ABSTRACT

Introduction Opioid-free anaesthesia (OFA) may reduce opioid-related side effects such as postoperative nausea and vomiting (PONV) and hyperalgesia. This study aims to investigate the effects of balanced OFA on PONV and pain outcomes in patients undergoing video-assisted thoroscopic surgery (VATS).

Methods and analysis This randomised controlled trial will be conducted at the First Affiliated Hospital of Soochow University in Suzhou, China. A total of 120 adults scheduled for VATS lung resection will be randomly assigned with a 1:1 ratio to either an OFA group or a control group, stratified by sex (n=60 in each group). Patients will receive balanced anaesthesia with esfentanyl, dexmedetomidine and sevoflurane (the OFA group), or sufentanil and sevoflurane (the control group). All patients will receive PONV prophylaxis with intraperative dexamethasone and ondansetron. Multimodal analgesia consists of intraoperative flurbiprofen axetil, ropivacaine infiltration and patient-controlled sufentanil.

INTRODUCTION

Video-assisted thoracoscopic surgery (VATS) has been increasingly performed over the decades, with less postoperative pain and faster recovery compared with thoracotomy.1 Postoperative nausea and vomiting (PONV) are common for patients undergoing VATS, and moderate to severe pain after VATS is not rare.2 PONV and postoperative pain are associated with increased healthcare costs and decreased quality of life after surgery.3 4 Opioids are regarded as the cornerstone of analgesia for patients undergoing surgery. However, use of opioids is associated with increased risks of PONV and hyperalgesia (paradoxical increases in pain and opioid requirements).5 6 To overcome these, opioid-free anaesthesia (OFA) appears to be an interesting alternative. OFA is commonly delivered using intravenous dexmedetomidine, ketamine or esketamine, and lidocaine, together with multimodal analgesia (non-steroid anti-inflammatory drugs, nerve blocks or local anaesthetic wound infiltration).7 8 Previous reports suggested that OFA was associated with decreased PONV and opioid consumption,9 10 but recent studies did not support that association.11 12 The
anaesthetic and analgesic components of OFA vary among different institutions, and the benefits as well as potential risks of OFA for surgical patients remain inconclusive.

Objectives
This study aims to compare a balanced OFA versus a balanced opioid-based anaesthesia for patients undergoing VATS lung resection. We hypothesise that our OFA regimen would reduce PONV and improve postoperative pain outcomes after VATS lung procedures.

METHODS AND ANALYSIS
The reporting of this protocol follows the guidelines of Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) (online supplemental file 1).13

Study design and patients
This is a single-centre, prospective, randomised, patient-blind and assessor-blind, parallel-group controlled, superiority clinical trial. A total of 120 patients will be enrolled at the First Affiliated Hospital of Soochow University in Suzhou, China. The First Affiliated Hospital of Soochow University is a tertiary teaching hospital at which approximately 4000 VATS procedures are performed each year. We plan to enrol patients between 18 May 2022 and 30 November 2022. The study flow diagram is presented in figure 1.

Inclusion criteria
To be included in this study, patients should meet the following criteria:
1. Age ≥18 years.
2. American Society of Anesthesiologists (ASA) physical status I–III.
3. Body mass index (BMI) 18–30 kg/m².

Exclusion criteria
The exclusion criteria are as follows:
1. Sick sinus syndrome or severe bradycardia (heart rate (HR) <50 beats/min).
2. Second-degree or greater atrioventricular block without a pacemaker.
3. Left ventricular ejection fraction <40%.
4. Coronary heart disease or history of myocardial infarction.
5. Liver or renal dysfunction (Child-Pugh class C or undergoing renal replacement therapy).
6. Parkinson’s disease or Alzheimer’s disease.
7. Seizures or epilepsy.
8. Pregnancy or breast feeding.
9. History of chronic pain or preoperative use of sedatives or analgesics.
10. Allergies to medications in this study.

Apfel’s PONV risk scores
The Apfel’s PONV risk scores will be calculated preoperatively, based on the number of risk factors (female, non-smoker, history of PONV or motion sickness, and postoperative use of opioids).14 The Apfel’s PONV risk scores range from 0 to 4, with each point predicting a 20% increased risk of developing PONV.14

Randomisation and blinding
An independent research personnel will generate the random numbers using the online tool (https://www.sealedenvelope.com/simple-randomiser/v1/lists), with a 1:1 allocation ratio, permuted blocks of 2 and 4, and stratification by sex. The randomisation results will be stored in sealed opaque envelopes. Patients will be randomly assigned to either an OFA group or an opioid-based control group (n=60 in each arm). The anaesthesia providers cannot be blinded to the group allocation due to the differences between the anaesthesia techniques; however, they will not participate in patient recruitment, data collection or statistical analysis. Patients, surgeons, postoperative care providers, outcome assessors and a statistician responsible for analyses will be masked to the group allocation.

Study interventions
For induction of anaesthesia, the OFA group will receive intravenous dexmedetomidine 0.6 µg/kg over 10 min, esketamine 0.3 mg/kg and propofol 1.5–2.0 mg/kg; the control group will receive intravenous sufentanil 0.3 µg/kg and propofol 1.5–2.0 mg/kg. For maintenance of anaesthesia, the OFA group will receive dexmedetomidine infusion at 0.2–1.0 µg/kg/hour, 1%–3% sevoflurane inhalation and boluses of esketamine 0.1 mg/kg; the control group will receive 1%–3% sevoflurane inhalation and boluses of sufentanil 0.1 µg/kg. The schedule of patient enrolment, study interventions and outcome assessment is in accordance with the SPIRIT statement (table 1).
<table>
<thead>
<tr>
<th>Time point</th>
<th>Preoperative visit</th>
<th>2 hours before surgery</th>
<th>Intraoperatively</th>
<th>PACU</th>
<th>24 hours postoperatively</th>
<th>48 hours postoperatively</th>
<th>Hospital discharge</th>
<th>30 and 90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient enrolment</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written informed consent</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographic data</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline characteristics</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomisation/ allocation</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid-free anaesthesia</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid-based anaesthesia</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PONV</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need for antiemetics</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative pain scores</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative sufentanil</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need for rescue analgesia</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of PACU stay</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-day and 90-day post-surgical pain</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-day and 90-day mortality</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions for haemodynamic events</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of sedation</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nightmare</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallucination</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to SPIRIT statement of defining standard protocol items for clinical trials. PACU, post-anæsthesia care unit; PONV, postoperative nausea and vomiting; SPIRIT, Standard Protocol Items: Recommendations for Interventional Trials.
Anaesthetic care
Patients will fast for 6–8 hours. No premedication will be given. In a preoperative waiting room, the baseline blood pressure and HR will be obtained. In the operating room, patients will receive continuous monitoring with ECG, non-invasive blood pressure, pulse oximetry (SpO₂) and bispectral index (BIS) (Aspect Medical Systems, Newton, Massachusetts, USA).

After anaesthesia induction, a catheter will be inserted into the radial artery for arterial blood pressure monitoring. Rocuronium 0.6mg/kg will be administered to facilitate the intubation of a double-lumen endotracheal tube. The location of the tube will be confirmed by capnography, auscultation and fiberoptic bronchoscopy. One-lung mechanical ventilation will be started on the non-surgical side with tidal volume of 6–8mL/kg (predicted body weight) and positive end-expiratory pressure of 5–10 cm H₂O. The inspired oxygen fraction and respiratory frequency will be adjusted to maintain SpO₂ ≥95% and end-tidal carbon dioxide within 35–45 mm Hg. Lung recruitment manoeuvres will be applied when clinically indicated.

Anaesthesia depth will be titrated to BIS values of 40–60 via adjusting inhalational sevoflurane concentration. Sufficient intraoperative analgesia will be provided via adjusting the infusion rate of dexmedetomidine and boluses of esetamine (the OFA group) or boluses of sufentanil (the control group), at the discretion of the attending anaesthesiologist. For intraoperative muscle relaxation, patients will receive additional rocuronium administration. Patients will receive Lactated Ringer’s solution for intravenous fluid repletion. A warming blanket will be used to maintain the nasopharyngeal temperature at 36°C–37°C. After surgery, all patients will be transferred to the post-anaesthesia care unit (PACU).

The Modified Observer’s Alertness/Sedation Scale (MOAA/S) and modified Aldrete score will be assessed every 5 min. A modified Aldrete score ≥9 indicates readiness for PACU discharge to surgical wards.

All patients will receive PONV prophylaxis using intravenous dexamethasone 5 mg and ondansetron 4 mg during anaesthesia. If patients experience vomiting in the PACU and surgical wards, they will receive an additional administration of ondansetron 4 mg as antiemetic therapy.

For multimodal analgesia, the patients in both groups will receive intraoperative flurbiprofen axetil 50 mg, wound infiltration with 0.5% ropivacaine 20mL at the end of surgery and postoperative patient-controlled sufentanil until 48 hours postoperatively. The patient-controlled analgesia (PCA) device contains sufentanil 100 µg diluted with normal saline to a total volume of 100 mL (ie, sufentanil 1 µg/mL), with a background infusion of 1 mL/hour, a bolus dose of 2mL and a lockout time of 10 min. Postoperative pain will be assessed using the Numerical Rating Scale, ranging from 0 to 10 (0=no pain and 10=the worst pain imaginable). If pain scores remain ≥4 despite the use of patient-controlled sufentanil, rescue analgesia with additional intravenous sufentanil 5 µg will be given.

Primary and secondary outcomes
The primary outcome of this trial is the incidence of PONV during the first 48 hours postoperatively. We will assess PONV as the combined incidence of nausea, retching and vomiting. The secondary outcomes are nausea, vomiting, need for antiemetic therapy, pain scores at rest and while coughing, postoperative sufentanil consumption, need for rescue analgesia, length of PACU stay, length of postoperative hospital stay, and 30-day and 90-day post-surgical pain and mortality.

Nausea, vomiting, need for antiemetic therapy and need for rescue analgesia will be recorded within 48 hours postoperatively. Postoperative pain scores at rest and while coughing and postoperative sufentanil consumption will be recorded at PACU discharge and 24 and 48 hours postoperatively. Follow-up data on post-surgical pain and mortality will be collected via telephone calls at 30 and 90 days after surgery.

Safety outcomes
The safety outcomes include perioperative hypotension (reduction in mean blood pressure >30% of baseline for at least 1 min), bradycardia (HR <45 beats/min for at least 1 min), hypertension (increase in mean blood pressure >30% of baseline for at least 1 min), tachycardia (HR >100 beats/min for at least 1 min), interventions for haemodynamic events, MOAA/S sedation levels, headache, dizziness, nightmare and hallucination. These haemodynamic events will be assessed during anaesthesia and in the PACU, and interventions will be at the discretion of the attending anaesthesiologist, via adjusting dexmedetomidine infusion, using additional esetamine or sufentanil, and using intravenous vasopressors (ephrine 6–10mg or phenylephrine 50–100µg), atropine 0.3–0.5 mg, urapidil 5 mg or esmolol 10 mg, as appropriate. The episodes of headache, dizziness, nightmare and hallucination within 48 hours postoperatively will be recorded.

Data collection and monitoring
An independent research staff will collect demographic data (age, sex, height, weight and BMI), baseline characteristics (preoperative medications, comorbidities, ASA physical status, smoking status, education level and Apfel’s PONV risk score) and perioperative data (BIS values, haemodynamic data, end-tidal sevoflurane concentration, and doses of propofol, sufentanil, esetamine, dexmedetomidine, and all other medications). All data will be collected in the case report forms and then entered into the electronic database under the supervision of the principal investigator (KP). An independent data monitoring committee (DMC) will conduct an ongoing review of data collection. The electronic database will be locked once the data registration is completed. Datasets without personally identifiable information will be sent to the independent statistician for final analyses based on the prespecified statistical plan.
We defined ‘failed OFA’ as that haemodynamics preclude continued dexmedetomidine administration (severe bradycardia despite the use of atropine). In this situation, the dexmedetomidine infusion will be discontinued, and the patients will receive treatment at the clinician discretion. Sufentanil may have to be administered to these patients for the completion of anaesthesia and surgery. Serious adverse events (such as persistent haemodynamic instability or asystole) associated with the study medications or not should be immediately reported to the principal investigator (KP). In such situations, the perioperative care team should provide relevant treatment to ensure patient safety. Such events should also be reported to the DMC within 24 hours. The DMC will discuss and make recommendations on whether the study interventions should be modified and whether the study should be stopped.

Sample size calculation

A recent study suggested that 41.7% of patients who received VATS and opioid-based anaesthesia experienced PONV and OFA reduced the incidence of PONV by ~90% (ie, from 41.7% to 4.3%). However, a previous study showed that the use of OFA reduced the risk of PONV by ~45% (ie, from 37.3% to 20%) in bariatric surgery. For power analysis in this study, we hypothesise that the incidence of PONV is 40% in the opioid-based control group. Based on the assumption of an average PONV reduction by 60%, we expect that our balanced OFA strategy would reduce the PONV incidence to 16%. To detect such a between-group difference in PONV at two-sided α=0.05 and power=80%, 53 patients in each group are required. Considering potential dropouts, we plan to enrol a total of 120 patients, with 60 in each group. The sample size calculation is performed using the PASS software (V.11.0.7, NCSS, Kaysville, Utah, USA).

Statistical analysis

Continuous data will be checked for normal distribution with the Shapiro-Wilk test. Means (SDs) will be used for normally distributed data, and medians (IQRs) for data that are not normally distributed. Continuous data will be analysed using the independent t-test, Mann-Whitney rank-sum test or repeated measures analysis of variance, as appropriate. Categorical data will be presented as numbers (percentages) and analysed using the X² test or Fisher’s exact test. The between-group differences for the primary, secondary and safety outcomes will be analysed using mean difference or OR with 95% CIs. The primary outcome of PONV incidence will be further analysed in the subgroups of sex, smoking status and PONV risk scores. Multiple testing corrections for the secondary outcomes are not planned, so these outcomes should be considered exploratory.

All study outcomes will be analysed in the modified intention-to-treat population, including all patients who undergo randomisation with relevant data available. Patients will be included in the analysis according to their original allocation. No interim analysis will be planned. Missing data will not be imputed. Statistical analyses will be conducted with the use of SPSS software (V.19.0; IBM SPSS). A two-sided p value of <0.05 indicates a statistically significant difference.

Patient and public involvement

Patients and public will not be involved in the design, recruitment, conduct or report of the study. The study results will be disseminated to the participants via email.

Ethics and dissemination

This study was approved by the Ethics Committee of the First Affiliated Hospital of Soochow University (2022-042) on 28 April 2022. The protocol was registered at the Chinese Clinical Trial Registry (ChiCTR2200059710) on 9 May 2022. All patients will provide written informed consent (online supplemental file 2), and the implementation of this study will conform to the Declaration of Helsinki. The results of this study will be published in a peer-reviewed journal.

DISCUSSION

In this randomised controlled trial, we will enrol a total of 120 adult patients who undergo VATS lung resection to evaluate the effects of balanced OFA versus balanced opioid-based anaesthesia on PONV and postoperative pain outcomes. In addition, we will compare the two anaesthesia regimens in terms of length of PACU stay, length of postoperative hospital stay, perioperative safety outcomes, and 30-day and 90-day post-surgical pain and mortality. This study will be implemented in accordance with the Consolidated Standards of Reporting Trials guidelines.

From the existing literature, OFA has been used for patients undergoing several of types surgery. Ziemann-Gimmel and colleagues suggested that opioid-free total intravenous anaesthesia was associated with reduced risk of PONV for patients undergoing bariatric surgery. Bakan and colleagues reported that opioid-free propofol anaesthesia in laparoscopic cholecystectomy reduced postoperative fentanyl consumption, pain scores and need for ondansetron administration. However, Massoth and colleagues showed that their balanced OFA strategy did not decrease PONV, postoperative pain or morphine requirement after gynecological laparoscopy. Beleoil and colleagues showed that the balanced OFA led to an increased incidence of hypoxaemia, serious bradycardia, delayed extubation and prolonged PACU stay. Hence, the effects of OFA in different surgical setting are inconsistent.

In a recent study, we reported the characteristics (opioid usage, PONV, pain scores, PACU stay, intensive care unit (ICU) admission and hospital stay) for VATS lung resection at our institution. The results showed that: (1) the mean intraoperative sufentanil consumption was 0.74 µg/kg; (2) the incidence of PONV during postoperative...
In summary, this randomised controlled trial will determine the effects of balanced OFA on PONV, postoperative pain and postoperative sufentanil consumption after VATS lung resection. The results of this study will offer a new insight into improving anaesthetic care for patients undergoing VATS lung procedures.

Author affiliations
1Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
2Institute of Anaesthesiology, Soochow University, Suzhou, Jiangsu, China
3Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
4Anesthesiology, Suzhou Xiangcheng People’s Hospital, Suzhou, China

Acknowledgements The authors would like to thank the parents participating in this trial and the medical, nursing and research team for their help in study set-up, recruitment, data collection and monitoring of study data.

Contributors Y-QL, DW and SC contributed equally to this work and are co-first authors. Y-QL, DW, HC and KP contributed to the conception and design of this study. SC, YX, C-dF, F-HJ and YJ participated in the planning of this study. Y-QL, DW and SC contributed to the drafting of the manuscript. YX, C-dF, F-HJ, HC and KP contributed to the critical revision of the manuscript. KP is responsible for monitoring the whole process of the trial. All authors agreed to be accountable for all aspects of the work and gave their final approval of this version to be published.

Funding This work will be supported by the Science and Technology Development Plan Clinical Trial Project (SLT201909) and Jiangsu Provincial Medical Youth Talents Program (QNRC2016741).

Disclaimer The funding bodies have no input into the design of the study and are not involved in the preparation or submission of the manuscript for publication.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Ke Peng http://orcid.org/0000-0003-2879-1759

REFERENCES