Acute and repeated impact of sweeteners and sweetness enhancers in solid and semi-solid foods on appetite: protocol for a multicentre, cross-over, RCT in people with overweight/obesity – the SWEET Project

ABSTRACT

Introduction Intake of free sugars in European countries is high and attempts to reduce sugar intake have been mostly ineffective. Non-nutritive sweeteners and sweetness enhancers (S&SEs) can maintain sweet taste in the absence of energy, but little is known about the impact of acute and repeated consumption of S&SE in foods on appetite. This study aims to evaluate the effect of acute and repeated consumption of two individual S&SEs and two S&SE blends in semisolid and solid foods on appetite and related behavioural, metabolic and health outcomes.

Methods and analysis A work package of the SWEET Project; this study consists of five double-blind randomised cross-over trials which will be carried out at five sites across four European countries, aiming to have n=213. Five food matrices will be tested across three formulations (sucrose-sweetened control vs two reformulated products with S&SE blends and no added sugar). Participants (body mass index 25–35 kg/m²; aged 18–60 years) will consume each formulation for 14 days. The primary endpoint is composite appetite score (hunger, inverse of fullness, desire to eat and prospective food consumption) over a 3-hour postprandial incremental area under the curve during clinical investigation days on days 1 and 14.

Ethics and dissemination The trial has been approved by national ethical committees and will be conducted in accordance with the Declaration of Helsinki. Results will be published in international peer-reviewed open-access scientific journals. Research data from the trial will be deposited in an open-access online research data archive.

Trial registration number NCT04633681.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ The trial is the first of its kind to investigate the effects of acute and repeated exposure to two individual sweeteners and sweetness enhancers (S&SEs) and two S&SE blends in five different sweet food products across a variety of matrices including bakery (cakes and biscuits), dairy (yoghurt), confectionery (chocolate) and breakfast cereal.

⇒ This trial includes a large range of outcomes across behaviour, physiology and health from persons living in Northern, Central and Southern Europe.

⇒ The COVID-19 pandemic resulted in changes to the design of the studies in the trial. Originally, all products were to be tested across two sites, but the reduced time frame means this is not possible for some products.

⇒ Due to COVID-19 disruptions, the number of participants in two of the five studies will be reduced. Blood samples will not be taken in one of these smaller studies. Outcomes will be reported descriptively in these two studies where appropriate.

BACKGROUND AND RATIONALE

The global increase in the prevalence of obesity and its associated diseases is driven by a range of internal factors, involving genetic, behavioural and metabolic determinants along with permissive external factors from the physical, social and public (nutritional) policy environment. One of the main behavioural drivers involves a diet too rich in energy intake relative to energy expenditure.
Free sugar intake (derived from sugar added to foods and beverages by the manufacturer or consumer) is one nutritional component that has gained focus because of its low nutritional value (lack of vitamins, minerals or fibre) and its potential to add to overall energy consumed, facilitating weight gain, and potential altered appetite and endocrine responses to carbohydrates (sugars) relative to other macronutrients.

Simply restricting free sugars from the diet without substitution may reduce diet palatability or contribute to changes in sweet craving, particularly in women, resulting in poor acceptance. The replacement of free sugars with non-nutritive sweeteners and sweetness enhancers (S&SEs) in food products is one method to reduce sugar intake while maintaining acceptance and palatability of the diet. S&SEs have increasingly been employed over recent years to reduce the energy and sugar content of foods; however, their impact on appetite and energy intake. Overall, there is currently what unclear.

The effect of S&SEs on appetite is difficult to summarise due to the types of studies, comparisons and S&SEs being used. One of the reasons for the current partial understanding of the appetitive and metabolic effects of S&SEs in humans is that different S&SEs are commonly assumed to have similar behavioural effects. Only recently, one 12-week investigation of four distinct S&SEs reported directionally dissimilar effects of saccharin compared with sucralose on body weight. A recent review comparing 12-saccharin on appetite and energy intake. Indeed, this study is part of the wider SWEET Project (https://sweejector.eu/) funded by the European Commission Horizon 2020 programme. It is a multicentre double-blind, randomised cross-over trial conducted across five intervention sites in four countries, with three product formulations (sucrose-sweetened control vs two individual S&SEs or S&SE blends) over five intervention product types (cake, biscuits, yoghurt, chocolate and breakfast cereal matrices) aiming for a total of 213 completers. The protocol is reported as per the Standard Protocol Items: Recommendations for Interventional Trials reporting guidelines. While this study addresses the short-term impact of specific S&SEs versus added sucrose on appetite, another work package in the SWEET Project will examine the long-term (1-year) impact of a weight loss and weight maintenance intervention with or without S&SE as part of a healthy diet.

Sample size determination

The following calculations apply to the studies involving biscuit, yoghurt and chocolate matrices:

Primary outcome: power calculations showed that to detect a minimum difference of 8 mm in appetite ratings on a 100 mm Visual Analogue Scale (VAS) with 80% power, alpha 0.05 and based on a published within-subject SD of 14.4 mm in VAS measures, an overall sample of 53 completers (both sexes, same body mass index (BMI) group, across all centres) would be needed (p,30) per matrix. We expect this sample size will be sufficient to detect iAUC differences in the appetite response relative to control of around 8%-10%, considered to be of practical relevance.

Secondary outcomes: due to the number of secondary outcomes in this study, it was not feasible to conduct
power calculations for all outcomes. However, we consulted published studies (eg, Yeomans et al27) which used a similar design and demonstrated effects of small nutritional manipulations on various gut peptides. In these studies, sample sizes ranged from 12 to 25 participants, giving us confidence that a sample of 53 participants per matrix should be sufficient to detect differences with clinical significance.

Due to the impact of the COVID-19 pandemic on the trial (detailed later), the cake and breakfast cereal studies were scaled down according to reduced feasibility at each intervention centre to n=24 (cake) and n=30 (breakfast cereal), and no blood samples will be collected in the cake study. The primary outcome will be reported descriptively in these two studies where appropriate and reflected in the study registration and protocol.

Study setting

This trial is conducted across five intervention sites in four countries across three regions of Europe, with each site testing a different product, while following the same protocol. Western Europe: Leeds (University of Leeds, UK) will test biscuits; Liverpool (University of Liverpool, UK) will test chocolate; Lyon (Centre de Recherche en Nutrition Humaine Rhône Alpes, France) will test biscuits and cakes; Northern Europe: Copenhagen (University of Copenhagen, Denmark) will test cereal; Southern Europe: Pamplona (University of Navarra, Spain) will test yoghurt. University of Leeds and University of Navarra are the leaders of this work package, while University of Liverpool is the coordinating centre of the SWEET Project in its entirety.

Patient and public involvement

During the study, research staff discuss with participants about their experiences of the clinical investigation days (CIDs), examinations, participant information, written materials, etc with the aim to understand and improve participants’ experiences in current and future studies of this nature. This is also captured in an end of study survey.

Eligibility criteria

Male and female adults aged 18–60 years, with a BMI 25–35 kg/m\(^2\), are eligible. Participants are required to regularly consume sugar-containing foods and willing to consume sugar and sweetened food products. During screening, they must have an Eating Attitudes Test (EAT-26)28 score <20 and a short sweet food frequency questionnaire score ≥3 of 11, in addition to rating the control product as ≥40% on a 100-point liking VAS during the taste test and be willing to consume the product during the duration of the trial. All exclusion criteria are listed in online supplemental material 1.

Intervention

Each trial will begin with an initial exposure to one of the three assigned product formulations under controlled laboratory conditions (CIDs 1, 3, 5—exposure day 1), followed by repeated daily consumption of the same product at home for 12 (±2) days and a final exposure in the laboratory on day 14 (±2 days) under identical conditions as the first exposure (CIDs 2, 4, 6—exposure day 14), resulting in all participants completing the three product formulations in a Latin square design (see figure 1). CIDs 2 and 4 will be followed by a washout period of 14–21 days between formulations. During the at-home periods, participants will consume a portion of the product at a time and place they choose using a substitution strategy for similar energy/sweetness foods in their habitual diet. Foods habitually consumed of an equivalent energy density/sweetness are identified using participants’ answers to a food frequency questionnaire and an energy equivalent guide, with a decision-making tree developed to identify the most suitable foods to substitute for each intervention product. This strategy is supported by advice and agreement from the research officer/dietitian. Compliance will be monitored by an intervention booklet completed daily and by return of empty food packaging. All food products are provided in the same blinded container/wrapping. The study durations for each participant will be a minimum of 70 days (plus 7–14 days’ allowance for extended washout to aid scheduling of CIDs).

Recruitment and screening

Participants will be recruited via a variety of routes, for example, study databases, webpages, social media, posters and flyers. Potential participants will be prescreened using an online or telephonic prescreening questionnaire in accordance with the inclusion and exclusion criteria. Candidates passing prescreening will be invited to attend an information session, either online or in person, where they will be given detailed information about the study and invited to participate in a question and answer session. Candidates who wish to participate in the study will provide written informed consent and sign a general data protection regulation (GDPR) form before being fully screened. The screening session will be performed in person or online, and will consist of anthropometric measurements (height, weight, waist and hip circumference; all confirmed in person at CID1 for participants being screened online); eligibility questionnaires (EAT-26 and short sweet food frequency questionnaire); baseline questionnaires (a sociodemographic questionnaire, a questionnaire to assess habitual sweet food consumption, including regular and S&SE sweet foods (SWITCH sweet food frequency questionnaire); a questionnaire to assess habitual physical activity (International Physical Activity Questionnaire and a consumer perspective questionnaire); an eligibility taste test of the control intervention product where participants rated the pleasantness of the product on a 100 mm VAS after taking one bite and chewing for 5 s (a score of >40 mm was required for inclusion into the study). Candidates who pass the screening session will be enrolled into the study.
Randomisation and blinding

A Latin square design (six treatment orders) will be used to randomly allocate product sequence into blocks of six, as shown in **Figure 1**. The person responsible for generating the sequences for all sites will not have any study-related tasks, for example, inclusion or examination of participants. Each sequence will be stratified by sex (female/male) and age group (18–45 years/46–60 years). When feasible, a female/male ratio of minimum 60/40 was also considered to reflect the target population characteristics.

Blinding of the intervention products (reformulated and control products) will be done by the manufacturers. As such, blinding of the research and central laboratory staff will take place allowing for a double-blind intervention. Moreover, the statistical analyses of the main outcome variable will be done without breaking the intervention product-assignment code before the analyses are finalised.

Clinical investigation days

Prior to each CID, participants will be asked to consume a similar evening meal at the same time, before fasting for a minimum of 12 hours and a maximum of 15 hours. High-intensity physical activity, alcohol and coffee will not be allowed for 12 hours before arriving to the laboratory. Two glasses, approximately 500 mL of non-carbonated water will be allowed during the fasting period. Participants will provide a spot urine sample collected maximum of 24 hours before each CID and will be analysed for the presence of specific S&SEs.

The CID procedures are outlined in **Figure 2**. CID start times will be scheduled in the morning between 08:00 and 10:30 and participants will start all 6 CIDs at the same time. Participants will complete a protocol compliance questionnaire to verify the above requirements regarding diet, physical activity, etc. If compliance has been breached, staff will reschedule the CID (within the maximum 14 days allowed, otherwise a protocol deviation will be recorded). If compliance has been achieved, participants will then fill in the Control of Eating Questionnaire (CoEQ) to assess cravings over the last 7 days, followed by a body weight measurement. Participants will consume 200 mL of water before having an intravenous cannula inserted into an antecubital vein by qualified personnel. A baseline fasting blood sample will be taken 15 min after insertion of the cannula. Once the fasting sample has been taken, participants will complete fasting subjective appetite ratings for hunger, fullness, thirst, desire to eat, prospective intake, nausea, bloating, appetite for something savoury and for something sweet on a validated 100-point VAS accessed via a personal computer or a tablet.

These measures will be completed on an electronic Questionnaire Delivery Platform (QDP), using separate screens for each VAS. Next, food reward will be measured using a culturally adapted version of the Leeds Food Preference Questionnaire (LFPQ) on a computer.

Figure 1 Latin square design and duration for cross-over trials. Each trial will include two no added/reduced sugar reformulated products and one sucrose-sweetened control (double-blind) per food matrix. Participants will be randomised to one of six treatment orders. For example, a participant randomised to order one will consume product A in the laboratory on clinical investigation day (CID) 1/exposure day (ED) 1 and then every day at home until CID2/ED14 when it is consumed in the laboratory again. After a 2-week washout, the participant returns to the laboratory and repeats the study block with product B, followed by another 2-week washout, followed by the final study block with product C.
desktop. Appetite sensations measured by VAS will be repeated after the LFPQ and before the researcher brings the blinded intervention product served with 200 mL of water. The participant will be instructed to take one bite, then answer questions regarding sensory-specific satiety and expected satiety by VAS. The participant will be asked to consume the rest of the product over a period of 5–10 min, depending on the time required to consume the matrix and asked to complete a set of appetite sensation questions by VAS at 10 min, followed by blood samples at 7–10 and 12–15 min to capture peak pancreatic polypeptide (PP) response (yoghurt will be consumed faster than other products; therefore, blood samples will be taken earlier for this matrix). VAS for assessment of appetite sensation will then be taken at 20, 30, 45, 60, 120 and 180 min with blood samples taken after VAS at 30, 60 and 120 min. The LFPQ will be repeated in the fed state after the 20-minute VAS. In between measurements, participants will remain seated in a quiet area, free from food-related sensory stimuli and read/listen to music/use a computer (provided there is no material with reference to food/drink). Once the 180-minute appetite sensation questions by VAS are complete, the participant will be offered water or a snack before leaving the laboratory. Participants will be reminded about the consumption of the products at home and that they will receive a phone call the next day to complete a 24-hour diet recall and report any GI symptoms. Following the end of the trial, participants will be debriefed if requested and offered the chance to complete a survey about the conduct of the study.

Intervention products

There will be one control product (sucrose-containing manufactured products) and two no added/reduced sugar reformulated products based on the same food matrix—including two modulations of S&SE content (inclusion as individual S&SE or S&SE blends). The reformulated products have a target of ≥30% reduction in energy and/or sugar to achieve the status of ‘reduced sugar’ by EU regulation no 1047/2012. This will not be possible in all products; therefore, ‘no added sugar’ will be applied to products that do not meet the criteria (biscuits and cakes). The control products will range from 305 to 360 kcal (1286–1516 kJ), while the intervention products will range from 242 to 326 kcal (1013–1368 kJ) (full product nutritional information in online supplemental material 2). Intervention and control products will be matched for sweetness intensity, flavour and physical appearance.

The two individual S&SEs selected based on published literature were Neotame and Stevia Rebauudioside M (in the biscuits and cakes) and two further S&SE blends were Sucralose/Acesulfame K blend and Mogroside V/Stevia Rebauudioside M blend (in yoghurt, chocolate and cereal), selected based on the results of a preliminary study using a beverage matrix (manuscript in preparation).

Data collection and outcomes

Table 1 details at which time point(s) data are collected at the CID.

Primary outcome

This trial has one primary outcome which is the iAUC for the 180-minute composite appetite score based on
hunger, fullness (reverse scored), desire to eat and prospective food consumption. These subjective appetite ratings will be measured throughout the CIDs using VAS on the QDP. The trapezoid method will be used for the calculation of iAUC.

Secondary outcomes

Food preference and reward

Food preference and food reward will be measured at all CIDs using the LFPQ. Changes will be determined by comparing the relative preference/food choice, explicit liking and implicit wanting for high-fat sweet, low-fat sweet, high-fat savoury and low-fat savoury foods, and fat/sweet appeal bias scores in the fed and hungry states between the reformulated and control products.

Food cravings

Food cravings will be determined at all CIDs by craving control, craving for sweet and savoury scores from the CoEQ, which is a 21-item questionnaire with responses recorded on a 100-point VAS (one item allows for text response).

Energy intake

Energy intake will be measured by a 24-hour dietary recall (using the multiple pass method), which will be conducted by a trained dietitian or research staff over the telephone. Participants will be asked to recall all food and drink consumed during the 24-hour period since leaving the laboratory. Participants will receive training on reporting food portions using the Australian Health Survey Food Model Booklet or similar culturally adapted resources.

Compensatory eating behaviour will be determined from the analysis of the 24-hour dietary interview data using energy intake calculated with national nutritional software. The following variables will be considered: (1) energy and macronutrient distribution and (2) percent energy compensation, defined as the adjustment of energy intake provoked by the intervention products (see online supplemental material 3 for further information).

Expected satiety and sensory-specific satiety

Expected satiety will be measured by the Expected Satiety (ESAT) Questionnaire and sensory-specific satiety will be measured by the Sensory-Specific Satiety (SSS) Questionnaire after one bite and full consumption (10') of the product. Responses to both questionnaires are recorded on a 100-point VAS completed on the QDP. ESAT and SSS will be recorded on all CIDs (see online supplemental material 4 for details of each VAS).

Table 1 Data collection and time points for each CID

Primary endpoint	Subjective appetite (VAS for hunger, desire to eat, fullness, prospective food consumption)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		
Behavioural endpoints	Food preference and reward (LFPQ)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Food cravings (CoEQ)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Energy intake (24-hour dietary recall)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Expected satiety	X (1 bite)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Sensory-specific satiety	X (1 bite)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Other appetite ratings (eg, thirst, nausea, bloating, appetite for something sweet/ savoury)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
Metabolic endpoints	Glucose and insulin	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Pancreatic polypeptide (PP)*	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	GLP-1 and ghrelin	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	Lipaemia (triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
Health endpoints	Liver function (ALT, AST, GGT, FL index, TyG index)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HbA1c	CID1 and 6	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

*Time points for PP are earlier for yoghurt study.
ALT, alanine transaminase; AST, aspartate transaminase; CID, clinical investigation day; CoEQ, Control of Eating Questionnaire; FL index, fatty liver index; GGT, gamma-glutamyltransferase; GI, gastrointestinal; GLP-1, glucagon-like peptide 1; HbA1c, haemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LFPQ, Leeds Food Preference Questionnaire; TyG index, triglycerides and glucose index; VAS, Visual Analogue Scale.
Other behavioural ratings
Subjective ratings of thirst, nausea, bloating, appetite for sweet and appetite for savoury will be recorded using 100-point VAS on the QDP regularly throughout the CIDs (table 1).

Biochemical measures
Blood for plasma analyses will be centrifuged at 1500 g at 4°C for 10 min immediately after being collected. Blood for serum analyses will be left to clot for 30–60 min before being centrifuged. Whole blood samples for DNA and haemoglobin A1c (HbA1c) will be frozen immediately after collection. Plasma and serum aliquots will be stored at −80°C until shipment for analyses to Bioaitriki Laboratories (central laboratory) in Athens, Greece.

Insulin concentrations will be determined by chemiluminescent microparticle immunoassay (Abbott Laboratories) using an Abbott Alinity i automated immunoassay system. Ghrelin, glucagon-like peptide 1 and PP concentrations will be determined by ELISA, using an open automated ELISA system. HbA1c will be determined by enzymatic assay (Abbott), which consists of two separate concentration measurements: glycated haemoglobin (HbA1c) and total haemoglobin. The two concentrations are used to determine the per cent HbA1c (National Glycohemoglobin Standardization Program (NGSP) units) or the haemoglobin fraction in mmol/mol (International Federation of Clinical Chemistry (IFCC) units).

Triglycerides will be determined by glycerol phosphate oxidase method (Abbott). Total cholesterol will be determined by enzymatic (oxidase, esterase and peroxidase) analysis (Abbott). Glucose concentrations will be determined by enzymatic (Hexokinase/G-6-PDH) (Abbott) analysis. High-density lipoprotein (HDL)-cholesterol will be determined by an accelerator selective detergent method (Ultra HDL assay, Abbott) and low-density lipoprotein (LDL)-cholesterol by a selective resolution of LDL particles under dye formation method (Direct LDL assay, Abbott). Aspartate transaminase and alanine transaminase will be determined by enzymatic (NADH (without P-5’-P)) assays and gamma-glutamyltransferase by enzymatic, L-gamma glutamyl-3-carboxy-4-nitroanilide substrate (Abbott). All biochemistry parameters will be analysed by an Abbott Alinity c analyser. Fatty liver index and triglyceride glucose index will be calculated according to information provided in online supplemental material 5.

GI side effects
Any reported unusual GI side effects, including abdominal pain/cramps, heartburn, stomach acid/reflux, nausea, vomiting, abdominal rumbling, bloating, belching, excess gas/wind, bowel movements, stool type, etc, during the study will be recorded at the phone call the day after each CID and each day during the at-home intervention in a booklet including the Bristol Stool Form Scale.45 The GI symptoms check has been based on the validated Gastrointestinal Symptoms Rating Scale tool.44

Statistical analysis plan
Per-protocol analysis will include participants who completed all 6 CIDs and had a level of adherence to the product consumption >80%. The main evaluations for this trial will be to investigate differences between the intervention products (two no added/reduced sugar reformulated S&SE products and one sucrose-sweetened control). Where this is not appropriate for some of the secondary outcomes, descriptive analyses will be used to interpret differences. Data will be pooled across the split-site (Leeds and Lyon) study using the biscuit matrix. Data will be presented as means and SD. Outcome variables will be checked for normality and transformed where necessary. To account for any missing data, analyses will be conducted using linear mixed models. Models will compare S&SE product conditions versus sucrose control in a 3 (S&SE1, S&SE2, sucrose control) × 2 (exposure day 1 and exposure day 14) within-subject design. Model parameters will be adjusted to obtain the best model fit. Adjustments for covariates (eg, age, gender, BMI, intervention site, compliance, protocol deviations, adverse events and concomitant medication) will be applied as necessary, for example, in the event that they influence outcomes. Analyses will be reported as both unadjusted and adjusted models. The American Statistical Association’s policy statement on p values45 advises that all p values from specified statistical models be reported along with point estimates, effect size and CIs to help interpret the compatibility of the data with the study outcomes; therefore, this procedure will be followed. Otherwise, the level of significance will be set at 0.05.

Safety analysis
Information relating to adverse events (including events relating to GI side effects) and concomitant medication will be tabulated and summarised descriptively.

ETHICS AND MONITORING
Each intervention site has obtained ethical approval from their local ethical committee. The following details the specific ethical committees and the reference numbers: University of Leeds School of Psychology (PSC-127, approved 19 November 2020), Comité de Protection des Personnes Nord-Ouest III (2021-42, approved 28 March 2022), Comité de Ética de la Investigación de la Universidad de Navarra (2021.205, approved 7 March 2022), the Ethical Committee, Region H Denmark (application number H-21078447 approved 27 September 2022) and University of Liverpool Central University Research Ethics Committee D (10659, approved 14 April 2022). All study procedures will be conducted in accordance with the Helsinki Declaration and the study protocol has been registered in a public database (ClinicalTrials.gov NCT04633681; online supplemental material 6). To the extent relevant and reasonable International Council for Harmonisation Good Clinical Practice guidelines will be used, and standard operating procedures will be
developed to facilitate the same performance and compliance with the protocol in each centre. All personal data are handled confidentially and stored in accordance with applicable law, GDPR and local laws (see online supplemental material 7). All participants will receive written and oral information about the study and only trained study personnel will provide information, monitor and attest signing of the informed consent form. Where required, monitoring of intervention sites will be performed during the study by the University of Navarra depending on local regulations.

Trial status
The COVID-19 pandemic had a large impact on access to infrastructure and services across all intervention centres. For example, research was halted in some institutions or fewer participants could be scheduled per visit (restrictions related to distance and number of social contacts), recruitment of new staff was frozen, new risk assessments were required, ethical review processes were restricted or extremely prolonged because COVID-19-related protocols were prioritised, procurement of supplies, consumables and services was suspended, and information technology and administrative support was restricted. Further, face-to-face clinical work was put under strain. There were also challenges regarding staff and volunteer sickness plus overall volunteer reluctance to engage in clinical trials affecting the speed of recruitment and testing.

Nevertheless, recruitment opened in May 2021 for the trial at the Leeds and Lyon intervention centres using the biscuit matrix, with last participant last visit completed in June 2022 for Leeds and expected by October 2022 for Lyon. Recruitment for the trial at Lyon using the cake matrix opened in February 2022. The trials at Liverpool and Pamplona started recruiting in Spring 2022, and Copenhagen are still awaiting ethical approval (August 2022).

Author affiliations
1School of Psychology, University of Leeds, Leeds, UK
2Institute of Population Health, University of Liverpool, Liverpool, UK
3Centre for Nutrition Research, University of Navarra, Pamplona, Spain
4IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
5Food, Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK
6Hospices Civils de Lyon, Rhône-Alpes Research Centre for Human Nutrition, Pierre-Bénite, France
7Hospices Civils de Lyon, French Obesity Research Centre of France, Pierre-Bénite, France
8Precision Nutrition Program, IMDEA, Madrid, Spain
9Ingredients, Materials and Nutrition, Cargill, Minneapolis, Minnesota, USA
10Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
11UMR CNRS GEPEA 6144, Oniris, Nantes, France
12School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
13Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
14International Reference Laboratory Services, Bioalitriki, Athens, Greece
15Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark

Contributors The SWEET EU Project was initiated by JAH, JCGH and AR. The protocol for the present SWEET work package intervention trial was written by CG, CH, EA-R, SN-C, CEH, JAN, JAM, CS, EEB, EF, HM, KB and GF; with all contributing to the design of the trial along with BO’H, DO’C, MW, MA, MN and CR, JAN, GF, JAN, AR and CH are principal investigators (PI) at the five intervention sites. CG and BO’H drafted the manuscript, and EA-R, SN-C, MW, CS, LX, AR, KB and GF critically reviewed the manuscript. All authors read and approved the final manuscript. Responsible author is CG.

Funding The present study is funded by the Horizon 2020 programme: Sweeteners and sweetness enhancers: Impact on health, obesity, safety and sustainability (acronym: SWEET, grant no: 774239). The current study was initiated by GF as part of the Work Package 2 of the SWEET Project. The study receives funding from the Horizon 2020 programme (£9 million) to cover salary for project personnel, supplies, remuneration and dissemination of results. The amount is deposited in a project account subject to public revision.

Disclaimer The funder has no role in the study design, interpretation of data or publication of material.

Competing interests JCGH, JAH and CH are in receipt of research funding from the American Beverage Association. CH has received honoraria from the International Sweeteners Association. AR has received honoraria from Unilever and the International Sweeteners Association. CEH’s research centre provides consultancy to and has received travel funds to present research results from organisations supported by food and drink companies. CS is a paid employee of Cargill.

Patient and public involvement Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Catherine Gibbons http://orcid.org/0000-0002-7569-3417
Beverley O’Hara http://orcid.org/0000-0002-4048-9782
Santiago Navas-Carrasco http://orcid.org/0000-0002-5163-2230
Charo E Hodgkins http://orcid.org/0000-0003-4775-0338
Louise Kjelbaek http://orcid.org/0000-0003-4310-9332
Ellen E Blaak http://orcid.org/0000-0002-2496-3464
Anne Raben http://orcid.org/0000-0001-5229-4491
Kristine Beaulieu http://orcid.org/0000-0001-8926-6953
Graham Finlayson http://orcid.org/0000-0002-2496-3464

REFERENCES
Supplemental Material 1: Exclusion Criteria

General Criteria

- Blood donation < 3 month prior to study or for full duration of the study.
- Food allergy, intolerance, restriction or avoidance of any of the study foods (e.g., veganism) or history of anaphylactic reaction to any food.
- Likelihood for disordered eating defined as a score ≥20 on the EAT-26 test
- Currently dieting to lose weight.
- Having lost or gained >4.5 kg in the last 3 months.
- Smoking or having quit <3 months prior to study.
- Habitually consuming >14 units/week of alcohol in women or >21 units/week in men in the last 3 months.
- Performing >10 h of intense physical activity per week in the last 3 months.
- Night or late shift work (ending later than 11 pm on a permanent basis). Rotational shift work allowed if can attend on days that do not follow a late/night shift.
- Self-reported use of drugs of abuse within the previous 12 months.
- For women: Pregnancy, lactation.
- Persons who do not have access to either (mobile) phone or internet (this is necessary when being contacted by the study personnel during the study).
- Insufficient communication in the national language.
- Proven or suspected inability, physically or mentally, to comply with the procedures required by the study protocol as evaluated by the daily study manager, site-PI, PI or clinical responsible. This includes volunteers for which insufficient collaboration may be foreseen.
- Subject’s general condition contraindicates continuing in the study as evaluated by the daily study manager, site-PI, PI or responsible clinician.
- Simultaneous participation in other relevant clinical intervention studies.
- Previous university or college training related to eating behaviour research.

Medical conditions as known by the person

- Self-reported eating disorders.
- Diagnosed anaemia.
- Diagnosed diabetes mellitus.
- Abnormal G.I. function or structure such as malformation, angiodysplasia, active peptic ulcer.
- Active inflammatory bowel disease, celiac disease, chronic pancreatitis, or other disorder potentially causing malabsorption.
- History of G.I. surgery with permanent effect (i.e., surgical treatment of obesity).
- Medical history of CVD (e.g., current angina; myocardial infarction or stroke within the past 6 months; heart failure; symptomatic peripheral vascular disease).
- Significant liver disease, e.g., cirrhosis (fatty liver disease allowed).
- Malignancy which is currently active or in remission for less than five years after last treatment (local basal and squamous cell skin cancer allowed).
- Thyroid diseases, except those on Levothyroxine treatment of hypothyroidism if the person has been on a stable dose for at least 3 months.
- Psychiatric illness (e.g., major depression, bipolar disorders).

Medication

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
- Use currently or within the previous 3 months of prescription or over the counter medication that has the potential of affecting appetite, satiety, or body weight incl. food supplements. Except: low dose antidepressants if they, in the judgement of the daily study manager, site-PI, PI or clinical responsible, do not affect weight or following the study protocol. Levothyroxine for treatment of hypothyroidism is allowed if the person has been on a stable dose for at least 3 months.
- Cholesterol lowering medication, if the dose has changed during the last 3 months (i.e., the medication is allowed if the participant has been on a stable dose for at least 3 months).
Supplemental Material 2: Product Nutritional Information

Table 1: Proposed energy and nutrient composition of the intervention products

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th></th>
<th>Reformulation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cake with fruit filling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>391</td>
<td>332</td>
<td>343</td>
<td>292</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>1638</td>
<td>1392</td>
<td>1427</td>
<td>1213</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>16.6</td>
<td>14.1</td>
<td>16.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Sat. fats (g)</td>
<td>1.7</td>
<td>1.4</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>56.8</td>
<td>48.2</td>
<td>57.0</td>
<td>48.4</td>
</tr>
<tr>
<td>Sugars (g)</td>
<td>28.3</td>
<td>24.1</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Polyols (g)</td>
<td>3.7</td>
<td>3.1</td>
<td>28.4</td>
<td>24.1</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>5.7</td>
<td>4.8</td>
<td>5.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Salt (mg)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Biscuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>423</td>
<td>360</td>
<td>384</td>
<td>326</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>1783</td>
<td>1516</td>
<td>1609</td>
<td>1368</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>11.2</td>
<td>9.5</td>
<td>11.5</td>
<td>9.8</td>
</tr>
<tr>
<td>Sat. fats (g)</td>
<td>7.11</td>
<td>6.0</td>
<td>7.33</td>
<td>6.2</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>75.9</td>
<td>64.5</td>
<td>76.2</td>
<td>64.8</td>
</tr>
<tr>
<td>Sugars (g)</td>
<td>24.7</td>
<td>21.0</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Polyols (g)</td>
<td>3.7</td>
<td>3.1</td>
<td>22.7</td>
<td>19.3</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>0.7</td>
<td>0.6</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>6.5</td>
<td>5.5</td>
<td>6.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Salt (mg)</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Creamy yoghurt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>226</td>
<td>305</td>
<td>180</td>
<td>242</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>943</td>
<td>1286</td>
<td>750</td>
<td>1013</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>18.5</td>
<td>25.0</td>
<td>16.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Sat. fats (g)</td>
<td>8.3</td>
<td>18.7</td>
<td>8.3</td>
<td>18.7</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>8.12</td>
<td>10.96</td>
<td>1.71</td>
<td>2.31</td>
</tr>
<tr>
<td>Sugars (g)</td>
<td>8.12</td>
<td>10.96</td>
<td>1.71</td>
<td>2.31</td>
</tr>
<tr>
<td>Polyols (g)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>6.50</td>
<td>8.78</td>
<td>6.50</td>
<td>8.78</td>
</tr>
<tr>
<td>Salt (mg)</td>
<td>0.14</td>
<td>0.32</td>
<td>0.14</td>
<td>0.32</td>
</tr>
<tr>
<td>Chocolate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>500</td>
<td>325</td>
<td>477</td>
<td>310</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>2098</td>
<td>1364</td>
<td>2004</td>
<td>1303</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>31</td>
<td>20</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>Sat. fats (g)</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>46</td>
<td>30</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Sugars (g)</td>
<td>45</td>
<td>29</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>Polyols (g)</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Salt (mg)</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Honey ball breakfast cereal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>173</td>
<td>320</td>
<td>153</td>
<td>283</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>731.2</td>
<td>1353.8</td>
<td>641.7</td>
<td>1187.2</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>3.26</td>
<td>6.03</td>
<td>3.16</td>
<td>5.84</td>
</tr>
<tr>
<td>Sat. fats (g)</td>
<td>1.64</td>
<td>3.04</td>
<td>1.63</td>
<td>3.01</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>31.17</td>
<td>57.66</td>
<td>25.59</td>
<td>47.33</td>
</tr>
</tbody>
</table>

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
<table>
<thead>
<tr>
<th>Sugars (g)</th>
<th>12.03</th>
<th>22.26</th>
<th>5.02</th>
<th>9.28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyols (g)</td>
<td>0</td>
<td>0</td>
<td>4.86</td>
<td>9.00</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>0.86</td>
<td>1.60</td>
<td>6.64</td>
<td>12.28</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>4.38</td>
<td>8.11</td>
<td>4.21</td>
<td>7.79</td>
</tr>
<tr>
<td>Salt (mg)</td>
<td>0.35</td>
<td>0.64</td>
<td>0.33</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Supplementary Material 3 – Energy Intake Calculation

Percent energy compensation (%EC) was derived from the dietary recall data as previously reported by Zandstra et al.\(^1\), and Almiron-Roig et al\(^2\). Briefly, %EC was calculated as:

\[
%EC = \left[\frac{EI_{\text{Control Product}} - EI_{\text{Reformulated Product}}}{|EP|} \right] \times 100
\]

where EI represents the cumulative energy intake 24-h post consumption under the control product or under the reformulated product conditions, excluding the energy of the product itself. EP (as an absolute value) represents the difference in energy between the full-energy-containing preload (i.e., control product) and the lower-energy-containing preload (i.e., reformulated products). For example, if the control product has a value of 325 kcal and the reformulated product has a value of 250 kcal, then EP=325-250 or 75 kcal.

Supplemental Material 4: Questions used to assess product taste text, subjective appetite sensations, sensory specific satiety and expected satiety

Food Taste Test (FTT) (Conducted at screening)

Screen 1

You will now be presented with a food that we will ask you to evaluate. Please follow the instructions as they appear on the screen.

Screen 2

1. Take a mouthful of the food provided.
2. Chew while counting to 5.
3. Swallow.
4. Answer the question by moving the arrow to the left or to the right.

How pleasant was this food?

Not at all pleasant Extremely pleasant

Screen 3

Thank you. This is the end of the taste test.

Please call the investigator after submitting your answer.
Subjective Appetite Questions (used during all CIDs)

Considering how you feel right now, give your answer to each of the following questions by moving the arrow to the left or to the right at the point that best represents your experience. The list below is the complete list of questions used via visual analogue scales.

1. How hungry do you feel?
2. How full do you feel?
3. How thirsty do you feel?
4. How strong is your desire to eat?
5. How much do you think you could eat right now?
6. How nauseous do you feel?
7. How bloated do you feel?
8. How strong is your appetite for something savoury?
9. How strong is your appetite for something sweet?

Sensory Specific Satiety Questionnaire (assessed after 1 bite and after consumption of product)

After 1 bite:
Please take a bite of the food and keep the food in your mouth while rating the food. Swallow the food only when your rating is complete.

How pleasant is the taste of the food right now?

At 10 minutes:
How pleasant is the taste of the food now that you have finished eating it?

Expected Satiety (ESAT) (assessed after 1 bite and after consumption of product)

After 1 bite:
After having taken 1 bite of the food and looking at the whole food portion, how much will this portion of food stop you from feeling hungry between meals?

At 10 minutes after full consumption and after SSS rating:
How much will this food stop you from feeling hungry between meals?
Supplemental Material 5: Fatty liver index and triglyceride glucose index calculation

Calculation of Fatty Liver Index:

Some of the blood parameters will be used to calculate a Fatty Liver index (FL) using the formula of Bedogni et al., with measured values for BMI, fasting TG (mg/dL), fasting GGT (U/L) and waist circumference (cm), as follows:

\[
FLI = \frac{e^{0.953 \times \text{log}(\text{triglycerides}) + 0.139 \times \text{BMI} + 0.718 \times \text{log}(\text{GGT}) + 0.053 \times \text{waist circumference} - 15.745)}{1 + e^{0.953 \times \text{log}(\text{triglycerides}) + 0.139 \times \text{BMI} + 0.718 \times \text{log}(\text{GGT}) + 0.053 \times \text{waist circumference} - 15.745}} \times 100
\]

Calculation of Triglyceride Glucose Index:

The formula of Simental-Mendía et al. will be measured with measured fasting TG (mg/dL) and fasting glucose (mg/dL), by dividing the Ln of the TG *glucose product by 2:

\[
\text{TyG index} = \text{Ln} [(\text{fasting triglycerides})(\text{mg/dL}) \times \text{fasting glucose (mg/dL)}] / 2
\]

Supplemental Material 6: Trial Registration Data Set

<table>
<thead>
<tr>
<th>Trial registration data category</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary registry and trial identifying number</td>
<td>ClinicalTrials.gov NCT04633681</td>
</tr>
</tbody>
</table>

Date of registration in primary registry	November 2021
Secondary identifying numbers	N/A
Source(s) of monetary or material support	European Union Horizon 2020 Program

Primary sponsor	European Union Horizon 2020 Program
Secondary sponsor(s)	N/A
Contact for public queries	Professor Graham Finlayson (G.S.Finlayson@leeds.ac.uk)
Contact for scientific queries	Professor Graham Finlayson (G.S.Finlayson@leeds.ac.uk)

Scientific title	Acute and Repeated Impact of Sweeteners and Sweetness Enhancers on Food Behaviour, Physiology & Health (SWEET Work Package 2 Phase 2)
Countries of recruitment	Denmark, France, Spain, United Kingdom
Health condition(s) or problem(s) studied	Eating Behaviour
Intervention(s)	Consumption of food product with sweetener and sweetness enhancer Consumption of sucrose-sweetened control food product

Key inclusion and exclusion criteria

Inclusion criteria: BMI 25-35 kg/m²; Use of contraceptive methods or not planning to become pregnant for the duration of the study (women only); Regular consumption of sugar-containing foods and willing to consume sugar and artificially-sweetened food products; Liking of the intervention foods defined by a response of "Yes" for the product during the pre-screening interview and a score of 40% or above on the Liking Visual Analogue Scale for the sucrose-sweetened control product; Able to participate on the Clinical Investigation Days during normal working hours; Healthy as determined from the self-reported medical history or when a clinical condition exists, when this is considered to be irrelevant (i.e. not influencing study outcomes) for the study by the study medical doctor; Consuming breakfast regularly (at least 5 days per week); Able to understand and be willing to sign the informed consent form, and to follow all the study procedures and requirements; Capacity to store at-home intervention food products; Liking of the intervention foods defined by a response of

Exclusion criteria: Blood donation < 3 month prior to study or for full duration of the study; Food allergy, intolerance, restriction or avoidance of any of the study foods (e.g. vegetarian) or history of unaphylactic reaction to any food; Likelihood for disordered eating defined as a score ≥20 on the Eating Attitudes Test; Currently dieting to lose weight; Having lost or gained >4.5 kg in the last 3 months; Smoking or having quit <3 months prior to study; Habitually consuming >14 units/week of alcohol in women or >21 units/week in men in the last 3 months; Performing >10 h of intense physical activity per week in the last 3 months; Night or late shift work (ending later than 11 pm on a permanent basis). Rotational shift work allowed if can attend on days that do not follow a late/night shift; Self-reported use of drugs of abuse within the previous 12 months; Pregnancy; lactation (women only); Persons who do not have access to either (mobile) phone or internet (this is necessary when being contacted by the study personnel during the study); Insufficient communication in the national language; Proven or suspected inability, physically or mentally, to comply with the procedures required by the study protocol as evaluated by the daily study manager, site-PI, PI or clinical responsible. This includes volunteers for which insufficient collaboration may be foreseen; Subject's general condition contraindicates continuing in the study as evaluated by the daily study manager, site-PI, PI or responsible clinician; Simultaneous participation in other relevant clinical intervention studies; Previous university or college training related to eating behaviour research; Self-reported eating disorders; Diagnosed anaemia; Diagnosed diabetes mellitus; Abnormal G.I. function or structure such as malformation, angiodysplasia, active peptic ulcer; Active inflammatory bowel disease, coeliac disease, chronic pancreatitis or other disorder potentially causing malabsorption; History of G.I. surgery with permanent effect (i.e. surgical treatment of obesity); Medical history of Cardiovascular Disease (e.g. current angina; myocardial infarction or stroke within the past 6 months; heart failure; symptomatic peripheral vascular disease); Significant liver disease, e.g. cirrhosis (liver disease allowed); Malignancy which is currently active or in remission for less than five years after last treatment (local basal and squamous cell skin cancer allowed); Thyroid diseases, except those on Levothyroxine treatment of hypothyroidism if the person has been on a stable dose for at least 3months; Psychiatric illness (e.g. major depression, bipolar disorders); Use currently or within the previous 3 months of prescription or over the counter medication that has the potential of affecting appetite, satiety or body weight incl. food supplements. Except: low dose antidepressants if they, in the judgement of the daily study manager, site-PI, PI or clinical responsible, do not affect weight or following the study protocol. Levothyroxine for...
<table>
<thead>
<tr>
<th>Study type</th>
<th>Intervventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of first enrolment</td>
<td>April 2021</td>
</tr>
<tr>
<td>Target sample size</td>
<td>213</td>
</tr>
<tr>
<td>Recruitment status</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Primary outcome(s)</td>
<td>Incremental area under the curve (iAUC) for composite appetite sensations in response to each product.</td>
</tr>
<tr>
<td>Key secondary outcomes</td>
<td>Leeds Food Preference Questionnaire (LFPQ) Explicit Liking, Implicit Wanting, Relative preference, Explicit wanting; Control of Eating Questionnaire (CoEQ): Craving Control, Craving for Sweet, Craving for Savoury, Positive Mood; Blood Glucose Incremental Area Under the Curve; Blood Insulin Incremental Area Under the Curve; Cephalic and intestinal satiety biomarkers: Glucagon-like peptide-1 (GLP-1) Incremental area under the curve for blood GLP-1 concentrations in response to each product (120 min post intake); Ghrelin Incremental area under the curve for blood Ghrelin concentrations in response to each product (120 min post intake).</td>
</tr>
</tbody>
</table>
Appendices: Informed Consent Materials and GDPR

Informed Consent Form

Title of research project: Food Acceptance Study (FAST) [or include title in national language]

I confirm that: (please initial next to each statement to show you agree)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have obtained written and oral information about the research project and I am informed about the aim, methods, benefits and risks of participating in the study.</td>
<td></td>
</tr>
<tr>
<td>I have read and have understood the information sheet [version number] for the above study. I have had the opportunity to consider the information, ask questions and have had these answered satisfactorily.</td>
<td></td>
</tr>
<tr>
<td>I understand that taking part in the study involves completing a screening visit plus 6 clinical investigation days during which I will need to consume foods, provide blood [urine, and faeces] samples and fill in questionnaires.</td>
<td></td>
</tr>
<tr>
<td>I understand that I will not be able to donate blood for the duration of my participation in the study.</td>
<td></td>
</tr>
<tr>
<td>I understand that my participation is voluntary and that I am free to stop taking part and can withdraw from the study prior to anonymization of the data (11th March 2023) without giving any reason and without my rights being affected.</td>
<td></td>
</tr>
<tr>
<td>I understand that I can ask for access to the data I provide and I can request the destruction of that data at any time prior to anonymization of the data [add date]. I understand that after anonymization of the data, I will no longer be able to request access to or withdrawal of the data I provide.</td>
<td></td>
</tr>
</tbody>
</table>
Appendices: Informed Consent Materials and GDPR

<table>
<thead>
<tr>
<th>I understand that the data, including any identifiable data I provide will be held securely and in line with data protection requirements at [add institution].</th>
</tr>
</thead>
<tbody>
<tr>
<td>I understand that pseudo-anonymised data (including my participant number) will be sent to other partners within the larger EU project for testing and analysis.</td>
</tr>
<tr>
<td>I understand that pseudo-anonymised data may also be shared with other researchers who are not working on this study for future research purposes in the public interest.</td>
</tr>
<tr>
<td>I understand that fully anonymised data (after destruction of the ID-log) will be made available to the public (open access). As a result other external organisations or researchers will be also able to access these anonymised data for future research purposes.</td>
</tr>
<tr>
<td>I understand that my anonymised data will be retained indefinitely on password-protected computers at [add institution].</td>
</tr>
<tr>
<td>I consent to participate in the above study.</td>
</tr>
</tbody>
</table>

[Remove if not applicable] I consent that my biological material will be stored in a research biobank at the [enter University].

I have received a copy of this informed consent form as well as a copy of the Participant Information Sheet ([version number]) and a copy of the General Data Protection Regulation information sheet ([version number]).

Participant name: __

Date: _______________ Signature:___________________________
Appendices: Informed Consent Materials and GDPR

In case new information that has substantial influence on your health emerges from the research project, you will be informed. If you would prefer not to be informed about such information please mark it here __________ (insert X).

Consent from the study staff that provided the oral information:

I declare, that the participant has received both written and oral information about the research project.

I declare to the best of my knowledge and belief that the participant has received sufficient information to decide to participate in the research project.

Study staff name: _________________________________

Date: _______________ Signature: __________________________

National project identification: [include e.g. ethical approval number from ethical committee and date of approval]

Institutional logo

General Data Protection Regulation (GDPR) information for study participants

What data will be collected, how will they be used and who will see them?
Appendices: Informed Consent Materials and GDPR

In relation to your participation in the Food Acceptance STudy (FAST), a range of data will be collected from you. This document explains how your data will be used.

1. Which data will be collected and how?

The data collected includes information about health and personal data e.g. name, [civil registration number if relevant, include name/type], contact information, gender and ethnicity and biological material (i.e. blood[, urine and faeces]). The data is registered in a personal participant folder and/or in an electronic database.

Data and biological material that is sent from the intervention site to other laboratories or researchers will contain a participant number but never your name or any other personal identifying data.

The investigators and other data processors will ensure that the information collected about you is not accessed by unauthorized persons and that your identity is protected when the results of the study are published. The online questionnaire delivery platform collecting body sensations and other measures will only use basic cookies to enable the proper functioning of the program. No marketing or other tracking cookies will be used.

2. How will my data be stored?

The investigators and the data manager will take all necessary security precautions to ensure that any identifying information about you is kept confidential and stored securely in accordance with local law [include name/references] and EU Regulation.

You will be assigned a unique ID number which your data will be identified by throughout the study. All electronic forms of data will be protected with a password which can only be accessed by the researchers. All data recorded on paper will be locked in study-specific storage cabinets accessible only to the researchers on the project.
Appendices: Informed Consent Materials and GDPR

3. How long will my data be stored for?

Pseudo-anonymised data (including your participant ID) will be stored for up to 5 years. At that point, the participant ID-log will be destroyed and the pseudo-anonymised data will become fully anonymised data.

Fully anonymised data (not including your participant ID) after completion of the study will be retained indefinitely in an open-access repository (see point 7. *Will my data be archived for use in other research projects in the future* below).

Your biological samples (i.e. blood, urine and faeces) will be stored temporarily at the intervention site in freezers at either -20 or -80°C and later sent to other specialist laboratories for analysis. Once the biological material has been analysed for results related to this study, it will be destroyed by the laboratory. Destruction will happen at the latest by [2025] (five years after the study has ended).

[A research biobank contains biological material that is stored for future related research. If you wish to donate any excess of your biological material from this study to the research biobank of the [add university or other identifying name]), you must state it separately below. The donation is completely voluntary and does not affect your participation in this study. Samples in the biobank of the [university name] consist of a small amount (e.g. 5 ml blood [amend as suitable]), and are stored at [include name of intervention site] in freezers at -80°C for a maximum of 15 years after the study has ended. In order to conduct new analyses of your biological material from this biobank in a new study, the national ethical committee must first approve the study. You can always contact the intervention site and ask to have your samples in the biobank destroyed, unless the samples have been totally anonymised beforehand, which means that no one, nor the principal investigator, can longer assign the material to you. Sample full anonymization will take place alongside full anonymisation of all other data, after 5 years from study termination at the latest.]

4. What measures are in place to protect the security and confidentiality of my data?

The site-principal investigator will store an identifier (ID)-log (“key”) that associates your participant number with your personal information. This ID-log
Appendices: Informed Consent Materials and GDPR

is stored at the intervention site separately from data and biological material in a locked room. Only a few relevant persons from the study staff have access to the ID-log including national and international authorities controlling clinical research projects e.g. the local ethical committee [and if relevant, include other local authorities]. The ID-log will be used to identify you in case it is relevant. The ID-log will be stored at the intervention site as long as it is relevant to have your contact information and for ethical and legal considerations related to the conduct of the study. The ID-log will be stored for a maximum of 5 years after the study has ended.

5. How will my data be used?

The data collected will be securely forwarded to a project data hub at the University of Navarra (Spain) and subsequently used for analysis.

In case you withdraw from the study, the data already collected from you may be used and included in the analyses if the researchers find it important for the quality of the study. Already collected data from you will therefore only be processed if it is fair and important for the study. However, you may request that your data are destroyed and no further use is made of them. Please note, it will not be possible to withdraw your data after the results have been processed (this may be approximately 3 months after the study has ended, or by the 1st of March 2023).

The results of the study, regardless of whether they are positive, negative or inconclusive, will be written-up and submitted for publication after the end of the study e.g. as a publication in a journal, a summary of the test results on the Internet or at www.clinicaltrials.gov. Published results do not contain any information that can identify you.

6. Who will have access to my data?

Your pseudo-anonymised data (including your participant number) will be securely sent to other partners within the larger EU project e.g. the University of Navarra (Spain) and the University of Surrey (UK) for analysis and your pseudo-anonymised biological material will be sent to partner laboratories, e.g. Bioiatriki S.A. (Athens, Greece) for testing and analysis. Data and biological material are
only sent from the intervention site to other laboratories with your participant number and never your name or other personal identifying data.

Pseudo-anonymised data may also be shared with other researchers who are not working on this study for future research purposes in the public interest. After full anonymisation (destruction of the participant ID-log) the data collected in this study will be made available to the public (open access) by depositing it in an open access repository or other related archive. As a result, other external organisations or researchers will be also able to apply to access these fully anonymised data.

7. **Will my data be archived for use in other research projects in the future?**

Yes. We will make the fully anonymised data available to other organisations or researchers by depositing it in an open access repository or other archive. It is important that you understand that your data will be completely anonymised for these purposes, therefore there will be no way that you can be identified.

8. **How will my data be destroyed?**

The ID-log for all data will be stored for a maximum of 5 years after the study has ended. After that point, the ID-log will be destroyed and all data will be fully anonymized. After full anonymisation data will be available to the public (open access).

Any excess biological material will be destroyed by the handling laboratories after the analyses have been completed [keep/remove: unless you have chosen to donate some to a biobank in your local country. If this is the case, biobank material will be destroyed after 15 years following the termination of the study (i.e. by 2035)].

☐ I confirm that I have read and agree to the above information about the handling, processing and storage of my personal information in this study
Appendices: Informed Consent Materials and GDPR

as well as data sharing procedures between external partners within this larger EU project and other external organisations.

[Please, consider if you want to donate excess material for the biobank:

☐ Yes, I want to donate potential excess biological material from me to a biobank.

☐ No, I do not want to donate potential excess biological material from me to a biobank.]

Participant´s signature:

Date Name
Signature

Researcher´s signature:

Date Name
Signature