Gender differences in bodyweight change following COVID-19 lockdown measures in the Netherlands: a prospective longitudinal study

Thijs van den Broek *, 1 Maria Fleischmann 2

ABSTRACT

Background The current study aimed to prospectively assess bodyweight change following the implementation of lockdown measures to contain the COVID-19 pandemic in the Netherlands and to explore the potentially moderating role of gender in this association.

Design Using Dutch DNB Household Survey panel data collected between 1993 and 2020, we estimated fixed-effects regression models of bodyweight change. Models were stratified by gender and formal tests of gender differences in coefficient estimates were performed.

Participants 4365 women and 4583 men aged 18–65 were included in the study. The total number of observations was 41 330.

Outcome measures The outcome of interest was self-reported bodyweight in kilograms. Additional analyses were performed using body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome.

Results The implementation of Dutch lockdown measures in 2020 was associated with bodyweight gain of approximately 800 g in working-age women compared with the 3 prior years. Bodyweight gain in 2020 relative to the prior years was significantly stronger for women than for men (F(4, 8947)=3.9, p<0.01). No evidence of bodyweight gain in working-age men was found.

Conclusion Results indicate that bodyweight gain following COVID-19 lockdown measures in the Netherlands was more pronounced among women than among men. Although necessary to contain the COVID-19 pandemic, lockdown measures may contribute to a different public health challenge in the rising prevalence of overweight and obesity.

INTRODUCTION

On 11 March 2020, the WHO declared the novel coronavirus SARS-CoV-2, also known as COVID-19, a pandemic. Almost immediately, countries started implementing the so-called lockdown measures, such as closures of schools and gastronomy and urgent calls to work from home whenever possible, in an effort to slow down the spread of the disease. Although necessary to contain the pandemic, these measures also affected people’s daily activities in a way that may compromise health, for instance through adverse lifestyle changes.

Shortly after the introduction of the first lockdown measures, scholars already specifically expressed concerns that such measures may result in bodyweight gain.1 2 Although initial evidence suggests that these concerns are justified (for reviews, see Bennett et al3 and Khan et al4), results of the work hitherto conducted should be interpreted with caution for multiple reasons. First, most earlier studies were cross-sectional or retrospective,3 4 which makes estimates of bodyweight change prone to recall bias.5 Second, existing studies have drawn almost exclusively on non-probability samples,3 4 and consequently results cannot be generalised.6 7 Third, only few studies have explored potential gender differences in the bodyweight implications of the measures to contain the COVID-19 pandemic. This is unfortunate because, as described in further detail later, such differences may be expected given the central role of stress in the presumed mechanism linking measures to contain the COVID-19 pandemic and changes in bodyweight.
The current study assesses the impact of the measures to contain the COVID-19 pandemic on the bodyweight of working-age women and men in the Netherlands. It extends existing work on the links between the implementation of lockdown measures and bodyweight change (1) by adopting a prospective approach, (2) by drawing on data from a random national sample and (3) by acknowledging that the bodyweight implications of lockdown measures may differ between women and men.

Background and hypotheses

In March 2020 the Dutch government announced the first general measures to contain the COVID-19 pandemic. Mid-March, the Netherlands went into a so-called intelligent lockdown that included closure of gastronomy, schools and sports clubs, and a travel ban. The government also made an urgent appeal to work from home whenever possible. These measures were extended through April. During the months of May and June, the previously taken lockdown measures were relaxed somewhat and the testing policy got expanded. Over the course of July and August, the number of new COVID-19 cases started rising again, but no new measures were taken yet. At the end of September, however, the Dutch government decided that, because of the rising number of infections, additional measures were needed again and a second lockdown was announced in October 2020. Measures of the first intelligent lockdown were reintroduced. On top of this, non-essential shops had to close. The second lockdown was extended until early 2021. During this period, wearing masks in public places became mandatory and a curfew was introduced. Measures remained in place until February 2021, when the implemented lockdown measures started gradually being relaxed. In response to rising infection rates and the emergence of the SARS-CoV-2 Omicron variant, restrictive measures were reimplemented from November 2021 onwards, and a complete lockdown, including closures of non-essential shops, was announced mid-December. It is important to note that rules and urgent guidelines regarding hygiene, keeping distance, group formation and working from home as much as possible had continuously remained in place since March 2020 and were emphasised time and again by the government.

The implemented measures had considerable implications for the personal lives of adults in the Netherlands, particularly among those of working age. In a survey commissioned by the Dutch Ministry of Health, Welfare and Sport collected among Dutch adults in the spring of 2020, the majority of working-age respondents reported substantial changes to their personal situation in the wake of the measures implemented to contain the COVID-19 pandemic.8 One in three working-age respondents reported having started to work from home and one in nine working-age respondents reported that the measures to contain the pandemic precluded them from performing their job altogether. One-sixth of the working-age respondents moreover reported taking care of children as schools and nurseries were closed. In contrast to respondents of working age, 89% of respondents aged 65 years and older reported that little had changed in their daily lives.8

The changes in the daily lives of the working-age population may be expected to have detrimental lifestyle implications. In the spring of 2020, Bhutani and Cooper1 already speculated ‘that increases in stress, anxiety, and boredom on a daily basis during the pandemic may be contributing to higher energy intake, sleep disturbances, and less exercise’ (p1576), which could ultimately result in bodyweight gain. Similarly, Mattioli et al2 warned that stress resulting from quarantine and isolation measures may lead to unhealthy dietary choices and reduced physical activity. Consistent with this reasoning, research suggests that Dutch adults were more likely to be physically inactive in the spring of 2020 than in a typical spring.8 In an online survey collected among a nationally representative sample in April 2020, 22% of respondents moreover reported an increased consumption of snacks and sweets since lockdown measures were in place and 14% reported eating more frequently overall.9 These findings from the Netherlands are in line with the results of studies conducted in other contexts,10 for example, in the USA,11 Canada,13 UK,14 Germany,15 16 France,17 Denmark,18 Spain,19 China20 and Japan.21 We therefore hypothesise that bodyweight increased among working-age women and men following the implementation of COVID-19 lockdown measures in the Netherlands.

Given that stress arguably plays an important role in linking lockdown measures to poorer dietary choices and decreased physical activity,1 2 gender differences in bodyweight gain following the implementation of measures to contain the pandemic may be expected. This is because these measures may elicit a stronger stress response among women than among men.11 22 Moreover, stress has been found to be more strongly associated with suboptimal dietary choices and bodyweight gain among women than among men.23 24 We therefore hypothesise that bodyweight change following the implementation of COVID-19 lockdown measures in the Netherlands was more pronounced for women than for men.

DATA AND METHODS

Sample

We draw on anonymised public release data from the DNB Household Survey26–28 (see www.dhsdata.nl), a panel survey collected annually among a random national sample of Dutch households by CentERdata at Tilburg University in the Netherlands. Data have been collected online since 1993. A basic computer and an internet connection were provided to sampled households without a computer or internet access. Currently, 28 waves of data are available.

We restricted the sample to observations of men and women of working age (18–65) who provided valid information on all variables of interest (ie, bodyweight, age,
partner status, primary activity status) in at least two waves. These inclusion criteria resulted in an analytical sample of 19,468 observations nested in 4365 women and 21,862 observations nested in 4583 men.

Patient and public involvement
The DNB Household Survey is collected among the general population of the Netherlands. The panel members provided consent via a multistage agreement including the initial recruitment as well as the activation of an account (after login only) in the panel environment. Since the introduction of the General Data Protection Regulation in 2018, panel members who already participated and newly recruited panel members have been asked to give an explicit informed consent via a web form to (continue) taking part in research projects in the panel, among which the DNB Household Survey. Only respondents who complied could continue to participate in the panels.28

Panel respondents have the possibility to comment on the questionnaire online, or they may call the free helpdesk with any comments. This helpdesk is open during regular office hours. In case of (technical) problems related to the completion of the questionnaires or the need for further assistance, a member of CentERdata will visit the household on appointment to help them solve the issue at hand.27

Measures
Our outcome of interest is self-reported bodyweight in kilograms. Consistent with earlier studies,29 30 we considered values below 25 kg implausibly low and excluded observations with such values (n=122) from our sample.

The main explanatory variable, that is, whether or not lockdown measures were in place, was derived from the year of data collection. We compare observations from 2020 (the lockdown year) with observations from, respectively, 2019 (prelockdown year), 2018 (2 years before lockdown), 2017 (3 years before lockdown) and 1993–2016 (4+ years before lockdown). Consistent with prior years, the 2020 data collection took place between week 15 and week 41, when lockdown measures were in place.

Controls included in the models were age (continuous, centred on 45), age squared, primary activity (in paid employment, unemployed, student, home maker, retired, disabled, other) and presence of a partner in the household (yes, no). A brief overview of sample characteristics is provided in **table 1**. Descriptive statistics stratified by period of data collection (2020, 2019, 2018, 2017, and 2016 and prior) are presented in online supplemental appendix A.

Statistical analysis
We performed fixed-effects regression analyses of intra-individual bodyweight change,31 in which within-person
means over time are subtracted from scores in each observation for both outcome and explanatory variables. Consequently, all time-invariant characteristics, regardless of whether observed, are accounted for and omitted variable bias issues are limited to time-varying factors. We regressed within-person bodyweight change on the year of observation and adjusted for the aforementioned controls.

Models were stratified by gender. In order to assess whether coefficient estimates significantly differed between women and men, we additionally estimated a pooled model with interaction terms to allow the slopes of all explanatory variables to vary as a function of gender.32

All models were estimated with robust standard errors to account for the nested nature of the data.

RESULTS

The results of our fixed-effects analyses are presented in table 2. As hypothesised, the fixed-effects model adjusted for age, age squared, partner status and primary activity indicated that women’s bodyweight increased significantly in the COVID-19 lockdown year of 2020 relative to 2019, 2018, 2017, and the period 2016 and earlier. The estimated magnitude of the adjusted bodyweight increase in women in 2020 relative to the 3 preceding years was approximately 800 g.

For men, no significant differences between the year 2020 and the 3 preceding years were found. Interestingly, however, the year 2020 was associated with a significant bodyweight decrease relative to the period 2016 and earlier, but this decrease could not be attributed to the lockdown measures of 2020 because it already manifested itself in 2019, 2018 and 2017. The analyses thus did not provide support for the hypothesised bodyweight weight gain in men following the implementation of the Dutch lockdown measures.

The finding of a significant bodyweight gain in women but not in men is insufficient to conclude that the bodyweight gain in women was significantly stronger than in men.33 We therefore performed formal tests of differences between the coefficient estimates in the model for women and those in the model for men. As shown in the final columns of table 2, the results indicated that bodyweight change in 2020 relative to, respectively, 2019, 2017, and the period 2016 and earlier was significantly stronger for women than for men. The gender difference in the

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Results of fixed-effects analyses predicting bodyweight change in women and men (coefficient estimates with 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>Year</td>
<td>b 95% CI</td>
</tr>
<tr>
<td>2020 (COVID-19 year)</td>
<td>Ref</td>
</tr>
<tr>
<td>2019 (pre-COVID-19)</td>
<td>−0.804**</td>
</tr>
<tr>
<td>2018 (2 years pre-COVID-19)</td>
<td>−0.799*</td>
</tr>
<tr>
<td>2017 (3 years pre-COVID-19)</td>
<td>−0.816*</td>
</tr>
<tr>
<td>2016 and prior</td>
<td>−1.133**</td>
</tr>
<tr>
<td>Time-variant controls</td>
<td></td>
</tr>
<tr>
<td>Agea</td>
<td>0.255***</td>
</tr>
<tr>
<td>Agea (squared)</td>
<td>−0.003*</td>
</tr>
<tr>
<td>Lives with partner</td>
<td>0.944†</td>
</tr>
<tr>
<td>Primary activity status</td>
<td></td>
</tr>
<tr>
<td>In paid employment</td>
<td>Ref</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.064</td>
</tr>
<tr>
<td>Student</td>
<td>0.247</td>
</tr>
<tr>
<td>Home maker</td>
<td>−0.073</td>
</tr>
<tr>
<td>Retired</td>
<td>0.022</td>
</tr>
<tr>
<td>Disabled</td>
<td>−0.218</td>
</tr>
<tr>
<td>Other</td>
<td>−0.038</td>
</tr>
<tr>
<td>Number of observations</td>
<td>19 468</td>
</tr>
<tr>
<td>Number of persons</td>
<td>4365</td>
</tr>
</tbody>
</table>

Data are from the DNB Household Survey 1993–2020.

Centred on age 45.

P < 0.05, **P < 0.01, ***P < 0.001, †P < 0.1.

Ref, reference.
estimated bodyweight change between 2018 and 2020 was marginally significant (p=0.07). The combined gender differences in the estimates of the year effects were statistically significant (F(4, 8947)=3.9, p<0.01). These results are consistent with our hypothesis that bodyweight gain following the implementation of the Dutch lockdown measures was more pronounced among women than among men.

DISCUSSION

The current study extends prior work on the bodyweight implications of measures to contain the COVID-19 pandemic by adopting a prospective approach, by drawing on data from a random national household sample and by acknowledging that the bodyweight implications of lockdown may differ between men and women. Our analyses indicate that the Dutch lockdown measures were associated with bodyweight gain of approximately 800 g in working-age women. The effects of lockdown measures on bodyweight in working-age men were significantly less pronounced. In fact, no statistically significant evidence that the measures were associated with bodyweight gain in men was found.

We presented the results of analyses of weight change in kilograms because the interpretation of this outcome measure is highly intuitive. It could be argued, however, that a similar bodyweight gain in kilograms is more meaningful for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.

The results presented here are consistent with our hypotheses built on prior work showing that both the stress response to the pandemic and the association between stress and bodyweight gain were stronger for shorter persons than for their taller counterparts. We therefore also estimated models with body mass index (self-reported weight in kilograms divided by self-reported height in metres squared) as the outcome measure. The results of these analyses (see online supplemental appendix B) were substantively similar to the results of the analyses of bodyweight in kilograms presented in table 2.
Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval This study involves human participants and was assessed and approved by the Research Ethics Review Committee of the Erasmus School of Health Policy & Management at Erasmus University Rotterdam (reference: 21-030).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access repository. Data are available for scholarly reuse upon registration via www.dhdata.nl.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Thijs van den Broek http://orcid.org/0000-0002-0716-6099

REFERENCES

33 Gelman A, Stern H. The difference between “significant” and “not significant” is not itself statistically significant. Am Stat 2006;60:328–31.

