

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Vitamin D status in children and its association with glucose metabolism in northern China

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061146
Article Type:	Original research
Date Submitted by the Author:	26-May-2022
Complete List of Authors:	Liu, Junyi; Shanghai University of Medicine and Health Sciences; Harbin Medical University, Fu, Liqun; Shanghai University of Medicine and Health Sciences Jin, Shanshan; Harbin Medical University School of Public Health Jia, Yubing; Harbin Medical University School of Public Health Zhang, Jingyi; Shanghai University of Medicine and Health Sciences Sun, Changhao; Harbin Medical University School of Public Health Na, Lixin; Shanghai University of Medicine and Health Sciences
Keywords:	DIABETES & ENDOCRINOLOGY, Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, NUTRITION & DIETETICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

1	
2	
3	
4 5	
5	
7	
8	
3 4 5 6 7 8 9 10	
10	
11 12	
13	
12 13 14 15 16 17	
15	
16	
17 18	
18 19	
20	
21	
22	
23	
24 25	
26	1
27	
28	1
29	I
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
32	1
33	
34	1
35	
36 37	1
38	
39	1
40	
41	1
42 43	'
43 44	
45	1
46	
47	1
48 49	
49 50	1
51	
52	2
53	
54 55	2
55 56	2
50 57	~
58	2
59	
60	

1	Vitamin D status in children and its association with glucose metabolism in northern China
2	Junyi Liu ¹ , Liqun Fu ² , Shanshan Jin ³ , Yubing Jia ⁴ , Jingyi Zhang ⁵ , Changhao Sun ⁶ , Lixin Na ⁷ .
3	¹ Junyi Liu, Department of Clinical Nutrition, Shanghai university of medicine and health Sciences
4	Affiliated Zhoupu hospital, Shanghai, China. Department of Nutrition and Food Hygiene, Public
5	Health College, Harbin Medical University, Harbin, China. E-mail: liujunyixq@163.com
6	² Liqun Fu, Department of Clinical Nutrition, Shanghai university of medicine and health Sciences
7	Affiliated Zhoupu hospital, Shanghai, China. E-mail: zpyyyys@126.com.
8	³ Shanshan Jin, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
9	University, Harbin, China. E-mail: jinshanshan1723@163.com.
0	⁴ Yubing Jia, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
1	University, Harbin, China. E-mail: jia544288485@163.com.
2	⁵ Jingyi Zhang, College of Public Health, Shanghai University of Medicine and Health Sciences,
3	Shanghai, China. E-mail: zhangjy@sumhs.edu.cn.
4	⁶ Changhao Sun, Department of Nutrition and Food Hygiene, Public Health college, Harbin
5	Medical University, Harbin, China. E-mail: changhaosun2002@163.com.
6	⁷ Lixin Na, College of Public Health, Shanghai University of Medicine and Health Sciences,
7	Shanghai, China. E-mail: nalixin2003@163.com.
8	Corresponding authors: Lixin Na, Ph.D., College of Public Health, Shanghai University of
9	Medicine and Health Sciences, 285 Tianxiong Road, Pudong New Area, Shanghai, China. Tel: +86-
20	021-65880112, Fax: +86-021-65880112, E-mail: nalixin2003@163.com.
21	Word count: 4511
22	Abstract

Page 3 of 30

BMJ Open

Objectives: The aim of this study was to explore the vitamin D status of children in northern China
and the association between vitamin D and glucose metabolism.

25 Design: Cross-sectional study was conducted among child participants and retrospective study
26 designs was conducted among adult participants.

Setting and participants: The child participants were recruited from the baseline survey of
IIVDDC, a total of 326 children were included. The data of adult participants were from the
baseline data of the HDNNCDS, a total of 8,469 participants were eligible for our analysis.

30 Primary and secondary outcome measures: Physical examination, lifestyle and dietary habit data 31 were recorded, and serum levels were measured in all participants. In adults, rickets in childhood 32 was also investigated, which was used to define vitamin D deficiency in childhood. The 33 associations were tested by linear regression and binary logistic regression. The effect of rickets on 34 type 2 diabetes in adulthood was tested by binary logistic regression.

Result: In the pediatric study, only 10.7% of participants were vitamin D sufficient (\geq 30 ng/mL)v. Inverse correlations between serum 25(OH)D₃ concentration and fasting insulin and HOMA-IR were found, and children with lower serum 25(OH)D₃ concentrations were likely to have IR (OR: 0.955, 95% CI: 0.917, 0.995, *p* value: 0.027). In an adult study, rickets in childhood increased the risk of type 2 diabetes in male participants (OR = 1.414, 95% CI = 1.013, 1.972; *p* value = 0.042), but this result was not observed in females.

Conclusion: Our findings suggest that vitamin D deficiency is widespread in northern China.
 Vitamin D deficiency in childhood was associated with IR and increased the risk of type 2 diabetes
 in male adults.

Keywords: vitamin D deficiency, children, insulin resistance, type 2 diabetes

5 Introduction

According to IDF statistics, there are 450 million adults with type 2 diabetes worldwide, accounting for approximately 90% of diabetes mellitus cases. Type 2 diabetes has become a global public health problem ^{1,2}. Some recent population studies have found that risk factors such as obesity, impaired glucose tolerance, or insulin resistance (IR)c in childhood, may also increase the risk of type 2 diabetes in adults ³⁻⁶. These results suggested that controlling risk factors in childhood is an early prevention strategy to reduce the prevalence of type 2 diabetes in adulthood.

Vitamin D is a fat-soluble vitamin with several physiological functions, one of the most important of which is its effect on skeletal health ⁷. At present, vitamin D deficiency is still a serious public problem worldwide, particularly in children⁸. The prevalence of vitamin D deficiency was approximately 50% in both developing and developed countries $^{9-12}$. Serum 25(OH)D₃ is less affected by body regulation and is often used to evaluate vitamin D levels. It is usually considered that serum $25(OH)D_3 < 10$ ng/mL indicates severe deficiency, 10-20 ng/mL indicates deficiency, 20-29 ng/mL indicates insufficiency, and \geq 30 ng/mL indicates sufficiency ¹³. Vitamin D deficiency in children is associated with many skeletal diseases, and one of the typical diseases is rickets. The clinical signs of rickets include skeletal deformity, restlessness, motor retardation and bone pain¹⁴. Recently, the association between vitamin D deficiency and extra-skeletal health has been of great concern, such as its association with glucose metabolism, obesity, respiratory tract infection and atopic dermatitis, among which the association with glucose metabolism has been of particular concern¹⁵⁻¹⁷. A population study of children and adolescents in Mexico found that low vitamin D levels were associated with IR; when the concentration of serum vitamin D increased, the possibility of presenting IR decreased ¹⁸. Jared P Reis et al. reported that adolescents in the lowest

quartile of vitamin D (<15 ng/mL) are more likely to have hyperglycemia compared with those in the highest quartile (>26 ng/mL) ¹⁹. Furthermore, randomized controlled trials showed that vitamin D supplementation could increase insulin sensitivity and decrease IR and fasting glucose concentrations in obese children ²⁰⁻²². Since IR in children is a risk factor for type 2 diabetes, we hypothesized that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood by affecting insulin sensitivity. A recent 31-year follow-up prospective study in 3- to 18year-old young Finns found that high vitamin D levels in childhood could reduce the incidence of type 2 diabetes in adulthood ²³. This study further supported our hypothesis, but current research is very limited.

Harbin is a typical northeast city of China, with a latitude between 44°04'N and 46°40'N, and is a relatively high-latitude area. The winters in Harbin are long, and the sunlight is relatively insufficient year-round, which makes the region's residents vulnerable to vitamin D deficiency. In our study, we first described the vitamin D nutritional status in children and explored the association between vitamin D deficiency and IR from the Investigation and Intervention of Vitamin D Deficiency in Children (IIVDDC). Then, the association between rickets in children and the risk of type 2 diabetes in adults was analyzed using data from the Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable Diseases (HDNNCDS) in a retrospective study. The aim of this study was to provide a theoretical basis for the early prevention and control of adult type 2 diabetes development in children.

5 Materials and Methods

Design

88 Cross-sectional study was conducted among child participants and retrospective study designs was

conducted among adult participants.

Study population

Part I IIVDDC

The child participants were recruited from the baseline survey of IIVDDC. They were recruited from 4 kindergartens in Nangang District of Harbin, including 2 public kindergartens and 2 private kindergartens, from March to May 2019. The parents and teachers of children were invited to informational meetings at which the study and its procedures were explained to them. 440 children aged 3-7 years who had lived in Harbin for the past 3 years were eligible as participants. The exclusion criteria included spending the last winter vacation in the lower latitude areas of Harbin (n=60), who's information of questionnaire losing > 50% (n=54). A total of 326 children were included, and informed written consent was obtained from all custody holders (Figure 1).

Part II HDNNCDS

The data of adult participants were from the baseline data of the HDNNCDS. Residents who had lived in their communities for more than two years and who did not have cancer or type 1 diabetes were recruited. A total of 9,734 people aged 20-74 years completed the in-person baseline survey in 2010 - 2012²⁴. Rickets in childhood were investigated, and participants who had definite answers were included in our study. In the present study, we excluded participants who reported uncertainty about information on rickets in childhood (n=250), who reported extreme values for total energy intake (<500 kcal/d or >4500 kcal, n=291), and who had missing dietary information data (n=724). Finally, a total of 8,469 participants were eligible for our analysis, including 2995 males and 5474 females (Figure 2). Written informed consent was provided by all participants.

These study protocols were approved by the Ethics Committee of Harbin Medical University. The

BMJ Open

2 3	1	1	1
4 5 6	1	1	2
7 8 9	1	1	3
10 11	1	1	4
12 13 14	1	1	5
15 16 17	1	1	6
18 19 20	1	1	7
21 22	1	1	8
23 24 25	1	1	9
26 27	1	2	0
28 29 30	1	2	1
31 32 33	1	2	2
33 34 35	1	2	3
36 37 38	1	2	4
39 40	1	2	5
41 42 43	1	2	6
44 45 46	1	2	7
47 48	1	2	8
49 50 51	1	2	9
52 53	1	3	0
54 55 56	1	3	1
57 58 59	1	3	2

methods in this study were conducted in accordance with the approved guidelines.

The study protocol of IIVDDC and HDNNCDS was approved by the Ethics Committee of Harbin Medical University, and written informed consent was provided by all participants. The methods in this study were in accordance the approved guidelines.

15 *Data collection by the questionnaire*

6 Detailed in-person interviews were administered by trained personnel using a structured 7 questionnaire to collect information on demographic characteristics, lifestyle, and dietary intake.

118 Part I IIVDDC

In the IIVDDC, the questionnaire was completed by parents and teachers in kindergartens, together. 9 The demographic characteristics of the children included age and gender. Lifestyle referred to 0 outdoor physical activity in the past 6 months. Dietary information was collected by using a food-21 frequency questionnaire (FFQ), and a total of 48 food items were included in the questionnaire, 2 3 which covered most of the foods in the recipes of the kindergartens included in our study. For each food item, parents and teachers of participants were asked how frequently participants consumed 4 25 over the preceding year, followed by a question on the amount consumed in lians (a unit of weight 6 equal to 50 g) or mL (for liquid food item) per unit of time. The consumption frequency was transformed to obtain mean consumption a day. Nutrient intakes for each food item consumed were 27 calculated by multiplying the nutrient content listed in the China Food Composition ²⁵. Before 8 dietary surveys, 60 participants from the IIVDDC were recruited and asked to complete two FFQs 9 (FFQ1 and FFQ2) and a 3-day dietary record to validate the reliability of the FFQs. After adjusting 0 for energy intake, major nutritional factors (staple food, poultry, fish, vegetable, fruit, and milk 51 2 products), which were assessed by the two FFQs and by the FFQ2 and 3-day dietary records,

133 correlated well. In IIVDDC, the correlation coefficients were 0.49–0.54 and 0.55–0.76.

2 3 4 5 134 6 7 8 135 9 10 11 12 13 137 14 15 16 138 17 18 19 20 21 140 22 23 24 25 ²⁶ 142 27 28 ₂₉ 143 30 31 32 33 34 145 35 36 37 38 ³⁹ 147 40 41 ₄₂ 148 43 44 45 46 47 150 48 49 50 51 ⁵² 152 53 54 ₅₅ 153 56 ⁵⁷ 154 58 59 60

1

34 Part II HDNNCDS

In the HDNNCDS, the demographic characteristics mainly included age, gender, and educational level. Lifestyle referred to smoking, alcohol consumption, and physical activity. Family history of diabetes was also collected. In the FFQ for adults, a total of 103 food items were included in the questionnaire, which covered most of the commonly consumed foods in urban Harbin. The method to validate the reliability of the FFQs in the HDNNCDS was the same as that in the IIVDDC. The correlation coefficients were 0.61–0.70 and 0.61–0.69, respectively²⁴. Participants were asked to recall whether they got rickets in childhood. In the questionnaire, the rickets in childhood included the participants' self-report of rickets, diagnosis from the hospital, and/or the existence of rickets signs, such as square head, delay in tooth development, rachitic chest, bow legs or X-shaped legs.

144 Anthropometric measurement

Anthropometric measurements, including height, weight and waist circumference (WC), were taken by well-trained examiners, with participants wearing light, thin clothing, and no shoes. Body weight, height and waist circumference were measured to the nearest 0.1 kg, 0.1 cm, and 0.1 cm, respectively. Children's sex- and age-adjusted z-scores for body mass index (zBMI) were calculated with the use of WHO Anthro Plus software version 1.0.4 ²⁶. Adult BMI was calculated as weight (kg) divided by the square of the height in meters (m²).

151 *Biochemical assessment*

152 Part I IIVDDC

Fasting (more than 10 h) blood samples were collected. Fasting glucose was determined by an automatic biochemistry analyzer (Hitachi, Tokyo, Japan). 25(OH)D₃ was measured using ELISA

BMJ Open

155 kits (Mlbio, Shanghai, China). Serum insulin was measured using the immunofluorescence method156 (Tosoh automated enzyme immunoassay analyzer AIA-2000ST).

Part II HDNNCDS

Fasting and postprandial (2 hours after drinking 75 grams glucose-containing water) blood samples
were taken from all participants. Fasting glucose and 2-h postprandial plasma glucose and blood
lipids, including triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c),
and high-density lipoprotein cholesterol (HDL-c), were measured using an automatic biochemistry
analyzer (Hitachi, Tokyo, Japan). Serum insulin was measured in the same way as children.
HOMA-IR was calculated from fasting insulin and glucose using the following formula: fasting
insulin concentration (mmol/L) × fasting glucose concentration (mIU/L)/22.5.

Definition of outcomes

Part I IIVDDC

³ 167 Diagnostic criteria of serum vitamin D status: Serum 25(OH)D₃ < 10 ng/mL was considered severe ⁵ 168 deficiency, 10-20 ng/mL was considered deficiency, 20-29 ng/mL was considered insufficiency, ⁷ and \geq 30 ng/mL was considered sufficiency¹³.

⁰ 170 Definition of IR: Children in the highest quartile of HOMA-IR were defined as IR²⁷.

³ 171 *Part II HDNNCDS*

5 172 Definition of type 2 diabetes: Type 2 diabetes was defined as fasting glucose \geq 7.0 mmol/L and/or 2

h glucose ≥ 11.1 mmol/L and/or self-report of type 2 diabetes and/or use of hypoglycemic medicine.

1 174 The definition of vitamin D deficiency in childhood was as follows: Vitamin D deficiency in

childhood was defined as a diagnosis of rickets at the hospital, self-reported rickets, or signs of

177 Statistical analysis

skeletal deformity during childhood.

SPSS v22.0 (Beijing Stats Data Co. Ltd, Beijing China) was used to analyze the data, and a twosided *p* value < 0.05 was considered statistically significant. Values are mean \pm SD and n (%) per group for all other variables. ANOVA and chi-square test were used to compare the differences in the continuous variables and categorical variables between the groups. The linear regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and fasting glucose, insulin and HOMA-IR in children, expressed as unstandardized β value and Standardized β value. Binary logistic regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and IR in children, and the effect of rickets in childhood on type 2 diabetes in adulthood, expressed as OR value and 95% CI. Bootstrap test of binary logistic regression analysis was used as sensitivity analysis in order to confirm the risk of rickets on diabetes in adulthood male.

Patient and public involvement

190 participants were not involved in the development of research questions, nor the outcome 191 measures/the design of the study. Also, they were not involved in the recruitment to or conduct of 192 the study. In our study, the participants are informed about their blood parameters, and the results of 193 other examinations are gradually shared with them by text message or phone call. The overall 194 findings and benefits of the study will be disseminated through public media.

Results

Results from IIVDDC

Vitamin D nutrition status in children

There were 21 (6.4%) children with severe vitamin D deficiency, 163 (50%) children with deficiency, 107 (32.8%) children with insufficiency, and only 35 (10.7%) children with sufficiency.

BMJ Open

 Basic information and diet characteristics of children across HOMA-IR quartiles

Children were grouped by HOMA-IR quartiles. The basic information characteristics are summarized in Table-1. Serum 25(OH)D₃ concentration in four quartiles from lowest to highest were 20.82 ± 6.96 ng/mL, 20.96 ± 9.07 ng/mL, 19.94 ± 8.09 ng/mL, and 18.19 ± 6.37 ng/mL. Children in higher quartile group had lower proportion of sport frequency. There were no significant differences for age, gender, zBMI score, or the supplementation of calcium or (and) vitamin D in recent half year among different quartile groups.

Table-1. Characteristics of the subjects in different HOMA-IR quartiles group.

		Q1	Q2	Q3	Q4	P
Variable		(n=81)	(n=82)	(n=82)	(n=81)	Val
Male ¹ , n (%)		20 (46.5)	68 (49.6)	51 (56.0)	36 (65.5)	0.1
Age, years		5.27 ± 1.59	5.05 ± 1.19	5.22 ± 1.11	5.45 ± 1.33	0.1
25(OH)D ₃ , ng/mL		$20.82 \pm$	20.96 ±	$19.94 \pm$	18.19±	0.0
		6.96	9.07	8.09	6.37	0.0
zBMI		-0.08±	$0.74 \pm$	$0.47 \pm$	$0.58 \pm$	0.1
ZBIVII		2.07	1.67	1.47	1.22	0.
Exercise frequency, n (%)	Lower	10 (12.3)	20 (24.4)	14 (17.1)	12 (14.8)	0.0
	Higher	60 (74.1)	56 (68.3)	48 (58.5)	39 (48.1)	
	unclear	11 (13.6)	6 (7.3)	20 (24.4)	30 (37.0)	
Calcium or (and) vitamin D supplements ^a , n (%)	Have been supplement, %	38 (46.9)	43 (52.4)	45 (54.9)	39 (48.1)	0.0
	Haven't been supplement, %	40 (49.4)	35 (42.7)	28 (34.1)	29 (35.8)	
	unclear, %	3 (3.7)	4 (4.9)	9 (11.0)	13 (16.0)	

¹Values are mean \pm SD and n (%) per group for all other variables. A two-sided P \leq 0.05 was considered statistically significant; ^a whether have a supplement of calcium and (or) vitamin D with in recent half year.

Furthermore, there were no significant differences in energy, fruit, vegetable, and livestock intakes

among different quartiles of HOMA-IR (Table-2). The above analysis results were consistent in

boys and girls, and the data were not shown.

Table-2. Characteristics of diet in different HOMA-IR quartiles group.

Variable	Q1	Q2	Q3	Q4	p Value
Energy ¹ , kcal/d	1323.44 ± 644.00	1650.28 ± 855.11	1409.05 ± 868.96	1230.34 ± 882.99	0.009
Vegetable, g/d	77.08 ± 32.55	84.85 ± 36.13	89.09 ± 38.12	81.63 ± 44.13	0.428
Fruit, g/d	113.27 ± 48.71	133.58 ± 59.28	126.42 ± 52.44	123.08 ± 56.41	0.265
Livestock, g/d	76.04 ± 38.58	88.97 ± 38.48	80.77 ± 37.25	77.36 ± 36.12	0.230

¹ Values are mean \pm SD. A two-sided P \leq 0.05 was considered statistically significant.

The association between serum $25(OH)D_3$ and fasting glucose, insulin and HOMA-IR

Serum 25(OH)D₃ concentration were negatively correlated with fasting insulin and HOMA-IR after adjusting for age, sex, zBMI, calcium or (and) vitamin D supplements, exercise frequency, dietary intakes of energy, vegetable, fruit, and livestock (fasting insulin: unstandardized β coefficient = -¹³ 216 0.178, standardized β coefficient = -0.194, p value = 0.001; HOMA-IR: unstandardized β 16 217 coefficient = -0.032, standardized β coefficient = -0.161, p value = 0.005) (Table-3). However, the ¹⁸ 218 significant association between serum 25(OH)D₃ concentration and fasting glucose had not been observed. There was no difference in above analysis results between boys and girls, data were not 21 2 1 9 24 220 shown.

Table-3. Linear regression analysis of the association between serum 25(OH)D₃ concentration and fasting

Z /	
28	222

₂₆ 221

22 glucose and insulin.										
V	ariabl Crude				Model 1 ¹			Model 2		
		Unstandardi zed β	Standardi zed β	<i>p</i> Val ue	Unstandardi zed β	Standardi zed β	p Val ue	Unstandardi zed β	Standardi zed β	<i>p</i> Val ue
	ilucos e nmol/ L)	0.004	0.065	0.24 5	0.007	0.107	0.06 6	0.008	0.115	0.05 2
	nsulin nIU/L)	-0.169	-0.184	0.00 1	-0.170	-0.184	0.00 1	-0.178	-0.194	0.00 1
	IOMA -IR	-0.030	-0.152	0.00 6	-0.031	-0.157	0.00 5	-0.032	-0.161	0.00 5

¹Model 1: Adjusted for age, gender, zBMI, energy, exercise frequency, calcium or (and) vitamin D supplements. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

⁴⁷ 223 The association of serum $25(OH)D_3$ concentration with IR

₅₀ 224 Children in the highest quartile of HOMA-IR were defined as IR, the cut-off point of HOMA-IR ⁵² 225 was 4.59. As shown in Table-4, after adjusting for age, sex, zBMI, calcium or (and) vitamin D supplements, exercise frequency, dietary intakes of energy, vegetable, fruit, and livestock, children 55 226 58 227 with low serum 25(OH)D₃ concentration were likely to have IR (OR: 0.955, 95% CI: 0.917, 0.995,

⁴⁰ 239

p value: 0.027).

Table-4. Binary logistic regression analysis of the association between serum 25(OH)D₃ concentration and IR.

_	Variable	Model 1 ⁻¹		Model 2			
		OR (95% CI)	p Value	OR (95% CI)	<i>p</i> Value		
_	Serum 25(OH)D3 concentration (ng/mL)	0.964 (0.928, 1.001)	0.059	0.955 (0.917, 0.995)	0.027		

¹Model 1: Adjusted for age, gender, zBMI, energy, exercise frequency, calcium or (and) vitamin D supplements. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

Results from HDNNCDS 15 229

Basic information, diet and blood biochemical characteristics of adult participants

²⁰ 231 The basic characteristics of adult participants are shown in Table-5. In both males and females, participants with type 2 diabetes had older age, larger BMI, WC and higher proportion of family 23 232 ²⁵ 233 history of diabetes, compared with participants without type 2 diabetes. Additionally, the proportion of regular exercise in participants with type 2 diabetes was higher than those without type 2 28 234 diabetes. In females, the proportion of drinking was lower in participants with type 2 diabetes and ³³ 236 they had lower education levels, whereas the above phenomenon was not observed in males. 36 237 Furthermore, type 2 diabetes participants had higher T-CHO, TG, and LDL-c concentrations and ³⁸ 238 lower HDL-c concentration in both males and females.

Variable		Μ	lale				
		T2D	Non-T2D	р	T2D	Non-T2D	<i>p</i> Value
		(n = 773)	(n = 2222)	Value	(n = 1048)	(n = 4426)	<i>p</i> value
Age ¹ , years		52.46 ± 9.33	49.04 ± 10.99	< 0.001	55.64 ± 9.42	49.44 ± 10.06	< 0.001
BMI, kg/m ²		26.12 ± 3.37	25.57 ± 3.43	< 0.001	25.88 ± 3.74	24.22 ± 3.32	< 0.001
WC, cm		92.27 ± 9.21	90.48 ± 9.55	< 0.001	86.94 ± 9.79	81.96 ± 9.12	< 0.001
Rickets, n (%)		59 (7.6)	132 (5.9)	0.104	81 (7.7)	354 (8.0)	0.700
Education, n (%)	Primary school education or below	28 (3.6)	86 (3.9)	0.038	116 (11.1)	283 (6.4)	<0.001
	Junior or high school education	430 (55.6)	1102 (49.6)		666 (63.5)	2437 (55.1)	
	Bachelor degree or	296 (35.7)	903 (40.6)		202 (19.3)	1434 (32.4)	

Table-5. Characteristics of the subject in T2D and non-T2D group, by gender.

1 2 3 4 5 6		above The situation of education unclear	39 (5.0)	131 (5.9)		66 (6.1)	272 (6.1)	
7 8	Smoking, n (%)	Smokers	310 (40.1)	870 (39.2)	0.836	37 (3.5)	175 (4.0)	0.059
9 10	(70)	Non- smokers	391 (50.6)	1156 (52.0)		984 (93.9)	4188 (94.6)	
11 12 13		Former smokers The	66 (8.5)	175 (7.9)		11 (1.0)	28 (0.6)	
14 15 16		situation of smoking unclear	6 (0.7)	22 (0.9)		16 (1.5)	35 (0.8)	
17 18	Drinking, n (%)	Drinking	462 (59.8)	1404 (63.2)	0.219	145 (13.8)	909 (20.5)	< 0.001
19 20 21		Non- drinking The	304 (39.3)	796 (35.8)		890 (84.9)	3453 (78.0)	
22 23 24		situation of drinking unclear	7 (0.9)	22 (1.0)		13 (1.2)	64 (1.4)	
25 26 27	Exercise, n (%) Family		418 (54.1)	1039 (46.8)	0.001	558 (53.2)	1949 (44.0)	< 0.001
28 29 30	history of diabetes, n (%)		171 (22.1)	226 (10.2)	< 0.001	268 (25.6)	676 (15.3)	< 0.001
31 32	T-CHO,		5.28 ± 1.19	5.00 ± 0.99	<	5.50 ± 1.04	5.18 ± 1.00	< 0.001
33 34	mmol/L TG, mmol/L		2.73 ± 3.32	2.07 ± 2.09	0.001 < 0.001	2.01 ± 1.62	1.41 ± 1.08	< 0.001
35 36	HDL-c, mmol/L		1.10 ± 0.29	1.15 ± 0.30	< 0.001	1.25 ± 0.31	1.35 ± 0.32	< 0.001
37 38	LDL-c, mmol/L		3.06 ± 0.91	2.96 ± 0.81	0.001	3.31 ± 0.90	3.00 ± 0.85	< 0.001
³⁹ 240 40	¹ Values are m	ean \pm SD, or fre	quency (%). A	two-sided $P \le 0$.05 was cor	sidered statistic	ally significant.	

⁴¹ 241 In both males and females, participants with type 2 diabetes had less consumption of fruit, but the 44 242 difference of energy intake and consumption of vegetable and livestock were not observed (Table-

47 243 6).

5	1
5	2

Table-6. Characteristics of energy vegetable, fruit, livestock intake in T2D and non-T2D group, by gender.

Variable Male		ale	Female			
	T2D (n = 773)	Non-T2D (n = 2222)	<i>p</i> Value	T2D (n = 1048)	Non-T2D $(n = 4426)$	<i>p</i> Value
Energy ¹ , kcal/d	2507.81 ± 790.83	2551.96± 775.41	0.175	2187.03 ± 702.46	2201.33 ±679.62	0.543
Vegetable, g/d	136.04 ±52.72	134.81 ± 51.24	0.570	132.93 ± 52.36	130.29 ± 51.30	0.136
Fruit, g/d	123.32 ± 47.85	129.00 ± 49.01	0.005	123.16 ± 50.34	133.55 ± 50.68	< 0.001

1							
2 3	Livestock, g/d	107.20 ± 45.41	107.90 ± 45.78	0.712	93.31 ± 39.11	92.77 ± 39.59	0.695
4 246 5	¹ Values are me	$an \pm SD. A two-$	sided $P \le 0.05$ was	s considered st	atistically signific	ant.	
6 247 7	The associati	on of rickets in	childhood with	type 2 diabe	tes in adulthood	1	
8 9 248 10	Binary logist	ic regression a	nalysis showed	that rickets	in childhood v	was significant	ly associated
11 12 249 13	with an incre	ased risk of ty	ppe 2 diabetes in	n adult male	(OR = 1.420,	95% CI = 1.	017, 1.983; <i>p</i>
14 250 15	value = 0.04	10), after adju	sting for age,	BMI, WC,	exercise, smok	king, alcohol	consumption,
16 ₁₇ 251 18	education lev	vel, family his	tory of diabete	s, and dieta	ry intakes of e	nergy, vegetal	ole, fruit and
¹⁹ 252 20	livestock. Ho	wever, there w	as no significan	t association	of rickets in chi	ildhood with ty	pe 2 diabetes
21 22 253 23	in adult fema	les (Table-7).	Result of the bo	ootstrap test	was consistent	with the result	of the binary
²⁴ 25 254	logistic regres	ssion analysis (p value = 0.041) (Table-8).			
26 27	Table-7. Bina	ry logistic regres	ssion analysis of t			e risk of diabetes	s in adulthood
28			wi	th different se	ex.		
29	Variable		Model 1 ¹			Iodel 2	
30			OR (95% CI)	<i>p</i> Va		(95% CI)	<i>p</i> Value
31 32	Male Female	Rickets Rickets	1.414 (1.013, 1.9 1.062 (0.813, 1.38		(1.017, 1.983) 0.814, 1.392)	0.040 0.646
33			I, WC, education,		Ì		
34 35 36	5	•	mption of vegetab				j
³⁷ 38 255	Table-8. Th	e bootstrap test	of binary logistic r	egression anal	ysis of the associa	tion of rickets or	ı the risk of
³⁹ 40 256			diabete	es in adulthood	l male.		
41	Variable		Model 1 ¹			Model 2	
42 42		β (95	% CI)	p Value	β (95%		<i>p</i> Value
43 44	Rickets	0.346 (0.0	004, 0.673)	0.039	0.351 (0.00	02, 0.680)	0.041
45	¹ Model 1: Adju	sted for age, BM	I, WC, education,	smoking, drin	king, energy, exer	cise, family histo	ory of diabetes.
46	Model 2: Adjus	sted for the consu	mption of vegetab	le, fruit and liv	vestock based on r	nodel 1.	
47 48 257 49	Discussion						
⁵⁰ 51 258 52	This study ex	amined the as	sociation of vita	amin D statu	s in childhood	with glucose n	netabolism in
⁵³ 259 54	the north of	China. The res	ults showed that	it, in childre	n, only 10.7%	participants wi	th vitamin D
55 56 260 57	sufficient, the	ere was a neg	ative association	n between s	erum 25(OH)D	3 concentration	n and fasting
⁵⁸ 261 59	insulin and H	OMA-IR, and	children with lo	wer 25(OH)	D ₃ concentration	n were likely t	o develop IR.
60				14			

1

In adults, childhood rickets was associated with an increased risk of type 2 diabetes in adulthood.

Vitamin D deficiency in children is widespread in worldwide. Regardless of the economic level, the vitamin D deficiency rate was very high in children from different countries ^{9-12,28,29}. Vitamin D can be obtained from sunshine and foods, such as meat, eggs, and milk. It was generally thought that exposure of skin to ultraviolet rays in the sunshine was the main source of body obtain vitamin D ³⁰. Therefore, the status of serum vitamin D can be influenced by several factors, such as skin tone, the latitude of residence, season, or use of sunscreen products ³¹. Sunshine in areas with high latitude was insufficient for skin to synthesize vitamin D; a previous study showed that residents living in areas above 37°N were insufficiently synthesizing vitamin D in winter ³². However, in relatively low latitude areas of China, rates of children's suboptimal vitamin D levels (< 30 ng/mL) was approximately 50%, thus vitamin D deficiency was also able to be observed ³³. In our study, approximately 53% of children participants had vitamin D deficiency, which was similar to the recent reports on vitamin D nutritional status of children. Therefore, we should pay more attention to the health problems caused by vitamin D deficiency.

In addition to skeletal health, the association between vitamin D and glucose metabolism in children and adults has also received wide concerned. In children, vitamin D deficiency was connected to IR and impaired fasting glucose ^{13,34,35}. However, there were a lack of children studies on the association between vitamin D deficiency and glucose metabolism in the northern area of China. Participants in this study were recruited from Harbin, a typical city in northern China. A negative correlation between serum vitamin D concentration and fasting insulin, HOMA-IR, and IR were found in this study of children; these results were consistent with previous reports. In adults, previous research suggested that low vitamin D status was associated with IR, impaired glucose Page 17 of 30

1

BMJ Open

tolerance, decreased insulin sensitivity, and reduction of insulin secretion 18,36-38. Observational 284 studies showed that patients with type 2 diabetes had lower level of vitamin D than healthy people; there was a negative correlation between vitamin D and HOMA-IR, and HbA1c levels decreased after vitamin D supplementation ^{39,40}. Additionally, prospective studies had indicated that vitamin D deficiency might increase the risk of type 2 diabetes ^{41,42-44}. According to recent years' studies, IR in childhood was considered as a risk factor for type 2 diabetes in adulthood ⁴⁵. Accordingly, we speculate vitamin D deficiency in childhood may increase the risk of type 2 diabetes in adulthood by influence IR in childhood. However, this deduction needs a long-term cohort study spanning decades from childhood to adulthood, so there have been no reports of this. Nutritional rickets is the most common type in rickets; it can be caused by deficiencies of vitamin D, calcium, or phosphate, causing primarily to a widening and delay of mineralization of growth plates in bones ^{46,47}. The clinical signs of rickets include square head, delay in tooth development, rachitic chest, bow legs or X-shaped legs. Rickets needs to be diagnosed in combination with

vitamin D level and clinical signs, and vitamin D deficiency alone cannot be diagnosed as rickets, but children who had serum 25(OH)D₃ level under 10.90 ng/mL were likely to have rickets ⁴⁸. A retrospective survey was conducted on the prevalence of rickets in our adult study, rickets was determined by whether participants had a diagnosis of disease, had self-reported disease, or had symptoms. In adult population of this study, the prevalence of rickets in males and females was 6.3% and 7.9%, respectively. An earlier study reported that the prevalence of Chinese infants with rickets in 1980s was approximately 18% 49, it was higher than our study. This difference may be due to the birth year of our participants being approximately 20 years earlier than those in that study, when China was experiencing societal hardships. Poverty and poor health conditions may

60

1

lead to the lack of awareness of disease. Furthermore, the information on rickets was retrospective, 306 since some participants were uncertain whether they had rickets in childhood, which may contribute to the low prevalence of rickets. In our adult study, participants who had rickets were defined as having vitamin D deficiency in childhood. The association between rickets and type 2 diabetes in adults was analyzed to explore the effect of childhood vitamin D deficiency on type 2 diabetes in adulthood. The results showed that males who had rickets in childhood had a higher risk of type 2 diabetes in adulthood, but this result was not observed in females. However, the reason for this phenomenon is still unclear. In addition, a study from Finland found that individuals with high levels of vitamin D in childhood and adolescence had a significant lower risk of type 2 diabetes in adulthood compared with those who had lower level of vitamin D²³. These findings collectively suggest that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood, which needs to be further be explored in more cohort studies and intervention studies. Some scholars have explored the pathogenesis through which vitamin D deficiency might induce IR in children. The results of some studies shown that, vitamin D levels were inversely related to oxidative stress and inflammation, the increase of reactive oxygen species (ROS) and formation of cvtokines such as interleukin-6 played major roles in IR 50-52. In addition, the findings of an obese, African-American adolescent study showed that low vitamin D levels was correlated with low adiponectin levels, which was associated with IR in children and adolescents ⁵³⁻⁵⁶. These results support the finding that vitamin D deficiency in childhood increases the risk of type 2 diabetes in adulthood. At the same time, the results of lab studies also support such pathogenesis: there was a close connection between vitamin D and β -cell function. By regulating cytokines to impact β -cell

17

survival, vitamin D receptor and 1-hydroxylase in β -cell played a role in regulating pancreatic β -cell

Page 19 of 30

1 2

BMJ Open

60

function, insulin secretion, IR and systemic inflammation ^{31,57,58}. Furthermore, the mechanism of vitamin D decreased IR might relate to the inhibition of vitamin D on inflammation and activation on insulin receptor ^{59,60}. In a term of epigenetics, results showed that vitamin D can also affect the occurrence of type 2 diabetes by regulating the expression of methyltransferase to prevent hypermethylation of diabetes-related genes ⁶¹. Above all of these might be the pathogenesis of vitamin D deficiency in childhood increased the risk of type 2 diabetes in adulthood.

An advantage of our study was the combination of children and adult participants. First, the negative association between vitamin D deficiency and IR was observed in children, which was a risk factor for type 2 diabetes in adults. Second, the association between rickets in childhood and type 2 diabetes in adulthood was explored, as well. The findings of two age groups were combined to analyze whether vitamin D deficiency in childhood has an early and long-term effect on glucose metabolism in adulthood. These findings can provide a theoretical basis for the early prevention and treatment of type 2 diabetes. However, there were also some limitations in our study. First, there was no significant difference in calcium or (and) vitamin D supplements between 4 quartile groups in the children's baseline data, which may be because this question was not limited to vitamin D supplements. Calcium supplements contain less vitamin D, and children taking calcium supplements alone were unlikely to have the same effect as those who took vitamin D supplements alone. Secondly, using ELISA kits to detect serum 25(OH)D₃ concentration is not the optimal method and may affect 25(OH)D₃ concentration results. Thirdly, in adult study baseline data, participants with type 2 diabetes had a higher proportion of regular exercise and less consumption of fruits than those without type 2 diabetes. This might be due to the participants', with type 2 diabetes, choice of a healthier lifestyle after got the diagnosis of disease. In addition, there might be

a recall bias in the adult retrospective study. The definition of vitamin D deficiency in childhood was rickets, which might have led to some participants, who did not have rickets but vitamin D deficiency, to be classified as non-deficient. Furthermore, rickets caused by vitamin D deficiency is the main type of rickets, but other types of rickets have not been excluded. Therefore, long-term design and cohort studies with stricter vitamin D nutritional status monitoring are needed to further verify our results.

56 Conclusions

In summary, vitamin D deficiency in childhood was associated with IR and might increase the risk of type 2 diabetes in adult males. Early prevention strategies should be undertaken in children to control the rapid increase in type 2 diabetes worldwide, and management of vitamin D deficiency is probably an effective method.

361 Acknowledgements

We are grateful to all participants who took part in this study and the research team.

363 Authors' contributions

Lixin Na and Changhao Sun designed the study and acquired funding. Junyi Liu and Lixin Na wrote the paper. Liqun Fu and Jingyi Zhang prepared the original draft. Junyi Liu, Shanshan Jin and Yubing Jia collected the data. Junyi Liu and Liqun Fu analysed and interpreted data. All authors read and approved the final manuscript.

368 Compliance with Ethics Guidelines

² 369 The study protocol of IIVDDC and HDNNCDS was approved by the Ethics Committee of
 ⁴ 4
 ⁵ 370 Harbin Medical University, and written informed consent was provided by all participants. The
 ⁶ 7
 ⁷ 371 methods in this study were in accordance the approved guidelines.

2 3 372 4	Invest	igation and Intervention of Vitamin D Deficiency in Children: ChiCTR1800020294; Harbin					
5 6 373	Cohor	t Study on Diet, Nutrition and Chronic Non-communicable Diseases: ChiCTR-ECH-					
7 8 374 9	12002	721.					
¹⁰ 11 375 12	Comp	eting interests					
¹³ 376 14	None	of the authors has any potential conflict of interest associated with this research.					
15 16 377 17	Fundi	ng					
¹⁸ 378 19 20	This s	study was supported by National Nature Science Foundation of China (grant numbers					
21 379 22	81872						
²³ 380 24	Data s	sharing statement					
²⁵ 26 381 27	The da	atasets used and/or analysed during the current study are available from the corresponding					
28 382 29 30	author	author on reasonable request.					
₃₁ 383 32	Reference						
³³ 384 34 35	1.	Bullock A, Sheff K. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002-2012. N					
36 385 37		Engl J Med. 2017;377(3):301.					
³⁸ 386 39 40	2.	IDF Diabetes Atlas [Internet]. 2016; http://www.idf. org/diabetesatlas.					
41 387 42 43	3.	Wheelock KM, Sinha M, Knowler WC, Nelson RG, Fufaa GD, Hanson RL. Metabolic Risk Factors					
₄₄ 388 45		and Type 2 Diabetes Incidence in American Indian Children. J Clin Endocrinol Metab.					
46 389 47 48		2016;101(4):1437-1444.					
49 390 50 51	4.	Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in					
⁵¹ 52 53		adulthood: a systematic review and meta-analysis. <i>Obes Rev.</i> 2016;17(1):56-67.					
54 392 55 56	5.	Bjerregaard LG, Jensen BW, Angquist L, Osler M, Sorensen TIA, Baker JL. Change in Overweight					
₅₇ 393 58		from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med. 2018;378(14):1302-					
⁵⁹ 394 60		1312.					

1

2 3 395 4	6.	Sabin MA, Magnussen CG, Juonala M, et al. Insulin and BMI as predictors of adult type 2 diabetes
5 6 396		mellitus. <i>Pediatrics.</i> 2015;135(1):e144-151.
7 8 397 9	7.	Schryver E, Klein GL, Herndon DN, Suman OE, Branski LK, Sousse LE. Bone metabolism in
¹⁰ 11 398 12		pediatric burned patients: A review. Burns. 2018;44(8):1863-1869.
13 399 14	8.	van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab.
15 16 400 17		2011;25(4):671-680.
¹⁸ 401 19 20	9.	Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency
21 402 22		among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158(6):531-537.
²³ 24 403 25	10.	Avagyan D, Neupane SP, Gundersen TE, Madar AA. Vitamin D status in pre-school children in rural
26 404 27		Nepal. <i>Public Health Nutr.</i> 2016;19(3):470-476.
28 29 405 30	11.	Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH. Vitamin D
³¹ 406 32 33		deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr.
34 407 35		2015;145(4):791-798.
³⁶ 37 408 38	12.	Wang S, Shen G, Jiang S, et al. Nutrient Status of Vitamin D among Chinese Children. Nutrients.
³⁹ 409 40		2017;9(4).
41 42 410 43	13.	Denova-Gutierrez E, Munoz-Aguirre P, Lopez D, et al. Low Serum Vitamin D Concentrations Are
⁴⁴ 411 45		Associated with Insulin Resistance in Mexican Children and Adolescents. Nutrients. 2019;11(9).
46 47 412 48	14.	Global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years
49 50 413 51		lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a
52 414 53		systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743-800.
54 55 415 56	15.	Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society
⁵⁷ 416 58 59 60		scientific statement. <i>Endocr Rev.</i> 2012;33(3):456-492.

BMJ Open

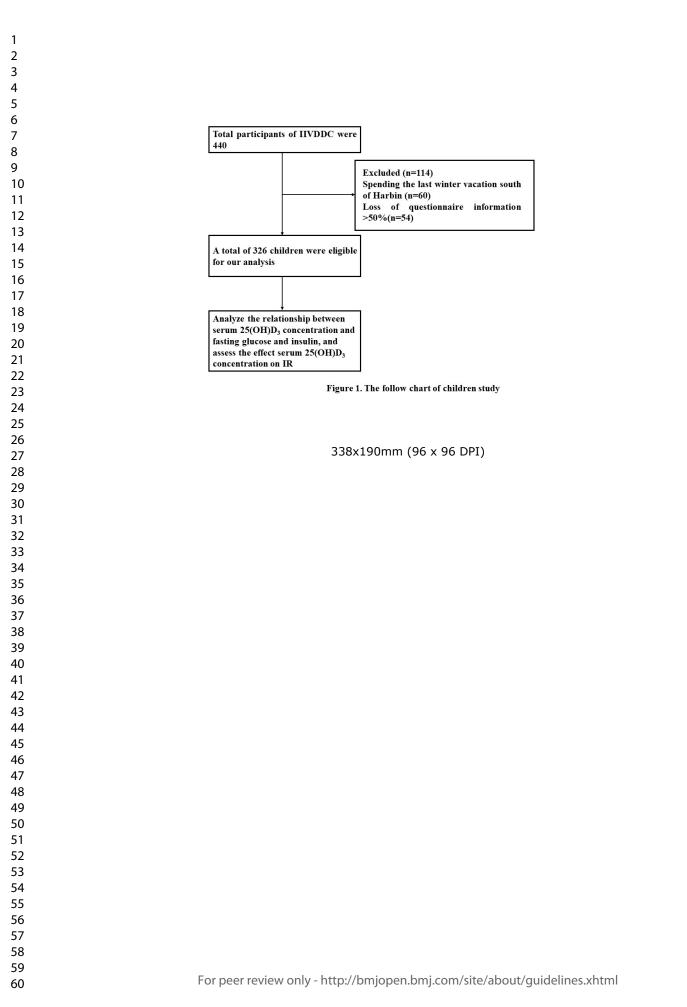
2 3 417 4	16.	Debinska A, Sikorska-Szaflik H, Urbanik M, Boznanski A. The role of vitamin D in atopic dermatitis.
5 6 418		<i>Dermatitis.</i> 2015;26(4):155-161.
7 8 419 9	17.	Vo P, Bair-Merritt M, Camargo CA. The potential role of vitamin D in the link between obesity and
¹⁰ 11 420 12		asthma severity/control in children. Expert Rev Respir Med. 2015;9(3):309-325.
¹³ 421 14	18.	Abbasi F, Blasey C, Feldman D, Caulfield MP, Hantash FM, Reaven GM. Low circulating 25-
15 16 422 17		hydroxyvitamin D concentrations are associated with defects in insulin action and insulin secretion in
¹⁸ 423 19 20		persons with prediabetes. J Nutr. 2015;145(4):714-719.
21 424 22	19.	Reis JP, von Muhlen D, Miller ER, 3rd, Michos ED, Appel LJ. Vitamin D status and cardiometabolic
²³ 24 25		risk factors in the United States adolescent population. <i>Pediatrics</i> . 2009;124(3):e371-379.
26 426 27	20.	Belenchia AM, Tosh AK, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves
28 29 427 30		insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr.
³¹ 428 32 33		2013;97(4):774-781.
34 429 35	21.	Rajakumar K, Moore CG, Khalid AT, et al. Effect of vitamin D3 supplementation on vascular and
³⁶ 37 430 38		metabolic health of vitamin D-deficient overweight and obese children: a randomized clinical trial. Am
³⁹ 431 40		J Clin Nutr. 2020;111(4):757-768.
41 42 432 43	22.	Kelishadi R, Salek S, Salek M, Hashemipour M, Movahedian M. Effects of vitamin D
⁴⁴ 433 45 46		supplementation on insulin resistance and cardiometabolic risk factors in children with metabolic
47 434 48		syndrome: a triple-masked controlled trial. <i>J Pediatr (Rio J).</i> 2014;90(1):28-34.
⁴⁹ 50 435 51	23.	Wu F, Juonala M, Pitkanen N, et al. Both youth and long-term vitamin D status is associated with risk
52 436 53		of type 2 diabetes mellitus in adulthood: a cohort study. Ann Med. 2018;50(1):74-82.
54 55 437 56	24.	Na L, Wu X, Feng R, et al. The Harbin Cohort Study on Diet, Nutrition and Chronic Non-
⁵⁷ 438 58 59		communicable Diseases: study design and baseline characteristics. <i>PLoS One.</i>
60		22

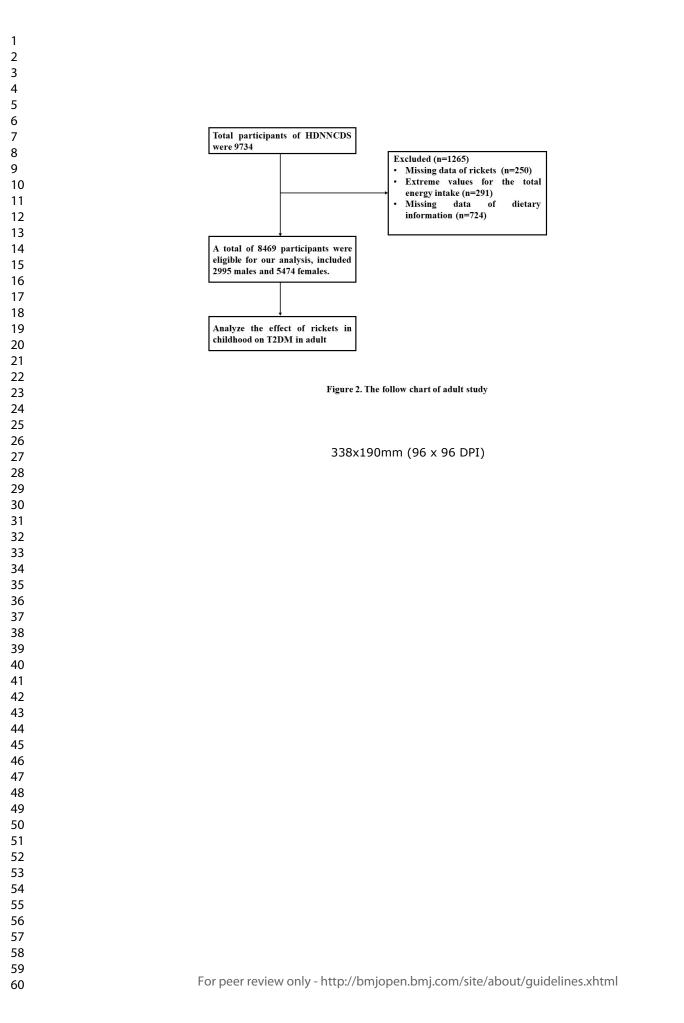
1		
2 3 439 4		2015;10(4):e0122598.
5 440 6	25.	YY. China Food Consumption .: Peking University Medical Press; 2005.
7 8 441 9	26.	WHO. Application tools: WHO AnthroPlus software <u>http://www.who.int/growthref/tools/en</u> .
10 11 442 12	27.	Hedblad B, Nilsson P, Janzon L, Berglund G. Relation between insulin resistance and carotid intima-
13 443 14		media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in
15 16 444 17		Malmo, Sweden. <i>Diabet Med.</i> 2000;17(4):299-307.
¹⁸ 445 19 20	28.	Sullivan SS, Rosen CJ, Halteman WA, Chen TC, Holick MF. Adolescent girls in Maine are at risk for
21 446 22		vitamin D insufficiency. <i>J Am Diet Assoc.</i> 2005;105(6):971-974.
23 24 447 25	29.	Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D
26 448 27 28		deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab.
28 29 449 30		2011;96(7):1911-1930.
³¹ 450 32 33	30.	Deluca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep.
34 451 35		2014;3:479.
³⁶ 37 452 38	31.	Issa CM. Vitamin D and Type 2 Diabetes Mellitus. Adv Exp Med Biol. 2017;996:193-205.
³⁹ 453 40	32.	Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers,
41 42 454 43		and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S-1688S.
44 455 45 46	33.	Wang LL, Wang HY, Wen HK, Tao HQ, Zhao XW. Vitamin D status among infants, children, and
47 456 48		adolescents in southeastern China. J Zhejiang Univ Sci B. 2016;17(7):545-552.
49 50 457 51	34.	Chung SJ, Lee YA, Hong H, et al. Inverse relationship between vitamin D status and insulin
52 458 53		resistance and the risk of impaired fasting glucose in Korean children and adolescents: the Korean
54 55 459 56		National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Public Health Nutr.
⁵⁷ 460 58 59		2014;17(4):795-802.
60		23

Page 25 of 30

2 3 461 4	35.	Wang L, Wang H, Wen H, Tao H, Zhao X. Relationship between HOMA-IR and serum vitamin D in
5 6 462		Chinese children and adolescents. J Pediatr Endocrinol Metab. 2016;29(7):777-781.
7 8 463 9	36.	Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and
¹⁰ 11 464 12		metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177-189.
13 465 14	37.	Catena C, Colussi G, Novello M, et al. VITAMIN D DEFICIENCY AND GLUCOSE METABOLISM IN
15 16 466 17		NON-DIABETIC ESSENTIAL HYPERTENSIVE PATIENTS. <i>Journal of Hypertension</i> . 2018;36:e26.
¹⁸ 467 19 20	38.	Boucher BJ, John WG, Noonan K. Hypovitaminosis D is associated with insulin resistance and beta
21 468 22		cell dysfunction. Am J Clin Nutr. 2004;80(6):1666; author reply 1666-1667.
²³ 24 25	39.	Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Sliwinska A. Vitamin D Supplementation
26 470 27		Reduces Both Oxidative DNA Damage and Insulin Resistance in the Elderly with Metabolic
28 29 471 30		Disorders. Int J Mol Sci. 2019;20(12).
³¹ 472 32 33	40.	Wang W, Zhang J, Wang H, Wang X, Liu S. Vitamin D deficiency enhances insulin resistance by
34 473 35		promoting inflammation in type 2 diabetes. Int J Clin Exp Pathol. 2019;12(5):1859-1867.
³⁶ 37 474 38	41.	Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident
³⁹ 475 40		type 2 diabetes: a mendelian randomisation study. <i>Lancet Diabetes Endocrinol.</i> 2015;3(1):35-42.
41 42 476 43	42.	Gao Y, Zheng T, Ran X, et al. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-
44 45 46		Year Follow-Up Community-Based Study. <i>Dis Markers.</i> 2018;2018:1926308.
47 478 48	43.	Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A
⁴⁹ 50 479 51		systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017-2029.
52 480 53	44.	Pittas AG, Sun Q, Manson JE, Dawson-Hughes B, Hu FB. Plasma 25-hydroxyvitamin D
54 55 481 56		concentration and risk of incident type 2 diabetes in women. <i>Diabetes Care.</i> 2010;33(9):2021-2023.
⁵⁷ 482 58	45.	Maclaren NK, Gujral S, Ten S, Motagheti R. Childhood obesity and insulin resistance. Cell Biochem
59 60		

1


2 483 Biophys. 2007;48(2-3):73-78. 3 4 5 484 Shore RM, Chesney RW. Rickets: Part I. Pediatr Radiol. 2013;43(2):140-151. 46. 6 7 8 485 47. Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR. Nutritional rickets around the world: an 9 10 486 update. Paediatr Int Child Health. 2017;37(2):84-98. 11 12 13 487 48. Munns CF, Shaw N, Kiely M, et al. Global Consensus Recommendations on Prevention and 14 15 16 488 Management of Nutritional Rickets. J Clin Endocrinol Metab. 2016;101(2):394-415. 17 ¹⁸ 489 Fong HC HY, Shen KY, Dewen PI. Prevention and treatment of rickets (report). In. Henan College of 49. 19 20 21 4 9 0 Medicine publication 1980:1-10. 22 23 24 24 491 50. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 25 26 492 diabetes. Nature. 2006;444(7121):840-846. 27 28 ₂₉ 493 51. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the 30 ³¹ 494 menu. Genes Dev. 2007;21(12):1443-1455. 32 33 34 495 Verdile G, Keane KN, Cruzat VF, et al. Inflammation and Oxidative Stress: The Molecular 52. 35 36 ₃₇ 496 Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm. 38 ³⁹ 497 2015;2015:105828. 40 41 ₄₂ 498 Nunlee-Bland G, Gambhir K, Abrams C, Abdul M, Vahedi M, Odonkor W. Vitamin D deficiency and 53. 43 ⁴⁴ 499 insulin resistance in obese African-American adolescents. J Pediatr Endocrinol Metab. 2011;24(1-45 46 47 500 2):29-33. 48 49 ₅₀ 501 54. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and 51 52 502 adolescents. N Engl J Med. 2004;350(23):2362-2374. 53 54 ₅₅ 503 55. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, 56 ⁵⁷ 504 insulin sensitivity, and beta-cell function. Diabetes Care. 2004;27(2):547-552. 58 59 60 25


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 30

BMJ Open

1			
2 3 50 4)5	56.	Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to
5 50 6 7)6		visceral fat and insulin sensitivity. <i>Diabetes Care.</i> 2006;29(1):51-56.
7 8 50 9)7	57.	Nwosu BU, Maranda L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D
¹⁰ 11 50 12	8		status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1
13 50 14)9		or type 2 diabetes mellitus. <i>PLoS One.</i> 2014;9(6):e99646.
15 16 51 17	0	58.	Mitri J, Pittas AG. Vitamin D and diabetes. <i>Endocrinol Metab Clin North Am.</i> 2014;43(1):205-232.
¹⁸ 51 19	1	59.	Berridge MJ. Vitamin D deficiency and diabetes. <i>Biochem J.</i> 2017;474(8):1321-1332.
20 21 51 22	2	60.	Harinarayan CV. Vitamin D and diabetes mellitus. <i>Hormones (Athens).</i> 2014;13(2):163-181.
23 24 51 25	3	61.	Zhang H, Chu X, Huang Y, et al. Maternal vitamin D deficiency during pregnancy results in insulin
26 51 27	4		resistance in rat offspring, which is associated with inflammation and Ikappabalpha methylation.
28 29 51 30	5		<i>Diabetologia.</i> 2014;57(10):2165-2172.
³¹ 51 32	6	Figure	1 - The follow chart of the children study.
33 34 51 35	7	Figure	2 - The follow chart of the adult study.
36 37 38			
39			
40 41			
42 43			
44 45			
46			
47 48			
49			
50 51			
52			
53 54			
55			
56 57			
58 59			
59 60			26

1	
1	
2	
3	
4	
-	
5	
6	
7	
'	
8	
9	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
52	
33	
34	
35	
36	
37	
57	
38	
39	
40	
41	
42	
43	
44	
•••	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

STROBE Statement-Checklist of items that should be included in reports of cross-section	al studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6, 7, 8
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8,9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	9
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
1 and 1 partic	10	potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9,
r r		social) and information on exposures and potential confounders	10,12
		(b) Indicate number of participants with missing data for each variable of	- 3
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were	9, 1
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	14
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	18
		bias or imprecision. Discuss both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	18
		limitations, multiplicity of analyses, results from similar studies, and	
		other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present	19
		study and, if applicable, for the original study on which the present article	
		is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Vitamin D status in children and its association with glucose metabolism in northern China: A combination of a crosssectional study and a retrospective study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061146.R1
Article Type:	Original research
Date Submitted by the Author:	24-Aug-2022
Complete List of Authors:	Liu, Junyi; Shanghai University of Medicine and Health Sciences; Harbin Medical University, Fu, Liqun; Shanghai University of Medicine and Health Sciences Jin, Shanshan; Harbin Medical University School of Public Health Jia, Yubing; Harbin Medical University School of Public Health Zhang, Jingyi; Shanghai University of Medicine and Health Sciences Sun, Changhao; Harbin Medical University School of Public Health Na, Lixin; Shanghai University of Medicine and Health Sciences
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Public health
Keywords:	DIABETES & ENDOCRINOLOGY, Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, NUTRITION & DIETETICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1	
2 3	
2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 16 7 8 9 30 31 2 3 34 35 36 37 38 35 36 37 38	
5 6	
7	
8 0	
9 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21	
22 23	
24	
25 26	1
27	'
28 29	1
30	
31 32	1
33	
34 35	1
36	1
37 20	1
38 39	1
40	•
41 42	1
43	
44 45	1
46	
47 48	1
49	1
50 51	
52	2
53 54	
55	2
56 57	
57 58	2
59	
60	

1	Vitamin D status in children and its association with glucose metabolism in northern China: A
2	combination of a cross-sectional study and a retrospective study.
3	Junyi Liu ¹ , Liqun Fu ² , Shanshan Jin ³ , Yubing Jia ⁴ , Jingyi Zhang ⁵ , Changhao Sun ⁶ , Lixin Na ⁷ .
4	¹ Junyi Liu, Department of Clinical Nutrition, Shanghai university of medicine and health Sciences
5	Affiliated Zhoupu hospital, Shanghai, China. Department of Nutrition and Food Hygiene, Public
6	Health College, Harbin Medical University, Harbin, China. E-mail: liujunyixq@163.com
7	² Liqun Fu, Department of Clinical Nutrition, Shanghai university of medicine and health Sciences
8	Affiliated Zhoupu hospital, Shanghai, China. E-mail: zpyyyys@126.com.
9	³ Shanshan Jin, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
10	University, Harbin, China. E-mail: jinshanshan1723@163.com.
11	⁴ Yubing Jia, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
12	University, Harbin, China. E-mail: jia544288485@163.com.
13	⁵ Jingyi Zhang, College of Public Health, Shanghai University of Medicine and Health Sciences,
14	Shanghai, China. E-mail: zhangjy@sumhs.edu.cn.
15	⁶ Changhao Sun, Department of Nutrition and Food Hygiene, Public Health college, Harbin Medical
16	University, Harbin, China. E-mail: changhaosun2002@163.com.
17	⁷ Lixin Na, College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai,
18	China. E-mail: nalixin2003@163.com.
19	Corresponding authors: Lixin Na, Ph.D., College of Public Health, Shanghai University of
20	Medicine and Health Sciences, 285 Tianxiong Road, Pudong New Area, Shanghai, China. Tel: +86-
21	021-65880112, Fax: +86-021-65880112, E-mail: nalixin2003@163.com.
22	Word count: 5,242

BMJ Open

	23	Abstract
	24	Objectives: The aim of this study was to explore the vitamin D status of children in northern China
	25	and the association between vitamin D and glucose metabolism.
0 1	26	Design: Cross-sectional study was conducted among child participants and retrospective study
2 3 4	27	designs was conducted among adult participants.
5 6	28	Setting and participants: Both studies were recruited from Harbin, 326 children were included in
/ 8 9	29	children study, 8,469 adults were included in adult study.
0 1 2	30	Primary and secondary outcome measures: Physical examination, lifestyle and dietary habit data
2 3 4	31	were recorded in all the participants. Serum insulin, glucose, 25(OH)D ₃ concentrations in children
5 6 7	32	and serum glucose and lipids levels in adults were measured. In adults, rickets history was also
, 8 9	33	investigated, which was used to define vitamin D deficiency in childhood. The associations were
0 1 2	34	tested by linear regression and binary logistic regression.
3 4	35	Result: In the children study, only 10.7% of participants were vitamin D sufficient (≥30 ng/mL).
5 6 7	36	Inverse correlations between serum 25(OH)D ₃ concentration and fasting insulin and HOMA-IR were
8 9	37	found, and children with lower serum 25(OH)D ₃ concentrations were likely to have IR (OR: 0.955,
0 1 2	38	95% CI: 0.917, 0.995, p value: 0.027). In an adult study, rickets in childhood increased the risk of
3 4 5	39	type 2 diabetes in male participants (OR = 1.414, 95% CI = 1.013, 1.972; p value = 0.042), but this
6 7	40	result was not observed in females.
8 9 0	41	Conclusion: Our findings suggest that vitamin D deficiency is widespread in northern China. Vitamin
1 2 3	42	D deficiency in childhood was associated with IR and increased the risk of type 2 diabetes in male

adults.

Keywords: vitamin D deficiency, children, insulin resistance, type 2 diabetes

1	
2 3 4	45
5 6	46
7 8	47
9 10 11	48
12 13	49
14 15 16	50
17	
18 19	51
20 21 22	52
23 24	53
25 26 27	54
28 29	55
30 31 32	56
33 34	57
35 36 37	58
38 39	59
40 41	
42 43	60
44 45	61
46 47 48	62
49 50	63
51 52 53	64
54 55	65
56 57 58	66
59 60	

Strengths and limitations of this study:

• Two studies from Harbin, a city with a high rate of vitamin D deficiency, have important implications for studying vitamin D deficiency in high latitudes and the long-term effects of vitamin D on non-skeletal health.

- The analysis of children's study and the analysis of adults' study with similar environments and
 dietary habits were included to support each other's findings on the association between vitamin
 D deficiency and glucose metabolism in the two populations.
- There was possible selection bias and we did not do the external validity of the sample due to a
 limitation of external sample. Information on rickets that was used to define vitamin D deficiency
 in childhood was obtained from self-report, the recall bias was not avoidable although we
 excluded the uncertain participants.
- The sample size of children was small and it was a cross-sectional study. We used ORs to
 interpret the association of vitamin D deficiency with IR and diabetes, which may overstate effect
 sizes.

59 Introduction

According to IDF statistics, there are 450 million adults with type 2 diabetes worldwide, accounting for approximately 90% of diabetes mellitus cases. Type 2 diabetes has become a global public health problem ^{1,2}. Some recent population studies have found that risk factors such as obesity, impaired glucose tolerance, or insulin resistance (IR) in childhood, may also increase the risk of type 2 diabetes in adults ³⁻⁶. These results suggested that controlling risk factors in childhood is an early prevention strategy to reduce the prevalence of type 2 diabetes in adulthood.

66 Vitamin D is a fat-soluble vitamin with several physiological functions, one of the most important of

Page 5 of 32

BMJ Open

which is its effect on skeletal health ⁷. At present, vitamin D deficiency is still a serious public problem worldwide, particularly in children⁸. The prevalence of vitamin D deficiency was approximately 50% in both developing and developed countries ⁹⁻¹². Serum 25(OH)D₃ is less affected by body regulation and is often used to evaluate vitamin D levels. It is usually considered that serum $25(OH)D_3 < 10$ ng/mL indicates severe deficiency, 10-20 ng/mL indicates deficiency, 20-29 ng/mL indicates insufficiency, and \geq 30 ng/mL indicates sufficiency ¹³. Vitamin D deficiency in children is associated with many skeletal diseases, and one of the typical diseases is rickets. The clinical signs of rickets include skeletal deformity, restlessness, motor retardation and bone pain¹⁴. Recently, the association between vitamin D deficiency and extra-skeletal health has been of great concern, such as its association with glucose metabolism, obesity, respiratory tract infection and

atopic dermatitis, among which the association with glucose metabolism has been of particular concern¹⁵⁻¹⁷. A population study of children and adolescents in Mexico found that low vitamin D levels were associated with IR; when the concentration of serum vitamin D increased, the possibility of presenting IR decreased ¹⁸. Jared P Reis et al. reported that adolescents in the lowest quartile of vitamin D (<15 ng/mL) are more likely to have hyperglycemia compared with those in the highest quartile (>26 ng/mL)¹⁹. Furthermore, randomized controlled trials showed that vitamin D supplementation could increase insulin sensitivity and decrease IR and fasting glucose concentrations in obese children ²⁰⁻²². Since IR in children is a risk factor for type 2 diabetes, we hypothesized that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood by affecting insulin sensitivity. A recent 31-year follow-up prospective study in 3- to 18-year-old young Finns found that high vitamin D levels in childhood could reduce the incidence of type 2 diabetes in adulthood ²³. This study further supported our hypothesis, but current research is very limited.

Harbin is a typical northeast city of China, with a latitude between 44°04'N and 46°40'N, and is a relatively high-latitude area. The winters in Harbin are long, and the sunlight is relatively insufficient year-round, which makes the region's residents vulnerable to vitamin D deficiency. In our study, we first described the vitamin D nutritional status in children and explored the association between vitamin D deficiency and IR from the Investigation and Intervention of Vitamin D Deficiency in Children (IIVDDC). Then, the association between rickets in children and the risk of type 2 diabetes in adults was analyzed using data from the Harbin Cohort Study on Diet, Nutrition and Chronic Noncommunicable Diseases (HDNNCDS) in a retrospective study. The aim of this study was to provide a theoretical basis for the early prevention and control of adult type 2 diabetes development in children.

Materials and Methods

Design

Cross-sectional study was conducted among child participants and retrospective study designs was ie. conducted among adult participants.

Study population

The child participants were from the baseline survey of IIVDDC from March to May 2019. They were recruited from 4 kindergartens in Nangang District of Harbin by convenient sampling method, including 2 public kindergartens and 2 private kindergartens based on the consideration of different economic levels. The sample size required of children was determined by Events Per Variable criterion (EPV) ≥ 10 , the minimum sample size was calculated to be 90 participants. The parents and teachers of children were invited to informational meetings at which the study and its procedures were explained to them. A total of 440 children aged 3-7 years who had lived in Harbin for the past 3 years were eligible as participants. The exclusion criteria included spending the last winter vacation

in the lower latitude areas of Harbin (n=60), who's information of questionnaire losing > 50% (n=54). A total of 326 children were included, and informed written consent was obtained from all custody holders (Figure 1).

The adult participants were from the baseline of the HDNNCDS²⁴. Seven urban administrative ¹³ 115 regions of Harbin were covered in HDNNCDS. According to their financial situation, each region 16 116 was divided into 3 strata and a total of 42 communities were randomly selected from each stratum in each administrative region by employing a stratified multistage random cluster sampling design. Residents were eligible to participate in the study if they: 1) were between 20 and 74 years old, 2) 21 118 have been living in Harbin for at least two years, 3) were without cancer or type 1 diabetes mellitus. ²⁶ 120 A total of 9,734 people aged 20-74 years completed the in-person baseline survey in 2010 - 2012. The sample size required in our analysis was calculated by $N = \frac{Z_{1-\alpha/2}^{2}(1-P)}{\varepsilon^{2}p}$, $Z_{1-\alpha/2} = 1.96$, p = 12.8%29 121 ²⁵, $\varepsilon = 10\%$. By calculating N= 2,617, design efficiency value was 2, the final calculated minimal sample size was 5,234. Rickets in childhood were investigated in the survey, and participants who 34 123 had definite answers were included in our study. In the present study, we excluded participants who ³⁹ 125 reported uncertainty about information on rickets in childhood (n=250), who reported extreme values ₄₂ 126 for total energy intake (<500 kcal/d or >4500 kcal, n=291), and who had missing dietary information data (n=724). Finally, a total of 8,469 participants were eligible for our analysis, including 2,995 males and 5474 females (Figure 2). Written informed consent was provided by all participants. 47 128

The study protocols of IIVDDC and HDNNCDS were approved by the Ethics Committee of 52 130 Harbin Medical University, and written informed consent was provided by all participants. The methods in the study were in accordance with the approved guidelines (The registered ethical ⁵⁷ 132 number: ChiCTR1800020294 for IIVDDC, ChiCTR-ECH-12002721 for HDNNCDS).

Data collection by the questionnaire 133

1 2

3 4

6 7

5 Detailed in-person interviews were administered by trained personnel using a structured 134 questionnaire to collect information on demographic characteristics, lifestyle, and dietary intake. 8 135 9 10 In the IIVDDC, the questionnaire was completed by parents and teachers in kindergartens, together. 136 11 12 ¹³ 137 The demographic characteristics of the children included age and gender. Outdoor physical activity 14 15 in the past 6 months was investigated, children who had more than 60 minutes of daily activity or 16 138 17 18 139 more than 3 days of weekly activity were considered as high exercise frequency, otherwise they were 19 20 considered as low exercise frequency. Children who took calcium or vitamin D orally or 21 140 22 23 _____ 24 141 intravenously in the past 6 months were considered as supplementation with calcium and (or) vitamin 25 ²⁶ 142 D. Dietary information was collected by using a food-frequency questionnaire (FFQ), and a total of 27 28 ₂₉ 143 48 food items were included in the questionnaire, which covered most of the foods in the recipes of 30 31 the kindergartens included in our study. For each food item, parents and teachers of participants were 144 32 33 asked how frequently participants consumed over the preceding year, followed by a question on the 34 145 35 36 amount consumed in lians (a unit of weight equal to 50 g) or mL (for liquid food item) per unit of 146 37 38 ³⁹ 147 time. The consumption frequency was transformed to obtain mean consumption a day. Nutrient 40 41 ₄₂ 148 intakes for each food item consumed were calculated by multiplying the nutrient content listed in the 43 44 China Food Composition ²⁶. Before dietary surveys, 60 participants from the IIVDDC were recruited 149 45 46 and asked to complete two FFQs (FFQ1 and FFQ2) and a 3-day dietary record to validate the 47 150 48 49 reliability of the FFQs. After adjusting for energy intake, major nutritional factors (staple food, 151 50 51 ⁵² 152 poultry, fish, vegetable, fruit, and milk products), which were assessed by the two FFQs and by the 53 54 ₅₅ 153 FFQ2 and 3-day dietary records, correlated well. In IIVDDC, Cronbach's α coefficient of major 56 ⁵⁷ 154 nutritional factors between FFQ1 and FFQ2 were 0.67-0.72 and major nutritional factors between

58 59

BMJ Open

FFQ1 and 3-day dietary record were 0.62-0.76. Seventeen factors were extracted, and the cumulative 155 variance contribution rate was 0.649, which suggested the good construct validity. 156

In the HDNNCDS, the demographic characteristics mainly included age, gender, and educational 157 level. Lifestyle referred to smoking, alcohol consumption, and physical activity. Current smokers 158 were defined as those who have smoked at least 100 cigarettes lifetime and smoke every day or some days now. Participants who consumed more than 100ml of white wine, highland barley wine, rice wine, grape wine per day or more then 250ml beer per day were considered to have a drinking habit. 161 And regular exercise was defined as any kind of recreational or sport physical activity other than walking for work or life performed at least 30 minutes for three or more days per week. Family history 163 of diabetes was also collected. In the FFQ for adults, a total of 103 food items were included in the questionnaire, which covered most of the commonly consumed foods in urban Harbin. The method to validate the reliability of the FFQs in the HDNNCDS was the same as that in the IIVDDC. The 166 correlation coefficients of major nutritional factors between FFQ1 and FFQ2 were 0.61-0.70 and major nutritional factors between FFQ1 and 3-day dietary record were 0.61–0.69, respectively²⁴. 168 Fifteen factors were extracted, and the cumulative variance contribution rate was 0.832, which suggested the good construct validity. Participants were asked to recall the history of rickets in 171 childhood by specific questions in the questionnaire. The questions included whether they had been diagnosed of rickets at the hospital, had the signs of rickets, such as square head, delay in tooth development, rachitic chest, bow legs or X-shaped legs. The answer options included definitely yes, definitely no and uncertain. Participants who chose one or more "definitely yes" were considered to have rickets in childhood. Participants who reported "uncertain" were excluded from our analysis. Anthropometric measurement

Anthropometric measurements, including height, weight and waist circumference (WC), were taken by well-trained examiners, with participants wearing light, thin clothing, and no shoes. Body weight, height and waist circumference were measured to the nearest 0.1 kg, 0.1 cm, and 0.1 cm, respectively. BMI was calculated as weight (kg) divided by the square of the height in meters (m²). Children's sexand age-adjusted z-scores for body mass index (zBMI) were calculated as the calculated value of child BMI minus the median BMI of children of the same age and sex, and then divided by the standard deviation of BMI for children of the same age and sex with the use of WHO Anthro Plus software version 1.0.4 ²⁷.

5 Biochemical assessment

Fasting (more than 10 h) blood samples were collected in children in the IIVDDC. Fasting glucose was determined by an automatic biochemistry analyzer (Hitachi, Tokyo, Japan). $25(OH)D_3$ was measured using ELISA kits (Mlbio, Shanghai, China). Serum insulin was measured using the immunofluorescence method (Tosoh automated enzyme immunoassay analyzer AIA-2000ST).

Fasting and postprandial (2 hours after drinking 75 grams glucose-containing water) blood samples were taken from all adult participants in the HDNNCDS. Fasting glucose and 2-h postprandial plasma glucose, blood lipids, including triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c), were measured using an automatic biochemistry analyzer (Hitachi, Tokyo, Japan). Serum insulin was measured in the same way as children.

² 196 *Definition of variables*

4 197 Exposures

In the IIVDDC, serum $25(OH)D_3 < 10 \text{ ng/mL}$ was considered severe deficiency, 10-20 ng/mL was considered deficiency, 20-29 ng/mL was considered insufficiency, and $\geq 30 \text{ ng/mL}$ was considered

2

BMJ Open

sufficiency¹³. In the HDNNCDS, Vitamin D deficiency in childhood was defined as a diagnosis of
 rickets at the hospital, self-reported rickets, or signs of skeletal deformity during childhood.

202 *Outcomes*

In the IIVDDC, HOMA-IR was calculated from fasting insulin and glucose using the following formula: fasting insulin concentration (mmol/L) × fasting glucose concentration (mIU/L)/22.5. Children in the highest quartile of HOMA-IR were defined as IR²⁸, the cutoff value of IR was HOMA-IR \geq 4.58 in our study. In the HDNNCDS, type 2 diabetes was defined as fasting glucose \geq 7.0 mmol/L and/or 2 h glucose \geq 11.1 mmol/L and/or self-report of type 2 diabetes and/or use of hypoglycemic medicine.

209 Potential confounders

In the IIVDDC, age, gender, zBMI, intake of energy, vegetable, fruit and livestock, exercise frequency, calcium or (and) vitamin D supplements, were included in the analysis as potential confounders of IR. In the HDNNCDS, age, education, BMI, WC, smoking, drinking, exercise, intake of energy, vegetable, fruit and livestock, and family history were included as potential confounders of type 2 diabetes.

215 *Statistical analysis*

SPSS v22.0 (Beijing Stats Data Co. Ltd, Beijing China) was used to analyze the data, and a two-sided p value < 0.05 was considered statistically significant. Values are mean ± SD and n (%) per group for all other variables. ANOVA and chi-square test were used to compare the differences in the continuous variables and categorical variables between the groups. The linear regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and fasting glucose, insulin and HOMA-IR in children, expressed as unstandardized β value and Standardized β value. Binary logistic regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and IR in children, adjust for age, gender, zBMI, exercise frequency, intake of energy,

1

vegetable, fruit and livestock, calcium or (and) vitamin D supplements, expressed as OR value and 95% CI. The data from children were finally analyzed and presented in general as no gender difference was observed after stratified by sex. Binary logistic regression analysis was used to analyze the association between rickets in childhood with type 2 diabetes in adulthood stratified by sex, adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, vegetable, fruit and livestock, and family history. Bootstrap test of binary logistic regression analysis was used as sensitivity analysis in order to confirm the risk of rickets on diabetes in adulthood male. Patient and public involvement participants were not involved in the development of research questions, nor the outcome measures/the design of the study. Also, they were not involved in the recruitment to or conduct of the study. In our study, the participants are informed about their blood parameters, and the results of other examinations are gradually shared with them by text message or phone call. The overall findings and benefits of the study will be disseminated through public media. Results Results from IIVDDC Basic information and diet characteristics of children across HOMA-IR quartiles A total of 326 children were included, 53% were boys and 47% were girls, aged 3 y-7 y, the average age is 5.24 ± 1.32 y. There were 21 (6.4%) children with severe vitamin D deficiency, 163 (50%) children with deficiency, 107 (32.8%) children with insufficiency, and only 35 (10.7%) children with sufficiency. Children were grouped by HOMA-IR quartiles. The basic characteristics are summarized in Table-1. Serum 25(OH)D₃ concentration in four quartiles from lowest to highest were 20.82 ± 6.96 ng/mL,

BMJ Open

246	20.96 ± 9.07 ng/mL, 19.94 ± 8.09 ng/mL, and 18.19 ± 6.37 ng/mL. Children in higher quartile group
247	had lower proportion of higher sport frequency. There were no significant differences for age, gender,
248	zBMI score, or the supplementation of calcium or (and) vitamin D in recent half year among different
) 1 249 2	quartile groups. The characteristics across quartiles were consistent in boys and girls, and the data
³ 250	were not shown.

Table-1. Characte	ristics of the subjec	ets in differen	t HOMA-II	R quartiles	group.	
Variable		Q1	Q2	Q3	Q4	р
, unuore		(n=81)	(n=82)	(n=82)	(n=81)	Value
Male ¹ , n (%)		20 (46.5)	68 (49.6)	51 (56.0)	36 (65.5)	0.167
		$5.27 \pm$	$5.05 \pm$	$5.22 \pm$	$5.45 \pm$	0.123
Age, years		1.59	1.19	1.11	1.33	0.125
25(OH)D ₃ , ng/mL		$20.82 \pm$	$20.96 \pm$	$19.94 \pm$	18.19±	0.095
		6.96	9.07	8.09	6.37	0.085
-DMI		$-0.08 \pm$	$0.74 \pm$	$0.47 \pm$	$0.58 \pm$	0 1 1 2
zBMI		2.07	1.67	1.47	1.22	0.112
Exercise frequency, n (%)	Lower	10 (12.3)	20 (24.4)	14 (17.1)	12 (14.8)	0.049
	Higher	60 (74.1)	56 (68.3)	48 (58.5)	39 (48.1)	
	unclear	11 (13.6)	6 (7.3)	20 (24.4)	30 (37.0)	
Calcium or (and) vitamin D	Have been	20 (1(0)	12 (52 A)	AE (EA 0)	20 (49 1)	0.040
supplements ^a , n (%)	supplement, %	38 (46.9)	43 (52.4)	45 (54.9)	39 (48.1)	0.049
	Haven't been		25 (42 7)	2 2 2 1 2	20 (25 0)	
	supplement, %	40 (49.4)	35 (42.7)	28 (34.1)	29 (35.8)	
	unclear, %	3 (3.7)	4 (4.9)	9 (11.0)	13 (16.0)	

¹Values are mean ± SD and n (%) per group for all other variables. A two-sided *p* Value < 0.05 was considered statistically significant; ^a whether have a supplement of calcium and (or) vitamin D with in past 6 months.
Furthermore, a significant difference in energy intake among quartiles of HOMA-IR was observed, with a slightly higher level in quartile 2 than that in other quartiles (Table-2). There were no differences in fruit, vegetable, and livestock intakes among different quartiles of HOMA-IR. The above analysis results were consistent in boys and girls, and the data were not shown.

48	
49	256
50	

47 255

⁴⁴ 254

Table_2 (haracteristics o	f diet in	different HOMA-IR	auartiles group

Variable	Q1	Q2	Q3	Q4	p Value
Energy ¹ , kcal/d	1323.44 ± 644.00	1650.28 ± 855.11	1409.05 ± 868.96	1230.34 ± 882.99	0.009
Vegetable, g/d Fruit, g/d Livestock, g/d	77.08 ± 32.55 113.27 ± 48.71 76.04 ± 38.58	84.85 ± 36.13 133.58 ± 59.28 88.97 ± 38.48	89.09 ± 38.12 126.42 ± 52.44 80.77 ± 37.25	81.63 ± 44.13 123.08 ± 56.41 77.36 ± 36.12	0.428 0.265 0.230

¹ Values are mean \pm SD. A two-sided *p* Value < 0.05 was considered statistically significant.

The association between serum $25(OH)D_3$ and fasting glucose, insulin and HOMA-IR

²³ 265

25 266

Serum 25(OH)D₃ concentration were negatively correlated with fasting insulin and HOMA-IR after adjusting for age, gender, zBMI, exercise frequency, intake of energy, vegetable, fruit and livestock, calcium or (and) vitamin D supplements (fasting insulin: unstandardized β coefficient = -0.178, ¹³ 261 standardized β coefficient = -0.194, p value = 0.001; HOMA-IR: unstandardized β coefficient = -16 262 0.032, standardized β coefficient = -0.161, p value = 0.005) (Table-3). However, the significant association between serum 25(OH)D₃ concentration and fasting glucose had not been observed. There was no difference in above analysis results between boys and girls, data were not shown. 21 264

Table-3. Linear regression analysis of the association between serum 25(OH)D₃ concentration and fasting

				glucose and	insulin.				
Variabl e	abl Crude			Model 1 ¹			Model 2		
	Unstandardi zed β	Standardi zed β	p Val ue	Unstandardi zed β	Standardi zed β	p Val ue	Unstandardi zed β	Standardi zed β	p Val ue
Glucos e (mmol/ L)	0.004	0.065	0.24 5	0.007	0.107	0.06 6	0.008	0.115	0.05 2
Insulin (mIU/L)	-0.169	-0.184	0.00 1	-0.170	-0.184	0.00 1	-0.178	-0.194	0.00 1
HOMA -IR	-0.030	-0.152	0.00 6	-0.031	-0.157	0.00 5	-0.032	-0.161	0.00 5

¹Model 1: Adjusted for age, gender, zBMI, exercise frequency, intake of energy, calcium or (and) vitamin D supplements. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

The association of serum $25(OH)D_3$ concentration with IR

⁴⁷ 268 Children in the highest quartile of HOMA-IR were defined as IR, the cut-off point of HOMA-IR was ₅₀ 269 4.59. As shown in **Table-4**, after adjusting for age, gender, zBMI, exercise frequency, intake of ⁵² 270 energy, vegetable, fruit and livestock, calcium or (and) vitamin D supplements, children with low serum 25(OH)D₃ concentration were likely to have IR (OR: 0.955, 95% CI: 0.917, 0.995, p value: 55 271 58 272 0.027). This association was consistent in boys and girls, and the data were not shown.

Table-4. Binary logistic regression analysis of the association between serum 25(OH)D₃ concentration and

Page 15 of 32

57

58

59

60

Bachelor

degree or

above

The

296 (35.7)

39 (5.0)

			IR.				
Vari	able		Model 1 ¹	X 7 1		Model 2	X 7 1
Serum 25	S(OH)D3	· · · ·	95% CI)	<i>p</i> Value	OR (95	,	<i>p</i> Value
concentratio		0.964 (0.	928, 1.001)	0.059	0.955 (0.9	17, 0.995)	0.027
Model 1: Adj	usted for age,	gender, zBMI,	exercise freque	ncy, intak	e of energy, ca	lcium or (and)	vitamin D
supplements. M	Iodel 2: Adjust	ted for the const	umption of veget	able, fruit	and livestock ba	ased on model 1	•
Results from	HDNNCDS						
Basic informa	ation, diet an	d blood bioch	emical charac	teristics o	of adult partic	ipants	
The basic cha	racteristics o	f adult particij	pants are shown	n in Tabl	e-5. A total of	8,469 adult pa	articipants
2,999 male ar	nd 5,474 fem	ale were inclu	ded in our ana	lysis. The	e average age	was 49.58 ± 1	0.51 y. Ir
both males ar	nd females, p	articipants wi	th type 2 diabe	etes had o	older age, large	er BMI, WC a	und higher
proportion of	f family his	tory of diabe	tes, compared	l with pa	articipants wi	thout type 2	diabetes
Additionally,	the proportio	on of regular	exercise in par	ticipants	with type 2 d	iabetes was h	igher thar
those without	type 2 diabe	etes. In femal	es, the proport	ion of dri	inking was lov	wer in particij	pants with
type 2 diaber	tes and they	had lower e	ducation leve	ls, where	eas the above	phenomenor	n was not
observed in r	nales. Furthe	ermore, type 2	2 diabetes part	ticipants	had higher T-	-CHO. TG. a	nd LDL-c
		<i>y</i> 51	1		U	, ,	
concentration	s and lower	HDL-c concer	ntration in both	n males a	nd females.		
Т	able-5. Chara	acteristics of t	he subject in T	2D and n	on-T2D group	. bv gender.	
Variable			[ale	(<u> </u>	nale	
		T2D (n = 773)	Non-T2D $(n = 2222)$	<i>p</i> Value	T2D (n = 1048)	Non-T2D $(n = 4426)$	<i>p</i> Value
Age ¹ , years		52.46 ± 9.33	49.04 ± 10.99	< 0.001	55.64 ± 9.42	49.44 ±	< 0.001
BMI, kg/m^2		32.40 ± 9.33 26.12 ± 3.37	49.04 ± 10.99 25.57 ± 3.43	< 0.001	35.04 ± 3.74 25.88 ± 3.74	10.06 24.22 ± 3.32	< 0.001
WC, cm		92.27 ± 9.21	90.48 ± 9.55	< 0.001	25.00 ± 9.74 86.94 ± 9.79	81.96 ± 9.12	< 0.001
Rickets, n (%)		59 (7.6)	132 (5.9)	0.104	81 (7.7)	354 (8.0)	0.700
Education, n (%)	Primary school education	28 (3.6)	86 (3.9)	0.038	116 (11.1)	283 (6.4)	< 0.001
	or below Junior or	120 (55 ()	1102 (40 (2427 (55 1)	
	high school education	430 (55.6)	1102 (49.6)		666 (63.5)	2437 (55.1)	

14

903 (40.6)

131 (5.9)

202 (19.3)

66 (6.1)

1434 (32.4)

272 (6.1)

	education unclear						
Smoking, n (%)	Smokers	310 (40.1)	870 (39.2)	0.836	37 (3.5)	175 (4.0)	
(70)	Non- smokers	391 (50.6)	1156 (52.0)		984 (93.9)	4188 (94.6)	
	Former smokers The	66 (8.5)	175 (7.9)		11 (1.0)	28 (0.6)	
	situation of smoking unclear	6 (0.7)	22 (0.9)		16 (1.5)	35 (0.8)	
Drinking, n (%)	Drinking	462 (59.8)	1404 (63.2)	0.219	145 (13.8)	909 (20.5)	<
(70)	Non- drinking The	304 (39.3)	796 (35.8)		890 (84.9)	3453 (78.0)	
	situation of drinking unclear	7 (0.9)	22 (1.0)		13 (1.2)	64 (1.4)	
Exercise, n (%) Family		418 (54.1)	1039 (46.8)	0.001	558 (53.2)	1949 (44.0)	<
history of diabetes, n (%)		171 (22.1)	226 (10.2)	< 0.001	268 (25.6)	676 (15.3)	<
T-CHO, mmol/L		5.28 ± 1.19	5.00 ± 0.99	< 0.001	5.50 ± 1.04	5.18 ± 1.00	<
TG, mmol/L		2.73 ± 3.32	2.07 ± 2.09	< 0.001	2.01 ± 1.62	1.41 ± 1.08	<
HDL - c, mmol/L		1.10 ± 0.29	1.15 ± 0.30	0.001	1.25 ± 0.31	1.35 ± 0.32	<
LDL-c, mmol/L		3.06 ± 0.91	2.96 ± 0.81	0.003	3.31 ± 0.90	3.00 ± 0.85	<

³⁹ 286 In both males and females, participants with type 2 diabetes had less consumption of fruit, but the 42 287 difference of energy intake and consumption of vegetable and livestock were not observed (Table-45²⁸⁸

6).

₄₈ 290

Table-6. Characteristics of energy vegetable, fruit, livestock intake in T2D and non-T2D group, by gender.

Variable	Ma	ale	Female				
	$T2D \\ (n = 773)$	Non-T2D (n = 2222)	<i>p</i> Value	$T2D \\ (n = 1048)$	Non-T2D $(n = 4426)$	<i>p</i> Value	
Energy ¹ , kcal/d	2507.81 ± 790.83	2551.96 ± 775.41	0.175	2187.03 ± 702.46	2201.33 ±679.62	0.543	
Vegetable, g/d	136.04 ±52.72	134.81 ± 51.24	0.570	132.93 ± 52.36	130.29 ± 51.30	0.136	
Fruit, g/d	123.32 ± 47.85	$\begin{array}{r} 129.00 \pm \\ 49.01 \end{array}$	0.005	123.16 ± 50.34	133.55 ± 50.68	< 0.001	
Livestock, g/d	107.20 ± 45.41	107.90 ± 45.78	0.712	93.31 ± 39.11	92.77 ± 39.59	0.695	

BMJ Open

291	¹ Values are mean \pm SD. A two-sided <i>p</i> Value < 0.05 was considered statistically significant.
292	The association of rickets in childhood with type 2 diabetes in adulthood
293	Binary logistic regression analysis showed that rickets in childhood was significantly associated with
294	an increased risk of type 2 diabetes in adult males (OR = 1.420, 95% CI = 1.017, 1.983; p value =
295	0.040), after adjusting for sex, adjusted for age, education, BMI, WC, smoking, drinking, exercise,
296	intake of energy, vegetable, fruit and livestock, and family history. However, there was no significant
297	association of rickets in childhood with type 2 diabetes in adult females (Table-7). Result of the
298	bootstrap test was consistent with the result of the binary logistic regression analysis (p value = 0.041)
299	(Table-8).

Table-7. Binary logistic regression analysis of the association of rickets on the risk of diabetes in adulthood with different sex.

Variable		Model 1 ¹		Model 2	
		OR (95% CI)	p Value	OR (95% CI)	<i>p</i> Value
Male	Rickets	1.414 (1.013, 1.972	0.042	1.420 (1.017, 1.983)	0.040
Female	Rickets	1.062 (0.813, 1.388)	0.658	1.065 (0.814, 1.392)	0.646

¹Model 1: Adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, family history of diabetes. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

Table-8. The bootstrap test of binary logistic regression analysis of the association of rickets on the risk of

diabetes in adulthood male.

Variable	Model 1 ¹		Model 2	
	β (95% CI)	<i>p</i> Value	β (95% CI)	p Value
Rickets	0.346 (0.004, 0.673)	0.039	0.351 (0.002, 0.680)	0.041

¹Model 1: Adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, family history of diabetes. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

Discussion

This study examined the association of vitamin D status in childhood with glucose metabolism in the

north of China. The results showed that, in children, only 10.7% participants with vitamin D sufficient,

there was a negative association between serum 25(OH)D₃ concentration and fasting insulin and

HOMA-IR, and children with lower 25(OH)D₃ concentration were likely to develop IR. In adults,

childhood rickets was associated with an increased risk of type 2 diabetes in adulthood.

1

Vitamin D deficiency in children is widespread in worldwide. Regardless of the economic level, the vitamin D deficiency rate was very high in children from different countries ${}^{9-12,29,30}$. Vitamin D can be obtained from sunshine and foods, such as meat, eggs, and milk. It was generally thought that exposure of skin to ultraviolet rays in the sunshine was the main source of body obtain vitamin D 31 . Therefore, the status of serum vitamin D can be influenced by several factors, such as skin tone, the latitude of residence, season, or use of sunscreen products 32 . Sunshine in areas with high latitude was insufficient for skin to synthesize vitamin D; a previous study showed that residents living in areas above 37° N were insufficiently synthesizing vitamin D in winter 33 . In relatively low latitude areas of China, 50% of preschooler children had sufficient vitamin D nutritional status (≥ 30 ng/mL), 34 . In our study, only 10.7% of children had sufficient vitamin D nutritional status, which was significantly lower than children at low latitudes, vitamin D insufficiency was even more serious. Therefore, we should pay more attention to the health problems caused by vitamin D deficiency and insufficiency at high latitude.

In addition to skeletal health, the association between vitamin D and glucose metabolism in children and adults has also obtained wide concerned. In children, vitamin D deficiency was connected to IR and impaired fasting glucose ^{13,35,36}. However, there were a lack of children studies on the association between vitamin D deficiency and IR in the northern area of China. A negative correlation between serum vitamin D concentration and fasting insulin, HOMA-IR, and IR were found in this study of children. In adults, previous research suggested that low vitamin D status was associated with IR, impaired glucose tolerance, decreased insulin sensitivity, and reduction of insulin secretion ^{18,37-39}. Observational study showed that patients with type 2 diabetes had lower level of vitamin D than healthy people⁴⁰. An intervention studies have shown that HbA1c levels decreased after vitamin D

Page 19 of 32

1 2

BMJ Open

supplementation⁴¹. Additionally, prospective studies had indicated that vitamin D deficiency in adults might increase the risk of type 2 diabetes ^{42,43-45}. According to recent years' studies, IR in childhood was considered as a risk factor for type 2 diabetes in adulthood ⁴⁶. Therefore, we speculate vitamin D deficiency in childhood may increase the risk of type 2 diabetes in adulthood by influence IR in childhood. However, this deduction needs a long-term cohort study spanning decades from childhood to adulthood, there have been no reports about this so far.

Nutritional rickets is the most common type in rickets, caused by deficiencies of vitamin D, calcium, or phosphate ^{47,48}. The clinical signs of rickets include square head, delay in tooth development, rachitic chest, bow legs or X-shaped legs. Rickets needs to be diagnosed in combination with vitamin D level and clinical signs, and vitamin D deficiency alone cannot be diagnosed as rickets, but children who had serum 25(OH)D₃ level under 10.90 ng/mL were likely to have rickets ⁴⁹. A retrospective survey was conducted on the prevalence of rickets in our adult study, rickets was determined by whether participants had a diagnosis of disease, or had symptoms. In adult population of this study, the prevalence of rickets in males and females was 6.3% and 7.9%, respectively. An earlier study reported that the prevalence of Chinese infants with rickets in 1980s was approximately 18% ⁵⁰, it was higher than our study. This difference may be due to the birth year of our participants being approximately 20 years earlier than those in that study, when China was experiencing societal hardships. Poverty and poor health conditions may lead to the lack of awareness of disease. Furthermore, the information on rickets was retrospective, since some participants were uncertain whether they had rickets in childhood, which may contribute to the low prevalence of rickets. In our adult study, participants who had rickets were defined as having vitamin D deficiency in childhood. The association between rickets and type 2 diabetes in adults was analyzed to explore the effect of

1

childhood vitamin D deficiency on type 2 diabetes in adulthood. The results showed that males who had rickets in childhood had a higher risk of type 2 diabetes in adulthood, but this result was not observed in females. However, the reason for this phenomenon is still unclear. In addition, a study from Finland found that individuals with high levels of vitamin D in childhood and adolescence had a significant lower risk of type 2 diabetes in adulthood compared with those who had lower level of vitamin D ²³. These findings collectively suggest that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood, which needs to be further be explored in more cohort studies and intervention studies.

Some scholars have explored the pathogenesis through which vitamin D deficiency might induce IR in children. The results of some studies shown that, vitamin D levels were inversely related to oxidative stress and inflammation, the increase of reactive oxygen species (ROS) and formation of cytokines such as interleukin-6 played major roles in IR ⁵¹⁻⁵³. In addition, the findings of an obese, African-American adolescent study showed that low vitamin D levels was correlated with low adiponectin levels, which was associated with IR in children and adolescents ⁵⁴⁻⁵⁷. These results support the finding that vitamin D deficiency in childhood increases the risk of type 2 diabetes in adulthood. At the same time, the results of lab studies also support such pathogenesis: there was a close connection between vitamin D and β -cell function. By regulating cytokines to impact β -cell survival, vitamin D receptor and 1-hydroxylase in β -cell played a role in regulating pancreatic β -cell function, insulin secretion, IR and systemic inflammation ^{32,58,59}. Furthermore, the mechanism of vitamin D decreased IR might relate to the inhibition of vitamin D on inflammation and activation on insulin receptor ^{60,61}. In a term of epigenetics, results showed that vitamin D can also affect the occurrence of type 2 diabetes by regulating the expression of methyltransferase to prevent

Page 21 of 32

1 2

BMJ Open

60

hypermethylation of diabetes-related genes ⁶². Above all of these might be the pathogenesis of vitamin 374 D deficiency in childhood increased the risk of type 2 diabetes in adulthood.

An advantage of our study was the inclusion of both children study analysis and adult study analysis. 376 The children and adults were both from Harbin, a northeast city of China, was chosen with high 377 prevalence of vitamin D deficiency due to its geographic location. Basically, they had similar geographic and climatic environment and dietary habits. In children, we observed the serum 25(OH)D₃ concentration was reversely associated with HOMA-IR. We hypothesized that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood by affecting insulin sensitivity, based on theoretical speculation. We defined rickets in adult study as a vitamin D deficiency condition in childhood to simulate the vitamin D deficiency in children study. The growth environment related to vitamin D status in the adults was similar with the children. The adults might simulate children's future growth trajectories to some extent, in terms of the association of childhood vitamin D deficiency with adult type 2 diabetes. The results of the two populations provided mutual support. However, there were also some limitations in our study. First, there was possible selection bias and we did not do the external validity of the sample due to a limitation of external sample. Second, the sample size of children was small and it was a cross-sectional study. We used ORs to interpret the association of vitamin D deficiency with IR and diabetes, which may overstate effect sizes. Third, the rickets information was obtained from self-report, the recall bias was not avoidable although we excluded the uncertain participants. The proportion of self-report rickets was 6.3% and 7.8% for male and female, respectively. We assumed that there some missing reports of rickets in their recalling based on the medical and nutritional condition, and lack of health awareness in China 40 years ago. In addition, the definition of vitamin D deficiency in childhood was rickets, which

might have led to some participants, who did not have rickets but vitamin D deficiency, to be classified as non-deficient. Therefore, long-term design and cohort studies with stricter vitamin D nutritional status monitoring are needed to further verify our results.

399 Conclusions

1

In summary, vitamin D deficiency in childhood was associated with IR and might increase the risk of type 2 diabetes in adult males. Early prevention strategies should be undertaken in children to control the rapid increase in type 2 diabetes worldwide, and management of vitamin D deficiency is probably an effective method.

404 Acknowledgements

We are grateful to all participants who took part in this study and the research team.

406 Authors' contributions

Lixin Na and Changhao Sun designed the study and acquired funding. Junyi Liu and Lixin Na wrote
the paper. Liqun Fu and Jingyi Zhang prepared the original draft. Junyi Liu, Shanshan Jin and Yubing
Jia collected the data. Junyi Liu and Liqun Fu analysed and interpreted data. All authors read and
approved the final manuscript.

411 Compliance with Ethics Guidelines

The study protocol of IIVDDC and HDNNCDS was approved by the Ethics Committee of Harbin
 Medical University, and written informed consent was provided by all participants. The methods
 in this study were in accordance the approved guidelines.

² 415 Investigation and Intervention of Vitamin D Deficiency in Children: ChiCTR1800020294; Harbin

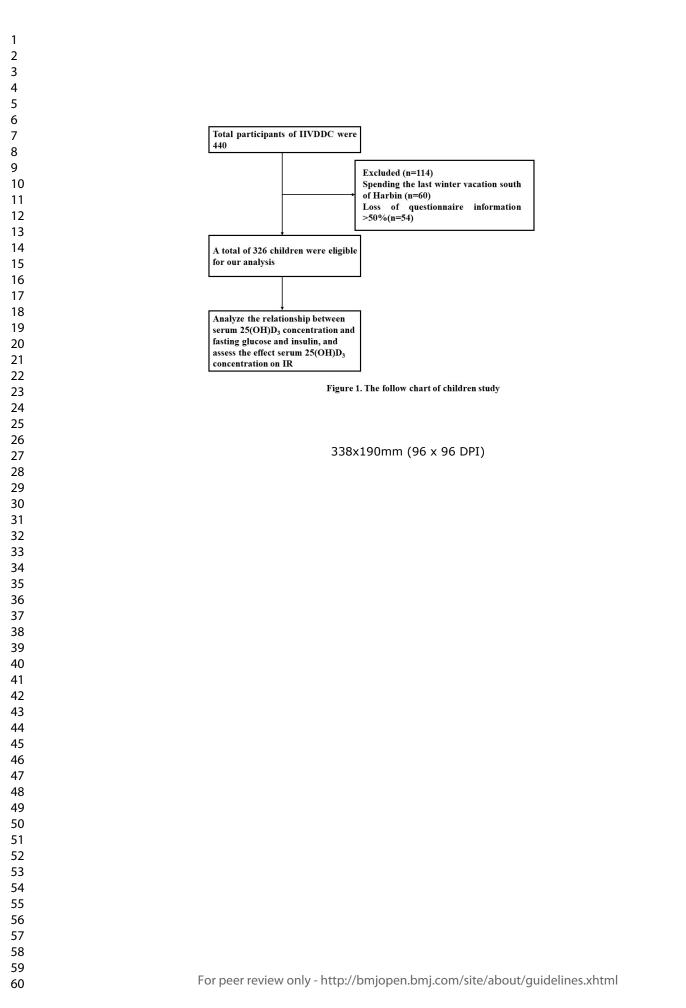
16 Cohort Study on Diet, Nutrition and Chronic Non-communicable Diseases: ChiCTR-ECH-12002721.

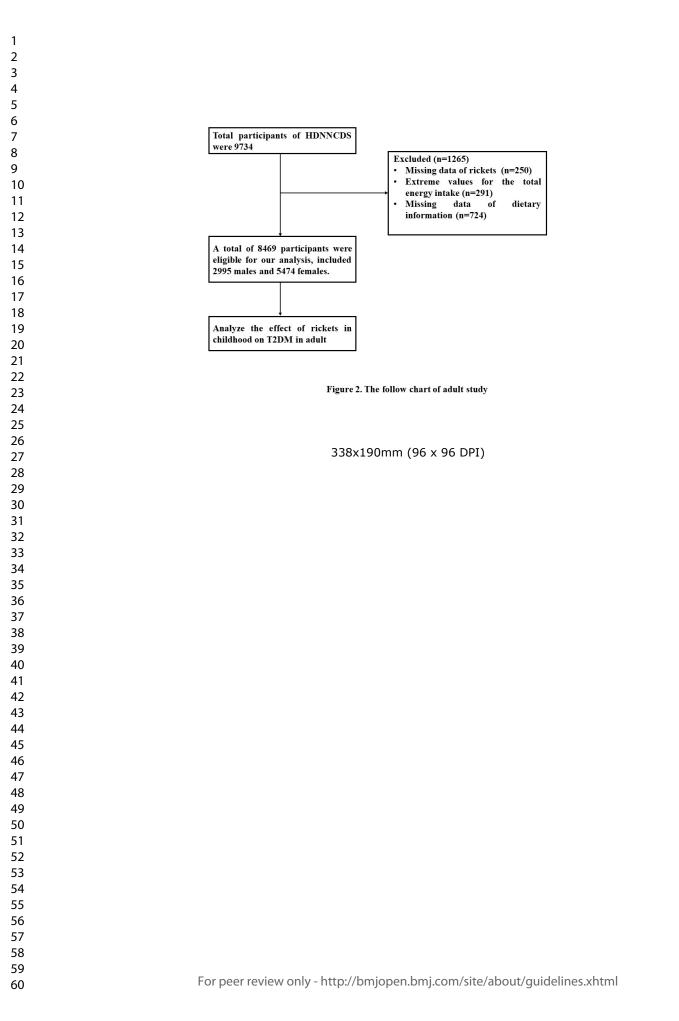
⁷ 417 **Competing interests**

1 2					
2 3 418 4	None	of the authors has any potential conflict of interest associated with this research.			
⁵ 419	Fund	ing			
7 8 420 9	This s	tudy was supported by National Nature Science Foundation of China (grant numbers 81872614).			
¹⁰ 421	Data	sharing statement			
¹² 13 14	The d	latasets used and/or analysed during the current study are available from the corresponding			
14 15 423 16	autho	author on reasonable request.			
17 18 424 19	Refer	ence			
²⁰ 425 21	1.	Bullock A, Sheff K. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002-2012. N			
22 23 426 24		Engl J Med. 2017;377(3):301.			
²⁵ 26 27	2.	IDF Diabetes Atlas [Internet]. 2016; <u>http://www.idf</u> . org/diabetesatlas.			
28 428 29	3.	Wheelock KM, Sinha M, Knowler WC, Nelson RG, Fufaa GD, Hanson RL. Metabolic Risk Factors and			
30 31 429 32		Type 2 Diabetes Incidence in American Indian Children. J Clin Endocrinol Metab. 2016;101(4):1437-			
³³ 430 34		1444.			
35 36 431 37	4.	Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in			
³⁸ 39 432		adulthood: a systematic review and meta-analysis. Obes Rev. 2016;17(1):56-67.			
40 41 433 42	5.	Bjerregaard LG, Jensen BW, Angquist L, Osler M, Sorensen TIA, Baker JL. Change in Overweight			
43 44 434		from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med. 2018;378(14):1302-			
45 46 435 47		1312.			
48 49 436 50	6.	Sabin MA, Magnussen CG, Juonala M, et al. Insulin and BMI as predictors of adult type 2 diabetes			
51 52 53		mellitus. <i>Pediatrics.</i> 2015;135(1):e144-151.			
54 438 55	7.	Schryver E, Klein GL, Herndon DN, Suman OE, Branski LK, Sousse LE. Bone metabolism in pediatric			
56 57 439 58		burned patients: A review. <i>Burns.</i> 2018;44(8):1863-1869.			
⁵⁹ 440 60	8.	van Schoor NM, Lips P. Worldwide vitamin D status. <i>Best Pract Res Clin Endocrinol Metab.</i> 22			

₃ 441		2011;25(4):671-680.
4 5 442 6	9.	Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency
7 8 443 9		among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158(6):531-537.
10 11 444 12	10.	Avagyan D, Neupane SP, Gundersen TE, Madar AA. Vitamin D status in pre-school children in rural
13 445 14		Nepal. Public Health Nutr. 2016;19(3):470-476.
15 16 446 17	11.	Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH. Vitamin D
¹⁸ 447 19 20		deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr.
21 448 22		2015;145(4):791-798.
23 24 449 25	12.	Wang S, Shen G, Jiang S, et al. Nutrient Status of Vitamin D among Chinese Children. Nutrients.
26 450 27 28		2017;9(4).
29 451 30	13.	Denova-Gutierrez E, Munoz-Aguirre P, Lopez D, et al. Low Serum Vitamin D Concentrations Are
³¹ 452 32 33		Associated with Insulin Resistance in Mexican Children and Adolescents. <i>Nutrients</i> . 2019;11(9).
34 453 35	14.	Global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years
³⁶ 37 454 38		lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a
39 455 40 41		systematic analysis for the Global Burden of Disease Study 2013. <i>Lancet.</i> 2015;386(9995):743-800.
42 456 43	15.	Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society
⁴⁴ 457 45 46		scientific statement. <i>Endocr Rev.</i> 2012;33(3):456-492.
47 458 48	16.	Debinska A, Sikorska-Szaflik H, Urbanik M, Boznanski A. The role of vitamin D in atopic dermatitis.
49 50 459 51		<i>Dermatitis.</i> 2015;26(4):155-161.
52 460 53 54	17.	Vo P, Bair-Merritt M, Camargo CA. The potential role of vitamin D in the link between obesity and
₅₅ 461 56		asthma severity/control in children. Expert Rev Respir Med. 2015;9(3):309-325.
⁵⁷ 462 58 59	18.	Abbasi F, Blasey C, Feldman D, Caulfield MP, Hantash FM, Reaven GM. Low circulating 25-
60		23

Page 25 of 32


1			
2 3 ² 4	463		hydroxyvitamin D concentrations are associated with defects in insulin action and insulin secretion in
6	164		persons with prediabetes. J Nutr. 2015;145(4):714-719.
7 8 4 9	465	19.	Reis JP, von Muhlen D, Miller ER, 3rd, Michos ED, Appel LJ. Vitamin D status and cardiometabolic
10 11 12	166		risk factors in the United States adolescent population. <i>Pediatrics</i> . 2009;124(3):e371-379.
13 ∠ 14	167	20.	Belenchia AM, Tosh AK, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves insulin
15 16 ⁴ 17	168		sensitivity in obese adolescents: a randomized controlled trial. <i>Am J Clin Nutr.</i> 2013;97(4):774-781.
18 ₄ 19	169	21.	Rajakumar K, Moore CG, Khalid AT, et al. Effect of vitamin D3 supplementation on vascular and
20 21 4 22	470		metabolic health of vitamin D-deficient overweight and obese children: a randomized clinical trial. Am
23 24 25	471		J Clin Nutr. 2020;111(4):757-768.
25 26 2 27	172	22.	Kelishadi R, Salek S, Salek M, Hashemipour M, Movahedian M. Effects of vitamin D supplementation
28 29 ² 30	473		on insulin resistance and cardiometabolic risk factors in children with metabolic syndrome: a triple-
31 ₄ 32	174		masked controlled trial. J Pediatr (Rio J). 2014;90(1):28-34.
33 34 4 35	475	23.	Wu F, Juonala M, Pitkanen N, et al. Both youth and long-term vitamin D status is associated with risk
36 37 38	476		of type 2 diabetes mellitus in adulthood: a cohort study. <i>Ann Med.</i> 2018;50(1):74-82.
38 39∠ 40	477	24.	Na L, Wu X, Feng R, et al. The Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable
41 42 ² 43	478		Diseases: study design and baseline characteristics. <i>PLoS One.</i> 2015;10(4):e0122598.
44 45	479	25.	Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic
46 47 4 48	480		criteria from the American Diabetes Association: national cross sectional study. <i>BMJ</i> . 2020;369:m997.
49 50 ² 51	481	26.	Y Y. China Food Consumption.: Peking University Medical Press; 2005.
52 ∠ 53	182	27.	WHO. Application tools: WHO AnthroPlus software <u>http://www.who.int/growthref/tools/en</u> .
54 55 ² 56	483	28.	Hedblad B, Nilsson P, Janzon L, Berglund G. Relation between insulin resistance and carotid intima-
57 ∠ 58	184		media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in Malmo,
59 60			24


1			
2 3 48 4	85		Sweden. <i>Diabet Med.</i> 2000;17(4):299-307.
6	86	29.	Sullivan SS, Rosen CJ, Halteman WA, Chen TC, Holick MF. Adolescent girls in Maine are at risk for
7 8 48 9	87		vitamin D insufficiency. J Am Diet Assoc. 2005;105(6):971-974.
10 11 48 12	88	30.	Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D
13 48 14	89		deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-
15 16 49 17	90		1930.
¹⁸ 49	91	31.	Deluca HF. History of the discovery of vitamin D and its active metabolites. <i>Bonekey Rep.</i> 2014;3:479.
20 21 49 22		32.	Issa CM. Vitamin D and Type 2 Diabetes Mellitus. Adv Exp Med Biol. 2017;996:193-205.
23 24 25	93	33.	Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers,
26 49 27	94		and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S-1688S.
28 29 49 30	95	34.	Wang LL, Wang HY, Wen HK, Tao HQ, Zhao XW. Vitamin D status among infants, children, and
31 32 33	96		adolescents in southeastern China. J Zhejiang Univ Sci B. 2016;17(7):545-552.
34 49 35	97	35.	Chung SJ, Lee YA, Hong H, et al. Inverse relationship between vitamin D status and insulin resistance
36 37 38	98		and the risk of impaired fasting glucose in Korean children and adolescents: the Korean National
39 49 40	99		Health and Nutrition Examination Survey (KNHANES) 2009-2010. Public Health Nutr. 2014;17(4):795-
41 42 50 43	00		802.
44 45 46	01	36.	Wang L, Wang H, Wen H, Tao H, Zhao X. Relationship between HOMA-IR and serum vitamin D in
40 47 50 48	02		Chinese children and adolescents. J Pediatr Endocrinol Metab. 2016;29(7):777-781.
49 50 50 51	03	37.	Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and
52 5(53	04		metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177-189.
54 55 50 56	05	38.	Catena C, Colussi G, Novello M, et al. VITAMIN D DEFICIENCY AND GLUCOSE METABOLISM IN
57 58 59	06		NON-DIABETIC ESSENTIAL HYPERTENSIVE PATIENTS. Journal of Hypertension. 2018;36:e26.
60			25

1			
2 3 50 4	07	39.	Boucher BJ, John WG, Noonan K. Hypovitaminosis D is associated with insulin resistance and beta
5 50 6 7	28		cell dysfunction. Am J Clin Nutr. 2004;80(6):1666; author reply 1666-1667.
8 50 9	09	40.	Wang W, Zhang J, Wang H, Wang X, Liu S. Vitamin D deficiency enhances insulin resistance by
10 11 51 12	10		promoting inflammation in type 2 diabetes. Int J Clin Exp Pathol. 2019;12(5):1859-1867.
13 51 14	11	41.	Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Sliwinska A. Vitamin D Supplementation
15 16 51 17			Reduces Both Oxidative DNA Damage and Insulin Resistance in the Elderly with Metabolic Disorders.
¹⁸ 51 19 20	13		Int J Mol Sci. 2019;20(12).
21 51 22		42.	Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident
23 24 51 25	15		type 2 diabetes: a mendelian randomisation study. <i>Lancet Diabetes Endocrinol.</i> 2015;3(1):35-42.
26 51 27 28	16	43.	Gao Y, Zheng T, Ran X, et al. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-
29 51 30			Year Follow-Up Community-Based Study. <i>Dis Markers.</i> 2018;2018:1926308.
31 32 33	18	44.	Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A
34 51 35	19		systematic review and meta-analysis. <i>J Clin Endocrinol Metab.</i> 2007;92(6):2017-2029.
36 37 52 38		45.	Pittas AG, Sun Q, Manson JE, Dawson-Hughes B, Hu FB. Plasma 25-hydroxyvitamin D concentration
39 52 40 41	21		and risk of incident type 2 diabetes in women. <i>Diabetes Care</i> . 2010;33(9):2021-2023.
42 52 43		46.	Maclaren NK, Gujral S, Ten S, Motagheti R. Childhood obesity and insulin resistance. <i>Cell Biochem</i>
44 52 45 46	23		<i>Biophys.</i> 2007;48(2-3):73-78.
47 52 48 49		47.	Shore RM, Chesney RW. Rickets: Part I. <i>Pediatr Radiol.</i> 2013;43(2):140-151.
50 ⁵² 51		48.	Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR. Nutritional rickets around the world: an
52 52 53 54	26		update. Paediatr Int Child Health. 2017;37(2):84-98.
55 52 56		49.	Munns CF, Shaw N, Kiely M, et al. Global Consensus Recommendations on Prevention and
57 52 58 59	28		Management of Nutritional Rickets. J Clin Endocrinol Metab. 2016;101(2):394-415.
60			26

2 3 529	50.	Fong HC HY, Shen KY, Dewen PI. Prevention and treatment of rickets (report). In. Henan College of
4 5 530 6		Medicine publication 1980:1-10.
7 8 531 9	51.	Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2
¹⁰ 11 532		diabetes. <i>Nature.</i> 2006;444(7121):840-846.
12 13 533 14	52.	Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the
15 16 534 17		menu. <i>Genes Dev.</i> 2007;21(12):1443-1455.
¹⁸ 535 19	53.	Verdile G, Keane KN, Cruzat VF, et al. Inflammation and Oxidative Stress: The Molecular Connectivity
20 21 536 22		between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm.
23 24 537 25		2015;2015:105828.
26 538 27	54.	Nunlee-Bland G, Gambhir K, Abrams C, Abdul M, Vahedi M, Odonkor W. Vitamin D deficiency and
28 29 539 30		insulin resistance in obese African-American adolescents. J Pediatr Endocrinol Metab. 2011;24(1-
³¹ 540 32		2):29-33.
33 34 541 35	55.	Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents.
³⁶ 37 542		N Engl J Med. 2004;350(23):2362-2374.
38 39 543 40	56.	Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity,
41 42 544 43		insulin sensitivity, and beta-cell function. <i>Diabetes Care.</i> 2004;27(2):547-552.
⁴³ 4 ⁴ 545 45	57.	Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to
46 47 546 48		visceral fat and insulin sensitivity. <i>Diabetes Care.</i> 2006;29(1):51-56.
⁴⁹ 50 547	58.	Nwosu BU, Maranda L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D
51 52 548 53		status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1 or
54 55 5 49		type 2 diabetes mellitus. <i>PLoS One.</i> 2014;9(6):e99646.
56 57 58 50	59.	Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014;43(1):205-232.
59 60		27

1		
2 3 551 4	60.	Berridge MJ. Vitamin D deficiency and diabetes. <i>Biochem J.</i> 2017;474(8):1321-1332.
5 552 6	61.	Harinarayan CV. Vitamin D and diabetes mellitus. <i>Hormones (Athens).</i> 2014;13(2):163-181.
7 8 553 9	62.	Zhang H, Chu X, Huang Y, et al. Maternal vitamin D deficiency during pregnancy results in insulin
¹⁰ 11 554 12		resistance in rat offspring, which is associated with inflammation and Ikappabalpha methylation.
13 555 14		<i>Diabetologia.</i> 2014;57(10):2165-2172.
15 16 556 17	Figure	e 1 - The follow chart of the children study.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 51 52 53 54 55 56 57 58 59 60	Figure	<text></text>

1	
2	
3	
4	
5	
6	
~	
/	
8	
9	
1	0
1	1
1	
1	3
	4
1	5
1	6
1	
1	8
	9
2	0
2	1
2	ว
2	2
2	3
2	4
	5
2	6
2	7
2	8
2	9
	0
3	1
3	2
3	3
3	4
	5
3	6
3	7
	8
3	9
Δ	0
4	
4	2
4	3
-	-
4	
4	5
4	
4	7
4	8
	-
4	
5	0
5	
5	
5	3
	4
5	
5	6
5	7
	8
	9
6	

STROBE Statement—Checklist of items that should be included in reports of	f cross-sectional studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			·
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6, 7, 8
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8, 9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	9
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage 	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9,
Descriptive dudu	11	social) and information on exposures and potential confounders	10,12
		(b) Indicate number of participants with missing data for each variable of interest	- 7
Outcome data	15*	Report numbers of outcome events or summary measures	1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	

	(b) Report category boundaries when continuous variables were	9, 10
	categorized	
	(c) If relevant, consider translating estimates of relative risk into absolute	
	risk for a meaningful time period	
17	Report other analyses done-eg analyses of subgroups and interactions,	14
	and sensitivity analyses	
18	Summarise key results with reference to study objectives	14
19	Discuss limitations of the study, taking into account sources of potential	18
	bias or imprecision. Discuss both direction and magnitude of any	
	potential bias	
20	Give a cautious overall interpretation of results considering objectives,	18
	limitations, multiplicity of analyses, results from similar studies, and	
	other relevant evidence	
21	Discuss the generalisability (external validity) of the study results	
22	Give the source of funding and the role of the funders for the present	19
	study and, if applicable, for the original study on which the present article	
	is based	
	18 19 20 21	categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Vitamin D status in children and its association with glucose metabolism in northern China: A combination of a crosssectional and retrospective study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061146.R2
Article Type:	Original research
Date Submitted by the Author:	31-Oct-2022
Complete List of Authors:	Liu, Junyi; Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital; Harbin Medical University School of Public Health, Fu, Liqun; Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital Jin, Shanshan; Harbin Medical University School of Public Health Jia, Yubing; Harbin Medical University School of Public Health Zhang, Jingyi; Shanghai University of Medicine and Health Sciences Sun, Changhao; Harbin Medical University School of Public Health Na, Lixin; Shanghai University of Medicine and Health Sciences
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Public health
Keywords:	DIABETES & ENDOCRINOLOGY, Paediatric endocrinology < DIABETES & ENDOCRINOLOGY, NUTRITION & DIETETICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1	Vitamin D status in children and its association with glucose metabolism in northern China: A
2	combination of a cross-sectional and retrospective study.
3	Junyi Liu ¹ , Liqun Fu ² , Shanshan Jin ³ , Yubing Jia ⁴ , Jingyi Zhang ⁵ , Changhao Sun ⁶ , Lixin Na ⁷ .
4	¹ Junyi Liu, Department of Clinical Nutrition, Shanghai university of medicine & health Sciences
5	Affiliated Zhoupu hospital, Shanghai, China. Department of Nutrition and Food Hygiene, Public
6	Health College, Harbin Medical University, Harbin, China. E-mail: liujunyixq@163.com
7	² Liqun Fu, Department of Clinical Nutrition, Shanghai university of medicine & health Sciences
8	Affiliated Zhoupu hospital, Shanghai, China. E-mail: zpyyyys@126.com.
9	³ Shanshan Jin, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
10	University, Harbin, China. E-mail: jinshanshan1723@163.com.
11	⁴ Yubing Jia, Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical
12	University, Harbin, China. E-mail: jia544288485@163.com.
13	⁵ Jingyi Zhang, College of Public Health, Shanghai University of Medicine and Health Sciences,
14	Shanghai, China. E-mail: zhangjy@sumhs.edu.cn.
15	⁶ Changhao Sun, Department of Nutrition and Food Hygiene, Public Health college, Harbin Medical
16	University, Harbin, China. E-mail: changhaosun2002@163.com.
17	⁷ Lixin Na, College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai,
18	China. E-mail: nalixin2003@163.com.
19	Corresponding authors: Lixin Na, Ph.D., College of Public Health, Shanghai University of
20	Medicine and Health Sciences, 285 Tianxiong Road, Pudong New Area, Shanghai, China. Tel: +86-
21	021-65880112, Fax: +86-021-65880112, E-mail: nalixin2003@163.com.
22	Word count: 5,227

BMJ Open

	23	Abstract
-	24	Objectives: This study aimed to explore the vitamin D status of children in northern China and the
, ;)	25	association between vitamin D and glucose metabolism.
0 1 2	26	Design: Cross-sectional study was conducted among child participants and retrospective study
2 3 4	27	designs was conducted among adult participants.
5 6 7	28	Setting and participants: Both studies were recruited from Harbin, 326 children were included in
8 9	29	children study, 8,469 adults were included in adult study.
0 1 2	30	Primary and secondary outcome measures: Physical examination, lifestyle and dietary habit data
3 4	31	were recorded in all the participants. Serum insulin, glucose, 25(OH)D ₃ concentrations in children
5 6 7	32	and serum glucose and lipids levels in adults were measured. Rickets history was also investigated in
8 9 0	33	adults, which was used to define vitamin D deficiency in childhood. The associations were tested by
1	34	linear regression and binary logistic regression.
3 4 5	35	Result: In the children study, only 10.7% of participants were vitamin D sufficient (≥30 ng/mL).
6 7	36	Inverse correlations between serum 25(OH)D ₃ concentration and fasting insulin and HOMA-IR were
8 9 0	37	found, and children with lower serum $25(OH)D_3$ concentrations were likely to have IR (OR: 0.955,
1	38	95% CI: 0.917, 0.995, p value: 0.027). In an adult study, rickets in childhood increased the risk of
3 4 5	39	type 2 diabetes in male participants (OR = 1.414, 95% CI = 1.013, 1.972; p value = 0.042), but this
-6 -7 -8	40	result was not observed in females.
.9 0	41	Conclusion: Our findings suggest that vitamin D deficiency is widespread in northern China. Vitamin
1 2 3	42	D deficiency in childhood was associated with IR and increased the risk of type 2 diabetes in male

adults.

Keywords: vitamin D deficiency, children, insulin resistance, type 2 diabetes

1	
2 3 4	45
5 6	46
7 8	47
9 10 11	48
12 13	49
14 15 16	50
17	00
18 19	51
20 21 22	52
23 24	53
25 26 27	54
28 29	55
30 31 32	56
33 34	57
35 36 37	58
38 39	59
40 41	
42 43	60
44 45	61
46 47 48	62
49 50	63
51 52 53	64
54 55	65
56 57 58	66
59 60	

Strengths and limitations of this study:

• Two studies from Harbin, a city with a high rate of vitamin D deficiency, have important implications for studying vitamin D deficiency in high latitudes and the long-term effects of vitamin D on non-skeletal health.

- The analysis of children's study and the analysis of adults' study with similar environments and
 dietary habits were included to support each other's findings on the association between vitamin
 D deficiency and glucose metabolism in the two populations.
- There was possible selection bias and we did not do the external validity of the sample due to a
 limitation of external sample. Information on rickets that was used to define vitamin D deficiency
 in childhood was obtained from self-report, the recall bias was not avoidable although we
 excluded the uncertain participants.
- The sample size of children was small and it was a cross-sectional study. We used ORs to
 interpret the association of vitamin D deficiency with IR and diabetes, which may overstate effect
 sizes.

59 Introduction

According to IDF statistics, there are 450 million adults with type 2 diabetes worldwide, accounting for approximately 90% of diabetes mellitus cases. Type 2 diabetes has become a global public health problem ^{1,2}. Some recent population studies have found that risk factors such as obesity, impaired glucose tolerance, or insulin resistance (IR) in childhood, may also increase the risk of type 2 diabetes in adults ³⁻⁶. These results suggested that controlling risk factors in childhood is an early prevention strategy to reduce the prevalence of type 2 diabetes in adulthood.

66 Vitamin D is a fat-soluble vitamin with several physiological functions, one of the most important of

Page 5 of 32

BMJ Open

which is its effect on skeletal health ⁷. At present, vitamin D deficiency is still a serious public problem worldwide, particularly in children⁸. The prevalence of vitamin D deficiency was approximately 50% in both developing and developed countries ⁹⁻¹². Serum 25(OH)D₃ is less affected by body regulation and is often used to evaluate vitamin D levels. It is usually considered that serum $25(OH)D_3 < 10$ ng/mL indicates severe deficiency, 10-20 ng/mL indicates deficiency, 20-29 ng/mL indicates insufficiency, and \geq 30 ng/mL indicates sufficiency ¹³. Vitamin D deficiency in children is associated with many skeletal diseases, and one of the typical diseases is rickets. The clinical signs of rickets include skeletal deformity, restlessness, motor retardation and bone pain¹⁴. Recently, the association between vitamin D deficiency and extra-skeletal health has been of great concern, such as its association with glucose metabolism, obesity, respiratory tract infection and

atopic dermatitis, among which the association with glucose metabolism has been of particular concern¹⁵⁻¹⁷. A population study of children and adolescents in Mexico found that low vitamin D levels were associated with IR; when the concentration of serum vitamin D increased, the possibility of presenting IR decreased ¹⁸. Jared P Reis et al. reported that adolescents in the lowest quartile of vitamin D (<15 ng/mL) are more likely to have hyperglycemia compared with those in the highest quartile (>26 ng/mL)¹⁹. Furthermore, randomized controlled trials showed that vitamin D supplementation could increase insulin sensitivity and decrease IR and fasting glucose concentrations in obese children ²⁰⁻²². Since IR in children is a risk factor for type 2 diabetes, we hypothesized that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood by affecting insulin sensitivity. A recent 31-year follow-up prospective study in 3- to 18-year-old young Finns found that high vitamin D levels in childhood could reduce the incidence of type 2 diabetes in adulthood ²³. This study further supported our hypothesis, but current research is very limited.

Harbin is a typical northeast city of China, with a latitude between 44°04'N and 46°40'N, and is a relatively high-latitude area. The winters in Harbin are long, and the sunlight is relatively insufficient year-round, which makes the region's residents vulnerable to vitamin D deficiency. In our study, we first described the vitamin D nutritional status in children and explored the association between vitamin D deficiency and IR from the Investigation and Intervention of Vitamin D Deficiency in Children (IIVDDC). Then, the association between rickets in children and the risk of type 2 diabetes in adults was analyzed using data from the Harbin Cohort Study on Diet, Nutrition and Chronic Noncommunicable Diseases (HDNNCDS) in a retrospective study. This study aimed to provide a theoretical basis for the early prevention and control of adult type 2 diabetes development in children.

Materials and Methods

Design

A cross-sectional study was conducted among child participants and retrospective study design was ie, conducted among adult participants.

Study population

The child participants were from the baseline survey of IIVDDC from March to May 2019. They were recruited from 4 kindergartens in Nangang District of Harbin by convenient sampling method, including 2 public kindergartens and 2 private kindergartens based on the consideration of different economic levels. The sample size required of children was determined by Events Per Variable criterion (EPV) ≥ 10 , the minimum sample size was calculated to be 90 participants. The parents and teachers of children were invited to informational meetings at which the study and its procedures were explained to them. A total of 440 children aged 3-7 years who had lived in Harbin for the past 3 years were eligible as participants. The exclusion criteria included spending the last winter vacation

in the lower latitude areas of Harbin (n=60), who's information of questionnaire losing > 50% (n=54). A total of 326 children were included, and informed written consent was obtained from all custody holders (Figure 1).

The adult participants were from the baseline of the HDNNCDS²⁴. Seven urban administrative ¹³ 115 regions of Harbin were covered in HDNNCDS. According to their financial situation, each region 16 116 was divided into 3 strata and a total of 42 communities were randomly selected from each stratum in each administrative region by employing a stratified multistage random cluster sampling design. Residents were eligible to participate in the study if they: 1) were between 20 and 74 years old, 2) 21 118 have been living in Harbin for at least two years, 3) were without cancer or type 1 diabetes mellitus. ²⁶ 120 A total of 9,734 people aged 20-74 completed the in-person baseline survey in 2010 - 2012. The sample size required in our analysis was calculated by $N = \frac{Z_{1-\alpha/2}^{2}(1-P)}{\varepsilon^{2}n}$, $Z_{1-\alpha/2} = 1.96$, p = 12.8%²⁵, ε 29 121 = 10%. By calculating N= 2,617, design efficiency value was 2, the final calculated minimal sample size was 5,234. Rickets in childhood were investigated in the survey, and participants who had 34 123 definite answers were included in our study. In the present study, we excluded participants who ³⁹ 125 reported uncertainty about information on rickets in childhood (n=250), who reported extreme values ₄₂ 126 for total energy intake (<500 kcal/d or >4500 kcal, n=291), and who had missing dietary information data (n=724). Finally, a total of 8,469 participants were eligible for our analysis, including 2,995 males and 5474 females (Figure 2). Written informed consent was provided by all participants. 47 128

The study protocols of IIVDDC and HDNNCDS were approved by the Ethics Committee of Harbin Medical University, and written informed consent was provided by all participants. The methods in the study were in accordance with the approved guidelines (The registered ethical ⁵⁷ 132 number: ChiCTR1800020294 for IIVDDC, ChiCTR-ECH-12002721 for HDNNCDS).

Data collection by the questionnaire 133

1 2

3 4 5

6 7

8

9

Detailed in-person interviews were administered by trained personnel using a structured 134 questionnaire to collect information on demographic characteristics, lifestyle, and dietary intake. 135 10 In the IIVDDC, the questionnaire was completed by parents and teachers in kindergartens, together. 136 11 12 ¹³ 137 The demographic characteristics of the children included age and gender. Outdoor physical activity 14 15 in the past 6 months was investigated, children who had more than 60 minutes of daily activity or 16 138 17 18 139 more than 3 days of weekly activity were considered as high exercise frequency, otherwise they were 19 20 considered as low exercise frequency. Children who took calcium or vitamin D orally or 21 140 22 23 ---24 141 intravenously in the past 6 months were considered as supplementation with calcium and (or) vitamin 25 ²⁶ 142 D. Dietary information was collected by using a food-frequency questionnaire (FFQ), and a total of 27 28 ₂₉ 143 48 food items were included in the questionnaire, which covered most of the foods in the recipes of 30 31 the kindergartens included in our study. For each food item, parents and teachers of participants were 144 32 33 asked how frequently participants consumed over the preceding year, followed by a question on the 34 145 35 36 amount consumed in lians (a unit of weight equal to 50 g) or mL (for liquid food item) per unit of 146 37 38 ³⁹ 147 time. The consumption frequency was transformed to obtain mean consumption a day. Nutrient 40 41 ₄₂ 148 intakes for each food item consumed were calculated by multiplying the nutrient content listed in the 43 44 China Food Composition ²⁶. Before dietary surveys, 60 participants from the IIVDDC were recruited 149 45 46 and asked to complete two FFQs (FFQ1 and FFQ2) and a 3-day dietary record to validate the 47 150 48 49 reliability of the FFQs. Major nutritional factors (staple food, poultry, fish, vegetable, fruit, and milk 151 50 51 ⁵² 152 products) were assessed by the two FFQs and the FFQ2 and 3-day dietary records, and they correlated 53 54 ₅₅ 153 well after adjusting for energy intake. In IIVDDC, Cronbach's α coefficient of major nutritional ⁵⁷ 154 factors between FFQ1 and FFQ2 were 0.67-0.72 and major nutritional factors between FFQ1 and 3-

Page 9 of 32

1 2

BMJ Open

3	1	5
4		
5	1	F
б		Č
7		_
8	1	5
9		
10	1	5
11	-	
12		_
13 14	1	5
14 15		
15 16	1	6
17		Ī
18		
19	1	6
20		
21	1	6
22		Č
23		
24	1	6
21 22 23 24 25 26 27		
26	1	6
27		
28 29		
29	1	6
30		
31	1	F
32	'	Ċ
33		
34	1	6
35		
36	1	۴
37 38		Č
38		
39	1	6
40		
41 42	1	7
42 43		'
43 44		
45	1	7
46		
47	1	7
48		
49		
50	1	7
51		
52	1	7
53		'
54		_
55	1	7
56		
57	1	7
58		'
50		

60

day dietary record were 0.62-0.76. Seventeen factors were extracted, and the cumulative variancecontribution rate was 0.649, which suggested the good construct validity.

57 In the HDNNCDS, the demographic characteristics mainly included age, gender, and educational level. Lifestyle referred to smoking, alcohol consumption, and physical activity. Current smokers 58 were defined as those who have smoked at least 100 cigarettes lifetime and smoke every day or some 59 days now. Participants who consumed more than 100ml of white wine, highland barley wine, rice 60 wine, grape wine per day or more then 250ml beer per day were considered to have a drinking habit. 61 And regular exercise was defined as any kind of recreational or sport physical activity other than 62 walking for work or life performed at least 30 minutes for three or more days per week. Family history 63 of diabetes was also collected. In the FFQ for adults, a total of 103 food items were included in the 64 questionnaire, which covered most of the commonly consumed foods in urban Harbin. The method 65 to validate the reliability of the FFQs in the HDNNCDS was the same as that in the IIVDDC. The 66 correlation coefficients of major nutritional factors between FFQ1 and FFQ2 were 0.61-0.70 and 67 major nutritional factors between FFQ1 and 3-day dietary record were 0.61–0.69, respectively²⁴. 68 Fifteen factors were extracted, and the cumulative variance contribution rate was 0.832, which 69 suggested the good construct validity. Participants were asked to recall the history of rickets in 70 childhood by specific questions in the questionnaire. The questions included whether they had been 71 diagnosed of rickets at the hospital, had the signs of rickets, such as square head, delay in tooth 72 development, rachitic chest, bow legs or X-shaped legs. The answer options included definitely yes, 73 definitely no and uncertain. Participants who chose one or more "definitely yes" were considered to 74 have rickets in childhood. Participants who reported "uncertain" were excluded from our analysis. 75 76 Anthropometric measurement

Anthropometric measurements, including height, weight and waist circumference (WC), were taken by well-trained examiners, with participants wearing light, thin clothing, and no shoes. Body weight, height and waist circumference were measured to the nearest 0.1 kg, 0.1 cm, and 0.1 cm, respectively. BMI was calculated as weight (kg) divided by the square of the height in meters (m²). Children's sexand age-adjusted z-scores for body mass index (zBMI) were calculated as the calculated value of child BMI minus the median BMI of children of the same age and sex, and then divided by the standard deviation of BMI for children of the same age and sex with the use of WHO Anthro Plus software version 1.0.4 ²⁷.

5 Biochemical assessment

Fasting (more than 10 h) blood samples were collected in children in the IIVDDC. Fasting glucose was determined by an automatic biochemistry analyzer (Hitachi, Tokyo, Japan). $25(OH)D_3$ was measured using ELISA kits (Mlbio, Shanghai, China). Serum insulin was measured using the immunofluorescence method (Tosoh automated enzyme immunoassay analyzer AIA-2000ST).

Fasting and postprandial (2 hours after drinking 75 grams glucose-containing water) blood samples were taken from all adult participants in the HDNNCDS. Fasting glucose and 2-h postprandial plasma glucose, blood lipids, including triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c), were measured using an automatic biochemistry analyzer (Hitachi, Tokyo, Japan). Serum insulin was measured in the same way as children.

² 196 *Definition of variables*

4 197 Exposures

In the IIVDDC, serum $25(OH)D_3 < 10 \text{ ng/mL}$ was considered severe deficiency, 10-20 ng/mL was considered deficiency, 20-29 ng/mL was considered insufficiency, and $\geq 30 \text{ ng/mL}$ was considered

2

BMJ Open

sufficiency¹³. In the HDNNCDS, Vitamin D deficiency in childhood was defined as a diagnosis of
 rickets at the hospital, self-reported rickets, or signs of skeletal deformity during childhood.

202 *Outcomes*

In the IIVDDC, HOMA-IR was calculated from fasting insulin and glucose using the following formula: fasting insulin concentration (mmol/L) × fasting glucose concentration (mIU/L)/22.5. Children in the highest quartile of HOMA-IR were defined as IR²⁸, the cutoff value of IR was HOMA-IR \geq 4.58 in our study. In the HDNNCDS, type 2 diabetes was defined as fasting glucose \geq 7.0 mmol/L and/or 2 h glucose \geq 11.1 mmol/L and/or self-report of type 2 diabetes and/or use of hypoglycemic medicine.

209 Potential confounders

In the IIVDDC, age, gender, zBMI, intake of energy, vegetable, fruit and livestock, exercise frequency, calcium or (and) vitamin D supplements, were included in the analysis as potential confounders of IR. In the HDNNCDS, age, education, BMI, WC, smoking, drinking, exercise, intake of energy, vegetable, fruit and livestock, and family history were included as potential confounders of type 2 diabetes.

215 *Statistical analysis*

SPSS v22.0 (Beijing Stats Data Co. Ltd, Beijing China) was used to analyze the data, and a two-sided p value < 0.05 was considered statistically significant. Values are mean ± SD and n (%) per group for all other variables. ANOVA and chi-square test were used to compare the differences in the continuous variables and categorical variables between the groups. The linear regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and fasting glucose, insulin and HOMA-IR in children, expressed as unstandardized β value and Standardized β value. Binary logistic regression analysis was used to analyze the association between serum 25(OH)D₃ concentration and IR in children, adjust for age, gender, zBMI, exercise frequency, intake of energy,

1

vegetable, fruit and livestock, calcium or (and) vitamin D supplements, expressed as OR value and 95% CI. The data from children were finally analyzed and presented in general as no gender difference was observed after stratified by sex. Binary logistic regression analysis was used to analyze the association between rickets in childhood with type 2 diabetes in adulthood stratified by sex, adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, vegetable, fruit and livestock, and family history. Bootstrap test of binary logistic regression analysis was used as sensitivity analysis in order to confirm the risk of rickets on diabetes in adulthood male. Patient and public involvement Participants were not involved in developing research questions, nor the outcome measures/the study's design. Also, they were not involved in the recruitment to or conduct of the study. In our study, the participants are informed about their blood parameters, and the results of other examinations are gradually shared with them by text message or phone call. The overall findings and benefits of the study will be disseminated through public media. Results Results from IIVDDC Basic information and diet characteristics of children across HOMA-IR quartiles A total of 326 children were included, 53% were boys and 47% were girls, aged 3 y-7 y, the average age is 5.24 ± 1.32 y. There were 21 (6.4%) children with severe vitamin D deficiency, 163 (50%) children with deficiency, 107 (32.8%) children with insufficiency, and only 35 (10.7%) children with

² 243 sufficiency.

The basic characteristics of HOMA-IR quartiles grouped children are summarized in Table-1. Serum 7 245 $25(OH)D_3$ concentration in four quartiles from lowest to highest were 20.82 ± 6.96 ng/mL, 20.96 ± 9

2 3 246 4	9.07 ng/mL, 19.94 ± 8.09 ng/	mL, and 18.19 ± 100	6.37 ng/mI	. Children	in higher	quartile gr	oup had	
5 6 247	lower proportion of higher sport frequency. There were no significant differences for age, gender,							
7 8 248 9	zBMI score, or the supplementation of calcium or (and) vitamin D in recent half year among different							
¹⁰ 11 249 12	quartile groups. The character	istics across quart	iles were c	onsistent ir	n boys and	girls, and	the data	
¹³ 250 14	were not shown.							
¹⁵ 251 16	Table-1. Character	ristics of the subject	s in differen	t HOMA-II	R quartiles	group.		
17			Q1	Q2	Q3	Q4	р	
18	Variable		(n=81)	(n=82)	(n=82)	(n=81)	Value	
19	Male ¹ , n (%)		20 (46.5)	68 (49.6)	51 (56.0)	36 (65.5)	0.167	
20			5.27 ±	5.05 ±	5.22 ±	5.45 ±		
21	Age, years		1.59	1.19	1.11	1.33	0.123	
22	25(OH)D ₃ , ng/mL		$20.82 \pm$	$20.96 \pm$	$19.94 \pm$	$18.19 \pm$	0.085	
23			6.96	9.07	8.09	6.37	0.085	
24	zBMI		$-0.08 \pm$	$0.74 \pm$	$0.47 \pm$	$0.58 \pm$	0.112	
25	ZDIVII		2.07	1.67	1.47	1.22	0.112	
26	Exercise frequency, n (%)	Lower	10 (12.3)	20 (24.4)	14 (17.1)	12 (14.8)	0.049	
27		Higher	60 (74.1)	56 (68.3)	48 (58.5)	39 (48.1)		
28		unclear	11 (13.6)	6 (7.3)	20 (24.4)	30 (37.0)		
29 30	Calcium or (and) vitamin D supplements ^a , n (%)	Have been supplement, %	38 (46.9)	43 (52.4)	45 (54.9)	39 (48.1)	0.049	
31 32	supprements , if (70)	Haven't been supplement, %	40 (49.4)	35 (42.7)	28 (34.1)	29 (35.8)		
33		unclear, %	3 (3.7)	4 (4.9)	9 (11.0)	13 (16.0)		
34 35 36	¹ Values are mean \pm SD and n (%) per group for all other variables. A two-sided p Value < 0.05 was considered							
37	statistically significant; ^a whether h	ave a supplement of	calcium and	(or) vitamin	D with in pa	ast 6 months		
38 39 252 40	Furthermore, a significant diff	erence in energy i	ntake amor	ng quartiles	of HOMA	A-IR was o	bserved,	
41 42 253 43	with a slightly higher level i	n quartile 2 than	that in oth	ner quartile	es (Table-	2). There	were no	
⁴⁴ 254 45	differences in fruit, vegetable	, and livestock int	akes amon	g different	quartiles	of HOMA-	IR. The	

47 255

Table-2. Characteristics of diet in different HOMA-IR quartiles group.

Variable	Q1	Q2	Q3	Q4	<i>p</i> Value
Energy ¹ , kcal/d	1323.44 ± 644.00	1650.28 ± 855.11	1409.05 ± 868.96	1230.34 ± 882.99	0.009
Vegetable, g/d	77.08 ± 32.55	84.85 ± 36.13	89.09 ± 38.12	81.63 ± 44.13	0.428
Fruit, g/d	113.27 ± 48.71	133.58 ± 59.28	126.42 ± 52.44	123.08 ± 56.41	0.265
Livestock, g/d	76.04 ± 38.58	88.97 ± 38.48	80.77 ± 37.25	77.36 ± 36.12	0.230

¹ Values are mean \pm SD. A two-sided *p* Value < 0.05 was considered statistically significant.

above analysis results were consistent in boys and girls, and the data were not shown.

The association between serum $25(OH)D_3$ and fasting glucose, insulin and HOMA-IR

²³ 265

25 266

Serum 25(OH)D₃ concentration were negatively correlated with fasting insulin and HOMA-IR after adjusting for age, gender, zBMI, exercise frequency, intake of energy, vegetable, fruit and livestock, calcium or (and) vitamin D supplements (fasting insulin: unstandardized β coefficient = -0.178, ¹³ 261 standardized β coefficient = -0.194, p value = 0.001; HOMA-IR: unstandardized β coefficient = -16 262 0.032, standardized β coefficient = -0.161, p value = 0.005) (Table-3). However, the significant association between serum 25(OH)D₃ concentration and fasting glucose had not been observed. There was no difference in above analysis results between boys and girls, data were not shown. 21 264

Table-3. Linear regression analysis of the association between serum 25(OH)D₃ concentration and fasting

				glucose and	insulin.				
Variabl e	(Crude		Model 1 ¹			Model 2		
	Unstandardi zed β	Standardi zed β	p Val ue	Unstandardi zed β	Standardi zed β	p Val ue	Unstandardi zed β	Standardi zed β	p Val ue
Glucos e (mmol/ L)	0.004	0.065	0.24 5	0.007	0.107	0.06 6	0.008	0.115	0.05 2
Insulin (mIU/L)	-0.169	-0.184	0.00 1	-0.170	-0.184	0.00 1	-0.178	-0.194	0.00 1
HOMA -IR	-0.030	-0.152	0.00 6	-0.031	-0.157	0.00 5	-0.032	-0.161	0.00 5

¹Model 1: Adjusted for age, gender, zBMI, exercise frequency, intake of energy, calcium or (and) vitamin D supplements. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

The association of serum $25(OH)D_3$ concentration with IR

⁴⁷ 268 Children in the highest quartile of HOMA-IR were defined as IR, the cut-off point of HOMA-IR was ₅₀ 269 4.59. As shown in **Table-4**, after adjusting for age, gender, zBMI, exercise frequency, intake of ⁵² 270 energy, vegetable, fruit and livestock, calcium or (and) vitamin D supplements, children with low serum 25(OH)D₃ concentration were likely to have IR (OR: 0.955, 95% CI: 0.917, 0.995, p value: 55 271 58 272 0.027). This association was consistent in boys and girls, and the data were not shown.

Table-4. Binary logistic regression analysis of the association between serum 25(OH)D₃ concentration and

Page 15 of 32

57

58

59

60

Bachelor

degree or

above

The

296 (35.7)

39 (5.0)

			IR.				
Vari	able		Model 1 ¹	X 7 1		Model 2	X 7 1
Serum 25	S(OH)D3	· · · ·	95% CI)	<i>p</i> Value	OR (95	,	<i>p</i> Value
concentratio		0.964 (0.	928, 1.001)	0.059	0.955 (0.9	17, 0.995)	0.027
Model 1: Adj	usted for age,	gender, zBMI,	exercise freque	ncy, intak	e of energy, ca	lcium or (and)	vitamin D
supplements. M	Iodel 2: Adjust	ted for the const	umption of veget	able, fruit	and livestock ba	ased on model 1	•
Results from	HDNNCDS						
Basic informa	ation, diet an	d blood bioch	emical charac	teristics o	of adult partic	ipants	
The basic cha	racteristics o	f adult particij	bants are shown	n in Tabl	e-5. A total of	8,469 adult pa	articipants
2,999 male ar	nd 5,474 fem	ale were inclu	ded in our ana	lysis. The	e average age	was 49.58 ± 1	0.51 y. Ir
both males ar	nd females, p	articipants wi	th type 2 diabe	etes had o	older age, large	er BMI, WC a	und higher
proportion of	f family his	tory of diabe	tes, compared	l with pa	articipants wi	thout type 2	diabetes
Additionally,	the proportio	on of regular	exercise in par	ticipants	with type 2 d	iabetes was h	igher thar
those without	type 2 diabe	etes. In femal	es, the proport	ion of dri	inking was lov	wer in particij	pants with
type 2 diaber	tes and they	had lower e	ducation leve	ls, where	eas the above	phenomenor	n was not
observed in r	nales. Furthe	ermore, type 2	2 diabetes part	ticipants	had higher T-	-CHO. TG. a	nd LDL-c
		<i>y</i> 51	1		U	, ,	
concentration	s and lower	HDL-c concer	ntration in both	n males a	nd females.		
Т	able-5. Chara	acteristics of t	he subject in T	2D and n	on-T2D group	. bv gender.	
Variable			[ale	(<u> </u>	nale	
		T2D (n = 773)	Non-T2D $(n = 2222)$	<i>p</i> Value	T2D (n = 1048)	Non-T2D $(n = 4426)$	<i>p</i> Value
Age ¹ , years		52.46 ± 9.33	49.04 ± 10.99	< 0.001	55.64 ± 9.42	49.44 ±	< 0.001
BMI, kg/m^2		32.40 ± 9.33 26.12 ± 3.37	49.04 ± 10.99 25.57 ± 3.43	< 0.001	35.04 ± 3.74 25.88 ± 3.74	10.06 24.22 ± 3.32	< 0.001
WC, cm		92.27 ± 9.21	90.48 ± 9.55	< 0.001	25.00 ± 9.74 86.94 ± 9.79	81.96 ± 9.12	< 0.001
Rickets, n (%)		59 (7.6)	132 (5.9)	0.104	81 (7.7)	354 (8.0)	0.700
Education, n (%)	Primary school education	28 (3.6)	86 (3.9)	0.038	116 (11.1)	283 (6.4)	< 0.001
	or below Junior or	120 (55 ()	1102 (40 (2427 (55 1)	
	high school education	430 (55.6)	1102 (49.6)		666 (63.5)	2437 (55.1)	

14

903 (40.6)

131 (5.9)

202 (19.3)

66 (6.1)

1434 (32.4)

272 (6.1)

		situation of education unclear						
	Smoking, n (%)	Smokers	310 (40.1)	870 (39.2)	0.836	37 (3.5)	175 (4.0)	0.0
	(,)	Non- smokers	391 (50.6)	1156 (52.0)		984 (93.9)	4188 (94.6)	
		Former smokers The	66 (8.5)	175 (7.9)		11 (1.0)	28 (0.6)	
		situation of smoking unclear	6 (0.7)	22 (0.9)		16 (1.5)	35 (0.8)	
]	Drinking, n (%)	Drinking	462 (59.8)	1404 (63.2)	0.219	145 (13.8)	909 (20.5)	<0.
	(70)	Non- drinking The	304 (39.3)	796 (35.8)		890 (84.9)	3453 (78.0)	
		situation of drinking unclear	7 (0.9)	22 (1.0)		13 (1.2)	64 (1.4)	
-	Exercise, n (%)	unciear	418 (54.1)	1039 (46.8)	0.001	558 (53.2)	1949 (44.0)	<0.
	Family							
	history of diabetes, n (%)		171 (22.1)	226 (10.2)	< 0.001	268 (25.6)	676 (15.3)	<0.
	T-CHO, mmol/L		5.28 ± 1.19	5.00 ± 0.99	< 0.001	5.50 ± 1.04	5.18 ± 1.00	<0.
Т	G, mmol/L		2.73 ± 3.32	2.07 ± 2.09	0.001	2.01 ± 1.62	1.41 ± 1.08	<0.
	HDL-c, mmol/L		1.10 ± 0.29	1.15 ± 0.30	0.001<	1.25 ± 0.31	1.35 ± 0.32	<0.
	LDL-c, mmol/L		3.06 ± 0.91	2.96 ± 0.81	0.003	3.31 ± 0.90	3.00 ± 0.85	<0.

³⁹ 286 In males and females, participants with type 2 diabetes had less consumption of fruit, but the

difference in energy intake and consumption of vegetable and livestock were not observed (Table-6).

Table-6. Characteristics of energy vegetable, fruit, livestock intake in T2D and non-T2D group,	, by
gender	

			gender.			
Variable	Μ	ale		Fen	nale	
	T2D (n = 773)	Non-T2D $(n = 2222)$	<i>p</i> Value	T2D (n = 1048)	Non-T2D (n = 4426)	p Value
Energy ¹ , kcal/d	2507.81 ± 790.83	2551.96 ± 775.41	0.175	2187.03 ± 702.46	2201.33 ±679.62	0.543
Vegetable, g/d	136.04 ±52.72	134.81 ± 51.24	0.570	132.93 ± 52.36	130.29 ± 51.30	0.136
Fruit, g/d	123.32 ± 47.85	$\begin{array}{c} 129.00 \pm \\ 49.01 \end{array}$	0.005	123.16 ± 50.34	133.55 ± 50.68	< 0.001
Livestock, g/d	107.20 ± 45.41	107.90 ± 45.78	0.712	93.31 ± 39.11	92.77 ± 39.59	0.695

¹ Values are mean \pm SD. A two-sided *p* Value < 0.05 was considered statistically significant. 58 290

BMJ Open

2 3 4	291
- 5 6 7	292
7 8 9	293
10 11	294
12 13 14	295
15 16 17	296
18 19	297
20 21 22	298
23 24	
25 26 27	
28 29	
30 31 32	
33 34	299
35 36 37	300
38 39	
40 41 42	
43 44	301
45 46 47	
47 48 49	302
50 51	303
52 53 54	304
55 56	305
57 58 59	306
60	

The association of rickets in childhood with type 2 diabetes in adulthood

Binary logistic regression analysis showed that rickets in childhood was significantly associated with an increased risk of type 2 diabetes in adult males (OR = 1.420, 95% CI = 1.017, 1.983; p value = 0.040), after adjusting for sex, adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, vegetable, fruit and livestock, and family history. However, there was no significant association of rickets in childhood with type 2 diabetes in adult females (**Table-7**). Result of the bootstrap test was consistent with the result of the binary logistic regression analysis (p value = 0.041) (**Table 8**)

298 (**Table-8**).

 Table-7. Binary logistic regression analysis of the association of rickets on the risk of diabetes in adulthood with different sex.

Variable		Model 1 ¹	Model 2				
		OR (95% CI)	p Value	OR (95% CI)	p Value		
Male	Rickets	1.414 (1.013, 1.972	0.042	1.420 (1.017, 1.983)	0.040		
Female	Rickets	1.062 (0.813, 1.388)	0.658	1.065 (0.814, 1.392)	0.646		

¹Model 1: Adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, family history of diabetes. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

Table-8. The bootstrap test of binary logistic regression analysis of the association of rickets on the risk of

diabetes in adulthood male.

	uiub	ites in additiood	indic.	
Variable	Model 1 ¹		Model 2	
	β (95% CI)	p Value	β (95% CI)	p Value
Rickets	0.346 (0.004, 0.673)	0.039	0.351 (0.002, 0.680)	0.041

¹Model 1: Adjusted for age, education, BMI, WC, smoking, drinking, exercise, intake of energy, family history of diabetes. Model 2: Adjusted for the consumption of vegetable, fruit and livestock based on model 1.

301 **Discussion**

This study examined the association of vitamin D status in childhood with glucose metabolism in the north of China. The results showed that, in children, only 10.7% participants with vitamin D sufficient, there was a negative association between serum $25(OH)D_3$ concentration and fasting insulin and HOMA-IR, and children with lower $25(OH)D_3$ concentration were likely to develop IR. Childhood rickets were associated with an increased risk of type 2 diabetes in adulthood.

1

Vitamin D deficiency in children is widespread in worldwide. Regardless of the economic level, the vitamin D deficiency rate was very high in children from different countries ^{9-12,29,30}. Vitamin D can be obtained from sunshine and foods, such as meat, eggs, and milk. It was generally thought that exposure of skin to ultraviolet rays in the sunshine was the main source of body obtain vitamin D³¹. Therefore, the status of serum vitamin D can be influenced by several factors, such as skin tone, the latitude of residence, season, or use of sunscreen products ³². Sunshine in areas with high latitude was insufficient for skin to synthesize vitamin D; a previous study showed that residents living in areas above 37°N were insufficiently synthesizing vitamin D in winter ³³. In relatively low latitude areas of China, 50% of preschooler children had sufficient vitamin D nutritional status (\geq 30 ng/mL), ³⁴. In our study, only 10.7% of children had sufficient vitamin D nutritional status, which was significantly lower than children at low latitudes, vitamin D insufficiency was even more serious. Therefore, we should pay more attention to the health problems caused by vitamin D deficiency and insufficiency at high latitude.

In addition to skeletal health, the association between vitamin D and glucose metabolism in children and adults has also obtained wide concerned. In children, vitamin D deficiency was connected to IR and impaired fasting glucose ^{13,35,36}. However, there were a lack of children studies on the association between vitamin D deficiency and IR in the northern area of China. This study found a negative correlation between serum vitamin D concentration and fasting insulin, HOMA-IR, and IR. In adults, previous research suggested that low vitamin D status was associated with IR, impaired glucose tolerance, decreased insulin sensitivity, and reduction of insulin secretion ^{18,37-39}. Observational study showed that patients with type 2 diabetes had lower level of vitamin D than healthy people⁴⁰. An intervention studies have shown that HbA1c levels decreased after vitamin D supplementation⁴¹.

Page 19 of 32

1

BMJ Open

60

Additionally, prospective studies had indicated that vitamin D deficiency in adults might increase the risk of type 2 diabetes ^{42,43-45}. According to recent years' studies, IR in childhood was considered as a risk factor for type 2 diabetes in adulthood ⁴⁶. Therefore, we speculate vitamin D deficiency in childhood may increase the risk of type 2 diabetes in adulthood by influence IR in childhood. However, this deduction needs a long-term cohort study spanning decades from childhood to adulthood, there have been no reports about this so far.

Nutritional rickets is the most common type in rickets, caused by deficiencies of vitamin D, calcium, or phosphate ^{47,48}. The clinical signs of rickets include square head, delay in tooth development, rachitic chest, bow legs or X-shaped legs. Rickets needs to be diagnosed in combination with vitamin D level and clinical signs, and vitamin D deficiency alone cannot be diagnosed as rickets, but children who had serum 25(OH)D₃ level under 10.90 ng/mL were likely to have rickets ⁴⁹. A retrospective survey was conducted on the prevalence of rickets in our adult study, rickets was determined by whether participants had a diagnosis of disease, or had symptoms. In adult population of this study, the prevalence of rickets in males and females was 6.3% and 7.9%, respectively. An earlier study reported that the prevalence of Chinese infants with rickets in 1980s was approximately 18% ⁵⁰, it was higher than our study. This difference may be due to the birth year of our participants being approximately 20 years earlier than those in that study, when China was experiencing societal hardships. Poverty and poor health conditions may lead to the lack of awareness of disease. Furthermore, the information on rickets was retrospective, since some participants were uncertain whether they had rickets in childhood, which may contribute to the low prevalence of rickets. In our adult study, participants who had rickets were defined as having vitamin D deficiency in childhood. The association between rickets and type 2 diabetes in adults was analyzed to explore the effect of

1

childhood vitamin D deficiency on type 2 diabetes in adulthood. The results showed that males who had rickets in childhood had a higher risk of type 2 diabetes in adulthood, but this result was not observed in females. However, the reason for this phenomenon is still unclear. In addition, a study from Finland found that individuals with high levels of vitamin D in childhood and adolescence had a significant lower risk of type 2 diabetes in adulthood compared with those who had lower level of vitamin D ²³. These findings collectively suggest that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood, which needs to be further be explored in more cohort studies and intervention studies.

Some scholars have explored the pathogenesis through which vitamin D deficiency might induce IR in children. The results of some studies shown that, vitamin D levels were inversely related to oxidative stress and inflammation, the increase of reactive oxygen species (ROS) and formation of cytokines such as interleukin-6 played major roles in IR ⁵¹⁻⁵³. In addition, the findings of an obese, African-American adolescent study showed that low vitamin D levels was correlated with low adiponectin levels, which was associated with IR in children and adolescents ⁵⁴⁻⁵⁷. These results support the finding that vitamin D deficiency in childhood increases the risk of type 2 diabetes in adulthood. At the same time, the results of lab studies also support such pathogenesis: there was a close connection between vitamin D and β -cell function. By regulating cytokines to impact β -cell survival, vitamin D receptor and 1-hydroxylase in β -cell played a role in regulating pancreatic β -cell function, insulin secretion, IR and systemic inflammation ^{32,58,59}. Furthermore, the mechanism of vitamin D decreased IR might relate to the inhibition of vitamin D on inflammation and activation on insulin receptor ^{60,61}. In a term of epigenetics, results showed that vitamin D can also affect the occurrence of type 2 diabetes by regulating the expression of methyltransferase to prevent

Page 21 of 32

1 2

BMJ Open

60

hypermethylation of diabetes-related genes ⁶². Above all of these might be the pathogenesis of vitamin 373 D deficiency in childhood increased the risk of type 2 diabetes in adulthood.

An advantage of our study was the inclusion of both children study analysis and adult study analysis. 375 The children and adults were both from Harbin, a northeast city of China, was chosen with high 376 prevalence of vitamin D deficiency due to its geographic location. Basically, they had similar geographic and climatic environment and dietary habits. In children, we observed the serum 25(OH)D₃ concentration was reversely associated with HOMA-IR. Based on theoretical speculation, we hypothesized that vitamin D deficiency in childhood might increase the risk of type 2 diabetes in adulthood by affecting insulin sensitivity. We defined rickets in adult study as a vitamin D deficiency condition in childhood to simulate the vitamin D deficiency in children study. The growth environment related to vitamin D status in the adults was similar with the children. The adults might simulate children's future growth trajectories to some extent, in terms of the association of childhood vitamin D deficiency with adult type 2 diabetes. The results of the two populations provided mutual support. However, there were also some limitations in our study. First, there was possible selection bias and we did not do the external validity of the sample due to a limitation of external sample. Second, the sample size of children was small and it was a cross-sectional study. We used ORs to interpret the association of vitamin D deficiency with IR and diabetes, which may overstate effect sizes. Third, the rickets information was obtained from self-report, the recall bias was not avoidable although we excluded the uncertain participants. The proportion of self-report rickets was 6.3% and 7.8% for male and female, respectively. We assumed that there some missing reports of rickets in their recalling based on the medical and nutritional condition, and lack of health awareness in China 40 years ago. In addition, the definition of vitamin D deficiency in childhood was rickets, which

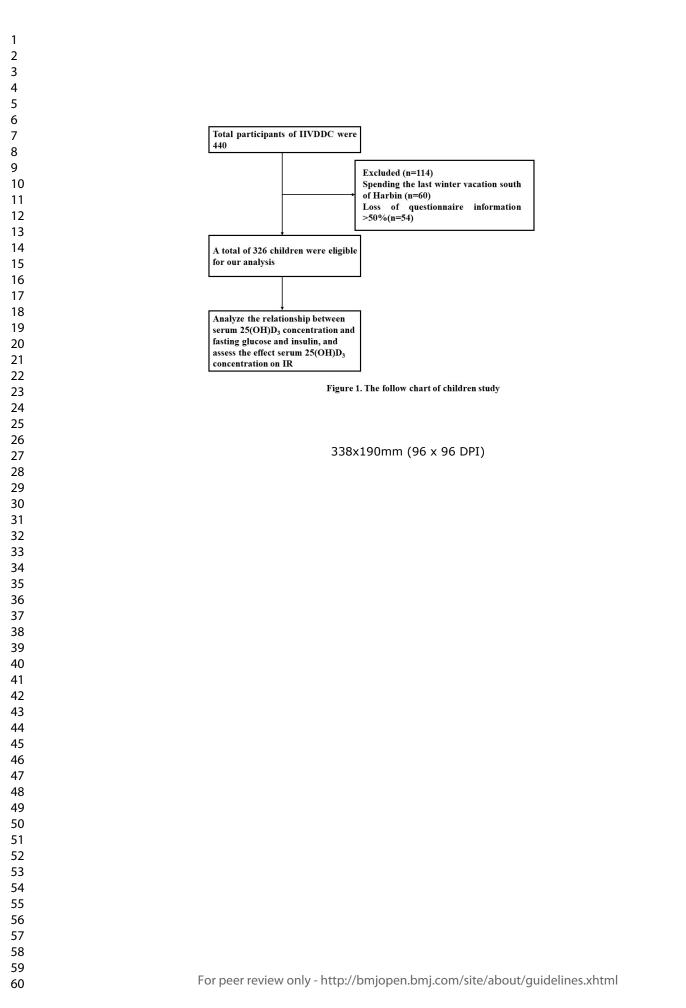
might have led to some participants, who did not have rickets but vitamin D deficiency, to be classified as non-deficient. Therefore, long-term design and cohort studies with stricter vitamin D nutritional status monitoring are needed to further verify our results. Conclusions In summary, vitamin D deficiency in childhood was associated with IR and might increase the risk of type 2 diabetes in adult males. Early prevention strategies should be undertaken in children to control the rapid increase in type 2 diabetes worldwide, and management of vitamin D deficiency is probably an effective method. Acknowledgements We are grateful to all participants who took part in this study and the research team. **Authors' contributions** Lixin Na and Changhao Sun designed the study and acquired funding. Junyi Liu and Lixin Na wrote the paper. Liqun Fu and Jingyi Zhang prepared the original draft. Junyi Liu, Shanshan Jin and Yubing Jia collected the data. Junyi Liu and Ligun Fu analysed and interpreted data. All authors read and approved the final manuscript. **Competing interests** None of the authors has any potential conflict of interest associated with this research. Funding This study was supported by National Nature Science Foundation of China (grant numbers 81872614). **Data sharing statement** The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request. **Ethics Approval** 21

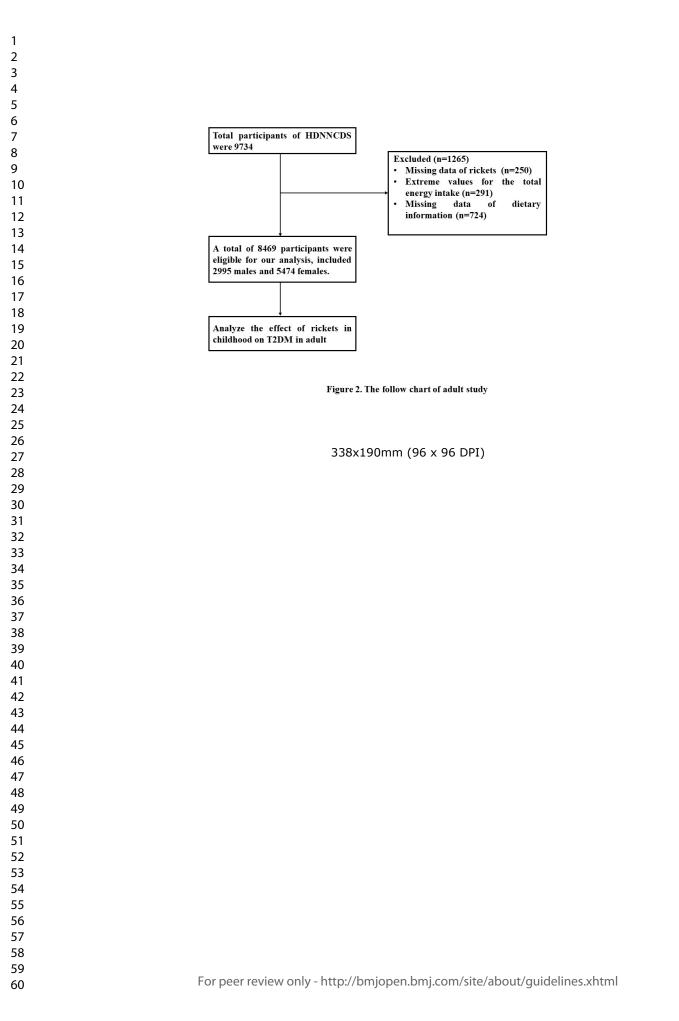
1 2 3 418	The st	tudy protocol of IIVDDC and HDNNCDS was approved by the Ethics Committee of Harbin							
4	1110 50								
5 419 6 7	Media	Medical University, and written informed consent was provided by all participants. The methods							
, 8 420 9	in this	s study were in accordance the approved guidelines.							
10 11 421 12	Invest	igation and Intervention of Vitamin D Deficiency in Children: ChiCTR1800020294; Harbin							
13 422 14	Cohor	t Study on Diet, Nutrition and Chronic Non-communicable Diseases: ChiCTR-ECH-12002721.							
15 16 423	Refer	ence							
17 ¹⁸ 424 19 20	1.	Bullock A, Sheff K. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002-2012. N							
21 425 22		Engl J Med. 2017;377(3):301.							
23 24 25	2.	IDF Diabetes Atlas [Internet]. 2016; <u>http://www.idf</u> . org/diabetesatlas.							
25 26 427 27	3.	Wheelock KM, Sinha M, Knowler WC, Nelson RG, Fufaa GD, Hanson RL. Metabolic Risk Factors and							
28 29 428 30		Type 2 Diabetes Incidence in American Indian Children. J Clin Endocrinol Metab. 2016;101(4):1437-							
³¹ 429 32 33		1444.							
34 430 35	4.	Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in							
³⁶ 37 431 38		adulthood: a systematic review and meta-analysis. <i>Obes Rev.</i> 2016;17(1):56-67.							
³⁹ 432 40	5.	Bjerregaard LG, Jensen BW, Angquist L, Osler M, Sorensen TIA, Baker JL. Change in Overweight							
41 42 433 43		from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med. 2018;378(14):1302-							
44 45 46		1312.							
46 47 435 48	6.	Sabin MA, Magnussen CG, Juonala M, et al. Insulin and BMI as predictors of adult type 2 diabetes							
49 50 436 51		mellitus. <i>Pediatrics.</i> 2015;135(1):e144-151.							
⁵² 437 53	7.	Schryver E, Klein GL, Herndon DN, Suman OE, Branski LK, Sousse LE. Bone metabolism in pediatric							
54 55 438 56		burned patients: A review. <i>Burns.</i> 2018;44(8):1863-1869.							
⁵⁷ 439 58 59	8.	van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab.							
60		22							

₃ 440		2011;25(4):671-680.
4 5 441 6	9.	Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency
7 8 442 9		among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158(6):531-537.
10 11 443 12	10.	Avagyan D, Neupane SP, Gundersen TE, Madar AA. Vitamin D status in pre-school children in rural
13 444 14		Nepal. Public Health Nutr. 2016;19(3):470-476.
15 16 445 17	11.	Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH. Vitamin D
¹⁸ 446 19 20		deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr.
21 447 22		2015;145(4):791-798.
23 24 448 25	12.	Wang S, Shen G, Jiang S, et al. Nutrient Status of Vitamin D among Chinese Children. Nutrients.
26 449 27		2017;9(4).
28 29 450 30	13.	Denova-Gutierrez E, Munoz-Aguirre P, Lopez D, et al. Low Serum Vitamin D Concentrations Are
³¹ 451 32 33		Associated with Insulin Resistance in Mexican Children and Adolescents. <i>Nutrients</i> . 2019;11(9).
34 452 35	14.	Global Burden of Disease Study C. Global, regional, and national incidence, prevalence, and years
³⁶ 37 453 38		lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a
39 454 40		systematic analysis for the Global Burden of Disease Study 2013. <i>Lancet.</i> 2015;386(9995):743-800.
41 42 455 43	15.	Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society
44 456 45 46		scientific statement. <i>Endocr Rev.</i> 2012;33(3):456-492.
47 457 48	16.	Debinska A, Sikorska-Szaflik H, Urbanik M, Boznanski A. The role of vitamin D in atopic dermatitis.
49 50 458 51		<i>Dermatitis.</i> 2015;26(4):155-161.
52 459 53	17.	Vo P, Bair-Merritt M, Camargo CA. The potential role of vitamin D in the link between obesity and
54 55 460 56		asthma severity/control in children. Expert Rev Respir Med. 2015;9(3):309-325.
⁵⁷ 461 58 59	18.	Abbasi F, Blasey C, Feldman D, Caulfield MP, Hantash FM, Reaven GM. Low circulating 25-
60		23

Page 25 of 32

1			
2 3 4 4	162		hydroxyvitamin D concentrations are associated with defects in insulin action and insulin secretion in
6	163		persons with prediabetes. J Nutr. 2015;145(4):714-719.
7 8 4 9	164	19.	Reis JP, von Muhlen D, Miller ER, 3rd, Michos ED, Appel LJ. Vitamin D status and cardiometabolic
10 11 ⁴ 12	165		risk factors in the United States adolescent population. <i>Pediatrics</i> . 2009;124(3):e371-379.
13 4 14	166	20.	Belenchia AM, Tosh AK, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves insulin
15 16 ⁴ 17	167		sensitivity in obese adolescents: a randomized controlled trial. <i>Am J Clin Nutr.</i> 2013;97(4):774-781.
18 4 19	168	21.	Rajakumar K, Moore CG, Khalid AT, et al. Effect of vitamin D3 supplementation on vascular and
20 21 4 22	169		metabolic health of vitamin D-deficient overweight and obese children: a randomized clinical trial. Am
23 24 25	170		J Clin Nutr. 2020;111(4):757-768.
25 26 4 27	171	22.	Kelishadi R, Salek S, Salek M, Hashemipour M, Movahedian M. Effects of vitamin D supplementation
28 29 ⁴ 30	172		on insulin resistance and cardiometabolic risk factors in children with metabolic syndrome: a triple-
31 4 32	173		masked controlled trial. J Pediatr (Rio J). 2014;90(1):28-34.
33 34 4 35	174	23.	Wu F, Juonala M, Pitkanen N, et al. Both youth and long-term vitamin D status is associated with risk
36 37 38	175		of type 2 diabetes mellitus in adulthood: a cohort study. Ann Med. 2018;50(1):74-82.
38 39 4 40	176	24.	Na L, Wu X, Feng R, et al. The Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable
41 42 ⁴ 43	177		Diseases: study design and baseline characteristics. <i>PLoS One.</i> 2015;10(4):e0122598.
44 45	178	25.	Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic
46 47 4 48	179		criteria from the American Diabetes Association: national cross sectional study. <i>BMJ</i> . 2020;369:m997.
49 50 ⁴ 51	180	26.	Y Y. China Food Consumption.: Peking University Medical Press; 2005.
52 4 53	181	27.	WHO. Application tools: WHO AnthroPlus software <u>http://www.who.int/growthref/tools/en</u> .
54 55 4 56	182	28.	Hedblad B, Nilsson P, Janzon L, Berglund G. Relation between insulin resistance and carotid intima-
57 4 58	183		media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in Malmo,
59 60			24


1			
2 3 48 4	84		Sweden. <i>Diabet Med.</i> 2000;17(4):299-307.
6	85	29.	Sullivan SS, Rosen CJ, Halteman WA, Chen TC, Holick MF. Adolescent girls in Maine are at risk for
7 8 48 9	86		vitamin D insufficiency. J Am Diet Assoc. 2005;105(6):971-974.
10 11 48 12	87	30.	Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D
13 48 14	88		deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-
15 16 48 17	89		1930.
19	90	31.	Deluca HF. History of the discovery of vitamin D and its active metabolites. <i>Bonekey Rep.</i> 2014;3:479.
20 21 49 22		32.	Issa CM. Vitamin D and Type 2 Diabetes Mellitus. Adv Exp Med Biol. 2017;996:193-205.
23 24 25	92	33.	Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers,
26 49 27	93		and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S-1688S.
28 29 49 30	94	34.	Wang LL, Wang HY, Wen HK, Tao HQ, Zhao XW. Vitamin D status among infants, children, and
³¹ 49 32 33	95		adolescents in southeastern China. J Zhejiang Univ Sci B. 2016;17(7):545-552.
34 49 35	96	35.	Chung SJ, Lee YA, Hong H, et al. Inverse relationship between vitamin D status and insulin resistance
36 37 38	97		and the risk of impaired fasting glucose in Korean children and adolescents: the Korean National
39 49 40	98		Health and Nutrition Examination Survey (KNHANES) 2009-2010. Public Health Nutr. 2014;17(4):795-
41 42 49 43	99		802.
44 50 45 46	00	36.	Wang L, Wang H, Wen H, Tao H, Zhao X. Relationship between HOMA-IR and serum vitamin D in
40 47 5(48	01		Chinese children and adolescents. J Pediatr Endocrinol Metab. 2016;29(7):777-781.
49 50 50 51	02	37.	Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and
52 5(53	03		metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177-189.
54 55 5(56		38.	Catena C, Colussi G, Novello M, et al. VITAMIN D DEFICIENCY AND GLUCOSE METABOLISM IN
57 50 58 59	05		NON-DIABETIC ESSENTIAL HYPERTENSIVE PATIENTS. Journal of Hypertension. 2018;36:e26.
60			25


Page 27 of 32

1 2 3 506	39.	Boucher BJ, John WG, Noonan K. Hypovitaminosis D is associated with insulin resistance and beta
4 5		
5 507 6 7		cell dysfunction. Am J Clin Nutr. 2004;80(6):1666; author reply 1666-1667.
, 8 508 9	40.	Wang W, Zhang J, Wang H, Wang X, Liu S. Vitamin D deficiency enhances insulin resistance by
¹⁰ 11 509 12		promoting inflammation in type 2 diabetes. Int J Clin Exp Pathol. 2019;12(5):1859-1867.
¹³ 510 14	41.	Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Sliwinska A. Vitamin D Supplementation
15 16 511 17		Reduces Both Oxidative DNA Damage and Insulin Resistance in the Elderly with Metabolic Disorders.
¹⁸ 512 19		Int J Mol Sci. 2019;20(12).
20 21 513 22	42.	Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and incident
²³ 24 514		type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3(1):35-42.
25 26 515 27	43.	Gao Y, Zheng T, Ran X, et al. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-
28 29 516 30		Year Follow-Up Community-Based Study. <i>Dis Markers.</i> 2018;2018:1926308.
³¹ 517 32	44.	Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A
33 34 518 35		systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017-2029.
³⁶ 37 519	45.	Pittas AG, Sun Q, Manson JE, Dawson-Hughes B, Hu FB. Plasma 25-hydroxyvitamin D concentration
38 39 520 40		and risk of incident type 2 diabetes in women. <i>Diabetes Care</i> . 2010;33(9):2021-2023.
41 42 521 43	46.	Maclaren NK, Gujral S, Ten S, Motagheti R. Childhood obesity and insulin resistance. Cell Biochem
⁴⁴ 522 45		<i>Biophys.</i> 2007;48(2-3):73-78.
46 47 523 48	47.	Shore RM, Chesney RW. Rickets: Part I. Pediatr Radiol. 2013;43(2):140-151.
49 50 524	48.	Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR. Nutritional rickets around the world: an
51 52 525 53		update. Paediatr Int Child Health. 2017;37(2):84-98.
54 55 526 56	49.	Munns CF, Shaw N, Kiely M, et al. Global Consensus Recommendations on Prevention and
⁵⁷ 527 58		Management of Nutritional Rickets. <i>J Clin Endocrinol Metab.</i> 2016;101(2):394-415.
59 60		26

2 3 528	50.	Fong HC HY, Shen KY, Dewen PI. Prevention and treatment of rickets (report). In. Henan College of
4 5 529 6		Medicine publication 1980:1-10.
7 8 530 9	51.	Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2
¹⁰ 11 531		diabetes. <i>Nature.</i> 2006;444(7121):840-846.
12 13 532 14	52.	Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the
15 16 533		menu. <i>Genes Dev.</i> 2007;21(12):1443-1455.
17 ¹⁸ 534 19	53.	Verdile G, Keane KN, Cruzat VF, et al. Inflammation and Oxidative Stress: The Molecular Connectivity
20 21 535 22		between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm.
²³ 24 536		2015;2015:105828.
25 26 537 27	54.	Nunlee-Bland G, Gambhir K, Abrams C, Abdul M, Vahedi M, Odonkor W. Vitamin D deficiency and
28 29 538		insulin resistance in obese African-American adolescents. J Pediatr Endocrinol Metab. 2011;24(1-
30 ³¹ 539 32		2):29-33.
33 34 540 35	55.	Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents.
³⁶ 37 541		N Engl J Med. 2004;350(23):2362-2374.
38 39 542 40	56.	Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity,
41 42 543		insulin sensitivity, and beta-cell function. <i>Diabetes Care.</i> 2004;27(2):547-552.
43 44 45 544	57.	Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to
46 47 545		visceral fat and insulin sensitivity. <i>Diabetes Care.</i> 2006;29(1):51-56.
48 49 50 546	58.	Nwosu BU, Maranda L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D
51 52 5 47		status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1 or
53 54 55 548		type 2 diabetes mellitus. <i>PLoS One.</i> 2014;9(6):e99646.
56 ⁵⁷ 549 58	59.	Mitri J, Pittas AG. Vitamin D and diabetes. <i>Endocrinol Metab Clin North Am.</i> 2014;43(1):205-232.
59 60		
		27

1		
2 3 550 4	60.	Berridge MJ. Vitamin D deficiency and diabetes. <i>Biochem J.</i> 2017;474(8):1321-1332.
5 551 6	61.	Harinarayan CV. Vitamin D and diabetes mellitus. <i>Hormones (Athens).</i> 2014;13(2):163-181.
7 8 552 9	62.	Zhang H, Chu X, Huang Y, et al. Maternal vitamin D deficiency during pregnancy results in insulin
10 11 553 12		resistance in rat offspring, which is associated with inflammation and Ikappabalpha methylation.
13 554 14		<i>Diabetologia.</i> 2014;57(10):2165-2172.
15 16 555 17	Figur	e 1 - The follow chart of the children study.
18 556 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55 57 58 59 60	Figure	<text></text>

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
1	0
1	1
1	
1	3
	4
1	5
1	6
1	
1	8
	9
2	0
2	1
2	n n
2	Z
2	3
2	4
	5
2	6
2	7
2	8
2	9
3	1
3	2
3	
3	4
	5
3	6
3	7
	8
3	9
Δ	0
4	1
4	2
4	
-	-
4	-
4	5
4	
4	7
4	8
-	-
4	
5	0
5	
5	
5	3
	4
5	
5	6
5	7
	8
	9
5	

STROBE Statement—Checklist of items that should be included in reports of	f cross-sectional studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			·
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6, 7, 8
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8, 9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	9
Results			·
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage 	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9,
		social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of	10,12
0	1 – 4	interest	
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	

	(b) Report category boundaries when continuous variables were	9, 10
	categorized	
	(c) If relevant, consider translating estimates of relative risk into absolute	
	risk for a meaningful time period	
17	Report other analyses done-eg analyses of subgroups and interactions,	14
	and sensitivity analyses	
18	Summarise key results with reference to study objectives	14
19	Discuss limitations of the study, taking into account sources of potential	18
	bias or imprecision. Discuss both direction and magnitude of any	
	potential bias	
20	Give a cautious overall interpretation of results considering objectives,	18
	limitations, multiplicity of analyses, results from similar studies, and	
	other relevant evidence	
21	Discuss the generalisability (external validity) of the study results	
22	Give the source of funding and the role of the funders for the present	19
	study and, if applicable, for the original study on which the present article	
	is based	
	18 19 20 21	categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.