Protocol for faecal microbiota transplantation in irritable bowel syndrome: the MISCEAT study – a randomised, double-blind cross-over study using mixed microbiota from healthy donors

Jakub Hurych, Jiri Vejmelka, Lucie Hlinakova, Lenka Kramna, Vladyslav Larionov, Michal Kulich, Ondrej Cinek, Pavel Kohout

ABSTRACT

Introduction Several studies have demonstrated dysbiosis in irritable bowel syndrome (IBS). Therefore, faecal microbiota transplantation, whose effect and safety have been proven in Clostridioides difficile infections, may hold promise in other conditions, including IBS. Our study will examine the effectiveness of stool transfer with artificially increased microbial diversity in IBS treatment.

Methods and analysis A three-group, double-blind, randomised, cross-over, placebo-controlled study of two pairs of gut microbiota transfer will be conducted in 99 patients with diarrhoeal or mixed type of IBS. Patients aged 18–65 will be randomised into three equally sized groups: group A will first receive two enemas of study microbiota mixture (deep-frozen stored stool microbiota mixed from eight healthy donors); after 8 weeks, they will receive two enemas with placebo (autoclaved microbiota mixture), whereas group B will first receive placebo, then microbiota mixture. Finally, group C will receive placebos only. The IBS Severity Symptom Score (IBS-SSS) questionnaires will be collected at baseline and weeks 3, 5, 8, 11, 13, 32. Faecal bacteriome will be profiled before and regularly after interventions using 16S rDNA next-generation sequencing. Food records, dietary questionnaires, anthropometry, bioimpedance, biochemistry and haematology workup will be obtained at study visits during the follow-up period. The primary outcome is the change in the IBS-SSS between the baseline and 4 weeks after the intervention for each patient compared with placebo. Secondary outcomes are IBS-SSS at 2 weeks after the intervention and 32 weeks compared with placebo and changes in the number of loose stools, Bristol stool scale, abdominal pain and bloating, anthropometric parameters, psychological evaluation and the gut microbiome composition.

INTRODUCTION

Irritable bowel syndrome (IBS) is characterised as recurrent abdominal pain on average at least one/day/week in the last 3 months, associated with two or more of the following criteria: (1) related to defecation; (2) associated with a change in the frequency of stool and (3) associated with a change in the form (appearance) of stool. It is common among the adult Europid population (approx. 10%), but its aetiology is still unknown. It may, among other causes, include microinflammation, disturbance of the brain–gut axis, inadequate secretion of bile acids, increased permeability of the gut epithelial barrier, or gut dysbiosis. Dysbiosis in IBS has been suggested by several studies. There are indications that Firmicutes may be increased, whereas Veillonella and Faecalibacterium decreased. Among Actinobacteria, a
decrease in *Bifidobacterium* was noted, and among *Proteobacteria, Enterobacteriaceae* were increased. Conflicting and heterogeneous results were reported for *Bacteroidetes*. The major limitation of available studies is their cross-sectional character, which may not be enough in a disease where diarrhoeal episodes alternate with normal stool composition or constipation.

The faecal microbiota transplantation (FMT) has gained popularity by its remarkable efficacy in recurrent *Clostridioides difficile* infections, where it has now become a recognised life-saving therapy. The first published randomised, double-blinded study on FMT in IBS, published in 2018 when starting our study, used stool intervention from an allogeneic donor or autologous stool. The intervention was centred on a well-defined group of IBS of predominantly diarrhoeal form. The stool was transferred by colonoscopy to the cecum. The primary outcome was an improvement in the IBS-Severity Symptom Score (IBS-SSS). The treatment was associated with a significant effect at 3 months but not at 12 months postintervention. This study used single donors and did not assess stool microbiota. Thus, the transferred microbiota likely varied between transfers both in their composition and in their diversity. Since then, more studies focused on FMT in IBS have been carried out. They differed in design, but none of them used a mixed microbiota from multiple donors as the active substance. Furthermore, a recent meta-analysis of randomised control trials on FMT in IBS (including the above-mentioned articles) pointed out insufficient evidence quality to support recommending FMT in the treatment of IBS.

Our study protocol aims to test whether FMT of mixed microbiota from several selected donors can alleviate symptoms of IBS measured by IBS-SSS 4 weeks after the intervention, as compared with autoclaved placebo. The secondary study aims to test the acute (after 2 weeks) and the long-term effect (after 6 months) on symptoms relief. We also focus on the number of loose stools, Bristol stool scale, abdominal pain and bloating, body mass index (BMI), fat content, waist circumference, skinfold thickness, psychological evaluation and the gut microbiome composition.

We hypothesised that the transfer of active microbiota of high diversity can lead to changes in the patient’s gut microbiome composition and/or function to alleviate IBS symptoms.

METHODS AND ANALYSIS

Study design

This is a three-group, double-blind, placebo-controlled, randomised, cross-over study in adult patients diagnosed with IBS (diarrhoeal or mixed form) according to Rome IV criteria. Each study subject will undergo two pairs of FMT (a total of four enemas for each patient), with the pairs of transfers being 8 weeks apart. The active intervention substance is a mixed stool microbiota derived from healthy individuals who were preselected for high alpha diversity of their microbiome and distance in community composition from IBS patient microbiota. Placebo is the same mixture, inactivated by autoclaving.

The study subjects are randomly assigned to one of three groups: (A) enema with active substance first and with placebo second or (B) enema with placebo first and active substance second or (C) enemas of placebo only (detailed scheme in figure 1). Eligible participants will be followed up for 32 weeks after the first intervention to monitor symptom severity scoring of IBS (IBS-SSS), with regular profiling of their gut microbiome and other parameters like the number of loose stools, Bristol stool scale, abdominal pain and bloating, BMI, fat content, waist circumference, skinfold thickness and psychological evaluation.

The placebo group is planned because of the unknown onset and duration of the intervention effect: if the beginning of an effect is delayed, or if it persists for a long time, simple cross-over design would not have sufficient power due to the carry-over effect. In case the FMT was associated with significant but not durable amelioration of the status, the control group would still increase the statistical power.

This study protocol is reported as per the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines (for the SPIRIT checklist see online supplemental appendix 1).

Study setting

The participants are recruited at a single centre, the Department of Internal Medicine, Thomayer University Hospital in Prague, Czech Republic. This hospital has approximately 1000 beds, including 80 in intensive care units, serves approximately 50 000 patients per year. The centre is experienced in treating patients with IBS and other functional gastrointestinal disorders, with about 200 such patients registered and further subjects coming for consultations from other workplaces to this tertiary referral centre.

Recruitment and eligibility criteria

Stool donors

Stool donor candidates were recruited among blood donors at Thomayer University Hospital and medical students in their first year of study (ie, preclinical) from the second Faculty of Medicine, Charles University, Prague. We obtained stool samples from 58 such candidates fulfilling the inclusion criteria (table 1). Based on their high bacterial alpha-diversity and by the position on the ordination plot of the weighted UniFrac distance against 46 patients with IBS-D (figure 2), 14 candidates proceeded to the safety screening, where by 8 passed it (for reasons of candidate’s exclusion, see figure 3).

After 14 potential donors were selected based on the microbiota composition, they were screened for infectious diseases and clinically examined as indicated by the European consensus conference on FMT in clinical practice.
guidelines14 (box 1). All subjects were also repeatedly tested for SARS-CoV-2 from both nasopharyngeal swab and stool. Six candidates were excluded (for reasons, see figure 3), whereas eight became regular stool donors. These eight donors were regularly investigated as follows:

- At every donation: by questionnaire for gastrointestinal symptoms, antibiotic usage, unprotected sex, travelling to exotic countries; clinical signs of COVID-19; the presence of SARS-CoV-2 in the donated stool.
- Every 4 weeks: for SARS-CoV-2 from nasopharyngeal swab.
- Every 8–12 weeks: for all other stool tests mentioned in box 1.

Figure 1 Per-protocol intervention scheme: the visits, questionnaires and samples. IBS-SSS, Irritable Bowel Syndrome Severity Symptom Score.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Inclusion and exclusion criteria for FMT donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion</td>
<td>Adults aged 18–65 years</td>
</tr>
<tr>
<td></td>
<td>BMI 18.5–27 kg/m(^2)</td>
</tr>
<tr>
<td></td>
<td>Lack of restrictive diets (diet discussed with experienced gastroenterologist)</td>
</tr>
<tr>
<td></td>
<td>Bristol stool scale usually between 3 and 4</td>
</tr>
<tr>
<td></td>
<td>High alpha diversity and significant difference in beta-diversity from patients (using 16S rDNA sequencing)</td>
</tr>
<tr>
<td></td>
<td>Expected to donate regularly</td>
</tr>
<tr>
<td></td>
<td>Consented in writing</td>
</tr>
<tr>
<td>Exclusion</td>
<td>Any chronic GI disease in patient's history (coeliac disease, inflammatory bowel disease, irritable bowel syndrome, colorectal carcinoma) or active acute GI issues (infectious gastroenteritis or enterocolitis, frequent bloating, diarrhea or vomiting)</td>
</tr>
<tr>
<td></td>
<td>Chronic disease in patient’s history (cancer, autoimmune conditions, type 2 diabetes mellitus, coronary heart disease, hypertension, hypercholesterolaemia, gout)</td>
</tr>
<tr>
<td></td>
<td>Clostridiodes difficile infection in patient’s history</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma in family history</td>
</tr>
<tr>
<td></td>
<td>Any restrictive diet habits (raw-vegans, fruitarians, keto or carnivore)</td>
</tr>
<tr>
<td></td>
<td>Any systemic antibiotics in the last 6 months</td>
</tr>
<tr>
<td></td>
<td>Using proton-pump inhibitors in the last 6 months</td>
</tr>
<tr>
<td></td>
<td>Regular unprotected sex with unknown persons</td>
</tr>
</tbody>
</table>

BMI, body mass index; FMT, faecal microbiota transplantation; GI, gastrointestinal.
of the plot could be their younger age. IBS, irritable bowel concentrating healthy and enriched subjects in the left part based on their microbiome’s alpha diversity. The reason for donors among healthy subjects in this half of the graph and the variability. Healthy subjects were enriched in negative 46.8% of variability; NMDS axis 2 represents 14.7% of the inclusion and exclusion criteria listed in table 4.

Figure 3 Process of donor selection and reasons for their excluding. ARB, antibiotic resistant bacteria.

Box 1 Laboratory screening of the FMT donors

Blood testing
- Hepatitis A, hepatitis B, hepatitis C and hepatitis E viruses (serology)
- HIV-1 and HIV-2 (p24 antigen)
- Treponema pallidum (serology)
- Strongyloides stercoralis (serology)
- Complete blood cell count with differential Creatinine, aminotransferases, bilirubin

Stool testing
- Clostridiodies difficile (cultures, antigen testing)
- Common enteric pathogens, including Salmonella, Shigella, Campylobacter, shiga toxin-producing Escherichia coli, Yersinia and Vibrio cholerae (cultures)
- Antibiotic-resistant bacteria (ARB), including vancomycin-resistant Enterococcus, metillin-resistant Staphylococcus aureus
- Gram-negative ARB including extended-spectrum β-lactamase-producing Enterobacteriaceae, and carbapenem-resistant Enterobacteriaceae/carbapenemase-producing Enterobacteriaceae (cultures)
- Norovirus, rotavirus, adenovirus, sapovirus (PCR)
- SARS-CoV-2 (reverse transcription-PCR)
- Common intestinal parasites, including Giardia intestinalis, Cryptosporidium parvum et hominis (cultures and PCR), Blastocystis hominis**, Dientamoeba fragilis** (both PCR only)

* The screening strategy is based on international consensus conference on stool banking for faecal microbiota transplantation in clinical practice**

** Based on the literature,** we decided to test both parasites but did not exclude the donors if they were tested positive and had no gastrointestinal symptoms. Blastocystis is believed to be commensal of the gut. Dientamoeba’s status is not exact; however, based on our experiment, it does not survive freezing at −80°C and thawing to 5°C when mixing the study microbiota mixture. Therefore, it cannot do any harm.

Study microbiota mixture for intervention

The intervention microbiota is a mixture of regular stool donations from the eight regular donors. The collection of stools for this purpose is already completed. The donors were advised to regularly defecate at their home toilet into a clean plastic bag placed in Fecotainer (Excretas Medical, NL) with an Anaerogen bag (Thermo Scientific, USA). This bag generated an anaerobic atmosphere during transport to ensure anaerobes survival. The stool was transported to the laboratory with the maximum allowable time until processing being 6 hours; the actual time was approximately 1.5 hours. The stool was weighed on arrival, inspected for blood admixture and immediately processed by blending with a solution consisting of sterile 0.9% saline (160 mL per 100 g of stool), sterile phosphate buffer saline at pH 7.4 (20 mL per 100 g of stool) and sterile 99.5% glycerol (20 mL per 100 g stool), which is approximately 10% of solution’s volume; therefore, it is unlikely to have laxative properties on administration. From our experience, ~105 mL of the study mixture represents ~40 g of stool. The mixture was then filtered through a sterilized stainless steel mesh of 0.8 mm pore size into a sterile plastic bottle, which was then immediately frozen at −80°C. Whenever possible (blending or postfiltration), the procedure was performed under a nitrogen atmosphere to protect obligate anaerobes. All stool portions were remixed together in a large stainless
steel bucket using an electric mortar mixer under anaerobic conditions and at low temperature (on ice).

Based on the recommendation from the Nanjing consensus, the bacterial cell content of the study microbiota mixture was quantified. We performed a real-time PCR of the 16S rRNA gene with a standard curve derived from bacterial culture and controls from previously used stool transplants from another centre. It was estimated that the cell count in the transfer ranged between 2×10^{12} and 1×10^{13} (depending on the expected composition of the microbiota as to the 16S gene count per an average bacterial cell). Unfortunately, the Nanjing consensus provides neither reference to the cell counting method (Box 1 therein) nor to control materials. Therefore more exact direct comparison of the requested quantities is not possible.

The mixed microbiota substance was divided into aliquots of 13–14 g (which is ~35 mL). Two-thirds of the tubes served as a placebo: they were immediately autoclaved at 121°C for 30 min with slow cooling. Presterilised tubes were used to ensure that autoclaved placebos would not be visually distinguishable from tubes with the active substance. Assignment of tubes to the autoclave, numbering, sealing and labelling were done under the guidance of a statistical unit member (see below).

All aliquot tubes are kept frozen at −80°C in the same type of plastic tubes, labelled by codes. Three such aliquots represent one dose for FMT (~40 g of stool, in ~105 mL). Aliquot into multiple 50 mL tubes instead of one larger volume was decided because of the availability of durable plastic, which must be both autoclavable and deep frost resistant.

Before administering, the study microbiota mixture will be thawed in a warm (37°C) water bath, with intermittent mixing by inverting the tubes.

Table 2 Inclusion and exclusion criteria for recipients of FMT

| Inclusion | Adults 18–65 years
Diagnosed with IBS-D or IBS-M according to the Rome IV criteria
Expected adherence to following the protocol
Written consent to the study |
| Exclusion | The use of antibiotics and probiotics within 1 month prior to faecal microbiota transplantation
History of inflammatory bowel disease or gastrointestinal malignancy, systemic autoimmune diseases (ongoing or in history)
Previous abdominal surgery (other than appendectomy or cholecystectomy or hernia repair or caesarean section)
HIV infection or other active infection
Renal or hepatic disease (both defined by biochemistry workup)
Diabetes mellitus, abnormal thyroid functions not controlled by thyroid medications
Bipolar disorder or schizophrenia (ongoing or history thereof), moderately severe depression defined by Patient Health Questionnaire-9 score ≥15
Anxiety defined by a Generalised Anxiety Disorder 7 score ≥10, with any organic causes that can explain the symptoms of IBS
Current pregnancy and lactation |

FMT, faecal microbiota transplantation; IBS, irritable bowel syndrome.

Randomisation, allocation and blinding

At visit 1, each patient is randomised into one of three equally sized groups (Figure 1) as described in the Study design section. Randomisation assignments are generated in advance in blocks of nine and stored in a protected database. For each patient, anonymous codes for tubes containing either active study microbiota mixture or placebo is received. Thus, the true assignment will remain concealed for the patients and the study staff until the end of the study observation period. The investigator is encouraged to maintain the blind as far as possible. The actual allocation must not be disclosed to the patient and/or other study personnel including other site personnel, monitors, corporate sponsors or project office staff; nor should there be any written or verbal disclosure of the code in any of the corresponding patient documents.

Study intervention

Study substance is administered during visit 2+3 and then again 7+8 as a retention colon enema and will be held optimally for at least 30 min. Bowel preparation is applied the day before the intervention (prior to visit 2 and visit 7) (natrii picosulfas 10 mg, magnesii oxidum leve 3, 5 g, acidum citricum 12 g). No preparation is performed before the second enema in the pair (visits 3 and 8).

A rectal tube is inserted into the rectum, and the enema is applied. Application kit (Irrigator PN 0462/E/93, Erilens, Czechia) is used. After the enema is applied, the patient position is changed to enable the study substance to be spread within the colon. The exact time of the enema completion is recorded as well as the enema retention time.
OUTCOMES

Primary outcome
The primary outcome is the change in the IBS-SSS in the active microbiota group relative to the placebo group. The change will be evaluated as the difference between the score at 4 weeks after the intervention (study weeks 5 or 13, respectively, see figure 1) and the baseline score (week −1 in group A or week 8 in group B).

Secondary outcomes
- The acute change in the IBS severity symptom score (IBS-SSS) between baseline and two weeks after intervention (study weeks 3 and 11, respectively, see Figure 1).
- The long-term change in the IBS severity symptom score (IBS-SSS) between baseline (week -1) and week 32 (see Figure 1). The long term change will compare group C (placebo only) to merged groups A+B (active study microbiota mixture).
- Following outcomes compare changes in the active microbiota group relative to the placebo group between baseline and study week 32:
 - Quantity of loose stools per day
 - Stool consistency evaluated by the Bristol Stool Scale.
 - Abdominal pain measured by the Visual Analogue Scale.
 - Frequency of bloating per week.
 - Body mass index in kg/m²
 - Body fat mass estimated by measuring combined skinfold thickness in millimetres at given locations (biceps, triceps, subcapular, suprailliac).
 - Percentage of body fat mass measured by bioelectrical impedance analysis.
 - Waist circumference in centimetres.
 - The psychological and well-being effects of the therapy scored by IBS-QoL questionnaires.
 - The faecal microbiome’s alpha diversity measured by the Chao index.
 - The faecal microbiome’s beta diversity assessed by the quantitative Bray-Curtis index ordinated by non-metric multidimensional scaling.
 - Quantity of Blastocystis sp. assessed by a specific quantitative PCR assay measured in genomic equivalents per µL DNA.

Data collection and follow-up

Timing of assessments
At visit 1 (the randomisation), the patient is given detailed instructions and thoroughly instructed by the study team. The patients are asked to keep the identical type of diet throughout the observation. They are asked to regularly (once a week) fill the study questionnaire. A study team member sends that via the Survey Monkey smartphone application, an online survey development cloud-based software. Relevant data are entered in a structured manner (frequency of defecation, Bristol stool scale, pain measures, other symptoms, dietary records, etc). This member also frequently communicate with study participants and answer any questions regarding the study to keep the patient’s adherence. An overview of the examinations at each visit and the timing of the study visits could be seen in table 3.

Irritable Bowel Syndrome Severity Scale Score
The IBS-SSS is a five-question survey that reflects (1) the severity of abdominal pain, (2) frequency of abdominal pain, (3) severity of abdominal distention, (4) satisfaction with bowel habits and (5) interference with quality of life over the past 10 days. Subjects respond to each question on a 100-point Analogue Scale; thus, the score can range from 0 to 500, with higher scores indicating more severe symptoms.¹⁶

<table>
<thead>
<tr>
<th>Table 3</th>
<th>The study visits with planned activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit</td>
<td>0</td>
</tr>
<tr>
<td>Study week</td>
<td>?</td>
</tr>
<tr>
<td>Eligibility evaluation (E)/randomisation (R)/wrap-up visit (W)</td>
<td>E</td>
</tr>
<tr>
<td>Colonic enema with the study substance (active microbiota or placebo)</td>
<td>XX</td>
</tr>
<tr>
<td>Irritable bowel syndrome severity scale score</td>
<td>XX</td>
</tr>
<tr>
<td>Weight, height, bioimpedance</td>
<td>XX</td>
</tr>
<tr>
<td>Detailed anthropometry</td>
<td>XX</td>
</tr>
<tr>
<td>Serum workup, archiving serum+plasma</td>
<td>XX</td>
</tr>
<tr>
<td>Psychological evaluation</td>
<td>XX</td>
</tr>
<tr>
<td>Dietary questionnaire and advice, evaluation of food records†</td>
<td>XX</td>
</tr>
<tr>
<td>Stool samples for microbiome analysis</td>
<td>XX</td>
</tr>
</tbody>
</table>

*Here, the patient is offered a roll-over into an observational study with active microbiota administration. The patients will be informed of this option at the start of the study and regularly reminded.
†For IBS-SSS questionnaires assessing the primary outcome, please see the intervention scheme in figure 2. Their administering is not linked to study visits.
IBS-SSS, Irritable Bowel Syndrome Severity Symptom Score.
At eligibility screening, the patients is given instructions on how to fill the IBS-SSS questionnaires (via the Survey Monkey application). The questionnaires are filled in at eligibility screening and then at week –1, 3, 5 (before the first intervention), at the presumed peak of its effect, and after further 2 weeks), then at weeks 8, 11, 13 (similarly with the second intervention), and finally at week 32.

Weight, height, bioimpedance

Bodyweight, height and bioimpedance is examined during visit 0, 1, 4, 5, 9 and 11. Medical Body Composition Analyzer Seca mBCA 515, (Seca, Germany) is used to measure changes in body composition (8-point bioelectrical impedance analysis at a frequency of 5-50 kHz with a current of 100 µA), scanned performing with three-pairs of hand electrodes and two pairs of leg electrodes, measurements performed with light clothing and without metal objects (jewellery, keys). The weight is determined in patients wearing underwear using the Seca mBCA 515. The height is determined by a standardised technique with a metal stadiometer with an accuracy of 1 mm. Seca analytics V.115 software is used to analyse the obtained data (Seca, Hamburg, Germany). The measurements is performed according to the NIHR (National Institute for Health and Care Research) Southampton Biomedical Research Centre standard protocol (Seca mBCA, NIHR Southampton Biomedical Research Centre, 2014).

Detailed anthropometry

It is performed by nutritional therapists in visit 1, 5, 10 and 11. It involves weight, abdominal (waist) circumference, buttocks (hip) circumference, thigh circumference and skinfolds (thigh, triceps, subscapular, suprailiacal).

Serum workup, archiving serum +plasma

Blood is sampled at visits 0, 4, 9, 11 and will include: (A) serum+plasma archiving, (B) serum workup. Laboratory panel testing will comprise sodium, potassium, chloride, urea, creatinine, glucose, calcium, phosphate, total protein and albumin, AST (aspartate transaminase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transferase), bilirubin, lipid panel, HSCRP (high-sensitive C-reactive protein), blood cell count with differential count, INR (international normalized ratio), urine analysis (sediment and biochemistry). One plasma and one serum aliquots are made at these visits and frozen for forensic reasons.

Psychological evaluation

It is performed during visit 0 and visit 11 using a structured questionnaire evaluated by a qualified psychologist.

Dietary questionnaire and advice, evaluation of food records

It is performed by nutritional therapists at visit 4 and 9 and includes: evaluation of food records will include: overall daily energy intake, proteins, carbohydrates and lipids calculations and dietary fibre.

Gut microbiome composition

Faecal samples are collected at home by the subjects in the same way as described for donors above and at time points indicated in the sections above. If not immediately brought to the visit, the stool is frozen in a home freezer and then transported in a frozen tube container. DNA extraction is performed using the PowerSoil kit (Qiagen), and the bacteriome is characterised by 16S rDNA amplification profiling using the tagged primers according to Schloss protocol12 and sequencing on a MiSeq instrument with the 2x250 bases sequencing kit (both Illumina, USA).

The first steps of bioinformatic analysis will be performed in the DADA2 package.18 Statistical analyses and visualisation will be then performed in R with its Phylsoeq package. The functional potential of the bacteriome will be assessed using the PICRUST software, which predicts functional capabilities based on the 16S rDNA profiles.

The virome is assessed in a total of four stool samples per patient at visit 0, 4, 9 and 11. The aim of this analysis is to assess the repertoire of major bacteriophages. The virome analysis is based on metagenomic sequencing of total DNA from a virus-enriched stool sample, according to the previously published protocol.19

Finally, a simple PCR-based semiquantitative parasite screening aims to identify several mostly benign unicellular parasites (eg, Blastocystis, Dientamoeba, Entamoeba, Endolimax).

Safety monitoring

All data are regularly monitored by the research team for any adverse events, and all potential adverse events are recorded. Contacts to study coordinators active 24/7 are provided in case adverse effects occur. If any concerns are identified during the screening or clinical assessment of donors or recipients, further clinical evaluation and/or examination is immediately realised. All the concerns during the study are assessed, and the recipient will be withdrawn if this is thought to be in his best interest. A data monitoring and safety committee (DMSC) has been established and based on the data from the planned interim analysis, has the right to terminate the study if the frequency of severe adverse events crosses the 5% line (for a closer description of DMSC, its responsibilities and premature termination of the study see online supplemental appendix 2.

Sample size and power calculation

The study is powered to detect an absolute improvement of 6.5 points in IBS-SSS score over 8 weeks (which is 25% of the expected mean baseline score 250) between the active microbiota intervention compared with placebo. With a sample size of 33 per group (99 total), the probability of detecting such an improvement is at least 0.9. This calculation assumes 20% drop-out rates, variance inIBS-SSS scores 100 (see the results in Palsson et al20), a correlation between the final and baseline IBS-SSS scores.

0 (with a positive correlation, the power is higher), and no carry-over or temporal effect.

Data management
Data from IBS-SSS, frequency of urgent defecations, Bristol Stool Scale, abdominal pain and bloating are collected and stored via the application Survey Monkey. All anthropometric data are entered and stored in password-protected platforms integrated within the hospital information system. Only the researchers involved in the study have access to the final study dataset (IBS-SSS, frequency of urgent defecations, Bristol stool scale, abdominal pain and bloating), which will be shared in an anonymised form via the Zenodo repository. The only data in this manuscript are bacteriome data; their anonymised form will be available on reasonable request.

Statistical analyses
The primary outcome analysis will be based on the difference in IBS-SSS scores over the second treatment period (week 14 vs week 8) minus the change over the first treatment period (week 5 vs week –1). This difference will be used as a response in a linear model, with intercept corresponding to the temporal effect (seen in the placebo group C), an indicator of group A corresponding to the cross-over effect (resulting from administration of placebo after active microbiota) and differences in indicators for groups A and B modelling the effect of active microbiota. A robust sandwich estimator of the variance matrix will be used to adjust for potentially unequal variances between the groups. Analyses of secondary outcomes will proceed by a similar methodology, comparing absolute or relative differences of the postintervention measure of each outcome relative to its baseline value. The Consolidated Standards of Reporting Trials 2010 guidelines will be followed in reporting the main trial results.

Study status
The first patient was recruited on 17 June 2021, and the first intervention was applied on 29 July 2021. As of 17 August 2021, 12 patients have signed the informed consent, and 6 interventions have been applied. It is expected that the study will be completed in December 2023.

Patient and public involvement
Information on the study has been spread at conferences, in newspapers and by local gastroenterologists contacted by researchers. Everyone interested got information material, which allowed the potential subjects to read about the study and reach the researchers if they wanted to participate. Participants were not involved in the development, recruitment of other participants or conduct of the study. All recipients are asked about any possible adverse effects of treatment at regular visits planned according to figure 1; a thorough investigation will be conducted if any occur. After completing the data analysis, all recipients will receive information about their results and be offered a roll-over (receiving an active study microbiota mixture).

ETHICS AND DISSEMINATION
Ethics approval for this study was granted in June 2018 by the Ethics Committee of the Institute for Clinical and Experimental Medicine and Thomayer Hospital (Vídeňská 800, 140 59 Prague 4, Czech Republic). Involvement in this study is completely voluntary; donors and recipients are required to provide written informed consent prior to participation in the study (see online supplemental appendixs 3; 4). Recipients and their caregivers are informed of unexpected findings or unrecognised conditions and by possible future usage of their specimens in ancillary studies by trained physician or nurse; further medical care will be arranged. Study donors received financial compensation to pay for the required travelling costs when donating the stool. The patient will be offered a roll-over into an observational study with the administration of active microbiota. The patients are informed of this option at the start of the study and regularly reminded.

We aim to publish findings in impact peer-reviewed international journals. Gastroenterologists, internists and other careproviders will be informed through the national conference meetings, journals and patient groups meetings.

Protocol amendment number:
01. Modification of the study protocol will be communicated to the ethics committee.

Author affiliations
1Department of Medical Microbiology, Charles University Second Faculty of Medicine, Prague, Czech Republic
2Department of Paediatrics, Charles University Second Faculty of Medicine, Prague, Czech Republic
3Department of Internal Medicine, Charles University Third Faculty of Medicine, Prague, Czech Republic
4Department of Probability and Statistics, Charles University, Prague, Czech Republic

Acknowledgements We thank Peter Holger Johnsen, Linn Sjøevling and Hege Hansen from University Hospital of North Norway Harstad, Norway and Rasmus Goll from University Hospital of North Norway Tromsø, Norway, for valuable advice regarding the study design and study microbiota mixture preparation. We also thank Marcela Koutova, Jan Tkadlec, Daniela Lízarova, Kamila Dundrova, Marie Brájková, Milena Antusková, Barbora Dravotová, Jana Prasilová, Ales Biksi, all from Department of Medical microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague for their laboratory work for the microbiological screening of the study donors.

Contributors OC, PK, JH, JV and MK contributed to the conception and design of the study. OC, PK, JH and JV drafted the protocol with input from all other authors. JV and PK contributed to the patients recruitment. JH, LV, LK and OC contributed to the microbiome analysis for donor selection. JH, OC and JV contributed to the donor screening. LV, JH and OC contributed to the study microbiota mixture preparation. MK contributed to the power size calculations and statistical analysis. VL contributed to the randomisation. JH and JV contributed equally to writing this paper, OC and PK are last authorship.

Funding This research received funding from the Ministry of Health of the Czech Republic, grant Nr. 19-01-00127. Funding received from this grant support direct research cost. All rights reserved.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Appendix 1 SPIRIT CHECKLIST

<table>
<thead>
<tr>
<th>Reporting Item</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative information</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>#1</td>
</tr>
<tr>
<td>Trial registration</td>
<td>#2a</td>
</tr>
<tr>
<td>Trial registration: data set</td>
<td>#2b</td>
</tr>
<tr>
<td>Protocol version</td>
<td>#3</td>
</tr>
<tr>
<td>Funding</td>
<td>#4</td>
</tr>
<tr>
<td>Roles and responsibilities: contributorship</td>
<td>#5a</td>
</tr>
<tr>
<td>Roles and responsibilities: sponsor contact information</td>
<td>#5b</td>
</tr>
<tr>
<td>Roles and responsibilities: sponsor and funder</td>
<td>#5c</td>
</tr>
<tr>
<td>Sections</td>
<td>#</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Roles and responsibilities:</td>
<td>5d</td>
</tr>
<tr>
<td>committees</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6a</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6b</td>
</tr>
<tr>
<td>Background and rationale:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods: Participants,</td>
<td></td>
</tr>
<tr>
<td>interventions, and outcomes</td>
<td></td>
</tr>
<tr>
<td>Study setting</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions: description</td>
<td>11a</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>11b</td>
</tr>
</tbody>
</table>
modifications of interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving / worsening disease)

Interventions: adherence

Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)

Interventions: concomitant care

Relevant concomitant care and interventions that are permitted or prohibited during the trial

Outcomes

Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended

Participant timeline

Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)

Sample size

Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations

Recruitment

Strategies for achieving adequate participant enrolment to reach target sample size

Methods:
Assignment of interventions (for controlled trials)

Allocation: sequence generation

Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or
assign interventions

Allocation concealment mechanism #16b Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned

Allocation: implementation #16c Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions

Blinding (masking) #17a Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how

Blinding (masking): emergency unblinding #17b If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant’s allocated intervention during the trial

Methods: Data collection, management, and analysis

Data collection plan #18a Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol

Data collection plan: retention #18b Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols

Data management #19 Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol
Statistics: outcomes	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	18
Statistics: additional analyses	Methods for any additional analyses (eg, subgroup and adjusted analyses)	18
Statistics: analysis population and missing data	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	18

Methods: Monitoring

| Data monitoring: formal committee | Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed | Appendix |
| Data monitoring: interim analysis | Description of any interim analyses and stopping guidelines, including who will have Access to these interim results and make the final decision to terminate the trial | Appendix |

| Harms | Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct | 17 |
| Auditing | Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor | 20 |

Ethics and dissemination

| Research ethics approval | Plans for seeking research ethics committee / institutional review board (REC / IRB) approval | 19 |
| Protocol amendments | Plans for communicating important protocol | 20 |
modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)

Consent or assent #26a Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) 19

Consent or assent: ancillary studies #26b Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable 19

Confidentiality #27 How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial 19

Declaration of interests #28 Financial and other competing interests for principal investigators for the overall trial and each study site 20

Data access #29 Statement of who will have Access to the final trial dataset, and disclosure of contractual agreements that limit such Access for investigators 18

Ancillary and post trial care #30 Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation 19

Dissemination policy: trial results #31a Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions 19

Dissemination policy: authorship #31b Authorship eligibility guidelines and any intended use of professional writers 20

Dissemination policy: reproducible research #31c Plans, if any, for granting public Access to the full protocol, participant-level dataset, and statistical code 20

Appendices

Informed consent materials #32 Model consent form and other related documentation given to participants and authorised surrogates Appendix 2
Biological specimens #33 Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable

None The SPIRIT Explanation and Elaboration paper is distributed under the terms of the Creative Commons Attribution License CC-BY-NC. This checklist can be completed online using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai
APPENDIX 2
Charter and responsibilities of the Data Monitoring and Safety Committee

A Data Monitoring and Safety Committee (DMSC) has been established, and its lead by Clinical Study Center at Thomayer University Hospital, Prague. The DMSC is an independent organ from the study investigators. During the period of recruitment to the study, interim analyses will be supplied, in strict confidence, to the DMSC. In the light of these interim analyses, the DMSC will advise the study steering committee (SSC) if, in its view, the active intervention has been proven, beyond reasonable doubt, to be different from the placebo in some or all patients.

Based on the reports of DMSC, the Study steering committee (SSC) can then decide whether or not to modify recruitment to the study and its oncoming course. Unless this happens, however, the SSC, will remain ignorant of the interim results.

The frequency of interim analyses will depend on the judgement of the Chair of the DMSC, in consultation with the SSC. However, we anticipate that there might be two to three interim analyses and one final analysis.

The Chair of DSMC is Mr. Jiří Skopek, M.D., Ph.D. who is available on request at jiri.skopek1@ftn.cz

Premature termination of the study

An interim analysis is performed when 50% of patients have already got to Visit 5 (where primary outcome is evaluated.) The interim analysis is performed by a member of the study’s statistical unit who is blinded for the allocation of the active study mixture. The statistician will report to the DMSC. The DMSC will have unblinded Access to all data and discuss the interim-analysis results with the SSC. The SSC decides on continuation or termination of the study and will report to the central Ethics committee. The study will be ended if the frequency of severe adverse events crosses the 5% line. Severe adverse event is defined as that one requiring hospitalisation.
Appendix 3: Informed consent for FMT donors

Informovaný souhlas dospělé osoby s účastí na výzkumu změn střevního mikrobiomu u dospělých pacientů se syndromem dráždivého trávníku ve vědeckém projektu týmů Thomayerovy nemocnice a Fakultní nemocnice v Motope.

Vážená paní/vážený pane,

Proto si Vás dovoluji pozvat k účasti na projektu vědeckých týmů Thomayerovy nemocnice a Fakultní nemocnice v Motope. Přečtěte si, prosím, toto poučení. Pokud plně nerozumíte tomuto textu nebo pokud potřebujete doplňující informace, neváhejte se zeptat lékaře na emailu uvedeném níže. Pokud souhlasíte s Vaší účastí ve studii, vyplňte prosím kontaktní údaje níže dokumentu a podepíšte prosím prohlášení, které se nachází v závěru tohoto informovaného souhlasu. Vaše účast je dobrovolná. Tento souhlas můžete kdykoli zrušit, a to i bez udání důvodu.

Získání vzorku stolice by probíhalo ve vašem domácím prostředí. Stolice by bylo potřeba uchovat v běžném domácím mrazu (teplota -20°C), k odběru byste byli vybaveni jednoduchými odběrovými sety s návodom a poučen o jejich používání. Po domluvě se členy vědeckého týmu (kontakt níže) by vzorky byly převezeny na naše pracoviště a hluboce zamraženy (-80°C).

Celý proces je dvoufázový. Z prvního vzorku se provede molekulárně-genetická analýza a následné bioinformatické zpracování dat. Na základě výsledků bude vybráno asi 10-20 dárců, které kontaktujeme na základě informací uvedených níže. Splní-li kritéria vhodného dárců (pro vyžádání lze napsat na mail jiri.vejmelka@ftn.cz nebo zavolat na tel.č. 731446619), budou poté znovu požádána o darování stolice.

V tomto projektu žádné dbáme o bezpečnost osobních údajů podle platných zákonů. Zejména je pak zcela zachovaná úplná anonymita pacienta při odesílání vzorků mimo naše pracoviště nebo při
Appendix 3: Informed consent for FMT donors

zveřejňování vědeckých výsledků získaných z naší práce v odborných časopisech. Odebrané vzorky a z nich získané části jsou v našich laboratořích skladovány na dobu neurčitou, odděleně od osobních dat. Pokud byste v budoucnu svůj souhlas odvolali, Vaše jméno a ostatní osobní data budou bez prodloužení vymazána z našich databází i papírových záznamů tak, aby se už nikdo nemohl dozvědět, komu vzorek patřil.

Bližší informace o nemoci jako takové můžete získat od členů vědeckého týmu:
MUDr. Jiří Vejmelka (Thomayerova nemocnice), tel: 731446619, email: jiri.vejmelka@ftn.cz
MUDr. Jakub Hurych (Fakultní nemocnice v Motole), tel. 224432089, email: jakub.hurych@lfmotol.cuni.cz

Souhlas se zpracováním osobních údajů (dále jen „Souhlas“) udělený ve smyslu zákona č. 101/2000 Sb., o ochraně osobních údajů a o změně některých zákonů, ve znění pozdějších předpisů a s Nařízením Evropského parlamentu a Rady (EU) 2016/679

Já, níže podepsaný

Jméno a příjmení: ………
Datum narození: …….
Rodné číslo: ………...
Kontaktní email: ……….
Telefonní číslo: ……

Souhlasím se zpracováním svých osobních údajů/ osobních údajů osoby jejíž jsem zákonním zástupcem Fakultní nemocnicí v Motole a Thomayerově nemocnicí v rozsahu těchto údajů:

Jméno, příjmení, titul, datum a místo narození, rodné číslo, národnost, pohlaví, místo trvalého pobytu, telefon, email, výška, hmotnost

Tento projev vůle je platný pouze v případě, že mé osobní údaje budou zpracovány pouze v rozsahu nezbytně pro dosažení účelu zpracování uvedeného v tomto souhlasném prohlášení a v souladu s příslušnou legislativou v platném znění.

Souhlas je poskytnut za účelem:
Zpracování vzorku stolice pro vědecko-výzkumnou činnost mající za cíl přispět k porozumění změn střevního mikrobiomu u dospělých pacientů se syndromem dráždivého tračníku

Souhlasím se zpracováním svých osobních údajů Fakultní nemocnicí v Motole a Thomayerově nemocnicí po dobu:

Do odebrání mého souhlasu

Souhlasím se zpřístupněním svých osobních údajů Fakultní nemocnicí v Motole a Thomayerově nemocnicí:
Fakultní nemocnice v Motole a Thomayerová nemocnice je oprávněna použít mé osobní údaje pouze v souladu s vyšším uvedeným účelem a po vyšší uvedenou dobu, nebo pro legitimní potřebu státních kontrolních
Appendix 3: Informed consent for FMT donors

orgánů a orgánů činných v trestním řízení.

Fakultní nemocnice v Motole a Thomayerova nemocnice je dále oprávněna poskytnout mé osobní údaje pouze subjektům spolupracujícím s Fakultní nemocnicí v Motole a Thomayerovou nemocnicí na dosažení primárního účelu, pro který je udělen tento souhlas. S takovými subjektmi se Fakultní nemocnice v Motole a Thomayerova nemocnice zavazuje uzavřít smlouvu obsahující stejné podmínky pro zpracování mých osobních údajů. Zpracování bude probíhat v souladu s příslušnými právními normami o ochraně osobních údajů a s Nařízením Evropského parlamentu a Rady (EU) 2016/679 ze dne 27. dubna 2016 o ochraně fyzických osob v souvislosti se zpracováním osobních údajů a o volném pohybu těchto údajů a o zrušení směrnice 95/46/ES (obecné nařízení o ochraně osobních údajů).

Byl/a jsem poučen/a o tom, že poskytnutí údajů je dobrovolné.

Dále jsem byl/a v souladu s příslušnou legislativou poučen/a:

● O svém právu tento souhlas odvolat, a to i bez udání důvodu,
● O svém právu přístupu k těmto údajům a právu na jejich opravu,
● O svém právu na vymazání těchto údajů, pokud dochází k jejich zpracování v rozporu s ochranou definovanou příslušnou legislativou nebo v rozporu s tímto souhlasem, nebo byl souhlas odvolán, svém právu podat stížnost u Úřadu pro ochranu osobních údajů.

Byl/a jsem také poučen/a o tom, že tato svá práva mohu uplatnit doručením žádosti na adresu: Fakultní nemocnice v Motole, Samostatné oddělení pověřence pro ochranu osobních údajů, V Úvalu 84, Praha 5.

Beru na vědomí, že odvolání tohoto souhlasu může ovlivnit dosažení účelu, pro který byl tento souhlas vydán, pokud tohoto účelu nelze dosáhnout jinak.

Prohlašuji, že jsem textu poučení porozuměl(a) a byl jsem lékařem srozumitelně informován(a) o povaze daného vyšetření a že jsem měl(a) možnost klást lékaři doplňující dotazy.

Na základě tohoto poučení dále prohlašuji, že souhlasím se zařazením svých vzorků do studie probíhající v Thomayerově nemocnici a Fakultní nemocnici v Motole, jejímž cílem je porozumět změnám složení střevního mikrobiomu u dospělých pacientů se syndromem dráždivého tračníku.

V ... dne

Jméno a příjmení vyšetřované osoby: ...

Podpis vyšetřované osoby ...

Prohlašuji, že jsem vysvětlil podstatu, účel a povahu odběrů pacientovi způsobem, který byl podle mého soudu srozumitelný.

Jméno a příjmení lékaře: ..

Podpis: ... Datum: ...
APPENDIX 4 – INFORMED CONSENT FORM FOR FMT RECIPIENTS (CZECH)

Informovaný souhlas patienta - studie fekální mikrobiální terapie u pacientů se syndromem dráždivého tračníku

Název studie: Fekální mikrobiální terapie u pacientů se syndromem dráždivého tračníku

Jméno pacienta:
Datum narození:
Pacient byl do studie zařazen pod číslem:
Odpovědný lékař:

1. Já, níže podepsaný (á) souhlasím s mou účastí ve studii. Je mi více než 18 let.

2. Byl (a) jsem podrobně informován (a) o cíli studie, o jejích postupech, a o tom, co se ode mě očekává. Lékař pověřený prováděním studie mi vysvětlil očekávané přínosy a případná zdravotní rizika, která by se mohla vyskytnout během mé účasti ve studii, a vysvětlil mi, jak bude postupovat při výskytu jejího nežádoucího průběhu. Beru na vědomí, že prováděná studie je výzkumnou činností. Beru na vědomí pravděpodobnost náhodného zařazení do jednotlivých skupin lišících se léčbou.

3. Informoval (a) jsem lékaře pověřeného studií o všech léčích, které jsem užíval (a) v posledních 3 měsících, i o těch, které v současnosti užívám. Bude-li mi nějaký lék předepsán jiným lékařem, budu ho informovat o své účasti v klinické studii a bez souhlasu lékaře pověřeného touto studií ho nevezmu.

4. Budu při své léčbě se svým lékařem spolupracovat a v případě výskytu jakéhokoliv neobvyklého nebo nečekaného příznaku ho budu ihned informovat.

5. Po celou dobu studie a další 4 tydny po jejím ukončení nebudu dárcem krve.

6. Porozuměl (a) jsem tomu, že svou účast ve studii mohu kdykoliv přerušit či odstoupit, aniž by to jakkoliv ovlivnilo průběh mého dalšího léčení. Moje účast ve studii je dobrovolná.

7. Při zařazení do studie budou moje osobní data uchována s plnou ochranou důvěrnosti dle platných zákonů ČR. Do mé původní vázající dokumentace budou moci na základě mého svolení uchovávat pouze údaje, které se těži nebo zde nějakým způsobem získané údaje. Pro tyto účely mohou být osobní údaje poskytnuty jiným než výše uvedeným subjektům pouze s myšlením vznikliní, které jsou anonymní data pod číslným kódem. V rámci výzkumného postupu mohou být osobní údaje poskytnuty pouze bez identifikačních údajů (anonymní data) nebo s mým výslovným souhlasem.

8. S mou účastí ve studii není spojeno poskytnutí žádné odměny.

9. Porozuměl jsem tomu, že mě jenom se nebude nikdy všímovat v referátech o této studii. Já pak naopak nebudu proti použití výsledků z této studie.

10. Převzal/a jsem podepsaný stejnopis tohoto informovaného souhlasu.

Podpis pacienta:
Podpis lékaře pověřeného touto studií: