

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Study protocol: A Randomized Parallel-controlled Study on The Effectiveness and Cost-Effectiveness in Screening Gait Disorder of Silent Cerebrovascular Disease Assisted by Artificial Intelligent System versus Clinical Doctors (ACCURATE-1)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055880
Article Type:	Protocol
Date Submitted by the Author:	28-Jul-2021
Complete List of Authors:	Fei, Beini; Zhongshan Hospital Fudan University, Department of Neurology Zhao, Jin; Fudan University, Department of Health Economics Li, Xin; Zhongshan Hospital Fudan University, Department of Neurology Tang, Yanmin; Zhongshan Hospital Fudan University, Department of Neurology Qin, Guoyou; Fudan University, Department of Biostatistics Zhang, Wei; Fudan University, Department of Biostatistics Ding, Jing; Zhongshan Hospital Fudan University, Department of Neurology Hu, Min; Fudan University, Department of Health Economics Wang, Xin; Zhongshan Hospital Fudan University, Department of Neurology
Keywords:	Adult neurology < NEUROLOGY, Stroke < NEUROLOGY, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

Study protocol: A Randomized Parallel-controlled Study on The Effectiveness and Cost-Effectiveness in Screening Gait Disorder of Silent Cerebrovascular Disease Assisted by Artificial Intelligent System versus Clinical Doctors (ACCURATE-1)

Beini Fei¹, Jin Zhao², Xin Li¹, Yanmin Tang¹, Guoyou Qin³, Wei Zhang³, Jing Ding¹, Min Hu^{2*}, Xin Wang^{1*}

1 Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, China.

2 Department of Health Economics, School of Public Health, Fudan University, 130 Dongan Road, 200032 Shanghai, China

3 Department of Biostatistics, School of Public Health, Fudan University, 130 Dongan Road, 200032 Shanghai, China

* Corresponding to:

Min Hu, PhD, Department of Health Economics, School of Public Health, Fudan University, 130 Dongan Road, 200032 Shanghai, China. Fax: +86 021 54237900; Email: humin@fudan.edu.cn

Xin Wang, PhD, MD, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Fax: +86 021 64041990; E-mail: wang.xin@zshospital.sh.cn

ABSTRACT

Introduction:

Silent cerebrovascular disease (SCD), which is a common disease in the elderly, leads to cognitive decline, gait disorders, depression, and urination dysfunction, and increases the risk of cerebrovascular events. Our study aims to compare the accuracy of the diagnosis of SCD-related gait disorders between the intelligent system and the clinician; thus, our team developed an intelligent evaluation system for gait. This study proves whether the intelligent system can help doctors make clinical decisions and predictions, which aids the early prevention and treatment of asymptomatic cerebrovascular diseases.

Methods and analysis:

This study is multi-centered, prospective, randomized and controlled.

SCD subjects aged 60–85 years in Shanghai and Guizhou will be recruited continuously. All subjects were randomly divided into a doctor with intelligence assistance group or a doctor group, at a 1:1 ratio. The doctor and intelligent assistant group will accept the intelligent system evaluation, while the doctor group will accept the clinicians' routine treatment procedures. Meanwhile, all subjects will accept the panel's gait assessment and recognition rating scale as the gold standard.

Ethics and dissemination:

Approval was granted by the Ethics Committee of Zhongshan Hospital affiliated with Fudan University on November 26, 2019. The approval number is B2019-027(2) R. All subjects signed an informed consent form before enrollment. Serious adverse events will be reported to the main researchers and ethics committees.

Trial Registration Number: NCT04457908

Key words:

Adult neurology, Stroke, Health economics

Article Summary

Strengths and limitations of this study

Our study aims to compare the accuracy of diagnosing SCD-related gait disorders between the intelligent system and clinicians.

This study evaluates the effectiveness and equity of intelligent systems to diagnose SCD-related gait disorders compared to clinicians. . t u..

Follow-up was not involved in this study.

INTRODUCTION

Silent cerebrovascular disease (SCD) is very common in the elderly, and often incidentally found by cranial imaging ¹. It presents as a lacunar infarct, white matter hyperintensities (WMH), and microhemorrhages on imaging; however, patients do not have acute symptoms. Reports on the prevalence rate of SCD varies, mainly due to the selection of different sample populations. Furthermore, there is a lack of relevant studies for people under 45 years of age. Approximately 25% of those over 80 years of age have SCD². Leary³ et al. found that more than 11 million people in the United States were newly diagnosed with cerebral infarction or hemorrhage on imaging, but only 770,000 of them had clinical symptoms. SCD is mostly related to age and vascular risk factors (hypertension, diabetes, smoking, obstructive sleep apnea-hypopnea syndrome, migraine, etc.). This indicates that vascular lesions play an important role in SCD, but the specific pathophysiological pathways need to be further explored. SCD lacks the symptoms of an acute neurological impairment; thus, it is often overlooked by patients and doctors. Nonetheless, it is also associated with chronic neurological impairments. Multiple studies have shown that SCD can lead to cognitive decline, gait disorders, depression, and urination dysfunction, and may increase the risk of future cerebrovascular events⁴⁻⁶. Debette⁷ et al. assessed the incidence of stroke, dementia, and death in 2229 community patients (mean age 62±9 years), and found that SCD patients had increased risk of stroke (heart rate [HR]: 2.84, 95%CI :1.32 to 6.10), and dementia (HR: 6.12, 95%CI :1.82-20.54), which were independent risk factors. Stroke results in high medical costs. Shelby⁸ et al. analyzed the hospitalization cost for patients with cerebrovascular events in 137 community hospitals. Patients with SAH had the highest cost (\$23,777, n=1,124), followed by patients with intracerebral hemorrhage (\$10,241, n=3,139), ischemic cerebral infarction (\$5,837, n=18,740), and transient ischemic attack (\$3,350, n=7,861). The length of stay was 11.5 days for intracerebral hemorrhage, 7.5 days for intracerebral hemorrhage, 5.9 days for ischemic cerebral infarction, and 3.4 days for transient ischemic attacks.

Early detection of subtle neurological impairment in SCD and standardized intervention can help improve patient prognosis and reduce costs. At present, the diagnosis of SCD mainly relies on the imaging and clinical expertise of doctors, which may be subjective and leads to misdiagnosis.

Therefore, the use of an intelligent system for early quantitative evaluation of

Page 5 of 17

BMJ Open

neurological damage in SCD can reduce the evaluation time and differences between individuals. Moreover, it may allow doctors to make sound clinical decisions and outcomes using this algorithm. It also consequently helps in the early prevention of SCD and guides diagnosis and treatment while reducing medical costs.

METHODS AND ANALYSIS

Study Design

ACCURATE-1 is a multicenter, prospective, randomized controlled study. (Figure 1) Subjects are randomly divided into a doctor and an intelligent assistant group, and a doctor group at a 1:1 ratio. The doctor and intelligent assistant group accepts the intelligent system evaluation, while the doctor group accepts the clinician's (neurology attending/resident, and/or accepted neurology standardization training of medical attending/resident) routine treatment procedures. Meanwhile, all subjects accept the panel's gait assessment and recognition rating scale as the gold standard. Data on patient demographic characteristics, socioeconomic status, medical history, neurological function assessment, laboratory examination, imaging examination, quality of life, health services utilization and their unit costs, and other social costs will also be collected.

Setting

The trial was conducted in 14 hospitals in Shanghai and Guizhou, including secondary and tertiary hospitals. All staff members of the trial were trained.

Participants

In this study, subjects with SCD aged 60 to 85 years in Shanghai and Guizhou will be recruited continuously. All subjects will sign an informed consent form. After recruitment, eligible subjects will be selected for the study according to the inclusion and exclusion criteria.

The inclusion criteria are as follows:

• Aged 60 years to 85 years.

- Diagnosed with SCD/silent stroke, according to the 2016 statement issued by the American Heart Association (AHA) and American Stroke Association (ASA):
 - No clear previous history of stroke or clinical symptoms, which failed to attract clinical attention.
 - A lacunar infarct of vascular origin was defined as a subcortical round or ovoid fluid-rich lacunar lesion with a diameter of 3–15 mm, showing low central signal and irregular marginal high signal on T2-flair. The central signal is similar to that of the cerebrospinal fluid, while the distribution is consistent with the blood supply area of the perforating artery. Fazekas scores should be ≥2 points.
 - WMH of vascular origin defined as a high signal on T2-flair in the white matter area (periventricular or subcortical). Fazekas scores should be ≥2 points.
 - Cerebral microbleeds defined as a small, round, empty focus of signal flow on an SWI or T2-weighted image, 2–10 mm in diameter. The number of microbleed lesions should be ≥5.
 - Cranial magnetic resonance imaging (MRI) shows at least one of the following within one year and should provide Digital Imaging and Communications in Medicine (DICOM) data.
- Conscious and able to complete cognitive assessment.
- Able to stand and walk independently and complete gait assessment without assistance.
- Sign the informed consent.

The exclusion criteria are as follows:

- Intracranial lesions have been clearly diagnosed as a demyelination disease, leukodystrophy, intracranial space-occupying lesions, autoimmune encephalitis, etc.
- Gait disorders have been diagnosed with Parkinson's disease, normal cranial hydrocephalus, otogenic diseases, subacute combined degeneration, peripheral neuropathy, osteoarthritis, and lumbar diseases.
- Cognitive disorders have been diagnosed as Alzheimer's disease, frontotemporal dementia, Lewy body dementia, etc.
- Severe neurological diseases such as previous cerebral trauma, epilepsy and myelopathy, etc.
- Severe cardiovascular complications which cannot tolerant the assessment.
- Severe visual or hearing impairment, aphasia, cognitive disorder, gait disorder, etc., which cause uncooperative cognitive and gait assessment.
- Refusal to participate in the study.
- Other anomalies that could not be included in the exclusion criteria, but we considered inappropriate to be included in our study.

Study procedure

Appropriate subjects will be selected based on the inclusion and exclusion criteria. Clinical data collection by doctors will be collected based on their demographics, medical history, neurological function assessment, laboratory examinations, imaging tests, quality of life, health service utilization, socioeconomic status, and medical and other social costs. The entire data collection process will be recorded only for data verification and monitoring.

Whether the subject's cranial MRI meets the inclusion criteria will first be determined by trained doctors according to the STRIVE standard. The committee of experts,

including clinical radiology experts and image post-processing technology personnel, will review the DICOM data. Subjects who do not pass the review will be excluded accordingly.

Subjects in the doctor and intelligent assistant group will be evaluated for neurological function by using the following intelligent system test: the time up and go test (TUG). It is used to evaluate the subjects' gait function, which requires them to stand up from their seat and walk straight forward for 3 m, turn back and walk straight back to the chair, and then sit down again. Using simple cognitive evaluation (minicognitive assessment) screening of the subjects' memory and executive function, the participants will first be asked to remember three unrelated words and immediately repeat these three words. Afterwards, they are asked to draw a clock with 12 numbers and a pointer to 3:40, then asked to recall the three words. The verbal function of the subjects will be assessed using verbal retelling items in the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Subjects will be asked to repeat "44 stone lions," "I only know Zhang Liang came to help today," and "the cat always hid under the sofa when the dog was in the room" in Chinese. The intelligent system will access the subjects' gait characteristics (get up, turnaround time, stride length, step velocity, stride length, step width, etc.), language features (pronunciation, intonation, word order, wrong language, language fluency, etc.), and clock features (circle, number, pointer).

Subjects in the doctor group will undergo routine medical procedures. The doctor group is required to comprise of attending or resident physicians in neurology and/or attending/resident physicians receiving standardized training in neurology. The physician will register his/her professional qualifications, relevant knowledge training experience, educational background, and working years. The physician will determine whether the subjects have gait disorders through routine medical procedures such as their present and previous medical history and physical examination data.

The video of the TUG test of all subjects (including the doctor group and the doctor and intelligent assistant group) will be evaluated by two specialists in movement disorders as the gold standard. Specialists will be blinded to the grouping. The expert physician will judge the subjects' gait based on their clinical experiences. The results

will be divided into normal and abnormal gaits. If the results are different, the opinion of a third expert will be included.

All subjects will be evaluated based on the following scales under the guidance of a trained doctor: 1) MMSE: evaluates time and place orientation, immediate and delayed memory, attention and computation, naming, retelling, listening comprehension, reading and expression, and visual-spatial ability, with scores ranging from 0 to 30; 2) MoCA: evaluates visual space, executive function, naming, memory, attention, language, abstraction, and orientation, scores ranging from 0 to 30; 3) Color word test (CWT): evaluates semantic activation, dominant response inhibition, attention, working memory, information processing speed, etc.; 4) Digit span test (DST): evaluates immediate memory and attention; 5) Verbal fluency test (VFT): evaluates language capabilities; 6) TUG test: evaluates the total time subjects will take to complete it, with the average value obtained after three repetitions; 7) 10 m walking test (10 MWT): The subjects will walk 10 m in a straight line at normal walking speed, while the time and number of steps required for the subject to complete the 10 MWT will be recorded, with the average value obtained after three repetitions, and 8) Tinetti performance-oriented mobility assessment (TinettiPOMA): This includes balance and gait tests, with a maximum score of 28. A score between 19 and 24 indicates a risk of falling, while a score below 19 indicates a high risk of falling.

All subjects will be evaluated using the EQ-5D, which describes the quality of life of the subjects.

To evaluate the cost-effectiveness from the healthcare system and the societal perspectives, we will collect the data of unit costs and utilizations of the equipment, medications, and labor hours taken to deliver each individual diagnosis, as well as cost of patients' accommodations, transportation, and productivity losses due to their disease. The labor hours taken will be collected through a questionnaire for staffs, while the equipment cost (intelligent system) will be amortized over its estimated lifespan. The medication and other patient costs will be collected using a patient questionnaire. (Table 1)

2 3
4
5
6
7
8
9
10
11 12
13
14
15
16
17
18
19
20
21 22
22 23
24
25
26
27
28
29
30
31 32
32 33
33 34
35
36
37
38
39
40
41 42
42 43
44
45
46
47
48
49
50
51 52
52 53
55 54
55
56
57
58
59
60

Table 1. Assessment of two groups.

	Doctor &	
Assessment	intelligent	Doctor
	assistant	
Intelligent TUG test	×	
Intelligent Mini-cog test	×	
Intelligent sentence repetition test	×	
Routine treatment procedure		×
Panel's gait assessment	×	×
TUG	×	×
10MWT	×	×
TinettiPOMA	×	×
MMSE	×	×
MoCA	×	×
CWT	×	×
DST	×	×
VFT	×	×
EQ-5D	×	×
Fall condition	×	×
Utilization and unit cost	×	×

× indicates that the assessment took place. TUG, time up and go test; Mini-Cog, Mini-Cognitive Assessment ;10 MWT, 10m walking test; TinettiPOMA, Tinetti performance-oriented mobility assessment; MMSE, Mini-Mental State Examination; MoCA, Montreal cognitive assessment; CWT, Color word test; DST, Digit span test; VFT, verbal fluency test.

Assessments

Outcome measures

BMJ Open

The primary outcome is the sensitivity of the intelligent system and clinicians to screen for gait disorders.

The secondary outcomes are as follows: 1) the specificity, coincidence, and the Yoden index of the intelligent system and clinicians to screen for gait disorders; 2) the positive and negative predictive values of the intelligent system and clinicians at different levels to screen for gait disorders, and 3) healthcare costs of intelligent systems and clinicians to screen for gait disorders, and the incremental cost effectiveness ratio (ICER) will be estimated by cost per additional true case detected using an intelligent system versus clinicians.

Sample size

This study is a 1:1 superiority trial. Referring to the preliminary study of gait disorder in SCD and our group, we expect that the sensitivity of doctors and intelligent assistants will be 85%, while the sensitivity of the doctor group will be 68%. The power is 1- β =80%, with a significance level of α =0.05. According to our calculations, there should be 94 positive cases evaluated by the gold standard in each group. The expected shedding rate is 6%; therefore, each group required 100 positive cases. Considering that the positive rate of gait disorder in the population is approximately 20%, a total of 1000 subjects should be included.

There are 14 sub-centers for the two regions in our study, including three secondary and three tertiary hospitals in Shanghai, and four secondary and four tertiary hospitals in Guizhou. The expected ratio of patients in secondary and tertiary hospitals is 1:2; in principle, no less than 30 subjects should be enrolled in each center, and 400 subjects for each region.

Randomization

Stratified blocked randomization will be used in this study. Stratification factors included regions (Shanghai and Guizhou), and hospital levels (secondary and tertiary hospitals). All subjects meeting the inclusion criteria are randomly divided into a doctor and intelligent assistant group and a doctor group at a 1:1 ratio through the central randomization system.

Data analysis

The normality was tested with the Shapiro–Wilk test. Continuous data with a normal distribution are expressed as the mean \pm standard deviation. Data with non-normal distribution are presented as medians with interquartile ranges. A t-test or non-parametric test will be used to compare continuous data. Count data are expressed as frequency (%). For comparison of categorical variables, the chi-square test, Fisher's exact probability test, or CMH chi-square test will be used. Subgroup analyses will include region and hospital levels. A significant difference was considered to be statistically significant at p < 0.05. Statistical analyses were performed using the SAS 9.4.

A cost-effectiveness analysis will be conducted from a healthcare system and a societal perspective; all the costs and diagnostic outcomes will be listed separately, then the incremental cost will be calculated per true case additionally detected by using the intelligent system versus the clinicians. We will explore the possibilities of conducting a long-term cost-effectiveness analysis using economic decision modeling based on future cost savings and health gains by using the intelligent system versus clinicians to screen for gain disorder.

Patient and public involvement

Each patient voluntarily participated in the study and signed the informed consent. Each subcenter recruited patients according to the inclusion criteria and competed for enrollment. Patients didn't involve in the design of this study. Patients don't need to assess the burden of the intervention. The result of this study will be disseminated via peer-reviewed journals.

DISCUSSION

Our study aims to compare the accuracy of the diagnosis of SCD-related gait disorders between the intelligent system and the clinician. Furthermore, we aim to evaluate the effectiveness and equity of intelligent systems to diagnose SCD-related gait disorders compared to clinicians. Page 13 of 17

BMJ Open

Early identification of the characteristic gait of SCD is helpful for clinical diagnosis and treatment. Studies have found that the deterioration of neural gait disorder is often associated with impaired cognitive function, which can serve as a warning sign of dementia. Rosso⁹ et al. reported that after a 14-year-follow-up, gait slowing was associated with cognitive impairment in the elderly population (OR per 0.1 s/y slowing 1.47; 95% CI, 1.04–2.07). After nine years of follow-up, Dumurgier¹⁰ et al. found that 296 of the 3,663 subjects developed dementia, in which a decreased pace was associated with an increased risk of dementia, with a HR value reaching 3.39 for every 0.007 m/s decrease in pace [95% CI 1.37-8.43]. Therefore, early quantitative gait analysis will help in the early detection of cognitive impairment. Appropriate interventions are needed to improve patient outcomes and prognoses.

However, the assessment of gait and cognitive function mostly depends on the visual or scale method used by doctors. Due to the lack of a unified evaluation process, the results are relatively random and inconsistent. To the best of our knowledge, this is the first study to analyze gait features in SCD based on an intelligent system. Using an intelligent system allows a reduction in the evaluation time and differences between individuals, thereby increasing early diagnosis and prevention of SCD.

Currently, no studies have explored the effectiveness of SCD screening in reducing adverse health events or cost-effectiveness¹. Although SCD may cause dementia and increase the incidence of stroke, the absolute risk is not high. Therefore, screening requires a low-cost and highly efficient test method. Artificial intelligence (AI) is a good choice. We will investigate the human, material, and financial costs of physicians and artificial intelligence in different regions when assessing a patient's neurological function. We hope that our intelligent system can reduce the cost of SCD screening and improve diagnosis in remote areas.

Ethics and dissemination

The subjects' rights will be protected according to the regulations of the China Food and Drug Administration, the Declaration of Helsinki, and the International Conference on Harmonization - Good Clinical Practice (ICH-GCP). The subjects' data will be kept strictly confidential. The results will be disseminated in peerreviewed journals.

Author affiliations

1 Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, China.

2 Department of Health Economics, School of Public Health, Fudan University, 130 Dongan Road, 200032 Shanghai, China

3 Department of Biostatistics, School of Public Health, Fudan University, 130 Dongan Road, 200032 Shanghai, China

Authors' contributions

Xin Wang, Jing Ding contributed to the conception and design of the study. Min Hu and Jin Zhao contributed to the design of the health economics part. Beini Fei, Yanmin Tang, and Xin Li contributed to the design of the clinical parts. Guoyou Qin and Wei Zhang helped with data analysis. Beini Fei wrote the manuscript.

Funding statement

This work was supported by the National Key Research and Development Program of China. (No. 2018YFC1312900)

Competing interests statement

The authors declare that they have no competing interests.

Patient consent for publication

Not required.

Ethics approval

The study was approved by the Zhongshan Hospital Ethics Committee. (Approval No. B2019-274(2) R)

References

1. Smith EE, Saposnik G, Biessels GJ, et al. Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. *Stroke* 2017; **48**(2): e44-e71.

2. Vermeer SE, Longstreth WT, Jr., Koudstaal PJ. Silent brain infarcts: a systematic review. *The Lancet Neurology* 2007; **6**(7): 611-9.

Leary MC, Saver JL. Annual incidence of first silent stroke in the United States: a preliminary estimate. *Cerebrovascular diseases (Basel, Switzerland)* 2003; 16(3): 280-5.

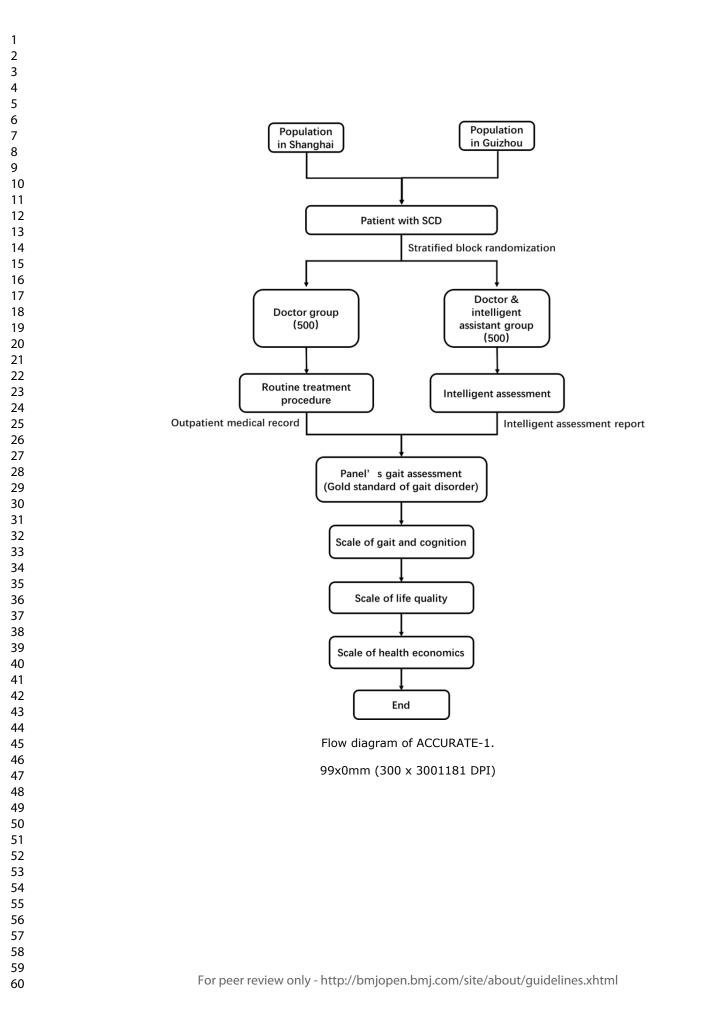
4. Kim BJ, Lee SH. Prognostic Impact of Cerebral Small Vessel Disease on Stroke Outcome. *J Stroke* 2015; **17**(2): 101-10.

5. Poels MMF, Steyerberg EW, Wieberdink RG, et al. Assessment of cerebral small vessel disease predicts individual stroke risk. *Journal of Neurology, Neurosurgery & Psychiatry* 2012; **83**(12): 1174-9.

6. Vermeer SE, Hollander M, van Dijk EJ, et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. *Stroke* 2003; **34**(5): 1126-9.

7. Debette S, Beiser A, DeCarli C, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. *Stroke* 2010; **41**(4): 600-6.

8. Reed SD, Blough DK, Meyer K, Jarvik JG. Inpatient costs, length of stay, and mortality for cerebrovascular events in community hospitals. *Neurology* 2001; **57**(2): 305-14.


9. Rosso AL, Verghese J, Metti AL, Boudreau RM, Rosano CJN. Slowing gait and risk for cognitive impairment: The hippocampus as a shared neural substrate. 2017;

89(4): 336-42.

10. Elbaz A, Artaud F, Singh-Manoux A, Dumurgier J. Gait Speed and Decline in Gait Speed as Predictors of Incident Dementia. *Innovation in Aging* 2017; **1**(suppl 1): 75-.

Figure legend

Figure 1 Flow diagram of ACCURATE-1.

Study protocol: A Randomized Parallel Trial on The Effectiveness and Cost-Effectiveness in Screening Gait Disorder of Silent Cerebrovascular Disease Assisted by Artificial Intelligent System versus Clinical Doctors (ACCURATE-1)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055880.R1
Article Type:	Protocol
Date Submitted by the Author:	08-Nov-2021
Complete List of Authors:	Fei, Beini; Zhongshan Hospital Fudan University, Department of Neurology Zhao, Jin; Fudan University, Department of Health Economics Li, Xin; Zhongshan Hospital Fudan University, Department of Neurology Tang, Yanmin; Zhongshan Hospital Fudan University, Department of Neurology Qin, Guoyou; Fudan University, Department of Biostatistics Zhang, Wei; Fudan University, Department of Biostatistics Ding, Jing; Zhongshan Hospital Fudan University, Department of Neurology Hu, Min; Fudan University, Department of Health Economics Wang, Xin; Zhongshan Hospital Fudan University, Department of Neurology
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Health economics
Keywords:	Adult neurology < NEUROLOGY, Stroke < NEUROLOGY, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
12 13	
17	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20 21 22 23 24 25 26 27 28 29 30 31 32	
29	
30	
31 22	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	

1	Study protocol: A Randomized Parallel Trial on The
2	Effectiveness and Cost-Effectiveness in Screening Gait
3	Disorder of Silent Cerebrovascular Disease Assisted by
4	Artificial Intelligent System versus Clinical Doctors
5	(ACCURATE-1)
6	Beini Fei ¹ , Jin Zhao ² , Xin Li ¹ , Yanmin Tang ¹ , Guoyou Qin ³ , Wei Zhang ³ , Jing Ding ¹ ,
7	Min Hu ^{2*} , Xin Wang ^{1*}
8	1 Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin
9	Road, 200032 Shanghai, China.
10	2 Department of Health Economics, School of Public Health, Fudan University, 130
11	Dongan Road, 200032 Shanghai, China
12	3 Department of Biostatistics, School of Public Health, Fudan University, 130
13	Dongan Road, 200032 Shanghai, China
14	
15	
16	* Corresponding to:
17	Min Hu, PhD, Department of Health Economics, School of Public Health, Fudan
18	University, 130 Dongan Road, 200032 Shanghai, China. Fax: +86 021 54237900; E-
19	mail: humin@fudan.edu.cn
20	Xin Wang, PhD, MD, Zhongshan Hospital, Fudan University, 180 Fenglin Road,
21	Shanghai 200032, China. Fax: +86 021 64041990; E-mail: wang.xin@zs-
22	hospital.sh.cn
23	

1 ABSTRACT

2 Introduction:

Silent cerebrovascular disease (SCD), which is a common disease in the elderly, leads to cognitive decline, gait disorders, depression, and urination dysfunction, and increases the risk of cerebrovascular events. Our study aims to compare the accuracy of the diagnosis of SCD-related gait disorders between the intelligent system and the clinician. Our team have developed an intelligent evaluation system for gait. This study will evaluate whether the intelligent system can help doctors make clinical decisions and predictions, which aids the early prevention and treatment of silent cerebrovascular diseases.

11 Methods and analysis:

12 This study is a multi-centered, prospective, randomized and controlled trial.

SCD subjects aged 60-85 years in Shanghai and Guizhou will be recruited continuously. All subjects will randomly be divided into a doctor with intelligence assistance group or a doctor group, at a 1:1 ratio. The doctor and intelligent assistant group will accept the intelligent system evaluation. The intelligent system obtains gait parameters by an RGB-depth camera and computer vision algorithm. The doctor group will accept the clinicians' routine treatment procedures. Meanwhile, all subjects will accept the panel's gait assessment and recognition rating scale as the gold standard. The primary outcome is the sensitivity of the intelligent system and clinicians to screen for gait disorders. The secondary outcomes include the healthcare costs and the incremental cost effectiveness ratio (ICER) of intelligent systems and clinicians to screen for gait disorders.

24 Ethics and dissemination:

Approval was granted by the Ethics Committee of Zhongshan Hospital affiliated with
Fudan University on November 26, 2019. The approval number is B2019-027(2) R.
All subjects will sign an informed consent form before enrollment. Serious adverse
events will be reported to the main researchers and ethics committees. The subjects'

2		
3 4	1	data will be kept strictly confidential. The results will be disseminated in peer-
5		
6	2	reviewed journals.
7		
8	3	
9		
10 11	4	Trial Registration Number: NCT04457908
12		
13	-	
14	5	Key words:
15		
16 17	6	Adult neurology, Stroke, Health economics
18		
19	7	Article Summary
20	'	Article Summary
21	-	
22	8	Strengths and limitations of this study
23 24		
24 25	9	Independent research and development of the intelligent gait evaluation system.
26		
27	10	Compare the accurrency of diagnosting SCD related goit disorders between the
28	10	Compare the accuracy of diagnosing SCD-related gait disorders between the
29	11	intelligent system and clinicians.
30 31		
32	12	Evaluates the effectiveness and cost-effectiveness of the intelligent systems.
33	14	Evaluates the effectiveness and cost effectiveness of the interligent systems.
34	10	
35	13	Enroll subjects both in economically developed areas and underdeveloped areas.
36		
37 38	14	Follow-up will not be involved.
39		
40	15	
41	10	
42		
43 44		
45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55		
56 57		
58		
59		

INTRODUCTION

Silent cerebrovascular disease (SCD) is very common in the elderly, and often incidentally found by cranial imaging¹. It presents as a lacunar infarct, white matter hyperintensities (WMH), and microhemorrhages on imaging. However, patients do not have acute symptoms. Reports on the prevalence rate of SCD varies, mainly due to the selection of different sample populations. Furthermore, there is a lack of relevant studies for people under 45 years of age. Approximately 25% of those over 80 years of age have SCD². Leary³ et al. found that more than 11 million people in the United States were newly diagnosed with cerebral infarction or hemorrhage on imaging, but only 770,000 of them had clinical symptoms. SCD lacks the symptoms of an acute neurological impairment. Thus, it is often overlooked by patients and doctors. Nonetheless, it is also associated with chronic neurological impairments. Multiple studies showed that SCD can lead to cognitive decline, gait disorders, depression, and urination dysfunction, and increase the risk of future cerebrovascular events⁴⁻⁶. Debette⁷ et al. assessed the incidence of stroke, dementia, and death in 2229 community patients (mean age 62±9 years), and found that SCD patients had increased risk of stroke (hazard rate [HR]: 2.84, 95% CI: 1.32 to 6.10), and dementia (HR: 6.12, 95% CI :1.82-20.54), which were independent risk factors.

Stroke results in high medical costs. Shelby⁸ et al. analyzed the hospitalization cost for patients with cerebrovascular events in 137 community hospitals. Patients with SAH had the highest cost (\$23,777, n=1,124), followed by patients with intracerebral hemorrhage (\$10,241, n=3,139), ischemic cerebral infarction (\$5,837, n=18,740), and transient ischemic attack (\$3,350, n=7,861). The length of stay was 11.5 days for intracerebral hemorrhage, 7.5 days for intracerebral hemorrhage, 5.9 days for ischemic cerebral infarction, and 3.4 days for transient ischemic attacks.

Early detection of subtle neurological impairment in SCD and standardized intervention can help improve patient prognosis and reduce costs. At present, the diagnosis of SCD mainly relies on the imaging and clinical expertise of doctors, which may be subjective and leads to misdiagnosis. Therefore, the use of an intelligent system for early quantitative evaluation of neurological damage in SCD can reduce the evaluation time and differences between individuals. It also consequently helps in the early prevention of SCD and guides diagnosis and treatment while reducing medical costs.

2		
3 4	1	
5 6	2	METHODS AND ANALYSIS
7 8 9	3	Study Design
10 11	4	ACCURATE-1 is a multicenter, prospective, superiority, randomized parallel trial.
12 13	5	(Figure 1)
14 15	6	Subjects will be randomly divided into a doctor and intelligent assistant group, and a
16	7	doctor group at a 1:1 ratio. The doctor and intelligent assistant group will accept the
17 18	8	intelligent system evaluation, while the doctor group will accept the clinician's routine
19 20	9	treatment procedures. Meanwhile, all subjects will accept the panel's gait assessment
21 22	10	and cognitive scales as the gold standard.
23	11	Setting and timeline
24 25	12	The trial will be conducted in 14 hospitals in Shanghai and Guizhou, including
26 27	13	secondary and tertiary hospitals. All staff members of the trial have been trained before
28 29	14	the trial started. Recruitment of patients started at 25 September 2019. The trial was
30	15	halted for more than a year due to the COVID-19 pandemic. Recruitment is ongoing
31 32	16	now. The trial is scheduled to end in February 2022.
33 34	17	Participants
35		
36 37	18	In this study, subjects with SCD aged 60 to 85 years in Shanghai and Guizhou will be
38 39	19	recruited continuously. Subjects can refuse to participate or withdraw from the trial at
40 41	20	any stage without discrimination or unfair treatment, and their treatment and rights
42	21	will not be affected. All subjects that agree to attend our trial will sign an informed
43 44	22	consent form. After recruitment, eligible subjects will be selected for the study
45 46 47	23	according to the inclusion and exclusion criteria.
48 49	24	The inclusion criteria are as follows:
50 51 52	25	• Aged 60 years to 85 years.
53 54	26	• Diagnosed with SCD, according to the 2016 statement issued by the American
55 56 57	27	Heart Association (AHA) and American Stroke Association (ASA):
58 59 60	28	No clear previous history of stroke.

1	■ Cranial magnetic resonance imaging (MRI) shows at least one of the
2	following finding within one year and Digital Imaging and Communications
3	in Medicine (DICOM) data should be provided. 1) A lacunar infarct of
4	vascular origin: subcortical round or ovoid fluid-rich lacunar lesion with a
5	diameter of 3–15 mm, showing low central signal and irregular marginal
2 <u>6</u>	high signal on T2-flair. The central signal is similar to the cerebrospinal
7	fluid. Fazekas scores should be ≥ 2 points. 2) WMH of vascular origin: high
8	signal on T2-flair in the white matter area (periventricular or subcortical).
, 3 9	Fazekas scores should be ≥ 2 points. 3) Cerebral microbleeds: small, round,
) 10	empty focus lesion on SWI or T2-weighted image, 2–10 mm in diameter.
, 11	The number of microbleed lesions should be ≥ 5 .
- }	
12 5	• Conscious and able to complete cognitive assessment.
5 7 13	• Able to stand and walk independently and complete gait assessment without
³ 14	assistance.
)	
<u> </u>	• Sign the informed consent.
3	
5 16	The exclusion criteria are as follows:
, , 17	• Intracranial lesions have been clearly diagnosed as a demyelination disease,
, 18	leukodystrophy, intracranial space-occupying lesions, autoimmune encephalitis,
) 19	etc.
2	
20	• Previously be diagnosed as Parkinson's disease, normal pressure hydrocephalus,
² 21	peripheral neuropathy, osteoarthritis.
, ³ 22	• Previously be diagnosed as Alzheimer's disease, frontotemporal dementia, Lewy
)) 23	body dementia, etc.
3 24	• Severe neurological diseases such as previous cerebral trauma, epilepsy and
5 25	myelopathy, etc.
5 7 26	• Cannot accomplish the cognitive assessment, such as severe visual or hearing
3 20 3 27	• Cannot accomptish the cognitive assessment, such as severe visual of hearing impairment.
) 21	ппрантист.

BMJ Open

2	
3	
4	
4 5 6 7	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
14 15 16 17	
10	
18	
19 20	
20	
21	
22	
20 21 22 23	
24	
24 25	
26	
26 27	
28	
29	
30	
50 21	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

• Cannot finish the gait assessment, such as severe cardiovascular disorder.

Study procedure

1

2

3

Appropriate subjects will be selected based on the inclusion and exclusion criteria.
Clinical data will be collected by doctors based on patients' demographics, medical
history, neurological function assessment, laboratory examinations, imaging tests,
quality of life, health service utilization, socioeconomic status, and medical and other
social costs. The entire data collection process will be recorded only for data
verification and monitoring.

Whether the subject's cranial MRI meets the inclusion criteria will first be determined
by trained doctors according to the STRIVE standard. The committee of experts,
including clinical radiology experts and image post-processing technology personnel,
will review the DICOM data. Subjects who do not pass the review will be excluded
accordingly.

15 Subjects in the doctor and intelligent assistant group will be tested for the Time Up 16 and Go Test⁹ (TUG) evaluated by the intelligent system. The accuracy of this system 17 in screening abnormal gait performance is 90.14%¹⁰. The intelligent system contains 18 an RGB-depth camera, using to record the TUG tests that include walking video, two-19 dimensional color images and scene depth images. The gait parameters in TUG test 20 are obtained by computer vision algorithm and the data queue is established. The 21 algorithm can track human motion in the video and identify the main joints in each 22 frame to achieve pose estimation. Then, the previously extracted parameters are taken 23 as input, and a machine learning-based classifier is used to filter abnormal gait.

Mini-Cog test¹¹ will be used to screen subjects' memory and executive function.
Subjects will be asked to remember three unrelated words and immediately repeat
these three words. Afterwards, they will be asked to draw a clock with 12 numbers
and a pointer to 3:40, then recall the three words. Subjects will retell the sentences of
the Mini-Mental State Examination¹² (MMSE) and the Montreal Cognitive
Assessment¹³ (MoCA). Subjects will be asked to repeat "44 stone lions," "I only

know Zhang Liang came to help today," and "The cat always hid under the sofa when the dog was in the room" in Chinese. The intelligent system will access the subjects' gait characteristics (get up, turnaround time, stride length, step velocity, stride length, step width, etc.), language features (pronunciation, intonation, word order, wrong language, language fluency, etc.), and clock features (circle, number, pointer). Subjects in the doctor group will undergo routine medical procedures. There is only one doctor in the doctor group of each center. The doctor group is required to comprise of attending or resident physicians in neurology and/or attending/resident physicians receiving standardized training in neurology. The physician will register his/her professional qualifications, relevant knowledge training experience, educational background, and working years. The physician will determine whether the subjects have gait disorders through routine medical procedures such as their present and previous medical history and physical examination data. The video of the TUG test of all subjects (including the doctor group and the doctor and intelligent assistant group) will be evaluated by two specialists in movement disorders as the gold standard. Specialists will be blinded to the group allocation. They will classify the subjects' gait as normal or abnormal. If the results are different, the opinion of the third expert will be included. All subjects will be evaluated based on the following scales under the guidance of a trained doctor: 1) MMSE¹²: evaluates time and place orientation, immediate and delayed memory, attention and computation, naming, retelling, listening comprehension, reading and expression, and visual-spatial ability, with scores ranging from 0 to 30; 2) MoCA¹³: evaluates visual space, executive function, naming, memory, attention, language, abstraction, and orientation, scores ranging from 0 to 30; 3) Color Word Test¹⁴ (CWT): evaluates semantic activation, dominant response inhibition, attention, working memory, information processing speed, etc.; 4) Digit Span Test¹⁵ (DST): evaluates immediate memory and attention; 5) Verbal Fluency Test¹⁶ (VFT): evaluates language capabilities; 6) TUG⁹: evaluates the total time subjects will take to complete it, with the average value obtained after three repetitions; 7) 10- Meter Walk Test¹⁷ (10 MWT): The subjects will walk 10 m in a straight line at normal walking speed, while the time and number of steps required for

Page 9 of 23

1 2 **BMJ** Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40 41
42
43
44
45
46
47
48
49
50
50
52
53
54
55
56
57
58
59
60
00

1 the subject to complete the 10 MWT will be recorded, with the average value 2 obtained after three repetitions; 8) Tinetti Performance-Oriented Mobility 3 Assessment¹⁸ (TinettiPOMA): This includes balance and gait tests, with a maximum 4 score of 28. A score between 19 and 24 indicates a risk of falling, while a score below 5 19 indicates a high risk of falling¹⁹.

6 All subjects will be evaluated using the 5-level version of EuroQol Five Dimensions 7 Questionnaire ²⁰(EQ-5D-5L), which describes the health-related quality of life of the 8 subjects.

9 Resources for health services are limited, especially in remote areas. It is important to 10 evaluate the economics of our smart systems. Cost-effectiveness²¹ is used to assess 11 how much it costs that intelligent systems and doctors to diagnose each gait disorder. 12 To evaluate the cost-effectiveness from the healthcare system and the societal 13 perspectives, we will collect the data of unit costs and utilizations of the equipment, 14 medications, and labor hours taken to deliver each individual diagnosis, as well as the 15 additional cost of patients' accommodations, transportation, and productivity losses 16 due to their disease. The labor hours taken will be collected through a questionnaire 17 for staffs, while the equipment cost (intelligent system) will be amortized over its 18 estimated lifespan. The medication and other patient costs will be collected using a 19 patient questionnaire. (Table 1)

20

21 Table 1. Assessment of two groups.

Table 1. Assessment of two groups.	0	
	Doctor &	
Assessment	intelligent	Doctor
	assistant	
Intelligent TUG test	×	
Intelligent Mini-cog test	×	
Intelligent sentence repetition test	×	
Routine treatment procedure		×
Panel's gait assessment	×	×

9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TUG	×	×
10MWT	×	×
TinettiPOMA	×	×
MMSE	×	×
MoCA	×	×
CWT	×	×
DST	×	×
VFT	×	×
EQ-5D	×	×
Number of falls	×	×
Utilization and unit cost	×	×

Cognitive Assessment ;10 MWT, 10m walking test; TinettiPOMA, Tinetti performance-oriented mobility assessment; MMSE, Mini-Mental State Examination; MoCA, Montreal cognitive assessment; CWT, Color word test; DST, Digit span test; VFT, verbal fluency test. ellen

Assessments

- Outcome measures
- The primary outcome is the sensitivity of the intelligent system and clinicians to screen for gait disorders.

The secondary outcomes are as follows: 1) the specificity and the Youden index²²(calculate as sensitivity plus specificity minus one) of the intelligent system and clinicians to screen for gait disorders; 2) the positive and negative predictive values of the intelligent system and clinicians at different levels to screen for gait disorders, and 3) healthcare costs of intelligent systems and clinicians to screen for gait disorders, and the incremental cost effectiveness ratio (ICER)²¹ will be estimated by cost per additional true case detected using an intelligent system versus clinicians.

Sample size

This study is a 1:1 superiority trial. Referring to the preliminary study of gait disorder in SCD and our group, we expect that the sensitivity of doctors and intelligent assistants will be 85%, while the sensitivity of the doctor group will be 68%. The power is $1-\beta$ =80%, with a significance level of α =0.05. According to our calculations, there should be 94 positive cases evaluated by the gold standard in each group. The expected shedding rate is 6%; therefore, each group required 100 positive cases. Considering that the positive rate of gait disorder in the population is approximately 20%, a total of 1000 subjects should be included. NCSS Statistical Software 2021 was used to calculate sample size. (https://www.ncss.com/)

10 There are 14 sub-centers for the two regions in our study, including three secondary 11 and three tertiary hospitals in Shanghai, and four secondary and four tertiary hospitals 12 in Guizhou. The expected ratio of patients in secondary and tertiary hospitals is 1:2; in 13 principle, no less than 30 subjects should be enrolled in each center, and 400 subjects 14 for each region.

15 Randomization

Stratified blocked randomization will be used in this study. Stratification factors
included regions (Shanghai and Guizhou), and hospital levels (secondary and tertiary
hospitals). All subjects meeting the inclusion criteria are randomly divided into a
doctor and intelligent assistant group and a doctor group at a 1:1 ratio through the
central randomization system.

21 Data analysis

The normality was tested with the Shapiro–Wilk test. Continuous data with a normal distribution are expressed as the mean \pm standard deviation. Data with non-normal distribution are presented as medians with interquartile ranges. A t-test or non-parametric test will be used to compare continuous data. Count data are expressed as frequency (%). For comparison of categorical variables, the chi-square test, Fisher's exact probability test, or Cochran-Mantel-Haenszel test will be used. Subgroup analyses will include region and hospital levels. An intention-to-treat analysis will be applied. Subjects who are randomly assigned to either the intelligent group or the doctor group will be analyzed as such, regardless of whether they received intelligent assessment or not. A significant difference was considered to be statistically significant

1 at p < 0.05. Statistical analyses were performed using the SAS 9.4.

A cost-effectiveness analysis will be conducted from a healthcare system and a
societal perspective; all the costs and diagnostic outcomes will be listed separately,
then the incremental cost will be calculated per true case additionally detected by
using the intelligent system versus the clinicians. We will explore the possibilities of
conducting a long-term cost-effectiveness analysis using economic decision modeling
based on future cost savings and health gains by using the intelligent system versus
clinicians to screen for gain disorder.

9 Patient and public involvement

Each patient will voluntarily participate in the study and sign the informed consent.
Each subcenter will recruit patients according to the inclusion criteria and competed
for enrollment. Patients will not involve in the design of this study. Patients don't
need to assess the burden of the intervention. The result of this study will be
disseminated via peer-reviewed journals.

R.

DISCUSSION

Our study aims to compare the accuracy of the diagnosis of SCD-related gait
disorders between the intelligent system and the clinician. Furthermore, we aim to
evaluate the effectiveness and equity of intelligent systems to diagnose SCD-related
gait disorders compared to clinicians.

Early identification of the characteristic gait of SCD is helpful for clinical diagnosis and treatment. Studies have found that the deterioration of neural gait disorder is often associated with impaired cognitive function, which can serve as a warning sign of dementia. Rosso²³ et al. reported that after a 14-year-follow-up, gait slowing was associated with cognitive impairment in the elderly population (OR per 0.1 s/y slowing 1.47; 95% CI, 1.04–2.07). After nine years of follow-up, Dumurgier²⁴ et al. found that 296 of the 3,663 subjects developed dementia, in which a decreased pace was associated with an increased risk of dementia, with a HR value reaching 3.39 for

Page 13 of 23

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∡∪ ר<	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
~ ~	

60

every 0.007 m/s decrease in pace [95% CI 1.37-8.43]. Therefore, early quantitative
 gait analysis will help in the early detection of cognitive impairment. Appropriate
 interventions are needed to improve patient outcomes and prognoses.

4 However, the assessment of gait and cognitive function mostly depends on the visual 5 or scale method used by doctors. Due to the lack of a unified evaluation process, the 6 results are relatively random and inconsistent. Therefore, using artificial intelligence 7 to detect gait disorder not only reduces time and labor costs, but also avoids 8 individual evaluation differences. There were some researches based on intelligent 9 gait analysis with wearable devices. Ahad et al²⁵ collected gait data using three 10 sensors placed in a belt and backpack. They analyzed 67 solution and found that the 11 best result achieved 24.23% prediction error for gender estimation, and 5.39 mean 12 absolute error for age. Qiu et al²⁶ used inertial sensors to monitor the function of the 13 body's lower limbs and capture their movements to reconstruct a three-dimensional 14 model. Our intelligent system is easy to operate and has low requirements on 15 hardware and site. Meanwhile, to the best of our knowledge, this is the first study to 16 analyze gait features in SCD based on an intelligent system.

17 Currently, no studies have explored the effectiveness of SCD screening in reducing 18 adverse health events or cost-effectiveness¹. Although SCD may cause dementia and 19 increase the incidence of stroke, the absolute risk is not high. Therefore, screening 20 requires a low-cost and highly efficient test method. Artificial intelligence is a good 21 choice. We will investigate the human, material, and financial costs of physicians and 22 artificial intelligence in different regions when assessing a patient's neurological 23 function. We hope that our intelligent system can reduce the cost of SCD screening 24 and improve diagnosis in remote areas.

25 Ethics and dissemination

The subjects' rights will be protected according to the regulations of the China Food
and Drug Administration, the Declaration of Helsinki, and the International
Conference on Harmonization - Good Clinical Practice (ICH-GCP). The study was
approved by the Zhongshan Hospital Ethics Committee. (Approval No. B2019-027(2)

1:

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
58	
~ U	

1 2

1 R). The subjects' data will be kept strictly confidential. The results will be

2 disseminated in peer-reviewed journals.

3 Author affiliations

4 1 Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin

5 Road, 200032 Shanghai, China.

2 Department of Health Economics, School of Public Health, Fudan University, 130
Dongan Road, 200032 Shanghai, China

8 3 Department of Biostatistics, School of Public Health, Fudan University, 130

9 Dongan Road, 200032 Shanghai, China

10 Authors' contributions

- 11 Xin Wang, Jing Ding contributed to the conception and design of the study. Min Hu
- 12 and Jin Zhao contributed to the design of the health economics part. Beini Fei,
- 13 Yanmin Tang, and Xin Li contributed to the design of the clinical parts. Guoyou Qin
- 14 and Wei Zhang helped with data analysis. Beini Fei wrote the manuscript.

15 Funding statement

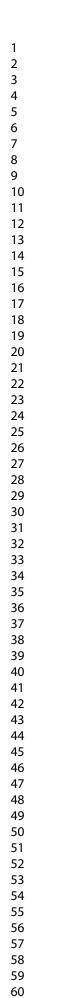
- 16 This work was supported by the National Key Research and Development Program of
- 17 China. (No. 2018YFC1312900)

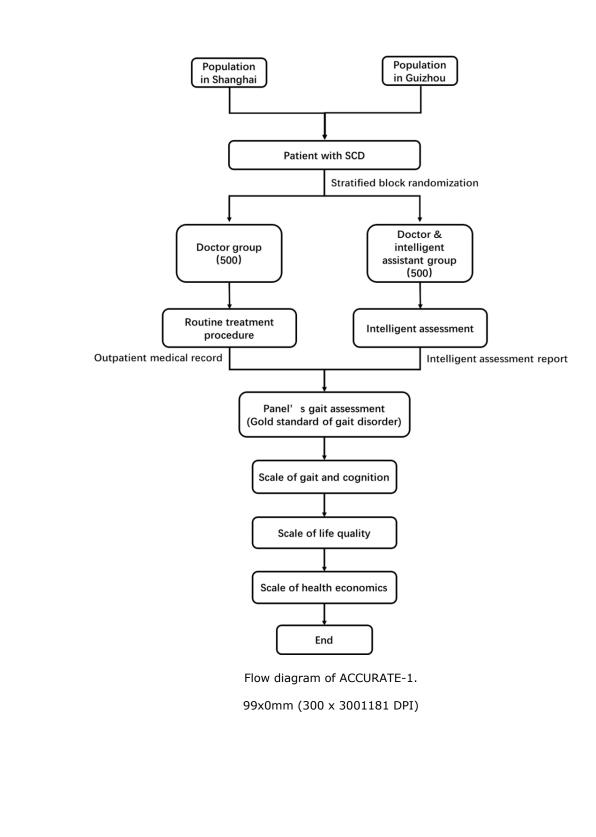
18 Competing interests statement

- 19 The authors declare that they have no competing interests.
- 20 Patient consent for publication
- 21 Not required.

1 2		
3 4 5	1	Ethics approval
6 7	2	The study was approved by the Zhongshan Hospital Ethics Committee. (Approval No.
8	3	B2019-027(2) R)
9 10		
11 12	4	
13 14 15	5	References
16 17	6	1. Smith EE, Saposnik G, Biessels GJ, et al. Prevention of Stroke in Patients
18	7	With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare
19 20	8	Professionals From the American Heart Association/American Stroke
21 22	9	Association. <i>Stroke</i> 2017; 48 (2): e44-e71.
23 24	10	2. Vermeer SE, Longstreth WT, Jr., Koudstaal PJ. Silent brain infarcts: a
25	11	systematic review. The Lancet Neurology 2007; 6(7): 611-9.
26 27	12	3. Leary MC, Saver JL. Annual incidence of first silent stroke in the United
28 29	13	States: a preliminary estimate. Cerebrovascular diseases (Basel, Switzerland)
30 31	14	2003; 16 (3): 280-5.
32 33	15	4. Kim BJ, Lee SH. Prognostic Impact of Cerebral Small Vessel Disease on
34	16	Stroke Outcome. <i>J Stroke</i> 2015; 17 (2): 101-10.
35 36	17	5. Poels MMF, Steyerberg EW, Wieberdink RG, et al. Assessment of cerebral
37 38	18	small vessel disease predicts individual stroke risk. Journal of Neurology,
39 40	19	Neurosurgery & Psychiatry 2012; 83(12): 1174-9.
41	20	6. Vermeer SE, Hollander M, van Dijk EJ, et al. Silent brain infarcts and white
42 43	21	matter lesions increase stroke risk in the general population: the Rotterdam
44 45	22	Scan Study. <i>Stroke</i> 2003; 34 (5): 1126-9.
46 47	23	7. Debette S, Beiser A, DeCarli C, et al. Association of MRI markers of
48	24	vascular brain injury with incident stroke, mild cognitive impairment, dementia,
49 50	25	and mortality: the Framingham Offspring Study. <i>Stroke</i> 2010; 41 (4): 600-6.
51 52	26	8. Reed SD, Blough DK, Meyer K, Jarvik JG. Inpatient costs, length of stay,
53 54	27	and mortality for cerebrovascular events in community hospitals. Neurology
55 56	28	2001; 57 (2): 305-14.
57	29	9. Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go
58 59 60	30	test a useful predictor of risk of falls in community dwelling older adults: a

(


-		
3 4	1	systematic review and meta-analysis. <i>BMC Geriatr</i> 2014; 14 : 14.
5 6	2	10. Tang Y-m, Wang Y-h, Feng X-y, et al. Diagnostic value of a vision-based
7	3	intelligent gait analyzer in screening for gait abnormalities. Gait & Posture 2022;
8 9	4	91 : 205-11.
10 11	5	11. Tsoi KK, Chan JY, Hirai HW, Wong SY, Kwok TC. Cognitive Tests to Detect
12	6	Dementia: A Systematic Review and Meta-analysis. <i>JAMA Intern Med</i> 2015;
13 14	7	175 (9): 1450-8.
15 16	, 8	12. Creavin ST, Wisniewski S, Noel-Storr AH, et al. Mini-Mental State
17		
18 19	9	Examination (MMSE) for the detection of dementia in clinically unevaluated
20 21	10	people aged 65 and over in community and primary care populations. <i>Cochrane</i>
22	11	<i>Database Syst Rev</i> 2016; (1): Cd011145.
23 24	12	13. O'Driscoll C, Shaikh M. Cross-Cultural Applicability of the Montreal
25	13	Cognitive Assessment (MoCA): A Systematic Review. J Alzheimers Dis 2017;
26 27	14	58 (3): 789-801.
28 29	15	14. Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol 2017;
30	16	8: 557.
31 32	17	15. Tripathi R, Kumar K, Bharath S, PM, Rawat VS, Varghese M. Indian older
33 34	18	adults and the digit span A preliminary report. Dement Neuropsychol 2019;
35	19	13 (1): 111-5.
36 37	20	16. Whiteside DM, Kealey T, Semla M, et al. Verbal Fluency: Language or
38 39	21	Executive Function Measure? <i>Appl Neuropsychol Adult</i> 2016; 23 (1): 29-34.
40	22	17. Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a
41 42	23	shorter walk test compared with the 10-Meter Walk Test for measurements of
43 44	24	gait speed in healthy, older adults. <i>J Geriatr Phys Ther</i> 2013; 36 (1): 24-30.
45	24 25	
46 47		18. Canbek J, Fulk G, Nof L, Echternach J. Test-retest reliability and construct
48 49	26	validity of the tinetti performance-oriented mobility assessment in people with
50	27	stroke. <i>J Neurol Phys Ther</i> 2013; 37 (1): 14-9.
51 52	28	19. Sterke CS, Huisman SL, van Beeck EF, Looman CW, van der Cammen TJ.
53 54	29	Is the Tinetti Performance Oriented Mobility Assessment (POMA) a feasible
55	30	and valid predictor of short-term fall risk in nursing home residents with
56 57	31	dementia? Int Psychogeriatr 2010; 22(2): 254-63.
58 59	32	20. Luo N, Liu G, Li M, Guan H, Jin X, Rand-Hendriksen K. Estimating an EQ-
60	33	5D-5L Value Set for China. Value Health 2017; 20 (4): 662-9.
		1


Page 17 of 23

1

BMJ Open

2		
3 4	1	21. Joseph C, Brodin N, Leavy B, Hagströmer M, Löfgren N, Franzén E. Cost-
5 6	2	effectiveness of the HiBalance training program for elderly with Parkinson's
7	3	disease: analysis of data from a randomized controlled trial. <i>Clin Rehabil</i> 2019;
8 9	4	33 (2): 222-32.
10	5	22. Doi T, Nakakubo S, Tsutsumimoto K, et al. Spatio-temporal gait variables
11 12	6	predicted incident disability. <i>J Neuroeng Rehabil</i> 2020; 17 (1): 11.
13 14	8 7	
15		23. Rosso AL, Verghese J, Metti AL, Boudreau RM, Rosano CJN. Slowing gait
16 17	8	and risk for cognitive impairment: The hippocampus as a shared neural
18 19	9	substrate. 2017; 89 (4): 336-42.
20	10	24. Elbaz A, Artaud F, Singh-Manoux A, Dumurgier J. Gait Speed and Decline
21 22	11	in Gait Speed as Predictors of Incident Dementia. Innovation in Aging 2017;
23 24	12	1(suppl_1): 75
25	13	25. Ahad MAR, Ngo TT, Antar AD, et al. Wearable Sensor-Based Gait Analysis
26 27	14	for Age and Gender Estimation. <i>Sensors (Basel)</i> 2020; 20 (8).
28 29	15	26. Qiu S, Wang H, Li J, et al. Towards Wearable-Inertial-Sensor-Based Gait
30	16	Posture Evaluation for Subjects with Unbalanced Gaits. Sensors (Basel) 2020;
31 32	17	20(4).
33 34	18	
35	19	Figure legend Figure 1 Flow diagram of ACCURATE-1.
36 37		
38 39	20	Figure 1 Flow diagram of ACCURATE-1.
40	.	
41 42	21	
43 44	22	
45		
46 47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58 59		
60		
		1

 BMJ Open

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	tion/item ItemNo Description		Line/Page	
Administrative ir	nformatio	n		
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1/1	
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	4/3	
	2b	All items from the World Health Organization Trial Registration Data Set	26/2	
Protocol version	3	Date and version identifier	-	
Funding	4	Sources and types of financial, material, and other support	13/14	
Roles and	5a	Names, affiliations, and roles of protocol contributors	20/1	
responsibilities	5b	Name and contact information for the trial sponsor	20/1	
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	20/1	
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	10/11	
Introduction				
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	2/4	
	6b	Explanation for choice of comparators	19/4	
Objectives	7	Specific objectives or hypotheses	26/4	

1 2 3 4 5 6 7	
8 9 10 11	
15 16 17	
18 19 20 21 22 23 24 25 26 27 28 29 30	
29 30 31 32 33 34 35 36 37	
30 37 38 39 40 41 42 43	
44 45 46 47 48 49	
50 51 52 53 54 55 56	
57 58 59 60	

Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	4/5
Methods: Partici	pants, i	nterventions, and outcomes	
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	11/5
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	24/5
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	4/7
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	15/7
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	Not Applicable
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	Not Applicable
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	9/10
Participant timeline	13	Time schedule of enrolment, interventions (including any run- ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	11/5
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	18/10
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	10/11
Methods: Assign	nment of	f interventions (for controlled trials)	
Allocation:			

1				
2 3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	15/11
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	19/11
15 16 17	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	16/11
18 19 20 21 22	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	16/8
23 24 25 26		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	Not Applicable
27 28	Methods: Data co	llection	, management, and analysis	
29 30 31 32 33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	15/7
39 40 41 42 43		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	Not Applicable
44 45 46 47 48 49 50 51	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	29/13
52 53 54 55	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	22/11
56 57 58 59		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	2/12
60				

	20c	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	28/11
Methods: Monito	oring		
Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	11/7
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	Not Applicab
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	27/2
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	Not Applicab
Ethics and disse	mination		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	25/2
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	Not Applicab
Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	27/2
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	Not Applicab
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	29/13
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	17/14
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	29/13

Page 23 of 23			BMJ Open	
1 2 3 4 5	Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	Attachment (informed consent)
6 7 8 9 10 11 12	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	29/13
13 14 15		31b	Authorship eligibility guidelines and any intended use of professional writers	Not Applicable
16 17 18		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	Not Applicable
19 20	Appendices			
21 22 23 24	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	Attachment
25 26 27 28	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	Not Applicable
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Explanation & Elal protocol should be	boration f tracked	d that this checklist be read in conjunction with the SPIRIT 2013 for important clarification on the items. Amendments to the and dated. The SPIRIT checklist is copyrighted by the SPIRIT commons " <u>Attribution-NonCommercial-NoDerivs 3.0 Unported</u> "	
	For p	eer review	only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5