BMJ Open

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

Awareness of Lung Cancer Risk Factors in Palestine: Current Situation and Future Directions

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061110
Article Type:	Original research
Date Submitted by the Author:	18-Jan-2022
Complete List of Authors:	Elshami, Mohamedraed; Ministry of Health Mansour, Ahmad; Al-Quds University, Faculty of Medicine Al-Ser, Mohammed; Islamic University of Gaza, Faculty of Medicine; Ministry of Health Al-Slaibi, Ibrahim; Almakassed Hospital Abukmail, Hanan; Ministry of Health; Islamic University of Gaza, Faculty of Medicine Shurrab, Hanan; Al-Azhar University of Gaza Qassem, Shahd; Al-Quds University, Faculty of Medicine Usrof, Faten ; Islamic University of Gaza, Department of a Medical Laboratory Sciences, Faculty of Health Sciences Alruzaygat, Malik; Al-Quds University, Faculty of Medicine Aqel, Wafa; Al-Quds University, Faculty of Medicine Nairoukh, Roba; Al-Quds University, Faculty of Dentistry and Dental Surgery Kittaneh, Rahaf; Al-Najah National University, Faculty of Nursing Sawafta, Nawras; Al-Quds University, Faculty of Medicine Habes, Yousef; Al-Quds University, Faculty of Medicine Ghanim, Obaida; Al-Quds University, Faculty of Medicine Aabed, Wesam Almajd; AI Azhar University of Gaza, Faculty of dentistry Omar, Ola; Al-Najah National University, Faculty of Medicine Daraghmeh, Motaz; Al-Najah National University, Faculty of Medicine Aljbour, Jomana; Islamic University of Gaza, Faculty of Medicine Elian, Razan; Islamic University of Gaza, Faculty of Medicine Zhor, Areen; Al-Najah National University, Faculty of Medicine Habes, Haneen; Al-Quds University, Faculty of Medicine Al-Dadah, Mohammed; Islamic University of Gaza, Faculty of Medicine Abu-El-Noor, Nasser; Islamic University of Gaza, Faculty of Nursing Bottcher, Bettina.; Islamic University of Gaza Faculty of Medicine, Faculty of Medicine
Keywords:	EPIDEMIOLOGY, Health policy < HEALTH SERVICES ADMINISTRATION \& MANAGEMENT, ONCOLOGY, Adult oncology < ONCOLOGY, Epidemiology < ONCOLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence - details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Abstract

Objectives: To evaluate the awareness of lung cancer (LC) risk factors among Palestinians and identify factors associated with good awareness.

Design: Cross-sectional study.

Settings: Participants were recruited using convenience sampling from hospitals, primary healthcare centers, and public spaces located at 11 governorates in Palestine.

Participants: Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%)$. A total of 4762 questionnaires were included in the analysis: 2742 from the West Bank and Jerusalem (WBJ) and 2020 from the Gaza Strip. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Primary and secondary outcome measures: The primary outcome was the awareness level of LC risk factors, which was determined by the number of factors recognized: poor(0 to 3$)$, fair(4 to 7), and good(8 to 10). Secondary outcomes include the recognition of each LC risk factor.

Results: Smoking-related risk factors were more often recognized than other LC risk factors. The most recognized risk factors were 'smoking cigarettes'($\mathrm{n}=4466,93.8 \%$) and 'smoking shisha [waterpipes]'(n=4337, 91.1\%). The least recognized risk factors were 'having a close relative with $\mathrm{LC}^{\prime}(\mathrm{n}=2084,43.8 \%)$ and 'having had treatment for any cancer in the past' $(\mathrm{n}=2368$, 49.7\%).

A total of 2381 participants (50.0\%) displayed good awareness of LC risk factors. Participants from the WBJ and the Gaza Strip had a similar likelihood to display good awareness (50.6% vs.
49.1%). Being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and primary healthcare centers were all associated with an increase in the likelihood of displaying good awareness.

Conclusion: Half of study participants displayed good awareness of LC risk factors. Effective implementation of tobacco control policies is essential beside educational initiatives to improve public awareness of LC risk factors.

Keywords: lung cancer, risk factors, behavioral changes, prevention, early detection, early diagnosis, health education, awareness, Palestine.

Strengths and limitations of this study

- This study used a translated version of a validated tool (lung cancer awareness measure) to assess the awareness of LC risk factors in Palestine.
- The large sample size and high response rate were major strengths of this study.
- The wide coverage of the major geographical areas of Palestine and collecting data from different places within each area allowed for direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population.
- The use of convenience sampling does not guarantee the generalizability of the findings.
- Visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness.

Introduction

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide with 18.0% of cancerrelated deaths and over 2.2 million newly diagnosed cases in 2020. ${ }^{1}$ In the Middle East and North Africa, the estimated number of newly diagnosed LC cases was 79,887 in 2018 with a 5 -year relative survival rate of $8.0 \% .^{2}$ In Palestine, LC is the second most common cancer, accounting for 11.4% of all cancers with an incidence rate of 11.5 per 100,000 general population, and the leading cause of cancer-related mortality accounting for $17.3 \% .^{3}$

The most significant risk factor for LC is smoking tobacco products including cigarettes and shisha (waterpipes). ${ }^{4}$ Tobacco smoking was reported to be prevalent among 47.7% of Palestinians in the West Bank. Men were found to smoke more than women and to begin smoking at an earlier age, where 74.4% of smokers started when they were 18 years old or younger. Cigarettes and shisha were found to be the most popular methods of smoking among Palestinian men and women. ${ }^{5}$

Besides smoking, there are LC risk factors for LC, such as exposure to radiation, occupational hazards like asbestos, air pollution and family history of LC. ${ }^{6-8}$ However, previous studies showed that awareness of smoking-related risk factors of LC was higher than that of other LC risk factors. ${ }^{9-11}$

One of the most important contributors to the low survival rates of LC is delayed presentation. This could be due to factors related to patients, healthcare providers, the healthcare system, or the disease itself. ${ }^{12}$ Awareness of LC risk factors is one of the patient-related factors.

Recognition of LC risk factors can help stimulating the development of an active personal risk assessment, which in turn increases the ability to detect and react to related symptoms. ${ }^{13}$

Previous studies demonstrated that raising the public awareness of LC increased the number of individuals diagnosed at early stages. ${ }^{14-16}$ An early diagnosis of LC contributes to better prognosis. ${ }^{17}$ Given the limited resources in Palestine, such educational interventions could be an efficient strategy to mitigate the mortality associated with LC.

Therefore, this national study aimed to (i) evaluate the awareness level of LC risk factors among Palestinians, (ii) examine if there is a difference in the awareness level of LC risk factors between the two main areas of Palestine: the West Bank and Jerusalem (WBJ) and the Gaza Strip, and (iii) identify the factors associated with good awareness.

Methods

Study design and population

This was a national cross-sectional study conducted from July 2019 to March 2020. Palestinian adults (≥ 18 years) were the target population. Participants were recruited from governmental hospitals, primary healthcare centers (PHCs) and public spaces, such as malls, markets, restaurants, mosques, churches, parks, downtowns, transportation stations and others. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Sampling methods

Eligible participants were recruited to the study using a convenience sampling technique from governmental hospitals, PHCs, and public spaces located in 11 governorates (out of 16) across Palestine. This was intended to create a diverse study cohort resembling the Palestinian community. ${ }^{18-20}$

Questionnaire and data collection

A modified version of the LC Awareness Measure (LCAM) was used for data collection. The LCAM is a validated tool that was designed to evaluate the public awareness of LC. ${ }^{13}$ The original LCAM was first translated into Arabic by two bilingual healthcare professionals and then back-translated into English by another two different bilingual healthcare professionals. The Arabic version of the LCAM was then assessed for content validity and accuracy of translation by three experts in the field of thoracic oncology, public health, and survey design. This was followed by a pilot study $(\mathrm{n}=68)$ to assess the clarity of questions in the Arabic version of the BCAM. The questionnaires of the pilot study were not included in the final analysis. The Cronbach's Alpha was used to assess the internal consistency of the Arabic LCAM and it reached an acceptable value of 0.784 .

The Arabic LCAM included two sections. The first section described the sociodemographic factors of study participants. The second section evaluated the awareness of 10 LC risk factors using a 5 -point Likert scale ($1=$ strongly disagree, $5=$ strongly agree). Of the 10 risk factors, nine were mentioned in the original LCAM. ${ }^{13}$ 'Smoking shisha' was added to the questionnaire as it was deemed important to assess the awareness of this risk factor in the Palestinian community due to its high prevalence. ${ }^{5}$

The electronic tool 'Kobo Toolbox' was utilized in the data collection. ${ }^{21}$ This safe tool can be used both offline and online on mobile devices. In a face-to-face interview, participants were asked to complete the questionnaire. Data collectors with a medical background received special training on the use of Kobo Toolbox, recruitment of potential study participants, gaining informed consent, and facilitation of completion of the questionnaires.

Statistical analysis

The percentage of new LC cases increases substantially starting from the age of $45 .{ }^{22}$ Therefore, participants' age was categorized into two categories using this cutoff: $18-44$ years and ≥ 45 years. The monthly income was also categorized into two categories (<1450 NIS and ≥ 1450 NIS) since 1450 NIS (about \$450) is the minimum wage in Palestine. ${ }^{23}$

The median and interquartile range (IQR) were used to describe continuous, non-normally distributed variables and the Kruskal-Wallis test was used for baseline comparisons. Frequencies and percentages were used to describe categorical variables and Pearson's Chi-square test was used for baseline comparisons.

The recognition of each LC risk factor was assessed using a question based on a 5-point Likert scale with 'strongly agree' or 'agree' as a correct answer, and 'strongly disagree', 'disagree', or 'not sure' as an incorrect answer. For each correctly recognized LC risk factor, one point was given. LC risk factors were further categorized into two categories: (i) smoking-related and (ii) other risk factors. Recognition of LC risk factors was described using frequencies and percentages with comparisons performed by Pearson's Chi-Square test. This was followed by running bivariable and multivariable logistic regression analyses to examine the association between recognizing each LC risk factor and participant characteristics. The multivariable analysis adjusted for age group, gender, educational level, monthly income, occupation, place of residency, marital status, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection. This model was determined a priori based on previous studies. ${ }^{13,24-27}$ The results of the bivariable analyses are provided in the supplementary materials, please see additional file 1.

A scoring system was used to evaluate the participants' awareness level of LC risk factors. Similar scoring systems were also used in previous studies. ${ }^{18,27,28}$ For each correctly recognized LC risk factor, one point was given. The total score (ranging from 0 to 10) was calculated and categorized based on the number of recognized LC risk factors into three categories: poor (0 to 3), fair (4 to 7), and good awareness (8 to 10). The awareness level of LC risk factors exhibited by participants from the Gaza Strip was compared with the awareness level exhibited by participants from the WBJ using Pearson's Chi-Square test. Bivariable and multivariable logistic regression analyses were utilized to test the association between participant characteristics and having a good awareness level.

Complete case analysis was used to handle missing data, which occurred completely at random. Data were analyzed using Stata software version 16.0 (StataCorp, College Station, Texas, United States).

Patients and public involvement

There was no patient or public involvement in conducting this study. There are no plans to disseminate the results of our research to study participants. However, results are being disseminated among the professional communities of Palestine and to policy-makers, with the intent to inform future health policy decisions.

Results

Participant characteristics

Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%$). In total, 4762 questionnaires were included in the analysis (24 were ineligible and 31 had missing data): 2742 from the WBJ and 2020 from the Gaza Strip. The median age [IQR] for all

1 participants was 32.0 years [24.0, 44.0] (table 1). Participants living in the WBJ were more likely
2 to be older, have higher monthly income but lower level of education, and suffer from more

3 chronic diseases than participants living in the Gaza Strip.

Table 1: Characteristics of study participants.

Characteristic	$\begin{gathered} \text { Total } \\ (\mathrm{n}=4762) \end{gathered}$	Gaza Strip $(\mathrm{n}=2020)$	$\begin{gathered} \text { WBJ } \\ (\mathrm{n}=2742) \end{gathered}$	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$
Age, median [IQR]	32.0 [24.0, 44.0]	30.0 [24.0, 40.0]	34.0 [24.0, 47.0]	<0.001
Age group, n (\%)				<0.001
18 to 44	3572 (75.0)	1634 (80.9)	1938 (70.7)	
45 or older	1190 (25.0)	386 (19.1)	804 (29.3)	
Female gender, n (\%)	2618 (55.0)	1086 (53.8)	1532 (55.9)	0.15
Educational level, n (\%)				
Secondary or below	2375 (49.9)	955 (47.3)	1420 (51.8)	0.002
Post-secondary	2387 (50.1)	1065 (52.7)	1322 (48.2)	
Occupation, n (\%)				
Unemployed/housewife	2003 (42.1)	970 (48.0)	1033 (37.7)	<0.001
Employed	2160 (45.4)	814 (40.3)	1346 (49.1)	
Retired	111 (2.3)	46 (2.3)	65 (2.4)	
Student	488 (10.2)	190 (9.4)	298 (10.8)	
Monthly income $\geq \mathbf{1 4 5 0}$ NIS, n (\%)	3241 (68.1)	683 (33.8)	2558 (93.3)	<0.001
Marital status, n (\%)				
Single	1480 (31.1)	641 (31.7)	839 (30.6)	0.07
Married	3117 (65.5)	1323 (65.5)	1794 (65.4)	
Divorced/Widowed	165 (3.5)	56 (2.8)	109 (4.0)	
Having a chronic disease, n (\%)	1032 (21.7)	313 (15.5)	719 (26.2)	<0.001
Knowing someone with cancer, n (\%)	2571 (54.0)	1045 (51.7)	1526 (55.7)	0.007
Ever smoked, n (\%)				
Cigarettes	1127 (23.7)	417 (20.6)	710 (25.9)	<0.001
Shisha (waterpipes)	499 (10.5)	142 (7.0)	357 (13.0)	<0.001
Site of data collection, $n(\%)$				
Public Spaces	1920 (40.3)	784 (38.8)	1136 (41.4)	<0.001
Hospitals	1628 (34.2)	651 (32.2)	977 (35.7)	
Primary healthcare centers	1214 (25.5)	585 (29.0)	629 (22.9)	

$\mathrm{n}=$ number of participants, $\mathrm{IQR}=$ interquartile range, WBJ= West Bank and Jerusalem.

22 Table 2: Recognition of lung cancer risk factors.
,

Good awareness and its associated factors
A total of 2381 participants $(50.0 \%$) displayed good awareness (prompt recognition of more than seven out of 10 LC risk factors) (table 3). Participants from the WBJ and the Gaza Strip had a similar likelihood to display good awareness (50.6% vs. 49.1%). On the multivariable analysis, being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs were all associated with an increase in the likelihood of having a good awareness level of LC risk factors (table 4).

Table 3: Awareness level of lung cancer risk factors among study participants.

Level	Total $\mathbf{n (\%)}$	Gaza Strip $\mathbf{n (\%)}$	WBJ $\mathbf{n (\%)}$	p-value
Poor (0-3 risk factors)	$203(4.3)$	$111(5.5)$	$92(3.4)$	
Fair (4-7 risk factors)	$2178(45.7)$	$918(45.4)$	$1260(46.0)$	0.001
Good (8-10 risk factors)	$2381(50.0)$	$991(49.1)$	$1390(50.6)$	
$\mathrm{n}=$ number of participants, WBJ=				

Table 4: Bivariable and multivariable logistic regression analyzing factors associated with having a good awareness of lung cancer risk factors.

Characteristic	Good awareness			
	COR (95\% CI)	p	AOR (95\% CI)*	P
Age group				
18 to 44	Ref	Ref	Ref	Ref
45 or older	1.33 (1.17-1.52)	<0.001	1.20 (1.02-1.42)	0.026
Gender				
Male	Ref	Ref	Ref	Ref
Female	1.15 (1.03-1.29)	0.014	1.08 (0.91-1.28)	0.36
Educational level				
Secondary or below	Ref	Ref	Ref	Ref
Post-secondary	1.15 (1.03-1.29)	0.016	1.25 (1.09-1.42)	0.001
Occupation				
Unemployed/housewife	Ref	Ref	Ref	Ref
Employed	0.98 (0.87-1.11)	0.8	1.16 (0.99-1.36)	0.07
Retired	1.49 (1.01-2.19)	0.047	1.34 (0.87-2.04)	0.18
Student	0.79 (0.64-0.95)	0.015	0.98 (0.77-1.24)	0.85
Monthly income				
< 1450 NIS	Ref	Ref	Ref	Ref
≥ 1450 NIS	1.15 (1.02-1.30)	0.027	1.19 (1.007-1.411)	0.041
Marital status				
Single	Ref	Ref	Ref	Ref
Married	1.25 (1.11-1.41)	<0.001	1.01 (0.87-1.17)	0.92
Divorced/Widowed	1.30 (0.95-1.80)	0.12	1.05 (0.74-1.49)	0.80
Residency				
Gaza Strip	Ref	Ref	Ref	Ref
WBJ	1.07 (0.95-1.20)	0.27	0.95 (0.81-1.11)	0.53
Having a chronic disease				
No	Ref	Ref	Ref	Ref
Yes	1.32 (1.16-1.52)	<0.001	1.15 (0.98-1.35)	0.09
Knowing someone with cancer				
No	Ref	Ref	Ref	Ref
Yes	1.52 (1.35-1.70)	<0.001	1.61 (1.43-1.81)	<0.001
Ever smoked cigarettes and/or shisha				
No	Ref	Ref	Ref	Ref
Yes	0.88 (0.78-1.00)	0.043	0.88 (0.75-1.03)	0.12
Site of data collection				
Public Spaces	Ref	Ref	Ref	Ref
Hospitals	1.37 (1.20-1.56)	<0.001	1.46 (1.27-1.68)	<0.001
Primary healthcare centers	1.79 (1.55-2.07)	<0.001	2.04 (1.73-2.40)	<0.001

COR = crude odds ratio, $\mathrm{AOR}=$ adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.
*Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection.

Association between recognizing smoking-related risk factors and participant characteristics Participants with higher education level (above secondary) were more likely than other participants to recognize all smoking-related risk factors (table 5). In addition, participants recruited from hospitals or PHCs were more likely than participants recruited from public spaces to recognize two out of the three smoking-related risk factors. In contrast, participants who ever smoked cigarettes and/or shisha were less likely than participants who never smoked to recognize all smoking-related risk factors.

Table 5: Multivariable logistic regression analyzing factors associated with the recognition of smoking-related risk factors.

Characteristic	Smoking cigarettes		Smoking shisha		Exposure to another person's cigarette smoke	
	$\begin{aligned} & \text { AOR (95\% } \\ & \text { CI)* } \end{aligned}$	p	$\begin{gathered} \text { AOR (95\% } \\ \text { CI)* } \end{gathered}$	p	$\begin{aligned} & \text { AOR (95\% } \\ & \text { CI)* } \end{aligned}$	
$\begin{aligned} & { }^{6} \text { Age group } \\ & 818 \text { to } 44 \\ & 945 \text { or older } \end{aligned}$	Ref 0.84 (0.61-1.17)	$\begin{gathered} \text { Ref } \\ 0.30 \end{gathered}$	Ref 1.24 (0.93-1.66)	$\begin{aligned} & \text { Ref } \\ & 0.14 \end{aligned}$	Ref 1.04 (0.84-1.28)	$\text { Ref } \frac{\stackrel{\rightharpoonup}{\bar{\sigma}}}{\bar{\sigma}}$ $0.72 \stackrel{\square}{\circ}$
10 Gender ${ }^{1}$ Male ${ }_{13}^{17}$ emale	$\begin{gathered} \text { Ref } \\ 0.98(0.69-1.39) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.90 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.60(0.44-0.82) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.03(0.83-1.27) \end{gathered}$	
1 Educational level ${ }_{15 S}$ Secondary or below 19ost-secondary	$\begin{gathered} \text { Ref } \\ 1.74(1.33-2.28) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.74(1.38-2.18) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.29(1.09-1.51) \end{gathered}$	
${ }^{1}$ Occupation ${ }^{18}$ Unemployed/housewife ${ }_{2}^{19} \mathrm{E}$ mployed 2 Retired 2Student	$\begin{gathered} \text { Ref } \\ 1.12(0.81-1.55) \\ 1.77(0.68-4.63) \\ 1.02(0.62-1.68) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.50 \\ & 0.25 \\ & 0.94 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.04(0.78-1.37) \\ 1.39(0.58-3.33) \\ 1.01(0.66-1.54) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.81 \\ & 0.46 \\ & 0.98 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.06(0.87-1.30) \\ 1.20(0.96-2.09) \\ 0.81(0.61-1.09) \end{gathered}$	Ref 0.55 0.51 0.16
${ }^{23}$ Monthly income ${ }_{25}^{24} 1450$ NIS 25 26 1450 NIS	$\begin{gathered} \text { Ref } \\ 0.91(0.65-1.29) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.61 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 099(0.74-131) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.93 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 0.85(0.69-1.05) \end{gathered}$	Ref
2Marital status						
2\$ingle	Ref	Ref	Ref	Ref	Ref	Ref
299arried	1.20 (0.88-1.64)	0.25	1.09 (0.84-1.42)	0.53	1.12 (0.92-1.35)	0.25
39ivorced/Widowed	0.66 (0.36-1.20)	0.17	0.71 (0.42-1.22)	0.23	0.93 (0.60-1.44)	0.74
3 Residency 3Gaza Strip 34NBJ	$\begin{gathered} \text { Ref } \\ 1.26(0.91-1.74) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.15 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.33(1.02-1.75) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.038 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.29(1.06-1.56) \end{gathered}$	Ref 0.011
${ }_{3}^{35}$ Having a chronic disease ${ }_{3}^{3}{ }_{3} \mathrm{No}$ 38 Yes	$\begin{gathered} \text { Ref } \\ 0.87(0.63-1.20) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.39 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.88(0.67-1.16) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.37 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.02(0.83-1.35) \end{gathered}$	Ref 0.87
${ }^{39}$ Knowing someone with cancer 4Qo ${ }_{42}^{4} \mathrm{Yes}$	$\begin{gathered} \text { Ref } \\ 1.17(0.92-1.49) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.06(0.86-1.30) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.60 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.17(1.01-1.36) \end{gathered}$	$\begin{array}{r} \text { Ref } \\ 0.03 \% \end{array}$
$4^{\text {Ever smoked cigarettes and/or }}$ 4shisha $4{ }^{2} \mathrm{No}$ ${ }^{4} \mathrm{Y}$ Yes	$\begin{gathered} \text { Ref } \\ 0.54(0.40-0.75) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.55(0.42-0.74) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.71(0.59-0.86) \end{gathered}$	$\begin{array}{r}R e f \\ 0.001 \\ \hline\end{array}$
${ }^{47}$ Site of data collection ${ }_{4}^{48}$ ublic Spaces ${ }_{5} \mathrm{H}$ ospitals 5Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.52(1.14-2.01) \\ 1.47(1.05-2.05) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.004 \\ 0.024 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.30(1.01-1.66) \\ 1.07(0.81-1.39) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.041 \\ 0.64 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.11(0.94-1.32) \\ 1.29(1.05-1.58) \end{gathered}$	Ref 0.22 0.01%

52AOR= adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.
53*Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing 54someone with cancer, smoking history, and site of data collection.

Association between recognizing other LC risk factors and participant characteristics Participants who knew someone with cancer were more likely than those who did not to recognize 'exposure to chemicals', 'exposure to radiation', 'air pollution', 'having a previous history of cancer', and 'having had treatment for any cancer in the past' as LC risk factors (table 6). In addition, participants recruited from hospitals or PHCs were more likely than participants recruited from public spaces to recognize 'exposure to chemicals', 'air pollution', 'having a previous history of lung disease', 'having a previous history of cancer', and 'having had treatment for any cancer in the past'.

41
42
43

Table 6: Multivariable logistic regression analyzing factors associated with the recognition of other risk factors.

6. (Ctd).

E4Er smoked cigarettes and/or
 stilsha

49 OR = adjusted odds ratio, CI= confidence interval, WBJ= West Bank and Jerusalem.
$50 ̋$ Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing
5\%omeone with cancer, smoking history, and site of data collection.

Discussion

Half of the study participants demonstrated good awareness of LC risk factors, defined as recognizing more than seven out of the 10 LC risk factors. Participants from the WBJ and the Gaza Strip demonstrated a similar likelihood of having a good awareness level. The factors associated with having good awareness levels of LC risk factors were being ≥ 45 years, higher levels of education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs. Smoking-related risk factors were more often recognized than other risk factors. The most frequently recognized LC risk factor was 'smoking cigarettes' followed by 'smoking shisha'. Interestingly, participants who ever smoked were less likely to recognize smokingrelated risk factors than those who never smoked.

Awareness of LC risk factors among Palestinians was higher than knowledge of other types of cancer. ${ }^{18-20}$ Only 17.4% of Palestinians displayed good knowledge of ovarian cancer symptoms, ${ }^{20} 23.7 \%$ had good knowledge of cervical cancer risk factors ${ }^{19}$ and 27.4\% demonstrated good knowledge of cervical cancer warning signs. ${ }^{18}$

The majority of LC cases are diagnosed late, which may be in part due to a lack of awareness about LC risk factors, symptoms, and prognosis. ${ }^{29}$ Educational interventions that raise the knowledge about various aspects of LC awareness are critical to develop behaviors that lead to the prevention and early diagnosis of LC. ${ }^{30}$ The high mortality rate of LC, especially in lowresource settings like Palestine ${ }^{31,32}$ and the high smoking rates, ranging from 30.0% to $47.7 \%, 5$, ${ }^{33,34}$ necessitate finding approaches to increase awareness of LC risk factors. Although there are
tobacco control policies in Palestine, ${ }^{35}$ there is a substantial need to monitor their outreach and implementation more closely. This is especially important given the widespread availability of tobacco products on all premises in public and to all ages. Such monitoring of the implementation of government tobacco control policies was shown to discourage people from smoking, which could reduce both active and passive smoking and, thus, LC morbidity and mortality. ${ }^{36-38}$

Awareness of LC risk factors

Smoking cigarettes was the most recognized LC risk factor in this study followed by smoking shisha and exposure to another person's cigarette smoke (passive smoking), respectively. In a previous study from Oman, smoking cigarettes was the most recognized LC risk factor (79.8\%) and passive smoking was the third (55.7\%). ${ }^{9}$ Similarly, in a previous study from Jordan, the majority believed that active cigarette smoking, shisha smoking, and passive smoking were all linked to cancer. ${ }^{39}$

Musmar and colleagues reported that 34.7% of university students in Palestine were current smokers. ${ }^{34}$ Students in the arts and humanities were found to have a considerably greater risk of smoking than students in the sciences or in healthcare. ${ }^{34}$ The fact that health sciences students were found to be less likely to smoke might be partly due to the influence of smoking-related health education. ${ }^{34}$ This is also supported by the findings of this study, where participants who had never smoked were more likely to demonstrate good awareness of smoking-related risk factors than ever smokers, highlighting the potentially empowering influence of health education on smoking behavior.

Chapple and colleagues found that LC patients felt unjustly blamed for their disease. LC patients felt particularly stigmatized regardless of their smoking status, because the condition is closely linked to smoking, which negatively impacted their interaction with family, friends, and physicians. ${ }^{40}$ Such stigma may drive individuals who have a possible LC symptom accompanied by risk factors to seek medical advice late, and thus, lead to diagnoses at advanced stages. Health practitioners who have contact with current and former smokers must be well trained to offer a safe and non-judgmental environment for people who arrive with symptoms suggestive of LC. ${ }^{26}$

Chawla and colleagues showed that having benefitted from post-secondary education was a main factor associated with good awareness of LC risk factors, ${ }^{41}$ which comes in concordance with this study. Educational levels in Palestine are good and the illiteracy rate is low at only $2.5 \%{ }^{42}$, which could contribute to the fair awareness of LC risk factors found in this study, compared with the lower levels in other regional studies. ${ }^{39,43}$ Participants who benefitted from higher education appear to be more concerned about their health and more likely to avoid risky behaviors such as smoking. ${ }^{44,45}$ Future educational interventions aiming to raise awareness of LC risk factors should be tailored to match the level of health literacy among individuals with low education.

Future directions

Public health interventions that aim to promote the recognition of LC risk factors may have a major potential to improve LC outcomes for those most at risk in an attempt to reduce patientrelated delays to diagnosis. The creation of widespread public education programs and enriching school curricula with subjects outlining important symptoms and risk factors of LC may also
play a role. However, this might need to be complemented by effective implementation of tobacco control regulations to achieve the greatest impact. This is especially important in lowand middle-income countries, such as Palestine, where access to treatment might otherwise be delayed and outcomes are poorer. ${ }^{46,47}$

Strengths and limitations

The major strengths of this study include the use of a translated version of the validated tool (LCAM) to measure the awareness of LC risk factors, the large sample size, and the high response rate. Furthermore, the wide coverage of the major geographical areas of Palestine and collecting data from different places within each area allowed for direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population. This study has some limitations though. The use of convenience sampling does not guarantee the generalizability of the findings. However, the large number of participants, the diversity of geographical areas included, and the high response rate may mitigate this. Another limitation could be that visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness. Nevertheless, this was intended to make the measured awareness more relevant to the overall public awareness.

Conclusion

Awareness of LC risk factors was relatively good with half of the participants displaying good awareness. Smoking-related risk factors were the most recognized risk factors. Older age, higher education, higher monthly income, knowing someone with cancer and visiting healthcare
facilities were factors associated with good awareness. Formulation and effective implementation of tobacco control policies are essential to change smoking behavior and increase awareness. This should be complemented by educational initiatives to improve public understanding of LC and the perception of smoking danger. Such interventions are especially useful in low-resource settings, such as Palestine, where access to diagnosis and treatment is limited.

Other information

Data statement: Data are available upon reasonable request.

Ethical considerations: Prior to data collection, ethical approval had been obtained from the Human Resources Development Department at the Palestinian Ministry of Health and the Helsinki Committee in the Gaza Strip on the 24th of June, 2017. In addition, another approval was obtained from the Research Ethics Committee at the Islamic University of Gaza on the 26th of June, 2017. The participants had a thorough explanation about the study purposes with the focus that their participation was completely voluntary. Written informed consent was taken from study participants before starting the questionnaire and data were collected anonymously.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Acknowledgments: The authors would like to thank all participants who took part in the survey.

Author Contributions: ME and AM contributed to design of the study, data analysis, data interpretation, and drafting of the manuscript. MA1, IA, HA, HS, SQ, FU, MA2, WA1, RN, RK, NS, YH, OG, WA2, OO, MD, JA, RE, AZ, HH and MA3 contributed to design of the study, data collection, data entry, and data interpretation. NAE and BB contributed to design of the study, data interpretation, drafting of the manuscript, and supervision of the work. All authors have read and approved the final manuscript. Each author has participated sufficiently in the work to take public responsibility for the content.

References

1. World Health Organization Factsheet. Cancer incidence and mortality statistics. https://bit.ly/3r2L3jc. Accessed 12 January 2022.
2. Jazieh AR, Algwaiz G, Errihani H, et al. Lung Cancer in the Middle East and North Africa Region. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2019;14(11):1884-91.
3. The Global Cancer Observatory Factsheet. Incidence, Mortality and Prevalence of cancer. https://bit.ly/3t9DvxG. Accessed 12 January 2022.
4. Centre of disease control and prevention. Lung Cancer; What Are The Risk Factors. https://bit.ly/31O5eQ3. Accessed 12 January 2022.
5. Abu Seir R, Kharroubi A, Ghannam I. Prevalence of tobacco use among young adults in Palestine. Eastern Mediterranean health journal =La revue de sante de la Mediterranee orientale $=$ al-Majallah al-sihhiyah li-sharq al-mutawassit 2020;26(1):75-84.
6. Corrales L, Rosell R, Cardona AF, et al. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Critical reviews in oncology/hematology 2020;148:102895.
7. Bailey-Wilson JE, Sellers TA, Elston RC, et al. Evidence for a major gene effect in earlyonset lung cancer. The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society 1993;145(4):157-62.
8. Vineis P, Forastiere F, Hoek G, et al. Outdoor air pollution and lung cancer: recent epidemiologic evidence. International journal of cancer 2004;111(5):647-52.
9. Al-Azri M, Al-Saadi WI, Al-Harrasi A, et al. Knowledge of Cancer Risk Factors, Symptoms, and Barriers to Seeking Medical Help among Omani Adolescents. Asian Pacific journal of cancer prevention : APJCP 2019;20(12):3655-66.
10. Loh JF, Tan SL. Lung cancer knowledge and screening in the context of the Malaysian population. 2018;48(1):56-64.
11. Bantie GM, Aynie AA, Gelaw YM, et al. Awareness regarding risk factors and determinants of cancers among Bahir Dar city residents, Northwest Ethiopia. PLoS One 2021;16(4):e0248520.
12. Cassim S, Chepulis L, Keenan R, et al. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: a systematic review. BMC cancer 2019;19(1):25.
13. Simon AE, Juszczyk D, Smyth N, et al. Knowledge of lung cancer symptoms and risk factors in the U.K.: development of a measure and results from a population-based survey. Thorax 2012;67(5):426-32.
14. Moffat J, Bentley A, Ironmonger L, et al. The impact of national cancer awareness campaigns for bowel and lung cancer symptoms on sociodemographic inequalities in immediate key symptom awareness and GP attendances. British journal of cancer 2015;112 Suppl 1(Suppl 1):S14-21.
15. Ironmonger L, Ohuma E, Ormiston-Smith N, et al. An evaluation of the impact of large-scale interventions to raise public awareness of a lung cancer symptom. British journal of cancer 2015;112(1):207-16.
16. Power E, Wardle J. Change in public awareness of symptoms and perceived barriers to seeing a doctor following Be Clear on Cancer campaigns in England. British journal of cancer 2015;112 Suppl 1(Suppl 1):S22-S26.
17. Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. 2005;60(4):268-69.
18. Elshami M, Al-Slaibi I, Abukmail H, et al. Knowledge of Palestinian women about cervical cancer warning signs: a national cross- sectional study. BMC Public Health 2021;21(1):1779.
19. Elshami M, Thalji M, Abukmail H, et al. Knowledge of cervical cancer risk factors among Palestinian women: a national cross-sectional study. BMC Womens Health 2021;21(1):385.
20. Elshami M, Yaseen A, Alser M, et al. Knowledge of ovarian cancer symptoms among women in Palestine: a national cross-sectional study. BMC Public Health 2021;21(1):1992.
21. KoBoToolbox. Harvard Humanitarian Initiative. Accessed 12 January 2022.
22. SEER Cancer Stat Facts: Lung and Bronchus Cancer. National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/statfacts/html/lungb.html
23. Awad O. The labor reality in Palestine for 2019 on the occasion of International Workers' Day https://bit.ly/3n84Uw6. Accessed 12 January 2022.
24. Saab MM, Noonan B, Kilty C, et al. Awareness and help-seeking for early signs and symptoms of lung cancer: A qualitative study with high-risk individuals. European journal of oncology nursing : the official journal of European Oncology Nursing Society 2021;50:101880.
25. Desalu OO, Fawibe AE, Sanya EO, et al. Lung cancer awareness and anticipated delay before seeking medical help in the middle-belt population of Nigeria. The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease 2016;20(4):560-6.
26. Crane M, Scott N, O'Hara BJ, et al. Knowledge of the signs and symptoms and risk factors of lung cancer in Australia: mixed methods study. BMC Public Health 2016;16:508.
27. Elshami M, Elshami A, Alshorbassi N, et al. Knowledge level of cancer symptoms and risk factors in the Gaza Strip: a cross-sectional study. BMC Public Health 2020;20(1):414.
28. Elshami M, Bottcher B, Alkhatib M, et al. Perceived barriers to seeking cancer care in the Gaza Strip: a cross-sectional study. BMC Health Services Research 2021;21(1):28.
29. Hanson H, Raag, M. , Adrat, M. and Laisaar, T. (2017) Awareness of Lung Cancer Symptoms and Risk Factors in General Population. Open Journal of Respiratory Diseases, 7, 1-11.
30. Shil R, Hn D, Ramu. Effectiveness of an educational intervention in increasing knowledge regarding lung cancer among engineering students. 2019
31. Ministry of Health (Palestine). Nablus PMoHP, 2021. Palestine Health Annual Report. 2020
32. Ministry of Health (Palestine). Palestine Health Annual Report 2020. Gaza PMoHP, 2021. Health Annual Report 2020 Gaza. 2021
33. Tucktuck M, Ghandour R, Abu-Rmeileh NME. Waterpipe and cigarette tobacco smoking among Palestinian university students: a cross-sectional study. BMC Public Health 2017;18(1):1.
34. Musmar SG. Smoking habits and attitudes among university students in Palestine: a crosssectional study. Eastern Mediterranean health journal $=$ La revue de sante de la Mediterranee orientale $=$ al-Majallah al-sihhiyah li-sharq al-mutawassit 2012;18(5):454-60.
35. Policy Fact Sheets. Tobacco control laws 2020. https://www.tobaccocontrollaws.org/legislation/country/palestine/summary. Accessed 12 January 2022.
36. Kabir Z, Caputi T. OP89 The impact of smoke-free legislation in ireland on lung cancer incidence and mortality. 2019;73(Suppl 1):A44-A44. Journal of Epidemiology and Community Health.
37. Gredner T, Mons U, Niedermaier T, et al. Impact of tobacco control policies implementation on future lung cancer incidence in Europe: An international, population-based modeling study. The Lancet Regional Health - Europe 2021;4:100074.
38. Gredner T, Niedermaier T, Brenner H, et al. Impact of Tobacco Control Policies on Smoking-Related Cancer Incidence in Germany 2020 to 2050-A Simulation Study. Cancer Epidemiology Biomarkers \& Prevention 2020;29:cebp.1301.2019.
39. Ahmad M. Jordanians knowledge and beliefs about cancer. Global Journal on Advances in Pure \& Applied Sciences 2014;4:24-26.
40. Chapple A, Ziebland S, McPherson A. Stigma, shame, and blame experienced by patients with lung cancer: qualitative study. BMJ (Clinical research ed) 2004;328(7454):1470.
41. Chawla R, Sathian B, Mehra A, et al. Awareness and assessment of risk factors for lung cancer in residents of Pokhara Valley, Nepal. Asian Pacific journal of cancer prevention : APJCP 2010;11(6):1789-93.
42. Palestinian Central Bureau of Statistics. The Illitracy in Palestine. https://pcbs.gov.ps/site/512/default.aspx?lang=en\&ItemID=4062. Accessed 12 January 2022.
43. Shihab RA, Obeidat NA, Bader RK, et al. Cancer-related knowledge, attitudes, and risk perception among 6 grade students in Jordan. Studies in health technology and informatics 2012;172:155-60.
44. Zhou H, Zhang Y, Liu J, et al. Education and lung cancer: a Mendelian randomization study. Int J Epidemiol 2019;48(3):743-50.
45. Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M, et al. The incidence and mortality of lung cancer and their relationship to development in Asia. 2015 2015;4(6):763-74.
46. Robb K, Stubbings S, Ramirez A, et al. Public awareness of cancer in Britain: a populationbased survey of adults. British journal of cancer 2009;101(2):S18-S23.
47. Jensen AR, Mainz J, Overgaard J. Impact of delay on diagnosis and treatment of primary lung cancer. Acta oncologica (Stockholm, Sweden) 2002;41(2):147-52.

Awareness of Lung Cancer Risk Factors in Palestine: Current Situation and Future Directions

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad Mansour ${ }^{3 *}$, Mohammed Alser, MD ${ }^{2,4}$, Ibrahim Al-Slaibi, MD ${ }^{5}$, Hanan Abukmail, MD ${ }^{2,4}$, Hanan Shurrab ${ }^{6}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc^{7}, Malik Alruzaygat ${ }^{3}$, Wafa Aqel ${ }^{3}$, Roba Nairoukh ${ }^{8}$, Rahaf Kittaneh ${ }^{9}$, Nawras Sawafta ${ }^{3}$, Yousef Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{11}$, Ola Omar ${ }^{12}$, Motaz Daraghmeh ${ }^{12}$, Jomana Aljbour ${ }^{4}$, Razan Elian ${ }^{4}$, Areen Zhor ${ }^{12}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{4}$, Nasser Abu-El-Noor, $\mathrm{PhD}^{13 \#}$, Bettina Bottcher, MD, $\mathrm{PhD}^{4 \#}$
*Contributed equally as a first co-author.
\#Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{5}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{6}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{7}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{8}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{9}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{10}$ Hebron Governmental hospital, Hebron, Palestine
${ }^{11}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{12}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{13}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.

Corresponding author

Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami@gmail.com

Characteristic	Smoking cigarettes		Smoking shisha		Exposure to another person＇s cigarette smoke	
	COR（95\％CI）	p	COR（95\％CI）	p	COR（95\％CI）	p
${ }_{6}^{5}$ Age group						$\stackrel{\rightharpoonup}{\text { ¢ }}$
${ }_{7}^{6} 18$ to 44	Ref	Ref	Ref	Ref	Ref	Ref ${ }^{\text {응 }}$
${ }_{8} 45$ or older	0.76 （0．59－0．98）	0.038	1．09（0．86－1．38）	0.47	1.09 （0．92－1．29）	$0.32 \stackrel{\text { ¢ }}{\sim}$
9 Gender						
10Male	Ref	Ref	Ref	Ref	Ref	Ref ${ }_{\square}^{\circ}$
${ }^{11} \mathrm{Female}$	1.27 （1．01－1．61）	0.044	0.77 （0．63－0．95）	0.013	1.25 （1．08－1．45）	$0.002 \stackrel{\square}{-}$
${ }_{13}^{12}$ Educational level						
${ }_{14}$ Secondary or below	Ref	Ref	Ref	Ref	Ref	Ref ${ }^{5}$
15 Post－secondary	1.76 （1．38－2．24）	<0.001	1.71 （1．39－2．10）	<0.001	1.18 （1．02－1．36）	0.028 웅
160 ccupation						
${ }^{17}$ Unemployed／housewife	Ref	Ref	Ref	Ref	Ref	Ref N
${ }^{18}$ Employed	0．98（0．76－1．25）	0.84	1.31 （1．06－1．62）	0.013	0.91 （0．78－1．07）	0.26 ¢
$2{ }^{\text {R Retired }}$	1.41 （0．57－3．52）	0.46	2.01 （0．87－4．62）	0.10	1.11 （0．66－1．87）	0.69 雨
${ }_{21}$ Student	1.09 （0．72－1．67）	0.68	1.32 （0．92－1．89）	0.13	0.74 （0．58－0．94）	0.015 웅
22Monthly income						
$23<1450$ NIS	Ref	Ref	Ref	Ref	Ref	Ref ${ }^{\text {v }}$
${ }_{25}^{24} 1450$ NIS	1.02 （0．80－1．32）	0.85	1.26 （1．03－1．55）	0.028	0.98 （0．84－1．15）	$0.82 \underset{\sim}{\text { D }}$
${ }_{26}$ Marital status						
2Single	Ref	Ref	Ref	Ref	Ref	Ref
28Married	1.11 （0．86－1．43）	0.44	0.98 （0．79－1．22）	0.87	1.23 （1．05－1．44）	0.009 ס
29Divorced／Widowed	0.53 （0．31－0．89）	0.016	0.58 （0．36－0．94）	0.027	1.06 （0．71－1．58）	0.78 良
${ }_{31}^{30}$ Residency						
${ }_{32}$ Gaza Strip	Ref	Ref	Ref	Ref	Ref	Ref ${ }^{\circ}$
33 WBJ	1.04 （0．82－1．31）	0.77	1．20（0．99－1．47）	0.07	1.11 （0．96－1．29）	0.15 후
${ }_{36}^{36} \mathrm{Yes}$	0.77 （0．59－1．01）	0.06	0.90 （0．71－1．14）	0.40	1.09 （0．91－1．31）	
38Knowing someone with cancer						
39 No	Ref	Ref	Ref	Ref	Ref	Ref $\stackrel{\rightharpoonup}{5}$
${ }^{40} \mathrm{Yes}$	1.04 （0．82－1．32）	0.74	1.04 （0．85－1．27）	0.72	1.12 （0．97－1．30）	0.12 3
${ }_{42}^{41}$ Ever smoked cigarettes and／or §						
$43^{\text {shisha }}$	Ref	Ref	Ref	Ref	Ref	Ref \bigcirc
44 No	0.58 （0．46－0．74）	＜0．001	0.82 （0．66－1．01）	0.07	0.71 （0．61－0．83）	<0.001 号
45 Yes						$\stackrel{\rightharpoonup}{\bullet}$
46 Site of data collection						N
${ }^{47}$ Public Spaces	Ref	Ref	Ref	Ref	Ref	Ref
${ }_{49}^{48} \mathrm{Hospitals}$	1.40 （1．07－1．84）	0.015	1.27 （1．00－1．61）	0.054	1.11 （0．94－1．31）	0.22 ¢
${ }_{50}$ Primary healthcare centers	1.48 （1．09－2．01）	0.012	0.93 （0．73－1．18）	0.53	1.36 （1．12－1．64）	$0.002{ }^{\text {¢ }}$
${ }^{51} \mathrm{COR}=$ crude odds ratio，CI＝confidence interval，WBJ＝West Bank and Jerusalem．						
52 退						
53 （						
54 （						
56 （ \％						
57 （						
58 年－－－－						

4 Supplemental table 2: Bivariable logistic regression analyzing factors associated with the recognition of other risk factors.

7	Age group				
8			Ref	Ref	Ref
9	18 to 44	Ref	Ref	Ref	Ref
1045 or older	$1.23(1.04-1.46)$	0.016	$1.43(1.21-1.71)$	<0.001	$1.27(1.07-1.51)$
11 Gender					

12Male	Ref	Ref	Ref	Ref	Ref	Ref
13Female	$1.07(0.93-1.23)$	0.35	$0.90(0.78-1.04)$	0.16	$0.97(0.84-1.12)$	0.71

${ }^{15}$ Educational level
${ }_{15}^{15}$ Secondary or below
${ }_{17}^{16}$ Post-secondary ${ }_{18}$ Occupation
19Unemployed/housewife
20Employed
${ }^{21}$ Retired
$\begin{array}{ccc}\text { Ref } & \text { Ref } & \text { Ref } \\ 0.84(0.72-0.98) & 0.023 & 1.27(1.10-1.48) \\ 1.10(0.66-1.82) & 0.72 & 3.82(1.85-7.92)\end{array}$
${ }^{22}$ Student

$0.77(0.61-0.98)$	0.032	$1.18(0.93-1.51)$	0.18	$0.81(0.64-1.03)$	0.09

${ }_{24}^{23}$ Monthly income
$25<1450$ NIS
$26 \geq 1450$ NIS

27Marital status
${ }^{28}$ Single
${ }^{29}$ Married
${ }_{31}^{30}$ Divorced/Widowed
Ref
$1.19(1.02-1.38)$
Ref Ref Ref Ref Ref
${ }_{32}$ Residency
33Gaza Strip
34WBJ
${ }^{35}$ Having a chronic
${ }^{36}$ disease
${ }_{38}^{37}$ No
$\begin{array}{ccc}\text { Ref } & \text { Ref } & \text { Ref } \\ 1.21(1.01-1.45) & 0.035 & 1.20(1.00-1.43)\end{array}$
Ref
0.044
Ref
$1.30(1.08-1.56)$

Ref
0.006
${ }_{39} \mathrm{Yes}$
40 Knowing someone with 41 cancer
42No
$\begin{array}{cccc}\text { Ref } & \text { Ref } & \text { Ref } & \text { Ref } \\ 1.59(1.38-1.83) & <0.001 & 1.54(1.34-1.78) & <0.001\end{array}$
Exposure to chemical
Exposure to radiation
Air pollution
COR (95% CI) p COR $(95 \%$ CI) p COR $(95 \%$ CI)
$1.07(0.93-1.23) \quad 0.35 \quad 0.90(0.78-1.04) \quad 0.16 \quad 0.97(0.84-1.12)$

Ref	Ref	Ref	Ref	Ref	Ref
$1.11(0.96-1.27)$	0.17	$1.46(0.26-1.68)$	<0.001	$1.05(0.91-1.21)$	0.50

(1.02-1.38)
Ref
$1.16(0.99-1.35)$
$0.96(0.65-1.41)$
0.96 (0.65-1.41) 0.83

Ref	Ref	Ref	Ref	Ref	Ref
$1.18(1.02-1.36)$	0.025	$1.05(0.91-1.21)$	0.50	$1.59(1.37-1.83)$	<0.00

${ }^{43}$ Yes
${ }_{45}^{44}$ Ever smoked cigarettes
${ }_{46}$ and/or shisha
${ }_{47} \mathrm{No}$

Ref	Ref	Ref	Ref	Ref	Ref
$0.98(0.84-1.14)$	0.81	$1.01(0.87-1.18)$	0.87	$1.17(1.00-1.37)$	0.054

48 Yes
49Site of data collection

${ }^{50}$ Public Spaces	Ref	Ref	Ref	Ref	Ref	Ref
${ }^{51}$ Hospitals	$1.67(1.42-1.97)$	<0.001	$1.01(0.85-1.19)$	0.95	$1.37(1.16-1.61)$	<0.001
${ }_{52}^{52}$ Primary healthcare	$2.04(1.69-2.47)$	<0.001	$0.97(0.81-1.16)$	0.75	$1.49(1.24-1.79)$	<0.001

54 ${ }^{\text {centers }}$
55 COR= adjusted odds ratio, CI= confidence interval, WBJ= West Bank and Jerusalem.

Sुupplemental table 3：Bivariable logistic regression analyzing factors associated with the recognition of other risk factors．

4 Characteristic	Having a previous history of lung disease		Having a previous history of cancer		Having had treatment for any cancer in the past		Having a close relative with lung cancer $\underset{\ni}{\ni}$	
6	COR（95\％CI）＊	p	COR（95\％CI）＊	p	COR（95\％CI）＊	p	COR（95\％CI）＊	\square_{0}^{0}
Age group								
18 to 44	Ref	R最						
43 or older	1.16 （1．00－1．33）	0.043	1.20 （1．05－1．38）	0.007	0.97 （0．85－1．11）	0.65	1.15 （1．01－1．31）	0.0 ¢
Gender Male	Ref							
Fernale	1.04 （0．92－1．18）	0.50	1.11 （0．99－1．25）	0.08	1.15 （1．02－1．28）	0.019	1.22 （1．09－1．37）	0.00
Edhucational level Sez̉ondary or below	Ref							
Above secondary	1.07 （0．95－1．20）	0.29	0.89 （0．79－1．00）	0.043	1.08 （0．96－1．21）	0.20	1.10 （0．98－1．24）	0.8
Occupation								
Uhremployed／housewife	Ref	R禹						
Ehnployed	1.08 （0．95－1．23）	0.27	0.88 （0．78－0．99）	0.041	0.90 （0．80－1．02）	0.09	1.04 （0．92－1．18）	0.50
Reqired	1.39 （0．90－2．15）	0.13	1.56 （1．03－2．37）	0.036	0.95 （0．65－1．39）	0.79	1.09 （0．75－1．60）	0.6
Stupdent	0.86 （0．70－1．05）	0.15	0.76 （0．62－0．93）	0.007	1.03 （0．85－1．26）	0.76	0.82 （0．67－1．00）	0.6
MOnthly income								
＜211450 NIS	Ref							
$\geq 2 \mathrm{~L} 450 \mathrm{NIS}$	0.91 （0．80－1．03）	0.15	1.02 （0．90－1．15）	0.79	0.96 （0．85－1．08）	0.50	1.15 （1．01－1．30）	0.03
Marital status								
Sinqugle	Ref	RE						
Mgsried	1.15 （1．01－1．31）	0.033	1.19 （1．05－1．35）	0.006	1.11 （0．98－1．26）	0.09	1.01 （0．89－1．14）	0.8
Disorced／Widowed	1.09 （0．77－1．53）	0.63	1.38 （0．99－1．92）	0.06	0.95 （0．69－1．31）	0.74	1.11 （0．80－1．53）	0.53
Rexsidency								
Gega Strip	Ref	Rė						
W29J	0.93 （0．82－1．05）	0.27	1.05 （0．93－1．18）	0.43	0.95 （0．85－1．06）	0.36	1.20 （1．07－1．35）	0.00
Having a chronic disease								
Nom	Ref	Reg						
Yes	1.09 （0．94－1．26）	0.26	1.17 （1．02－1．35）	0.027	0.91 （0．79－1．04）	0.18	1.10 （0．95－1．26）	0.1
Knowing someone with								
can4cer								
Not	Ref	Ref			Ref			R需
Yes	1.08 （0．96－1．22）	0.20	1.38 （1．23－1．55）	<0.001	1.21 （1．08－1．35）	0.001	1.10 （0．98－1．23）	0.12
Eyer smoked cigarettes and／or shisha								
	Ref							
Yes	0.92 （0．81－1．05）	0.21	0.90 （0．79－1．02）	0.10	0.93 （0．82－1．05）	0.23	0.87 （0．76－0．98）	0.0 亨
Site of data collection								
Public Spaces	Ref	R郞						
Hospitals	1.28 （1．12－1．48）	<0.001	1.37 （1．20－1．56）	＜0．001	1.12 （0．98－1．27）	0.10	1.03 （0．91－1．18）	0.6
Primary healthcare centers	1.46 （1．25－1．70）	＜0．001	1.73 （1．49－2．01）	＜0．001	1.61 （1．39－1．86）	<0.001	1.13 （0．98－1．31）	$0 . \frac{18}{2}$

44
45
$\mathrm{CQR}^{\mathrm{C}}=$ crude odds ratio， $\mathrm{CI}=$ confidence interval，WBJ＝West Bank and Jerusalem．
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-ctional studies

Section/Topic	Item \#	Recommendation $\quad \stackrel{\bigcirc}{\text { a }}$	Reported on page \#
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2-3
Introduction			4
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper $\overrightarrow{0}$	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, fol W -up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gi受e diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	N/A
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grows were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results		O.	

[^0]| Participants | 13* | (a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examin for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 8 |
| :---: | :---: | :---: | :---: |
| | | (b) Give reasons for non-participation at each stage O | 8 |
| | | (c) Consider use of a flow diagram | N/A |
| Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on confounders | 8-9 |
| | | (b) Indicate number of participants with missing data for each variable of interest N N N - | N/A |
| Outcome data | 15* | Report numbers of outcome events or summary measures Cu | 11 |
| Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precisio (eg, 95\% confidence interval). Make clear which confounders were adjusted for and why they were included | 12-17 |
| | | (b) Report category boundaries when continuous variables were categorized | N/A |
| | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful tim $\overrightarrow{\vec{E}}$ period | N/A |
| Other analyses | 17 | Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses $\frac{3}{2}$ | N/A |
| Discussion | | | |
| Key results | 18 | Summarise key results with reference to study objectives | 18 |
| Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuess both direction and magnitude of any potential bias | 21 |
| Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of ©iblyses, results from similar studies, and other relevant evidence | 18-21 |
| Generalisability | 21 | Discuss the generalisability (external validity) of the study results | 21 |
| Other information | | | |
| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | 22 |

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in ce্厄్రnort and cross-sectional studies.
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan@les of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.steobe-statement.org.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061110.R1
Article Type:	Original research
Date Submitted by the Author:	23-Sep-2022
Complete List of Authors:	Elshami, Mohamedraed; Ministry of Health; University Hospitals Cleveland Medical Center Mansour, Ahmad; Al-Quds University, Faculty of Medicine; Palestine Medical Complex Alser, Mohammed ; Islamic University of Gaza; United Nations Relief and Works Agency for Palestine Refugees in the Near East Al-Slaibi, Ibrahim; Almakassed Hospital Abukmail, Hanan; International Medical Corps; Harvard Medical School, Faculty of Medicine Shurrab, Hanan; Al-Azhar University of Gaza Qassem, Shahd; Al-Quds University, Faculty of Medicine Usrof, Faten ; Islamic University of Gaza, Department of a Medical Laboratory Sciences, Faculty of Health Sciences Alruzayqat, Malik ; Al Quds University, Faculty of Medicine Aqel, Wafa; Al-Quds University, Faculty of Medicine Nairoukh, Roba; Al-Quds University, Faculty of Dentistry Kittaneh, Rahaf; Al-Najah National University, Faculty of Nursing Sawafta, Nawras; Al-Quds University, Faculty of Medicine Habes, Yousef M. N.; Al Quds University Ghanim, Obaida; Al-Quds University, Faculty of Medicine Aabed, Wesam Almajd; AI Azhar University of Gaza, Faculty of dentistry Omar, Ola; AI-Najah National University, Faculty of Medicine Daraghmeh, Motaz; Al-Najah National University, Faculty of Medicine Aljbour, Jomana; Islamic University of Gaza, Faculty of Medicine Elian, Razan E. M. ; Islamic University of Gaza Zhor, Areen; Al-Najah National University, Faculty of Medicine Habes, Haneen; Al-Quds University, Faculty of Medicine Al-Dadah, Mohammed; Islamic University of Gaza, Faculty of Medicine Abu-El-Noor, Nasser; Islamic University of Gaza, Faculty of Nursing Bottcher, Bettina.; Islamic University of Gaza Faculty of Medicine, Faculty of Medicine
Primary Subject Heading:	Oncology
Secondary Subject Heading:	Health policy, Occupational and environmental medicine, Public health, Smoking and tobacco, Epidemiology
Keywords:	EPIDEMIOLOGY, Health policy < HEALTH SERVICES ADMINISTRATION \& MANAGEMENT, ONCOLOGY, Adult oncology < ONCOLOGY, Epidemiology < ONCOLOGY, PUBLIC HEALTH

D)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence - details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad A. Mansour, MD ${ }^{3,4 *}$, Mohammed Alser, MD 5,6, Ibrahim Al-Slaibi, MD ${ }^{7}$, Hanan Abukmail, MD ${ }^{8,9}$, Hanan Shurrab ${ }^{10}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc ${ }^{11}$, Malik Alruzayqat ${ }^{3}$, Wafa Aqel ${ }^{3}$, Roba Nairoukh ${ }^{12}$, Rahaf Kittaneh ${ }^{14}$, Nawras Sawafta ${ }^{3}$, Yousef M. N. Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{16}$, Ola Omar ${ }^{17}$, Motaz Daraghmeh ${ }^{17}$, Jumana Aljbour ${ }^{5}$, Razan E. M. Elian ${ }^{5}$, Areen Zuhour ${ }^{17}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{5}$, Nasser Abu-El-Noor, PhD ${ }^{18 \#}$, Bettina Bottcher, MD, PhD ${ }^{5 \#}$
*Contributed equally as a first co-author.
\#Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Palestine Medical Complex, Ramallah, Palestine.
${ }^{5}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{6}$ The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA)
${ }^{7}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{8}$ International Medical Corps, Gaza.
${ }^{9}$ Harvard Medical School, Boston, MA, USA.
${ }^{10}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{11}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{12}$ Faculty of Dentistry, Al-Quds University, Jerusalem, Palestine
${ }^{13}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{14}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{15}$ Hebron Governmental hospital, Hebron, Palestine
${ }^{16}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{17}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{18}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.
\section*{Corresponding author}
Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami@gmail.com

Word count: 3793

Abstract

Objectives: To evaluate lung cancer (LC) risk factor awareness among Palestinians and identify factors associated with good awareness.

Design: Cross-sectional study.

Settings: Participants were recruited using convenience sampling from hospitals, primary healthcare centers, and public spaces located at 11 governorates in Palestine.

Participants: Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%$). A total of 4762 questionnaires were included: 2742 from the West Bank and Jerusalem (WBJ) and 2020 from the Gaza Strip. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Tool: A modified version of the validated LC Awareness Measure was used for data collection.

Primary and secondary outcomes: The primary outcome was LC risk factor awareness level as determined by the number of factors recognized: poor(0-3), fair(4-7), and good(8-10). Secondary outcomes include the recognition of each LC risk factor.

Results: Smoking-related risk factors were more often recognized than other LC risk factors. The most recognized risk factors were 'smoking cigarettes'($\mathrm{n}=4466,93.8 \%$) and 'smoking shisha [waterpipes]'($n=4337,91.1 \%)$. The least recognized risk factors were 'having a close

relative with $\mathrm{LC}^{\prime}(\mathrm{n}=2084,43.8 \%)$ and 'having had treatment for any cancer in the past'($\mathrm{n}=2368$, 49.7\%).

A total of 2381 participants (50.0\%) displayed good awareness of LC risk factors. Participants from the WBJ and the Gaza Strip had similar likelihood to display good awareness (50.6% vs. 49.1%). Being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and primary healthcare centers were all associated with an increase in the likelihood of displaying good awareness.

Conclusion: Half of study participants displayed good awareness of LC risk factors. Educational interventions are warranted to further improve public awareness of LC risk factors, especially those unrelated to smoking.

Keywords: lung cancer, risk factors, behavioral changes, prevention, early detection, early diagnosis, health education, awareness, Palestine.

Strengths and limitations of this study

- The large sample size was a major strength of this study.
- The wide coverage of the major geographical areas of Palestine and collecting data from different places within each area allowed for direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population.
- The use of convenience sampling does not guarantee the generalizability of the findings.
- Visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness.
- Grouping unemployed women and housewives in the same category might be inappropriate, as this may include women with a whole range of socioeconomic and educational background from highly-educated women who chose to focus on family care to those with minimal skills who cannot find work and look after their family as the default option.

Introduction

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide with 18.0% of cancerrelated deaths and over 2.2 million newly diagnosed cases in 2020.[1] In the Middle East and North Africa, the estimated number of newly diagnosed LC cases was 79,887 in 2018 with a 5 -year relative survival rate of 8.0%.[2] In Palestine, LC is the second most common cancer, accounting for 11.4% of all cancers with an incidence rate of 11.5 per 100,000 general population, and the leading cause of cancer-related mortality accounting for 17.3%.[3]

The most significant risk factor for LC is smoking tobacco products including cigarettes and shisha (waterpipes).[4] Tobacco smoking was reported to be prevalent among 47.7\% of Palestinians in the West Bank. Men were found to smoke more than women and to begin smoking at an earlier age, where 74.4% of smokers started when they were 18 years old or younger. Cigarettes and shisha were found to be the most popular methods of smoking among Palestinian men and women.[5]

Besides smoking, there are LC risk factors for LC, such as exposure to radiation, occupational hazards like asbestos, air pollution and family history of LC.[6-8] However, previous studies showed that awareness of smoking-related risk factors of LC was higher than that of other LC risk factors.[9-11]

One of the most important contributors to the low survival rates of LC is delayed presentation. This could be due to factors related to patients, healthcare providers, the healthcare system, or the disease itself.[12] Awareness of LC risk factors is one of the patient-related factors.

Recognition of LC risk factors can help stimulating the development of an active personal risk assessment, which in turn increases the ability to detect and react to related symptoms.[13] Previous studies demonstrated that raising the public awareness of LC increased the number of individuals diagnosed at early stages.[14-16] An early diagnosis of LC contributes to better prognosis.[17] Given the limited resources in Palestine, such educational interventions could be an efficient strategy to mitigate the mortality associated with LC.

Therefore, this national study aimed to (i) evaluate the awareness level of LC risk factors among Palestinians, (ii) examine if there is a difference in the awareness level of LC risk factors between the two main areas of Palestine: the West Bank and Jerusalem (WBJ) and the Gaza Strip, and (iii) identify the factors associated with good awareness.

Methods

Study design and population

This was a national cross-sectional study conducted from July 2019 to March 2020. Palestinian adults (≥ 18 years) were the target population. Participants were recruited from governmental hospitals, primary healthcare centers (PHCs) and public spaces, such as malls, markets, restaurants, mosques, churches, parks, downtowns, transportation stations and others. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Sampling methods

Eligible participants were recruited to the study using a convenience sampling technique from governmental hospitals, PHCs, and public spaces located in 11 governorates (out of 16) across Palestine between July 2019 and March 2020. This was intended to create a diverse study cohort resembling the Palestinian community.[18-20] In 2019, the estimated Palestinian population (≥ 15 years) was $3,109,063$. With a confidence level of 95.0%, a type I error rate of 5.0%, and an absolute error of 2.0%, the minimum required sample size was 2401 participants.

Questionnaire and data collection

A modified version of the LC Awareness Measure (LCAM) was used for data collection. The LCAM is a validated tool that was designed to evaluate the public awareness of LC.[13] The original LCAM was first translated into Arabic by two bilingual healthcare professionals and then back-translated into English by another two different bilingual healthcare professionals. The

Arabic version of the LCAM was then assessed for content validity and accuracy of translation by three experts in the field of thoracic oncology, public health, and survey design. This was followed by a pilot study $(\mathrm{n}=68)$ to assess the clarity of questions in the Arabic version of the LCAM. The questionnaires of the pilot study were not included in the final analysis. The Cronbach's Alpha was used to assess the internal consistency of the Arabic LCAM and it reached an acceptable value of 0.784 .

The Arabic LCAM included two sections. The first section described the sociodemographic factors of study participants. The second section evaluated the awareness of 10 LC risk factors using a 5 -point Likert scale ($1=$ strongly disagree, $5=$ strongly agree). Of the 10 risk factors, nine were mentioned in the original LCAM.[13] 'Smoking shisha' was added to the questionnaire as it was deemed important to assess the awareness of this risk factor in the Palestinian community due to its high prevalence.[5]

The electronic tool 'Kobo Toolbox' was utilized in the data collection.[21] This safe tool can be used both offline and online on mobile devices. Data collectors completed the questionnaire in a face-to-face interview with the participant using Kobo Toolbox. The data collectors had medical background and received special training on the use of Kobo Toolbox, recruitment of potential study participants, gaining informed consent, and facilitation of completion of the questionnaires.

Statistical analysis

The percentage of new LC cases increases substantially starting from the age of 45.[22] Therefore, participants' age was categorized into two categories using this cutoff: 18-44 years and ≥ 45 years.

The monthly income was also categorized into two categories (<1450 NIS and ≥ 1450 NIS) since 1450 NIS (about \$450) is the minimum wage in Palestine.[23]

The median and interquartile range (IQR) were used to describe continuous, non-normally distributed variables and the Kruskal-Wallis test was used for baseline comparisons. Frequencies and percentages were used to describe categorical variables and Pearson's Chi-square test was used for baseline comparisons.

The recognition of each LC risk factor was assessed using a question based on a 5-point Likert scale with 'strongly agree' or 'agree' as a correct answer, and 'strongly disagree', 'disagree', or 'not sure' as an incorrect answer. For each correctly recognized LC risk factor, one point was given. LC risk factors were further categorized into two categories: (i) smoking-related and (ii) other risk factors. Recognition of LC risk factors was described using frequencies and percentages with comparisons performed by Pearson's Chi-Square test. This was followed by running bivariable and multivariable logistic regression analyses to examine the association between recognizing each LC risk factor and participant characteristics. The multivariable analysis adjusted for age group, gender, educational level, monthly income, occupation, place of residency, marital status, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection. This model was determined a priori based on previous studies.[13, 24-27] The results of the bivariable analyses are presented in supplementary tables 1 to 3 , please see additional file 1.

A scoring system was used to evaluate the participants' awareness level of LC risk factors. Similar scoring systems were also used in previous studies.[18, 27-28] For each correctly recognized LC risk factor, one point was given. The total score (ranging from 0 to 10) was calculated and
categorized based on the number of recognized LC risk factors into three categories: poor (0 to 3), fair (4 to 7), and good awareness (8 to 10). The awareness level of LC risk factors exhibited by participants from the Gaza Strip was compared with the awareness level exhibited by participants from the WBJ using Pearson's Chi-Square test. Bivariable and multivariable logistic regression analyses were utilized to test the association between participant characteristics and having a good awareness level.

Abstract

Missing data were hypothesized to be missed completely at random and thus, complete case analysis was utilized to handle them. Data were analyzed using Stata software version 16.0 (StataCorp, College Station, Texas, United States).

Patients and public involvement

There was no patient or public involvement in the design, conduct, reporting, or dissemination plans of this study. However, results will be disseminated among the professional communities of Palestine and to policymakers, with the intent to inform future health policy decisions.

Results

Participant characteristics

Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%$). In total, 4762 questionnaires were included in the analysis (24 were ineligible and 31 had missing data): 2742 from the WBJ and 2020 from the Gaza Strip. The median age [IQR] for all participants was 32.0 years [24.0, 44.0] (table 1). Participants living in the WBJ were more likely to be older, have higher monthly income but lower level of education, and suffer more often from chronic diseases than participants living in the Gaza Strip.

Table 1: Characteristics of study participants.

Characteristic	$\begin{gathered} \text { Total } \\ (\mathrm{n}=4762) \end{gathered}$	Gaza Strip $(\mathrm{n}=2020)$	$\begin{gathered} \text { WBJ } \\ (\mathrm{n}=2742) \end{gathered}$	p-value
Age, median [IQR]	32.0 [24.0, 44.0]	30.0 [24.0, 40.0]	34.0 [24.0, 47.0]	<0.001
Age group, n (\%)				<0.001
18 to 44	3572 (75.0)	1634 (80.9)	1938 (70.7)	
45 or older	1190 (25.0)	386 (19.1)	804 (29.3)	
Female gender, n (\%)	2618 (55.0)	1086 (53.8)	1532 (55.9)	0.15
Educational level, n (\%)				
Secondary or below	2375 (49.9)	955 (47.3)	1420 (51.8)	0.002
Post-secondary	2387 (50.1)	1065 (52.7)	1322 (48.2)	
Occupation, n (\%)				
Unemployed/housewife	2003 (42.1)	970 (48.0)	1033 (37.7)	<0.001
Employed	2160 (45.4)	814 (40.3)	1346 (49.1)	
Retired	111 (2.3)	46 (2.3)	65 (2.4)	
Student	488 (10.2)	190 (9.4)	298 (10.8)	
Monthly income $\geq \mathbf{1 4 5 0}$ NIS, n (\%)	3241 (68.1)	683 (33.8)	2558 (93.3)	<0.001
Marital status, n (\%)				
Single	1480 (31.1)	641 (31.7)	839 (30.6)	0.07
Married	3117 (65.5)	1323 (65.5)	1794 (65.4)	
Divorced/Widowed	165 (3.5)	56 (2.8)	109 (4.0)	
Having a chronic disease, n (\%)	1032 (21.7)	313 (15.5)	719 (26.2)	<0.001
Knowing someone with cancer, n (\%)	2571 (54.0)	1045 (51.7)	1526 (55.7)	0.007
Ever smoked, n (\%)				
Cigarettes	1127 (23.7)	417 (20.6)	710 (25.9)	<0.001
Shisha (waterpipes)	499 (10.5)	142 (7.0)	357 (13.0)	<0.001
Site of data collection, $n(\%)$				
Public Spaces	1920 (40.3)	784 (38.8)	1136 (41.4)	<0.001
Hospitals	1628 (34.2)	651 (32.2)	977 (35.7)	
Primary healthcare centers	1214 (25.5)	585 (29.0)	629 (22.9)	

$\mathrm{n}=$ number of participants, $\mathrm{IQR}=$ interquartile range, $\mathrm{WBJ}=$ West Bank and Jerusalem.

22 Table 2: Recognition of lung cancer risk factors.

38 Having a previous history of cancer such as head and neck cancer

Good awareness and its associated factors
A total of 2381 participants $(50.0 \%$) displayed good awareness (prompt recognition of more than seven out of 10 LC risk factors) (table 3). Participants from the WBJ and the Gaza Strip had a similar likelihood to display good awareness (50.6% vs. 49.1%). On the multivariable analysis, being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs were all associated with an increase in the likelihood of having a good awareness level of LC risk factors (table 4).

Table 3: Awareness level of lung cancer risk factors among study participants.

Level	Total $\mathbf{n (\%)}$	Gaza Strip $\mathbf{n (\%)}$	WBJ $\mathbf{n (\%)}$	p-value
Poor (0-3 risk factors)	$203(4.3)$	$111(5.5)$	$92(3.4)$	
Fair (4-7 risk factors)	$2178(45.7)$	$918(45.4)$	$1260(46.0)$	0.001
Good (8-10 risk factors)	$2381(50.0)$	$991(49.1)$	$1390(50.6)$	
$\mathrm{n}=$ number of participants, WBJ=				

Table 4: Bivariable and multivariable logistic regression analyzing factors associated with having a good awareness of lung cancer risk factors.

Characteristic	Good awareness	
	COR (95\% CI)	AOR (95\% CI)*
Age group		
18 to 44	Ref	Ref
45 or older	1.33 (1.17-1.52)	1.20 (1.02-1.42)
Gender		
Male	Ref	Ref
Female	1.15 (1.03-1.29)	1.08 (0.91-1.28)
Educational level		
Secondary or below	Ref	Ref
Post-secondary	1.15 (1.03-1.29)	1.25 (1.09-1.42)
Occupation		
Unemployed/housewife	Ref	Ref
Employed	0.98 (0.87-1.11)	1.16 (0.99-1.36)
Retired	1.49 (1.01-2.19)	1.34 (0.87-2.04)
Student	0.79 (0.64-0.95)	0.98 (0.77-1.24)
Monthly income		
< 1450 NIS	Ref	Ref
≥ 1450 NIS	1.15 (1.02-1.30)	1.19 (1.07-1.411)
Marital status		
Single	- Ref	Ref
Married	1.25 (1.11-1.41)	1.01 (0.87-1.17)
Divorced/Widowed	1.30 (0.95-1.80)	1.05 (0.74-1.49)
Residency		
Gaza Strip	Ref	Ref
WBJ	1.07 (0.95-1.20)	0.95 (0.81-1.11)
Having a chronic disease		
No	Ref	Ref
Yes	1.32 (1.16-1.52)	1.15 (0.98-1.35)
Knowing someone with cancer		
No	Ref	Ref
Yes	1.52 (1.35-1.70)	1.61 (1.43-1.81)
Ever smoked cigarettes and/or shisha		
No	Ref	Ref
Yes	0.88 (0.78-1.00)	0.88 (0.75-1.03)
Site of data collection		
Public Spaces	Ref	Ref
Hospitals	1.37 (1.20-1.56)	1.46 (1.27-1.68)
Primary healthcare centers	1.79 (1.55-2.07)	2.04 (1.73-2.40)

Association between recognizing smoking-related risk factors and participant characteristics Participants with higher education level (above secondary) were more likely than other participants to recognize all smoking-related risk factors (table 5). In addition, participants recruited from hospitals or PHCs were more likely than participants recruited from public spaces to recognize 'smoking shisha' and 'exposure to another person's cigarette smoke' as smokingrelated risk factors. Similarly, participants from the WBJ were more likely than participants from the Gaza Strip to recognize 'smoking shisha' and 'exposure to another person's cigarette smoke'. In contrast, participants who ever smoked cigarettes and/or shisha were less likely than participants who never smoked to recognize all smoking-related risk factors.

Table 5: Multivariable logistic regression analyzing factors associated with the recognition of smoking-related risk factors.

Characteristic	Smoking cigarettes	Smoking shisha	Exposure to another person's cigarette smoke
	AOR (95\% CI)*	AOR (95\% CI)*	AOR (95\% CI)*

Age group			
18 to 44	Ref	Ref	Ref
45 or older	0.84 (0.61-1.17)	1.24 (0.93-1.66)	1.04 (0.84-1.28)
Gender			
Male	Ref	Ref	Ref
Female	0.98 (0.69-1.39)	0.60 (0.44-0.82)	1.03 (0.83-1.27)
Educational level			
Secondary or below	Ref	Ref	Ref
Post-secondary	1.74 (1.33-2.28)	1.74 (1.38-2.18)	1.29 (1.09-1.51)
Occupation			
Unemployed/housewife	Ref	Ref	Ref
Employed	1.12 (0.81-1.55)	1.04 (0.78-1.37)	1.06 (0.87-1.30)
Retired	1.77 (0.68-4.63)	1.39 (0.58-3.33)	1.20 (0.96-2.09)
Student	1.02 (0.62-1.68)	1.01 (0.66-1.54)	0.81 (0.61-1.09)
Monthly income			
< 1450 NIS	Ref	Ref	Ref
≥ 1450 NIS	0.91 (0.65-1.29)	0.99 (0.74-131)	0.85 (0.69-1.05)
Marital status			
Single	Ref	Ref	Ref
Married	1.20 (0.88-1.64)	1.09 (0.84-1.42)	1.12 (0.92-1.35)
Divorced/Widowed	0.66 (0.36-1.20)	0.71 (0.42-1.22)	0.93 (0.60-1.44)
Residency			
Gaza Strip	Ref	Ref	Ref
WBJ	1.26 (0.91-1.74)	1.33 (1.02-1.75)	1.29 (1.06-1.56)

Having a chronic disease

No	Ref	Ref	Ref
Yes	$0.87(0.63-1.20)$	$0.88(0.67-1.16)$	$1.02(0.83-1.35)$

Knowing someone with cancer

No	Ref	Ref	Ref
Yes	$1.17(0.92-1.49)$	$1.06(0.86-1.30)$	$1.17(1.01-1.36)$

Ever smoked cigarettes and/or shisha
No
Yes

Ref	Ref	Ref
$0.54(0.40-0.75)$	$0.55(0.42-0.74)$	$0.71(0.59-0.86)$

Site of data collection

Public Spaces	Ref	Ref	Ref
Hospitals	$1.52(1.14-2.01)$	$1.30(1.01-1.66)$	$1.11(0.94-1.32)$

Primary healthcare centers $\quad 1.47(1.05-2.05) \quad 1.07(0.81-1.39) \quad 1.29(1.05-1.58)$

[^1]Association between recognizing other LC risk factors and participant characteristics

9 from the Gaza Strip to recognize 'air pollution' and 'having a close relative with cancer'.

Table 6: Multivariable logistic regression analyzing factors associated with the recognition of other risk factors.

Characteristic	Exposure to chemicals	Exposure to radiation	Air pollution
	AOR (95\% CI)*	AOR (95\% CI)*	AOR (95\% CI)*
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 1.17(0.95-1.44) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.38(1.11-1.70) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.13(0.92-1.40) \end{gathered}$
Gender Male Female	$\begin{gathered} \text { Ref } \\ 0.91(0.74-1.11) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.95(0.77-1.17) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.98(0.80-1.21) \end{gathered}$
Educational level Secondary or below Post-secondary	$\begin{gathered} \text { Ref } \\ 1.26 \text { (1.08-1.48) } \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.47(1.26-1.73) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.16(0.98-1.36) \end{gathered}$
Occupation Unemployed/housewife Employed Retired Student	$\begin{gathered} \text { Ref } \\ 0.85(0.70-1.04) \\ 0.88(0.51-1.52) \\ 0.68(0.65-1.16) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.20(0.99-1.46) \\ 2.64(1.24-5.60) \\ 1.29(0.97-1.73) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.03(0.84-1.26) \\ 1.11(0.63-1.95) \\ 0.83(0.62-1.11) \end{gathered}$
Monthly income <1450 NIS ≥ 1450 NIS	$\begin{gathered} \text { Ref } \\ 1.18(0.96-1.46) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.30(1.06-1.60) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.12(0.91-1.37) \end{gathered}$
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 0.92(0.77-1.11) \\ 0.81(0.53-1.23) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.27(1.06-1.52) \\ 1.10(0.72-1.68) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.89(0.73-1.07) \\ 0.75(0.49-1.16) \end{gathered}$
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 1.09(0.89-1.32) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.86(0.71-1.05) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.47(1.21-1.78) \end{gathered}$
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 1.04(0.74-1.28) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.02(0.83-1.25) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.11(0.89-1.37) \end{gathered}$
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.72(1.48-1.99) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.52(1.32-1.76) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.51(1.31-1.76) \end{gathered}$
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.97(0.80-1.18) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.89(0.73-1.08) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.07(0.88-1.31) \end{gathered}$
Site of data collection Public Spaces Hospitals Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.77(1.49-2.10) \\ 2.38(1.94-2.94) \end{gathered}$	Ref $1.05(0.89-1.25)$ $1.16(0.95-1.41)$	$\begin{gathered} \text { Ref } \\ 1.41(1.19-1.68) \\ 1.77(1.44-2.18) \end{gathered}$

5	Characteristic	Having a previous history of lung disease	Having a previous history of cancer	Having had treatment for any cancer in the past	Having a close relative with lung

8 AOR (95\% CI)* AOR (95\% CI)* AOR (95\% CI)* AOR (95\% CI)*

9				
19 gge group	Ref	Ref	Ref	
118 to 44	Ref	$1.07(0.90-1.26)$	$1.03(0.88-1.21)$	$1.16(0.98-1.36)$
145 or older	$1.14(0.96-1.36)$		8	

1Grender

14Male
Ref
1.06 (0.89-1.26)

Ref
Ref
Ref
15emale
0.98 (0.83-1.16)
1.04 (0.88-1.23)
1.30 (1.10-1.54)
${ }^{16}$ Educational level
15
19
20
2
25
24
23
24
25
26
27
28
2

Discussion

Half of the study participants demonstrated good awareness of LC risk factors, defined as recognizing more than seven out of the 10 LC risk factors. Participants from the WBJ and the Gaza Strip demonstrated a similar likelihood of having a good awareness level. The factors associated with having good awareness levels of LC risk factors were being ≥ 45 years, higher levels of education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs. Smoking-related risk factors were more often recognized than other risk factors. The most frequently recognized LC risk factor was 'smoking cigarettes' followed by 'smoking shisha'. Interestingly, participants who ever smoked were less likely to recognize smokingrelated risk factors than those who never smoked.

Awareness of LC risk factors among Palestinians was higher than knowledge of other types of cancer.[18-20] Only 17.4\% of Palestinians displayed good knowledge of ovarian cancer symptoms,[20] 23.7\% had good knowledge of cervical cancer risk factors[19] and 27.4\% demonstrated good knowledge of cervical cancer warning signs.[18]

The majority of LC cases are diagnosed late, which may be in part due to a lack of awareness of LC symptoms, fear of cancer diagnosis, worries about what might be found, and lack of time to visit a doctor.[28-29] Educational interventions that raise the knowledge about various aspects of LC awareness are critical to develop behaviors that lead to the prevention and early diagnosis of LC.[30] The high mortality rate of LC, especially in low-resource settings like Palestine [31] and the high smoking rates, ranging from 30.0% to $47.7 \%,[5,32-33]$ necessitate finding approaches to increase awareness of LC risk factors. Although there are tobacco control policies in

Palestine,[34] there is a substantial need to monitor their outreach and implementation more closely. This is especially important given the widespread availability of tobacco products on all premises in public and to all ages. Such monitoring of the implementation of government tobacco control policies was shown to discourage people from smoking, which could reduce both active and passive smoking and, thus, LC morbidity and mortality.[35-36] There are several barriers to implementing tobacco control policies in Palestine. The lack of enforcement of these polices is a major barrier. It is common to see someone smoking in a public place or to see a child who is under 18 years going to a store to buy a pack of cigarettes for their own use or for the use of one of their family members. The law also did not specify the penalties for violating these policies, which limits the adherence of the public. In addition, to the best of our knowledge, there are no specialized centers to help smokers quit smoking. Finally, the poor economic circumstances could be a contributing factor for the inability to implement tobacco control policies as their enforcement requires allocation of a special budget for that purpose.

Awareness of LC risk factors

Smoking cigarettes was the most recognized LC risk factor in this study followed by smoking shisha and exposure to another person's cigarette smoke (passive smoking), respectively. In a previous study from Oman, smoking cigarettes was the most recognized LC risk factor (79.8\%) and passive smoking was the third (55.7\%).[9] Similarly, in a previous study from Jordan, the majority believed that active cigarette smoking, shisha smoking, and passive smoking were all linked to cancer.[37]

Musmar and colleagues reported that 34.7% of university students in Palestine were current smokers.[33] Students in the arts and humanities were found to have a considerably greater risk
of smoking than students in the sciences or in healthcare.[33] The fact that health sciences students were found to be less likely to smoke might be partly due to the influence of smokingrelated health education.[33] This is also supported by the findings of this study, where participants who had never smoked were more likely to demonstrate good awareness of smoking-related risk factors than ever smokers, highlighting the potentially empowering influence of health education on smoking behavior.

Chapple and colleagues found that LC patients felt unjustly blamed for their disease. LC patients felt particularly stigmatized regardless of their smoking status, because the condition is closely linked to smoking, which negatively impacted their interaction with family, friends, and physicians.[38] Such stigma may drive individuals who have a possible LC symptom accompanied by risk factors to seek medical advice late, and thus, lead to diagnoses at advanced stages. Health practitioners who have contact with current and former smokers must be well trained to offer a safe and non-judgmental environment for people who arrive with symptoms suggestive of LC.[26]

Chawla and colleagues showed that having benefitted from post-secondary education was a main factor associated with good awareness of LC risk factors,[39] which comes in concordance with this study. Educational levels in Palestine are good and the illiteracy rate is low at only 2.5% [40], which could contribute to the fair awareness of LC risk factors found in this study, compared with the lower levels in other regional studies.[37, 41] Participants who benefitted from higher education appear to be more concerned about their health and more likely to avoid risky behaviors such as smoking.[42-43] Future educational interventions aiming to raise
awareness of LC risk factors should be tailored to match the level of health literacy among individuals with low education.

While many similarities existed in the LC awareness of participants in the Gaza Strip compared with those in the WBJ, such as the likelihood to have good awareness of LC risk factors and recognition of smoking cigarettes as a risk factor, there were a few differences. Among these were that participants in the WBJ were more likely to recognize 'passive smoking', 'shisha smoking', 'air pollution', and 'having a close relative with cancer' as risk factors than participants from the Gaza Strip. Residents of the Gaza Strip are not allowed to travel to the WBJ and likewise are residents from the WBJ not allowed to travel to the Gaza Strip. These movement restrictions hinder the exchange of ideas, knowledge and health beliefs among people of both areas. However, the overall greater number of similarities might be encouraging, when considering the delivery of educational interventions to the whole population. The unified school curriculum might be one such way of content delivery and health education and, hence, increasing awareness of LC risk factors among the Palestinian population.

Future directions

Public health interventions that aim to promote the recognition of LC risk factors may have a major potential to improve LC outcomes for those most at risk in an attempt to reduce patientrelated delays to diagnosis. The creation of widespread public education programs and enriching school curricula with subjects outlining important symptoms and risk factors of LC may also play a role. However, this might need to be complemented by effective implementation of tobacco control regulations to achieve the greatest impact. This is especially important in low-
and middle-income countries, such as Palestine, where access to treatment might otherwise be delayed and outcomes are poorer.

Strengths and limitations

The major strengths of this study include the large sample size and the wide geographical coverage of data collection from different places within each main area, which allowed direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population. This study has some limitations though. The use of convenience sampling does not guarantee the generalizability of the findings. However, the large number of participants, the diversity of geographical areas included, and the high response rate may mitigate this. Another limitation could be that visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness. Nevertheless, this was intended to make the measured awareness more relevant to the overall public awareness, as people being treated in oncology departments and those visiting such departments were presumed to have better knowledge, compared with the general public without the same contact with healthcare professionals. A further limitation in our questionnaire could be grouping unemployed women and housewives in the same category, while women not in employment may include a whole range of socioeconomic and educational background from those with minimal skills who cannot find work and look after their family as the default option to highly educated women who choose to focus on family care.

Conclusion

Awareness of LC risk factors was relatively good with half of the participants displaying good awareness. Smoking-related risk factors were the most recognized risk factors. Older age, higher education, higher monthly income, knowing someone with cancer and visiting healthcare facilities were factors associated with good awareness. Formulation and effective implementation of tobacco control policies are essential to change smoking behavior and increase awareness. This should be complemented by educational initiatives to improve public understanding of LC and the perception of smoking danger. Such interventions are especially useful in low-resource settings, such as Palestine, where access to diagnosis and treatment is limited.

Other information

Data statement: Data are available upon reasonable request.

Ethical considerations: Prior to data collection, ethical approval had been obtained from the Human Resources Development Department at the Palestinian Ministry of Health and the Helsinki Committee in the Gaza Strip on the $24^{\text {th }}$ of June, 2017. In addition, another approval was obtained from the Research Ethics Committee at the Islamic University of Gaza on the $26^{\text {th }}$ of June, 2017. The participants had a thorough explanation about the study purposes with the focus that their participation was completely voluntary. Written informed consent was taken from study participants before starting the questionnaire and data were collected anonymously.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Acknowledgments: The authors would like to thank all participants who took part in the survey.

Author Contributions: ME and AM contributed to design of the study, data analysis, data interpretation, and drafting of the manuscript. MA1, IA, HA, HS, SQ, FU, MA2, WA1, RN, RK, NS, YH, OG, WA2, OO, MD, JA, RE, AZ, HH and MA3 contributed to design of the study, data collection, data entry, and data interpretation. NAE and BB contributed to design of the study, data interpretation, drafting of the manuscript, and supervision of the work. All authors have read and approved the final manuscript. Each author has participated sufficiently in the work to take public responsibility for the content.

References

1. World Health Organization Factsheet. Cancer incidence and mortality statistics. https://bit.ly/3r2L3jc. (accessed 15 Sep 2022).
2. Jazieh AR, Algwaiz G, Errihani H, et al. Lung Cancer in the Middle East and North Africa Region. J Thorac Oncol 2019;14(11):1884-91.
3. The Global Cancer Observatory Factsheet. Incidence, Mortality and Prevalence of cancer. https://bit.ly/3t9DvxG. (accessed 15 Sep 2022).
4. Centre of Disease Control and Prevention. Lung Cancer; What Are The Risk Factors. https://bit.ly/31O5eQ3. (accessed 15 Sep 2022).
5. Abu Seir R, Kharroubi A, Ghannam I. Prevalence of tobacco use among young adults in Palestine. East Mediterr Health J 2020;26(1):75-84.
6. Corrales L, Rosell R, Cardona AF, et al. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit Rev Oncol Hematol 2020;148:102895.
7. Bailey-Wilson JE, Sellers TA, Elston RC, et al. Evidence for a major gene effect in earlyonset lung cancer. J La State Med Soc 1993;145(4):157-62.
8. Vineis P, Forastiere F, Hoek G, et al. Outdoor air pollution and lung cancer: recent epidemiologic evidence. Int J Cancer 2004;111(5):647-52.
9. Al-Azri M, Al-Saadi WI, Al-Harrasi A, et al. Knowledge of Cancer Risk Factors, Symptoms, and Barriers to Seeking Medical Help among Omani Adolescents. Asian Pac J Cancer Prev 2019;20(12):3655-66.
10. Loh JF, Tan SL. Lung cancer knowledge and screening in the context of the Malaysian population. 2018;48(1):56-64.
11. Bantie GM, Aynie AA, Gelaw YM, et al. Awareness regarding risk factors and determinants of cancers among Bahir Dar city residents, Northwest Ethiopia. PLoS One 2021;16(4):e0248520.
12. Cassim S, Chepulis L, Keenan R, et al. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: a systematic review. BMC Cancer 2019;19(1):25.
13. Simon AE, Juszczyk D, Smyth N, et al. Knowledge of lung cancer symptoms and risk factors in the U.K.: development of a measure and results from a population-based survey. Thorax 2012;67(5):426-32.
14. Moffat J, Bentley A, Ironmonger L, et al. The impact of national cancer awareness campaigns for bowel and lung cancer symptoms on sociodemographic inequalities in immediate key symptom awareness and GP attendances. Br J Cancer 2015;112 Suppl 1(Suppl 1):S14-21.
15. Ironmonger L, Ohuma E, Ormiston-Smith N, et al. An evaluation of the impact of large-scale interventions to raise public awareness of a lung cancer symptom. British journal of cancer 2015;112(1):207-16.
16. Power E, Wardle J. Change in public awareness of symptoms and perceived barriers to seeing a doctor following Be Clear on Cancer campaigns in England. British journal of cancer 2015;112 Suppl 1(Suppl 1):S22-S26.
17. Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. 2005;60(4):268-69.
18. Elshami M, Al-Slaibi I, Abukmail H, et al. Knowledge of Palestinian women about cervical cancer warning signs: a national cross- sectional study. BMC Public Health 2021;21(1):1779.
19. Elshami M, Thalji M, Abukmail H, et al. Knowledge of cervical cancer risk factors among Palestinian women: a national cross-sectional study. BMC Womens Health 2021;21(1):385.
20. Elshami M, Yaseen A, Alser M, et al. Knowledge of ovarian cancer symptoms among women in Palestine: a national cross-sectional study. BMC Public Health 2021;21(1):1992.
21. Harvard Humanitarian Initiative. KoBoToolbox. https://www.kobotoolbox.org. (accessed 15 Sep 2022).
22. National Cancer Institute SEER Program. Cancer Stat Facts: Lung and Bronchus Cancer. https://seer.cancer.gov/statfacts/html/lungb.html. (accessed 15 Sep 2022).
23. Awad O. The labor reality in Palestine for 2019 on the occasion of International Workers' Day.https://bit.ly/3n84Uw6. (accessed 15 Sep 2022).
24. Saab MM, Noonan B, Kilty C, et al. Awareness and help-seeking for early signs and symptoms of lung cancer: A qualitative study with high-risk individuals. Eur J Oncol Nurs 2021;50:101880.
25. Desalu OO, Fawibe AE, Sanya EO, et al. Lung cancer awareness and anticipated delay before seeking medical help in the middle-belt population of Nigeria. Int J Tuberc Lung Dis 2016;20(4):560-6.
26. Crane M, Scott N, O'Hara BJ, et al. Knowledge of the signs and symptoms and risk factors of lung cancer in Australia: mixed methods study. BMC Public Health 2016;16:508.
27. Elshami M, Elshami A, Alshorbassi N, et al. Knowledge level of cancer symptoms and risk factors in the Gaza Strip: a cross-sectional study. BMC Public Health 2020;20(1):414.
28. Elshami M, Bottcher B, Alkhatib M, et al. Perceived barriers to seeking cancer care in the Gaza Strip: a cross-sectional study. BMC Health Services Research 2021;21(1):28.
29. Hanson H, Raag, M. , Adrat, M. and Laisaar, T. (2017) Awareness of Lung Cancer Symptoms and Risk Factors in General Population. Open Journal of Respiratory Diseases, 7, 1-11. doi: 10.4236/ojrd.2017.71001.
30. Shil R, Hn D, Ramu. Effectiveness of an educational intervention in increasing knowledge regarding lung cancer among engineering students. International Journal of Nursing and Health Research 2020;2:1-3.
31. Ministry of Health (Palestine). Health Annual Report 2021, Palestine. https://bit.ly/3BIMWIo. (accessed 15 Sep 2022).
32. Tucktuck M, Ghandour R, Abu-Rmeileh NME. Waterpipe and cigarette tobacco smoking among Palestinian university students: a cross-sectional study. BMC Public Health 2017;18(1):1.
33. Musmar SG. Smoking habits and attitudes among university students in Palestine: a crosssectional study. East Mediterr Health J 2012;18(5):454-60.
34. Policy Fact Sheets. Tobacco control laws 2020. https://www.tobaccocontrollaws.org/legislation/country/palestine/summary. (accessed 15 Sep 2022).
35. Gredner T, Mons U, Niedermaier T, et al. Impact of tobacco control policies implementation on future lung cancer incidence in Europe: An international, population-based modeling study. The Lancet Regional Health - Europe 2021;4:100074.
36. Gredner T, Niedermaier T, Brenner H, et al. Impact of Tobacco Control Policies on Smoking-Related Cancer Incidence in Germany 2020 to 2050-A Simulation Study. Cancer Epidemiology Biomarkers \& Prevention 2020;29:cebp.1301.2019.
37. Ahmad M. Jordanians knowledge and beliefs about cancer. Global Journal on Advances in Pure \& Applied Sciences 2014;4:24-26.
38. Chapple A, Ziebland S, McPherson A. Stigma, shame, and blame experienced by patients with lung cancer: qualitative study. Bmj 2004;328(7454):1470.
39. Chawla R, Sathian B, Mehra A, et al. Awareness and assessment of risk factors for lung cancer in residents of Pokhara Valley, Nepal. Asian Pac J Cancer Prev 2010;11(6):178993.
40. Palestinian Central Bureau of Statistics. The Illitracy in Palestine. https://pcbs.gov.ps/site/512/default.aspx?lang=en\&ItemID=4062. (accessed 15 Sep 2022).
41. Shihab RA, Obeidat NA, Bader RK, et al. Cancer-related knowledge, attitudes, and risk perception among 6 grade students in Jordan. Stud Health Technol Inform 2012;172:15560.
42. Zhou H, Zhang Y, Liu J, et al. Education and lung cancer: a Mendelian randomization study. International journal of epidemiology 2019;48(3):743-50.
43. Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M, et al. The incidence and mortality of lung cancer and their relationship to development in Asia. 2015 2015;4(6):763-74.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad A. Mansour, MD ${ }^{3,4 *}$, Mohammed Alser, MD 5,6, Ibrahim Al-Slaibi, MD ${ }^{7}$, Hanan Abukmail, MD ${ }^{8,9}$, Hanan Shurrab ${ }^{10}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc ${ }^{11}$, Malik Alruzayqat ${ }^{3}$, Wafa Aqel ${ }^{3}$, Roba Nairoukh ${ }^{12}$, Rahaf Kittaneh ${ }^{14}$, Nawras Sawafta ${ }^{3}$, Yousef M. N. Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{16}$, Ola Omar ${ }^{17}$, Motaz Daraghmeh ${ }^{17}$, Jumana Aljbour ${ }^{5}$, Razan E. M. Elian ${ }^{5}$, Areen Zuhour ${ }^{17}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{5}$, Nasser Abu-El-Noor, PhD ${ }^{18 \#}$, Bettina Bottcher, MD, PhD ${ }^{5 \#}$
*Contributed equally as a first co-author.
\#Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Palestine Medical Complex, Ramallah, Palestine.
${ }^{5}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{6}$ The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA)
${ }^{7}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{8}$ International Medical Corps, Gaza.
${ }^{9}$ Harvard Medical School, Boston, MA, USA.
${ }^{10}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{11}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{12}$ Faculty of Dentistry, Al-Quds University, Jerusalem, Palestine
${ }^{13}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{14}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{15}$ Hebron Governmental hospital, Hebron, Palestine
${ }^{16}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{17}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{18}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.

Corresponding author

Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami@gmail.com

Supplemental table 1: Bivariable logistic regression analyzing factors associated with the recognition of smoking-related risk factors.

Characteristic	Smoking cigarettes	Smoking shisha	Exposure to another person's cigarette smoke
	COR (95\% CI)	COR (95\% CI)	COR (95\% CI)
Age group			
18 to 44	Ref	Ref	Ref
45 or older	0.76 (0.59-0.98)	1.09(0.86-1.38)	1.09 (0.92-1.29)
Gender			
Male	Ref	Ref	Ref
Female	1.27 (1.01-1.61)	0.77 (0.63-0.95)	1.25 (1.08-1.45)
Educational level			
Secondary or below	Ref	Ref	Ref
Post-secondary	1.76 (1.38-2.24)	1.71 (1.39-2.10)	1.18 (1.02-1.36)
Occupation			
Unemployed/housewife	Ref	Ref	Ref
Employed	0.98(0.76-1.25)	1.31 (1.06-1.62)	0.91 (0.78-1.07)
Retired	1.41 (0.57-3.52)	2.01 (0.87-4.62)	1.11 (0.66-1.87)
Student	1.09 (0.72-1.67)	1.32 (0.92-1.89)	0.74 (0.58-0.94)
Monthly income			
< 1450 NIS	Ref	Ref	Ref
≥ 1450 NIS	1.02 (0.80-1.32)	1.26 (1.03-1.55)	0.98 (0.84-1.15)
Marital status			
Single	Ref	Ref	Ref
Married	1.11 (0.86-1.43)	0.98 (0.79-1.22)	1.23 (1.05-1.44)
Divorced/Widowed	0.53 (0.31-0.89)	0.58 (0.36-0.94)	1.06 (0.71-1.58)
Residency			
Gaza Strip	Ref	Ref	Ref
WBJ	1.04 (0.82-1.31)	1.20 (0.99-1.47)	1.11 (0.96-1.29)
Having a chronic disease			
No	Ref	Ref	Ref
Yes	0.77 (0.59-1.01)	0.90 (0.71-1.14)	1.09 (0.91-1.31)
Knowing someone with cancer			
No	Ref	Ref	Ref
Yes	1.04 (0.82-1.32)	1.04 (0.85-1.27)	1.12 (0.97-1.30)
Ever smoked cigarettes and/or shisha	Ref	Ref	Ref
No	0.58 (0.46-0.74)	0.82 (0.66-1.01)	0.71 (0.61-0.83)
Yes			
Site of data collection			
Public Spaces	Ref	Ref	Ref
Hospitals	1.40 (1.07-1.84)	1.27 (1.00-1.61)	1.11 (0.94-1.31)
Primary healthcare centers	1.48 (1.09-2.01)	0.93 (0.73-1.18)	1.36 (1.12-1.64)

[^2]| Characteristic | Exposure to chemicals | Exposure to radiation | Air pollution | O |
| :---: | :---: | :---: | :---: | :---: |
| | COR (95\% CI) | COR (95\% CI) | COR (95\% CI) | $\stackrel{\square}{9}$ |
| 5 Age group | | | | 者 |
| 618 to 44 | Ref | Ref | Ref | 앋 |
| 745 or older | 1.23 (1.04-1.46) | 1.43 (1.21-1.71) | 1.27 (1.07-1.51) | $\stackrel{\bar{O}}{\overline{\bar{m}}}$ |
| ${ }_{9}^{8}$ Gender | | | | $\stackrel{\text { ® }}{ }$ |
| ${ }_{10}$ Male | Ref | Ref | Ref | \% |
| ${ }_{11}$ Female | 1.07 (0.93-1.23) | 0.90 (0.78-1.04) | 0.97 (0.84-1.12) | $\stackrel{\rightharpoonup}{\circ}$ |
| 12Educational level | | | | $\stackrel{\rightharpoonup}{\omega}$ |
| 13 Secondary or below | Ref | Ref | Ref | $\stackrel{\circ}{0}$ |
| ${ }^{14}$ Post-secondary | 1.11 (0.96-1.27) | 1.46 (0.26-1.68) | 1.05 (0.91-1.21) | $\frac{3}{6}$ |
| ${ }_{16}^{15}$ Occupation | | | | $\stackrel{\square}{\square}$ |
| ${ }_{17}$ Unemployed/housewife | Ref | Ref | Ref | N |
| ${ }_{18}$ Employed | 0.84 (0.72-0.98) | 1.27 (1.10-1.48) | 1.05 (0.90-1.23) | N |
| 19 Retired | 1.10 (0.66-1.82) | 3.82 (1.85-7.92) | 1.34 (0.79-2.27) | 8 |
| 20Student | 0.77 (0.61-0.98) | 1.18 (0.93-1.51) | 0.81 (0.64-1.03) | $\stackrel{\rightharpoonup}{\square}$ |
| ${ }^{21}$ Monthly income | | | | \bigcirc |
| ${ }_{23}^{22}<1450$ NIS | Ref | Ref | Ref | $\stackrel{\rightharpoonup}{\nu}$ |
| $22_{23} \geq 1450$ NIS | 1.19 (1.02-1.38) | 1.33 (1.14-1.54) | 1.45 (1.25-1.68) | $\stackrel{\square}{0}$ |
| ${ }_{25}$ Marital status | | | | $\stackrel{\square}{3}$ |
| 26Single | Ref | Ref | Ref | N |
| 27Married | 1.16 (0.99-1.35) | 1.24 (1.07-1.44) | 1.10 (0.94-1.28) | N |
| 28Divorced/Widowed | 0.96 (0.65-1.41) | 1.06 (0.72-1.56) | 0.95 (0.64-1.41) | \% |
| ${ }_{30}^{29}$ Residency \quad (${ }^{\text {a }}$ | | | | S |
| ${ }_{31}^{30}$ Gaza Strip | Ref | Ref | Ref | \% |
| ${ }_{32} \mathrm{WBJ}$ | 1.18 (1.02-1.36) | 1.05 (0.91-1.21) | 1.59 (1.37-1.83) | \% |
| 33 Having a chronic | | | | 호 |
| 34disease | Ref | Ref | Ref | 3 |
| $3^{35} \mathrm{No}$ | 1.21 (1.01-1.45) | 1.20 (1.00-1.43) | 1.30 (1.08-1.56) | 践 |
| ${ }^{36} \mathrm{Y}$ Yes | | | | \% |
| ${ }_{38}^{37}$ Knowing someone with | | | | 응 |
| ${ }_{39}$ cancer | Ref | Ref | Ref | $\stackrel{1}{5}$ |
| ${ }_{40} \mathrm{No}$ | 1.59 (1.38-1.83) | 1.54 (1.34-1.78) | 1.49 (1.29-1.72) | 3 |
| 41 Yes | | | | O |
| 42 Ever smoked cigarettes | | | | \bigcirc |
| 43 and/or shisha | Ref | Ref | Ref | D |
| ${ }_{45}^{44} \mathrm{No}$ | 0.98 (0.84-1.14) | 1.01 (0.87-1.18) | 1.17 (1.00-1.37) | 을 |
| ${ }_{46} \mathrm{Yes}$ | | | | $\stackrel{\rightharpoonup}{\bullet}$ |
| ${ }_{47}$ Site of data collection | | | | N |
| 48 Public Spaces | Ref | Ref | Ref | $\stackrel{+}{\square}$ |
| 49Hospitals | 1.67 (1.42-1.97) | 1.01 (0.85-1.19) | 1.37 (1.16-1.61) | ¢ |
| ${ }^{50}$ Primary healthcare | 2.04 (1.69-2.47) | 0.97 (0.81-1.16) | 1.49 (1.24-1.79) | $\stackrel{\text { ® }}{\stackrel{\circ}{+}}$ |
| ${ }_{5}^{51}$ centers | | | | $\stackrel{+}{0}$ |
| 53 COR= adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem. | | | | $\stackrel{\text { ¢ }}{ }$ |
| 54 | | | | $\stackrel{\text { ® }}{ }$ |
| 55 | | | | $\stackrel{\square}{\square}$ |
| 56 | | | | 8 |
| 57 | | | | O |
| | | | | 훌 |

Sुupplemental table 3: Bivariable logistic regression analyzing factors associated with the recognition of other risk factors.
4 Characteristic Having a previous history of Having a previous history of Having had treatment for any Having a close relatives

${ }^{5}$ Age group
 ${ }_{7}$ Age group

845 or older

${ }^{9}$ Gender

1Phale
1सemale
1सducational level
1Kdecondary or below
Secondary or below
1 Above secondary
16 ©ccupation
1Ønemployed/housewife
1Employed
18etired
19tudent $0.86(0.70$
0.86 (0.70-1.05)

Ref
$1.16(1.00-1.33)$
33) \square
Ref

2Monthly income

241450 NIS	Ref	Ref	Ref	Ref
221450 NIS	$0.91(0.80-1.03)$	$1.02(0.90-1.15)$	$0.96(0.85-1.08)$	$1.15(1.01-1.30)$

$\frac{221450 \text { NIS }}{\text { 2Marital status }}$
28ingle
2BFarried $1.15(1.01-1.31)$
2 Bivorced/Widowed

2Residency

2Gaza Strip

2УBJ 0.93 (0.82-1.05)
3 3-aving a chronic disease
$3{ }^{3}$

$\begin{aligned} & 3 \mathrm{No} \\ & 3 \mathrm{Kes} \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.09(0.94-1.26) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.17(1.02-1.35) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.91(0.79-1.04) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.10(0.95-1.26) \end{gathered}$
$33^{\text {Knowing someone with }}$				
$3{ }^{\text {cancer }}$				
${ }^{\text {No }}$	Ref	Ref	Ref	Ref
${ }^{\text {Fes }}$	1.08 (0.96-1.22)	1.38 (1.23-1.55)	1.21 (1.08-1.35)	1.10 (0.98-1.23)
Ever smoked cigarettes				
and/or shisha				
${ }^{2} \mathrm{O}$	Ref	Ref	Ref	Ref
${ }^{1}$	0.92 (0.81-1.05)	0.90 (0.79-1.02)	0.93 (0.82-1.05)	0.87 (0.76-0.98)
Site of data collection				
${ }^{\text {Public Spaces }}$	Ref	Ref	Ref	Ref
Hospitals	1.28 (1.12-1.48)	1.37 (1.20-1.56)	1.12 (0.98-1.27)	1.03 (0.91-1.18)
${ }^{43}$ rimary healthcare centers	1.46 (1.25-1.70)	1.73 (1.49-2.01)	1.61 (1.39-1.86)	1.13 (0.98-1.31)

44
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-ctional studies

Section/Topic	Item \#	Recommendation $\quad \stackrel{\bigcirc}{\text { a }}$	Reported on page \#
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2-3
Introduction			4
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper $\overrightarrow{0}$	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, fol W -up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gi受e diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	N/A
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grows were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results		O.	

[^3]| Participants | 13* | (a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examin for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 8 |
| :---: | :---: | :---: | :---: |
| | | (b) Give reasons for non-participation at each stage O | 8 |
| | | (c) Consider use of a flow diagram | N/A |
| Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on eme empres and potential confounders $\stackrel{\stackrel{e x}{2}}{\stackrel{\text { Nan }}{2}}$ | 8-9 |
| | | (b) Indicate number of participants with missing data for each variable of interest N | N/A |
| Outcome data | 15* | Report numbers of outcome events or summary measures | 11 |
| Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precisio (eg, 95\% confidence interval). Make clear which confounders were adjusted for and why they were included | 12-17 |
| | | (b) Report category boundaries when continuous variables were categorized | N/A |
| | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful tim $\stackrel{\rightharpoonup}{\text { e }}$ period | N/A |
| Other analyses | 17 | Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses | N/A |
| Discussion | | | |
| Key results | 18 | Summarise key results with reference to study objectives | 18 |
| Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuess both direction and magnitude of any potential bias | 21 |
| Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of © similar studies, and other relevant evidence | 18-21 |
| Generalisability | 21 | Discuss the generalisability (external validity) of the study results | 21 |
| Other information | | 흘 | |
| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | 22 |

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in ce্厄్రnort and cross-sectional studies.
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan@les of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.steobe-statement.org.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061110.R2
Article Type:	Original research
Date Submitted by the Author:	04-Dec-2022
Complete List of Authors:	Elshami, Mohamedraed; Ministry of Health; University Hospitals Cleveland Medical Center Mansour, Ahmad; Al-Quds University, Faculty of Medicine; Palestine Medical Complex Alser, Mohammed ; Islamic University of Gaza; United Nations Relief and Works Agency for Palestine Refugees in the Near East Al-Slaibi, Ibrahim; Almakassed Hospital Abukmail, Hanan; International Medical Corps; Harvard Medical School, Faculty of Medicine Shurrab, Hanan; Al-Azhar University of Gaza Qassem, Shahd; Al-Quds University, Faculty of Medicine Usrof, Faten ; Islamic University of Gaza, Department of a Medical Laboratory Sciences, Faculty of Health Sciences Alruzayqat, Malik ; Al Quds University, Faculty of Medicine Aqel, Wafa; Al-Quds University, Faculty of Medicine Nairoukh, Roba; Al-Quds University, Faculty of Dentistry Kittaneh, Rahaf; Al-Najah National University, Faculty of Nursing Sawafta, Nawras; Al-Quds University, Faculty of Medicine Habes, Yousef M. N.; Al Quds University Ghanim, Obaida; Al-Quds University, Faculty of Medicine Aabed, Wesam Almajd; AI Azhar University of Gaza, Faculty of dentistry Omar, Ola; AI-Najah National University, Faculty of Medicine Daraghmeh, Motaz; Al-Najah National University, Faculty of Medicine Aljbour, Jomana; Islamic University of Gaza, Faculty of Medicine Elian, Razan E. M. ; Islamic University of Gaza Zhor, Areen; Al-Najah National University, Faculty of Medicine Habes, Haneen; Al-Quds University, Faculty of Medicine Al-Dadah, Mohammed; Islamic University of Gaza, Faculty of Medicine Abu-El-Noor, Nasser; Islamic University of Gaza, Faculty of Nursing Bottcher, Bettina.; Islamic University of Gaza Faculty of Medicine, Faculty of Medicine
Primary Subject Heading:	Oncology
Secondary Subject Heading:	Health policy, Occupational and environmental medicine, Public health, Smoking and tobacco, Epidemiology
Keywords:	EPIDEMIOLOGY, Health policy < HEALTH SERVICES ADMINISTRATION \& MANAGEMENT, ONCOLOGY, Adult oncology < ONCOLOGY, Epidemiology < ONCOLOGY, PUBLIC HEALTH

D)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence - details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad A. Mansour, MD ${ }^{3,4 *}$, Mohammed Alser, MD 5,6, Ibrahim Al-Slaibi, MD ${ }^{7}$, Hanan Abukmail, MD ${ }^{8,9}$, Hanan Shurrab ${ }^{10}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc ${ }^{11}$, Malik Alruzayqat ${ }^{3}$, Wafa Aqe ${ }^{3}$, Roba Nairoukh ${ }^{12}$, Rahaf Kittaneh ${ }^{14}$, Nawras Sawafta ${ }^{3}$, Yousef M. N. Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{16}$, Ola Omar ${ }^{17}$, Motaz Daraghmeh ${ }^{17}$, Jumana Aljbour ${ }^{5}$, Razan E. M. Elian ${ }^{5}$, Areen Zhor ${ }^{17}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{5}$, Nasser Abu-El-Noor, PhD ${ }^{18 \#}$, Bettina Bottcher, MD, PhD ${ }^{5 \#}$
*Contributed equally as a first co-author.
"Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Palestine Medical Complex, Ramallah, Palestine.
${ }^{5}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{6}$ The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA)
${ }^{7}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{8}$ International Medical Corps, Gaza.
${ }^{9}$ Harvard Medical School, Boston, MA, USA.
${ }^{10}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{11}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{12}$ Faculty of Dentistry, Al-Quds University, Jerusalem, Palestine
${ }^{13}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{14}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{15} \mathrm{Hebron}$ Governmental hospital, Hebron, Palestine
${ }^{16}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{17}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{18}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.

Corresponding author

Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami@gmail.com

Word count: 3465

Abstract

Objectives: To evaluate lung cancer (LC) risk factor awareness among Palestinians and identify factors associated with good awareness.

Design: Cross-sectional study.

Settings: Participants were recruited using convenience sampling from hospitals, primary healthcare centers, and public spaces located at 11 governorates in Palestine.

Participants: Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%$). A total of 4762 questionnaires were included: 2742 from the West Bank and Jerusalem (WBJ) and 2020 from the Gaza Strip. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Tool: A modified version of the validated LC Awareness Measure was used for data collection.

Primary and secondary outcomes: The primary outcome was LC risk factor awareness level as determined by the number of factors recognized: poor(0-3), fair(4-7), and good(8-10). Secondary outcomes include the recognition of each LC risk factor.

Results: Smoking-related risk factors were more often recognized than other LC risk factors. The most recognized risk factors were 'smoking cigarettes'($\mathrm{n}=4466,93.8 \%$) and 'smoking shisha [waterpipes]'($n=4337,91.1 \%$). The least recognized risk factors were 'having a close

relative with $\mathrm{LC}^{\prime}(\mathrm{n}=2084,43.8 \%)$ and 'having had treatment for any cancer in the past'($\mathrm{n}=2368$, 49.7\%).

A total of 2381 participants (50.0\%) displayed good awareness of LC risk factors. Participants from the WBJ and the Gaza Strip had similar likelihood to display good awareness (50.6% vs. 49.1\%). Being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and primary healthcare centers seemed to have a positive impact on displaying good awareness.

Conclusion: Half of study participants displayed good awareness of LC risk factors. Educational interventions are warranted to further improve public awareness of LC risk factors, especially those unrelated to smoking.

Keywords: lung cancer, risk factors, behavioral changes, prevention, early detection, early diagnosis, health education, awareness, Palestine.

Strengths and limitations of this study

- The large sample size was a major strength of this study.
- The wide coverage of the major geographical areas of Palestine and collecting data from different places within each area allowed for direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population.
- The use of convenience sampling does not guarantee the generalizability of the findings.
- Visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness.
- Grouping unemployed women and housewives in the same category might be inappropriate, as this may include women with a whole range of socioeconomic and educational background from highly-educated women who chose to focus on family care to those with minimal skills who cannot find work and look after their family as the default option.

Introduction

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide with 18.0% of cancerrelated deaths and over 2.2 million newly diagnosed cases in 2020.[1] In the Middle East and North Africa, the estimated number of newly diagnosed LC cases was 79,887 in 2018 with a 5 -year relative survival rate of 8.0%.[2] In Palestine, LC is the second most common cancer, accounting for 11.4% of all cancers with an incidence rate of 11.5 per 100,000 general population, and the leading cause of cancer-related mortality accounting for 17.3%.[3]

The most significant risk factor for LC is smoking tobacco products including cigarettes and shisha (waterpipes).[4] Tobacco smoking was reported to be prevalent among 47.7\% of Palestinians in the West Bank. Men were found to smoke more than women and to begin smoking at an earlier age, where 74.4% of smokers started when they were 18 years old or younger. Cigarettes and shisha were found to be the most popular methods of smoking among Palestinian men and women.[5]

Besides smoking, there are LC risk factors for LC, such as exposure to radiation, occupational hazards like asbestos, air pollution and family history of LC.[6-8] However, previous studies showed that awareness of smoking-related risk factors of LC was higher than that of other LC risk factors.[9-11]

One of the most important contributors to the low survival rates of LC is delayed presentation. This could be due to factors related to patients, healthcare providers, the healthcare system, or the disease itself.[12] Awareness of LC risk factors is one of the patient-related factors.

Recognition of LC risk factors can help stimulating the development of an active personal risk assessment, which in turn increases the ability to detect and react to related symptoms.[13] Previous studies demonstrated that raising the public awareness of LC increased the number of individuals diagnosed at early stages.[14-16] An early diagnosis of LC contributes to better prognosis.[17] Given the limited resources in Palestine, such educational interventions could be an efficient strategy to mitigate the mortality associated with LC.

Therefore, the primary aim of this national study was to evaluate the overall LC risk factor awareness among Palestinians. Secondary aims were to examine if there is a difference in the LC risk factor awareness between the two main areas of Palestine [the West Bank and Jerusalem (WBJ) and the Gaza Strip] and to identify the sociodemographic factors associated with good awareness.

Methods

Study design and population

This was a national cross-sectional study conducted from July 2019 to March 2020. Palestinian adults (≥ 18 years) were the target population. Participants were recruited from governmental hospitals, primary healthcare centers (PHCs) and public spaces, such as malls, markets, restaurants, mosques, churches, parks, downtowns, transportation stations and others. Exclusion criteria were working or studying in a health-related field, having a nationality other than Palestinian, and visiting oncology departments or clinics at the time of data collection.

Sampling methods

Eligible participants were recruited to the study using a convenience sampling technique from governmental hospitals, PHCs, and public spaces located in 11 governorates (out of 16) across Palestine between July 2019 and March 2020. This was intended to create a diverse study cohort resembling the Palestinian community.[18-20] In 2019, the estimated Palestinian population (≥ 15 years) was $3,109,063$. With a confidence level of 95.0%, a type I error rate of 5.0%, and an absolute error of 1.0%, the minimum required sample size to detect a good overall LC risk factor awareness of 50% was 2401 participants.

Questionnaire and data collection

A modified version of the LC Awareness Measure (LCAM) was used for data collection. The LCAM is a validated tool that was designed to evaluate the public awareness of LC.[13] The original LCAM was first translated into Arabic by two bilingual healthcare professionals and
then back-translated into English by another two different bilingual healthcare professionals. The Arabic version of the LCAM was then assessed for content validity and accuracy of translation by three experts in the field of thoracic oncology, public health, and survey design. This was followed by a pilot study $(\mathrm{n}=68)$ to assess the clarity of questions in the Arabic version of the LCAM. The questionnaires of the pilot study were not included in the final analysis. The Cronbach's Alpha was used to assess the internal consistency of the Arabic LCAM and it reached an acceptable value of 0.784 .

The Arabic LCAM included two sections. The first section described the sociodemographic factors of study participants. The second section evaluated the awareness of 10 LC risk factors using a 5-point Likert scale ($1=$ strongly disagree, $5=$ strongly agree). Of the 10 risk factors, nine were mentioned in the original LCAM.[13] 'Smoking shisha' was added to the questionnaire as it was deemed important to assess the awareness of this risk factor in the Palestinian community due to its high prevalence.[5]

The electronic tool 'Kobo Toolbox' was utilized in the data collection.[21] This safe tool can be used both offline and online on mobile devices. Data collectors completed the questionnaire in a face-to-face interview with the participant using Kobo Toolbox. The data collectors had medical background and received special training on the use of Kobo Toolbox, recruitment of potential study participants, gaining informed consent, and facilitation of completion of the questionnaires.

Statistical analysis

The percentage of new LC cases increases substantially starting from the age of 45.[22] Therefore, participants' age was categorized into two categories using this cutoff: $18-44$ years and ≥ 45 years.

The monthly income was also categorized into two categories (<1450 NIS and ≥ 1450 NIS) since 1450 NIS (about \$450) is the minimum wage in Palestine.[23]

The median and interquartile range (IQR) were used to describe continuous, non-normally distributed variables and the Kruskal-Wallis test was used for baseline comparisons. Frequencies and percentages were used to describe categorical variables and Pearson's Chi-square test was used for baseline comparisons.

The recognition of each LC risk factor was assessed using a question based on a 5-point Likert scale with 'strongly agree' or 'agree' as a correct answer, and 'strongly disagree', 'disagree', or 'not sure' as an incorrect answer. For each correctly recognized LC risk factor, one point was given. LC risk factors were further categorized into two categories: (i) smoking-related and (ii) other risk factors. Recognition of LC risk factors was described using frequencies and percentages with comparisons performed by Pearson's Chi-Square test. This was followed by running univariable and multivariable logistic regression analyses to examine the association between recognizing each LC risk factor and participant characteristics. The multivariable analysis adjusted for age group, gender, educational level, monthly income, occupation, place of residency, marital status, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection. This model was determined a priori based on previous studies.[13, 24-27] The results of the univariable analyses are presented in supplementary tables 1 to 3 , please see additional file 1.

A scoring system was used to evaluate the participants' awareness level of LC risk factors. Similar scoring systems were also used in previous studies.[18, 27-28] For each correctly recognized LC risk factor, one point was given. The total score (ranging from 0 to 10) was calculated and
categorized based on the number of recognized LC risk factors into three categories: poor (0 to 3), fair (4 to 7), and good awareness (8 to 10). The awareness level of LC risk factors exhibited by participants from the Gaza Strip was compared with the awareness level exhibited by participants from the WBJ using Pearson's Chi-Square test. Univariable and multivariable logistic regression analyses were utilized to test the association between participant characteristics and having a good awareness level.

For all multivariable analyses, the likelihood ratio test was utilized to calculate the overall p-value for each independent variable. Missing data were hypothesized to be missed completely at random and thus, complete case analysis was utilized to handle them. Data were analyzed using Stata software version 16.0 (StataCorp, College Station, Texas, United States).

Patients and public involvement

There was no patient or public involvement in the design, conduct, reporting, or dissemination plans of this study. However, results will be disseminated among the professional communities of Palestine and to policymakers, with the intent to inform future health policy decisions.

Results

Participant characteristics

Of 5174 approached, 4817 participants completed the questionnaire (response rate $=93.1 \%$). In total, 4762 questionnaires were included in the analysis (24 were ineligible and 31 had missing data): 2742 from the WBJ and 2020 from the Gaza Strip. The median age [IQR] for all participants was 32.0 years [24.0, 44.0] (table 1). Participants living in the WBJ were more likely

1 to be older, have higher monthly income but lower level of education, and suffer more often
2 from chronic diseases than participants living in the Gaza Strip.

Table 1: Characteristics of study participants.

Characteristic	$\begin{gathered} \text { Total } \\ (\mathrm{n}=4762) \end{gathered}$	Gaza Strip $(\mathrm{n}=2020)$	$\begin{gathered} \text { WBJ } \\ (\mathrm{n}=\mathbf{2 7 4 2}) \end{gathered}$	p-value
Age, median [IQR]	32.0 [24.0, 44.0]	30.0 [24.0, 40.0]	34.0 [24.0, 47.0]	<0.001
Age group, n (\%)				<0.001
18 to 44	3572 (75.0)	1634 (80.9)	1938 (70.7)	
45 or older	1190 (25.0)	386 (19.1)	804 (29.3)	
Female gender, n (\%)	2618 (55.0)	1086 (53.8)	1532 (55.9)	0.15
Educational level, n (\%)				
Secondary or below	2375 (49.9)	955 (47.3)	1420 (51.8)	0.002
Post-secondary	2387 (50.1)	1065 (52.7)	1322 (48.2)	
Occupation, n (\%)				
Unemployed/housewife	2003 (42.1)	970 (48.0)	1033 (37.7)	<0.001
Employed	2160 (45.4)	814 (40.3)	1346 (49.1)	
Retired	111 (2.3)	46 (2.3)	65 (2.4)	
Student	488 (10.2)	190 (9.4)	298 (10.8)	
Monthly income $\geq \mathbf{1 4 5 0}$ NIS, n (\%)	3241 (68.1)	683 (33.8)	2558 (93.3)	<0.001
Marital status, n (\%)				
Single	1480 (31.1)	641 (31.7)	839 (30.6)	0.07
Married	3117 (65.5)	1323 (65.5)	1794 (65.4)	
Divorced/Widowed	165 (3.5)	56 (2.8)	109 (4.0)	
Having a chronic disease, n (\%)	1032 (21.7)	313 (15.5)	719 (26.2)	<0.001
Knowing someone with cancer, n (\%)	2571 (54.0)	1045 (51.7)	1526 (55.7)	0.007
Ever smoked, n (\%)				
Cigarettes	1127 (23.7)	417 (20.6)	710 (25.9)	<0.001
Shisha (waterpipes)	499 (10.5)	142 (7.0)	357 (13.0)	<0.001
Site of data collection, $n(\%)$				
Public Spaces	1920 (40.3)	784 (38.8)	1136 (41.4)	<0.001
Hospitals	1628 (34.2)	651 (32.2)	977 (35.7)	
Primary healthcare centers	1214 (25.5)	585 (29.0)	629 (22.9)	

$\mathrm{n}=$ number of participants, $\mathrm{IQR}=$ interquartile range, $\mathrm{WBJ}=\mathrm{West}$ Bank and Jerusalem.

32 Smoking-related risk factors

1 Recognition of LC risk factors

Table 2: Recognition of lung cancer risk factors.

2 Smoking-related risk factors were more often recognized than other LC risk factors. The most
3 frequently identified risk factors were 'smoking cigarettes' ($n=4466,93.8 \%$) and 'smoking
4 shisha' ($n=4337,91.1 \%$) (table 2). These risk factors were the most identified in both the WBJ 5 and the Gaza Strip. The least recognized risk factors were 'having a close relative with LC' ($\mathrm{n}=$ $62084,43.8 \%$) and 'having had treatment for any cancer in the past' ($\mathrm{n}=2368,49.7 \%$). These risk 7 factors were also the least identified in both the WBJ and the Gaza Strip.

Factor	$\begin{gathered} \text { Total } \\ (\mathrm{n}=4762) \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \text { Gaza Strip } \\ (\mathrm{n}=2020) \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \text { WBJ } \\ (\mathrm{n}=2742) \\ \mathrm{n}(\%) \end{gathered}$	p-value
Smoking-related risk factors				
Smoking cigarettes	4466 (93.8)	1892 (93.7)	2574 (93.9)	0.77
${ }_{5}$ Smoking shisha	4337 (91.1)	1822 (90.2)	2515 (91.7)	0.07
${ }^{\text {E }}$ Exposure to another person's cigarette smoke	3867 (81.2)	1621 (80.2)	2246 (81.9)	0.15
Other risk factors				
Air pollution	3838 (80.6)	1543 (76.4)	2295 (83.7)	<0.001
Exposure to chemicals (e.g., asbestos)	3802 (79.8)	1582 (78.3)	2220 (81.0)	0.024
Exposure to radiation	3788 (79.6)	1598 (79.1)	2190 (79.9)	0.52
${ }_{2}$ Having a previous history of lung disease (e.g., COPD)	3216 (67.5)	1382 (68.4)	1834 (66.9)	0.27
Having a previous history of cancer such as head and neck cancer	2778 (58.3)	1165 (57.7)	1613 (58.8)	0.43
4 Having had treatment for any cancer in the past	2368 (49.7)	1020 (50.5)	1348 (49.2)	0.36
${ }^{\text {H }}$ Having a close relative with lung cancer	2084 (43.8)	832 (41.2)	1252 (45.7)	0.002

$\mathrm{n}=$ number of participants. WBJ= West Bank and Jerusalem, COPD= chronic obstructive pulmonary disease.

Good awareness and its associated factors
A total of 2381 participants (50.0\%) displayed good awareness (prompt recognition of more than seven out of 10 LC risk factors) (table 3). Participants from the WBJ and the Gaza Strip had a similar likelihood to display good awareness (50.6% vs. 49.1%). On the multivariable analysis, being ≥ 45 years, having higher education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs were all associated with an increase in the likelihood of having a good awareness level of LC risk factors (table 4).

Table 3: Awareness level of lung cancer risk factors among study participants.

Level	Total $\mathbf{n (\%)}$	Gaza Strip $\mathbf{n (\%)}$	WBJ $\mathbf{n (\%)}$	p-value
Poor (0-3 risk factors)	$203(4.3)$	$111(5.5)$	$92(3.4)$	
Fair (4-7 risk factors)	$2178(45.7)$	$918(45.4)$	$1260(46.0)$	0.001
Good (8-10 risk factors)	$2381(50.0)$	$991(49.1)$	$1390(50.6)$	
$\mathrm{n}=$ number of participants, WBJ= West Bank and Jerusalem.				

Table 4: Univariable and multivariable logistic regression analyzing factors associated with having a good awareness of lung cancer risk factors.

Characteristic	Good awareness			
	COR (95\% CI)	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$
Age group				
18 to 44	Ref	<0.001	Ref	0.026
45 or older	1.33 (1.17-1.52)		1.20 (1.02-1.42)	
Gender				
Male	Ref	0.014	Ref	0.36
Female	1.15 (1.03-1.29)		1.08 (0.91-1.28)	
Educational level				
Secondary or below	Ref	0.016	Ref	<0.001
Post-secondary	1.15 (1.03-1.29)		1.25 (1.09-1.42)	
Occupation				
Unemployed/housewife	Ref	0.011	Ref	0.17
Employed	0.98 (0.87-1.11)		1.16 (0.99-1.36)	
Retired	1.49 (1.01-2.19)		1.34 (0.87-2.04)	
Student	0.79 (0.64-0.95)		0.98 (0.77-1.24)	
Monthly income				
< 1450 NIS	Ref	0.027	Ref	0.041
≥ 1450 NIS	1.15 (1.02-1.30)		1.19 (1.07-1.411)	
Marital status				
Single	Ref	0.001	Ref	0.97
Married	1.25 (1.11-1.41)		1.01 (0.87-1.17)	
Divorced/Widowed	1.30 (0.95-1.80)		1.05 (0.74-1.49)	
Residency				
Gaza Strip	Ref	0.27	Ref	0.53
WBJ	1.07 (0.95-1.20)		0.95 (0.81-1.11)	
Having a chronic disease				
No	Ref	<0.001	Ref	0.09
Yes	1.32 (1.16-1.52)		1.15 (0.98-1.35)	
Knowing someone with cancer				
No	Ref	<0.001	Ref	<0.001
Yes	1.52 (1.35-1.70)		1.61 (1.43-1.81)	
Ever smoked cigarettes and/or shisha				
No	Ref	0.043	Ref	0.12
Yes	0.88 (0.78-1.00)		0.88 (0.75-1.03)	
Site of data collection				
Public Spaces	Ref	<0.001		<0.001

Hospitals	$1.37(1.20-1.56)$	Ref
Primary healthcare centers	$1.79(1.55-2.07)$	$1.46(1.27-1.68)$
		$2.04(1.73-2.40)$

COR $=$ crude odds ratio, $\mathrm{AOR}=$ adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.
*Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection.
\#p-value of likelihood ratio test.

Association between recognizing smoking-related risk factors and participant characteristics

Our data suggested an association between education level and recognition of smoking-related risk factors, where participants with higher education level (above secondary) seemed to be more likely than other participants to recognize all smoking-related risk factors (supplementary table 4). In addition, there seemed to be an impact of visiting hospitals and PHCs on recognizing 'smoking cigarettes' as an LC risk factor. Similarly, participants from the WBJ seemed to be more likely than participants from the Gaza Strip to recognize 'smoking shisha' and 'exposure to another person's cigarette smoke' as LC risk factors. In contrast, participants who ever smoked cigarettes and/or shisha seemed to be less likely than participants who never smoked to recognize all smoking-related risk factors.

Association between recognizing other LC risk factors and participant characteristics

Our data suggested an association between knowing someone with cancer and recognizing most other LC risk factors, where participants who knew someone with cancer were more likely to recognize 'exposure to chemicals', 'exposure to radiation', 'air pollution', 'having a previous history of cancer', and 'having had treatment for any cancer in the past' as LC risk factors (supplementary table 5). In addition, there seemed to be an impact of visiting hospitals and PHCs on recognizing 'exposure to chemicals', 'air pollution', 'having a previous history of lung disease', 'having a previous history of cancer', and 'having had treatment for any cancer in the past' as LC risk factors.

Discussion

Half of the study participants demonstrated good awareness of LC risk factors, defined as recognizing more than seven out of the 10 LC risk factors. Participants from the WBJ and the Gaza Strip demonstrated a similar likelihood of having a good awareness level. The factors that seemed to have an impact on displaying good awareness levels of LC risk factors were being ≥ 45 years, higher levels of education and monthly income, knowing someone with cancer, and visiting hospitals and PHCs. Smoking-related risk factors were more often recognized than other risk factors. The most frequently recognized LC risk factor was 'smoking cigarettes' followed by 'smoking shisha'. Interestingly, participants who ever smoked seemed to be less likely to recognize smoking-related risk factors than those who never smoked.

Awareness of LC risk factors among Palestinians was higher than knowledge of other types of cancer.[18-20] Only 17.4\% of Palestinians displayed good knowledge of ovarian cancer symptoms,[20] 23.7% had good knowledge of cervical cancer risk factors[19] and 27.4\% demonstrated good knowledge of cervical cancer warning signs.[18]

The majority of LC cases are diagnosed late, which may be in part due to a lack of awareness of LC symptoms, fear of cancer diagnosis, worries about what might be found, and lack of time to visit a doctor.[28-29] Educational interventions that raise the knowledge about various aspects of LC awareness are critical to develop behaviors that lead to the prevention and early diagnosis of

LC.[30] The high mortality rate of LC, especially in low-resource settings like Palestine [31] and the high smoking rates, ranging from 30.0% to $47.7 \%,[5,32-33]$ necessitate finding approaches to increase awareness of LC risk factors. Although there are tobacco control policies in Palestine,[34] there is a substantial need to monitor their outreach and implementation more closely. This is especially important given the widespread availability of tobacco products on all premises in public and to all ages. Such monitoring of the implementation of government tobacco control policies was shown to discourage people from smoking, which could reduce both active and passive smoking and, thus, LC morbidity and mortality.[35-36] There are several barriers to implementing tobacco control policies in Palestine. The lack of enforcement of these polices is a major barrier. It is common to see someone smoking in a public place or to see a child who is under 18 years going to a store to buy a pack of cigarettes for their own use or for the use of one of their family members. The law also did not specify the penalties for violating these policies, which limits the adherence of the public. In addition, to the best of our knowledge, there are no specialized centers to help smokers quit smoking. Finally, the poor economic circumstances could be a contributing factor for the inability to implement tobacco control policies as their enforcement requires allocation of a special budget for that purpose.

Awareness of LC risk factors
Smoking cigarettes was the most recognized LC risk factor in this study followed by smoking shisha and exposure to another person's cigarette smoke (passive smoking), respectively. In a previous study from Oman, smoking cigarettes was the most recognized LC risk factor (79.8\%) and passive smoking was the third (55.7\%).[9] Similarly, in a previous study from Jordan, the
majority believed that active cigarette smoking, shisha smoking, and passive smoking were all linked to cancer.[37]

Musmar and colleagues reported that 34.7% of university students in Palestine were current smokers.[33] Students in the arts and humanities were found to have a considerably greater risk of smoking than students in the sciences or in healthcare.[33] The fact that health sciences students were found to be less likely to smoke might be partly due to the influence of smokingrelated health education.[33] This is also supported by the findings of this study, where participants who had never smoked seemed to be more likely to demonstrate good awareness of smoking-related risk factors than ever smokers, highlighting the potentially empowering influence of health education on smoking behavior.

Chapple and colleagues found that LC patients felt unjustly blamed for their disease. LC patients felt particularly stigmatized regardless of their smoking status, because the condition is closely linked to smoking, which negatively impacted their interaction with family, friends, and physicians.[38] Such stigma may drive individuals who have a possible LC symptom accompanied by risk factors to seek medical advice late, and thus, lead to diagnoses at advanced stages. Health practitioners who have contact with current and former smokers must be well trained to offer a safe and non-judgmental environment for people who arrive with symptoms suggestive of LC.[26]

Chawla and colleagues showed that having benefitted from post-secondary education was a main factor associated with good awareness of LC risk factors,[39] which comes in concordance with this study. Educational levels in Palestine are good and the illiteracy rate is low at only 2.5% [40], which could contribute to the fair awareness of LC risk factors found in this study,
compared with the lower levels in other regional studies.[37, 41] Participants who benefitted from higher education appear to be more concerned about their health and more likely to avoid risky behaviors such as smoking.[42-43] Future educational interventions aiming to raise awareness of LC risk factors should be tailored to match the level of health literacy among individuals with low education.

While many similarities existed in the LC awareness of participants in the Gaza Strip compared with those in the WBJ, such as the likelihood to have good awareness of LC risk factors and recognition of smoking cigarettes as a risk factor, there were a few differences. Among these were that participants in the WBJ seemed to be more likely to recognize 'passive smoking', 'shisha smoking', 'air pollution', and 'having a close relative with cancer' as risk factors than participants from the Gaza Strip. Residents of the Gaza Strip are not allowed to travel to the WBJ and likewise are residents from the WBJ not allowed to travel to the Gaza Strip. These movement restrictions hinder the exchange of ideas, knowledge and health beliefs among people of both areas. However, the overall greater number of similarities might be encouraging, when considering the delivery of educational interventions to the whole population. The unified school curriculum might be one such way of content delivery and health education and, hence, increasing awareness of LC risk factors among the Palestinian population.

Future directions

Public health interventions that aim to promote the recognition of LC risk factors may have a major potential to improve LC outcomes for those most at risk in an attempt to reduce patientrelated delays to diagnosis. The creation of widespread public education programs and enriching school curricula with subjects outlining important symptoms and risk factors of LC may also
play a role. However, this might need to be complemented by effective implementation of tobacco control regulations to achieve the greatest impact. This is especially important in lowand middle-income countries, such as Palestine, where access to treatment might otherwise be delayed and outcomes are poorer.

Strengths and limitations

The major strengths of this study include the large sample size and the wide geographical coverage of data collection from different places within each main area, which allowed direct evaluation of the knowledge of LC risk factors at various levels in the Palestinian population. This study has some limitations though. The use of convenience sampling does not guarantee the generalizability of the findings. However, the large number of participants, the diversity of geographical areas included, and the high response rate may mitigate this. Another limitation could be that visitors or patients in the oncology departments as well as those with medical backgrounds were all ineligible, which might have reduced the number of participants with a presumably good awareness. Nevertheless, this was intended to make the measured awareness more relevant to the overall public awareness, as people being treated in oncology departments and those visiting such departments were presumed to have better knowledge, compared with the general public without the same contact with healthcare professionals. A further limitation in our questionnaire could be grouping unemployed women and housewives in the same category, while women not in employment may include a whole range of socioeconomic and educational background from those with minimal skills who cannot find work and look after their family as the default option to highly educated women who choose to focus on family care. Finally, the results of the multivariable analyses in this study are exploratory and need further validation.

Conclusion

Abstract

Awareness of LC risk factors was relatively good with half of the participants displaying good awareness. Smoking-related risk factors were the most recognized risk factors. Older age, higher education, higher monthly income, knowing someone with cancer and visiting healthcare facilities seemed to have a positive impact on displaying good awareness. Formulation and effective implementation of tobacco control policies are essential to change smoking behavior and increase awareness. This should be complemented by educational initiatives to improve public understanding of LC and the perception of smoking danger. Such interventions are especially useful in low-resource settings, such as Palestine, where access to diagnosis and treatment is limited.

Other information

Data statement: Data are available upon reasonable request.

Ethical considerations: Prior to data collection, ethical approval had been obtained from the Human Resources Development Department at the Palestinian Ministry of Health and the Helsinki Committee in the Gaza Strip on the $24^{\text {th }}$ of June, 2017. In addition, another approval was obtained from the Research Ethics Committee at the Islamic University of Gaza on the $26^{\text {th }}$ of June, 2017. The participants had a thorough explanation about the study purposes with the focus that their participation was completely voluntary. Written informed consent was taken from study participants before starting the questionnaire and data were collected anonymously.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Acknowledgments: The authors would like to thank all participants who took part in the survey.

Author Contributions: ME and AM contributed to design of the study, data analysis, data interpretation, and drafting of the manuscript. MA1, IA, HA, HS, SQ, FU, MA2, WA1, RN, RK, NS, YH, OG, WA2, OO, MD, JA, RE, AZ, HH and MA3 contributed to design of the study, data collection, data entry, and data interpretation. NAE and BB contributed to design of the study, data interpretation, drafting of the manuscript, and supervision of the work. All authors have read and approved the final manuscript. Each author has participated sufficiently in the work to take public responsibility for the content.

References

1. World Health Organization Factsheet. Cancer incidence and mortality statistics. https://bit.ly/3r2L3jc. (accessed 15 Sep 2022).
2. Jazieh AR, Algwaiz G, Errihani H, et al. Lung Cancer in the Middle East and North Africa Region. J Thorac Oncol 2019;14(11):1884-91.
3. The Global Cancer Observatory Factsheet. Incidence, Mortality and Prevalence of cancer. https://bit.ly/3t9DvxG. (accessed 15 Sep 2022).
4. Centre of Disease Control and Prevention. Lung Cancer; What Are The Risk Factors. https://bit.ly/31O5eQ3. (accessed 15 Sep 2022).
5. Abu Seir R, Kharroubi A, Ghannam I. Prevalence of tobacco use among young adults in Palestine. East Mediterr Health J 2020;26(1):75-84.
6. Corrales L, Rosell R, Cardona AF, et al. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit Rev Oncol Hematol 2020;148:102895.
7. Bailey-Wilson JE, Sellers TA, Elston RC, et al. Evidence for a major gene effect in earlyonset lung cancer. J La State Med Soc 1993;145(4):157-62.
8. Vineis P, Forastiere F, Hoek G, et al. Outdoor air pollution and lung cancer: recent epidemiologic evidence. Int J Cancer 2004;111(5):647-52.
9. Al-Azri M, Al-Saadi WI, Al-Harrasi A, et al. Knowledge of Cancer Risk Factors, Symptoms, and Barriers to Seeking Medical Help among Omani Adolescents. Asian Pac J Cancer Prev 2019;20(12):3655-66.
10. Loh JF, Tan SL. Lung cancer knowledge and screening in the context of the Malaysian population. 2018;48(1):56-64.
11. Bantie GM, Aynie AA, Gelaw YM, et al. Awareness regarding risk factors and determinants of cancers among Bahir Dar city residents, Northwest Ethiopia. PLoS One 2021;16(4):e0248520.
12. Cassim S, Chepulis L, Keenan R, et al. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: a systematic review. BMC Cancer 2019;19(1):25.
13. Simon AE, Juszczyk D, Smyth N, et al. Knowledge of lung cancer symptoms and risk factors in the U.K.: development of a measure and results from a population-based survey. Thorax 2012;67(5):426-32.
14. Moffat J, Bentley A, Ironmonger L, et al. The impact of national cancer awareness campaigns for bowel and lung cancer symptoms on sociodemographic inequalities in immediate key symptom awareness and GP attendances. Br J Cancer 2015;112 Suppl 1(Suppl 1):S14-21.
15. Ironmonger L, Ohuma E, Ormiston-Smith N, et al. An evaluation of the impact of large-scale interventions to raise public awareness of a lung cancer symptom. British journal of cancer 2015;112(1):207-16.
16. Power E, Wardle J. Change in public awareness of symptoms and perceived barriers to seeing a doctor following Be Clear on Cancer campaigns in England. British journal of cancer 2015;112 Suppl 1(Suppl 1):S22-S26.
17. Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. 2005;60(4):268-69.
18. Elshami M, Al-Slaibi I, Abukmail H, et al. Knowledge of Palestinian women about cervical cancer warning signs: a national cross- sectional study. BMC Public Health 2021;21(1):1779.
19. Elshami M, Thalji M, Abukmail H, et al. Knowledge of cervical cancer risk factors among Palestinian women: a national cross-sectional study. BMC Womens Health 2021;21(1):385.
20. Elshami M, Yaseen A, Alser M, et al. Knowledge of ovarian cancer symptoms among women in Palestine: a national cross-sectional study. BMC Public Health 2021;21(1):1992.
21. Harvard Humanitarian Initiative. KoBoToolbox. https://www.kobotoolbox.org. (accessed 15 Sep 2022).
22. National Cancer Institute SEER Program. Cancer Stat Facts: Lung and Bronchus Cancer. https://seer.cancer.gov/statfacts/html/lungb.html. (accessed 15 Sep 2022).
23. Awad O. The labor reality in Palestine for 2019 on the occasion of International Workers' Day.https://bit.ly/3n84Uw6. (accessed 15 Sep 2022).
24. Saab MM, Noonan B, Kilty C, et al. Awareness and help-seeking for early signs and symptoms of lung cancer: A qualitative study with high-risk individuals. Eur J Oncol Nurs 2021;50:101880.
25. Desalu OO, Fawibe AE, Sanya EO, et al. Lung cancer awareness and anticipated delay before seeking medical help in the middle-belt population of Nigeria. Int J Tuberc Lung Dis 2016;20(4):560-6.
26. Crane M, Scott N, O'Hara BJ, et al. Knowledge of the signs and symptoms and risk factors of lung cancer in Australia: mixed methods study. BMC Public Health 2016;16:508.
27. Elshami M, Elshami A, Alshorbassi N, et al. Knowledge level of cancer symptoms and risk factors in the Gaza Strip: a cross-sectional study. BMC Public Health 2020;20(1):414.
28. Elshami M, Bottcher B, Alkhatib M, et al. Perceived barriers to seeking cancer care in the Gaza Strip: a cross-sectional study. BMC Health Services Research 2021;21(1):28.
29. Hanson H, Raag, M. , Adrat, M. and Laisaar, T. (2017) Awareness of Lung Cancer Symptoms and Risk Factors in General Population. Open Journal of Respiratory Diseases, 7, 1-11. doi: 10.4236/ojrd.2017.71001.
30. Shil R, Hn D, Ramu. Effectiveness of an educational intervention in increasing knowledge regarding lung cancer among engineering students. International Journal of Nursing and Health Research 2020;2:1-3.
31. Ministry of Health (Palestine). Health Annual Report 2021, Palestine. https://bit.ly/3BIMWIo. (accessed 15 Sep 2022).
32. Tucktuck M, Ghandour R, Abu-Rmeileh NME. Waterpipe and cigarette tobacco smoking among Palestinian university students: a cross-sectional study. BMC Public Health 2017;18(1):1.
33. Musmar SG. Smoking habits and attitudes among university students in Palestine: a crosssectional study. East Mediterr Health J 2012;18(5):454-60.
34. Policy Fact Sheets. Tobacco control laws 2020. https://www.tobaccocontrollaws.org/legislation/country/palestine/summary. (accessed 15 Sep 2022).
35. Gredner T, Mons U, Niedermaier T, et al. Impact of tobacco control policies implementation on future lung cancer incidence in Europe: An international, population-based modeling study. The Lancet Regional Health - Europe 2021;4:100074.
36. Gredner T, Niedermaier T, Brenner H, et al. Impact of Tobacco Control Policies on Smoking-Related Cancer Incidence in Germany 2020 to 2050-A Simulation Study. Cancer Epidemiology Biomarkers \& Prevention 2020;29:cebp.1301.2019.
37. Ahmad M. Jordanians knowledge and beliefs about cancer. Global Journal on Advances in Pure \& Applied Sciences 2014;4:24-26.
38. Chapple A, Ziebland S, McPherson A. Stigma, shame, and blame experienced by patients with lung cancer: qualitative study. Bmj 2004;328(7454):1470.
39. Chawla R, Sathian B, Mehra A, et al. Awareness and assessment of risk factors for lung cancer in residents of Pokhara Valley, Nepal. Asian Pac J Cancer Prev 2010;11(6):178993.
40. Palestinian Central Bureau of Statistics. The Illitracy in Palestine. https://pcbs.gov.ps/site/512/default.aspx?lang=en\&ItemID=4062. (accessed 15 Sep 2022).
41. Shihab RA, Obeidat NA, Bader RK, et al. Cancer-related knowledge, attitudes, and risk perception among 6 grade students in Jordan. Stud Health Technol Inform 2012;172:15560.
42. Zhou H, Zhang Y, Liu J, et al. Education and lung cancer: a Mendelian randomization study. International journal of epidemiology 2019;48(3):743-50.
43. Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M, et al. The incidence and mortality of lung cancer and their relationship to development in Asia. 2015 2015;4(6):763-74.

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad A. Mansour, MD ${ }^{3,4 *}$, Mohammed Alser, MD 5,6, Ibrahim Al-Slaibi, MD ${ }^{7}$, Hanan Abukmail, MD ${ }^{8,9}$, Hanan Shurrab ${ }^{10}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc ${ }^{11}$, Malik Alruzayqat ${ }^{3}$, Wafa Aqel ${ }^{3}$, Roba Nairoukh ${ }^{12}$, Rahaf Kittaneh ${ }^{14}$, Nawras Sawafta ${ }^{3}$, Yousef M. N. Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{16}$, Ola Omar ${ }^{17}$, Motaz Daraghmeh ${ }^{17}$, Jumana Aljbour ${ }^{5}$, Razan E. M. Elian ${ }^{5}$, Areen Zhor ${ }^{17}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{5}$, Nasser Abu-El-Noor, $\mathrm{PhD}^{18 \#}$, Bettina Bottcher, MD, PhD ${ }^{5 \#}$
*Contributed equally as a first co-author.
\#Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Palestine Medical Complex, Ramallah, Palestine.
${ }^{5}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{6}$ The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA)
${ }^{7}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{8}$ International Medical Corps, Gaza.
${ }^{9}$ Harvard Medical School, Boston, MA, USA.
${ }^{10}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{11}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{12}$ Faculty of Dentistry, Al-Quds University, Jerusalem, Palestine
${ }^{13}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{14}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{15}$ Hebron Governmental hospital, Hebron, Palestine
${ }^{16}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{17}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{18}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.

Corresponding author

Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami @gmail.com

Supplemental table 1: Univariable logistic regression analyzing factors associated with the recognition of smoking-related risk factors.

Characteristic	Smoking cigarettes		Smoking shisha		Exposure to another person's cigarette smoke	
	COR (95\% CI)	p	COR (95\% CI)	p	COR (95\% CI)	
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 0.76(0.59-0.98) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.038 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.09(0.86-1.38) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.47 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.09(0.92-1.29) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.32 \\ & \hline \end{aligned}$
Gender Male Female	$\begin{gathered} \text { Ref } \\ 1.27(1.01-1.61) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.044 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.77(0.63-0.95) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.013 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.25(1.08-1.45) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.002 \end{gathered}$
Educational level Secondary or below Above secondary	$\begin{gathered} \text { Ref } \\ 1.76(1.38-2.24) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.71(1.39-2.10) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.18 \text { (1.02-1.36) } \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.028 \\ \hline \end{gathered}$
Occupation Unemployed/housewife Employed Retired Student	Ref $0.98(0.76-1.25)$ $1.41(0.57-3.52)$ $1.09(0.72-1.67)$	$\begin{aligned} & \text { Ref } \\ & 0.84 \\ & 0.46 \\ & 0.68 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.31(1.06-1.62) \\ 2.01(0.87-4.62) \\ 1.32(0.92-1.89) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.013 \\ 0.10 \\ 0.13 \end{gathered}$	Ref $0.91(0.78-1.07)$ $1.11(0.66-1.87)$ $0.74(0.58-0.94)$	$\begin{gathered} \text { Ref } \\ 0.26 \\ 0.69 \\ 0.015 \end{gathered}$
$\begin{aligned} & \text { Monthly income } \\ & <1450 \text { NIS } \\ & \geq \mathbf{1 4 5 0} \text { NIS } \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.02(0.80-1.32) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.26(1.03-1.55) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.028 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.98(0.84-1.15) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.82 \\ \hline \end{gathered}$
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 1.11(0.86-1.43) \\ 0.53(0.31-0.89) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.44 \\ 0.016 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.98(0.79-1.22) \\ 0.58(0.36-0.94) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.87 \\ 0.027 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.23(1.05-1.44) \\ 1.06(0.71-1.58) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.009 \\ 0.78 \end{gathered}$
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 1.04(0.82-1.31) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.77 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.20(0.99-1.47) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.07 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.11(0.96-1.29) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.15 \\ & \hline \end{aligned}$
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 0.77(0.59-1.01) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.90(0.71-1.14) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.40 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.09(0.91-1.31) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.32 \end{gathered}$
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.04(0.82-1.32) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.74 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 1.04(0.85-1.27) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ref } \\ & 0.72 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.12(0.97-1.30) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.12 \\ & \hline \end{aligned}$
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.58(0.46-0.74) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.82(0.66-1.01) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.71(0.61-0.83) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$
Site of data collection Public Spaces Hospitals Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.40(1.07-1.84) \\ 1.48(1.09-2.01) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.015 \\ 0.012 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.27(1.00-1.61) \\ 0.93(0.73-1.18) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.054 \\ 0.53 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.11(0.94-1.31) \\ 1.36(1.12-1.64) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.22 \\ 0.002 \end{gathered}$

COR= crude odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.

Supplemental table 2: Univariable logistic regression analyzing factors associated with the recognition of other risk factors.

Characteristic	Exposure to chemicals		Exposure to radiation		Air pollution	
	COR (95\% CI)	p	COR (95\% CI)	p	COR (95\% CI)	p
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 1.23(1.04-1.46) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.016 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.43(1.21-1.71) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.27(1.07-1.51) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.007 \end{gathered}$
Gender Male Female	$\begin{gathered} \text { Ref } \\ 1.07(0.93-1.23) \end{gathered}$	$\begin{array}{r} \text { Ref } \\ 0.35 \\ \hline \end{array}$	$\begin{gathered} \text { Ref } \\ 0.90(0.78-1.04) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.16 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.97(0.84-1.12) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.71 \\ \hline \end{gathered}$
Educational level Secondary or below Above secondary	$\begin{gathered} \text { Ref } \\ 1.11(0.96-1.27) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.17 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.46(0.26-1.68) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.05(0.91-1.21) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.50 \end{gathered}$
Occupation Unemployed/housewife Employed Retired Student	$\begin{gathered} \text { Ref } \\ 0.84(0.72-0.98) \\ 1.10(0.66-1.82) \\ 0.77(0.61-0.98) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.023 \\ 0.72 \\ 0.032 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.27(1.10-1.48) \\ 3.82(1.85-7.92) \\ 1.18(0.93-1.51) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.002 \\ <0.001 \\ 0.18 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.05(0.90-1.23) \\ 1.34(0.79-2.27) \\ 0.81(0.64-1.03) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.50 \\ & 0.28 \\ & 0.09 \end{aligned}$
Monthly income <1450 NIS $\geq \mathbf{1 4 5 0}$ NIS	$\begin{gathered} \text { Ref } \\ 1.19(1.02-1.38) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.023 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.33(1.14-1.54) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.45(1.25-1.68) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 1.16(0.99-1.35) \\ 0.96(0.65-1.41) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.06 \\ 0.83 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.24(1.07-1.44) \\ 1.06(0.72-1.56) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.005 \\ 0.77 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.10(0.94-1.28) \\ 0.95(0.64-1.41) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.24 \\ 0.79 \end{gathered}$
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 1.18(1.02-1.36) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.025 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.05(0.91-1.21) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.50 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.59(1.37-1.83) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 1.21(1.01-1.45) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.035 \end{gathered}$	Ref $1.20 \text { (1.00-1.43) }$	$\begin{gathered} \text { Ref } \\ 0.044 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.30(1.08-1.56) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.006 \end{gathered}$
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.59(1.38-1.83) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.54(1.34-1.78) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.49(1.29-1.72) \end{gathered}$	$\begin{gathered} \text { Ref } \\ <0.001 \\ \hline \end{gathered}$
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.98(0.84-1.14) \end{gathered}$	$\begin{array}{r} \text { Ref } \\ 0.81 \\ \hline \end{array}$	$\begin{gathered} \text { Ref } \\ 1.01(0.87-1.18) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.87 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.17(1.00-1.37) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.054 \end{gathered}$
Site of data collection Public Spaces Hospitals Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.67(1.42-1.97) \\ 2.04(1.69-2.47) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & <0.001 \\ & <0.001 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.01(0.85-1.19) \\ 0.97(0.81-1.16) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & 0.95 \\ & 0.75 \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.37(1.16-1.61) \\ 1.49(1.24-1.79) \end{gathered}$	$\begin{aligned} & \text { Ref } \\ & <0.001 \\ & <0.001 \end{aligned}$

$\mathrm{COR}=$ adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem. upplemental table 3: Univariable logistic regression analyzing factors associated with the recognition of other risk factors.

Characteristic Having a previous history of Having a previous history of Having had treatment for any

lung disease		cancer		cancer in t		with lung
(95\% CI)*	p	COR (95\% CI)*	p	COR (95\% CI)*	p	COR (95\% CI)*

G12 onder
G3ale
F14
EHale
Educational level

Educational level Sekondary or below Allove secondary
Occupation Unemployed/housewife
Ef4ployed
Retired
Spazdent
Mönthly income
<24450 NIS
≥ 25450 NIS
Marital status
Sizggle
N\&
Digorced/Widowed
Rzasidency
Gara Strip

WBJ

Hagving a chronic disease

No4
Yess
Kgowing someone with

садясеr

Eyer smoked cigarettes and/or shisha

$\begin{gathered} \text { Ref } \\ 0.92(0.81-1.05) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.21 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.90(0.79-1.02) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.93(0.82-1.05) \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.23 \end{gathered}$	$\begin{gathered} \text { Ref } \\ 0.87(0.76-0.98) \end{gathered}$	$\begin{gathered} \text { R会 } \\ 0.0 \frac{\mathrm{~S}}{} 6 \end{gathered}$
Ref	Re						
1.28 (1.12-1.48)	<0.001	1.37 (1.20-1.56)	<0.001	1.12 (0.98-1.27)	0.10	1.03 (0.91-1.18)	0. ¢
1.46 (1.25-1.70)	<0.001	1.73 (1.49-2.01)	<0.001	1.61 (1.39-1.86)	<0.001	1.13 (0.98-1.31)	0.10

$48 \mathrm{R}=$ crude odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.
49
50
51
52
53
54
55
56
57
58
59
60

Current Situation and Future Directions of Lung Cancer Risk Factor Awareness in Palestine: A Cross-sectional Study

Mohamedraed Elshami, MD, MMSc ${ }^{1,2 *}$, Ahmad A. Mansour, MD ${ }^{3,4 *}$, Mohammed Alser, MD 5,6, Ibrahim Al-Slaibi, MD ${ }^{7}$, Hanan Abukmail, MD ${ }^{8,9}$, Hanan Shurrab ${ }^{10}$, Shahd Qassem ${ }^{3}$, Faten Darwish Usrof, MSc ${ }^{11}$, Malik Alruzayqat ${ }^{3}$, Wafa Aqel ${ }^{3}$, Roba Nairoukh ${ }^{12}$, Rahaf Kittaneh ${ }^{14}$, Nawras Sawafta ${ }^{3}$, Yousef M. N. Habes ${ }^{3}$, Obaida Ghanim ${ }^{3}$, Wesam Almajd Aabed ${ }^{16}$, Ola Omar ${ }^{17}$, Motaz Daraghmeh ${ }^{17}$, Jumana Aljbour ${ }^{5}$, Razan E. M. Elian ${ }^{5}$, Areen Zhor ${ }^{17}$, Haneen Habes ${ }^{3}$, Mohammed Al-Dadah ${ }^{5}$, Nasser Abu-El-Noor, $\mathrm{PhD}^{18 \#}$, Bettina Bottcher, MD, PhD ${ }^{5 \#}$
*Contributed equally as a first co-author.
\#Contributed equally as a senior co-author.
${ }^{1}$ Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
${ }^{2}$ Ministry of Health, Gaza, Palestine.
${ }^{3}$ Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
${ }^{4}$ Palestine Medical Complex, Ramallah, Palestine.
${ }^{5}$ Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine.
${ }^{6}$ The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA)
${ }^{7}$ Almakassed Hospital, Jerusalem, Palestine.
${ }^{8}$ International Medical Corps, Gaza.
${ }^{9}$ Harvard Medical School, Boston, MA, USA.
${ }^{10}$ Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine.
${ }^{11}$ Department of a Medical Laboratory Sciences, Faculty of Health Sciences, Islamic university of Gaza, Gaza City, Palestine.
${ }^{12}$ Faculty of Dentistry, Al-Quds University, Jerusalem, Palestine
${ }^{13}$ Faculty of Dentistry and Dental Surgery, Al-Quds University, Jerusalem, Palestine
${ }^{14}$ Faculty of Nursing, An Najah National University, Nablus, Palestine
${ }^{15}$ Hebron Governmental hospital, Hebron, Palestine
${ }^{16}$ Faculty of dentistry, Al Azhar University of Gaza, Palestine.
${ }^{17}$ Faculty of Medicine, Al Najah National University, Nablus, Palestine
${ }^{18}$ Faculty of Nursing, Islamic University of Gaza, Gaza, Palestine.

Corresponding author

Mohamedraed Elshami, MD, MMSc
Division of Surgical Oncology
Department of Surgery
University Hospitals Cleveland Medical Center
11100 Euclid Avenue, Lakeside 7100
Cleveland, OH 44106
Phone: 832-245-6055
Email: mohamedraed.elshami @gmail.com

Supplementary table 4: Multivariable logistic regression analyzing factors associated with the recognition of smoking-related risk factors.

Characteristic	Smoking cigarettes		Smoking shisha		Exposure to another person's cigarette smoke	
	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\#}$
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 0.84(0.61-1.17) \end{gathered}$	0.30	$\begin{gathered} \text { Ref } \\ 1.24(0.93-1.66) \\ \hline \end{gathered}$	0.14	$\begin{gathered} \text { Ref } \\ 1.04(0.84-1.28) \\ \hline \end{gathered}$	0.72
Gender Male Female	$\begin{gathered} \text { Ref } \\ 0.98(0.69-1.39) \end{gathered}$	0.90	$\begin{gathered} \text { Ref } \\ 0.60(0.44-0.82) \end{gathered}$	0.001	$\begin{gathered} \text { Ref } \\ 1.03(0.83-1.27) \end{gathered}$	0.82
Educational level Secondary or below Above secondary	$\begin{gathered} \text { Ref } \\ 1.74(1.33-2.28) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.74(1.38-2.18) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.29(1.09-1.51) \end{gathered}$	0.002
Occupation Unemployed/housewife Employed Retired Student	$\begin{gathered} \text { Ref } \\ 1.12(0.81-1.55) \\ 1.77(0.68-4.63) \\ 1.02(0.62-1.68) \end{gathered}$	0.63	$\begin{gathered} \text { Ref } \\ 1.04(0.78-1.37) \\ 1.39(0.58-3.33) \\ 1.01(0.66-1.54) \end{gathered}$	0.90	$\begin{gathered} \text { Ref } \\ 1.06(0.87-1.30) \\ 1.20(0.96-2.09) \\ 0.81(0.61-1.09) \\ \hline \end{gathered}$	0.27
Monthly income < 1450 NIS ≥ 1450 NIS	$\begin{gathered} \text { Ref } \\ 0.91(0.65-1.29) \end{gathered}$	0.61	$\begin{gathered} \text { Ref } \\ 099(0.74-131) \end{gathered}$	0.93	$\begin{gathered} \text { Ref } \\ 0.85(0.69-1.05) \\ \hline \end{gathered}$	0.14
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 1.20(0.88-1.64) \\ 0.66(0.36-1.20) \end{gathered}$	0.06	$\begin{gathered} \text { Ref } \\ 1.09(0.84-1.42) \\ 0.71(0.42-1.22) \end{gathered}$	0.23	$\begin{gathered} \text { Ref } \\ 1.12(0.92-1.35) \\ 0.93(0.60-1.44) \end{gathered}$	0.36
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 1.26(0.91-1.74) \end{gathered}$	0.15	$\begin{gathered} \text { Ref } \\ 1.33(1.02-1.75) \end{gathered}$	0.038	$\begin{gathered} \text { Ref } \\ 1.29(1.06-1.56) \end{gathered}$	0.011
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 0.87(0.63-1.20) \end{gathered}$	0.39	$\begin{gathered} \text { Ref } \\ 0.88(0.67-1.16) \end{gathered}$	0.37	$\begin{gathered} \text { Ref } \\ 1.02(0.83-1.35) \end{gathered}$	0.87
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.17(0.92-1.49) \end{gathered}$	0.21	$\begin{gathered} \text { Ref } \\ 1.06(0.86-1.30) \end{gathered}$	0.60	$\begin{gathered} \text { Ref } \\ 1.17 \text { (1.01-1.36) } \end{gathered}$	0.037
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.54(0.40-0.75) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 0.55(0.42-0.74) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 0.71(0.59-0.86) \end{gathered}$	0.001
Site of data collection Public Spaces Hospitals Arimary husted odds ratio, $\mathrm{CI}=$ confidence in *nmary healthcare centers someone with cancer, smoking history, and sit $\# \mathrm{p}$-value of likelihood ratio test.	Ref $1.52(1 \mathrm{Bl} 14-201)$ 1.4 (1. $05 \overline{-1}-05$) e of data collection.	0.007 nk and Jer nthly ineon	$\begin{aligned} & \text { Ref } \\ & 1.30(1.01-1.66) \\ & \text { en } \\ & \text { maritals status, } 1.39) \end{aligned}$	0.11 ey, hav	$\begin{gathered} \text { Ref } \\ 1.11(0.94-1.32) \\ 1.29(1.05-1.58)_{k} \\ \text { actronte disease, } \end{gathered}$	0.054

Supplementary table 5: Multivariable logistic regression analyzing factors associated with the recognition of other risk factors.

Characteristic	Exposure to chemicals		Exposure to radiation		Air pollution	
	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 1.17(0.95-1.44) \end{gathered}$	0.13	$\begin{gathered} \text { Ref } \\ 1.38(1.11-1.70) \end{gathered}$	0.003	$\begin{gathered} \text { Ref } \\ 1.13(0.92-1.40) \end{gathered}$	0.25
Gender Male Female	$\begin{gathered} \text { Ref } \\ 0.91(0.74-1.11) \end{gathered}$	0.35	$\begin{gathered} \text { Ref } \\ 0.95(0.77-1.17) \end{gathered}$	0.60	$\begin{gathered} \text { Ref } \\ 0.98(0.80-1.21) \end{gathered}$	0.88
Educational level Secondary or below Above secondary	$\begin{gathered} \text { Ref } \\ 1.26(1.08-1.48) \end{gathered}$	0.004	$\begin{gathered} \text { Ref } \\ 1.47(1.26-1.73) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.16(0.98-1.36) \end{gathered}$	0.08
Occupation Unemployed/housewife Employed Retired Student	Ref $0.85(0.70-1.04)$ $0.88(0.51-1.52)$ $0.68(0.65-1.16)$	0.46	$\begin{gathered} \text { Ref } \\ 1.20(0.99-1.46) \\ 2.64(1.24-5.60) \\ 1.29(0.97-1.73) \end{gathered}$	0.013	$\begin{gathered} \text { Ref } \\ 1.03(0.84-1.26) \\ 1.11(0.63-1.95) \\ 0.83(0.62-1.11) \end{gathered}$	0.49
Monthly income < 1450 NIS ≥ 1450 NIS	$\begin{gathered} \text { Ref } \\ 1.18(0.96-1.46) \end{gathered}$	0.11	$\begin{gathered} \text { Ref } \\ 1.30(1.06-1.60) \end{gathered}$	0.013	$\begin{gathered} \text { Ref } \\ 1.12(0.91-1.37) \end{gathered}$	0.29
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 0.92(0.77-1.11) \\ 0.81(0.53-1.23) \end{gathered}$	0.54	$\begin{gathered} \text { Ref } \\ 1.27(1.06-1.52) \\ 1.10(0.72-1.68) \end{gathered}$	0.035	$\begin{gathered} \text { Ref } \\ 0.89(0.73-1.07) \\ 0.75(0.49-1.16) \end{gathered}$	0.32
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 1.09(0.89-1.32) \end{gathered}$	0.40	$\begin{gathered} \text { Ref } \\ 0.86(0.71-1.05) \end{gathered}$	0.14	$\begin{gathered} \text { Ref } \\ 1.47(1.21-1.78) \end{gathered}$	<0.001
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 1.04(0.74-1.28) \end{gathered}$	0.71	$\begin{gathered} \text { Ref } \\ 1.02(0.83-1.25) \end{gathered}$	0.89	$\begin{gathered} \text { Ref } \\ 1.11(0.89-1.37) \end{gathered}$	0.35
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.72(1.48-1.99) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.52(1.32-1.76) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.51(1.31-1.76) \end{gathered}$	<0.001
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.97(0.80-1.18) \end{gathered}$	0.76	$\begin{gathered} \text { Ref } \\ 0.89(0.73-1.08) \end{gathered}$	0.23	$\begin{gathered} \text { Ref } \\ 1.07(0.88-1.31) \end{gathered}$	0.48
Site of data collection Public Spaces Hospitals Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.77(1.49-2.10) \\ 2.38(1.94-2.94) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.05(0.89-1.25) \\ 1.16(0.95-1.41) \end{gathered}$	0.35	$\begin{gathered} \text { Ref } \\ 1.41(1.19-1.68) \\ 1.77(1.44-2.18) \end{gathered}$	<0.001

AOR $=$ adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.
*Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection. $\# \mathrm{p}$-value of likelihood ratio test.

Supplementary table 5: Multivariable logistic regression analyzing factors associated with the recognition of other risk factors (Ctd).

Characteristic	Having a previous history of lung disease		Having a previous history of cancer		Having had treatment figr any cancer in the past		Having a close relative with lung cancer	
	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$	AOR (95\% CI)*	p-ralue ${ }^{\text {\# }}$	AOR (95\% CI)*	p-value ${ }^{\text {\# }}$
Age group 18 to 44 45 or older	$\begin{gathered} \text { Ref } \\ 1.14(0.96-1.36) \end{gathered}$	0.13	$\begin{gathered} \text { Ref } \\ 1.07(0.90-1.26) \end{gathered}$	0.44	$\begin{gathered} \text { Ref } \\ 1.03(0.88-1.21) \end{gathered}$	$\begin{aligned} & \vec{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} .72 \\ & \stackrel{3}{3} \\ & \stackrel{\rightharpoonup}{\rightharpoonup} \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.16(0.98-1.36) \end{gathered}$	0.08
Gender Male Female	$\begin{gathered} \text { Ref } \\ 1.06(0.89-1.26) \end{gathered}$	0.51	$\begin{gathered} \text { Ref } \\ 0.98(0.83-1.16) \end{gathered}$	0.83	$\begin{gathered} \text { Ref } \\ 1.04(0.88-1.23) \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{9} .63 \\ & \stackrel{y}{2} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.30(1.10-1.54) \end{gathered}$	0.002
Educational level Secondary or below Above secondary	$\begin{gathered} \text { Ref } \\ 1.11(0.97-1.27) \end{gathered}$	0.13	$\begin{gathered} \text { Ref } \\ 0.94(0.82-1.07) \end{gathered}$	0.34	$\begin{gathered} \text { Ref } \\ 1.10(0.97-1.25) \end{gathered}$	N	$\begin{gathered} \text { Ref } \\ 1.12(0.98-1.27) \end{gathered}$	0.09
Occupation Unemployed/housewife Employed Retired Student	$\begin{gathered} \text { Ref } \\ 1.26(1.07-1.49) \\ 1.41(0.89-2.24) \\ 1.03(0.80-1.31) \end{gathered}$	0.030	$\begin{gathered} \text { Ref } \\ 1.04(0.88-1.22) \\ 1.60(1.02-2.49) \\ 0.97(0.76-1.23) \end{gathered}$	0.20	$\begin{gathered} \text { Ref } \\ 1.01(0.87-1.19) \\ 0.99(0.65-1.49) \\ 1.24(0.98-1.57) \end{gathered}$		$\begin{gathered} \text { Ref } \\ 1.21(1.04-1.42) \\ 1.22(0.81-1.84) \\ 0.81(0.64-1.03) \end{gathered}$	0.002
Monthly income < 1450 NIS ≥ 1450 NIS	$\begin{gathered} \text { Ref } \\ 0.91(0.76-1.09) \end{gathered}$	0.29	$\begin{gathered} \text { Ref } \\ 1.08(0.91-1.27) \end{gathered}$	0.40	$\begin{gathered} \text { Ref } \\ 1.00(0.85-1.18) \end{gathered}$	$\begin{aligned} & \frac{3}{3} \\ & \text { 孪99 } \end{aligned}$	$\begin{gathered} \text { Ref } \\ 1.02(0.86-1.21) \end{gathered}$	0.82
Marital status Single Married Divorced/Widowed	$\begin{gathered} \text { Ref } \\ 1.01(0.86-1.19) \\ 0.95(0.66-1.38) \end{gathered}$	0.93	$\begin{gathered} \text { Ref } \\ 0.98(0.84-1.14) \\ 1.15(0.80-1.64) \end{gathered}$	0.63	Ref $1.11(0.74-1.02)$ $1.01(0.71-1.44)$	$\begin{aligned} & \frac{5}{3} \\ & \frac{3}{8} 36 \\ & \frac{9}{9} \\ & \frac{0}{3} \end{aligned}$	$\begin{gathered} \text { Ref } \\ 0.86(0.74-1.00) \\ 0.86(0.61-1.22) \end{gathered}$	0.14
Residency Gaza Strip WBJ	$\begin{gathered} \text { Ref } \\ 0.98(0.83-1.15) \end{gathered}$	0.77	$\begin{gathered} \text { Ref } \\ 1.01(0.87-1.19) \end{gathered}$	0.86	$\begin{gathered} \text { Ref } \\ 0.97(0.83-1.14) \end{gathered}$		$\begin{gathered} \text { Ref } \\ 1.17(1.00-1.36) \end{gathered}$	0.053
Having a chronic disease No Yes	$\begin{gathered} \text { Ref } \\ 1.02(0.85-1.21) \end{gathered}$	0.85	$\begin{gathered} \text { Ref } \\ 1.01(0.86-1.19) \end{gathered}$	0.91	$\begin{gathered} \text { Ref } \\ 0.86(0.74-1.02) \end{gathered}$		$\begin{gathered} \text { Ref } \\ 1.02(0.86-1.19) \end{gathered}$	0.84
Knowing someone with cancer No Yes	$\begin{gathered} \text { Ref } \\ 1.13(1.00-1.28) \end{gathered}$	0.06	$\begin{gathered} \text { Ref } \\ 1.47(031-1.66) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.30(1.15-1.46) \end{gathered}$	$\begin{gathered} \text { N } \\ \text { < } \\ \text { O } \\ \text { O } \end{gathered}$	$\begin{gathered} \text { Ref } \\ 1.11(0.98-1.24) \end{gathered}$	0.10
Ever smoked cigarettes and/or shisha No Yes	$\begin{gathered} \text { Ref } \\ 0.91(0.77-1.08) \end{gathered}$	0.28	$\begin{gathered} \text { Ref } \\ 0.88(0.75-1.03) \end{gathered}$	0.12	$\begin{gathered} \text { Ref } \\ 1.02(0.87-1.19) \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\text { W. }}{=} \\ & \stackrel{\rightharpoonup}{=} \end{aligned}$	$\begin{gathered} \text { Ref } \\ 0.92(0.78-1.07) \end{gathered}$	0.28
Site of data collection Public Spaces Hospitals Primary healthcare centers	$\begin{gathered} \text { Ref } \\ 1.30(1.45-1.50) \\ 1.52(1.28-1.80) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.40(1.22-1.61) \\ 1.86(1.58-2.19) \end{gathered}$	<0.001	$\begin{gathered} \text { Ref } \\ 1.16(1.01-1.33) \\ 1.70(1.45-1.99) \end{gathered}$		$\begin{gathered} \text { Ref } \\ 1.08(0.94-1.24) \\ 1.14(0.98-1.34) \end{gathered}$	0.23
AOR= adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.*Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, ręsidency, having a chronic disease, knowing someone with cancer, smoking history, and site ofdata collection.								

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-ctional studies

Section/Topic	Item \#	Recommendation $\quad \stackrel{\bigcirc}{\text { a }}$	Reported on page \#
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2-3
Introduction			4
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper $\overrightarrow{0}$	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, fol W -up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Gi受e diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	N/A
Bias	9	Describe any efforts to address potential sources of bias	N/A
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grows were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(e) Describe any sensitivity analyses	N/A
Results		O.	

[^4]| Participants | 13* | (a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examin for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 8 |
| :---: | :---: | :---: | :---: |
| | | (b) Give reasons for non-participation at each stage O | 8 |
| | | (c) Consider use of a flow diagram | N/A |
| Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on eme empres and potential confounders $\stackrel{\stackrel{e x}{2}}{\stackrel{\text { Nan }}{2}}$ | 8-9 |
| | | (b) Indicate number of participants with missing data for each variable of interest N | N/A |
| Outcome data | 15* | Report numbers of outcome events or summary measures | 11 |
| Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precisio (eg, 95\% confidence interval). Make clear which confounders were adjusted for and why they were included | 12-17 |
| | | (b) Report category boundaries when continuous variables were categorized | N/A |
| | | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful tim $\stackrel{\rightharpoonup}{\text { e }}$ period | N/A |
| Other analyses | 17 | Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses | N/A |
| Discussion | | | |
| Key results | 18 | Summarise key results with reference to study objectives | 18 |
| Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuess both direction and magnitude of any potential bias | 21 |
| Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of © similar studies, and other relevant evidence | 18-21 |
| Generalisability | 21 | Discuss the generalisability (external validity) of the study results | 21 |
| Other information | | 흘 | |
| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | 22 |

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in ce্厄్రnort and cross-sectional studies.
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan@les of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.steobe-statement.org.

[^0]: For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

[^1]: $\mathrm{AOR}=$ adjusted odds ratio, $\mathrm{CI}=$ confidence interval, $\mathrm{WBJ}=$ West Bank and Jerusalem.
 *Adjusted for age-group, gender, educational level, occupation, monthly income, marital status, residency, having a chronic disease, knowing someone with cancer, smoking history, and site of data collection.

[^2]: COR= adjusted odds ratio, $\mathrm{CI}=$ confidence interval, WBJ= West Bank and Jerusalem.

[^3]: For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

[^4]: For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

