUNCTION IN CHILDREN WITH AUTOIMMUNE DISEASES BY A NOVEL NONINVASIVE TECHNIQUE]. Harefuah. 2017;156(7):411-4. 75. Yano S MK, Azen C. Detection of early end-organ damage by endothelial dysfunction with reactive hyperemia-digital peripheral arterial tonometry in patients with Fabry disease. Molecular Genetics and Metabolism Conference: 13th Annual WORLDSymposium 2017. 2017;120(1-2):S143. 76. Yano S MK, Azen C. Evaluation of endothelial function with reactive hyperemia-digital peripheral arterial tonometry as a non-invasive biomarker to reflect vascular pathology in patients with fabry disease. Journal of Inborn Errors of Metabolism and Screening. 2017;5(0):306-7. Petr J, Michal H, Jan S, Ladislav T, Jiri K, Josef S. Reactive hyperaemia index as a marker of 77. endothelial dysfunction in children with Crohn's disease is significantly lower than healthy controls. Acta Paediatr. 2014;103(2):e55-60. 78. Dirajlal-Fargo S, Sattar A, Kulkarni M, Bowman E, Funderburg N, McComsey GA. HIV-positive youth who are perinatally infected have impaired endothelial function. AIDS. 2017;31(14). 79. Barber BE, William T, Grigg MJ, Piera KA, Chen Y, Wang H, et al. Nitric Oxide-Dependent Endothelial Dysfunction and Reduced Arginine Bioavailability in Plasmodium vivax Malaria but No Greater Increase in Intravascular Hemolysis in Severe Disease. J Infect Dis. 2016;214(10):1557-64. Shah AS, Urbina EM. Vascular and Endothelial Function in Youth with Type 2 Diabetes 80. Mellitus. Current Diabetes Reports. 2017;17(6):1-7. 81. Naylor LH, Davis EA, Kalic RJ, Paramalingam N, Abraham MB, Jones TW, et al. Exercise training improves vascular function in adolescents with type 2 diabetes. Physiol Rep. 2016;4(4). 82. Tryggestad JB, Willi SM. Complications and comorbidities of T2DM in adolescents: findings from the TODAY clinical trial. J Diabetes Complications. 2015;29(2):307-12. 83. Jodele S, Dandoy CE, Myers KC, El-Bietar J, Nelson A, Wallace G, et al. New approaches in the diagnosis, pathophysiology, and treatment of pediatric hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Transfus Apher Sci. 2016;54(2):181-90. 84. Leisenring WM, Mertens AC, Armstrong GT, Stovall MA, Neglia JP, Lanctot JQ, et al. Pediatric cancer survivorship research: experience of the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2319-27. 85. Rajendran R, Abu E, Fadl A, Byrne CD. Late effects of childhood cancer treatment: severe hypertriglyceridaemia, central obesity, non alcoholic fatty liver disease and diabetes as complications of childhood total body irradiation. Diabet Med. 2013;30(8):e239-42. Baker KS, Chow E, Steinberger J. Metabolic syndrome and cardiovascular risk in survivors 86. after hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47(5):619-25.


Page 33 of 36

BMJ Open

1		
2		
3	672	87. Friedman DN, Hilden P, Moskowitz CS, Suzuki M, Boulad F, Kernan NA, et al. Cardiovascular
4	673	Risk Factors in Survivors of Childhood Hematopoietic Cell Transplantation Treated with Total Body
5	674	Irradiation: A Longitudinal Analysis. Biol Blood Marrow Transplant. 2017;23(3):475-82.
6 7	675	88. Brouwer CAJ, Postma A, Hooimeijer HLH, Smit AJ, Vonk JM, van Roon AM, et al. Endothelial
7 8	676	Damage in Long-Term Survivors of Childhood Cancer. Journal of Clinical Oncology. 2013;31(31):3906-
o 9	677	13.
9 10	678	89. Jehlicka P, Huml M, Votava T, Kobr J. P8.05 REACTIVE HYPEREMIA INDEX AND DETECTION OF
11	679	ENDOTHELIAL DYSFUNCTION IN PAEDIATRIC HEMATO/ONCOLOGY PATIENTS. Artery Research.
12	680	2011;5(4):184
13		
14	681	90. Mavinkurve M, O'Gorman CS. Cardiometabolic and vascular risks in young and adolescent
15	682	girls with Turner syndrome. BBA Clin. 2015;3:304-9.
16	683	91. O'Gorman CS, Syme C, Bradley T, Hamilton J, Mahmud FH. Impaired endothelial function in
17	684	pediatric patients with turner syndrome and healthy controls: a case-control study. Int J Pediatr
18	685	Endocrinol. 2012;2012(1):5.
19	686	92. Dietz SM, Tacke CE, Hutten BA, Kuijpers TW. Peripheral Endothelial (Dys)Function, Arterial
20	687	Stiffness and Carotid Intima-Media Thickness in Patients after Kawasaki Disease: A Systematic
21	688	Review and Meta-Analyses. PLoS One. 2015;10(7):e0130913.
22	689	93. Goldstein BH, Marino BS, Gao Z, Khoury PR, Amos MA, Mays WA, et al. Abstract 13486:
23	690	Patient and Procedural Factors Are Associated With Autonomic and Endothelial Dysfunction in
24 25	691	Adolescent and Young Adult Fontan Survivors. Circulation. 2016;134(suppl_1):A13486-A.
26	692	94. Martins JD, Zachariah J, Selamet Tierney ES, Truong U, Morris SA, Kutty S, et al. Impact of
27	693	Treatment Modality on Vascular Function in Coarctation of the Aorta: The LOVE-COARCT Study.
28	694	Journal of the American Heart Association. 2019;8(7):e011536.
29	695	95. Goldstein BHU, E. M.; Khoury, P. R.; Gao, Z.; Amos, M. A.; Mays, W. A.; Redington, A.;
30	696	Marino, B. S. Vascular function is predictive of functional outcomes in adolescent and young adult
31	697	fontan survivors. Circulation 2015;132(0).
32	698	96. Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, et al. Cardiovascular
33	699	Outcomes in Young Adulthood in a Population-Based Very Low Birth Weight Cohort. J Pediatr.
34	700	2020;225:74-9.e3.
35	701	97. Sivamurthy KM, Dampier C, MacDermott M, Maureen M, Cahill M, Hsu LL. Peripheral arterial
36	701	tonometry in assessing endothelial dysfunction in pediatric sickle cell disease. Pediatr Hematol
37		
38	703	Oncol. 2009;26(8):589-96.
39 40	704	98. Bhangoo A, Sinha S, Rosenbaum M, Shelov S, Ten S. Endothelial function as measured by
40	705	peripheral arterial tonometry increases during pubertal advancement. Horm Res Paediatr.
42	706	2011;76(4):226-33.
43	707	
44	, 0,	
45		
46	708	
47		
48	709	Figure 1: PRISMA 2020 Flow diagram of systematic search for Endo-PAT 2000 in paediatric
49	709	Figure 1. FRISMA 2020 Flow diagram of systematic search for Endo-FAT 2000 in paculatic
50	710	populations.
51	/10	populations.
52		
53 54	711	
54 55		
56		
57		
58		
59		
60		
		32

bmjoper

PRISMA 2020 Checklist

Section and Topic Item (b) Checklist tem (b) where (b) TILE	age 35 of 36		BMJ Open	136/br	
4 Section and Topic them (is rep is	PRISM	/A 2(020 Checklist	niopen-202	
Intle Test Image Image <th< th=""><th></th><th></th><th>Checklist item</th><th>N-062098</th><th>Location where item is reported</th></th<>			Checklist item	N-062098	Location where item is reported
ABSTRACT 2 See the PRISMA 2020 for Abstracts checklist. 2 0 Abstract 2 See the PRISMA 2020 for Abstracts checklist. 2 1 NRRODUCTION 2 Abstract 2 10 Describe the rationale for the review in the context of existing knowledge. 2 2 10 Dejectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 0 2 11 Rationale 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 11 Stractors rategy 7 Present the full search strategies for all atabases, registers, websites, grantastions, reference lists and other sources searched or consulted. 6 20 Selection process 8 Specify the methods used to ocide whether at study met the inclusion criteria of the review. Including how many reviewers collected data for methods. Just to collected data form study met he inclusion retrieved. 6 20 Data collection 9 Specify the methods used to ocide data form study investigators, and if applicable, details of automation tools used in the process. 6 21 Data items 10a List and defi	TITLE			φ 9	Page
Astract 2 See the PRISMA 2020 for Abstracts checklist. 2 Astract 2 See the PRISMA 2020 for Abstracts checklist. 2 Rationale 3 Describe the rationale for the review in the context of existing knowledge. 2 INTRODUCTION 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 2 INTRODUCTION 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 Eligibility criteria 5 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted the inclusion criteria of the review, including any filters and limits used. 6 Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 6 Selection process 8 Specify the methods used to collect data form experts, including how many reviewers screened each record in dependently, and rapplicable, details of automation tools used in the process. 6 20 Data collection 9 Specify the methods used to collect data form experts, placing how many reviewers screened each record in dependently, any process. 6 21 Data collection 9	Title	1	Identify the report as a systematic review.	- 18	2
Asstract 2 See the PHISMA 2020 for Abstracts Checklist. 2 INTRODUCTION Rationale 3 Describe the rationale for the review in the context of existing knowledge. 2 2 Objectives 4 Provide an explicit statement of the objective(5) or question(5) the review addresses. 2 3 Objectives 4 Provide an explicit statement of the objective(5) or question(5) the review addresses. 2 4 METHOD Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 6 fitomation 6 Specify the inclusion and exclusion criteria for the review, and how studies were grouped for the syntheses. 6 6 Section process 8 Specify the methods used to collect data stearched or consulted. 6 10 Section process 8 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, and i applicable, datails of automation tools used in the process. 6 10 List and define all outcomes for which data were sought. Specify whether all results that were compatible with each soutcome the data were sought (e.g. foral indice) automation tools used in the process. </td <td>ABSTRACT</td> <td></td> <td></td> <td>ر ar</td> <td></td>	ABSTRACT			ر ar	
INTRODUCTION Internationale 3 Describe the rationale for the review in the context of existing knowledge. 2 Attionale 3 Describe the rationale for the review in the context of existing knowledge. 2 Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 2 Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 Information 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted glidentify studies. Specify the date when each source was last searched or consulted. 6 Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 6 Objectivion 8 Specify the methods used to decide whether as study mether the process. 6 Data collection 9 Specify the methods used to collect data from reports, including how many reviewers collected data from exective, whether they worked independently, and if applicable, details of automation tools used in the process. 6 Data collection 10 List and define all outcomes for which data were sought. Specify whether all resubits that were compatible with eachboutcome domain in each exect	Abstract	2	See the PRISMA 2020 for Abstracts checklist.	านล	2
33 Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 2 41 METHODS 4 42 Methods 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 43 Methods 6 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 44 Provide an explicit statement of the objective(s) or question(s) the review and how studies were grouped for the syntheses. 6 45 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 46 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record for and each report retrieved, whether they worked independently, and raphicable, details of automation tools used in the process. 6 47 Data collection process 9 Specify the methods used to colled data from reports, including how many reviewers colled data from each report which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. 6 48 Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how mang	INTRODUCTION	I		< ∼	
METHODS METHODS Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 Information 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted tig identify studies. Specify the date when each source was last searched or consulted. 6 Section process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reflexers screened each record 6 6 Describe and each report retrieved, whether the yourked independently, and if applicable, details of automation tools used in the process. 6 Data collection 9 Specify the methods used to colled data from reports, including how many reviewers collected data from each report, whether they worked 6 Data collection 9 Specify the methods used to colled data from reports, including how many reviewers collected data from each report, whether results to a define all outcomes for which data were sought. Specify whether all results that were compatible with east/soutcome domain in each 6 Data items 10a List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. 5 Study risk of bias 11 <td< td=""><td>2 Rationale</td><td>3</td><td>Describe the rationale for the review in the context of existing knowledge.</td><td>023</td><td>2</td></td<>	2 Rationale	3	Describe the rationale for the review in the context of existing knowledge.	023	2
Interview Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 6 Information 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to date when each source was last searched or consulted. 6 Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 6 Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record independently, and if applicable, details of automation tools used is the process. 6 Data collection 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, and if applicable, details of automation tools used in the process. 6 Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to collect. 6 10b List and define all outcomes for which data were sought. (e.g. participant and intervention characteristics, functing outcome domain in each study were sought (e.g. for all measures, time points, analyses), and in out, the methods used to collecu which studies and whether they worked information. <td>3 Objectives</td> <td>4</td> <td>Provide an explicit statement of the objective(s) or question(s) the review addresses.</td> <td><u>0</u></td> <td>2</td>	3 Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	<u>0</u>	2
Information Specify the methods used to able the value of the use of the source was last searched or consulted. Information 6 Specify the methods used to descee whether a study methe inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether a study methe inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether a study methe inclusion criteria of the review, including how many reviewers screened each record each report retrieved, whether a study mether and the process. 6 21 Data collection process 9 Specify the methods used to becide whether a study investigators, and if applicable, details of automation tools used in the process. 6 22 Data collection process 9 Specify the methods used to becide whether a study investigators, and if applicable, details of automation tools used in the process. 6 23 Data terms 10a List and define all outomes for which data were sought. Specify whether all results that were compatible with eactS to collect. 6 24 0b List and define all outomes for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of methods used to decide which results. 5 24 Sudy risk of bias asesesment	METHODO				
Information 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted til identify studies. Specify the 5 sources Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 6 Selection process 8 Specify the methods used to collect data from reports, including how many reviewers collected data from each report. 6 Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report. 6 Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report. 6 Data titems 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with eactPoutcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 6 Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each for comparing against the planead groups for each synthesis (e.g. tabulating the study intervention characteristics and for each synthesis (e.g. astrophanistic (e.g. astrophanistic (e.g. astrophanistic (e.g. astrophanistic (e.g. astrophanistic (e.g. astrophani difference) used in the process.		5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	iloa	6
19 Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 3 6 20 Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. 6 21 Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, and if applicable, details of automation tools used in the process. 6 22 Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each buccome domain in each study were sought (e.g. for all measures) in the included studies, including details of the tool(s) used, how meany reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 6 21 Study risk of bias 11 Specify the methods used to decide which results of automation tools used in the process. 6 22 Study risk of bias 11 Specify the methods used to decide which results of automation tools used in the process. 6 23 Specify the methods used	7 Information 7 sources	6		g identify studies. Specify the ते	5
Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many refiewers screened each record independently, and if applicable, details of automation tools used in the process. 6 20 Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. 6 20 Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with eactboutcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 6 20 Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 6 21 Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 6 21 Specify the methods used to asplica the enduce usetore used to aspli	Soarch stratogy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	3	6
21 Data collection process 9 Specify the methods used to collect data from reports, including how many reviewers collected data from each repart, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. 6 24 Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 6 272 0 10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. 6 280 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 6 281 Effect measures 12 Specify the methods used to active which studies were eligible for each synthesis (e.g. atbulating the study intervention characteristics and comparing against the planned groups for each synthesis (e.g. studating the study intervention characteristics and conversions. 5 283 13a Describe any methods used to ay the processe as on the site of individual studies and syntheses. 7	0 Selection process	8			6
225 Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 6 272 28 10b List and define all outcomes for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. 6 273 Study risk of bias 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. 6 274 Effect measures 12 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the synthesis or presentation of results. Table 275 Synthesis 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). 7 374 13a Describe any methods used to abulate or visually display results of individual studies and syntheses. 7 375 <t< td=""><td>2 Data collection 3 process</td><td>9</td><td>independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of</td><td></td><td>6</td></t<>	2 Data collection 3 process	9	independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of		6
227 10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. 6 229 Study risk of bias assessment 11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. No 6 229 Study risk of bias assessment 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. Table 230 Synthesis 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (tem #5)). 5 231 13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. 5 233 13b Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used of the model(s), meta-regression). N/A 233 13e Describe any methods used to explore possible causes of heterogeneity among st	5 Data items	10a			6
assessment study and whether they worked independently, and if applicable, details of automation tools used in the process. Solution Table Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. Table Synthesis 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). 5 13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. 5 13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7 13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used for model(s), meta-regression). N/A 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 13e Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 8 8 13f Describe any methods used to easses risk of bias due to missing results in a synthesis (arising from	7	10b		B Ing sources). Describe any	6
21 Specify for each outcome the effect measure(s) (e.g. tak ratio, mean difference) deed in the synthesis of presentation of results. 1 able 33 Synthesis 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). 5 34 13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. 5 36 13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7 37 13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 38 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 40 13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 8 N/A 41 13f Describe any methods used to assess robustness of the synthesized results. 8 8 42 13f Describe any methods used to assess robustness of the synthesized results.<		11		A Any reviewers assessed each ⊵	6
33 Synthesis methods 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). 5 34 13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. 5 36 13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7 13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 13e Describe any methods used to assess robustness of the synthesized results. 8 13e Describe any methods used to assess robustness of the synthesized results. 8 13e Describe any methods used to assess robustness of the synthesized results. 8 13f Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias (arising from reporting bias (bias (arising from reporting bias (bias (arising from reporting bias (bias (arising from reporting bias (arising from reporti		12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation	ion of results.	Tables
13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. 5 13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7 13c Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 13f Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias assessment 8	3 Synthesis	13a		o ■vention characteristics and ♡	5
37 13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7 38 13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 40 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 41 13f Describe any methods used to assess robustness of the synthesized results. 8 8 43 Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). 6	5	13b		ary statistics, or data	5
13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 7 13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 0 13f Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). 6 13f Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). 6		13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	P	7
13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). N/A 13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 8 13f Describe any methods used to assess robustness of the synthesized results. 8 13f Describe any methods used to assess robustness of the synthesized results. 8 13f Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting bias assessment) N/A	8		Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was pe		7
41 13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 0 N/A 42 Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). 6		13e		0	N/A
I2 I2 <thi2< th=""> I2 I2 <thi< td=""><td></td><td></td><td></td><td>0</td><td></td></thi<></thi2<>				0	
	3 Reporting bias	l		py Bint	
Interview Inter	4 Cortainty	15	Describe any methods used to assess outsing to for additions with the body of additions for an invitational	: -	6

47

PRISMA 2020 Checklist

		BMJ Open	36/bmjopen-202	Page 36 o
			njop	
PRISM	MA 20	020 Checklist	en-2	
			022	
Section and	Item		-06	Location
Торіс	#	Checklist item	06209	where ite
assessment			0 0	
RESULTS			18	
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the the review, ideally using a flow diagram.	ອີທິບານອາດາ studies included in	Flow diagram
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were	ž v cluded.	6
Study characteristics	17	Cite each included study and present its characteristics.	2023.	Tables 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	20wnlc	Nil
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an eff (e.g. confidence/credible interval), ideally using structured tables or plots.	ect estimate and its precision	Tables 1
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	from	N/A
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary es confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction		N/A
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	ð 3	N/A
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.		N/A
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis asses	Sed.	N/A
Certainty of	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	<u></u> .	N/A
evidence			om	
DISCUSSION	00		<u>o</u>	10
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	April	16
	23b	Discuss any limitations of the evidence included in the review.	== 2 6	17
	23c	Discuss any limitations of the review processes used.	3, 202	17
	23d	Discuss implications of the results for practice, policy, and future research.	<u>₽</u>	20
OTHER INFORMA	24a	Provide registration information for the review, including register name and registration number, or state that the re		No
Registration and protocol				response
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Protect	Prospero no response
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	ີ່ ເ <u>ດີ</u>	N/A
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the	g Æview.	Nil
Competing interests	26	Declare any competing interests of review authors.	bopyrigl	Nil
Availability of data, code and	27	Report which of the following are publicly available and where they can be found: template data collection forms; or studies; data used for all analyses; analytic dode) tany / dineiomate tank used for all analyses; analytic dode) tany / dineiomate tank used for all analyses; and where they are the set of th		With authors

Page 37	7 of 36		BMJ Open	136/bmjopen-202	
PRIS	PRI	SMA 2020 Checklist		ijoper	
2				1-202	
3	ction and	Item Characterister		N	Location
	pic	# Checklist item		-06209	where item is reported
6 oth	er materials			0 0 n	
7				4	I
8 From 9	n: Page MJ, Mcł	enzie JE, Bossuyt PM, Boutron I, Hoffman	TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated gui	ideline for reporting systematic eviews. BM	J 2021;372:n71. doi: 10.1136/bmj.n71
10			for more mormation, visit. <u>http://www.prisma-statem</u>		
11 12				202	
12				Э П	
14				Ö Wr	
15 16				lloac	
17				de d	
18				from	
19 20				http	
20				://br	
22				do do	
23 24				en.t	
25					
26				Sector Se	
27 28				On On	
29				Apr	
30				II 26	
31 32				, 20	
33				24 b	
34 25			TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated gui For more information, visit: http://www.prisma-statem	n D X	
35 36				est.	
37				guest. Protected by copyright	
38				tect	
39 40				d be	
40				, v ⊂ C	
42				ругі	
43 44				ght.	
44 45		Fc	or peer review only - http://bmjopen.bmj.com/site/about/g	guidelines.xhtml	
46					
47					