

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

# **BMJ Open**

# Indicators of optimal diabetes care and burden of diabetes complications in Africa: A systematic review and metaanalysis

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2022-060786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                    | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the<br>Author: | 06-Jan-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:        | Kibirige, Davis; Lubaga Hospital, Medicine<br>Chamba, Nyasatu; Kilimanjaro Christian Medical Centre, Internal<br>Medicine; Kilimanjaro Christian Medical University College, Medicine<br>Andia-Biraro, Irene; Makerere University College of Health Sciences,<br>Internal Medicine; MRC/UVRI and LSHTM Uganda Research Unit,<br>Immunomudation and Vaccines<br>Kilonzo, Kajiru; Kilimanjaro Christian Medical Centre; Kilimanjaro<br>Christian Medical University College<br>Laizer, Sweetness; Kilimanjaro Christian Medical University College<br>Sekitoleko, Isaac; Uganda Virus Research Institute, Non-communicable<br>Diseases<br>Kyazze, Andrew ; Makerere University College of Health Sciences<br>Ninsiima, Sandra; Makerere University College of Health Sciences,<br>Immunology<br>Ssekamatte , Phillip ; Makerere University College of Health Sciences,<br>Immunology<br>Bongomin, Felix; Makerere University College of Health Sciences,<br>Internal Medicine<br>Mrema, Lucy; NIMR-Mbeya Medical Research Programme, Medicine<br>Olomi, Willyhelmina; NIMR-Mbeya Medical Research Programme, Medicine<br>Statistics<br>Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme<br>Sharples, Katrina; University of Otago, Centre for International Health<br>Hill, Philip; University of Otago, Centre for International Health<br>te Brake, Lindsey; Radboud University Nijmegen, Pharmacology<br>VandeMaat, Josephine; Radboud University Nijmegen, Internal Medicine<br>vanCrevel, Reinout; Radboud University Nijmegen, Internal Medicine<br>vanCrevel, Reinout; Radboud University Nijmegen, Internal Medicine;<br>University of Oxford Centre for Tropical Medicine and Global Health<br>Critchley, Julia; St George's University of London |
| Keywords:                        | Epidemiology < TROPICAL MEDICINE, EPIDEMIOLOGY, Quality in healt care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                          | SCHOLARONE <sup>™</sup><br>Manuscripts                                    |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                                           |                                                                           |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                                 |                                                                           |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                           |                                                                           |
| <ul> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul> |                                                                           |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57                                                                                 |                                                                           |
| 58<br>59<br>60                                                                                                                     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

**BMJ** Open

# Indicators of optimal diabetes care and burden of diabetes complications in Africa: A systematic review and meta-analysis

Davis Kibirige<sup>1,2\*</sup>, Nyasatu Chamba<sup>3,4</sup>, Irene Andia-Biraro<sup>2,5</sup>, Kajiru Kilonzo<sup>3,4</sup>, Sweetness Naftal Laizer<sup>3,4</sup>, Isaac Sekitoleko<sup>6</sup>, Andrew Peter Kyazze<sup>2</sup>, Sandra Ninsiima<sup>2</sup>, Phillip Ssekamatte<sup>2</sup>, Felix Bongomin<sup>5</sup>, Lucy Elauteri Mrema<sup>7</sup>, Willyhelmina Olomi<sup>7</sup>, Theodora D Mbunda<sup>7</sup>, Nyanda Elias Ntinginya<sup>7</sup>, Issa Sabi<sup>7</sup>, Katrina Sharples<sup>8</sup>, Philip C Hill<sup>8</sup>, Lindsey te Brake<sup>9</sup>, Josephine VandeMaat<sup>10</sup>, Reinout Van Crevel<sup>10,11</sup>, Julia Critchley<sup>12</sup> on behalf of PROTID consortium.

# Author affiliations

- 1. Department of Medicine, Uganda Martyrs' Hospital Lubaga, Kampala Uganda
- 2. Tuberculosis And Comorbidities Consortium, Kampala Uganda
- Department of Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.
- Department of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Department of Medicine, Makerere University College of Health Sciences, Kampala Uganda.
- Chronic Diseases and Cancer Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe Uganda.
- National Institute for Medical Research Mbeya Medical Research Centre, Mbeya, Tanzania.
- 8. Centre for International Health, Otago University, Dunedin, New Zealand.

- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.
- 10. Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.
- 11.Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- 12. Population Health Research Institute, St. George's University of London, London, United Kingdom.

# **Corresponding author**

Davis Kibirige

Department of Medicine, Uganda Martyrs' Hospital Lubaga, Kampala Uganda Email: <u>kibirigedavis@gmail.com</u>.

# ABSTRACT

# Objective

Contemporary data on attainment of optimal diabetes treatment goals and the burden of diabetes complications in adult populations with type 2 diabetes in Africa is lacking. We aimed to document the current status of attainment of three key indicators of optimal diabetes care and the prevalence of five diabetes complications in adult African populations with type 2 diabetes.

#### Methods

We systematically searched EMBASE, PubMed and the Cochrane library for published studies from January 2000 to December 2020. Included studies reported any information on proportion of attainment of optimal glycated haemoglobin (HbA1c), blood pressure (BP) and low-density lipoprotein cholesterol (LDLC) goals, and/or prevalence of five diabetes complications (diabetic peripheral neuropathy, retinopathy, nephropathy, foot ulcers, and peripheral arterial disease). Random-effect model metaanalysis was performed to determine the pooled proportion of attainment of the three treatment goals and the prevalence of five diabetes complications.

# Results

In total, 109 studies with a total of 63, 890 participants (53.3% being females) were included in the meta-analysis. Most of the studies were conducted in Eastern African countries (n=44, 40.4%). The pooled proportion of attainment of an optimal HbA1c, BP and LDLC goal were 27% (95% CI 24-30, I<sup>2</sup>=94.7%), 38% (95% CI 30-46, I<sup>2</sup>=98.7%), and 42% (95% CI 32-52, I<sup>2</sup>=97.4%), respectively. The pooled prevalence of diabetic peripheral neuropathy, retinopathy, diabetic nephropathy, peripheral arterial disease, and foot ulcers was 38% (95% CI 31-45, I<sup>2</sup>=98.2%), 32% (95% CI 28-

36, l<sup>2</sup>=98%), 31% (95% Cl 22-41, l<sup>2</sup>=99.3%), 19% (95% Cl 12-25, l<sup>2</sup>=98.1%), and 11% (95% Cl 9-14, l<sup>2</sup>=97.4%), respectively.

# Conclusion

 Attainment of optimal treatment goals of diabetes, especially HbA1c, in adult patients with type 2 diabetes in Africa remains a challenge. Diabetes complications, especially diabetic peripheral neuropathy and retinopathy are highly prevalent in adult African populations with type 2 diabetes in Africa.

# KEY WORDS

Optimal diabetes care, diabetes complications, adult patients with type 2 diabetes, Africa.

# SUMMARY BOX

# What is already known?

 Suboptimal diabetes care is highly prevalent in most clinical settings. This ultimately translates to early onset and rapid progression of diabetes complications, increasing morbidity and mortality.

# What are the new findings?

- This is the first systematic review and meta-analysis to simultaneously document current status of attainment of three key diabetes treatment goals (optimal glycated haemoglobin, blood pressure, and low-density lipoprotein cholesterol) and prevalence of five diabetes complications in adult patients with type 2 diabetes in Africa.
- It showed that, of the three treatment goals, an optimal glycated haemoglobin target is the least achieved. It also reported that diabetic peripheral neuropathy and retinopathy are the most prevalent diabetes complications.

# What do the new findings imply?

• There is an urgent need to develop simple and pragmatic interventions to improve diabetes care and reduce burden of diabetes complications in adult patients with type 2 diabetes in Africa.

# Strengths and limitations of the study

- To our knowledge, it is the first systematic review and meta-analysis to simultaneously investigate the status of attainment of the three key diabetes treatment goals and burden of five common diabetes complications in an adult indigenous African population with type 2 diabetes.
- There was high heterogeneity among the studies included in the meta-analysis.
- A relative number of studies included in the meta-analysis had low to moderate quality on assessment.

# INTRODUCTION

Globally, the burden of diabetes mellitus (DM) continues to exponentially rise to epidemic proportions, disproportionately affecting low-and middle-income countries. The recent 2021 International Diabetes Federation (IDF) estimates show that about 24 million adults (1 in 22 adults) live with DM in Africa. The IDF also predicts that the greatest future increase in the prevalence of DM will occur in Africa because of the predicted ageing of Africa's currently very young populations, as well as increasing urbanisation and associated lifestyle changes.<sup>1</sup> This will ultimately lead to an immense strain on weak healthcare systems that are poorly structured and inadequately financed to manage non-communicable diseases (NCD) like DM.<sup>2</sup>

In addition, the rates of undiagnosed DM continue to increase in Africa. Among the IDF regions, Africa has the highest proportion of undiagnosed diabetes; about 54% of all cases.<sup>1</sup> The majority of patients are diagnosed late with co-existing debilitating complications and suboptimal diabetes care remains common in most clinical settings

in Africa.<sup>3</sup> This could be explained by low awareness about DM, healthcare systems that are structured mainly to manage communicable diseases as opposed to NCD, low screening rates of DM to ensure early diagnosis, low availability of affordable essential diagnostic tests and medicines of DM and knowledge-practice gaps among healthcare practitioners.<sup>2 4-6</sup>

Published diabetes treatment guidelines by most international organisations like the IDF and American Diabetes Association (ADA) recommend targets of glycated haemoglobin level (HbA1c) of <7% (53 mmol/mol), blood pressure (BP) <140/90 mmHg and low density lipoprotein cholesterol (LDLC) <2.6 mmol/l (100 mg/dl) as key indicators of optimal diabetes care.<sup>7-9</sup> Attainment of these treatment goals in diabetes care ultimately translates to reduced risk of onset and progression of diabetes complications and mortality.

Despite the increasing burden of DM and its related complications, in addition to the prevalent suboptimal diabetes care in clinical settings in Africa, there is an information gap regarding the current status of attainment of the recommended diabetes treatment goals and burden of common diabetes complications. This systematic review and meta-analysis aimed to document the proportion of attainment of optimal HbA1c, BP and LDLC goals and the prevalence of five diabetes complications (diabetic peripheral neuropathy, nephropathy, retinopathy, foot ulcers and peripheral arterial disease) in adult native populations with type 2 diabetes in Africa.

#### METHODS

This systematic review and meta-analysis was conducted according to the criteria outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.<sup>10</sup> The PRISMA checklist is available as a supplementary table

1. The study protocol was registered in the PROSPERO International Prospective Register of systematic reviews (CRD42020215576).

#### Search strategy

We searched EMBASE, PubMed and the Cochrane library for published studies from January 2000 to December 2020. The following search terms were used after discussion with a medical librarian: "Quality of diabetes care" OR "Indicators of diabetes care" OR "status of diabetes care" OR "diabetes care" OR "glycaemic control" OR "blood pressure control" OR "lipid profile control" OR "screening of diabetes complications" OR "diabetes complications" OR "screening for diabetic retinopathy" OR "screening for diabetic peripheral nephropathy" OR screening for diabetic neuropathy" OR screening for diabetic foot ulcers OR "screening for peripheral arterial disease" OR "prevalence of diabetic retinopathy" OR "prevalence of diabetic peripheral nephropathy" OR "prevalence of diabetic peripheral neuropathy" OR "prevalence of diabetic foot ulcers" OR "prevalence of peripheral arterial disease", AND "type 2 diabetes mellitus" OR "type 2 diabetes" AND Algeria OR Angola OR Benin OR Botswana OR "Burkina Faso" OR Burundi OR Cameroon OR "Cape Verde" OR "Central African Republic" OR Chad OR Comoros OR "Democratic Republic of Congo" OR Djibouti OR Egypt OR "Equatorial Guinea" OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR Guinea OR "Guinea Bissau" OR "Ivory Coast" OR "Cote d'Ivoire" OR Kenya OR Lesotho OR Liberia OR Libya OR Libya OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Morocco OR Mozambique OR Namibia OR Niger OR Nigeria OR Rwanda OR "Sao Tome" OR Senegal OR Seychelles OR "Sierra Leone" OR Somalia OR "South Africa" OR "South Sudan" OR Sudan OR Swaziland OR Tanzania OR Togo OR Tunisia OR Uganda OR Zaire OR Zambia OR Zimbabwe OR "Central Africa" OR "West Africa" OR "Western

Africa" OR "East Africa" OR "Eastern Africa" OR "North Africa" OR "Northern Africa" OR "Southern Africa" OR "sub Saharan Africa" OR "sub-Saharan Africa" OR Africa. In addition, references of included articles were hand-searched for any other original articles. The search and selection were restricted to studies written only in English language.

# Study selection criteria

The preliminary screening of titles and abstracts to identify potentially eligible articles was done by two independent reviewers (NC and DK). This was followed by removing all duplicates. After the initial screening, full texts of the potentially eligible studies were retrieved and closely reviewed for eligibility.

The inclusion criteria of studies were: cross-sectional, cohort or randomised controlled trials published between January 2000 and December 2020 in English language, studies reporting any data on proportion of adult patients with type 2 diabetes who attained the recommended optimal HbA1c, BP or LDLC targets and residing in African countries, and studies reporting data on any of prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers or peripheral arterial disease in adult patients with type 2 diabetes in African countries.

Any disagreements that arose were resolved by consensus. We excluded retrospective studies, case series and reports, studies published in languages other than English, and studies whose full texts could not be retrieved.

# Data extraction

After identifying the eligible original studies, they were collated and sent to additional reviewers to extract the relevant study information using a Microsoft Excel 2016 form. The information of interest that was extracted from the eligible studies included: last name of first author and year of publication, country (ies) and region (s) of Africa where

#### **BMJ** Open

the study was conducted, type of study design, number of study participants, mean age of study participants, proportion of female participants, proportion of participants with a current or history of smoking, proportion of participants on oral hypoglycaemic agents, insulin, lipid lowering agents (statins) and anti-hypertensive agents, mean body mass index (BMI) and HbA1c of study participants, proportions of participants with optimal HbA1c, BP and LDLC targets, and prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers and peripheral arterial disease.

#### **Operational definitions**

All included studies defined optimal targets of HbA1c, BP and LDLC as <7% (53 mmol/mol), <140/90 mmHg, and <2.6 mmol/l or 100 mg/dl, respectively as recommended by the IDF and ADA diabetes treatment guidelines.<sup>9 11</sup>

The definitions and measurements of diabetes complications greatly varied between studies. The following definitions were used for each diabetes complication by the various studies: micro/macroalbuminuria and/or an estimated glomerular filtration rate <60 ml/min/1.73 m<sup>2</sup> for presence of diabetic nephropathy, signs and symptoms suggestive of peripheral neuropathy, use of neuropathy screening scores like neuropathy disability score, Michigan Neuropathy Screening Instrument, neuropathy symptom score, and 10g monofilament testing for presence of diabetic peripheral neuropathy, presence of lesions like soft or hard exudates, cotton wool spots, micro-aneurysms, neovascularisation, and retinal hemorrhages on fundoscopy for diabetic retinopathy, presence of foot ulcers on clinical inspection for diabetic foot ulcers, and presence of measured ankle brachial index <0.9 using doppler studies for peripheral arterial disease.

#### Assessment of quality of studies

Quality of all eligible studies included in the systematic review and meta-analysis were assessed using the Newcastle-Ottawa Scale (NOS).<sup>12</sup> This was done by two independent authors (NC and SNL). The total score of the adapted scale is eight stars. Studies with more than six stars were considered high quality, while those with 5 and 6 stars, and <5 stars were considered moderate and low quality.

# Study outcomes

The study outcomes were the pooled proportions of attainment of the recommended optimal HbA1c, BP and LDLC goals and the pooled prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers and peripheral arterial disease in adult patients with type 2 diabetes in Africa.

### Data analysis

All analyses were performed using STATA 16.0 statistical software (Stata Corp, USA). The descriptive data of all eligible studies included in the systematic review and metaanalysis was summarised using frequencies and 95% confidence intervals (CI) and mean ± standard deviation (SD). The pooled proportions achieving optimal HbA1c, BP and LDLC goals and prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers and peripheral arterial disease were determined using a random-effect model meta-analysis and presented in forest plots.

Heterogeneity of studies was assessed using I<sup>2</sup> value. The I<sup>2</sup> values of <25, 25-50, and >50% were considered low, medium, and high levels of heterogeneity. To further explore heterogeneity effects across studies, we conducted a meta-regression analysis to assess whether the variations were associated with study level characteristics i.e., age, and sex of participants, and region in which the study was conducted.

We assessed the presence of publication bias using the Egger test of bias with p<0.05 indicating significant publication bias.<sup>13</sup> A narrative review was also used to present the study results. Information about all included studies was also summarised in tables.

#### Patient and Public Involvement

The main research question and outcomes of interest of the systematic review and meta-analysis were informed by the need to understand burden of diabetes complications in patients with type 2 diabetes in Africa and extent of attainment of optimal diabetes care in order to inform strategies aimed to improve optimal management of diabetes in the region. Because it was a systematic review and meta-analysis, we did not involve patients in its design, recruitment, and conduct.

#### Ethical approval

Because this was a systematic review and meta-analysis of published studies, no prior ethical approval was required.

# RESULTS

Figure 1 summarises the article selection in a PRISMA flow diagram.

The literature search returned a total of 835 articles. From these , 222 duplicates were removed. Titles and abstracts of the remaining 613 articles were reviewed and 235 articles were identified for full text retrieval. Of the 235 articles, 126 were excluded and the remaining 109 articles were included in this systematic review and meta-analysis A total of 48 and 89 studies included contained information of optimal diabetes treatment goals and diabetes complications, respectively while 28 studies reported information on both.

The 126 excluded articles included five studies published in French language, 21 retrospective studies, six studies with general populations (not entirely patients with

type 2 DM), 18 studies whose full texts were unable to be retrieved, and 76 studies that did not report outcomes of interest.

#### Characteristics of included studies

The majority of studies were performed in Eastern African countries (44, 40.4%).<sup>3 14-56</sup> The proportion of studies conducted in Western, Northern, Southern and Central Africa was 22% (n=24 studies) <sup>3 57-78</sup>, 16.5% (n=18 studies) <sup>79-97</sup>, 15.6% (n=17 studies) <sup>98-114</sup>, and 8.3% (n=9 studies) <sup>3 57 115-121</sup>, respectively. Three studies were conducted in more than one region of Africa (Western, Central and Eastern).<sup>3 56 57</sup> Most of the studies were cross-sectional in design (100, 91.7%).

A high heterogeneity was noted across all the studies with the l<sup>2</sup> value ranging from 97.4% to 99.3% for studies reporting burden of diabetes complications and 94.7% to 98.7% for studies reporting extent of attainment of optimal diabetes treatment goals. However, on meta-regression after adjusting for age and sex of study participants, and region where each study was conducted, the heterogeneity based on l<sup>2</sup> of studies on prevalence of diabetes complications decreased, ranging from 1.4% for studies on diabetic foot ulcers to 95.6% for studies on diabetic nephropathy. For studies on proportion of attainment of optimal treatment goals, the heterogeneity also decreased, to 56.3%, 92.1%, and 95.4%, for studies on optimal HbA1c, LDLC, and BP goal.

#### Characteristics of study participants

Table 1 summarises the characteristics of all participants in the studies included in the systematic review and meta-analysis.

The studies had a total of 63, 890 participants (ranging from 40 to 11,866) with 53.3% being female. The cumulative mean  $\pm$  SD age, BMI, and HbA1c of the participants was 54.9  $\pm$  4.7 years (ranging from 40.5 to 63.9 years), 27.9  $\pm$  0.5 kg/m<sup>2</sup> (ranging from 20.6 to 42.9 kg/m<sup>2</sup>), and 9.0  $\pm$  1.5% (ranging from 6.5% to 13.9%), respectively.

Page 15 of 74

#### **BMJ** Open

Among the studies that reported data on type of glucose-lowering therapies used by participants, treatment with oral hypoglycaemic agents, insulin, statins, and anti-hypertensives was noted in about 65% (95% CI 34-96.6), 31.3% (95% CI 26.3-36.2), 25.7% (95% CI 0.5-86.7), and 73.3% (95% CI 64.1-82.5) of participants, respectively.

# Assessment of study quality and publication bias

The assessment of quality of studies and funnel plots assessing publication bias are summarised in supplementary table 2 and supplementary figure 1 and 2, respectively. Based on the NOS, 84 (77.1%) of the included studies were of high quality, with 17 (15.6%) studies and 8 (7.3%) studies being of moderate and low quality, respectively. Regarding assessment of publication bias, there was observed publication bias especially in studies about the prevalence of diabetic nephropathy, peripheral neuropathy, and attainment of optimal BP control. The proportion of studies investigating the prevalence of diabetic nephropathy, peripheral neuropathy, peripheral arterial disease, retinopathy, and foot ulcers located within the funnel plot was 30% (n=12), 46.1% (n=13), 55.6% (n=10), 57% (29), and 90% (n=26), respectively. About 46%, 65%, and 73% of studies that reported proportion of attainment of optimal BP, HbA1c, and LDLC treatment goal were located within the funnel plot respectively.

# Extent of attainment of optimal HbA1c, BP and LDLC goals

Data on the reported proportions achieving the three diabetes treatment goals is summarised in tables 2, 3, and 4 and as forest plots in figures 2, 3 and 4.

Data on attainment of optimal HbA1c, BP and LDLC goals was reported in 34 studies<sup>3</sup> 18 19 21 33-35 42-45 57-59 61 62 65 82 85 90 91 95-97 102 103 109 114 115 118 122 123, 26 studies<sup>3</sup> 16 18 19 22 34 38 39 43 45 59 62 65 68 75 85 89 94 95 103 105 109 111 118 119 122, and 11 studies<sup>19 35 37 45 59 85 95 109 114</sup> <sup>122 124</sup>, respectively. The pooled proportion of attainment of an optimal HbA1c, BP and LDLC goal in the respective studies was 27% (95% CI 24-30, I<sup>2</sup>=94.7%), 38% (95% CI 30-46, I<sup>2</sup>=98.7%), and 42% (95% CI 32-52, I<sup>2</sup>=97.4%), respectively.

The lowest proportion of attainment of an optimal HbA1c was reported in a study performed in Egypt (4.4%)<sup>95</sup> and the highest in a study performed in Nigeria (52.5%)<sup>62</sup>. Regarding attainment of an optimal BP goal, the proportion ranged from 1.5% in a study performed in Uganda<sup>45</sup> to 85.9% in a study performed in Ethiopia<sup>22</sup>. Among the studies reporting information on the optimal LDLC goal, attainment of optimal targets ranged from 20.4% in a study performed in Botswana<sup>109</sup> to 84.8% in a study performed in Sudan<sup>92</sup>.

# Prevalence of diabetic retinopathy, peripheral neuropathy, nephropathy, foot ulcers and peripheral arterial disease

Information on the pooled and specific prevalence of diabetes complications as reported by the different studies is summarised in tables 5, 6, 7, 8, and 9 and as forest plots in figures 5, 6, 7, 8, and 9.

The prevalence of diabetic retinopathy, nephropathy, peripheral neuropathy, foot ulcers and peripheral arterial disease was reported in 51 studies<sup>3</sup> 17 22 24 26 28 36 39 46 49 51 52 54-56 64 65 68 70 72 74 75 79 80 84 86 87 89 93-95 101-105 107 110-114 116 118-121 125-127, 40 studies<sup>3</sup> 17 19 25 26 28-30 36 44 46 51 55 58 60 62 64 65 67 68 74 79 80 84 86 87 89 94 95 98 103 106-108 111 112 115-117 125, 36 studies<sup>3</sup> 17 23 25 26 28 31 32 35 36 41 46 49-51 55 56 65 66 71 74 77 79 83-86 94 95 103 107 116 125 126 128, 29 studies<sup>3</sup> 14-17 19 20 23 25 27 36 40 41 46 47 49 51 52 55 56 65 78 83 85 93 95 111 112 125, and 18 studies<sup>3</sup> 18 23 28 41 45 48 50 59 65 68 73 76 83 84 89 95 103. respectively.

#### Prevalence of diabetic peripheral neuropathy and retinopathy

Diabetic peripheral neuropathy and retinopathy were the most prevalent diabetes complications in the included studies with pooled prevalence of 38% (95% CI 31-45,  $I^2$ =98.2%) and 32% (95% CI 28-36,  $I^2$ =98%), respectively. A wide variation was noted

#### **BMJ** Open

in the burden of diabetic peripheral neuropathy across the studies, with prevalence ranging from 4% in a study conducted in Eritrea <sup>49</sup> to 83.3% in a study conducted in Nigeria <sup>66</sup>. A study by Makwero and colleagues conducted in Lesotho reported the lowest prevalence of diabetic retinopathy of 4.7% <sup>107</sup> while the study by Megalla and colleagues conducted in Egypt reported the highest (90%)<sup>95</sup>.

*Prevalence of diabetic nephropathy, peripheral arterial disease, and foot ulcers* The pooled prevalence of diabetic nephropathy, peripheral arterial disease, and foot ulcers in the included studies was 31% (95% CI 22-41, I<sup>2</sup>=99.3%), 19% (95% CI 12-25, I<sup>2</sup>=98.1%), and 11% (95% CI 9-14, I<sup>2</sup>=97.4%), respectively.

The prevalence of diabetic nephropathy and peripheral arterial disease ranged from 2.2% in Ethiopia<sup>17</sup> to 90% in Nigeria<sup>62</sup> and 2.7% in a study performed in Morocco<sup>89</sup> to 52.5% in a study performed in Nigeria<sup>76</sup>, respectively. Regarding the burden of diabetic foot ulcers, there was also an observed heterogeneity, with prevalence ranging from 0.4% in Ethiopia<sup>51</sup> to 86.7% in Egypt<sup>95</sup>.

#### DISCUSSION

To our knowledge, this is the first systematic review and meta-analysis to simultaneously document the proportion of attainment of the three key indicators of optimal diabetes care (HbA1c, BP, and LDLC goals) and the burden of five diabetes complications in an indigenous adult population with type 2 diabetes in Africa. In this study of a total of 63,890 study participants, we report that, generally, a small proportion of adult patients with type 2 diabetes in Africa attain optimal diabetes treatment targets, especially HbA1c and BP goals (less than 40%). In addition, diabetes complications are relatively common with diabetic neuropathy being the most prevalent (38%) followed by diabetic retinopathy (32%), nephropathy (31%), peripheral arterial disease (19%), and foot ulcers (11%).

## Proportions of attainment of optimal diabetes treatment goals

Similar to our study findings, achievement of optimal HbA1c, BP and LDLC treatment goals has also been widely reported to be a significant clinical challenge in several studies performed in Caucasian and Asian populations with type 2 diabetes in highand middle-income countries.<sup>129-134</sup> In one large registry-based study of >100, 000 adults with a self-reported diagnosis of diabetes carried out between 1999 to 2010 in USA, 33.4 to 48.7% of adult patients with diabetes did not achieve the recommended HbA1c, BP and LDLC treatment targets. Less than 15% met all the three treatment targets in addition to smoking cessation.<sup>129</sup>

Similarly, a low proportion of achievement of an optimal HbA1c target was also reported by a large international, multicenter observational study of 2,704 multi-racial adult population with diabetes from 10 countries (two from Africa, five from Middle East and three from South Asia). About 46% of the participants were Caucasian. An optimal HbA1c goal of <7% (53 mmol/mol) was reported in only 25.8% of the participants.<sup>131</sup> In the Japan Epidemiology Collaboration on Occupational Health (J-ECOH) study which enrolled 3,070 adult employees of large manufacturing companies, optimal HbA1c, BP, and LDLC goals as recommended by the American Diabetes Association

were noted in 44.9%, 76.6%, and 27.1% of participants, respectively. Only 11.2% of participants attained all the three treatment goals.<sup>132</sup>

#### Burden of diabetes complications in Africa

Regarding studies on the burden of diabetes complications in Africa, there were few investigating the prevalence of diabetic foot ulcers and peripheral arterial disease with diabetic retinopathy, peripheral nephropathy and neuropathy being the most studied. Diabetic peripheral neuropathy and retinopathy remain the most prevalent diabetes complication and diabetic foot ulcers the least prevalent.

Page 19 of 74

#### **BMJ** Open

With regards to prevalence of diabetic foot ulcers, an earlier published systematic review and meta-analysis on characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa by Rigato et al reported a pooled prevalence of diabetic foot ulcers of 13%, a finding close to what we observed (11%).<sup>135</sup> In another systematic review and meta-analysis on prevalence of diabetic peripheral neuropathy in African populations with DM, Shiferaw et al reported a slightly higher overall prevalence of 46% compared to what we found in our study (38%), while including fewer studies (n=23).<sup>136</sup>

Similar to our study, considerable heterogeneity was also reported in the documented prevalence of the varied diabetes complications in Africa in most previously published systematic reviews. This may be due to variations in clinical definitions of diabetes complications in the studies. Burgess et al <sup>137</sup> and Achigbu et al<sup>138</sup>, reported a wide disparity in prevalence of diabetic retinopathy in the included studies of 7-62.4%, and 13-82.6%, respectively. Noubiap JJ et al in a systematic review on burden of diabetic nephropathy in 2015 reported an overall prevalence of chronic kidney disease in patients with diabetes ranging between 11-83.7%.<sup>139</sup> Johnston LE et al in a systematic review that aimed to assess the epidemiological and clinical reports regarding PAD in SSA documented the prevalence of PAD in patients with diabetes as reported by three studies to range from 39% to 52%.<sup>140</sup>

Compared to Caucasian and Asian adult populations with type 2 diabetes, our study has demonstrated that adult African patients are disproportionately affected by complications of DM. The Joint Asia Diabetes Evaluation (JADE) program that undertook comprehensive risk assessments of 3,687 adult patients with type 2 DM recruited from seven Asian countries reported prevalence of peripheral arterial

disease, diabetic neuropathy, macro-and microalbuminuria, and diabetic retinopathy of 3.1%, 15%, 18.8%, and 20.4%, respectively.<sup>141</sup>

The National Health and Nutrition Examination Survey conducted from the 1988–1994 and 1999–2018 in USA in 1,486 nonpregnant adults (aged  $\geq$ 20 years) with newly diagnosed diabetes (diagnosed within the past 2 years) also documented a low burden of most diabetes complications. Diabetic foot ulcers, peripheral arterial disease, diabetic retinopathy, neuropathy, and nephropathy (albuminuria) were prevalent in 6.3%, 9.2%, 12.1%, 14.5%, 18.7%, respectively.<sup>142</sup>

The documented low proportions of attainment of optimal diabetes treatment goals (optimal HbA1c, BP and LDLC targets) in Africa is associated with an increased risk of onset and progression of diabetes complications, hence increasing morbidity and mortality in addition to causing a significant economic strain on meagre health resources. This generally observed low proportion of attainment of key diabetes treatment goals and high prevalence of diabetes complications, notably diabetic neuropathy, retinopathy, and nephropathy in Africa exists broadly due to challenges related to screening, diagnosis, and management of DM.

Awareness of diabetes in the general African population and healthcare practitioners remains very poor, resulting in delayed diagnosis of diabetes. The challenge of ready access to affordable essential diabetes medicines like insulin and statins and diagnostic tests or equipment like glucometers for home self-monitoring of glucose, HbA1c and lipid profile tests remains highly prevalent in most African countries.<sup>143-147</sup> Effective management of diabetes and its related cardiovascular risk factors like hypertension and dyslipidaemia in most healthcare settings in Africa also remains a significant clinical challenge.<sup>3</sup> Most healthcare facilities especially the lower-tier ones lack local or institution-specific comprehensive diabetes treatment guidelines to guide

#### **BMJ** Open

healthcare practitioners on how to optimally manage diabetes, in addition to the evident knowledge-practice gaps in healthcare practitioners.<sup>2</sup>

Healthcare systems in most African countries remain poorly structured to optimally manage most non-communicable diseases like diabetes along with an inadequately funded health sector. Most African countries have not yet fulfilled the 2001 Abuja Declaration of allocating 15% of their national annual budget to the health sector.<sup>2 148</sup> This systematic review and meta-analysis had its strengths and limitations. To our knowledge, it is the first to simultaneously investigate the status of attainment of the three key diabetes treatment goals and burden of five common diabetes complications in an adult indigenous African population with type 2 diabetes.

It also had its limitations. There was also an observed heterogeneity in the included studies. This could be explained by the differences in study sites (tertiary vs low-tier hospitals or private vs public hospitals), patient characteristics (age, duration of diabetes, co-existing medical conditions), regions of study, and diagnostic modalities used to identify diabetes complications. The systematic review also excluded studies published in French which is an official language of some African countries. However, these were very few. There was evidence of publication bias some the included studies especially studies investigating the prevalence of diabetic nephropathy and peripheral neuropathy and proportion of attainment of an optimal BP goal. About 23% of the included studies had moderate and low quality on assessment using the adapted NOS for cross-sectional studies.

#### CONCLUSION

Achievement of optimal diabetes treatment goals, especially HbA1c and BP, in adult African patients with type 2 diabetes remains low in Africa. Diabetes complications especially diabetic peripheral neuropathy and retinopathy also remain highly **BMJ** Open

prevalent. Implementation of universal diabetes screening and education initiatives coupled with improving knowledge about diabetes management among healthcare practitioners, ready access to affordable essential diabetes diagnostic tests and medicines in Africa are integral in improving overall optimal diabetes care and reducing the burden of diabetes complications.

Considering the projected future increase in the prevalence of diabetes globally, with Africa to be the most affected region, there is an urgent need to address glaring gaps in diabetes care and to develop simple and pragmatic interventions to improve treatment outcomes and reduce burden of diabetes complications

# Acknowledgements

We would like to thank Miss Laura Russel, a medical librarian based at the Education and Research Centre, Wythenshawe Hospital, Manchester UK who was very helpful in performing the initial search of the databases and retrieval of all the studies that were screened. Patient advisers were not involved in this systematic review and metaanalysis.

#### Funding

The systematic review and meta-analysis is part of the <u>Preventive Treatment Of Latent</u> <u>Tuberculosis Infection In People With Diabetes Mellitus (PROTID) study funded by the</u> European Developing Countries Clinical Trials Partnership 2 (EDCTP) programme supported by the European Union (grant number RIA2018CO-2514-PROTID).

# **Conflict of interest statement**

All the authors report no conflict of interest.

# Availability of data

The data sets that were analysed are available on reasonable request to the corresponding author.

# **Contributorship statement**

DK and NC-Conceived the research idea, performed the preliminary screening of titles and abstracts to identify potentially eligible articles, and wrote the initial draft of the manuscript, DK, NC, IAB, SNL, IS (Sekitoleko), APK, SN- Retrieved full texts and identified the eligible articles, KK, SNL, APK, SN, PS, FB, LEM, WO, TDM, NEN, IS (Sabi)-extracted data from the identified eligible articles, DK and IS (Sekitoleko) performed the data analysis and interpretation, NC, KK, and SNL- performed the assessment of quality of studies, KS, PCH, LB, JVM, RVC, JC- offered additional data interpretation and supervised this work. All the authors reviewed the different versions of the manuscript and read and approved the final draft of the manuscript.

# REFERENCES

- 1. IDF. International Diabetes Federation Diabetes Atlas 10th edition. <u>https://diabetes.atlas.org</u> (accessed 12 November 2021) 2021
- Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. *Lancet Diabetes Endocrinol* 2017;5(8):622-67. doi: 10.1016/s2213-8587(17)30181-x [published Online First: 2017/07/10]
- Sobngwi E, Ndour-Mbaye M, Boateng KA, et al. Type 2 diabetes control and complications in specialised diabetes care centres of six sub-Saharan African countries: the Diabcare Africa study. *Diabetes research and clinical practice* 2012;95(1):30-6. doi: 10.1016/j.diabres.2011.10.018 [published Online First: 2011/11/11]
- Gill GV, Mbanya JC, Ramaiya KL, et al. A sub-Saharan African perspective of diabetes. *Diabetologia* 2009;52(1):8-16. doi: 10.1007/s00125-008-1167-9 [published Online First: 2008/10/11]

- Hall V, Thomsen RW, Henriksen O, et al. Diabetes in Sub Saharan Africa 1999-2011: epidemiology and public health implications. A systematic review. *BMC Public Health* 2011;11:564. doi: 10.1186/1471-2458-11-564 [published Online First: 2011/07/16]
- Nuche-Berenguer B, Kupfer LE. Readiness of Sub-Saharan Africa Healthcare Systems for the New Pandemic, Diabetes: A Systematic Review. *Journal of Diabetes Research* 2018;2018:9262395. doi: 10.1155/2018/9262395
- American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2021. *Diabetes care* 2021;44:S125-S50; DOI: 10.2337/dc21-S010.
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. *Diabetes care* 2021;44(Supplement 1):S111. doi: 10.2337/dc21-S009
- IDF. International Diabetes Federation. IDF Clinical Practice Recommendations for Managing Type 2 Diabetes in Primary Care. <u>https://www.idf.org/e-library/guidelines/128-idf-clinical-practice-recommendations-for-managing-</u>

type-2-diabetes-in-primary-care.html (accessed on 17 September 2021). 2018

- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 [published Online First: 2009/07/22]
- 11. ADA. Americal Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. *Diabetes Care* 2021;44(Suppl 1):S15-s33. doi: 10.2337/dc21-S002 [published Online First: 2020/12/11]

| 12. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for        |
|---------------------------------------------------------------------------------------|
| assessing the quality of nonrandomised studies in meta-analyses.                      |
| http://wwwohrica/programs/clinical_epidemiology/oxfordasp (accessed 2                 |
| <i>September 2021)</i> 2021                                                           |
| 13. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a        |
| simple, graphical test. <i>BMJ</i> 1997;315(7109):629-34. doi:                        |
| 10.1136/bmj.315.7109.629                                                              |
| 14. Gulam-Abbas Z, Lutale JK, Morbach S, et al. Clinical outcome of diabetes patients |
| hospitalized with foot ulcers, Dar es Salaam, Tanzania. Diabetic medicine : a         |
| journal of the British Diabetic Association 2002;19(7):575-9. doi:                    |
| 10.1046/j.1464-5491.2002.00740.x [published Online First: 2002/07/09]                 |
| 15. Abbas ZG, Lutale JK, Bakker K, et al. The 'Step by Step' Diabetic Foot Project in |
| Tanzania: a model for improving patient outcomes in less-developed countries.         |
| Int Wound J 2011;8(2):169-75. doi: 10.1111/j.1742-481X.2010.00764.x                   |
| [published Online First: 2011/01/27]                                                  |
| 16. Abdissa D, Adugna T, Gerema U, et al. Prevalence of Diabetic Foot Ulcer and       |
| Associated Factors among Adult Diabetic Patients on Follow-Up Clinic at               |
| Jimma Medical Center, Southwest Ethiopia, 2019: An Institutional-Based                |
| Cross-Sectional Study. J Diabetes Res 2020;2020:4106383. doi:                         |
| 10.1155/2020/4106383 [published Online First: 2020/04/08]                             |
| 17. Abejew AA, Belay AZ, Kerie MW. Diabetic Complications among Adult Diabetic        |
| Patients of a Tertiary Hospital in Northeast Ethiopia. Advances in Public Health      |

2015;2015:290920. doi: 10.1155/2015/290920

18. Akalu Y, Belsti Y. Hypertension and Its Associated Factors Among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. *Diabetes Metab Syndr Obes* 2020;13:1621-31. doi: 10.2147/DMSO.S254537

- Amour AA, Chamba N, Kayandabila J, et al. Prevalence, Patterns, and Factors Associated with Peripheral Neuropathies among Diabetic Patients at Tertiary Hospital in the Kilimanjaro Region: Descriptive Cross-Sectional Study from North-Eastern Tanzania. *Int J Endocrinol* 2019;2019:5404781. doi: 10.1155/2019/5404781 [published Online First: 2019/07/06]
- Chalya PL, Mabula JB, Dass RM, et al. Surgical management of Diabetic foot ulcers: A Tanzanian university teaching hospital experience. *BMC Res Notes* 2011;4:365. doi: 10.1186/1756-0500-4-365 [published Online First: 2011/09/29]
- 21. Chamba NG, Shao ER, Tolbert S, et al. Lipid Profile of Type 2 Diabetic Patients at a Tertiary Hospital in Tanzania: Cross Sectional Study. *J Endocrinol Diab* 2017;4(1):1-6.
- Chisha Y, Terefe W, Assefa H, et al. Prevalence and factors associated with diabetic retinopathy among diabetic patients at Arbaminch General Hospital, Ethiopia: Cross sectional study. *PLoS One* 2017;12(3):e0171987. doi: 10.1371/journal.pone.0171987
- 23. Chiwanga FS, Njelekela MA. Diabetic foot: prevalence, knowledge, and foot selfcare practices among diabetic patients in Dar es Salaam, Tanzania - a crosssectional study. *J Foot Ankle Res* 2015;8:20-20. doi: 10.1186/s13047-015-0080-y
- 24. Cleland CR, Burton MJ, Hall C, et al. Diabetic retinopathy in Tanzania: prevalence and risk factors at entry into a regional screening programme. *Tropical medicine*

& international health : TM & IH 2016;21(3):417-26. doi: 10.1111/tmi.12652 [published Online First: 2015/12/09]

- 25. Deribe B, Woldemichael K, Nemera G. Prevalence and Factors Influencing Diabetic Foot Ulcer among Diabetic Patients Attending Arbaminch Hospital, South Ethiopia. J Diabetes Metab Disord;2:322.
- Fasil A, Biadgo B, Abebe M. Glycemic control and diabetes complications among diabetes mellitus patients attending at University of Gondar Hospital, Northwest Ethiopia. *Diabetes Metab Syndr Obes* 2018;12:75-83. doi: 10.2147/DMSO.S185614
- 27. Gebrekirstos K, Gebrekiros S, Fantahun A. Prevalence and Factors Associated With Diabetic Foot Ulcer among Adult Patients in Ayder Referral Hospital Diabetic Clinic Mekelle, North Ethiopia, 2013. *J Diabetes Metab* 2015;6:579.
- 28. Gill G, Gebrekidan A, English P, et al. Diabetic complications and glycaemic control in remote North Africa. QJM : monthly journal of the Association of Physicians 2008;101(10):793-8. doi: 10.1093/qjmed/hcn096 [published Online First: 2008/08/09]
- 29. Kumela Goro K, Desalegn Wolide A, Kerga Dibaba F, et al. Patient Awareness, Prevalence, and Risk Factors of Chronic Kidney Disease among Diabetes Mellitus and Hypertensive Patients at Jimma University Medical Center, Ethiopia. *BioMed Research International* 2019;2019:2383508. doi: 10.1155/2019/2383508
- 30. Janmohamed MN, Kalluvya SE, Mueller A, et al. Prevalence of chronic kidney disease in diabetic adult out-patients in Tanzania. *BMC Nephrol* 2013;14:183-83. doi: 10.1186/1471-2369-14-183

- 31. Jarso G, Ahmed A, Feleke Y. The prevalence, clinical features and management of periphral neuropathy among diabetic patients in Tikur Anbessa and St. Paul's Specialized University Hospitals, Addis Ababa, Ethiopia. *Ethiop Med J* 2011;49(4):299-311. [published Online First: 2011/10/01]
- Jember G, Melsew YA, Fisseha B, et al. Peripheral Sensory Neuropathy and associated factors among adult diabetes mellitus patients in Bahr Dar, Ethiopia. *Journal of diabetes and metabolic disorders* 2017;16:16-16. doi: 10.1186/s40200-017-0295-5
- 33. Kibirige D, Akabwai GP, Kampiire L, et al. Frequency and predictors of suboptimal glycemic control in an African diabetic population. *Int J Gen Med* 2017;10:33-38. doi: 10.2147/IJGM.S124548
- 34. Kimando MW, Otieno FCF, Ogola EN, et al. Adequacy of control of cardiovascular risk factors in ambulatory patients with type 2 diabetes attending diabetes outpatients clinic at a county hospital, Kenya. *BMC Endocrine Disorders* 2017;17(1):73. doi: 10.1186/s12902-017-0223-1
- 35. Kisozi T, Mutebi E, Kisekka M, et al. Prevalence, severity and factors associated with peripheral neuropathy among newly diagnosed diabetic patients attending Mulago hospital: a cross-sectional study. *Afr Health Sci* 2017;17(2):463-73. doi: 10.4314/ahs.v17i2.21 [published Online First: 2017/10/25]
- 36. Lebeta KR, Argaw Z, Birhane BW. Prevalence of Diabetic Complications and Its Associated Factors Among Diabetes Mellitus Patients Attending Diabetes Mellitus Clinics; Institution Based Cross Sectional Study. *American Journal of Health Research*;5(2):38-43.

| 4        |
|----------|
| 5        |
| 6        |
| 0        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
|          |
| 14       |
| 15       |
| 16<br>17 |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
|          |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
|          |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 44<br>45 |
|          |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
|          |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 58<br>59 |
| 72       |

60

37. Lumu W, Kampiire L, Akabwai GP, et al. Dyslipidaemia in a Black African diabetic population: burden, pattern and predictors. *BMC Research Notes* 2017;10(1):587. doi: 10.1186/s13104-017-2916-y

- Lumu W, Kampiire L, Akabwai GP, et al. Statin therapy reduces the likelihood of suboptimal blood pressure control among Ugandan adult diabetic patients. *Ther Clin Risk Manag* 2017;13:215-21. doi: 10.2147/TCRM.S120423
- Magan T, Pouncey A, Gadhvi K, et al. Prevalence and severity of diabetic retinopathy in patients attending the endocrinology diabetes clinic at Mulago Hospital in Uganda. *Diabetes research and clinical practice* 2019;152:65-70. doi: 10.1016/j.diabres.2019.04.024 [published Online First: 2019/05/08]
- 40. Mamo T, Yifter H, Lemessa T. Risk factors assessment of diabetic foot ulcer using the sixty second screening tool: A hospital based cross-sectional study at Tikur Anbessa Specialised Hospital. *Ethiop Med J* 2015;Suppl 2:45-9. [published Online First: 2015/11/26]
- 41. Mariam TG, Alemayehu A, Tesfaye E, et al. Prevalence of Diabetic Foot Ulcer and Associated Factors among Adult Diabetic Patients Who Attend the Diabetic Follow-Up Clinic at the University of Gondar Referral Hospital, North West Ethiopia, 2016: Institutional-Based Cross-Sectional Study. *J Diabetes Res* 2017;2017:2879249. doi: 10.1155/2017/2879249 [published Online First: 2017/08/10]
- 42. Mbwete GW, Kilonzo KG, Shao ER, et al. Suboptimal Blood Pressure Control, Associated Factors, and Choice of Antihypertensive Drugs among Type 2 Diabetic Patients at KCMC, Tanzania. *J Diabetes Res* 2020;2020:4376251. doi: 10.1155/2020/4376251 [published Online First: 2020/08/11]

- 43. Muddu M, Mutebi E, Mondo C. Prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago Hospital. *Afr Health Sci* 2016;16(1):183-93. doi: 10.4314/ahs.v16i1.25 [published Online First: 2016/07/01]
- 44. Muddu M, Mutebi E, Ssinabulya I, et al. Utility of albumin to creatinine ratio in screening for microalbuminuria among newly diagnosed diabetic patients in Uganda: a cross sectional study. *Afr Health Sci* 2019;19(1):1607-16. doi: 10.4314/ahs.v19i1.36 [published Online First: 2019/06/01]
- 45. Mwebaze RM, Kibirige D. Peripheral arterial disease among adult diabetic patients attending a large outpatient diabetic clinic at a national referral hospital in Uganda: a descriptive cross sectional study. *PLoS One* 2014;9(8):e105211. doi: 10.1371/journal.pone.0105211 [published Online First: 2014/08/19]
- 46. Neuhann HF, Warter-Neuhann C, Lyaruu I, et al. Diabetes care in Kilimanjaro region: clinical presentation and problems of patients of the diabetes clinic at the regional referral hospital-an inventory before structured intervention. *Diabetic medicine : a journal of the British Diabetic Association* 2002;19(6):509-13. doi: 10.1046/j.1464-5491.2002.00673.x [published Online First: 2002/06/13]
- 47. Nyamu PN, Otieno CF, Amayo EO, et al. Risk factors and prevalence of diabetic foot ulcers at Kenyatta National Hospital, Nairobi. *East Afr Med J* 2003;80(1):36-43. doi: 10.4314/eamj.v80i1.8664 [published Online First: 2003/05/21]
- 48. Okello S, Millard A, Owori R, et al. Prevalence of lower extremity peripheral artery disease among adult diabetes patients in southwestern Uganda. *BMC*

**BMJ** Open

*Cardiovasc Disord* 2014;14:75. doi: 10.1186/1471-2261-14-75 [published Online First: 2014/06/11]

- 49. Seyum B, Mebrahtu G, Usman A, et al. Profile of patients with diabetes in Eritrea: results of first phase registry analyses. *Acta Diabetol* 2010;47(1):23-7. doi: 10.1007/s00592-009-0093-8 [published Online First: 2009/02/03]
- Smide B. Outcome of foot examinations in Tanzanian and Swedish diabetic patients, a comparative study. *J Clin Nurs* 2009;18(3):391-8. doi: 10.1111/j.1365-2702.2008.02492.x [published Online First: 2009/02/05]
- 51. Tesfaye D, Tessema F, Taha M. Coexistence of Chronic Complications among Diabetic Patients at Nigist Eleni Mohammed Memorial Hospital, Hossana, South Ethiopia. Open Access Library Journal 2015;2:1-10.
- 52. Tilahun AN, Waktola C, Tewodros GM, et al. Major Micro vascular Complications and Associated Risk Factors among Diabetic Outpatients in Southwest Ethiopia. *Endocrinol Metab Syndr* 2017;6:272.
- 53. Vogt EC, Øksnes M, Suleiman F, et al. Assessment of diabetic polyneuropathy in Zanzibar: Comparison between traditional methods and an automated point-ofcare nerve conduction device. *Journal of clinical & translational endocrinology* 2017;10:9-14. doi: 10.1016/j.jcte.2017.09.001
- 54. Woodward R, Mgaya E, Mwanansao C, et al. Retinopathy in adults with hypertension and diabetes mellitus in Western Tanzania: a cross-sectional study. *Tropical medicine & international health : TM & IH* 2020;25(10):1214-25. doi: 10.1111/tmi.13463 [published Online First: 2021/01/06]
- 55. Worku D, Hamza L, Woldemichael K. Patterns of diabetic complications at jimma university specialized hospital, southwest ethiopia. *Ethiop J Health Sci* 2010;20(1):33-39. doi: 10.4314/ejhs.v20i1.69424

- 56. Ekoru K, Doumatey A, Bentley AR, et al. Type 2 diabetes complications and comorbidity in Sub-Saharan Africans. *EClinicalMedicine* 2019;16:30-41. doi: 10.1016/j.eclinm.2019.09.001
- 57. Camara A, Baldé NM, Sobngwi-Tambekou J, et al. Poor glycemic control in type
   2 diabetes in the South of the Sahara: the issue of limited access to an HbA1c
   test. *Diabetes research and clinical practice* 2015;108(1):187-92. doi:
   10.1016/j.diabres.2014.08.025 [published Online First: 2015/02/24]
- 58. Adetunji OR, Adeleye JO, Agada NO, et al. Microalbuminuria and clinical correlates in black African patients with type 2 diabetes. West African journal of medicine 2006;25(4):279-83. [published Online First: 2007/04/04]
- 59. Agboghoroma OF, Akemokwe FM, Puepet FH. Peripheral arterial disease and its correlates in patients with type 2 diabetes mellitus in a teaching hospital in northern Nigeria: a cross-sectional study. *BMC Cardiovascular Disorders* 2020;20(1):102. doi: 10.1186/s12872-020-01395-3
- 60. Alebiosu CO. Clinical diabetic nephropathy in a tropical African population. *West African journal of medicine* 2003;22(2):152-5. doi: 10.4314/wajm.v22i2.27938 [published Online First: 2003/10/08]
- 61. Attoye TE, Adebobola PA, Inem V. An Assessment of Glycaemic Control and Modes of Health Financing among Type 2 Diabetic Patients Attending a Teaching Hospital in South-western Nigeria. West African journal of medicine 2020;37(3):237-47. [published Online First: 2020/06/02]
- 62. Balogun WO, Abbiyesuku FM. Excess renal insufficiency among type 2 diabetic patients with dip-stick positive proteinuria in a tertiary hospital. *Afr J Med Med Sci* 2011;40(4):399-403. [published Online First: 2012/07/13]

| 63. Bello A, Biliaminu S, Wahab K, et al. Distal symmetrical polyneuropathy and     |
|-------------------------------------------------------------------------------------|
| cardiovascular autonomic neuropathy among diabetic patients in llorin:              |
| Prevalence and predictors. Niger Postgrad Med J 2019;26(2):123-28. doi:             |
| 10.4103/npmj.npmj_30_19 [published Online First: 2019/06/13]                        |
| 64. Bello BT, Amira CO. Pattern and predictors of urine protein excretion among     |
| patients with type 2 diabetes attending a single tertiary hospital in Lagos,        |
| Nigeria. Saudi J Kidney Dis Transpl 2017;28(6):1381-88. doi: 10.4103/1319-          |
| 2442.220869 [published Online First: 2017/12/22]                                    |
| 65. Uloko AE, Ofoegbu EN, Chinenye S, et al. Profile of Nigerians with diabetes     |
| mellitus - Diabcare Nigeria study group (2008): Results of a multicenter study.     |
| Indian J Endocrinol Metab 2012;16(4):558-64. doi: 10.4103/2230-8210.98011           |
| 66. Ede O, Eyichukwu G, Madu K, et al. Evaluation of Peripheral Neuropathy in       |
| Diabetic Adults with and without Foot Ulcers in an African Population. Journal      |
| of Biosciences and Medicines 2018;6:71-78.                                          |
| 67. Eghan BA, Jr., Frempong MT, Adjei-Poku M. Prevalence and predictors of          |
| microalbuminuria in patients with diabetes mellitus: a cross-sectional              |
| observational study in Kumasi, Ghana. <i>Ethn Dis</i> 2007;17(4):726-30. [published |
| Online First: 2007/12/13]                                                           |
| 68. Hayfron-Benjamin C, van den Born BJ, Maitland-van der Zee AH, et al.            |
| Microvascular and macrovascular complications in type 2 diabetes Ghanaian           |
| residents in Ghana and Europe: The RODAM study. J Diabetes Complications            |
| 2019;33(8):572-78. doi: 10.1016/j.jdiacomp.2019.04.016 [published Online            |
| First: 2019/06/07]                                                                  |
| 69. Iwuala SO, Olamoyegun MA, Sabir AA, et al. The relationship between self-       |
| monitoring of blood glucose and glycaemic control among patients attending an       |

 urban diabetes clinic in Nigeria. *Ann Afr Med* 2015;14(4):182-7. doi: 10.4103/1596-3519.155992 [published Online First: 2015/10/17]

- 70. Kizor-Akaraiwe NN, Ezegwui IR, Oguego N, et al. Prevalence, Awareness and Determinants of Diabetic Retinopathy in a Screening Centre in Nigeria. J *Community Health* 2016;41(4):767-71. doi: 10.1007/s10900-016-0151-4 [published Online First: 2016/01/27]
- 71. Kuate-Tegueu C, Temfack E, Ngankou S, et al. Prevalence and determinants of diabetic polyneuropathy in a sub-Saharan African referral hospital. *J Neurol Sci* 2015;355(1-2):108-12. doi: 10.1016/j.jns.2015.05.035 [published Online First: 2015/06/07]
- Lartey SY, Aikins AK. Visual impairment amongst adult diabetics attending a tertiary outpatient clinic. *Ghana medical journal* 2018;52(2):84-87. doi: 10.4314/gmj.v52i2.4 [published Online First: 2019/01/22]
- 73. Ogbera AO, Adeleye O, Solagberu B, et al. Screening for peripheral neuropathy and peripheral arterial disease in persons with diabetes mellitus in a Nigerian University Teaching Hospital. *BMC Research Notes* 2015;8(1):533. doi: 10.1186/s13104-015-1423-2
- 74. Olamoyegun M, Ibraheem W, Iwuala S, et al. Burden and pattern of micro vascular complications in type 2 diabetes in a tertiary health institution in Nigeria. *Afr Health Sci* 2015;15(4):1136-41. doi: 10.4314/ahs.v15i4.12 [published Online First: 2016/03/10]
- 75. Onakpoya OH, Kolawole BA, Adeoye AO, et al. Visual impairment and blindness in type 2 diabetics: Ife-Ijesa diabetic retinopathy study. *Int Ophthalmol* 2016;36(4):477-85. doi: 10.1007/s10792-015-0145-8 [published Online First: 2015/11/06]

| 3              |
|----------------|
| 4              |
| 5              |
| 6              |
| 7              |
| /              |
| 8              |
| 9              |
| 10             |
| 11             |
| 12<br>13<br>14 |
| 13             |
| 14             |
| 15             |
| 16             |
| 16<br>17<br>18 |
| 17             |
| 18             |
| 19<br>20       |
| 20             |
| 21             |
| 22             |
| 23             |
| 24             |
| 25             |
| 25             |
| 26             |
| 27             |
| 28             |
| 29             |
| 30             |
| 31             |
| 32             |
| 33             |
| 27             |
| 34             |
| 35             |
| 36             |
| 37             |
| 38             |
| 39             |
| 40             |
| 41             |
| 42             |
| 42<br>43       |
|                |
| 44             |
| 45             |
| 46             |
| 47             |
| 48             |
| 49             |
| 50             |
| 51             |
| 52             |
|                |
| 53             |
| 54             |
| 55             |
| 56             |
| 57             |
| 58             |
| 59             |
| 55             |

| 76. Oyelade BO, OlaOlorun AD, Odeigah LO, et al. The prevalence of periphera   |
|--------------------------------------------------------------------------------|
| arterial disease in diabetic subjects in south-west Nigeria. Afr J Prim Health |
| Care Fam Med 2012;4(1):354. doi: 10.4102/phcfm.v4i1.354                        |

- 77. Ugoya SO, Echejoh GO, Ugoya TA, et al. Clinically diagnosed diabetic neuropathy:
   frequency, types and severity. *J Natl Med Assoc* 2006;98(11):1763-6.
   [published Online First: 2006/11/30]
- 78. Unachukwu C, Babatunde S, Ihekwaba AE. Diabetes, hand and/or foot ulcers: a cross-sectional hospital-based study in Port Harcourt, Nigeria. *Diabetes research and clinical practice* 2007;75(2):148-52. doi: 10.1016/j.diabres.2006.05.016 [published Online First: 2006/07/11]
- 79. Mohmad AH, Hassan A. Correlation between retinopathy, nephropathy and peripheral neuropathy among adult Sudanese diabetic patients. . *Sudan J Me Sci* 2011;6(1)
- Ahmed MH, Elwali ES, Awadalla H, et al. The relationship between diabetic retinopathy and nephropathy in Sudanese adult with diabetes: population based study. *Diabetes & metabolic syndrome* 2017;11 Suppl 1:S333-s36. doi: 10.1016/j.dsx.2017.03.011 [published Online First: 2017/03/23]
- 81. Albalawi HB, Alali NM, Alenezi SH, et al. The relationship between periodontitis and diabetic retinopathy: A cross-sectional longitudinal study. *Australasian Medical Journal* 2020;13:50-54.
- Ashur ST, Shah SA, Bosseri S, et al. Glycaemic control status among type 2 diabetic patients and the role of their diabetes coping behaviours: a clinic-based study in Tripoli, Libya. *The Libyan journal of medicine* 2016;11:31086. doi: 10.3402/ljm.v11.31086 [published Online First: 2016/03/24]

- 83. Assaad-Khalil SH, Zaki A, Abdel Rehim A, et al. Prevalence of diabetic foot disorders and related risk factors among Egyptian subjects with diabetes. *Primary care diabetes* 2015;9(4):297-303. doi: 10.1016/j.pcd.2014.10.010 [published Online First: 2014/12/30]
  - 84. Khalil SA, Megallaa MH, Rohoma KH, et al. Prevalence of Chronic Diabetic Complications in Newly Diagnosed versus Known Type 2 Diabetic Subjects in a Sample of Alexandria Population, Egypt. *Curr Diabetes Rev* 2019;15(1):74-83. doi: 10.2174/1573399814666180125100917 [published Online First: 2018/01/26]
  - 85. Awadalla H, Noor SK, Elmadhoun WM, et al. Diabetes complications in Sudanese individuals with type 2 diabetes: Overlooked problems in sub-Saharan Africa? *Diabetes & metabolic syndrome* 2017;11 Suppl 2:S1047-s51. doi: 10.1016/j.dsx.2017.07.039 [published Online First: 2017/08/10]
  - Bentata Y, Chemlal A, Karimi I, et al. Diabetic kidney disease and vascular comorbidities in patients with type 2 diabetes mellitus in a developing country. *Saudi J Kidney Dis Transpl* 2015;26(5):1035-43. doi: 10.4103/1319-2442.164602 [published Online First: 2015/09/12]
  - 87. Bouaziz A, Zidi I, Zidi N, et al. Nephropathy following type 2 diabetes mellitus in Tunisian population. *West Indian Med J* 2012;61(9):881-9. doi: 10.7727/wimj.2012.053 [published Online First: 2013/09/12]
- 88. Chadli A, El Aziz S, El Ansari N, et al. Management of diabetes in Morocco: results of the International Diabetes Management Practices Study (IDMPS) wave 5. *Ther Adv Endocrinol Metab* 2016;7(3):101-9. doi: 10.1177/2042018816643227 [published Online First: 2016/06/14]

**BMJ** Open

- 89. Chahbi Z, Lahmar B, Hadri SE, et al. The prevalence of painful diabetic neuropathy
  in 300 Moroccan diabetics. *Pan Afr Med J* 2018;31:158-58. doi:
  10.11604/pamj.2018.31.158.14687
- 90. Chetoui A, Kaoutar K, Elmoussaoui S, et al. Prevalence and determinants of poor glycaemic control: a cross-sectional study among Moroccan type 2 diabetes patients. *International health* 2020 doi: 10.1093/inthealth/ihz107 [published Online First: 2020/01/21]
- 91. Diaf M, Khaled BM. Metabolic profile, nutritional status and determinants of glycaemic control in Algerian type 2 diabetic patients. *Kuwait Medical Journal* 2017;49:135-41.
- 92. Elnasri HA, Ahmed AM. Patterns of lipid changes among type 2 diabetes patients in Sudan. *Eastern Mediterranean Health Journal* 2008;14(2):314-24.
- 93. Elwali ES, Almobarak AO, Hassan MA, et al. Frequency of diabetic retinopathy and associated risk factors in Khartoum, Sudan: population based study. *Int J Ophthalmol* 2017;10(6):948-54. doi: 10.18240/ijo.2017.06.18
- 94. Kahloun R, Jelliti B, Zaouali S, et al. Prevalence and causes of visual impairment in diabetic patients in Tunisia, North Africa. *Eye (Lond)* 2014;28(8):986-91. doi: 10.1038/eye.2014.131 [published Online First: 2014/06/14]
- 95. Megallaa MH, Ismail AA, Zeitoun MH, et al. Association of diabetic foot ulcers with chronic vascular diabetic complications in patients with type 2 diabetes. *Diabetes* & *metabolic syndrome* 2019;13(2):1287-92. doi: 10.1016/j.dsx.2019.01.048 [published Online First: 2019/07/25]
- 96. Noor SK, Elmadhoun WM, Bushara SO, et al. Glycaemic control in Sudanese individuals with type 2 diabetes: Population based study. *Diabetes & amp;*

*metabolic syndrome* 2017;11 Suppl 1:S147-S51. doi: 10.1016/j.dsx.2016.12.024

- 97. Omar SM, Musa IR, Osman OE, et al. Assessment of glycemic control in type 2 diabetes in the Eastern Sudan. *BMC Research Notes* 2018;11(1):373. doi: 10.1186/s13104-018-3480-9
- 98. Adeniyi OV, Owolabi EO. Cross-sectional study of diabetes kidney disease in the Eastern Cape, South Africa. *Medicine (Baltimore)* 2020;99(50):e23303. doi: 10.1097/md.00000000023303 [published Online First: 2020/12/18]
- 99. Amod A, Riback W, Schoeman H. Diabetes guidelines and clinical practice: Is there a gap? The South African cohort of the International Diabetes Management Practices Study. *Journal of Endocrinology, Metabolism and Diabetes of South Africa* 2012;17:85-90.
- 100. Blake AM, Munby HN, Katlego PM, et al. Characteristics of patients with diabetic retinopathy in Gaborone, Botswana. *Tanzania Journal of Health Research* 2015;17:1.
- 101. Burgess PI, Allain TJ, García-Fiñana M, et al. High prevalence in Malawi of sight-threatening retinopathy and visual impairment caused by diabetes: identification of population-specific targets for intervention. *Diabetic medicine : a journal of the British Diabetic Association* 2014;31(12):1643-50. doi: 10.1111/dme.12492 [published Online First: 2014/05/16]
- 102. Cairncross JP, Steinberg WJ, Labuschagne MJ. Prevalence of eye pathology in a group of diabetic patients at National District Hospital Outpatient Department in Bloemfontein, South Africa. *Afr J Prim Health Care Fam Med* 2017;9(1):e1e7. doi: 10.4102/phcfm.v9i1.1440 [published Online First: 2017/10/19]

| 2              |             |
|----------------|-------------|
| 3              | 103. Cohen  |
| 4<br>5         |             |
| 5<br>6         | com         |
| 7<br>8         | Blan        |
| 9<br>10        | 2010        |
| 11<br>12       |             |
| 13<br>14       | 104. Glove  |
| 15<br>16       | catai       |
| 16<br>17<br>18 | The         |
| 18<br>19<br>20 | 10.1        |
| 20<br>21<br>22 | 105. Lewis  |
| 23<br>24       | visua       |
| 25             |             |
| 26<br>27       | imple       |
| 28<br>29       | Cop         |
| 30<br>31       | doi:        |
| 32<br>33       | 106. Machi  |
| 34<br>35       | Asso        |
| 36<br>37       |             |
| 38             | Clini       |
| 39<br>40       | 10.4        |
| 41<br>42       | 107. Makw   |
| 43<br>44       |             |
| 45<br>46       | com         |
| 47             | Hosp        |
| 48<br>49       | 109 Molofa  |
| 50             | 108. Molefe |
| 51<br>52       | and         |
| 53             | Bots        |
| 54<br>55       | DUIS        |
| 56             | 10.4        |
| 57<br>58       |             |
| 59             |             |

- 103. Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and complications of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high HIV prevalence. *Am J Trop Med Hyg* 2010;83(3):575-81. doi: 10.4269/ajtmh.2010.10-0104
- 104. Glover SJ, Burgess PI, Cohen DB, et al. Prevalence of diabetic retinopathy, cataract and visual impairment in patients with diabetes in sub-Saharan Africa. *The British journal of ophthalmology* 2012;96(2):156-61. doi: 10.1136/bjo.2010.196071 [published Online First: 2011/04/26]
- 105. Lewis AD, Hogg RE, Chandran M, et al. Prevalence of diabetic retinopathy and visual impairment in patients with diabetes mellitus in Zambia through the implementation of a mobile diabetic retinopathy screening project in the Copperbelt province: a cross-sectional study. *Eye (Lond)* 2018;32(7):1201-08. doi: 10.1038/s41433-018-0055-x [published Online First: 2018/03/06]
- 106. Machingura PI, Chikwasha V, Okwanga PN, et al. Prevalence of and Factors Associated with Nephropathy in Diabetic Patients Attending an Outpatient Clinic in Harare, Zimbabwe. *Am J Trop Med Hyg* 2017;96(2):477-82. doi: 10.4269/ajtmh.15-0827 [published Online First: 2016/12/21]
- 107. Makwero MT, Mollentze WF, Joubert G, et al. Anthropometric profile and complications in patients with diabetes mellitus seen at Maluti Adventist Hospital, Lesotho. *South African Family Practice* 2018;60:97-102.
- 108. Molefe-Baikai OJ, Molefi M, Cainelli F, et al. The prevalence of microalbuminuria and associated factors among patients with type 2 diabetes mellitus in Botswana. *Nigerian journal of clinical practice* 2018;21(11):1430-37. doi: 10.4103/njcp.njcp\_224\_18 [published Online First: 2018/11/13]

- 109. Mwita JC, Francis JM, Omech B, et al. Glycaemic, blood pressure and lowdensity lipoprotein-cholesterol control among patients with diabetes mellitus in a specialised clinic in Botswana: a cross-sectional study. *BMJ Open* 2019;9(7):e026807. doi: 10.1136/bmjopen-2018-026807 [published Online First: 2019/07/26]
- 110. Pirie FJ, Maharaj S, Esterhuizen TM, et al. Retinopathy in subjects with type 2 diabetes at a tertiary diabetes clinic in Durban, South Africa: Clinical, biochemical and genetic factors. *J Clin Transl Endocrinol* 2014;1(1):e9-e12. doi: 10.1016/j.jcte.2013.12.002 [published Online First: 2013/12/19]
- 111. Rotchford AP, Rotchford KM. Diabetes in rural South Africa--an assessment of care and complications. S Afr Med J 2002;92(7):536-41. [published Online First: 2002/08/29]
- 112. Thinyane KH, Theketsa CE. Characteristics of patients admitted with diabetes in Maseru, Lesotho. *African Journal of Diabetes Medicine* 2013;21:17-19.
- 113. Thomas RL, Distiller L, Luzio SD, et al. Ethnic differences in the prevalence of diabetic retinopathy in persons with diabetes when first presenting at a diabetes clinic in South Africa. *Diabetes Care* 2013;36(2):336-41. doi: 10.2337/dc12-0683 [published Online First: 2012/10/04]
- 114. Webb EM, Rheeder P, Van Zyl DG. Diabetes care and complications in primary care in the Tshwane district of South Africa. *Primary care diabetes* 2015;9(2):147-54. doi: 10.1016/j.pcd.2014.05.002 [published Online First: 2014/06/17]
- 115. Blum J, Chaney M, Mudji J, et al. Glycaemic control among patients with type 2 diabetes followed in a rural African primary care setting A reality check in the

| 2      |  |
|--------|--|
| 3      |  |
| 5      |  |
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| ,<br>8 |  |
| -      |  |
| 9      |  |
| 10     |  |
| 11     |  |
| 12     |  |
|        |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 17     |  |
|        |  |
| 18     |  |
| 19     |  |
| 20     |  |
| 21     |  |
|        |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 20     |  |
| 27     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
|        |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 35     |  |
|        |  |
| 36     |  |
| 37     |  |
| 38     |  |
| 39     |  |
|        |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 45     |  |
|        |  |
| 46     |  |
| 47     |  |
| 48     |  |
| 49     |  |
| 50     |  |
|        |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 54     |  |
|        |  |
|        |  |
| 56     |  |
| 57     |  |
| 58     |  |
| 59     |  |
|        |  |
| 60     |  |

Democratic Republic of Congo. *Primary care diabetes* 2020;14(2):139-46. doi: 10.1016/j.pcd.2019.08.002 [published Online First: 2019/08/29]

- 116. Dzudie A, Choukem SP, Adam AK, et al. Prevalence and determinants of electrocardiographic abnormalities in sub-Saharan African individuals with type 2 diabetes. *Cardiovasc J Afr* 2012;23(10):533-7. doi: 10.5830/cvja-2012-054 [published Online First: 2012/09/21]
- 117. Efundem NT, Assob JCN, Feteh VF, et al. Prevalence and associations of microalbuminuria in proteinuria-negative patients with type 2 diabetes in two regional hospitals in Cameroon: a cross-sectional study. *BMC Research Notes* 2017;10(1):477. doi: 10.1186/s13104-017-2804-5
- 118. Hall KK, Tambekou J, Penn L, et al. Association between depression, glycaemic control and the prevalence of diabetic retinopathy in a diabetic population in Cameroon. *S Afr J Psychiatr* 2017;23:983-83. doi: 10.4102/sajpsychiatry.v23i0.983
- 119. Jingi AM, Nansseu JR, Noubiap JJ, et al. Diabetes and visual impairment in sub-Saharan Africa: evidence from Cameroon. *J Diabetes Metab Disord* 2015;14:21. doi: 10.1186/s40200-015-0151-4 [published Online First: 2015/04/14]
- 120. Jingi AM, Noubiap JJN, Ellong A, et al. Epidemiology and treatment outcomes of diabetic retinopathy in a diabetic population from Cameroon. *BMC Ophthalmology* 2014;14(1):19. doi: 10.1186/1471-2415-14-19
- 121. Njikam EJ, Kariuki MM, Kollmann MK, et al. The magnitude and pattern of diabetic retinopathy in Yaoundé, Cameroon - a cross-sectional hospital-based study. *Acta Ophthalmol* 2016;94(2):e156-7. doi: 10.1111/aos.12747 [published Online First: 2015/05/29]

> 122. Chadli A, El Aziz S, El Ansari N, et al. Management of diabetes in Morocco: results of the International Diabetes Management Practices Study (IDMPS) wave 5. *Ther Adv Endocrinol Metab* 2016;7(3):101-09. doi: 10.1177/2042018816643227 [published Online First: 2016/04/13]

- 123. Iwuala S, Olamoyegun M, Sabir A, et al. The relationship between self-monitoring of blood glucose and glycaemic control among patients attending an urban diabetes clinic in Nigeria. *Ann Afr Med* 2015;14(4):182-87. doi: 10.4103/1596-3519.155992
- 124. Elnasri HA, Ahmed AM. Patterns of lipid changes among type 2 diabetes patients in Sudan. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2008;14(2):314-24.
- 125. Albalawi HB, Alali NM, Alenezi SH, et al. The relationship between periodontitis and diabetic retinopathy: A cross-sectional longitudinal study. *AMJ* 2020;13(2):50-54.
- 126. Bello A, Biliaminu S, Wahab K, et al. Distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy among diabetic patients in Ilorin: Prevalence and predictors. *Niger Postgrad Med J* 2019;26(2):123-28. doi: 10.4103/npmj.npmj\_30\_19
- 127. Blake AM, Munby HN, Katlego PM, et al. Characteristics of patients with diabetic retinopathy in Gaborone, Botswana. *Tanzania Journal of Health Research* 2015;17(1) doi: 10.4314/thrb.v17i1.
- 128. Vogt EC, Øksnes M, Suleiman F, et al. Assessment of diabetic polyneuropathy in Zanzibar: Comparison between traditional methods and an automated point-

| doi:      |
|-----------|
|           |
|           |
|           |
| etes      |
|           |
| doi:      |
|           |
|           |
| ls in     |
| 0 111     |
| 363-      |
|           |
|           |
|           |
| nical     |
|           |
| etes      |
| Care      |
| , ui o    |
|           |
|           |
| ol in     |
|           |
| onal      |
| doi:      |
| uoi.      |
|           |
|           |
| s in      |
|           |
| logy      |
|           |
|           |
| nt in     |
| 11 11 1   |
| rsity     |
| <i></i> , |
|           |
|           |

135. Rigato M, Pizzol D, Tiago A, et al. Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes

research and clinical practice 2018;142:63-73. doi: 10.1016/j.diabres.2018.05.016 [published Online First: 2018/05/29]

- 136. Shiferaw WS, Akalu TY, Work Y, et al. Prevalence of diabetic peripheral neuropathy in Africa: a systematic review and meta-analysis. *BMC Endocrine Disorders* 2020;20(1):49. doi: 10.1186/s12902-020-0534-5
- 137. Burgess PI, MacCormick IJC, Harding SP, et al. Epidemiology of diabetic retinopathy and maculopathy in Africa: a systematic review. *Diabetic medicine* : a journal of the British Diabetic Association 2013;30(4):399-412. doi: 10.1111/j.1464-5491.2012.03756.x
- 138. Achigbu E, Agweye C, Achigbu K, et al. Diabetic Retinopathy in Sub-Saharan Africa: A Review of Magnitude and Risk Factors. *Nigerian Journal of Ophthalmology* 2021;29(1):3-12. doi: 10.4103/njo.njo\_49\_20
- 139. Noubiap JJN, Naidoo J, Kengne AP. Diabetic nephropathy in Africa: A systematic review. *World J Diabetes* 2015;6(5):759-73. doi: 10.4239/wjd.v6.i5.759
- 140. Johnston LE, Stewart BT, Yangni-Angate H, et al. Peripheral Arterial Disease in Sub-Saharan Africa: A Review. JAMA Surg 2016;151(6):564-72. doi: 10.1001/jamasurg.2016.0446 [published Online First: 2016/04/07]
- 141. So WY, Raboca J, Sobrepena L, et al. Comprehensive risk assessments of diabetic patients from seven Asian countries: The Joint Asia Diabetes Evaluation (JADE) program. *J Diabetes* 2011;3(2):109-18. doi: 10.1111/j.1753-0407.2011.00115.x [published Online First: 2011/05/24]
- 142. Fang M, Selvin E. Thirty-Year Trends in Complications in U.S. Adults With Newly Diagnosed Type 2 Diabetes. *Diabetes Care* 2021;44(3):699-706. doi: 10.2337/dc20-2304 [published Online First: 2021/01/10]

54 55 56

| 1<br>2         |                                                                                       |
|----------------|---------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 143. Beran D, Yudkin JS, de Courten M. Access to care for patients with insulin-      |
| 5<br>6         | requiring diabetes in developing countries: case studies of Mozambique and            |
| 7<br>8         | Zambia. Diabetes Care 2005;28(9):2136-40. doi: 10.2337/diacare.28.9.2136              |
| 9<br>10        | Inublished Online First: 2005/08/271                                                  |
| 11             | [published Online First: 2005/08/27]                                                  |
| 12<br>13       | 144. Beran D, Yudkin JS. Looking beyond the issue of access to insulin: what is       |
| 14<br>15       | needed for proper diabetes care in resource poor settings. Diabetes research          |
| 16<br>17<br>18 | and clinical practice 2010;88(3):217-21. doi: 10.1016/j.diabres.2010.03.029           |
| 19             | [published Online First: 2010/05/08]                                                  |
| 20             |                                                                                       |
| 21<br>22       | 145. Kibirige D, Atuhe D, Kampiire L, et al. Access to medicines and diagnostic tests |
| 22             |                                                                                       |
| 24             | integral in the management of diabetes mellitus and cardiovascular diseases in        |
| 25             |                                                                                       |
| 26<br>27       | Uganda: insights from the ACCODAD study. International Journal for Equity in          |
| 27<br>28       |                                                                                       |
| 29             | <i>Health</i> 2017;16(1):154. doi: 10.1186/s12939-017-0651-6                          |
| 30             |                                                                                       |
| 31             | 146. Jingi AM, Noubiap JJ, Ewane Onana A, et al. Access to diagnostic tests and       |
| 32<br>33       | acceptial medicines for pardiovaccular dispasses and dispates care; cost              |
| 34             | essential medicines for cardiovascular diseases and diabetes care: cost,              |
| 35             | availability and affordability in the West Region of Cameroon. PLoS One               |
| 36             | availability and anordability in the west Region of Cameroon. FLOS One                |
| 37<br>38       | 2014;9(11):e111812. doi: 10.1371/journal.pone.0111812 [published Online               |
| 38<br>39       |                                                                                       |
| 40             | First: 2014/11/05]                                                                    |
| 41             |                                                                                       |
| 42             | 147. Mendis S, Al Bashir I, Dissanayake L, et al. Gaps in capacity in primary care in |
| 43             |                                                                                       |
| 44<br>45       | low-resource settings for implementation of essential noncommunicable                 |
| 46             | ů i                                                                                   |
| 47             | disease interventions. Int J Hypertens 2012;2012:584041. doi:                         |
| 48             |                                                                                       |
| 49             | 10.1155/2012/584041 [published Online First: 2012/12/20]                              |
| 50<br>51       |                                                                                       |
| 52             | 148. WHO. WHO. The Abuja Declaration: Ten Years On.                                   |

https://www.hoint/healthsystems/publications/Abuja10pdf (accessed on 8 October 2021) 2011

# Table 1. General characteristics of all participants (n=63,890) included in the

### systematic review and meta-analysis

| Characteristic                                       | Cumulative value         | Number of studies |
|------------------------------------------------------|--------------------------|-------------------|
| ₀<br>i Mean ± SD age, years<br>₂                     | 54.9 ± 4.7               | 88                |
| Gender-Females (%, 95% CI)                           | 55.3 (95% CI 52.7-57.8)  | 101               |
| 5<br>Smokers, (%,95% CI)                             | 9.9 (95% CI 0.5-55.6)    | 44                |
| Participants on OHA, (%,95% CI)                      | 65 (95% CI 34-96.6)      | 51                |
| Participants on insulin, (%,95% CI)                  | 31.3 (95% CI 26.3-36.2)  | 52                |
| Participants on lipid lowering agents, (%,95% CI)    | 25.7 (95% CI 0.5-86.7)   | 14                |
| Participants on anti-hypertensive agents, (%,95% CI) | 73.3 (95% CI 64.1-82.5)  | 18                |
| Mean ± SD, BMI, kg/m²                                | 27.9 ± 0.5               | 40                |
| Mean ± SD, HbA1c, %                                  | 9 ± 1.5                  | 40                |
| 1<br>2 Mean ± SD, HbA1c, mmol/mol                    | 75 ± 1.5                 | 40                |
| BMI- Body mass index, HbA1c- Glycated                | haemoglobin, OHA- Oral h | ypoglycaemic      |
| agents, SD- Standard deviation                       |                          |                   |
| 8<br>9                                               |                          |                   |
| 0<br>1                                               |                          |                   |
| 2                                                    |                          |                   |
| 3<br>4                                               |                          |                   |
| 5                                                    |                          |                   |

4 5

# Table 2. Indicators of optimal glycated haemoglobin goal

<sup>6</sup>Optimal glycated haemoglobin (HbA1c) goal (n= 34 studies) <sup>7</sup>Pooled rate of attainment of optimal HbA1c goal = 27% (95% CI 24-30, I<sup>2</sup>=94.7% and I<sup>2</sup> after meta-regression-<sup>8</sup> $^{8}$ 56.3%)

| 9 <b>Author &amp; year</b>                       | Country<br>(ies) | Region<br>of Africa | No of study participants | Mean age of<br>participants | % of<br>females | % with<br>optimal |
|--------------------------------------------------|------------------|---------------------|--------------------------|-----------------------------|-----------------|-------------------|
| 11<br>12                                         | (105)            | UI AIIIca           | participants             | participants                | lemales         | HbA1c             |
| 1Megallaa et al, 2019                            | Egypt            | Northern            | 180                      |                             | 24.4            | 4.4               |
| 1 <b>M</b> uddu et al. 2019                      | Uganda           | Eastern             | 175                      | 46                          | 48.6            | 8.1               |
| 1 <b></b> Muddu et al., 2016                     | Uganda           | Eastern             | 202                      | 46                          | 49.5            | 8.4               |
| <sup>1</sup> Amour et al, 2019                   | Tanzania         | Eastern             | 238                      | 57.2                        | 65.7            | 9.2               |
| Blum et al 2020                                  | DRC              | Central             | 319                      |                             | 33.5            | 14.1              |
| Noor et al., 2016                                | Sudan            | Northern            | 387                      |                             | 49.6            | 15                |
| periodicity wadalla et al, 2017                  | Sudan            | Northern            | 424                      |                             | 49.3            | 15.6              |
| 2Agboghoroma et al, 2020                         | Nigeria          | Western             | 200                      |                             |                 | 19.0              |
| 2 Mwebaze et al 2014                             | Uganda           | Eastern             | 146                      | 53.9                        | 48.6            | 19.2              |
| <sup>2</sup> Ashur et al 2016                    | Libya            | Northern            | 523                      | 54.4                        | 47              | 21.8              |
| <sup>2</sup> ₭isozi et al 2017                   | Uganda           | Eastern             | 288                      | 48.5                        | 38              | 23.3              |
| 2¢amara et al 2015                               | Cameroon         | Central             | 1267                     | 58                          | 61              | 26                |
| 26                                               | and Guinea       | and                 |                          |                             |                 |                   |
| 27                                               | Conakry          | Western             |                          |                             |                 |                   |
| Sibirige et al 2017                              | Uganda           | Eastern             | 425                      |                             | 67              | 26.5              |
| $_{3}$ Chadli et al. 2016                        | Morocco          | Northern            | 498                      | 58                          | 62.4            | 26.8              |
| ₃Hall et al, 2017                                | Cameroon         | Central             | 261                      | 56                          | 56.3            | 27.2              |
| 3ົDmar et al 2018                                | Sudan            | Northern            | 339                      | 54.8                        | 69.9            | 28.1              |
| 3 <b>\$</b> obngwi et al 2011                    | Tanzania,        | Eastern,            | 2352                     | 53                          | 61.1            | 29.2              |
| 34                                               | Kenya,           | Western,            |                          |                             |                 |                   |
| 35                                               | Cameroon,        | Central             |                          |                             |                 |                   |
| 36<br>37                                         | Ghana,           |                     |                          |                             |                 |                   |
| 38                                               | Senegal,         |                     |                          |                             |                 |                   |
|                                                  | and Nigeria      | 0 11                |                          | <b>50 7</b>                 |                 |                   |
| <sup>30</sup> Molefe-Baikai et al, 2018          | Botswana         | Southern            | 289                      | 50.7                        | 66.1            | 29.4              |
| <sup>4</sup> Bentata et al, 2015                 | Morocco          | Northern            | 637                      | 58.5                        | 62.3            | 30.1              |
| Amod et al 2012                                  | South Africa     | Southern            | 701                      | 57.4                        | 43.9            | 30.4              |
| <sup>4</sup> Gairncross et al, 2017              | South Africa     | Southern            | 203                      |                             | 72.5            | 31.3              |
| 4 <b>4</b> /wita et al 2019                      | Botswana         | Southern            | 500                      | 58.9                        | 66              | 32.3              |
| 45Jloko et al., 2012                             | Nigeria          | Western             | 531                      | 57.1                        | 60.5            | 32.4              |
| 4Chetoui et al 2019                              | Morocco          | Northern            | 1456                     | 56.2                        | 73.4            | 33.7              |
| <sup>4</sup> Attoye et al 2020                   | Nigeria          | Western             | 260                      |                             |                 | 34.62             |
| <sup>4</sup> Cohen DB et al 2010                 | Malawi           | Southern            | 620                      | 52.2                        | 60.1            | 36                |
| <sup>49</sup> Chamba et al 2017                  | Tanzania         | Eastern             | 119                      | 58.1                        | 49.6            | 39.3              |
| Kimando et al 2017                               | Kenya            | Eastern             | 385                      | 62.1                        | 65.5            | 39.5              |
| $_{5}$ Akalu et al 2020                          | Ethiopia         | Eastern             | 378                      |                             | 38.6            | 40.7              |
| 5 wuala et al 2015                               | Nigeria          | Western             | 100                      | 59.9                        | 62              | 45                |
| 54/bwete et al., 2020                            | Tanzania         | Eastern             | 161                      | 63.9                        | 67.1            | 49.7              |
| 5Diaf et al 2017                                 | Algeria          | Northern            | 210                      | 55.6                        | 65              | 51.4              |
| 5Adentunji et al 2006                            | Nigeria          | Western             | 50                       | <b></b>                     |                 | 52                |
| <sup>5</sup> Balogun et al 2011<br><sub>58</sub> | Nigeria          | Western             | 40                       | 59.4                        | 62.5            | 52.5              |

58 59

# Table 3. Indicators of optimal blood pressure goal

<sup>6</sup>Optimal blood pressure goal (n=26 studies) <sup>7</sup>Pooled rate of attainment of optimal blood pressure goal = 38% (95% CI 30-46, I<sup>2</sup>=98.7% and I<sup>2</sup> after meta-<sup>8</sup>regression-95.4%)

| Author & year                         | Country      | Region    | No of study  | Mean age of  | % of    | % with     |
|---------------------------------------|--------------|-----------|--------------|--------------|---------|------------|
| 1 <u>1</u>                            | (ies)        | of Africa | participants | participants | females | optimal BP |
| Wwebaze et al 2014                    | Uganda       | Eastern   | 146          | 53.9         | 48.6    | 1.5        |
| <sup>1</sup> Rotchford et al., 2002   | South Africa | Southern  | 253          | 56.5         | 73.1    | 14         |
| 1Ыoko et al., 2012                    | Nigeria      | Western   | 531          | 57.1         | 60.5    | 17         |
| 1£hadli et al. 2016                   | Morocco      | Northern  | 498          | 58           | 62.4    | 20.2       |
| 16obngwi et al 2011                   | Tanzania,    | Eastern   | 2352         | 53           | 61.1    | 21         |
| 17                                    | Kenya,       | Western,  |              |              |         |            |
| 18                                    | Cameroon,    | Central   |              |              |         |            |
| 19<br>20                              | Ghana,       |           |              |              |         |            |
| 20<br>21                              | Senegal,     |           |              |              |         |            |
|                                       | and Nigeria  | ·         |              |              |         |            |
| <sup>22</sup> Amour et al, 2019       | Tanzania     | Eastern   | 238          | 57.2         | 65.7    | 21.7       |
| 2015 Phakpoya et al, 2015             | Nigeria      | Western   | 133          |              | 48.1    | 24.1       |
| $\frac{1}{2}$ Agboghoroma et al, 2020 | Nigeria      | Western   | 200          |              |         | 30.0       |
| 2 <b>6</b> bdissa et al, 2020         | Ethiopia     | Eastern   | 229          |              | 40.4    | 31         |
| 2Chahbi et al, 2018                   | Morocco      | Northern  | 300          |              | 93      | 32.6       |
| <sup>2</sup> Magan et al, 2019        | Uganda       | Eastern   | 44           | 50.4         | 63.4    | 34.1       |
| <sup>2</sup> Megallaa et al, 2019     | Egypt        | Northern  | 180          |              | 24.4    | 37.8       |
| Hayfron-Benjamin et al,<br>32019      | Ghana        | Western   | 206          | 52.9         | 68.9    | 37.9       |
| Auddu et al., 2016                    | Uganda       | Eastern   | 202          | 46           | 49.5    | 38.1       |
| ₃₄lingi et al, 2015                   | Cameroon     | Central   | 407          | 54.2         | 41.8    | 40.4       |
| ₃ <del>J</del> all et al, 2017        | Cameroon     | Central   | 261          | 56           | 56.3    | 43         |
| 3 <b>6</b> ewis et al, 2018           | Zambia       | Southern  | 921          | 56           | 45      | 46.6       |
| 3℃ohen DB et al 2010                  | Malawi       | Southern  | 620          | 52.2         | 60.1    | 48         |
| <sup>3</sup> ≹imando et al 2017       | Kenya        | Eastern   | 385          | 62.1         | 65.5    | 50.4       |
| <sup>3</sup> Mwita JC et al 2019      | Botswana     | Southern  | 500          | 58.9         | 66      | 54.2       |
| <sup>4</sup> 2umu et al 2017          | Uganda       | Eastern   | 425          | 52.2         | 67      | 54.7       |
| <sup>41</sup> Balogun et al 2011      | Nigeria      | Western   | 40           | 59.4         | 62.5    | 55         |
| Akalu et al 2020                      | Ethiopia     | Eastern   | 378          |              | 38.6    | 57.7       |
| AAwadalla et al, 2017                 | Sudan        | Northern  | 424          |              | 49.3    | 60.1       |
| 4Kahloun et al, 2014                  | Tunisia      | Northern  | 2320         | 54.5         | 60.2    | 62.5       |
| 4 <b>C</b> hisha et al 2017           | Ethiopia     | Eastern   | 270          |              | 48.9    | 85.9       |

<sup>6</sup>Optimal LDLC goal (n= 11 studies)

Table 4. Indicators of optimal LDLC goal

Pooled rate of attainment of optimal LDLC goal = 42% (95% CI 32-52, I<sup>2</sup>=97.4% and I<sup>2</sup> after meta-regression-<sup>8</sup>92.1%)

| Author & year                                                                          | Country<br>(ies) | Region<br>of Africa | No of study participants | Mean age of<br>participants | % of<br>females | % with optimal LDLC |
|----------------------------------------------------------------------------------------|------------------|---------------------|--------------------------|-----------------------------|-----------------|---------------------|
| ₁<br>Mwita et al 2019                                                                  | Botswana         | Southern            | 500                      | 58.9                        | 66              | 20.4                |
| Amour et al, 2019                                                                      | Tanzania         | Eastern             | 238                      | 57.2                        | 65.7            | 26                  |
| Chamba et al 2017                                                                      | Tanzania         | Eastern             | 119                      | 58.1                        | 49.6            | 27.7                |
| 1Kisozi et al 2017                                                                     | Uganda           | Eastern             | 288                      | 48.5                        | 38              | 37.0                |
| Megallaa et al, 2019                                                                   | Egypt            | Northern            | 180                      |                             | 24.4            | 37.8                |
| <sup>1</sup> Čhadli et al. 2016                                                        | Morocco          | Northern            | 498                      | 58                          | 62.4            | 38.6                |
| <sup>1</sup> <sup>8</sup> umu et al 2017                                               | Uganda           | Eastern             | 425                      | 52.2                        | 67              | 38.9                |
| Awadalla et al, 2017                                                                   | Sudan 🦳          | Northern            | 424                      |                             | 49.3            | 47.4                |
| Mwebaze et al 2014                                                                     | Uganda           | Eastern             | 146                      | 53.9                        | 48.6            | 48.6                |
| Agboghoroma et al, 2020                                                                | Nigeria          | Western             | 200                      |                             |                 | 50.5                |
| Elnasri et al. 2008                                                                    | Sudan            | Northern            | 250                      | 52                          | 62              | 84.8                |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>41<br>42 |                  |                     |                          | 52                          |                 |                     |

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |

# Table 5. Burden of diabetic nephropathy

| Table 5. Burden of diabetic nephropathy<br><sup>5</sup> Burden of diabetic nephropathy (n= 40 studies) |                          |                                                               |                                 |                          |                 |                              |  |
|--------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|---------------------------------|--------------------------|-----------------|------------------------------|--|
| <sup>6</sup> Pooled prevalence= 31%                                                                    |                          |                                                               | nd l² after meta                | -rearession-95.6         | %)              |                              |  |
| Author & year                                                                                          | No of study participants | Country<br>(ies)                                              | Region of<br>Africa             | Mean age of participants | % of<br>females | Prevalence of nephropathy, % |  |
| 1∯bejew et al, 2015                                                                                    | 216                      | Ethiopia                                                      | Eastern                         | 45                       | 42.6            | 2.2                          |  |
| 1\$obngwi et al 2011<br>12<br>13<br>14<br>15<br>16                                                     | 2352                     | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and | Eastern,<br>Western,<br>Central | 53                       | 61.1            | 2.4                          |  |
| 17                                                                                                     |                          | Nigeria                                                       |                                 |                          |                 |                              |  |
| <sup>1</sup> 8loko et al, 2012                                                                         | 531                      | Nigeria                                                       | Western                         | 57.1                     | 60.5            | 3.2                          |  |
| Kahloun et al, 2014                                                                                    | 2320                     | Tunisia                                                       | Northern                        |                          | 60.2            | 3.4                          |  |
| 20<br>2Fasil, et al 2019                                                                               | 367                      | Ethiopia                                                      | Eastern                         | 48.6                     | 59.3            | 4.4                          |  |
| <sup>2</sup> Jhinyane et al 2013                                                                       | 80                       | Lesotho                                                       | Southern                        | 49                       | 49              | 6.0                          |  |
| <sup>2</sup> / <sub>2</sub> Jesfaye et al 2015                                                         | 247                      | Ethiopia                                                      | Eastern                         |                          | 40.5            | 6.5                          |  |
| 24 Makwero et al 2018                                                                                  | 150                      | Lesotho                                                       | Southern                        | 58.2                     | 80.7            | 6.7                          |  |
| <sup>2</sup> Neuhann et al 2001                                                                        | 474                      | Tanzania                                                      | Eastern                         | 53.8                     | 46              | 7.5                          |  |
| <sup>2</sup> Deribe et al, 2014                                                                        | 216                      | Ethiopia                                                      | Eastern                         | 50.7                     | 40.3            | 8.8                          |  |
| <sup>2</sup> Bouaziz et al 2012                                                                        | 73                       | Tunisia                                                       | Northern                        | 59.3                     |                 | 11.0                         |  |
| 28<br>Lebeta et al, 2017                                                                               | 344                      | Ethiopia                                                      | Eastern                         | 40.5                     | 42.7            | 11.4                         |  |
| Efundem et al, 2017                                                                                    | 162                      | Cameroon                                                      | Central                         | 55.3                     | 67.3            | 14.2                         |  |
| <sub>3</sub> Worku et al 2010                                                                          | 305                      | Ethiopia                                                      | Eastern                         | 44.4                     | 37.1            | 15.7                         |  |
| 3<br>Dzudie et al 2012                                                                                 | 420                      | Cameroon                                                      | Central                         | 56.7                     | 51              | 15.9                         |  |
| 3 <b>Å</b> deniyi et al, 2020<br>34                                                                    | 327                      | South<br>Africa                                               | Southern                        |                          | 70.3            | 24.5                         |  |
| 3 <b>G</b> oro et al, 2019                                                                             | 208                      | Ethiopia                                                      | Eastern                         | 54.8                     | 47.1            | 26                           |  |
| 3€hahbi et al, 2018                                                                                    | 300                      | Morocco                                                       | Northern                        |                          | 93              | 26.3                         |  |
| <sup>3</sup> Albalawi et al 2020                                                                       | 159                      | Sudan                                                         | Northern 🧹                      | 58.1                     | 65.4            | 26.4                         |  |
| <sup>3</sup> Ålebiosu et al 2013                                                                       | 342                      | Nigeria                                                       | Western                         | 53.4                     |                 | 28.4                         |  |
| <sup>39</sup><br>₄Hayfron-Benjamin et al,<br>₄2019                                                     | 206                      | Ghana                                                         | Western                         | 52.9                     | 68.9            | 32                           |  |
| ₄Khalil et al 2019                                                                                     | 506                      | Egypt                                                         | Northern                        |                          |                 | 33.2                         |  |
| 4©ohen et al 2010                                                                                      | 620                      | Malawi                                                        | Southern                        | 52.2                     | 60.1            | 34.7                         |  |
| 4 <b>B</b> lum et al 2020                                                                              | 319                      | DRC                                                           | Central                         |                          | 33.5            | 38.6                         |  |
| <sup>4</sup> Åhmed et al, 2017                                                                         | 316                      | Sudan                                                         | Northern                        | 58                       | 41.5            | 40.2                         |  |
| <sup>4</sup> ⊈ghan-Jr et al 2007                                                                       | 109                      | Ghana                                                         | Western                         | 54.1                     | 75              | 43.0                         |  |
| <sup>4</sup> Molefe-Baikai et al,<br><sup>48</sup> 018<br><del>49</del>                                | 289                      | Botswana                                                      | Southern                        | 50.7                     | 66.1            | 44.6                         |  |
| Machingura et al, 2017                                                                                 | 260                      | Zimbabwe                                                      | Southern                        | 57.6                     | 72.7            | 45.4                         |  |
| 5Rotchford et al., 2002                                                                                | 253                      | South<br>Africa                                               | Southern                        | 56.5                     | 73.1            | 46.4                         |  |
| ₅Muddu et al. 2019                                                                                     | 175                      | Uganda                                                        | Eastern                         | 46                       | 48.6            | 47.4                         |  |
| 5 <b>4</b> /Iohmad et al 2011                                                                          | 71                       | Sudan                                                         | Central                         |                          | 42              | 50.7                         |  |
| 5©ill et al 2008                                                                                       | 105                      | Ethiopia                                                      | Eastern                         | 41                       | 30              | 51                           |  |
| <sup>5</sup> Bello et al, 2017                                                                         | 358                      | Nigeria                                                       | Western                         | 57.8                     | 61.7            | 53.4                         |  |
| <sup>5</sup> Olamoyegun et al, 2015                                                                    | 90                       | Nigeria                                                       | Western                         | 62.5                     | 50              | 54.3                         |  |
| <sup>5</sup> Amour et al 2019                                                                          | 315                      | Tanzania                                                      | Eastern                         | 57.2                     | 65.7            | 72.2                         |  |
| $^{59}_{60}$ Bentata et al, 2015                                                                       | 637                      | Morocco                                                       | Northern                        | 58.5                     | 62.3            | 77.2                         |  |

| <sup>3</sup> Adentunji et al 2006                  | 50  | Nigeria  | Western  |      |      | 83   |
|----------------------------------------------------|-----|----------|----------|------|------|------|
| <sup>4</sup> Janmohamed at al<br><sup>5</sup> 2013 | 369 | Tanzania | Eastern  | 54   | 53.4 | 83.7 |
| <sup>o</sup> Megallaa et al, 2019                  | 180 | Egypt    | Northern |      | 24.4 | 86.1 |
| <sup>′</sup> <sub>8</sub> Balogun et al 2011       | 40  | Nigeria  | Western  | 59.4 | 62.5 | 90   |

9 10 11

#### Table 6. Burden of diabetic peripheral neuropathy

#### Burden of diabetic peripheral neuropathy (n=36 studies) $12^{\circ}$ Pooled prevalence= 38% (95% CI 31-45, I<sup>2</sup>=98.2% and I<sup>2</sup> after meta-regression-88%) Author & year No of study **Region of** Mean age of % of Prevalence of Country participants (ies) Africa participants females neuropathy, % 16 1Seyum et al 2010 429 57.4 Eritrea Eastern 4 <sup>1</sup>Lebeta et al, 2017 344 40.5 42.7 7.7 Ethiopia Eastern <sup>1</sup>Pasil, et al 2019 367 Ethiopia Eastern 48.6 59.3 7.9 <sup>2</sup>Miriam et al, 2017 279 48.8 44.8 Ethiopia Eastern 10 <sup>2</sup>Tesfaye et al 2015 247 Eastern 40.5 10.1 Ethiopia Deribe et al, 2014 216 40.3 Ethiopia Eastern 50.7 10.6 42.6 14.4 Abejew et al, 2015 216 Ethiopia Eastern 45 Kahloun et al, 2014 2320 60.2 18.7 Tunisia Northern 506 2Khalil et al 2019 Egypt Northern 20.0 Dzudie et al 2012 420 Cameroon Central 56.7 51 22.4 <sup>28</sup>filahun et al, 2017 236 Ethiopia Eastern 47.8 46.6 25.4 Assaad-Khalil et al 2014 57.3 29.3 958 Northern 50 Egypt kisozi et al 2017 288 Uganda 48.5 38 29.4 Eastern Worku et al 2010 305 Ethiopia Eastern 44.4 37.1 29.5 145 46 48 Smide et al 2009 Tanzania Eastern 30 3Kuate-Tegueu et al 321 Cameroon Western 59.8 64.1 33.3 32016 637 3Bentata et al, 2015 Morocco Northern 58.5 62.3 39.6 58.1 65.4 40.3 3Albalawi et al 2020 159 Sudan Northern <sup>3</sup>Gill et al 2008 105 Ethiopia Eastern 41 30 41 <sup>4</sup>Bello et al 2019 175 Nigeria Western 59.8 57.7 41.7 <sup>4</sup>Makwero et al 2018 43.3 150 Lesotho Southern 58.2 80.7 Chiwanga et al, 2015 404 Tanzania Eastern 53.6 55.4 44 Neuhann et al 2001 474 Tanzania Eastern 53.8 46 44.0 Vogt et al 2017 100 Zanzibar Eastern 54 49 45.0 ₄Ękoru K et al. 2019 2784 Nigeria, Western 56 61 46 Ghana, and Eastern 47 Kenya 48 4©ohen et al 2010 620 Southern 52.2 60.1 46.4 Malawi 5Sobngwi et al 2011 2352 53 61.1 48.4 Tanzania, Eastern. Western, 51 Kenva. 52 Cameroon. Central 53 Ghana, 54 Senegal, 55 and 56 Nigeria <sup>57</sup>Jember et al 2017 368 49 52.2 Eastern 41.6 Ethiopia 50loko et al, 2012 57.1 60.5 531 Nigeria Western 59.2 Áwadalla et al 2017 424 Sudan Northern 49.3 68.2

**Prevalence of** 

retinopathy, %

46

61

51

4.7

11.0

11.7

13.0

14.0

15.0

15.5

15.7

1 2

| <sup>3</sup> Mohmad et al 2011      | 71  | Sudan    | Central  |      | 42   | 69.0 |
|-------------------------------------|-----|----------|----------|------|------|------|
| <sup>4</sup> Olamoyegun et al, 2015 | 90  | Nigeria  | Western  | 62.5 | 50   | 69.6 |
| GUgoya et al 2006                   | 180 | Nigeria  | Western  | 53   | 51.6 | 75   |
| <sub>7</sub> Jarso et al 2011       | 384 | Ethiopia | Eastern  |      | 54.1 | 77.0 |
| 8Megallaa et al, 2019               | 180 | Egypt    | Northern |      | 24.4 | 82   |
| 9Ede et al 2018                     | 90  | Nigeria  | Western  | 58.6 | 34.4 | 83.3 |

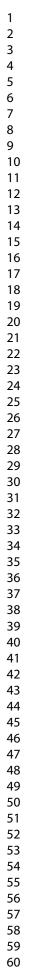
10 11 12

#### Table 7. Burden of diabetic retinopathy

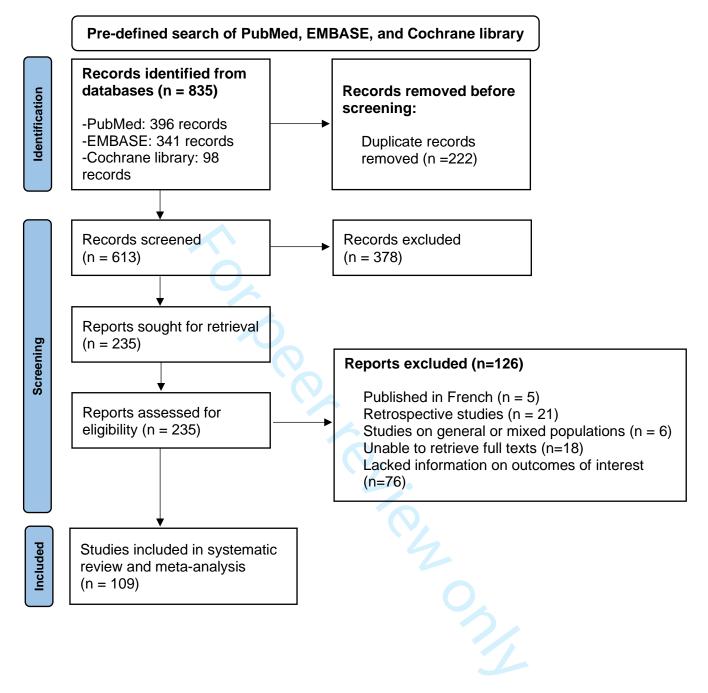
13 Burden of diabetic retinopathy (n= 51 studies) 1₽ooled prevalence= 32% (95% CI 28-36, I<sup>2</sup>=98% and I<sup>2</sup> after meta-regression-88.5%) <sup>1</sup>Author &year No of study Country **Region of** Mean age of % of females 17 participants (ies) Africa participants <sup>1</sup>Makwero et al 2018 150 Lesotho Southern 58.2 80.7 19 Hayfron-Benjamin et al, 206 Ghana Western 52.9 68.9 2019 2 2 2 1 esfaye et al 2015 247 40.5 Ethiopia Eastern 48.9 2Chisha et al 2017 270 Ethiopia Eastern <sup>2</sup>fNeuhann et al 2001 474 Tanzania Eastern 53.8 25 26 koru K et al. 2019 2784 Nigeria, Western 56 Ghana, and Eastern 27 Kenya 28 bartey et al, 2018 208 57.5 70.7 Ghana Western 3Dzudie et al 2012 420 Central 56.7 Cameroon <sup>3</sup>Blake et al 2015 1307 Botswana Southern 55 67 0 32 35 asi 3**\$o**b 35 36 37 38 39 40 <sup>4</sup>Mac 4 Bell 4∓ila

| 1307 | Botswana                                                                                         | Southern                                                                                                                                                                                                                        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.9                                                                                                                                                                                                                                                                                                                                                                                          | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 367  | Ethiopia                                                                                         | Eastern                                                                                                                                                                                                                         | 48.6                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.3                                                                                                                                                                                                                                                                                                                                                                                          | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2352 | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>Nigeria                         | Eastern,<br>Western,<br>and Central                                                                                                                                                                                             | 53                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.1                                                                                                                                                                                                                                                                                                                                                                                          | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44   | Uganda                                                                                           | Eastern                                                                                                                                                                                                                         | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.4                                                                                                                                                                                                                                                                                                                                                                                          | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 358  | Nigeria                                                                                          | Western                                                                                                                                                                                                                         | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61.7                                                                                                                                                                                                                                                                                                                                                                                          | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 236  | Ethiopia                                                                                         | Eastern                                                                                                                                                                                                                         | 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.6                                                                                                                                                                                                                                                                                                                                                                                          | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3978 | South<br>Africa                                                                                  | Southern                                                                                                                                                                                                                        | 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.3                                                                                                                                                                                                                                                                                                                                                                                          | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 105  | Ethiopia                                                                                         | Eastern                                                                                                                                                                                                                         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                            | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 599  | South<br>Arica                                                                                   | Southern                                                                                                                                                                                                                        | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                                                                                                                                                                                                                                                                                                                                            | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 344  | Ethiopia                                                                                         | Eastern                                                                                                                                                                                                                         | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.7                                                                                                                                                                                                                                                                                                                                                                                          | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2320 | Tunisia                                                                                          | Northern                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60.2                                                                                                                                                                                                                                                                                                                                                                                          | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 73   | Tunisia                                                                                          | Northern                                                                                                                                                                                                                        | 59.3                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                               | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 261  | Cameroon                                                                                         | Central                                                                                                                                                                                                                         | 56                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.3                                                                                                                                                                                                                                                                                                                                                                                          | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 133  | Nigeria                                                                                          | Western                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48.1                                                                                                                                                                                                                                                                                                                                                                                          | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5729 | Tanzania                                                                                         | Eastern                                                                                                                                                                                                                         | 60.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.3                                                                                                                                                                                                                                                                                                                                                                                          | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 216  | Ethiopia                                                                                         | Eastern                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.6                                                                                                                                                                                                                                                                                                                                                                                          | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 367<br>2352<br>44<br>358<br>236<br>3978<br>105<br>599<br>344<br>2320<br>73<br>261<br>133<br>5729 | 367Ethiopia2352Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>Nigeria44Uganda358Nigeria236Ethiopia3978South<br>Africa105Ethiopia599South<br>Arica344Ethiopia230Tunisia73Tunisia73Nigeria344Cameroon133Nigeria | 367EthiopiaEastern2352Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>NigeriaEastern,<br>Western,<br>and Central44UgandaEastern358NigeriaWestern236EthiopiaEastern358South<br>AfricaSouthern3978South<br>AfricaSouthern3978South<br>AfricaSouthern344EthiopiaEastern344EthiopiaEastern344EthiopiaEastern3144EthiopiaEastern334EthiopiaSouthern73TunisiaNorthern73TunisiaNorthern133NigeriaWestern5729TanzaniaEastern | 367EthiopiaEastern48.62352Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>NigeriaEastern,<br>Western,<br>and Central5344UgandaEastern50.4358NigeriaWestern57.8236EthiopiaEastern47.83978South<br>AfricaSouthern56.8105EthiopiaEastern41599South<br>AricaSouthern57.8344EthiopiaEastern40.52320TunisiaNorthern59.3261CameroonCentral56133NigeriaWestern56.8133NigeriaKern60.8 | 367EthiopiaEastern48.659.32352Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>NigeriaEastern,<br>Western,<br>and Central5361.144UgandaEastern50.463.4358NigeriaWestern57.861.7236EthiopiaEastern47.846.63978South<br>AfricaSouthern56.833.3105EthiopiaEastern4130599South<br>AricaSouthern57.868344EthiopiaEastern40.542.7230TunisiaNorthern59.360.273TunisiaNorthern59.360.273TunisiaNorthern59.348.1313NigeriaWestern48.15729TanzaniaEastern40.860.8 |

60


| 2                                                       |     |                 |          |      |      |      |
|---------------------------------------------------------|-----|-----------------|----------|------|------|------|
| <sup>3</sup> Kizor-Akarairwe et al<br><sup>4</sup> 2018 | 80  | Nigeria         | Western  | 61.2 | 48.8 | 32.1 |
| <sup>5</sup> Glover et al 2011                          | 281 | Malawi          | Southern | 56.4 | 72.8 | 32.5 |
| 7Seyum et al 2010                                       | 429 | Eritrea         | Eastern  | 57.4 |      | 33   |
| 8Bello et al 2019                                       | 175 | Nigeria         | Western  | 59.8 | 57.7 | 33.1 |
| <sup>9</sup> Worku et al 2010                           | 305 | Ethiopia        | Eastern  | 44.4 | 37.1 | 33.8 |
| <sup>10</sup> Chahbi et al, 2018                        | 300 | Morocco         | Northern |      | 93   | 34.3 |
| 1 <b>A</b> lbalawi et al 2020                           | 159 | Sudan           | Northern | 58.1 | 65.4 | 34.6 |
| <sup>1</sup> Àssaad-Khalil et al<br>1⊉019               | 506 | Egypt           | Northern |      |      | 34.6 |
| Cohen et al 2010                                        | 620 | Malawi          | Southern | 52.2 | 60.1 | 34.7 |
| 1 <sup>0</sup> hinyane et al 2013                       | 80  | Lesotho         | Southern | 49   | 49   | 35.0 |
| 1&lloko et al, 2012                                     | 531 | Nigeria         | Western  | 57.1 | 60.5 | 35.5 |
| <sup>1</sup> Bentata et al, 2015                        | 637 | Morocco         | Northern | 58.5 | 62.3 | 35.6 |
| $_{\rm pl}^{20}$ ingi et al, 2014                       | 407 | Cameroon        | Central  | 54.2 | 41.8 | 38.8 |
| 2 <b>₽</b> irie et al, 2014<br>23                       | 292 | South<br>Africa | Southern | 59.2 | 79   | 39.0 |
| 2 <b>A</b> hmed et al, 2017                             | 316 | Sudan           | Northern | 58   | 41.5 | 39.8 |
| <sup>25</sup> jingi et al, 2015                         | 407 | Cameroon        | Central  |      | 41.8 | 40.3 |
| 27<br>Rotchford et al., 2002                            | 253 | South<br>Africa | Southern | 56.5 | 73.1 | 40.3 |
| 2 Woodward et al, 2020                                  | 91  | Tanzania        | Eastern  | 59.2 | 62.6 | 42.9 |
| 3 <b>0</b> ewis et al, 2018                             | 921 | Zambia 🛛        | Southern | 56   | 45   | 44.0 |
| <sup>3</sup> Olamoyegun et al, 2015                     | 90  | Nigeria         | Western  | 62.5 | 50   | 48.9 |
| 3<br>Njikam et al, 2016                                 | 371 | Cameroon        | Central  | 59.2 | 54.7 | 49.9 |
| 3Burgress et al 2014                                    | 322 | Malawi          | Southern | 55.2 | 64.6 | 50.1 |
| <sup>3</sup> Mohmad et al 2011                          | 71  | Sudan           | Central  |      | 42   | 71.2 |
| Awadalla et al 2017                                     | 424 | Sudan           | Northern |      | 49.3 | 72.6 |
| <sub>3</sub> £lwali et al 2017                          | 316 | Sudan           | Northern | 58.7 | 40.8 | 82.6 |
| 3Megallaa et al, 2019                                   | 180 | Egypt           | Northern |      | 24.4 | 90.0 |
| 40<br>41<br>42<br>43<br>44<br>45                        |     |                 |          | 31   |      |      |

# Table 8. Burden of diabetic foot ulcers


|                             | 1% (95% CI 9-            | 14, I <sup>2</sup> =97.4% and                                         | i <sup>2</sup> after meta-re    | gression-1.4%)           |                 |                              |
|-----------------------------|--------------------------|-----------------------------------------------------------------------|---------------------------------|--------------------------|-----------------|------------------------------|
| Author & year               | No of study participants | Country (ies)                                                         | Region of<br>Africa             | Mean age of participants | % of<br>females | Prevalence of foot ulcers, % |
| Tesfaye et al 2015          | 247                      | Ethiopia                                                              | Eastern                         | • •                      | 40.5            | 0.4                          |
| Albalawi et al 2020         | 159                      | Sudan                                                                 | Northern                        | 58.1                     | 65.4            | 2.5                          |
| Chalya et al, 2011<br>105   | 136                      | Tanzania                                                              | Eastern                         | 54.3                     | 45.6            | 3.2                          |
| Uloko et al, 2012           | 531                      | Nigeria                                                               | Western                         | 57.1                     | 60.5            | 3.8                          |
| Abejew et al, 2015          | 216                      | Ethiopia                                                              | Eastern                         | 45                       | 42.6            | 4.4                          |
| Nyamu et al, 2003           | 1788                     | Kenya                                                                 | Eastern                         | 56.9                     |                 | 4.6                          |
| Worku et al 2010            | 305                      | Ethiopia                                                              | Eastern                         | 44.4                     | 37.1            | 4.6                          |
| Ekoru K et al. 2019         | 2784                     | Nigeria,<br>Ghana, Kenya                                              | Western<br>and Eastern          | 56                       | 61              | 5                            |
| Rotchford et al., 2002      | 253                      | South Africa                                                          | Southern                        | 56.5                     | 73.1            | 6                            |
| Assaad-Khalil et al<br>2014 | 958                      | Egypt                                                                 | Northern                        | 57.3                     | 50              | 6.1                          |
| Tilahun et al, 2017         | 236                      | Ethiopia                                                              | Eastern                         | 47.8                     | 46.6            | 8.5                          |
| Amour et al 2019            | 315                      | Tanzania                                                              | Eastern                         | 57.2                     | 65.7            | 10.0                         |
| Neuhann et al 2001          | 474                      | Tanzania                                                              | Eastern                         | 53.8                     | 46              | 10.0                         |
| Sobngwi et al 2011          | 2352                     | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal, and<br>Nigeria | Eastern,<br>Western,<br>Central | 53                       | 61.1            | 11.7                         |
| Abbas et al, 2011           | 11866                    | Tanzania                                                              | Eastern                         |                          |                 | 12                           |
| Gebrekirstos et al, 2015    | 228                      | Ethiopia                                                              | Eastern                         |                          | 38              | 12                           |
| Abdissa et al, 2020         | 229                      | Ethiopia                                                              | Eastern                         |                          | 40.4            | 12.7                         |
| Awadalla et al 2017         | 424                      | Sudan                                                                 | Northern                        |                          | 49.3            | 12.7                         |
| Mariam et al, 2017          | 279                      | Ethiopia                                                              | Eastern                         | 48.8                     | 44.8            | 13.6                         |
| Seyum et al 2010            | 429                      | Eritrea                                                               | Eastern                         | 57.4                     |                 | 14                           |
| Thinyane et al 2013         | 80                       | Lesotho                                                               | Southern                        | 49                       | 49              | 14                           |
| Deribe et al, 2014          | 216                      | Ethiopia                                                              | Eastern                         | 50.7                     | 40.3            | 14.8                         |
| Abbas et al, 2002           | 627                      | Tanzania                                                              | Eastern                         | 53                       | 35              | 15                           |
| Chiwanga et al,<br>2015     | 404                      | Tanzania                                                              | Eastern                         | 53.6                     | 55.4            | 15                           |
| Mamo et al, 2015            | 200                      | Ethiopia                                                              | Eastern                         | 50                       | 72.5            | 15                           |
| Elwali et al 2017           | 316                      | Sudan                                                                 | Northern                        | 58.7                     | 40.8            | 17.7                         |
| Unachukwu et al,<br>2006    | 315                      | Nigeria                                                               | Western                         | 54.6                     | 36.7            | 19.1                         |
| Lebeta et al, 2017          | 344                      | Ethiopia                                                              | Eastern                         | 40.5                     | 42.7            | 21.2                         |
| Megallaa et al, 2019        | 180                      | Egypt                                                                 | Northern                        |                          | 24.4            | 86.7                         |

### Table 9. Burden of peripheral arterial disease

| <sup>7</sup> Author & year                               | No of study participants | Country<br>(ies) | Region of<br>Africa | Mean age of<br>participants | % of<br>females | Prevalence of PAD, % |
|----------------------------------------------------------|--------------------------|------------------|---------------------|-----------------------------|-----------------|----------------------|
| 1<br>Chahbi et al, 2018                                  | 300                      | Morocco          | Northern            |                             | 93              | 2.7                  |
| βobngwi et al 2011                                       | 2352                     | Tanzania,        | Eastern,            | 53                          | 61.1            | 4.7                  |
| 12                                                       |                          | Kenya,           | Western,            |                             |                 |                      |
| 13                                                       |                          | Cameroon,        | Central             |                             |                 |                      |
| 14                                                       |                          | Ghana,           |                     |                             |                 |                      |
| 15                                                       |                          | Senegal,         |                     |                             |                 |                      |
| 16                                                       |                          | and              |                     |                             |                 |                      |
| 17                                                       |                          | Nigeria          |                     |                             |                 |                      |
| <sup>1</sup> &ill et al 2008                             | 105                      | Ethiopia         | Eastern             | 41                          | 30              | 6                    |
| <sup>1</sup> Cohen et al 2010                            | 620                      | Malawi           | Southern            | 52.2                        | 60.1            | 7.6                  |
| Mariam et al, 2017                                       | 279                      | Ethiopia         | Eastern             | 48.8                        | 44.8            | 9.7                  |
| <sup>2</sup> Uloko et al, 2012                           | 531                      | Nigeria          | Western             | 57.1                        | 60.5            | 10.7                 |
| Assaad-Khalil et al 2014                                 | 958                      | Egypt            | Northern            | 57.3                        | 50              | 11.0                 |
| _ĺHayfron-Benjamin et al,<br>₂≩019                       | 206                      | Ghana            | Western             | 52.9                        | 68.9            | 11.2                 |
| 26 mide et al 2008                                       | 145                      | Tanzania         | Eastern             | 46                          | 48              | 13                   |
| 2©hiwanga et al, 2015                                    | 404                      | Tanzania         | Eastern             | 53.6                        | 55.4            | 15                   |
| 2Megallaa et al, 2019                                    | 180                      | Egypt            | Northern            |                             | 24.4            | 20                   |
| <sup>2</sup> Økello et al 2014                           | 229                      | Uganda           | Eastern             | 60                          | 63.7            | 24.0                 |
| <sup>3</sup> Akalu et al, 2020                           | 280                      | Ethiopia         | Eastern             |                             | 38.6            | 30.7                 |
| Khalil et al 2019                                        | 506                      | Egypt            | Northern            |                             |                 | 32.6                 |
| Agboghoroma et al, 2020                                  | 200                      | Nigeria          | Western             |                             |                 | 38.5                 |
| 34/Webaze et al 2014                                     | 146                      | Uganda           | Eastern             | 53.9                        | 48.6            | 39.0                 |
| 3Dgbera et al 2015                                       | 225                      | Nigeria          | Western             | 61.4                        | 57              | 40.0                 |
| <sup>3</sup> Oyelade et al 2012                          | 219                      | Nigeria          | Western             |                             | 58.9            | 52.5                 |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46 |                          |                  |                     |                             |                 |                      |



#### Figure 1. PRISMA flow diagram of selection of eligible studies



| Mwita et al 2019       •       0.20 (0.17, 0.24)       9.22         Megallaa et al, 2019       0.38 (0.31, 0.45)       8.94         Chadli et al. 2016       0.39 (0.34, 0.43)       9.21         Agboghoroma et al, 2020       •       0.50 (0.43, 0.58)       8.98         Webb 2015       •       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017       •       0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008       •       0.85 (0.80, 0.89)       9.06         Amour et al, 2019       •       0.39 (0.34, 0.44)       9.19         Lumu et al 2017       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       0.42 (0.32, 0.52)       100.00 | Megallaa et al, 2019        0.38 (0.31, 0.45)       8.94         Chadli et al. 2016       0.39 (0.34, 0.43)       9.21         Agboghoroma et al, 2020        0.50 (0.43, 0.58)       8.98         Webb 2015       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017        0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008        0.85 (0.80, 0.89)       9.06         Amour et al, 2019        0.39 (0.34, 0.44)       9.19         Lumu et al 2017        0.39 (0.34, 0.44)       9.19         Kisozi et al 2017        0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014        0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)        0.42 (0.32, 0.52)       100.00        | 1st author et al &year           | ES (95% CI)         | %<br>Weight |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|-------------|
| Chadli et al. 2016       •       0.39 (0.34, 0.43)       9.21         Agboghoroma et al, 2020       •       0.50 (0.43, 0.58)       8.98         Webb 2015       •       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017       •       0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008       •       0.85 (0.80, 0.89)       9.06         Amour et al, 2019       •       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       •       0.37 (0.32, 0.43)       9.10         Kisozi et al 2017       •       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       0.42 (0.32, 0.52)       100.00                                                                                                                                                                           | Chadli et al. 2016       •       0.39 (0.34, 0.43)       9.21         Agboghoroma et al, 2020       •       0.50 (0.43, 0.58)       8.98         Webb 2015       •       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017       •       0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008       •       0.85 (0.80, 0.89)       9.06         Amour et al, 2019       •       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       •       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       •       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       •       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       0.42 (0.32, 0.52)       100.00 | Mwita et al 2019 -               | 0.20 (0.17, 0.24)   | 9.22        |
| Agboghoroma et al, 2020<br>Webb 2015<br>Awadalla et al, 2017<br>Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Agboghoroma et al, 2020<br>Webb 2015<br>Awadalla et al, 2017<br>Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Megallaa et al, 2019             | 0.38 (0.31, 0.45)   | 8.94        |
| Webb 2015       •       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017       •       0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008       •       0.85 (0.80, 0.89)       9.06         Amour et al, 2019       •       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       •       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       •       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       •       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       •       0.42 (0.32, 0.52)       100.00                                                                                                                                                                                                                                              | Webb 2015       •       0.33 (0.29, 0.37)       9.24         Awadalla et al, 2017       •       0.47 (0.43, 0.52)       9.19         Elnasri et al. 2008       •       0.85 (0.80, 0.89)       9.06         Amour et al, 2019       •       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       •       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       •       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       •       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       •       0.42 (0.32, 0.52)       100.00                                                                                                                                          | Chadli et al. 2016 -             | 0.39 (0.34, 0.43)   | 9.21        |
| Awadalla et al, 2017<br>Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0.1.2.3.4.5.6.7.8.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Awadalla et al, 2017<br>Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0.1.2.3.4.5.6.7.8.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Agboghoroma et al, 2020          | ► 0.50 (0.43, 0.58) | 8.98        |
| Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (l^2 = 97.40%, p = 0.00)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elnasri et al. 2008<br>Amour et al, 2019<br>Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Webb 2015 🗕                      | 0.33 (0.29, 0.37)   | 9.24        |
| Amour et al, 2019       -       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       -       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       -       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       -       0.42 (0.32, 0.52)       100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amour et al, 2019       -       0.26 (0.21, 0.32)       9.04         Lumu et al 2017       -       0.39 (0.34, 0.44)       9.19         Kisozi et al 2017       -       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       -       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       -       0.42 (0.32, 0.52)       100.00                                                                                                                                                                                                                                                                                                                                                              | Awadalla et al, 2017             | - 0.47 (0.43, 0.52) | 9.19        |
| Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lumu et al 2017<br>Kisozi et al 2017<br>Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elnasri et al. 2008              | 0.85 (0.80, 0.89)   | 9.06        |
| Kisozi et al 2017       •       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       •       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       •       0.42 (0.32, 0.52)       100.00         0       1       2       3       4       5       6       7       8       9       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kisozi et al 2017       -       0.37 (0.32, 0.43)       9.10         Mwebaze et al 2014       -       0.49 (0.40, 0.57)       8.84         Overall (I^2 = 97.40%, p = 0.00)       -       0.42 (0.32, 0.52)       100.00         0       -       -       -       -       -         0       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                  | Amour et al, 2019 -              | 0.26 (0.21, 0.32)   | 9.04        |
| Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0.49 (0.40, 0.57) 8.84<br>0.42 (0.32, 0.52) 100.00<br>0.1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mwebaze et al 2014<br>Overall (I^2 = 97.40%, p = 0.00)<br>0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lumu et al 2017 -                | 0.39 (0.34, 0.44)   | 9.19        |
| Overall (l^2 = 97.40%, p = 0.00) 0.42 (0.32, 0.52) 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Overall (l^2 = 97.40%, p = 0.00) 0.42 (0.32, 0.52) 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kisozi et al 2017 -              | 0.37 (0.32, 0.43)   | 9.10        |
| 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mwebaze et al 2014               | - 0.49 (0.40, 0.57) | 8.84        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Overall (I^2 = 97.40%, p = 0.00) | • 0.42 (0.32, 0.52) | 100.00      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                     |             |

BMJ Open: first published as 10.1136/bmjopen-2022-060786 on 8 November 2022. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

| Figure 3. Forest plot summarising studies on proportion of attainment of an optimal |
|-------------------------------------------------------------------------------------|
| blood pressure goal in percentage                                                   |

| 1st author et al &year                    | ES (95% CI)       | %<br>Weight |
|-------------------------------------------|-------------------|-------------|
| Mwita JC et al 2019                       | 0.54 (0.50, 0.59) | 3.91        |
| Jingi et al, 2015                         | 0.40 (0.35, 0.45) | 3.90        |
| Hall et al, 2017                          | 0.43 (0.37, 0.49) | 3.87        |
| Megallaa et al, 2019                      | 0.38 (0.31, 0.45) | 3.83        |
| Abdissa et al, 2020                       | 0.31 (0.25, 0.37) | 3.85        |
| Akalu et al 2020                          | 0.58 (0.53, 0.63) | 3.89        |
| Chisha et al 2017 🗕                       | 0.86 (0.81, 0.90) | 3.87        |
| Hayfron-Benjamin et al, 2019              | 0.38 (0.31, 0.45) | 3.84        |
| Kimando et al 2017                        | 0.50 (0.45, 0.55) | 3.89        |
| Cohen DB et al 2010                       | 0.48 (0.44, 0.52) | 3.91        |
| Chadli et al. 2016                        | 0.20 (0.17, 0.24) | 3.91        |
| Chahbi et al, 2018                        | 0.33 (0.27, 0.38) | 3.88        |
| Uloko et al., 2012                        | 0.17 (0.14, 0.20) | 3.91        |
| Onakpoya et al, 2015                      | 0.24 (0.17, 0.32) | 3.79        |
| Agboghoroma et al, 2020                   | 0.30 (0.24, 0.37) | 3.84        |
| Balogun et al 2011                        | 0.55 (0.38, 0.71) | 3.46        |
| Rotchford et al., 2002                    | 0.14 (0.10, 0.19) | 3.86        |
| Awadalla et al, 2017                      | 0.60 (0.55, 0.65) | 3.90        |
| Amour et al, 2019                         | 0.22 (0.17, 0.28) | 3.86        |
| Sobngwi et al 2011 ■                      | 0.21 (0.19, 0.23) | 3.94        |
| Kahloun et al, 2014                       | 0.63 (0.60, 0.64) | 3.94        |
| Magan et al, 2019                         | 0.34 (0.20, 0.50) | 3.50        |
| Muddu et al., 2016                        | 0.38 (0.31, 0.45) | 3.84        |
| Lumu et al 2017                           | 0.55 (0.50, 0.59) | 3.90        |
| Mwebaze et al 2014                        | 0.01 (0.00, 0.05) | 3.80        |
| Lewis et al, 2018                         | 0.47 (0.43, 0.50) | 3.93        |
| Overall (I^2 = 98.74%, p = 0.0 <b>∮</b> ) | 0.38 (0.30, 0.46) | 100.00      |
|                                           |                   |             |
|                                           |                   |             |
| 0 .1 .2 .3 .4 .5 .6 .7 .8 .9              | 1                 |             |
| Proportion                                |                   |             |

# Figure 4. Forest plot summarising studies on proportion of attainment of an optimal glycated haemoglobin goal in percentage

| 1st author et al &year           | ES (95% CI)         | Weigh  |
|----------------------------------|---------------------|--------|
| Diaf et al 2017                  | - 0.51 (0.44, 0.58) | 2.90   |
| Molefe-Baikai et al, 2018        | 0.29 (0.24, 0.35)   | 2.98   |
| Mwita et al 2019                 | 0.32 (0.28, 0.36)   | 3.08   |
| Hall et al, 2017                 | 0.27 (0.22, 0.33)   | 2.96   |
| Camara et al 2015                | 0.26 (0.24, 0.28)   | 3.17   |
| Blum et al 2020                  | 0.14 (0.10, 0.18)   | 3.00   |
| Megallaa et al, 2019             | 0.04 (0.02, 0.09)   | 2.85   |
| Akalu et al 2020                 | 0.41 (0.36, 0.46)   | 3.04   |
| Kimando et al 2017               | 0.39 (0.35, 0.45)   | 3.04   |
| Ashur et al 2016                 | 0.22 (0.18, 0.26)   | 3.09   |
| Cohen DB et al 2010              | 0.36 (0.32, 0.40)   | 3.11   |
| Bentata et al, 2015              | 0.30 (0.27, 0.34)   | 3.11   |
| Chadli et al. 2016               | 0.27 (0.23, 0.31)   | 3.08   |
| Chetoui et al 2019               | 0.34 (0.31, 0.36)   | 3.18   |
| Adentunji et al 2006             | 0.52 (0.37, 0.66)   | 2.18   |
| Agboghoroma et al, 2020          | 0.19 (0.14, 0.25)   | 2.88   |
| Attoye et al 2020                | 0.35 (0.29, 0.41)   | 2.96   |
| Balogun et al 2011               | 0.52 (0.36, 0.68)   | 2.01   |
| Iwuala et al 2015                | 0.45 (0.35, 0.55)   | 2.60   |
| Uloko et al., 2012               | 0.32 (0.28, 0.37)   | 3.09   |
| Amod et al 2012                  | 0.30 (0.27, 0.34)   | 3.12   |
| Cairncross et al, 2017           | 0.32 (0.25, 0.38)   | 2.89   |
| Webb 2015                        | 0.27 (0.24, 0.31)   | 3.11   |
| Awadalla et al, 2017             | 0.16 (0.12, 0.19)   | 3.06   |
| Noor et al., 2016                | 0.15 (0.12, 0.19)   | 3.04   |
| Omar et al 2018                  | 0.28 (0.23, 0.33)   | 3.02   |
| Amour et al, 2019                | 0.09 (0.06, 0.14)   | 2.93   |
| Mbwete et al., 2020              | 0.50 (0.42, 0.58)   | 2.81   |
| Sobngwi et al 2011               | 0.29 (0.27, 0.31)   | 3.20   |
| Muddu et al. 2019                | 0.08 (0.04, 0.13)   | 2.84   |
| Muddu et al., 2016               | 0.08 (0.05, 0.13)   | 2.88   |
| Kibirige et al 2017              | 0.27 (0.22, 0.31)   | 3.06   |
| Kisozi et al 2017                | 0.23 (0.19, 0.29)   | 2.98   |
| Mwebaze et al 2014               | 0.19 (0.13, 0.27)   | 2.77   |
| Overall (I^2 = 94.70%, p = 0.00) | 0.27 (0.24, 0.30)   | 100.00 |
|                                  |                     |        |
| 0 .1 .2 .3 .4                    | .5 .6 .7 .8 .9 1    |        |

#### % ES (95% CI) Weight 1st author et al &year Blake et al 2015 0.18 (0.16, 0.20) 2.04 Dzudie et al 2012 0.16 (0.12, 0.20) 2.01 1.97 Hall et al, 2017 0.27 (0.22, 0.33) Jingi et al, 2014 0.39 (0.34, 0.44) 2.01 Jingi et al, 2015 0.40 (0.35, 0.45) 2.01 Njikam et al, 2016 0.50 (0.45, 0.55) 2 00 2.02 Khalil et al 2019 0.35 (0.30, 0.39) Megallaa et al, 2019 0.90 (0.85, 0.94) 1.94 2.01 Seyum et al 2010 0.33 (0.29, 0.38) Abeiew et al. 2015 0.29 (0.23, 0.35) 1.96 Chisha et al 2017 0.13 (0.09, 0.18) 1.98 Fasil, et al 2019 2.00 0.18 (0.14, 0.22) Gill et al 2008 0.21 (0.14, 0.30) 1.86 Tesfaye et al 2015 0.12 (0.08, 0.16) 1.97 Tilahun et al, 2017 0.20 (0.15, 0.26) 1.97 Worku et al 2010 1.99 0.34 (0.28, 0.39) Hayfron-Benjamin et al, 2019 0.11 (0.07, 0.16) 1.95 Lartey et al, 2018 0.15 (0.11, 0.21) 1.95 Makwero et al 2018 0.05 (0.02, 0.09) 1.91 Thinyane et al 2013 0.35 (0.25, 0.46) 1.80 1.99 Burgress et al 2014 0.50 (0.44, 0.56) Cohen et al 2010 0.35 (0.31, 0.39) 2.02 Glover et al 2011 0.32 (0.27, 0.38) 1.98 Bentata et al. 2015 0.36 (0.32, 0.39) 2.03 Chahbi et al, 2018 0.34 (0.29, 0.40) 1.99 Bello et al 2019 0.33 (0.26, 0.41) 1.93 Bello et al, 2017 0.20 (0.16, 0.25) 2.00 Uloko et al. 2012 0.36 (0.32, 0.40) 2.02 Kizor-Akarairwe et al 2016 0.33 (0.22, 0.44) 1.80 Olamoyegun et al, 2016 1.83 0.49 (0.38, 0.60) Onakpoya et al, 2015 0.28 (0.20, 0.36) 1.90 Ekoru K et al. 2019 0.15 (0.14, 0.16) 2 05 Cairncross et al 2017 0.28 (0.22, 0.35) 1.95 Pirie et al, 2013 0.39 (0.33, 0.45) 1.98 Rotchford et al., 2002 0.40 (0.34, 0.47) 1.97 Thomas RL et 2013 0.20 (0.19, 0.22) 2.06 Webb et al 2015 0.25 (0.21, 0.29) 2.02 Ahmed et al, 2017 0.40 (0.34, 0.46) 1.99 Albalawi et al 2020 0.35 (0.27, 0.43) 1.92 Awadalla et al 2017 0.73 (0.68, 0.77) 2.01 Elwali et al 2017 0.83 (0.78, 0.87) 1.99 1.77 Mohmad et al 2011 0.72 (0.60, 0.82) 2.06 Cleland et al, 2015 0.28 (0.27, 0.29) Neuhann et al 2002 0.14 (0.11, 0.17) 2.01 Woodward et al, 2020 0.43 (0.33, 0.54) 1.83 Sobnowi et al 2011 0.18 (0.17, 0.20) 2.05 Bouaziz et al 2012 1.78 0.27 (0.18, 0.39) Kahloun et al, 2014 0.26 (0.25, 0.28) 2.05 Magan et al, 2019 0.20 (0.10, 0.35) 1.63 Lewis et al. 2018 0.44 (0.41, 0.47) 2.04 Lebeta et al, 2017 0.26 (0.21, 0.31) 2.00 Overall (I^2 = 98.07%, p = 0.00) 0.32 (0.28, 0.36) 100.00 Proportion 0 .2 .8 .1 .9

#### Figure 5. Forest plot summarising studies on prevalence of diabetic retinopathy

59 60

1 2 3

4 5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 52

53

| re 6. Forest plot summarising studies | on prevalence of diabetic foot ulcers |
|---------------------------------------|---------------------------------------|
|                                       |                                       |
|                                       | %                                     |
| 1st author et al &year                | ES (95% CI) Weig                      |
| Assaad-Khalil et al 2015              | 0.06 (0.05, 0.08) 3.61                |
| Megallaa et al, 2019                  |                                       |
| Seyum et al 2010                      | 0.14 (0.11, 0.18) 3.52                |
| Abdissa et al, 2020 📥                 | 0.13 (0.09, 0.18) 3.39                |
| Abejew et al, 2015                    | 0.05 (0.02, 0.08) 3.37                |
| Deribe et al, 2014                    | 0.15 (0.10, 0.20) 3.37                |
| Gebrekirstos et al, 2015              | 0.12 (0.08, 0.17) 3.39                |
| Mamo et al, 2015                      | 0.15 (0.10, 0.21) 3.35                |
| Miriam et al, 2017                    | 0.14 (0.10, 0.18) 3.44                |
| Tesfaye et al 2015                    | 0.00 (0.00, 0.02) 3.41                |
| Tilahun et al, 2017                   | 0.08 (0.05, 0.13) 3.39                |
| Worku et al 2010                      | 0.05 (0.03, 0.08) 3.46                |
| Thinyane et al 2013                   | 0.14 (0.07, 0.23) 2.95                |
| Uloko et al, 2012                     | 0.04 (0.02, 0.06) 3.55                |
| Unachukwu et al, 2007                 | 0.19 (0.15, 0.24) 3.46                |
| Ekoru K et al. 2019                   | 0.05 (0.04, 0.06) 3.66                |
| Rotchford et al., 2002                | 0.06 (0.03, 0.10) 3.41                |
| Albalawi et al 2020                   | 0.03 (0.01, 0.06) 3.27                |
| Awadalla et al 2017                   | 0.13 (0.10, 0.16) 3.52                |
| Elwali et al 2017                     | 0.18 (0.14, 0.22) 3.46                |
| Abbas et al, 2002                     | 0.15 (0.12, 0.18) 3.57                |
| Abbas et al, 2011                     | 0.12 (0.11, 0.13) 3.68                |
| Amour et al 2019                      | 0.10 (0.07, 0.14) 3.46                |
| Chalya et al, 2011                    | 0.03 (0.01, 0.07) 3.21                |
| Chiwanga et al, 2015                  | 0.15 (0.12, 0.19) 3.51                |
| Neuhann et al 2002                    | 0.10 (0.07, 0.13) 3.53                |
| Sobngwi et al 2011                    | 0.12 (0.10, 0.13) 3.65                |

Lebeta et al, 2017

Nyamu et al, 2003 122

Overall (I<sup>2</sup> = 97.39%, p = 0.00)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 Proportion

0.21 (0.17, 0.26)

0.05 (0.04, 0.06)

0.11 (0.09, 0.14)

3.48

3.64

100.00

#### % 1st author et al &year ES (95% CI) Weight Molefe-Baikai et al, 2018 0.45 (0.39, 0.51) 2.51 Dzudie et al 2012 0.16 (0.13, 0.20) 2.52 Efundem et al, 2017 0.14 (0.09, 0.21) 2.50 Blum et al 2020 0.39 (0.33, 0.44) 2.51 Khalil et al 2019 0.33 (0.29, 0.37) 2.52 Megallaa et al. 2019 0.86 (0.80, 0.91) 2 50 Abejew et al, 2015 0.02 (0.01, 0.05) 2.51 Deribe et al. 2014 0.09 (0.05, 0.13) 2.51 Fasil, et al 2019 0.04 (0.03, 0.07) 2.52 Gill et al 2008 0.51 (0.41, 0.61) 2.48 Goro et al, 2019 0.26 (0.20, 0.32) 2.50 Tesfaye et al 2015 0.06 (0.04, 0.10) 2.51 Worku et al 2010 0.16 (0.12, 0.20) 2.51 Eghan-Jr et al 2007 0.43 (0.34, 0.53) 2.48 Hayfron-Benjamin et al, 2019 0.32 (0.26, 0.39) 2.50 Makwero et al 2018 0.07 (0.03, 0.12) 2.49 Thinyane et al 2013 0.06 (0.02, 0.14) 2.46 Cohen et al 2010 0.35 (0.31, 0.39) 2.52 Bentata et al, 2015 2.52 0.77 (0.74, 0.80) Chahbi et al. 2018 2 51 0.26 (0.21, 0.32) Adentunji et al 2006 0.84 (0.71, 0.93) 2.42 Alebiosu et al 2013 0.28 (0.24, 0.33) 2.52 Balogun et al 2011 0.90 (0.76, 0.97) 2.39 Bello et al, 2017 0.53 (0.48, 0.59) 2.52 Uloko et al, 2012 0.03 (0.02, 0.05) 2.52 Olamoyegun et al, 2015 0.54 (0.44, 0.65) 2.47 Adeniyi et al, 2020 0.24 (0.20, 0.29) 2.52 Rotchford et al., 2002 0.46 (0.40, 0.53) 2.51 Ahmed et al, 2017 0.40 (0.35, 0.46) 2.51 Albalawi et al 2020 0.26 (0.20, 0.34) 2.50 Mohmad et al 2011 0.51 (0.39, 0.63) 2.45 Amour et al 2019 0.72 (0.67, 0.77) 2.51 Janmohamed at al 2013 0.84 (0.80, 0.87) 2.52 Neuhann et al 2002 0.08 (0.05, 0.10) 2.52 Sobngwi et al 2011 0.02 (0.02, 0.03) 2.53 Bouaziz et al 2012 0.11 (0.05, 0.20) 2.45 Kahloun et al, 2014 0.03 (0.03, 0.04) 2.53 Muddu et al. 2019 0.47 (0.40, 0.55) 2.50 Machingura et al, 2017 0.45 (0.39, 0.52) 2.51 Lebeta et al, 2017 0.11 (0.08, 0.15) 2.52 Overall (I^2 = 99.31%, p = 0.00) 0.31 (0.22, 0.41) 100.00 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 Proportion

### Figure 7. Forest plot summarising studies on prevalence of diabetic nephropathy

58 59 60

1 2 3

4 5 6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

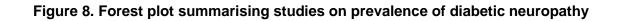
37

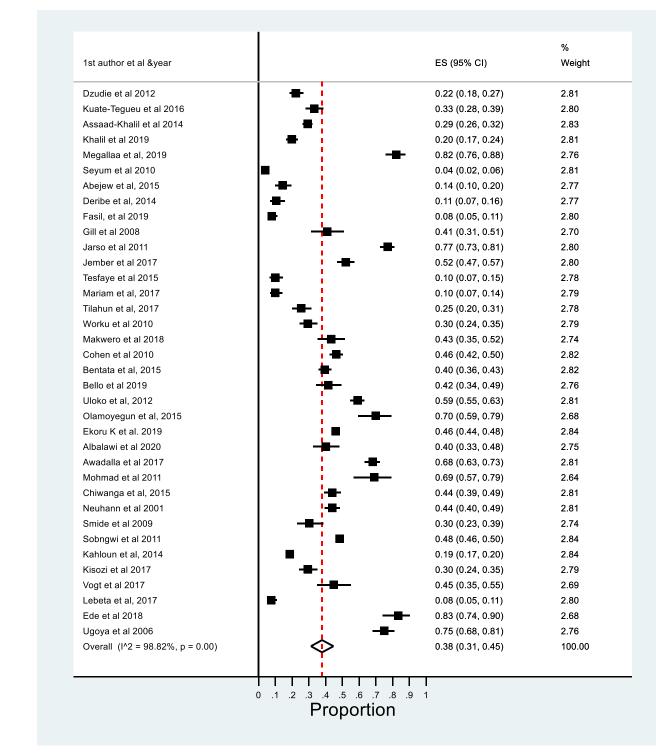
38

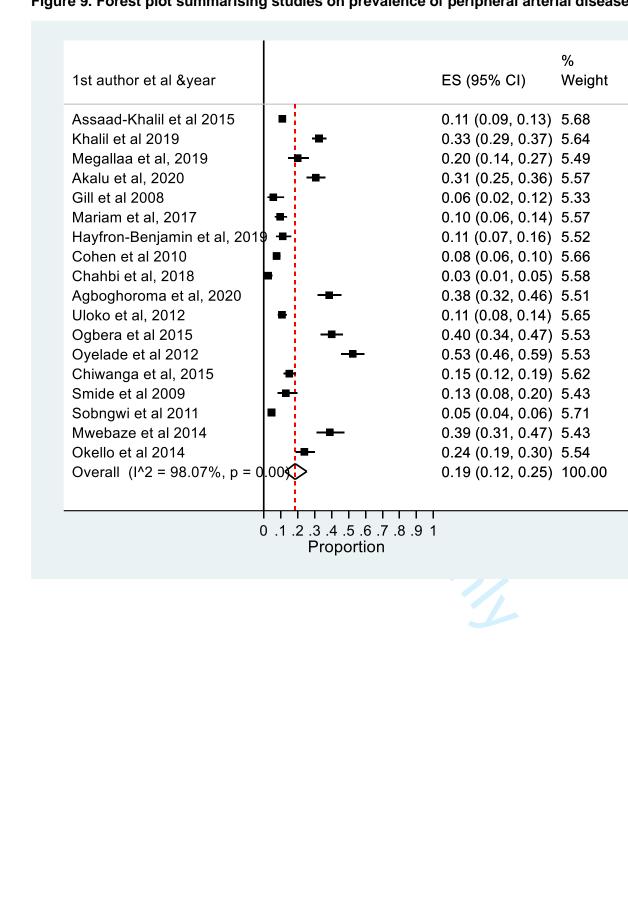
39

40

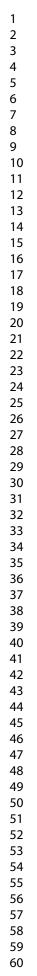
41


42


43

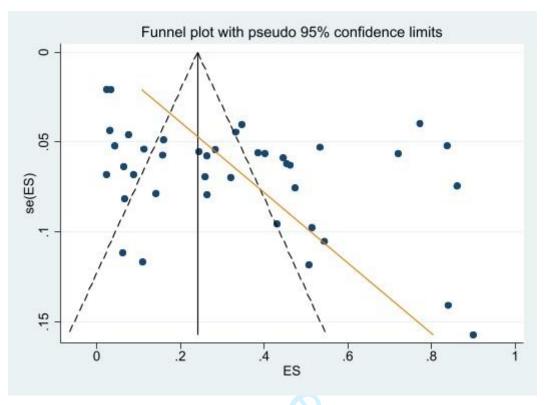

44

45

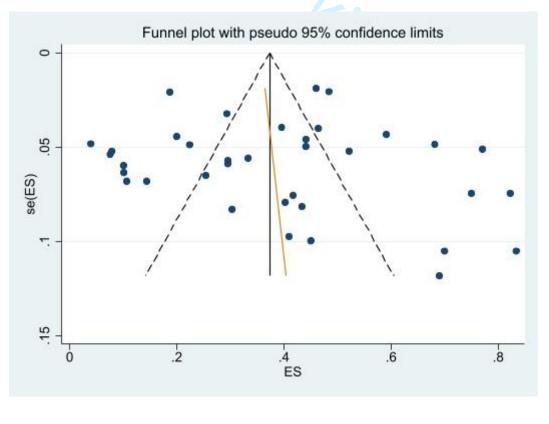

46 47 48



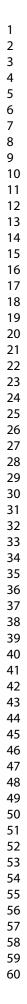


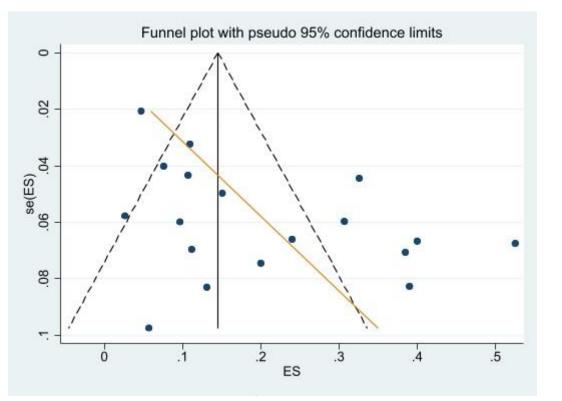



#### Figure 9. Forest plot summarising studies on prevalence of peripheral arterial disease



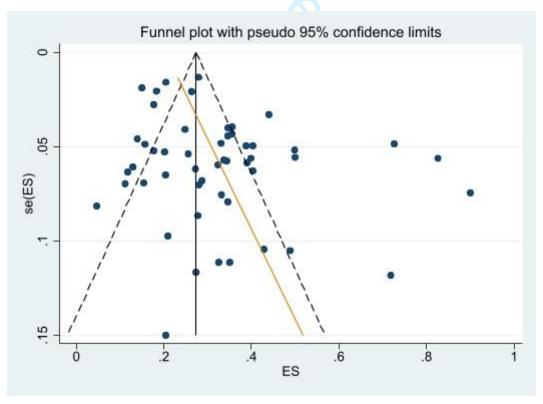

#### Supplementary figure 1.

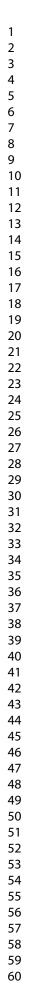

#### Funnel plot for studies investigating prevalence of diabetic nephropathy



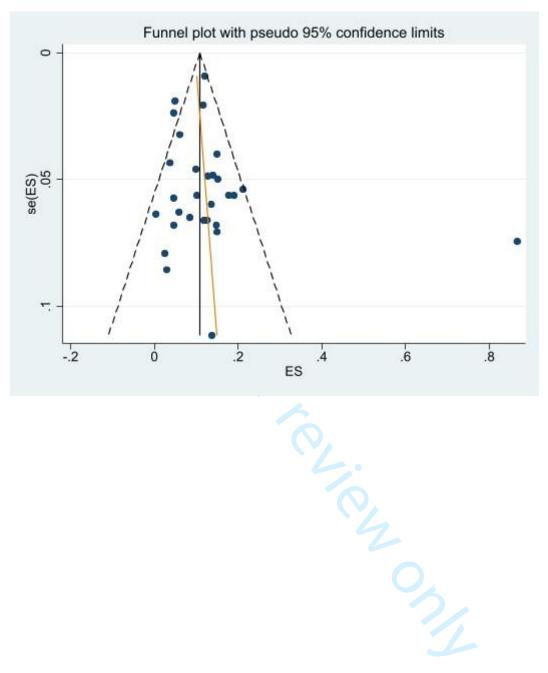

Funnel plot for studies investigating prevalence of diabetic neuropathy





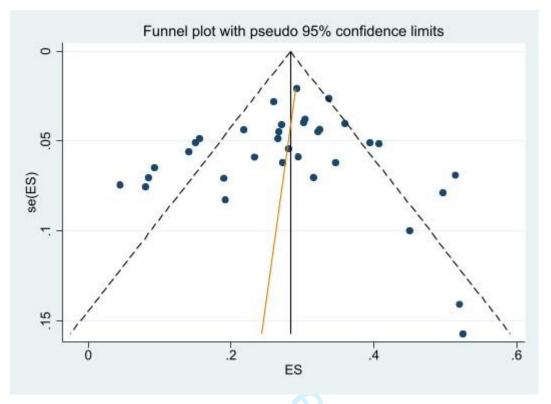




### Funnel plot for studies investigating prevalence of peripheral arterial disease

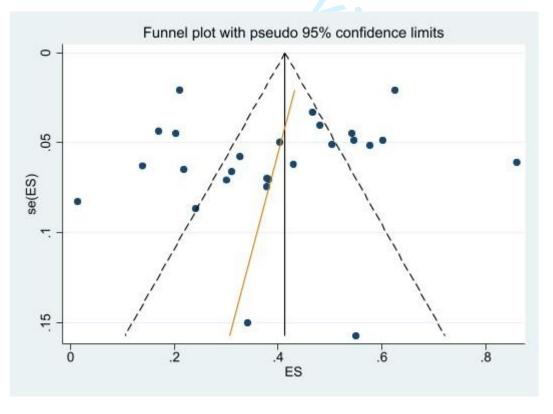
Funnel plot for studies investigating prevalence of diabetic retinopathy









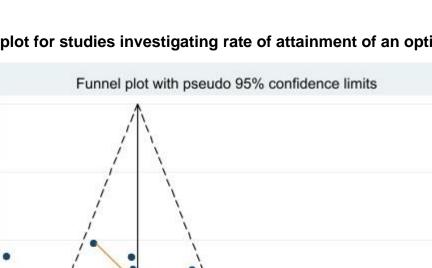

# Supplementary figure 2.

### Funnel plot for studies investigating rate of attainment of an optimal HbA1c goal



Funnel plot for studies investigating rate of attainment of an optimal BP goal




02

80

08

2

1 2 3



.

ES

.4

.6

reliez onz

8.

#### Funnel plot for studies investigating rate of attainment of an optimal LDLC goal



# Supplementary table 1. PRISMA checklist for the systematic review and metaanalysis

| Section and Topic             | Item # | Checklist item                                                                                                                                                                                                                                                                                       | Page where item is reported |
|-------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| TITLE                         | -      |                                                                                                                                                                                                                                                                                                      |                             |
| Title                         | 1      | Identify the report as a systematic review.                                                                                                                                                                                                                                                          | 1                           |
| ABSTRACT                      |        |                                                                                                                                                                                                                                                                                                      |                             |
| Abstract                      | 2      | See the PRISMA 2020 for Abstracts checklist.                                                                                                                                                                                                                                                         | 3                           |
| INTRODUCTION                  | ÷      |                                                                                                                                                                                                                                                                                                      |                             |
| Rationale                     | 3      | Describe the rationale for the review in the context of existing knowledge.                                                                                                                                                                                                                          | 5-6                         |
| Objectives                    | 4      | Provide an explicit statement of the objective(s) or question(s) the review addresses.                                                                                                                                                                                                               | 6                           |
| METHODS                       | •      |                                                                                                                                                                                                                                                                                                      |                             |
| Eligibility criteria          | 5      | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.                                                                                                                                                                                          | 7-8                         |
| Information sources           | 6      | Specify all databases, registers, websites, organisations, reference lists<br>and other sources searched or consulted to identify studies. Specify the<br>date when each source was last searched or consulted.                                                                                      | 6                           |
| Search strategy               | 7      | Present the full search strategies for all databases, registers and websites, including any filters and limits used.                                                                                                                                                                                 | 6-7                         |
| Selection process             | 8      | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.                     | 7-8                         |
| Data collection process       | 9      | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | 8                           |
| Data items                    | 10a    | List and define all outcomes for which data were sought. Specify whether<br>all results that were compatible with each outcome domain in each study<br>were sought (e.g. for all measures, time points, analyses), and if not, the<br>methods used to decide which results to collect.               | 8-9                         |
|                               | 10b    | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.                                                                                         | 9                           |
| Study risk of bias assessment | 11     | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.                                    | 9                           |
| Effect measures               | 12     | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.                                                                                                                                                                  | 9                           |
| Synthesis methods             | 13a    | Describe the processes used to decide which studies were eligible for<br>each synthesis (e.g. tabulating the study intervention characteristics and<br>comparing against the planned groups for each synthesis (item #5)).                                                                           | 9                           |
|                               | 13b    | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.                                                                                                                                                | 9                           |
|                               | 13c    | Describe any methods used to tabulate or visually display results of individual studies and syntheses.                                                                                                                                                                                               | 9                           |
|                               | 13d    | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity,                                                                        | 9                           |

| Section and Topic             | Item # | Item # Checklist item                                                                                                                                                                                                                                                                |                                                                 |  |  |  |  |
|-------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                               |        | and software package(s) used.                                                                                                                                                                                                                                                        | is reported                                                     |  |  |  |  |
|                               | 13e    | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).                                                                                                                                                 | 9-10                                                            |  |  |  |  |
|                               | 13f    | Describe any sensitivity analyses conducted to assess robustness of the synthesized results.                                                                                                                                                                                         | Not done                                                        |  |  |  |  |
| Reporting bias assessment     | 14     | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).                                                                                                                                                              | 11                                                              |  |  |  |  |
| Certainty assessment          | 15     | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.                                                                                                                                                                                | 11                                                              |  |  |  |  |
| RESULTS                       |        | ·                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |  |
| Study selection               | 16a    | Describe the results of the search and selection process, from the number<br>of records identified in the search to the number of studies included in the<br>review, ideally using a flow diagram.                                                                                   | 10                                                              |  |  |  |  |
|                               | 16b    | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.                                                                                                                                                          | 10                                                              |  |  |  |  |
| Study characteristics         | 17     | Cite each included study and present its characteristics.                                                                                                                                                                                                                            | 10-11                                                           |  |  |  |  |
| Risk of bias in studies       | 18     | Present assessments of risk of bias for each included study.                                                                                                                                                                                                                         | 11                                                              |  |  |  |  |
| Results of individual studies | 19     | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.                                                     | 11-13                                                           |  |  |  |  |
| Results of syntheses          | 20a    | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.                                                                                                                                                                               | 11                                                              |  |  |  |  |
|                               | 20b    | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | 11-13                                                           |  |  |  |  |
|                               | 20c    | Present results of all investigations of possible causes of heterogeneity among study results.                                                                                                                                                                                       | Not done                                                        |  |  |  |  |
|                               | 20d    | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.                                                                                                                                                                           | Not done                                                        |  |  |  |  |
| Reporting biases              | 21     | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.                                                                                                                                                              | 13                                                              |  |  |  |  |
| Certainty of evidence         | 22     | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.                                                                                                                                                                                  | 13                                                              |  |  |  |  |
| DISCUSSION                    | -      |                                                                                                                                                                                                                                                                                      |                                                                 |  |  |  |  |
| Discussion                    | 23a    | Provide a general interpretation of the results in the context of other evidence.                                                                                                                                                                                                    | 13-16                                                           |  |  |  |  |
|                               | 23b    | Discuss any limitations of the evidence included in the review.                                                                                                                                                                                                                      | 16                                                              |  |  |  |  |
|                               | 23c    | Discuss any limitations of the review processes used.                                                                                                                                                                                                                                | 16                                                              |  |  |  |  |
|                               | 23d    | Discuss implications of the results for practice, policy, and future research.                                                                                                                                                                                                       | 17                                                              |  |  |  |  |
| OTHER INFORMATION             |        |                                                                                                                                                                                                                                                                                      |                                                                 |  |  |  |  |
| Registration and protocol     | 24a    | Provide registration information for the review, including register name and registration number, or state that the review was not registered.                                                                                                                                       | 6                                                               |  |  |  |  |
|                               | 24b    | Indicate where the review protocol can be accessed, or state that a protocol was not prepared.                                                                                                                                                                                       | Protocol was n<br>prepared                                      |  |  |  |  |
|                               | 24c    | Describe and explain any amendments to information provided at registration or in the protocol.                                                                                                                                                                                      | Search period<br>changed from<br>September 202<br>to December 2 |  |  |  |  |
| Support                       | 25     | Describe sources of financial or non-financial support for the review, and                                                                                                                                                                                                           | 17                                                              |  |  |  |  |

;

| 2        |        |
|----------|--------|
| 3        |        |
| 4<br>5   | 3      |
| 5<br>6   |        |
| 7        | C      |
| 8        | A      |
| 9<br>10  | c<br>n |
| 10<br>11 |        |
| 12       |        |
| 13       |        |
| 14<br>15 |        |
| 15<br>16 |        |
| 17       |        |
| 18       |        |
| 19<br>20 |        |
| 20<br>21 |        |
| 22       |        |
| 23       |        |
| 24<br>25 |        |
| 25<br>26 |        |
| 27       |        |
| 28       |        |
| 29       |        |
| 30<br>31 |        |
| 32       |        |
| 33       |        |
| 34<br>25 |        |
| 35<br>36 |        |
| 37       |        |
| 38       |        |
| 39       |        |
| 40<br>41 |        |
| 42       |        |
| 43       |        |
| 44       |        |
| 45<br>46 |        |
| 46<br>47 |        |
| 48       |        |
| 49       |        |
| 50       |        |
| 51<br>52 |        |
| 53       |        |
| 54       |        |
| 55       |        |
| 56<br>57 |        |
| 58       |        |
|          |        |

| Section and Topic                                    | Item # | Checklist item                                                                                                                                                                                                                                      | Page where item<br>is reported |
|------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                      |        | the role of the funders or sponsors in the review.                                                                                                                                                                                                  |                                |
| Competing interests                                  | 26     | Declare any competing interests of review authors.                                                                                                                                                                                                  | 17                             |
| Availability of data,<br>code and other<br>materials | 27     | Report which of the following are publicly available and where they can be<br>found: template data collection forms; data extracted from included<br>studies; data used for all analyses; analytic code; any other materials used<br>in the review. | 17                             |
|                                                      |        |                                                                                                                                                                                                                                                     |                                |

| able 2. Criteria for to oresentativeness sample (*) | Sele                                                                 | d Newcastle-Ottawa<br>ection<br>Non<br>respondents (*)<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                          | Ascertainment<br>of exposure (*)<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comparability (**) ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72022-060<br>assess quality of<br>6<br>6<br>Assessment<br>Assessment<br>(*)<br>Assessment<br>(*)<br>Assessment<br>(*)<br>Assessment<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outcome<br>Statistical test<br>(*)<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Total</b><br>(8*)<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | Sample<br>size (*)<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Non         respondents (*)         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                   | of exposure (*) * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (**)<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bof outcome (*)<br>ber<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Statistical test (*)  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (8*)<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | size (*) * * * * * * * * * * * * * * * *                             | respondents (*)         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         * | of exposure (*) * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bof outcome (*)<br>ber<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (*)<br>* * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8*)<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | * * * * * * * * *                                                    | * * * * * * * * * * * *                                                                                                                                                                                                                                                   | *<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>Downloadeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                     | * * * * * * * * *                                                    | * * * * * * * * * * * *                                                                                                                                                                                                                                                   | *<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>Downloadeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     | * * * * * * * *                                                      | * * * * * * * *                                                                                                                                                                                                                                                           | * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | **<br>**<br>**<br>**<br>**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Downson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                     | * * * * * * *                                                        | *<br>*<br>*<br>*                                                                                                                                                                                                                                                          | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **<br>**<br>**<br>**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | White the second | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *<br>*<br>*<br>*                                                     | * * *                                                                                                                                                                                                                                                                     | * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **<br>**<br>**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                     | * * * * *                                                            | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0*<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | * *                                                                  | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ſo*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    |                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     |                                                                      | *                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    |                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ** -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | 1                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>o</b> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0*<br>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .*<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m*/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ** -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A*<br>pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ii*<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ω.<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0*<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ex<br>St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NU CONTRACTOR OF | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | *                                                                    | *                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     |                                                                      | *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                 | *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         *       *         * | *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       *         *       *       * | *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       *       *       *         *       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: second | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |

| Page 74 of 74 |
|---------------|
|---------------|

|                                                            |    |     | BM | 1J Open |    | omjope               |   | Page 74 of 74 |
|------------------------------------------------------------|----|-----|----|---------|----|----------------------|---|---------------|
|                                                            |    |     |    |         |    | n-20                 |   |               |
| 1                                                          |    |     |    |         |    | 2022-                |   |               |
| 2                                                          |    | I a |    | Г       |    | 060 <u>78</u> 6      |   | <u> </u>      |
| <sup>3</sup> Hayfron-Benjamin et<br><sup>4</sup> al., 2019 | *  | *   | *  | *       | ** | 786 or               | * | 8             |
| 5 Kizor-Akaraiwe et al.,<br>7 2016                         | *  | *   | *  | *       | ** | 5 *<br>8 No          | * | 8             |
| 7 Ogbera et al., 2015                                      | *  | *   | *  | *       | ** | ven                  | * | 8             |
| 9 Olamoyegun et al.,<br>10 2015                            | *  | *   | *  | *       | ** | n<br>ber<br>2        | * | 8             |
| 1 Oyelade et al., 2012                                     | *  | *   | *  | *       | ** | 0 <sup>*</sup> 2     | * | 8             |
| 12 Ugoya et al., 2006                                      | *  | *   | *  | *       | ** | <b>T</b>             | * | 8             |
| 13 Ahmed et al., 2017                                      | *  | *   | *  | *       | ** | 0<br>Wr              | * | 8             |
| <sup>14</sup> Albalawi et al., 2020                        | *  | *   | *  | *       |    | 0*<br>2              | * | 8             |
| <sup>15</sup> Ashur et al., 2016                           | *  | *   | *  | *       |    |                      | * | 8             |
| <sup>16</sup> Blum et al., 2020                            | *  | *   | *  | *       | ** |                      | * | 8             |
| <sup>1</sup> Burgess et al., 2014                          | *  | *   | *  | *       | ** | Ă*                   | * | 8             |
| Glover et al., 2012                                        | *  | *   | *  | *       | ** |                      | * | 8             |
| Lewis et al., 2018                                         | *  | *   | *  | *       | ** | ·//b                 | * | 8             |
| 2 Machingura et al.,<br>22 2017                            | *  | *   | *  | *       | ** |                      | * | 8             |
| 23 Molefe-Baikai et al.,<br>24 2018                        | *  | *   | *  | * 0.    | ** | р<br>b*<br>В.        | * | 8             |
| 25 Mwita et al., 2019                                      | *  | *   | *  | *       | ** | 0<br>0*              | * | 8             |
| <sup>26</sup> Pirie et al., 2014                           | *  | *   | *  | *       | ** | *<br>*               | * | 8             |
| <sup>2</sup> / Rotchford et al., 2002                      | *  | *   | *  | *       | ** | ол *<br>А            | * | 8             |
| <sup>2</sup> Thomas et al., 2013                           | *  | *   | *  | *       |    | ¥přil                | * | 8             |
| <sup>2</sup> Webb et al., 2015                             | *  | *   | *  | *       |    | L 2*                 | * | 8             |
| <sup>30</sup> Omar et al., 2018                            | *  | *   | *  | *       |    | 2*                   | * | 8             |
| <sup>31</sup> Adeniyi et al., 2020                         | *  | *   | *  | *       | ** | D<br>24*             | * | 8             |
| $_{32}$ Assaad-Khalil et al.,                              | *  | *   | *  | *       | ** | <del>⊽</del> .<br><* | * | 8             |
| 34 2015                                                    |    |     |    |         |    |                      |   | 0             |
| 35 Khalil et al., 2019                                     | *  | *   | *  | *       | ** | P<br>St*             | * | 8             |
| 36 Awadalla et al., 2017                                   | *  | *   | *  | *       | ** | <del>ס</del><br>ס    | * | 8             |
| 37 Bentata et al., 2015                                    | *  | *   | *  | *       |    | 0<br>0<br>0          | * | 8             |
| <sup>38</sup> Bouaziz et al., 2012                         | *  | *   | *  | *       |    | 0<br>0<br>0          | * | 8             |
| <sup>39</sup> Jingi et al., 2015                           | *  | *   | *  | *       |    | ₹*                   | * | 8             |
| 40                                                         | -1 | 1   | 1  | 1       | ı  |                      | 1 | <u> </u>      |
| 41                                                         |    |     |    |         |    | sopyright.           |   |               |
| 42                                                         |    |     |    |         |    | yht.                 |   |               |
| 43                                                         |    | -   |    |         |    |                      |   |               |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Page 75 of 74                                          |   |              | BN                      | 1J Open                | -  | omiopen.     |   |   |
|--------------------------------------------------------|---|--------------|-------------------------|------------------------|----|--------------|---|---|
| 1<br>2                                                 |   |              |                         |                        |    | -2022-06     |   |   |
| <sup>3</sup> Chahbi et al., 2018                       | * | *            | *                       | *                      | ** | -060781      | * | 8 |
| <sup>4</sup> Adetunji et al., 2006                     | * | *            | *                       | *                      | ** | ອັ.<br>ວ້    | * | 8 |
| <sup>5</sup> Jarso et al., 2011                        | * | *            | *                       | *                      |    | ∋<br>∞*      | * | 8 |
| Janmohamed et al,                                      | * | *            | *                       | *                      | *  | Nove         | * | 7 |
| Chalus at al. 2011                                     | * | *            | *                       | *                      | *  | а<br>б*<br>е | * | 7 |
| <sup>9</sup> Chaiya et al, 2011<br>10 Goro et al, 2019 | * | *            | *                       | *                      |    | er2*         | * | 7 |
| 11 Muddu et al, 2016                                   | * | *            |                         | *                      |    | 00222        | * | 7 |
| 12 Kisozi et al, 2017                                  | * | *            | *                       | *                      |    | <u>א</u>     | * | 7 |
| <sup>13</sup> Akalu et al, 2020                        | * | *            | *                       | *                      |    |              | * | 7 |
| <sup>14</sup> Lumu et al, 2017                         | * | *            | *                       | *                      |    | <u> </u>     | * | 7 |
| 15 Chamba et al, 2017                                  | * | *            | 6                       | *                      | ** | ຍ<br>ວ<br>ດ* | * | 7 |
| <sup>16</sup> Smide et al, 2008                        | * | -            | *                       | *                      | ** | id fro       | * | 7 |
| <sup>1</sup> / <sub>1</sub> Sobngwi et al 2011         | * | -            | *                       | *                      |    | o<br>B*      | * | 7 |
| 18 Camara et al, 2014                                  | * |              | *                       | *                      | ** |              | * | 7 |
| $\frac{19}{20}$ Ekoru et al,2019                       | * |              | *                       | *                      | ** | o.<br>/*     | * | 7 |
| 21 Mwebaze et al, 2014                                 | * | *            | *                       | *                      | *  | o<br>*       | * | 7 |
| 22 Agboghoroma et                                      | * | *            | *                       | *                      | *  | 0<br>*       | * | 7 |
| 23 al,2020                                             |   |              |                         |                        |    | n.b          |   | ' |
| 24 Kimando et al, 2017                                 | * | *            | -                       | *                      | ** | *            | * | 7 |
| <sup>25</sup> Clealand et al, 2015                     | * | *            | *                       | *                      | *  | 0<br>9*      | * | 7 |
| <sup>2</sup> Njikam et al., 2016                       | * | *            | -                       | *                      | ** | o*           | * | 7 |
| <sup>2</sup> Dzudie et al., 2012                       | * | *            | *                       | -                      |    | n<br>≯       | - | 7 |
| <sup>28</sup> Alebiosu et al., 2003                    | * | *            | -                       | *                      | ** | p            | * | 7 |
| <sup>2</sup> Kuate-Tegueu et al.,<br>2015              | * | *            | -                       | *                      |    | 23. 20       | * | 7 |
| 3) Mohmad et al., 2011                                 | * | *            | -                       | *                      |    | 24*          | * | 7 |
| 33 Cohen et al., 2010                                  | * | *            | -                       | *                      | ** |              | * | 7 |
| 34 Makwero et al., 2018                                | * | *            | -                       | *                      | ** | 0<br>Ues     | * | 7 |
| 35 Onakpoya et al., 2016                               | * | -            | -                       | *                      | ** | й<br>Г*      | * | 7 |
| <sup>36</sup> Lebeta et al, 2016                       | * | *            | *                       | *                      | -  | P<br>P.*     | * | 6 |
| <sup>37</sup> Kibirige et al, 2017                     | * | -            | -                       | *                      |    |              | * | 6 |
| <sup>38</sup> Mbwete et al, 2020                       | * | -            | *                       | *                      |    | te<br>O_*    | * | 6 |
| <sup>3</sup> Tiahun et al,2017                         | * | *            | *                       | *                      | -  | Ь<br><*      | * | 6 |
| 40<br>41<br>42<br>43                                   | 1 | For peer rev | iew only - http://bmiop | en.bmj.com/site/about/ |    | dopyright.   | 1 | ~ |

|                                                      |     |               | BN                      | 1J Open                |                  | omjoper                                                                                     |        | Page 76 of 74 |
|------------------------------------------------------|-----|---------------|-------------------------|------------------------|------------------|---------------------------------------------------------------------------------------------|--------|---------------|
| 1<br>2                                               |     |               |                         |                        |                  | n-2022-06C                                                                                  |        |               |
| <sup>3</sup> Chiwanga et al, 2015                    | *   | -             | *                       | *                      | *                | 0 <sup>*</sup> 8                                                                            | *      | 6             |
| <sup>4</sup> Lumu et al, 2017                        | *   | -             |                         | *                      |                  | <del>ດ.</del><br>ວ*                                                                         | *      | 6             |
| <sup>5</sup> Balogu et al., 2011                     | *   | -             | -                       | *                      | **               | ∋<br>∞*                                                                                     | *      | 6             |
| <sup>6</sup> / <sub>7</sub> Megallaa et al., 2019    | *   | *             | *                       | *                      | -                | Z*<br>0                                                                                     | *      | 6             |
| 8 Eghan et al., 2007                                 | *   | *             | -                       | -                      | **               | ven                                                                                         | *      | 6             |
| 9 Unachukwu et al.,<br>10 2007                       | *   | -             | -                       | *                      | **               | 5*<br>0<br>7                                                                                | *      | 6             |
| 11 Abejew et al, 2015                                | *   | *             | -                       | *                      | -                | 2022                                                                                        | *      | 5             |
| 12 Nyamu et al, 2003                                 | *   |               | *                       | *                      |                  | 2<br>D                                                                                      | *      | 5             |
| <sup>13</sup> Gulam-Abbas et al,                     | *   | -0+           | *                       | *                      | -                | lo<br>wnlo                                                                                  | *      | 5             |
| <sup>1</sup> 2002<br><sup>15</sup> Abbas et al, 2011 | *   | *             | *                       | *                      |                  | a<br>e*                                                                                     |        | 5             |
|                                                      | *   | *             | *                       | *                      |                  | 0                                                                                           | -      | 5<br>5        |
| <sup>16</sup> Gill et al, 2008                       |     |               |                         | *                      |                  | <br>0<br>B*                                                                                 | -<br>* | 5             |
| Cairncross et al., 2017                              | - * | -<br>*        | -                       | -                      |                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | *      | 5             |
| Amod et al., 2012                                    | *   |               |                         | -<br>*                 |                  | <b>5</b>                                                                                    | *      |               |
| 20 Vogt et al, 2017                                  | *   | -<br>*        | - *                     |                        | -                | <u>б</u><br>В*                                                                              |        | 4             |
| 2 Worku et al, 2010                                  | *   |               | *                       | *                      | -                | 0<br>0<br>0*                                                                                | -      | 4             |
| 22 Gebrekirstos et al,<br>23 2015                    |     | -             | ~                       |                        | -                | en.br                                                                                       | -      | 4             |
| 2 <mark>4</mark> Magan et al, 2019                   | -   | -             | -                       | *                      |                  | 2*                                                                                          | *      | 3             |
| <sup>25</sup> Woodward et al, 2020                   | -   | -             | -                       | *                      | -                | 0*<br>B                                                                                     | *      | 3             |
| <sup>26</sup> Lartey et al., 2018                    | -   | -             | -                       | *                      |                  | or*                                                                                         | *      | 3             |
| <sup>2</sup> Tesfatsion et al, 2015                  | -   | -             | -                       | *                      |                  | ≥*                                                                                          | -      | 2             |
| <sup>28</sup> Neuhann et al. 2001                    | -   | -             | -                       | *                      | - / / /          |                                                                                             | -      | 2             |
| 29<br>30<br>31                                       |     |               |                         |                        |                  | 23, 2024                                                                                    |        |               |
| 32<br>33                                             |     |               |                         |                        |                  | pA dr                                                                                       |        |               |
| 34                                                   |     |               |                         |                        |                  | Jest.                                                                                       |        |               |
| 35                                                   |     |               |                         |                        |                  | רי<br>ס                                                                                     |        |               |
| 36                                                   |     |               |                         |                        |                  | rote                                                                                        |        |               |
| 37                                                   |     |               |                         |                        |                  | Protected by copyright.                                                                     |        |               |
| 38<br>39                                             |     |               |                         |                        |                  | ă<br>o                                                                                      |        |               |
| 40                                                   |     |               |                         |                        | ·                | <<br>ç                                                                                      |        |               |
| 41                                                   |     |               |                         |                        | :                | Vdo                                                                                         |        |               |
| 42                                                   |     |               |                         |                        | (                | righ                                                                                        |        |               |
| 43                                                   |     | For poor root | iow only http://hmian   | on hmi com/sito/shout/ |                  | Ē.                                                                                          |        |               |
| 44                                                   |     | For peer rev  | iew only - nttp://bmJ0p | en.bmj.com/site/about/ | guidelines.xntml |                                                                                             |        |               |
| 45                                                   |     |               |                         |                        |                  |                                                                                             |        |               |
| 46                                                   |     |               |                         |                        |                  |                                                                                             |        |               |

# **BMJ Open**

# Indicators of optimal diabetes care and burden of diabetes complications in Africa: A systematic review and metaanalysis

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-060786.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Submitted by the Author:        | 20-Sep-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Complete List of Authors:            | Kibirige, Davis; Lubaga Hospital, Medicine<br>Chamba, Nyasatu; Kilimanjaro Christian Medical Centre, Internal<br>Medicine; Kilimanjaro Christian Medical University College, Medicine<br>Andia-Biraro, Irene; Makerere University College of Health Sciences,<br>Internal Medicine; MRC/UVRI and LSHTM Uganda Research Unit,<br>Immunomudation and Vaccines<br>Kilonzo, Kajiru; Kilimanjaro Christian Medical Centre; Kilimanjaro<br>Christian Medical University College<br>Laizer, Sweetness; Kilimanjaro Christian Medical University College<br>Sekitoleko, Isaac; Uganda Virus Research Institute, Non-communicable<br>Diseases<br>Kyazze, Andrew ; Makerere University College of Health Sciences<br>Ninsiima, Sandra; Makerere University College of Health Sciences,<br>Immunology<br>Ssekamatte , Phillip ; Makerere University College of Health Sciences,<br>Immunology<br>Bongomin, Felix; Makerere University College of Health Sciences,<br>Internal Medicine<br>Mrema, Lucy; NIMR-Mbeya Medical Research Programme, Medical<br>Statistics<br>Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme, Medical<br>Statistics<br>Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme<br>Sharples, Katrina; University of Otago, Centre for International Health<br>Hill, Philip; University of Otago, Centre for International Health<br>Hill, Philip; Juiversity of Otago, Centre for International Health<br>te Brake, Lindsey; Radboud University Nijmegen, Pharmacology<br>VandeMaat, Josephine; Radboud University Nijmegen, Internal Medicine;<br>University of Oxford Centre for Tropical Medicine and Global Health<br>Critchley, Julia; St George's University of London |
| <b>Primary Subject<br/>Heading</b> : | Diabetes and endocrinology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Secondary Subject Heading:           | Global health, Health services research, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                            | Epidemiology < TROPICAL MEDICINE, EPIDEMIOLOGY, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, General diabetes < DIABETES & ENDOCRINOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 1<br>2           |                                                                           |
|------------------|---------------------------------------------------------------------------|
| 3                |                                                                           |
| 4<br>5           |                                                                           |
| 6<br>7<br>8<br>9 | SCHOLARONE <sup>™</sup><br>Manuscripts                                    |
| 10<br>11         |                                                                           |
| 12<br>13         |                                                                           |
| 14               |                                                                           |
| 15<br>16         |                                                                           |
| 17               |                                                                           |
| 18<br>19         |                                                                           |
| 20<br>21         |                                                                           |
| 22               |                                                                           |
| 23<br>24         |                                                                           |
| 25<br>26         |                                                                           |
| 27               |                                                                           |
| 28<br>29         |                                                                           |
| 30<br>31         |                                                                           |
| 32               |                                                                           |
| 33<br>34         |                                                                           |
| 35<br>36         |                                                                           |
| 37               |                                                                           |
| 38<br>39         |                                                                           |
| 40<br>41         |                                                                           |
| 42<br>43         |                                                                           |
| 44               |                                                                           |
| 45<br>46         |                                                                           |
| 47<br>48         |                                                                           |
| 49               |                                                                           |
| 50<br>51         |                                                                           |
| 52<br>53         |                                                                           |
| 54               |                                                                           |
| 55<br>56         |                                                                           |
| 57<br>58         |                                                                           |
| 59               |                                                                           |
| 60               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

**BMJ** Open

# Indicators of optimal diabetes care and burden of diabetes complications in Africa: A systematic review and meta-analysis

Davis Kibirige<sup>1,2\*</sup>, Nyasatu Chamba<sup>3,4</sup>, Irene Andia-Biraro<sup>2,5</sup>, Kajiru Kilonzo<sup>3,4</sup>, Sweetness Naftal Laizer<sup>3,4</sup>, Isaac Sekitoleko<sup>6</sup>, Andrew Peter Kyazze<sup>2</sup>, Sandra Ninsiima<sup>2</sup>, Phillip Ssekamatte<sup>2</sup>, Felix Bongomin<sup>5</sup>, Lucy Elauteri Mrema<sup>7</sup>, Willyhelmina Olomi<sup>7</sup>, Theodora D Mbunda<sup>7</sup>, Nyanda Elias Ntinginya<sup>7</sup>, Issa Sabi<sup>7</sup>, Katrina Sharples<sup>8</sup>, Philip C Hill<sup>8</sup>, Lindsey te Brake<sup>9</sup>, Josephine van de Maat<sup>10</sup>, Reinout van Crevel<sup>10,11</sup>, Julia Critchley<sup>12</sup> on behalf of PROTID consortium.

# Author affiliations

- 1. Department of Medicine, Uganda Martyrs' Hospital Lubaga, Kampala Uganda
- 2. Tuberculosis And Comorbidities Consortium, Kampala Uganda
- 3. Department of Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.
- Department of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Department of Medicine, Makerere University College of Health Sciences, Kampala Uganda.
- Chronic Diseases and Cancer Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe Uganda.
- National Institute for Medical Research Mbeya Medical Research Centre, Mbeya, Tanzania.
- 8. Centre for International Health, Otago University, Dunedin, New Zealand.

- 9. Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.
- 10. Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.
- 11.Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- 12. Population Health Research Institute, St. George's University of London, London, United Kingdom.

C.C.Z.ON

# Corresponding author

Davis Kibirige

Department of Medicine, Uganda Martyrs' Hospital Lubaga, Kampala Uganda

Email: kibirigedavis@gmail.com.

#### ABSTRACT

#### Objective

Contemporary data on the attainment of optimal diabetes treatment goals and the burden of diabetes complications in adult populations with type 2 diabetes in Africa is lacking. We aimed to document the current status of attainment of three key indicators of optimal diabetes care and the prevalence of five diabetes complications in adult African populations with type 2 diabetes.

#### Methods

We systematically searched EMBASE, PubMed, and the Cochrane library for published studies from January 2000 to December 2020. Included studies reported any information on the proportion of attainment of optimal glycated haemoglobin (HbA1c), blood pressure (BP), and low-density lipoprotein cholesterol (LDLC) goals, and/or prevalence of five diabetes complications (diabetic peripheral neuropathy, retinopathy, nephropathy, foot ulcers, and peripheral arterial disease). Random-effect model meta-analysis was performed to determine the pooled proportion of attainment of the three treatment goals and the prevalence of five diabetes complications.

#### Results

In total, 109 studies with a total of 63, 890 participants (53.3% being females) were included in the meta-analysis. Most of the studies were conducted in Eastern African countries (n=44, 40.4%). The pooled proportion of attainment of an optimal HbA1c, BP, and LDLC goal was 27% (95% CI 24-30, I<sup>2</sup>=94.7%), 38% (95% CI 30-46, I<sup>2</sup>=98.7%), and 42% (95% CI 32-52, I<sup>2</sup>=97.4%), respectively. The pooled prevalence of diabetic peripheral neuropathy, retinopathy, diabetic nephropathy, peripheral arterial disease, and foot ulcers was 38% (95% CI 31-45, I<sup>2</sup>=98.2%), 32% (95% CI 28-

36, l<sup>2</sup>=98%), 31% (95% Cl 22-41, l<sup>2</sup>=99.3%), 19% (95% Cl 12-25, l<sup>2</sup>=98.1%), and 11% (95% Cl 9-14, l<sup>2</sup>=97.4%), respectively.

#### Conclusion

Attainment of optimal diabetes treatment goals, especially HbA1c, in adult patients with type 2 diabetes in Africa remains a challenge. Diabetes complications, especially diabetic peripheral neuropathy and retinopathy are highly prevalent in adult populations with type 2 diabetes in Africa.

# KEYWORDS

Optimal diabetes care, diabetes complications, adult patients with type 2 diabetes, Africa.

# Strengths and limitations of the study

- To our knowledge, it is the first systematic review and meta-analysis to simultaneously investigate the status of attainment of the three key diabetes treatment goals and the burden of five common diabetes complications in an adult indigenous African population with type 2 diabetes.
- The systematic review and meta-analysis included a large number of studies that assessed the extent of attainment of diabetes treatment goals and the prevalence of diabetes complications based on recommendations or definitions by internationally recognised associations.
- There was high heterogeneity among the studies included in the meta-analysis.
- A relative number of studies included in the meta-analysis had low to moderate quality on assessment.

## INTRODUCTION

Globally, the burden of diabetes mellitus (DM) continues to exponentially rise to epidemic proportions, disproportionately affecting low-and middle-income countries. The recent 2021 International Diabetes Federation (IDF) estimates show that about 24 million adults (1 in 22 adults) live with DM in Africa. The IDF also predicts that the greatest future increase in the prevalence of DM will occur in Africa because of the predicted aging of Africa's currently very young populations, as well as increasing urbanisation and associated lifestyle changes.<sup>1</sup> This will ultimately lead to an immense strain on weak healthcare systems that are poorly structured and inadequately financed to manage non-communicable diseases (NCD) like DM.<sup>2</sup>

In addition, the rates of undiagnosed DM continue to increase in Africa. Among the IDF regions, Africa has the highest proportion of undiagnosed diabetes; about 54% of all cases.<sup>1</sup> The majority of patients are diagnosed late with co-existing debilitating complications and suboptimal diabetes care remains common in most clinical settings in Africa.<sup>3</sup> This could be explained by low awareness about DM, healthcare systems that are structured mainly to manage communicable diseases as opposed to NCD, low screening rates of DM to ensure early diagnosis, low availability of affordable essential diagnostic tests and medicines for DM, and knowledge-practice gaps among healthcare practitioners.<sup>24-6</sup>

Published diabetes treatment guidelines by most international organisations like the IDF and American Diabetes Association (ADA) recommend targets of glycated haemoglobin level (HbA1c) of <7% (53 mmol/mol), blood pressure (BP) <140/90 mmHg, and low-density lipoprotein cholesterol (LDLC) <2.6 mmol/l (100 mg/dl) as key indicators of optimal diabetes care.<sup>7-9</sup> Attainment of these treatment goals in diabetes

care ultimately translates to reduced risk of onset and progression of diabetes complications and mortality.

Despite the increasing burden of DM and its related complications, late diagnosis of diabetes, and prevalent suboptimal diabetes care in clinical settings in Africa, there is an information gap regarding the current status of attainment of the recommended diabetes treatment goals and the prevalence of common diabetes complications to inform targeted strategies or interventions to reduce diabetes-related morbidity and mortality. This systematic review and meta-analysis aimed to document the proportion of attainment of optimal HbA1c, BP, and LDLC goals and the prevalence of five diabetes complications (diabetic peripheral neuropathy, nephropathy, retinopathy, foot ulcers, and peripheral arterial disease) in adult native populations with type 2 diabetes in Africa.

## **METHODS**

This systematic review and meta-analysis was conducted according to the criteria outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.<sup>10</sup> The PRISMA checklist is available as a supplementary table 1. The study protocol was registered in the PROSPERO International Prospective Register of systematic reviews (CRD42020215576).

#### Search strategy

We searched EMBASE, PubMed, and the Cochrane library for published studies from January 2000 to December 2020. The following search terms were used after discussion with a medical librarian: "Quality of diabetes care" OR "Indicators of diabetes care" OR "status of diabetes care" OR "diabetes care" OR "glycaemic control" OR "blood pressure control" OR "lipid profile control" OR "screening of diabetes complications" OR "diabetes complications" OR "screening for diabetic retinopathy"

Page 9 of 85

#### **BMJ** Open

OR "screening for diabetic peripheral nephropathy" OR screening for diabetic neuropathy" OR screening for diabetic foot ulcers OR "screening for peripheral arterial disease" OR "prevalence of diabetic retinopathy" OR "prevalence of diabetic peripheral nephropathy" OR "prevalence of diabetic peripheral neuropathy" OR "prevalence of diabetic foot ulcers" OR "prevalence of peripheral arterial disease", AND "type 2 diabetes mellitus" OR "type 2 diabetes" AND Algeria OR Angola OR Benin OR Botswana OR "Burkina Faso" OR Burundi OR Cameroon OR "Cape Verde" OR "Central African Republic" OR Chad OR Comoros OR "Democratic Republic of Congo" OR Djibouti OR Egypt OR "Equatorial Guinea" OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR Guinea OR "Guinea Bissau" OR "Ivory Coast" OR "Cote d'Ivoire" OR Kenya OR Lesotho OR Liberia OR Libya OR Libya OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Morocco OR Mozambigue OR Namibia OR Niger OR Nigeria OR Rwanda OR "Sao Tome" OR Senegal OR Seychelles OR "Sierra Leone" OR Somalia OR "South Africa" OR "South Sudan" OR Sudan OR Swaziland OR Tanzania OR Togo OR Tunisia OR Uganda OR Zaire OR Zambia OR Zimbabwe OR "Central Africa" OR "West Africa" OR "Western Africa" OR "East Africa" OR "Eastern Africa" OR "North Africa" OR "Northern Africa" OR "Southern Africa" OR "sub Saharan Africa" OR "sub-Saharan Africa" OR Africa. In addition, references of included articles were hand-searched for any other original articles. The search and selection were restricted to studies written only in the English language.

# Study selection criteria

The preliminary screening of titles and abstracts to identify potentially eligible articles was done by two independent reviewers (NC and DK). This was followed by removing

all duplicates. After the initial screening, full texts of the potentially eligible studies were retrieved and closely reviewed for eligibility.

The inclusion criteria of studies were: cross-sectional, cohort, or randomised controlled trials published between January 2000 and December 2020 in English language, studies reporting any data on proportion of adult patients with type 2 diabetes who attained the recommended optimal HbA1c, BP, or LDLC targets and residing in African countries, and studies reporting data on any of prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers, or peripheral arterial disease in adult patients with type 2 diabetes in African countries.

Any disagreements that arose were resolved by consensus. We excluded retrospective studies, case series and reports, studies published in languages other than English, and studies whose full texts could not be retrieved.

## **Data extraction**

After identifying the eligible original studies, they were collated and sent to additional reviewers to extract the relevant study information using a Microsoft Excel 2016 form. The information of interest that was extracted from the eligible studies included: the last name of the first author and year of publication, country (ies) and region (s) of Africa where the study was conducted, type of study design, number of study participants, the mean age of study participants, the proportion of female participants, the proportion of participants with a current or history of smoking, the proportion of participants on oral hypoglycaemic agents, insulin, lipid-lowering agents (statins), and anti-hypertensive agents, mean body mass index (BMI) and HbA1c of study participants, the proportions of participants with optimal HbA1c, BP, and LDLC targets, and the prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers, and peripheral arterial disease.

# **Operational definitions**

All included studies defined optimal targets of HbA1c, BP, and LDLC as <7% (53 mmol/mol), <140/90 mmHg, and <2.6 mmol/l or 100 mg/dl, respectively as recommended by the IDF and ADA diabetes treatment guidelines.<sup>9 11</sup>

The definitions and measurements of diabetes complications greatly varied between studies. The following definitions were used for each diabetes complication by the various studies: micro/macroalbuminuria and/or an estimated glomerular filtration rate <60 ml/min/1.73 m<sup>2</sup> for the presence of diabetic nephropathy, signs and symptoms suggestive of peripheral neuropathy, use of neuropathy screening scores like neuropathy disability score, Michigan Neuropathy Screening Instrument, neuropathy symptom score, and 10g monofilament testing for the presence of diabetic peripheral neuropathy, presence of lesions like soft or hard exudates, cotton wool spots, micro-aneurysms, neovascularisation, and retinal hemorrhages on fundoscopy for diabetic retinopathy, presence of foot ulcers on clinical inspection for diabetic foot ulcers, and the presence of measured ankle brachial index <0.9 using doppler studies for peripheral arterial disease.

## Assessment of quality of studies

The quality of all eligible studies included in the systematic review and meta-analysis was assessed using the Newcastle-Ottawa Scale (NOS).<sup>12</sup> This was done by two independent authors (NC and SNL). The total score of the adapted scale is eight stars. Studies with more than six stars were considered high quality, while those with 5 and 6 stars, and <5 stars were considered of moderate and low quality.

#### Study outcomes

The study outcomes were the pooled proportions of attainment of the recommended optimal HbA1c, BP, and LDLC goals and the pooled prevalence of diabetic

nephropathy, peripheral neuropathy, retinopathy, foot ulcers, and peripheral arterial disease in adult patients with type 2 diabetes in Africa.

#### Data analysis

All analyses were performed using STATA 16.0 statistical software (Stata Corp, USA). The descriptive data of all eligible studies included in the systematic review and metaanalysis like age, gender, the proportion of participants on specific glucose-lowering agents, BMI, and HbA1c were summarised using frequencies and 95% confidence intervals (CI) and mean ± standard deviation (SD).

For the continuous variables, the average estimated value was obtained from each of the studies, and this was used in the final analysis while for the categorical variables, the proportions were estimated for each of the studies and used in the final analysis.

The pooled proportions of achievement of optimal HbA1c, BP, and LDLC goals and the prevalence of diabetic nephropathy, peripheral neuropathy, retinopathy, foot ulcers, and peripheral arterial disease were determined using a random-effect model meta-analysis and presented in forest plots. The DerSimonian and Laird method was used for pooling random effects estimates.<sup>13</sup>

The heterogeneity of studies was assessed using the l<sup>2</sup> value and corresponding 95% confidence intervals. Based on the Cochrane collaboration guide, the l<sup>2</sup> values of 0-40%, 30-60%, 50–90%, and 75-100% were considered not important, moderate, substantial, and considerable levels of heterogeneity, respectively.<sup>14</sup> To further explore heterogeneity effects across studies, we conducted a meta-regression analysis to assess whether the heterogeneity could be explained by the study level characteristics i.e., age, sex of participants, and region in which the study was conducted. The age, BMI, and sex of the participants was defined as the estimated mean age and BMI of participants and the proportion of females from each of the

#### **BMJ** Open

study, respectively. The region of the study was defined as the area (Northern, Southern, Eastern, Western, and Central Africa) where the study was conducted. One effect measure per study was considered in the meta-regression. All the variables were included in the model together to assess for variability.

We assessed the presence of publication bias using the Egger test of bias with p<0.05 indicating significant publication bias.<sup>15</sup> A narrative review was also used to present the study results. Information about all included studies was also summarised in tables.

We also performed a sensitivity analysis based on the NOS scores of the studies (excluding moderate and low-quality studies) and compared the analysis with all the eligible studies and with only high-quality studies to identify any differences in the pooled estimates of the rates of attainment of optimal diabetes treatment goals and the prevalence of the five diabetes complications.

#### **Patient and Public Involvement**

The main research question and outcomes of interest of the systematic review and meta-analysis were informed by the need to understand the burden of diabetes complications in patients with type 2 diabetes in Africa and the extent of attainment of optimal diabetes care to inform strategies aimed to improve optimal management of diabetes in the region. Because it was a systematic review and meta-analysis, we did not involve patients in its design, recruitment, and conduct.

## RESULTS

Figure 1 summarises the article selection in a PRISMA flow diagram.

The literature search returned a total of 835 articles. From these, 222 duplicates were removed. Titles and abstracts of the remaining 613 articles were reviewed and 235 articles were identified for full-text retrieval. Of the 235 articles, 126 were excluded and

> the remaining 109 articles were included in this systematic review and meta-analysis. A total of 48 and 89 eligible studies contained information on optimal diabetes treatment goals and diabetes complications, respectively while 28 studies reported information on both.

> The 126 excluded articles included five studies published in French language, 21 retrospective studies, six studies with general populations (not entirely patients with type 2 DM), 18 studies whose full texts were unable to be retrieved, and 76 studies that did not report outcomes of interest.

# Characteristics of included studies

The majority of studies were performed in Eastern African countries (44, 40.4%).<sup>3 16-58</sup> The proportion of studies conducted in Western, Northern, Southern, and Central Africa was 22% (n=24 studies) <sup>3 59-80</sup>, 16.5% (n=18 studies) <sup>81-99</sup>, 15.6% (n=17 studies) <sup>100-116</sup>, and 8.3% (n=9 studies) <sup>3 59 117-123</sup>, respectively. Three studies were conducted in more than one region of Africa (Western, Central, and Eastern).<sup>3 58 59</sup> Most of the studies were cross-sectional in design (100, 91.7%).

Considerable heterogeneity was noted across the studies with the l<sup>2</sup> value ranging from 97.4% to 99.3% for studies reporting the burden of diabetes complications and 94.7% to 98.7% for studies reporting the extent of attainment of optimal diabetes treatment goals. However, on meta-regression after adjusting for age and sex of study participants, and region where each study was conducted, the heterogeneity based on l<sup>2</sup> of studies on the prevalence of diabetes complications decreased, ranging from 1.4% for studies on diabetic foot ulcers to 95.6% for studies on diabetic nephropathy. For studies on the proportion of attainment of optimal treatment goals, the heterogeneity also decreased, to 56.3%, 92.1%, and 95.4%, for studies reporting optimal HbA1c, LDLC, and BP goals.

# Characteristics of study participants

Table 1 summarises the characteristics of all participants in the studies included in the systematic review and meta-analysis.

The studies had a total of 63, 890 participants (ranging from 40 to 11,866) with 53.3% being female. The mean  $\pm$  SD age, BMI, and HbA1c of the participants was 54.9  $\pm$  4.7 years (ranging from 40.5 to 63.9 years), 27.9  $\pm$  0.5 kg/m<sup>2</sup> (ranging from 20.6 to 42.9 kg/m<sup>2</sup>), and 9.0  $\pm$  1.5% (ranging from 6.5% to 13.9%), respectively. Among the studies that reported data on the type of glucose-lowering therapies used by participants, treatment with oral hypoglycaemic agents, insulin, statins, and anti-hypertensives was reported in about 65% (95% CI 34-96.6), 31.3% (95% CI 26.3-36.2), 25.7% (95% CI 0.5-86.7), and 73.3% (95% CI 64.1-82.5) of participants, respectively.

# Assessment of study quality and publication bias

The assessment of the quality of studies and funnel plots assessing publication bias are summarised in supplementary table 2 and supplementary figures 1-8, respectively. Based on the NOS, 84 (77.1%) of the included studies were of high quality, with 17 (15.6%) studies and 8 (7.3%) studies being of moderate and low quality, respectively. Regarding the assessment of publication bias, there was observed publication bias, especially in studies about the prevalence of diabetic nephropathy, peripheral neuropathy, and attainment of optimal BP control. The proportion of studies investigating the prevalence of diabetic nephropathy, peripheral neuropathy, peripheral arterial disease, retinopathy, and foot ulcers located within the funnel plot was 30% (n=12), 46.1% (n=13), 55.6% (n=10), 57% (29), and 90% (n=26), respectively. About 46%, 65%, and 73% of studies that reported the proportion of attainment of optimal BP, HbA1c, and LDLC treatment goal were located within the funnel plot respectively.

# Extent of attainment of optimal HbA1c, BP and LDLC goals

Data on the reported proportions achieving the three diabetes treatment goals is summarised in tables 2, 3, and 4 and as forest plots in figures 2, 3 and 4.

Data on attainment of optimal HbA1c, BP and LDLC goals was reported in 34 studies<sup>3</sup>  $^{20 21 23 35-37 44-47 59-61 63 64 67 84 87 92 93 97-99 104 105 111 116 117 120 124 125}$ , 26 studies<sup>3 18 20 21 24 36</sup>  $^{40 41 45 47 61 64 67 70 77 87 91 96 97 105 107 111 113 120 121 124}$ , and 11 studies<sup>21 37 39 47 61 87 97 111 116</sup>  $^{124 126}$ , respectively. The pooled proportion of attainment of an optimal HbA1c, BP, and LDLC goal in the respective studies was 27% (95% CI 24-30, I<sup>2</sup>=94.7%), 38% (95% CI 30-46, I<sup>2</sup>=98.7%), and 42% (95% CI 32-52, I<sup>2</sup>=97.4%), respectively.

The lowest proportion of attainment of optimal HbA1c was reported in a study performed in Egypt (4.4%)<sup>97</sup> and the highest in a study performed in Nigeria (52.5%)<sup>64</sup>. Among studies reporting the extent of attainment of an optimal BP goal, the proportion ranged from 1.5% in a study performed in Uganda<sup>47</sup> to 85.9% in a study performed in Ethiopia<sup>24</sup>. Among the studies reporting information on the optimal LDLC goal, attainment of optimal targets ranged from 20.4% in a study performed in Botswana<sup>111</sup> to 84.8% in a study performed in Sudan<sup>94</sup>.

Regarding the attainment of the diabetes treatment goals in each region of Africa surveyed, the lowest and highest proportion of attainment of an optimal HbA1c goal was noted in the Central (20%, 95% CI 16-23) and Western region (37%, 95% CI 29-46), respectively. For the attainment of an optimal blood pressure control, the Western region had the least proportion (31%, 95% CI 20-43) while the Northern region had the highest (42%, 95% CI 24-61). An optimal LDLC target was least achieved in the Southern region (27%, 95% CI 24-30) and most achieved in the Northern region (53%, 95% CI 32-74).

Page 17 of 85

**BMJ** Open

# Prevalence of diabetic retinopathy, peripheral neuropathy, nephropathy, foot ulcers and peripheral arterial disease

Information on the pooled and specific prevalence of diabetes complications as reported by the different studies is summarised in tables 5, 6, 7, 8, and 9 and as forest plots in figures 5, 6, 7, 8, and 9.

The prevalence of diabetic retinopathy, nephropathy, peripheral neuropathy, foot ulcers, and peripheral arterial disease was reported in 51 studies<sup>3</sup> 19 24 26 28 30 38 41 48 51 53 54 56-58 66 67 70 72 74 76 77 81 82 86 88 89 91 95-97 103-107 109 112-116 118 120-123 127-129, 40 studies<sup>3</sup> 19 21 27 28 30-32 38 46 48 53 57 60 62 64 66 67 69 70 76 81 82 86 88 89 91 96 97 100 105 108-110 113 114 117-119 127, 36 studies<sup>3</sup> 19 25 27 28 30 33 34 37 38 43 48 51-53 57 58 67 68 73 76 79 81 85-88 96 97 105 109 118 127 128 130, 29 studies<sup>3</sup> 16-19 21 22 25 27 29 38 42 43 48 49 51 53 54 57 58 67 80 85 87 95 97 113 114 127, and 18 studies<sup>3</sup> 20 25 30 43 47 50 52 61 67 70 75 78 85 86 91 97 105, respectively.

# Prevalence of diabetic peripheral neuropathy and retinopathy

Diabetic peripheral neuropathy and retinopathy were the most prevalent diabetes complications in the included studies with a pooled prevalence of 38% (95% CI 31-45, I<sup>2</sup>=98.2%) and 32% (95% CI 28-36, I<sup>2</sup>=98%), respectively. A wide variation was noted in the prevalence of diabetic peripheral neuropathy across the studies, with prevalence ranging from 4% in a study conducted in Eritrea <sup>51</sup> to 83.3% in a study conducted in Nigeria <sup>68</sup>. A study by Makwero and colleagues conducted in Lesotho reported the lowest prevalence of diabetic retinopathy of 4.7% <sup>109</sup> while the study by Megalla and colleagues conducted in Egypt reported the highest (90%)<sup>97</sup>.

According to the regions of Africa surveyed, the lowest and highest prevalence of diabetic peripheral neuropathy was noted in the Central (22%, 95% CI 18-27) and Western regions (61%, 95% CI 45-75), respectively. Studies conducted in the Eastern region reported the lowest prevalence of diabetic retinopathy (23%, 95% CI 19-28)

while studies conducted in the Northern region reported the highest prevalence (51%, 95% CI 37-65).

**Prevalence of diabetic nephropathy, peripheral arterial disease, and foot ulcers** The pooled prevalence of diabetic nephropathy, peripheral arterial disease, and foot ulcers in the included studies was 31% (95% CI 22-41, I<sup>2</sup>=99.3%), 19% (95% CI 12-25, I<sup>2</sup>=98.1%), and 11% (95% CI 9-14, I<sup>2</sup>=97.4%), respectively.

The prevalence of diabetic nephropathy and peripheral arterial disease ranged from 2.2% in Ethiopia<sup>19</sup> to 90% in Nigeria<sup>64</sup> and 2.7% in a study performed in Morocco<sup>91</sup> to 52.5% in a study performed in Nigeria<sup>78</sup>, respectively. Regarding the burden of diabetic foot ulcers, there was also an observed heterogeneity, with prevalence ranging from 0.4% in Ethiopia<sup>53</sup> to 86.7% in Egypt<sup>97</sup>.

Studies conducted in the Central, Eastern, and Southern regions reported a comparable prevalence of diabetic nephropathy (22%, 25%, and 28%, respectively) with the highest prevalence reported in studies conducted in the Western region (47%). Regarding the prevalence of PAD, studies conducted in the Southern (8%, 95% CI 6-10) and Western (29%, 95% CI 13-48) regions reported the lowest and highest prevalence, respectively. A comparable prevalence of diabetic foot ulcers was noted in studies conducted in the Southern, Western, and Eastern regions (7%, 8%, and 10%, respectively), with the highest prevalence noted in studies conducted in the Northern region (21%).

On sensitivity analysis considering only high-quality studies, the pooled prevalence of the five diabetic complications and the proportion of attainment of the three optimal diabetes treatment goals did not differ from those obtained in the preliminary analysis with all eligible studies included. The pooled prevalence of diabetic foot ulcers, peripheral arterial disease, diabetic nephropathy, diabetic retinopathy, and diabetic

#### **BMJ** Open

peripheral neuropathy after sensitivity analysis was 9% (95% Cl 7-12, l<sup>2</sup>= 92.9%), 20% (95% Cl 13-28, l<sup>2</sup>= 98.4%), 31% (95% Cl 21-42, l<sup>2</sup>= 99.4%), 33% (95% Cl 28-37, l<sup>2</sup>= 98.2%), and 40% (95% Cl 32-48, l<sup>2</sup>= 99%), respectively. The pooled proportion of attainment of optimal HbA1c, blood pressure, and LDLC treatment goal was 27% (95% Cl 23-30, l<sup>2</sup>= 94.5%), 37% (95% Cl 29-46, l<sup>2</sup>= 99.0%), and 43% (95% Cl 31-55, l<sup>2</sup>= 97.9%), respectively.

### DISCUSSION

To our knowledge, this is the first systematic review and meta-analysis to simultaneously document the proportion of attainment of the three key indicators of optimal diabetes care (HbA1c, BP, and LDLC goals) and the burden of five diabetes complications in an indigenous adult population with type 2 diabetes in Africa. In this study of a total of 63,890 study participants, we report that, generally, a small proportion of adult patients with type 2 diabetes in Africa attain optimal diabetes treatment targets, especially HbA1c and BP goals (less than 40%). In addition, diabetes complications are relatively common with diabetic neuropathy being the most prevalent (38%) followed by diabetic retinopathy (32%), nephropathy (31%), peripheral arterial disease (19%), and foot ulcers (11%).

#### Proportions of attainment of the optimal diabetes treatment goals

A wide heterogeneity in the attainment of the optimal diabetes treatment goals was noted across all five regions of Africa. This could probably be explained by the marked differences in the populations studied, healthcare systems, and knowledge-practice gaps among healthcare practitioners.

Similar to our study findings, achievement of optimal HbA1c, BP, and LDLC treatment goals has also been widely reported to be a significant clinical challenge in several studies performed in Caucasian and Asian populations with type 2 diabetes in highand middle-income countries.<sup>131-136</sup> In one large registry-based study of >100, 000 adults with a self-reported diagnosis of diabetes carried out between 1999 to 2010 in USA, 33.4 to 48.7% of adult patients with diabetes did not achieve the recommended HbA1c, BP, and LDLC treatment targets. Less than 15% met all the three treatment targets in addition to smoking cessation.<sup>131</sup>

Similarly, a low proportion of achievement of an optimal HbA1c target was also reported by a large international, multicenter observational study of 2,704 multi-racial adult populations with diabetes from 10 countries (two from Africa, five from the Middle East, and three from South Asia). About 46% of the participants were Caucasian. An optimal HbA1c goal of <7% (53 mmol/mol) was reported in only 25.8% of the participants.<sup>133</sup>

In the Japan Epidemiology Collaboration on Occupational Health (J-ECOH) study which enrolled 3,070 adult employees of large manufacturing companies, optimal HbA1c, BP, and LDLC goals as recommended by the American Diabetes Association were noted in 44.9%, 76.6%, and 27.1% of participants, respectively. Only 11.2% of participants attained all three treatment goals.<sup>134</sup>

# The burden of diabetes complications in Africa

Regarding studies on the burden of diabetes complications in Africa, there were few that investigated the prevalence of diabetic foot ulcers and peripheral arterial disease with diabetic retinopathy, peripheral nephropathy and neuropathy being the most studied. Diabetic peripheral neuropathy and retinopathy remain the most prevalent diabetes complication and diabetic foot ulcers the least prevalent.

With regards to the prevalence of diabetic foot ulcers, an earlier published systematic review and meta-analysis on the characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa by Rigato et al reported a pooled prevalence of diabetic foot ulcers

#### **BMJ** Open

of 13%, a finding close to what we observed (11%).<sup>137</sup> In another systematic review and meta-analysis on the prevalence of diabetic peripheral neuropathy in African populations with DM, Shiferaw et al reported a slightly higher overall prevalence of 46% compared to what we found in our study (38%), while including fewer studies (n=23).<sup>138</sup>

Similar to our study, considerable heterogeneity was also reported in the documented prevalence of the varied diabetes complications in Africa in most previously published systematic reviews. This may be due to variations in clinical definitions of diabetes complications in the studies. Burgess et al <sup>139</sup> and Achigbu et al<sup>140</sup>, reported a wide disparity in the prevalence of diabetic retinopathy in the included studies of 7-62.4%, and 13-82.6%, respectively. Noubiap JJ et al in a systematic review on the burden of diabetic nephropathy in 2015 reported an overall prevalence of chronic kidney disease in patients with diabetes ranging between 11-83.7%.<sup>141</sup> Johnston LE et al in a systematic review that aimed to assess the epidemiological and clinical reports regarding PAD in SSA documented the prevalence of PAD in patients with diabetes to range from 39% to 52%.<sup>142</sup>

Compared to Caucasian and Asian adult populations with type 2 diabetes, our study has demonstrated that adult African patients are disproportionately affected by complications of DM. The Joint Asia Diabetes Evaluation (JADE) program that undertook comprehensive risk assessments of 3,687 adult patients with type 2 DM recruited from seven Asian countries reported a prevalence of peripheral arterial disease, diabetic neuropathy, macro-and microalbuminuria, and diabetic retinopathy of 3.1%, 15%, 18.8%, and 20.4%, respectively.<sup>143</sup>

The National Health and Nutrition Examination Survey conducted from 1988–1994 and 1999–2018 in USA in 1,486 nonpregnant adults (aged ≥20 years) with newly

diagnosed diabetes (diagnosed within the past 2 years) also documented a low burden of most diabetes complications. Diabetic foot ulcers, peripheral arterial disease, diabetic retinopathy, neuropathy, and nephropathy (albuminuria) were prevalent in 6.3%, 9.2%, 12.1%, 14.5%, 18.7%, respectively.<sup>144</sup>

The documented low proportions of attainment of optimal diabetes treatment goals (optimal HbA1c, BP, and LDLC targets) in Africa is associated with an increased risk of onset and progression of diabetes complications, hence increasing morbidity and mortality in addition to causing a significant economic strain on the meager health resources. This generally observed low proportion of attainment of key diabetes treatment goals and high prevalence of diabetes complications, notably diabetic neuropathy, retinopathy, and nephropathy in Africa exists broadly due to challenges related to screening, diagnosis, and management of DM.

Awareness of diabetes in the general African population and healthcare practitioners remains very poor, resulting in delayed diagnosis of diabetes. The challenge of ready access to affordable essential diabetes medicines like insulin and statins and diagnostic tests or equipment like glucometers for home self-monitoring of glucose, HbA1c, and lipid profile tests remains highly prevalent in most African countries.<sup>145-149</sup> Effective management of diabetes and its related cardiovascular risk factors like hypertension and dyslipidaemia in most healthcare settings in Africa also remains a significant clinical challenge.<sup>3</sup> Most healthcare facilities especially the lower-tier ones lack local or institution-specific comprehensive diabetes treatment guidelines to guide healthcare practitioners on how to optimally manage diabetes, in addition to the evident knowledge-practice gaps among healthcare practitioners.<sup>2</sup>

Healthcare systems in most African countries remain poorly structured to optimally manage most non-communicable diseases like diabetes along with an inadequately

#### **BMJ** Open

funded health sector. Most African countries have not yet fulfilled the 2001 Abuja Declaration of allocating 15% of their national annual budget to the health sector.<sup>2 150</sup> This systematic review and meta-analysis had its strengths and limitations. To our knowledge, it is the first to simultaneously investigate the status of attainment of the three key diabetes treatment goals and the burden of five common diabetes complications in an adult indigenous African population with type 2 diabetes. The systematic review and meta-analysis included a large number of studies that assessed the extent of attainment of diabetes treatment goals and the prevalence of diabetes complications based on recommendations or definitions by internationally recognised associations.

It also had its limitations. There was considerable heterogeneity in the included studies. This could be explained by the differences in study sites (tertiary vs low-tier hospitals or private vs public hospitals), patient characteristics (age, duration of diabetes, co-existing medical conditions), regions where the studies were conducted, and diagnostic modalities used to identify diabetes complications. The systematic review also excluded studies published in French which is the official language of some African countries. However, these were very few. There was evidence of publication bias in some of the included studies especially studies investigating the prevalence of diabetic nephropathy and peripheral neuropathy and the proportion of attainment of an optimal BP goal. About 23% of the included studies were moderate and low-quality on assessment using the NOS for cross-sectional studies.

#### CONCLUSION

Achievement of optimal diabetes treatment goals, especially HbA1c and BP, in adult African patients with type 2 diabetes remains low in Africa. Diabetes complications especially diabetic peripheral neuropathy and retinopathy also remain highly

prevalent. Implementation of universal diabetes screening and education initiatives coupled with improving knowledge about diabetes management among healthcare practitioners, and ready access to affordable essential diabetes diagnostic tests and medicines in Africa are integral in improving overall optimal diabetes care and reducing the burden of diabetes complications.

Considering the projected future increase in the prevalence of diabetes globally, especially in the African region, there is an urgent need to address glaring gaps in diabetes care and to develop simple and pragmatic interventions to improve treatment outcomes and reduce the burden of diabetes complications

#### **Contributorship statement**

DK and NC-Conceived the research idea, performed the preliminary screening of titles and abstracts to identify potentially eligible articles, and wrote the initial draft of the manuscript, DK, NC, IAB, SNL, IS (Sekitoleko), APK, SN- Retrieved full texts and identified the eligible articles, KK, SNL, APK, SN, PS, FB, LEM, WO, TDM, NEN, IS (Sabi)-extracted data from the identified eligible articles, DK and IS (Sekitoleko) performed the data analysis and interpretation, NC, KK, and SNL- performed the assessment of the quality of studies, KS, PCH, LB, JVM, RVC, JC- offered additional data interpretation and supervised this work. All the authors reviewed the different versions of the manuscript and read and approved the final draft of the manuscript.

#### Funding statement

The systematic review and meta-analysis are part of the <u>Preventive Treatment Of</u> Latent <u>T</u>uberculosis <u>Infection In People With <u>D</u>iabetes Mellitus (PROTID) study funded by the European Developing Countries Clinical Trials Partnership 2 (EDCTP) programme supported by the European Union (grant number RIA2018CO-2514-PROTID).</u>

# **Conflict of interest statement**

There are no competing interests for any author.

#### Ethical approval

This study involves human participants but was not approved by an Ethics Committee(s) or Institutional Board(s) because it is a systematic review and metaanalysis of published studies.

# Data sharing

Data are available upon reasonable request.

# Acknowledgments

We would like to thank Miss Laura Russel, a medical librarian based at the Education and Research Centre, Wythenshawe Hospital, Manchester UK who was very helpful in performing the initial search of the databases and retrieval of all the studies that were screened. Patient advisers were not involved in this systematic review and metaanalysis.

#### REFERENCES

- 1. IDF. International Diabetes Federation Diabetes Atlas 10th edition. <u>https://diabetesatlasorg</u> (accessed 12 November 2021) 2021
- Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. *Lancet Diabetes Endocrinol* 2017;5(8):622-67. doi: 10.1016/s2213-8587(17)30181-x [published Online First: 2017/07/10]
- Sobngwi E, Ndour-Mbaye M, Boateng KA, et al. Type 2 diabetes control and complications in specialised diabetes care centres of six sub-Saharan African countries: the Diabcare Africa study. Diabetes Res Clin Pract 2012;95(1):30-6. doi: 10.1016/j.diabres.2011.10.018 [published Online First: 2011/11/11]

- Gill GV, Mbanya JC, Ramaiya KL, et al. A sub-Saharan African perspective of diabetes. *Diabetologia* 2009;52(1):8-16. doi: 10.1007/s00125-008-1167-9 [published Online First: 2008/10/11]
- Hall V, Thomsen RW, Henriksen O, et al. Diabetes in Sub Saharan Africa 1999-2011: epidemiology and public health implications. A systematic review. *BMC Public Health* 2011;11:564. doi: 10.1186/1471-2458-11-564 [published Online First: 2011/07/16]
- Nuche-Berenguer B, Kupfer LE. Readiness of Sub-Saharan Africa Healthcare Systems for the New Pandemic, Diabetes: A Systematic Review. J Diabetes Res 2018;2018:9262395. doi: 10.1155/2018/9262395
- American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2021. *Diabetes care* 2021;44:S125-S50; DOI: 10.2337/dc21-S010.
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. *Diabetes care* 2021;44(Supplement 1):S111. doi: 10.2337/dc21-S009
- 9. IDF. International Diabetes Federation. IDF Clinical Practice Recommendations for Managing Type 2 Diabetes in Primary Care. <u>https://www.idf.org/elibrary/guidelines/128-idf-clinical-practice-recommendations-for-managing-</u> type-2-diabetes-in-primary-care.html (accessed on 17 September 2021). 2018
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 [published Online First: 2009/07/22]

- 11. ADA. Americal Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. *Diabetes Care* 2021;44(Suppl 1):S15-s33. doi: 10.2337/dc21-S002 [published Online First: 2020/12/11]
- Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. <u>http://wwwohrica/programs/clinical\_epidemiology/oxfordasp</u> (accessed 2 September 2021) 2021
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177-88. doi: 10.1016/0197-2456(86)90046-2 [published Online First: 1986/09/01]
- Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. *Cochrane Database of Systematic Reviews* 2019(10) doi: 10.1002/14651858.ED000142
- 15. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315(7109):629-34. doi: 10.1136/bmj.315.7109.629
- 16. Gulam-Abbas Z, Lutale JK, Morbach S, et al. Clinical outcome of diabetes patients hospitalized with foot ulcers, Dar es Salaam, Tanzania. *Diabet Med* 2002;19(7):575-9. doi: 10.1046/j.1464-5491.2002.00740.x [published Online First: 2002/07/09]
- 17. Abbas ZG, Lutale JK, Bakker K, et al. The 'Step by Step' Diabetic Foot Project in Tanzania: a model for improving patient outcomes in less-developed countries. *Int Wound J* 2011;8(2):169-75. doi: 10.1111/j.1742-481X.2010.00764.x
  [published Online First: 2011/01/27]

- 18. Abdissa D, Adugna T, Gerema U, et al. Prevalence of Diabetic Foot Ulcer and Associated Factors among Adult Diabetic Patients on Follow-Up Clinic at Jimma Medical Center, Southwest Ethiopia, 2019: An Institutional-Based Cross-Sectional Study. J Diabetes Res 2020;2020:4106383. doi: 10.1155/2020/4106383 [published Online First: 2020/04/08]
- Abejew AA, Belay AZ, Kerie MW. Diabetic Complications among Adult Diabetic Patients of a Tertiary Hospital in Northeast Ethiopia. *Advances in Public Health* 2015;2015:290920. doi: 10.1155/2015/290920
- Akalu Y, Belsti Y. Hypertension and Its Associated Factors Among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. *Diabetes Metab Syndr Obes* 2020;13:1621-31. doi: 10.2147/DMSO.S254537
- Amour AA, Chamba N, Kayandabila J, et al. Prevalence, Patterns, and Factors Associated with Peripheral Neuropathies among Diabetic Patients at Tertiary Hospital in the Kilimanjaro Region: Descriptive Cross-Sectional Study from North-Eastern Tanzania. *Int J Endocrinol* 2019;2019:5404781. doi: 10.1155/2019/5404781 [published Online First: 2019/07/06]
- Chalya PL, Mabula JB, Dass RM, et al. Surgical management of Diabetic foot ulcers: A Tanzanian university teaching hospital experience. *BMC Res Notes* 2011;4:365. doi: 10.1186/1756-0500-4-365 [published Online First: 2011/09/29]
- 23. Chamba NG, Shao ER, Tolbert S, et al. Lipid Profile of Type 2 Diabetic Patients at a Tertiary Hospital in Tanzania: Cross Sectional Study. *J Endocrinol Diab* 2017;4(1):1-6.

| 24. Chisha Y, Terefe W, Assefa H, et al. Prevalence and factors associated with        |
|----------------------------------------------------------------------------------------|
| diabetic retinopathy among diabetic patients at Arbaminch General Hospital,            |
| Ethiopia: Cross sectional study. PLoS One 2017;12(3):e0171987. doi:                    |
| 10.1371/journal.pone.0171987                                                           |
| 25. Chiwanga FS, Njelekela MA. Diabetic foot: prevalence, knowledge, and foot self-    |
| care practices among diabetic patients in Dar es Salaam, Tanzania - a cross-           |
| sectional study. J Foot Ankle Res 2015;8:20-20. doi: 10.1186/s13047-015-               |
| 0080-у                                                                                 |
| 26. Cleland CR, Burton MJ, Hall C, et al. Diabetic retinopathy in Tanzania: prevalence |
| and risk factors at entry into a regional screening programme. Trop Med Int            |
| Health 2016;21(3):417-26. doi: 10.1111/tmi.12652 [published Online First:              |
| 2015/12/09]                                                                            |
| 27. Deribe B, Woldemichael K, Nemera G. Prevalence and Factors Influencing             |
| Diabetic Foot Ulcer among Diabetic Patients Attending Arbaminch Hospital,              |
| South Ethiopia. J Diabetes Metab Disord 2014;2:322.                                    |
| 28. Fasil A, Biadgo B, Abebe M. Glycemic control and diabetes complications among      |
| diabetes mellitus patients attending at University of Gondar Hospital, Northwest       |
| Ethiopia. <i>Diabetes Metab Syndr Obes</i> 2018;12:75-83. doi:                         |
| 10.2147/DMSO.S185614                                                                   |
| 29. Gebrekirstos K, Gebrekiros S, Fantahun A. Prevalence and Factors Associated        |
| With Diabetic Foot Ulcer among Adult Patients in Ayder Referral Hospital               |
|                                                                                        |

30. Gill G, Gebrekidan A, English P, et al. Diabetic complications and glycaemic control in remote North Africa. QJM 2008;101(10):793-8. doi: 10.1093/qjmed/hcn096 [published Online First: 2008/08/09]

Diabetic Clinic Mekelle, North Ethiopia, 2013. J Diabetes Metab 2015;6:579.

- 31. Kumela Goro K, Desalegn Wolide A, Kerga Dibaba F, et al. Patient Awareness, Prevalence, and Risk Factors of Chronic Kidney Disease among Diabetes Mellitus and Hypertensive Patients at Jimma University Medical Center, Ethiopia. *BioMed Research International* 2019;2019:2383508. doi: 10.1155/2019/2383508
- 32. Janmohamed MN, Kalluvya SE, Mueller A, et al. Prevalence of chronic kidney disease in diabetic adult out-patients in Tanzania. *BMC Nephrol* 2013;14:183-83. doi: 10.1186/1471-2369-14-183
- 33. Jarso G, Ahmed A, Feleke Y. The prevalence, clinical features and management of periphral neuropathy among diabetic patients in Tikur Anbessa and St. Paul's Specialized University Hospitals, Addis Ababa, Ethiopia. *Ethiop Med J* 2011;49(4):299-311. [published Online First: 2011/10/01]
- 34. Jember G, Melsew YA, Fisseha B, et al. Peripheral Sensory Neuropathy and associated factors among adult diabetes mellitus patients in Bahr Dar, Ethiopia. *J Diabetes Metab Disord* 2017;16:16-16. doi: 10.1186/s40200-017-0295-5
- 35. Kibirige D, Akabwai GP, Kampiire L, et al. Frequency and predictors of suboptimal glycemic control in an African diabetic population. *Int J Gen Med* 2017;10:33-38. doi: 10.2147/IJGM.S124548
- 36. Kimando MW, Otieno FCF, Ogola EN, et al. Adequacy of control of cardiovascular risk factors in ambulatory patients with type 2 diabetes attending diabetes outpatients clinic at a county hospital, Kenya. *BMC Endo Disord* 2017;17(1):73. doi: 10.1186/s12902-017-0223-1
- 37. Kisozi T, Mutebi E, Kisekka M, et al. Prevalence, severity and factors associated with peripheral neuropathy among newly diagnosed diabetic patients attending

Mulago hospital: a cross-sectional study. *Afr Health Sci* 2017;17(2):463-73. doi: 10.4314/ahs.v17i2.21 [published Online First: 2017/10/25]

- 38. Lebeta KR, Argaw Z, Birhane BW. Prevalence of Diabetic Complications and Its Associated Factors Among Diabetes Mellitus Patients Attending Diabetes Mellitus Clinics; Institution Based Cross Sectional Study. *American Journal of Health Research 2017*;5(2):38-43.
- Lumu W, Kampiire L, Akabwai GP, et al. Dyslipidaemia in a Black African diabetic population: burden, pattern and predictors. *BMC Res Notes* 2017;10(1):587. doi: 10.1186/s13104-017-2916-y
- 40. Lumu W, Kampiire L, Akabwai GP, et al. Statin therapy reduces the likelihood of suboptimal blood pressure control among Ugandan adult diabetic patients. *Ther Clin Risk Manag* 2017;13:215-21. doi: 10.2147/TCRM.S120423
- Magan T, Pouncey A, Gadhvi K, et al. Prevalence and severity of diabetic retinopathy in patients attending the endocrinology diabetes clinic at Mulago Hospital in Uganda. Diabetes Res Clin Pract 2019;152:65-70. doi: 10.1016/j.diabres.2019.04.024 [published Online First: 2019/05/08]
- 42. Mamo T, Yifter H, Lemessa T. Risk factors assessment of diabetic foot ulcer using the sixty second screening tool: A hospital based cross-sectional study at Tikur Anbessa Specialised Hospital. *Ethiop Med J* 2015;Suppl 2:45-9. [published Online First: 2015/11/26]
- 43. Mariam TG, Alemayehu A, Tesfaye E, et al. Prevalence of Diabetic Foot Ulcer and Associated Factors among Adult Diabetic Patients Who Attend the Diabetic Follow-Up Clinic at the University of Gondar Referral Hospital, North West Ethiopia, 2016: Institutional-Based Cross-Sectional Study. *J Diabetes Res*

 2017;2017:2879249. doi: 10.1155/2017/2879249 [published Online First: 2017/08/10]

- 44. Mbwete GW, Kilonzo KG, Shao ER, et al. Suboptimal Blood Pressure Control, Associated Factors, and Choice of Antihypertensive Drugs among Type 2 Diabetic Patients at KCMC, Tanzania. *J Diabetes Res* 2020;2020:4376251. doi: 10.1155/2020/4376251 [published Online First: 2020/08/11]
- 45. Muddu M, Mutebi E, Mondo C. Prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago Hospital. *Afr Health Sci* 2016;16(1):183-93. doi: 10.4314/ahs.v16i1.25 [published Online First: 2016/07/01]
- 46. Muddu M, Mutebi E, Ssinabulya I, et al. Utility of albumin to creatinine ratio in screening for microalbuminuria among newly diagnosed diabetic patients in Uganda: a cross sectional study. *Afr Health Sci* 2019;19(1):1607-16. doi: 10.4314/ahs.v19i1.36 [published Online First: 2019/06/01]
- 47. Mwebaze RM, Kibirige D. Peripheral arterial disease among adult diabetic patients attending a large outpatient diabetic clinic at a national referral hospital in Uganda: a descriptive cross sectional study. *PLoS One* 2014;9(8):e105211. doi: 10.1371/journal.pone.0105211 [published Online First: 2014/08/19]
- 48. Neuhann HF, Warter-Neuhann C, Lyaruu I, et al. Diabetes care in Kilimanjaro region: clinical presentation and problems of patients of the diabetes clinic at the regional referral hospital-an inventory before structured intervention. *Diabet Med* 2002;19(6):509-13. doi: 10.1046/j.1464-5491.2002.00673.x [published Online First: 2002/06/13]
- 49. Nyamu PN, Otieno CF, Amayo EO, et al. Risk factors and prevalence of diabetic foot ulcers at Kenyatta National Hospital, Nairobi. *East Afr Med J*

## BMJ Open

| 2        |                                                                                          |
|----------|------------------------------------------------------------------------------------------|
| 3        | 2003;80(1):36-43. doi: 10.4314/eamj.v80i1.8664 [published Online First:                  |
| 4<br>5   |                                                                                          |
| 6        | 2003/05/21]                                                                              |
| 7        | 50 Okelle C. Millard A. Oweri D. et al. Drevelance of lower extremity nerinbered erter.  |
| 8<br>9   | 50. Okello S, Millard A, Owori R, et al. Prevalence of lower extremity peripheral artery |
| 9<br>10  | diagona among adult diabatan nationta in couthwastern Uganda RMC                         |
| 11       | disease among adult diabetes patients in southwestern Uganda. BMC                        |
| 12       | Cardiovasc Disord 2014;14:75. doi: 10.1186/1471-2261-14-75 [published                    |
| 13       |                                                                                          |
| 14<br>15 | Online First: 2014/06/11]                                                                |
| 16       |                                                                                          |
| 17<br>18 | 51. Seyum B, Mebrahtu G, Usman A, et al. Profile of patients with diabetes in Eritrea:   |
| 19<br>20 | results of first phase registry analyses. Acta Diabetol 2010;47(1):23-7. doi:            |
| 21       | 10.1007/s00592-009-0093-8 [published Online First: 2009/02/03]                           |
| 22       | 10.1007/s00392-009-0093-6 [published Offline First. 2009/02/03]                          |
| 23<br>24 | 52. Smide B. Outcome of foot examinations in Tanzanian and Swedish diabetic              |
| 25       |                                                                                          |
| 26<br>27 | patients, a comparative study. J Clin Nurs 2009;18(3):391-8. doi:                        |
| 28       | 10.1111/j.1365-2702.2008.02492.x [published Online First: 2009/02/05]                    |
| 29       | 10.1111/j.1303-2702.2008.02492.X [published Online Thist. 2009/02/03]                    |
| 30<br>31 | 53. Tesfaye D, Tessema F, Taha M. Coexistence of Chronic Complications among             |
| 32       |                                                                                          |
| 33       | Diabetic Patients at Nigist Eleni Mohammed Memorial Hospital, Hossana,                   |
| 34       |                                                                                          |
| 35<br>36 | South Ethiopia. Open Access Library Journal 2015;2:1-10.                                 |
| 37       |                                                                                          |
| 38       | 54. Tilahun AN, Waktola C, Tewodros GM, et al. Major Micro vascular Complications        |
| 39<br>40 | and Associated Dick Fasters among Disbetic Outpatients in Southwest                      |
| 40       | and Associated Risk Factors among Diabetic Outpatients in Southwest                      |
| 42       | Ethiopia. Endocrinol Metab Syndr 2017;6:272.                                             |
| 43       |                                                                                          |
| 44<br>45 | 55. Vogt EC, Øksnes M, Suleiman F, et al. Assessment of diabetic polyneuropathy in       |
| 45       |                                                                                          |
| 47       | Zanzibar: Comparison between traditional methods and an automated point-of-              |
| 48       |                                                                                          |
| 49<br>50 | care nerve conduction device. J Clin Transl Endocrinol 2017;10:9-14. doi:                |
| 51       |                                                                                          |
| 52       | 10.1016/j.jcte.2017.09.001                                                               |
| 53       | 56 Woodword D. Maoyo E. Mujopaness C. at al. Dationanathy in advite with                 |
| 54<br>55 | 56. Woodward R, Mgaya E, Mwanansao C, et al. Retinopathy in adults with                  |
| 56       | hypertension and diabetes mellitus in Western Tanzania: a cross-sectional                |
|          |                                                                                          |

study. Trop Med Int Health 2020;25(10):1214-25. doi: 10.1111/tmi.13463 [published Online First: 2021/01/06]

- 57. Worku D, Hamza L, Woldemichael K. Patterns of diabetic complications at jimma university specialized hospital, southwest ethiopia. *Ethiop J Health Sci* 2010;20(1):33-39. doi: 10.4314/ejhs.v20i1.69424
- 58. Ekoru K, Doumatey A, Bentley AR, et al. Type 2 diabetes complications and comorbidity in Sub-Saharan Africans. *EClinicalMedicine* 2019;16:30-41. doi: 10.1016/j.eclinm.2019.09.001
- 59. Camara A, Baldé NM, Sobngwi-Tambekou J, et al. Poor glycemic control in type
   2 diabetes in the South of the Sahara: the issue of limited access to an HbA1c
   test. Diabetes Res Clin Pract 2015;108(1):187-92. doi:
   10.1016/j.diabres.2014.08.025 [published Online First: 2015/02/24]
- Adetunji OR, Adeleye JO, Agada NO, et al. Microalbuminuria and clinical correlates in black African patients with type 2 diabetes. West Afr J Med 2006;25(4):279-83. [published Online First: 2007/04/04]
- 61. Agboghoroma OF, Akemokwe FM, Puepet FH. Peripheral arterial disease and its correlates in patients with type 2 diabetes mellitus in a teaching hospital in northern Nigeria: a cross-sectional study. *BMC Cardiovasc Disord* 2020;20(1):102. doi: 10.1186/s12872-020-01395-3
- Alebiosu CO. Clinical diabetic nephropathy in a tropical African population. West Afr J Med 2003;22(2):152-5. doi: 10.4314/wajm.v22i2.27938 [published Online First: 2003/10/08]
- 63. Attoye TE, Adebobola PA, Inem V. An Assessment of Glycaemic Control and Modes of Health Financing among Type 2 Diabetic Patients Attending a

**BMJ** Open

Teaching Hospital in South-western Nigeria. West Afr J Med 2020;37(3):237-47. [published Online First: 2020/06/02]

- 64. Balogun WO, Abbiyesuku FM. Excess renal insufficiency among type 2 diabetic patients with dip-stick positive proteinuria in a tertiary hospital. *Afr J Med Med Sci* 2011;40(4):399-403. [published Online First: 2012/07/13]
- 65. Bello A, Biliaminu S, Wahab K, et al. Distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy among diabetic patients in Ilorin: Prevalence and predictors. *Niger Postgrad Med J* 2019;26(2):123-28. doi: 10.4103/npmj.npmj\_30\_19 [published Online First: 2019/06/13]
- 66. Bello BT, Amira CO. Pattern and predictors of urine protein excretion among patients with type 2 diabetes attending a single tertiary hospital in Lagos, Nigeria. Saudi J Kidney Dis Transpl 2017;28(6):1381-88. doi: 10.4103/1319-2442.220869 [published Online First: 2017/12/22]
- Uloko AE, Ofoegbu EN, Chinenye S, et al. Profile of Nigerians with diabetes mellitus - Diabcare Nigeria study group (2008): Results of a multicenter study. *Indian J Endocrinol Metab* 2012;16(4):558-64. doi: 10.4103/2230-8210.98011
- 68. Ede O, Eyichukwu G, Madu K, et al. Evaluation of Peripheral Neuropathy in Diabetic Adults with and without Foot Ulcers in an African Population. *Journal of Biosciences and Medicines* 2018;6:71-78.
- Eghan BA, Jr., Frempong MT, Adjei-Poku M. Prevalence and predictors of microalbuminuria in patients with diabetes mellitus: a cross-sectional observational study in Kumasi, Ghana. *Ethn Dis* 2007;17(4):726-30. [published Online First: 2007/12/13]
- 70. Hayfron-Benjamin C, van den Born BJ, Maitland-van der Zee AH, et al. Microvascular and macrovascular complications in type 2 diabetes Ghanaian

residents in Ghana and Europe: The RODAM study. *J Diabetes Complications* 2019;33(8):572-78. doi: 10.1016/j.jdiacomp.2019.04.016 [published Online First: 2019/06/07]

- 71. Iwuala SO, Olamoyegun MA, Sabir AA, et al. The relationship between selfmonitoring of blood glucose and glycaemic control among patients attending an urban diabetes clinic in Nigeria. *Ann Afr Med* 2015;14(4):182-7. doi: 10.4103/1596-3519.155992 [published Online First: 2015/10/17]
- 72. Kizor-Akaraiwe NN, Ezegwui IR, Oguego N, et al. Prevalence, Awareness and Determinants of Diabetic Retinopathy in a Screening Centre in Nigeria. J *Community Health* 2016;41(4):767-71. doi: 10.1007/s10900-016-0151-4 [published Online First: 2016/01/27]
- 73. Kuate-Tegueu C, Temfack E, Ngankou S, et al. Prevalence and determinants of diabetic polyneuropathy in a sub-Saharan African referral hospital. *J Neurol Sci* 2015;355(1-2):108-12. doi: 10.1016/j.jns.2015.05.035 [published Online First: 2015/06/07]
- 74. Lartey SY, Aikins AK. Visual impairment amongst adult diabetics attending a tertiary outpatient clinic. Ghana Med J 2018;52(2):84-87. doi: 10.4314/gmj.v52i2.4 [published Online First: 2019/01/22]
- 75. Ogbera AO, Adeleye O, Solagberu B, et al. Screening for peripheral neuropathy and peripheral arterial disease in persons with diabetes mellitus in a Nigerian University Teaching Hospital. *BMC Res Notes* 2015;8(1):533. doi: 10.1186/s13104-015-1423-2
- 76. Olamoyegun M, Ibraheem W, Iwuala S, et al. Burden and pattern of micro vascular complications in type 2 diabetes in a tertiary health institution in Nigeria. *Afr*

#### **BMJ** Open

Health Sci 2015;15(4):1136-41. doi: 10.4314/ahs.v15i4.12 [published Online First: 2016/03/10] 77. Onakpoya OH, Kolawole BA, Adeoye AO, et al. Visual impairment and blindness in type 2 diabetics: Ife-Ijesa diabetic retinopathy study. Int Ophthalmol 2016;36(4):477-85. doi: 10.1007/s10792-015-0145-8 [published Online First: 2015/11/06] 78. Oyelade BO, OlaOlorun AD, Odeigah LO, et al. The prevalence of peripheral arterial disease in diabetic subjects in south-west Nigeria. Afr J Prim Health Care Fam Med 2012;4(1):354. doi: 10.4102/phcfm.v4i1.354 79. Ugoya SO, Echejoh GO, Ugoya TA, et al. Clinically diagnosed diabetic neuropathy: frequency, types and severity. J Natl Med Assoc 2006;98(11):1763-6. [published Online First: 2006/11/30] 80. Unachukwu C, Babatunde S, Ihekwaba AE. Diabetes, hand and/or foot ulcers: a cross-sectional hospital-based study in Port Harcourt, Nigeria. Diabetes Res Clin Pract 2007;75(2):148-52. doi: 10.1016/j.diabres.2006.05.016 [published Online First: 2006/07/11] 81. Mohmad AH, Hassan A. Correlation between retinopathy, nephropathy and peripheral neuropathy among adult Sudanese diabetic patients. . Sudan J Me *Sci* 2011;6(1) 82. Ahmed MH, Elwali ES, Awadalla H, et al. The relationship between diabetic retinopathy and nephropathy in Sudanese adult with diabetes: population based study. Diabetes Metab Syndr 2017;11 Suppl 1:S333-s36. doi: 10.1016/j.dsx.2017.03.011 [published Online First: 2017/03/23] 

- 83. Albalawi HB, Alali NM, Alenezi SH, et al. The relationship between periodontitis and diabetic retinopathy: A cross-sectional longitudinal study. *Australasian Medical Journal* 2020;13:50-54.
- 84. Ashur ST, Shah SA, Bosseri S, et al. Glycaemic control status among type 2 diabetic patients and the role of their diabetes coping behaviours: a clinic-based study in Tripoli, Libya. Libyan J Med 2016;11:31086. doi: 10.3402/ljm.v11.31086 [published Online First: 2016/03/24]
- 85. Assaad-Khalil SH, Zaki A, Abdel Rehim A, et al. Prevalence of diabetic foot disorders and related risk factors among Egyptian subjects with diabetes. Prim Care Diabetes 2015;9(4):297-303. doi: 10.1016/j.pcd.2014.10.010 [published Online First: 2014/12/30]
- Khalil SA, Megallaa MH, Rohoma KH, et al. Prevalence of Chronic Diabetic Complications in Newly Diagnosed versus Known Type 2 Diabetic Subjects in a Sample of Alexandria Population, Egypt. *Curr Diabetes Rev* 2019;15(1):74-83. doi: 10.2174/1573399814666180125100917 [published Online First: 2018/01/26]
- 87. Awadalla H, Noor SK, Elmadhoun WM, et al. Diabetes complications in Sudanese individuals with type 2 diabetes: Overlooked problems in sub-Saharan Africa? Diabetes Metab Syndr 2017;11 Suppl 2:S1047-s51. doi: 10.1016/j.dsx.2017.07.039 [published Online First: 2017/08/10]
- Bentata Y, Chemlal A, Karimi I, et al. Diabetic kidney disease and vascular comorbidities in patients with type 2 diabetes mellitus in a developing country. *Saudi J Kidney Dis Transpl* 2015;26(5):1035-43. doi: 10.4103/1319-2442.164602 [published Online First: 2015/09/12]

| 2              |                                                                                         |
|----------------|-----------------------------------------------------------------------------------------|
| 3<br>4         | 89. Bouaziz A, Zidi I, Zidi N, et al. Nephropathy following type 2 diabetes mellitus in |
| 5<br>6         | Tunisian population. West Indian Med J 2012;61(9):881-9. doi:                           |
| 7<br>8         | 10.7727/wimj.2012.053 [published Online First: 2013/09/12]                              |
| 9<br>10        | 90. Chadli A, El Aziz S, El Ansari N, et al. Management of diabetes in Morocco: results |
| 11<br>12       | of the International Diabetes Management Practices Study (IDMPS) - wave 5.              |
| 13<br>14<br>15 | <i>Ther Adv Endocrinol Metab</i> 2016;7(3):101-9. doi: 10.1177/2042018816643227         |
| 16<br>17       | [published Online First: 2016/06/14]                                                    |
| 18             |                                                                                         |
| 19<br>20<br>21 | 91. Chahbi Z, Lahmar B, Hadri SE, et al. The prevalence of painful diabetic neuropathy  |
| 21<br>22<br>23 | in 300 Moroccan diabetics. <i>Pan Afr Med J</i> 2018;31:158-58. doi:                    |
| 24<br>25       | 10.11604/pamj.2018.31.158.14687                                                         |
| 26<br>27       | 92. Chetoui A, Kaoutar K, Elmoussaoui S, et al. Prevalence and determinants of poor     |
| 28<br>29       | glycaemic control: a cross-sectional study among Moroccan type 2 diabetes               |
| 30<br>31       | patients. Int Health 2020;14(4):390-397.                                                |
| 32<br>33       | 93. Diaf M, Khaled BM. Metabolic profile, nutritional status and determinants of        |
| 34<br>35<br>36 | glycaemic control in Algerian type 2 diabetic patients. Kuwait Medical Journal          |
| 37<br>38       | 2017;49:135-41.                                                                         |
| 39<br>40       | 94. Elnasri HA, Ahmed AM. Patterns of lipid changes among type 2 diabetes patients      |
| 41<br>42       | in Sudan. <i>Eastern Mediterranean Health Journal</i> 2008;14(2):314-24.                |
| 43<br>44       |                                                                                         |
| 45<br>46       | 95. Elwali ES, Almobarak AO, Hassan MA, et al. Frequency of diabetic retinopathy        |
| 47<br>48       | and associated risk factors in Khartoum, Sudan: population based study. Int J           |
| 49<br>50       | <i>Ophthalmol</i> 2017;10(6):948-54. doi: 10.18240/ijo.2017.06.18                       |
| 51<br>52       | 96. Kahloun R, Jelliti B, Zaouali S, et al. Prevalence and causes of visual impairment  |
| 53<br>54       | in diabetic patients in Tunisia, North Africa. Eye (Lond) 2014;28(8):986-91. doi:       |
| 55<br>56       | 10.1038/eye.2014.131 [published Online First: 2014/06/14]                               |
| 57<br>58<br>59 |                                                                                         |
| 59<br>60       |                                                                                         |

- 97. Megallaa MH, Ismail AA, Zeitoun MH, et al. Association of diabetic foot ulcers with chronic vascular diabetic complications in patients with type 2 diabetes.
  Diabetes Metab Syndr 2019;13(2):1287-92. doi: 10.1016/j.dsx.2019.01.048
  [published Online First: 2019/07/25]
  - 98. Noor SK, Elmadhoun WM, Bushara SO, et al. Glycaemic control in Sudanese individuals with type 2 diabetes: Population based study. *Diabetes Metab Syndr* 2017;11 Suppl 1:S147-S51. doi: 10.1016/j.dsx.2016.12.024
  - 99. Omar SM, Musa IR, Osman OE, et al. Assessment of glycemic control in type 2 diabetes in the Eastern Sudan. *BMC Res Notes* 2018;11(1):373. doi: 10.1186/s13104-018-3480-9
  - 100. Adeniyi OV, Owolabi EO. Cross-sectional study of diabetes kidney disease in the Eastern Cape, South Africa. *Medicine (Baltimore)* 2020;99(50):e23303. doi: 10.1097/md.00000000023303 [published Online First: 2020/12/18]
  - 101. Amod A, Riback W, Schoeman H. Diabetes guidelines and clinical practice: Is there a gap? The South African cohort of the International Diabetes Management Practices Study. *Journal of Endocrinology, Metabolism and Diabetes of South Africa* 2012;17:85-90.
  - 102. Blake AM, Munby HN, Katlego PM, et al. Characteristics of patients with diabetic retinopathy in Gaborone, Botswana. Tanzan J Health Res. 2015;17:1.
  - 103. Burgess PI, Allain TJ, García-Fiñana M, et al. High prevalence in Malawi of sightthreatening retinopathy and visual impairment caused by diabetes: identification of population-specific targets for intervention. *Diabet Med* 2014;31(12):1643-50. doi: 10.1111/dme.12492 [published Online First: 2014/05/16]

| 104. Cairncross JP, Steinberg WJ, Labuschagne MJ. Prevalence of eye pathology in    |
|-------------------------------------------------------------------------------------|
| a group of diabetic patients at National District Hospital Outpatient Department    |
| in Bloemfontein, South Africa. Afr J Prim Health Care Fam Med 2017;9(1):e1-         |
| e7. doi: 10.4102/phcfm.v9i1.1440 [published Online First: 2017/10/19]               |
| 105. Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and |
| complications of diabetes mellitus in patients attending a diabetes clinic in       |
| Blantyre, Malawi, an area of high HIV prevalence. Am J Trop Med Hyg                 |
| 2010;83(3):575-81. doi: 10.4269/ajtmh.2010.10-0104                                  |
| 106. Glover SJ, Burgess PI, Cohen DB, et al. Prevalence of diabetic retinopathy,    |
| cataract and visual impairment in patients with diabetes in sub-Saharan Africa.     |
| Br J Ophthalmol 2012;96(2):156-61. doi: 10.1136/bjo.2010.196071 [published          |
| Online First: 2011/04/26]                                                           |
| 107. Lewis AD, Hogg RE, Chandran M, et al. Prevalence of diabetic retinopathy and   |
| visual impairment in patients with diabetes mellitus in Zambia through the          |
| implementation of a mobile diabetic retinopathy screening project in the            |
| Copperbelt province: a cross-sectional study. Eye (Lond) 2018;32(7):1201-08.        |
| doi: 10.1038/s41433-018-0055-x [published Online First: 2018/03/06]                 |
| 108. Machingura PI, Chikwasha V, Okwanga PN, et al. Prevalence of and Factors       |
| Associated with Nephropathy in Diabetic Patients Attending an Outpatient            |
| Clinic in Harare, Zimbabwe. Am J Trop Med Hyg 2017;96(2):477-82. doi:               |
| 10.4269/ajtmh.15-0827 [published Online First: 2016/12/21]                          |

109. Makwero MT, Mollentze WF, Joubert G, et al. Anthropometric profile and complications in patients with diabetes mellitus seen at Maluti Adventist Hospital, Lesotho. *South African Family Practice* 2018;60:97-102.

- 110. Molefe-Baikai OJ, Molefi M, Cainelli F, et al. The prevalence of microalbuminuria and associated factors among patients with type 2 diabetes mellitus in Botswana. *Niger J Clin Pract* 2018;21(11):1430-37. doi: 10.4103/njcp.njcp 224 18 [published Online First: 2018/11/13]
  - 111. Mwita JC, Francis JM, Omech B, et al. Glycaemic, blood pressure and lowdensity lipoprotein-cholesterol control among patients with diabetes mellitus in a specialised clinic in Botswana: a cross-sectional study. *BMJ Open* 2019;9(7):e026807. doi: 10.1136/bmjopen-2018-026807 [published Online First: 2019/07/26]
  - 112. Pirie FJ, Maharaj S, Esterhuizen TM, et al. Retinopathy in subjects with type 2 diabetes at a tertiary diabetes clinic in Durban, South Africa: Clinical, biochemical and genetic factors. *J Clin Transl Endocrinol* 2014;1(1):e9-e12. doi: 10.1016/j.jcte.2013.12.002 [published Online First: 2013/12/19]
  - 113. Rotchford AP, Rotchford KM. Diabetes in rural South Africa--an assessment of care and complications. S Afr Med J 2002;92(7):536-41. [published Online First: 2002/08/29]
  - 114. Thinyane KH, Theketsa CE. Characteristics of patients admitted with diabetes in Maseru, Lesotho. *African Journal of Diabetes Medicine* 2013;21:17-19.
  - 115. Thomas RL, Distiller L, Luzio SD, et al. Ethnic differences in the prevalence of diabetic retinopathy in persons with diabetes when first presenting at a diabetes clinic in South Africa. *Diabetes Care* 2013;36(2):336-41. doi: 10.2337/dc12-0683 [published Online First: 2012/10/04]
  - 116. Webb EM, Rheeder P, Van Zyl DG. Diabetes care and complications in primary care in the Tshwane district of South Africa. *Prim Care Diabetes* 2015;9(2):147-54. doi: 10.1016/j.pcd.2014.05.002 [published Online First: 2014/06/17]

| 3<br>4         | 117. Blum J, Chaney M, Mudji J, et al. Glycaemic control among patients with type 2  |
|----------------|--------------------------------------------------------------------------------------|
| 5<br>6         | diabetes followed in a rural African primary care setting - A reality check in the   |
| 7<br>8         | Democratic Republic of Congo. Prim Care Diabetes 2020;14(2):139-46. doi:             |
| 9<br>10        | 10.1016/j.pcd.2019.08.002 [published Online First: 2019/08/29]                       |
| 11<br>12       | 118. Dzudie A, Choukem SP, Adam AK, et al. Prevalence and determinants of            |
| 13<br>14       |                                                                                      |
| 15<br>16       | electrocardiographic abnormalities in sub-Saharan African individuals with type      |
| 17<br>18       | 2 diabetes. Cardiovasc J Afr 2012;23(10):533-7. doi: 10.5830/cvja-2012-054           |
| 19<br>20       | [published Online First: 2012/09/21]                                                 |
| 21<br>22       | 119. Efundem NT, Assob JCN, Feteh VF, et al. Prevalence and associations of          |
| 23<br>24<br>25 | microalbuminuria in proteinuria-negative patients with type 2 diabetes in two        |
| 25<br>26<br>27 | regional hospitals in Cameroon: a cross-sectional study. BMC Res Notes               |
| 28<br>29       | 2017;10(1):477. doi: 10.1186/s13104-017-2804-5                                       |
| 30<br>31       | 120. Hall KK, Tambekou J, Penn L, et al. Association between depression, glycaemic   |
| 32<br>33       | control and the prevalence of diabetic retinopathy in a diabetic population in       |
| 34<br>35<br>36 | Cameroon. <i>S Afr J Psychiatr</i> 2017;23:983-83. doi:                              |
| 37<br>38       | 10.4102/sajpsychiatry.v23i0.983                                                      |
| 39<br>40       | 121. Jingi AM, Nansseu JR, Noubiap JJ, et al. Diabetes and visual impairment in sub- |
| 41<br>42       | Saharan Africa: evidence from Cameroon. J Diabetes Metab Disord                      |
| 43<br>44       |                                                                                      |
| 45             | 2015;14:21. doi: 10.1186/s40200-015-0151-4 [published Online First:                  |
| 46<br>47       | 2015/04/14]                                                                          |
| 48             | -                                                                                    |
| 49<br>50       | 122. Jingi AM, Noubiap JJN, Ellong A, et al. Epidemiology and treatment outcomes of  |
| 51<br>52       | diabetic retinopathy in a diabetic population from Cameroon. BMC Ophthalmol          |
| 53<br>54       | 2014;14(1):19. doi: 10.1186/1471-2415-14-19                                          |
| 55<br>56       | 123. Njikam EJ, Kariuki MM, Kollmann MK, et al. The magnitude and pattern of         |
| 57             |                                                                                      |
| 58<br>50       | diabetic retinopathy in Yaoundé, Cameroon - a cross-sectional hospital-based         |

study. *Acta Ophthalmol* 2016;94(2):e156-7. doi: 10.1111/aos.12747 [published Online First: 2015/05/29]

- 124. Chadli A, El Aziz S, El Ansari N, et al. Management of diabetes in Morocco: results of the International Diabetes Management Practices Study (IDMPS) wave 5. *Ther Adv Endocrinol Metab* 2016;7(3):101-09. doi: 10.1177/2042018816643227 [published Online First: 2016/04/13]
- 125. Iwuala S, Olamoyegun M, Sabir A, et al. The relationship between self-monitoring of blood glucose and glycaemic control among patients attending an urban diabetes clinic in Nigeria. *Ann Afr Med* 2015;14(4):182-87. doi: 10.4103/1596-3519.155992
- 126. Elnasri HA, Ahmed AM. Patterns of lipid changes among type 2 diabetes patients in Sudan. *Eastern Mediterranean health journal* 2008;14(2):314-24.
- 127. Albalawi HB, Alali NM, Alenezi SH, et al. The relationship between periodontitis and diabetic retinopathy: A cross-sectional longitudinal study. *AMJ* 2020;13(2):50-54.
- 128. Bello A, Biliaminu S, Wahab K, et al. Distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy among diabetic patients in Ilorin: Prevalence and predictors. *Niger Postgrad Med J* 2019;26(2):123-28. doi: 10.4103/npmj.npmj\_30\_19
- 129. Blake AM, Munby HN, Katlego PM, et al. Characteristics of patients with diabetic retinopathy in Gaborone, Botswana. Tanzan J Health Res 2015;17(1) doi: 10.4314/thrb.v17i1.
- 130. Vogt EC, Øksnes M, Suleiman F, et al. Assessment of diabetic polyneuropathy in Zanzibar: Comparison between traditional methods and an automated point-

| 2              |               |
|----------------|---------------|
| 3<br>4         | of-care       |
| 5<br>6         | 10.101        |
| 7<br>8         | 131. Ali MK,  |
| 9<br>10        | care,         |
| 11<br>12<br>13 | 10.105        |
| 14<br>15       | 132. Carls G, |
| 16<br>17       | the US        |
| 18<br>19       | doi: 10       |
| 20<br>21       | 133. Al Mans  |
| 22<br>23<br>24 |               |
| 24<br>25<br>26 | predict       |
| 27<br>28       | in real       |
| 29<br>30       | 10.113        |
| 31<br>32       | 134. Hu H, H  |
| 33<br>34       | People        |
| 35<br>36       | Health        |
| 37<br>38       | 10.137        |
| 39<br>40<br>41 | 135. Schmie   |
| 42<br>43       | patient       |
| 44<br>45       | 2018;1        |
| 46<br>47       | 136. Kumar ł  |
| 48<br>49       | patient       |
| 50<br>51<br>52 | 2016;9        |
| 52<br>53<br>54 | 137. Rigato N |
| 55<br>56       | diabeti       |
| 57<br>58       | นเลมย์แ       |
| 59<br>60       |               |
|                |               |

of-care nerve conduction device. *J Clin Transl Endocrinol* 2017;10:9-14. doi: 10.1016/j.jcte.2017.09.001 [published Online First: 2017/12/06]

- 131. Ali MK, Bullard KM, Saaddine JB, et al. Achievement of goals in U.S. diabetes care, 1999-2010. *N Engl J Med* 2013;368(17):1613-24. doi: 10.1056/NEJMsa1213829 [published Online First: 2013/04/26]
- 132. Carls G, Huynh J, Tuttle E, et al. Achievement of Glycated Hemoglobin Goals in the US Remains Unchanged Through 2014. *Diabetes Ther* 2017;8(4):863-73. doi: 10.1007/s13300-017-0280-5
- 133. Al Mansari A, Obeid Y, Islam N, et al. GOAL study: clinical and non-clinical predictive factors for achieving glycemic control in people with type 2 diabetes in real clinical practice. *BMJ Open Diab Res Care* 2018;6(1):e000519. doi: 10.1136/bmjdrc-2018-000519
- Hu H, Hori A, Nishiura C, et al. Hba1c, Blood Pressure, and Lipid Control in People with Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. *PLoS One* 2016;11(7):e0159071. doi: 10.1371/journal.pone.0159071 [published Online First: 2016/07/22]
- 135. Schmieder RE, Tschöpe D, Koch C, et al. Individualised treatment targets in patients with type-2 diabetes and hypertension. *Cardiovasc Diabetol* 2018;17(1):18. doi: 10.1186/s12933-018-0661-8
- 136. Kumar KVS, Modi K. A1c, blood pressure and cholesterol goal achievement in patients of Type 2 diabetes. *Medical Journal of Dr DY Patil University* 2016;9(2):195-99. doi: 10.4103/0975-2870.177659
- 137. Rigato M, Pizzol D, Tiago A, et al. Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes

Res Clin Pract 2018;142:63-73. doi: 10.1016/j.diabres.2018.05.016 [published Online First: 2018/05/29]

- 138. Shiferaw WS, Akalu TY, Work Y, et al. Prevalence of diabetic peripheral neuropathy in Africa: a systematic review and meta-analysis. *BMC Endo Disord* 2020;20(1):49. doi: 10.1186/s12902-020-0534-5
- 139. Burgess PI, MacCormick IJC, Harding SP, et al. Epidemiology of diabetic retinopathy and maculopathy in Africa: a systematic review. *Diabet Med* 2013;30(4):399-412. doi: 10.1111/j.1464-5491.2012.03756.x
- 140. Achigbu E, Agweye C, Achigbu K, et al. Diabetic Retinopathy in Sub-Saharan Africa: A Review of Magnitude and Risk Factors. *Nigerian Journal of Ophthalmology* 2021;29(1):3-12. doi: 10.4103/njo.njo\_49\_20
- 141. Noubiap JJN, Naidoo J, Kengne AP. Diabetic nephropathy in Africa: A systematic review. *World J Diabetes* 2015;6(5):759-73. doi: 10.4239/wjd.v6.i5.759
- 142. Johnston LE, Stewart BT, Yangni-Angate H, et al. Peripheral Arterial Disease in Sub-Saharan Africa: A Review. *JAMA Surg* 2016;151(6):564-72. doi: 10.1001/jamasurg.2016.0446 [published Online First: 2016/04/07]
- 143. So WY, Raboca J, Sobrepena L, et al. Comprehensive risk assessments of diabetic patients from seven Asian countries: The Joint Asia Diabetes Evaluation (JADE) program. *J Diabetes* 2011;3(2):109-18. doi: 10.1111/j.1753-0407.2011.00115.x [published Online First: 2011/05/24]
- 144. Fang M, Selvin E. Thirty-Year Trends in Complications in U.S. Adults With Newly Diagnosed Type 2 Diabetes. *Diabetes Care* 2021;44(3):699-706. doi: 10.2337/dc20-2304 [published Online First: 2021/01/10]
- 145. Beran D, Yudkin JS, de Courten M. Access to care for patients with insulinrequiring diabetes in developing countries: case studies of Mozambique and

#### **BMJ** Open

Zambia. *Diabetes Care* 2005;28(9):2136-40. doi: 10.2337/diacare.28.9.2136 [published Online First: 2005/08/27]

- 146. Beran D, Yudkin JS. Looking beyond the issue of access to insulin: what is needed for proper diabetes care in resource poor settings. Diabetes Res Clin Pract 2010;88(3):217-21. doi: 10.1016/j.diabres.2010.03.029 [published Online First: 2010/05/08]
- 147. Kibirige D, Atuhe D, Kampiire L, et al. Access to medicines and diagnostic tests integral in the management of diabetes mellitus and cardiovascular diseases in Uganda: insights from the ACCODAD study. *Int J Equity Health* 2017;16(1):154. doi: 10.1186/s12939-017-0651-6
- 148. Jingi AM, Noubiap JJ, Ewane Onana A, et al. Access to diagnostic tests and essential medicines for cardiovascular diseases and diabetes care: cost, availability and affordability in the West Region of Cameroon. *PLoS One* 2014;9(11):e111812. doi: 10.1371/journal.pone.0111812 [published Online First: 2014/11/05]
- 149. Mendis S, Al Bashir I, Dissanayake L, et al. Gaps in capacity in primary care in low-resource settings for implementation of essential noncommunicable disease interventions. *Int J Hypertens* 2012;2012:584041. doi: 10.1155/2012/584041 [published Online First: 2012/12/20]
- 150. WHO. WHO. The Abuja Declaration: Ten Years On. <u>https://wwwwhoint/healthsystems/publications/Abuja10pdf</u> (accessed on 8 October 2021) 2011

## Table 1. General characteristics of all participants (n=63,890) included in the

## systematic review and meta-analysis

| Characteristic                                       | Cumulative value         | Number of studies |
|------------------------------------------------------|--------------------------|-------------------|
| 0                                                    |                          |                   |
| Age in years (Mean ± SD)                             | 54.9 ± 4.7               | 88                |
| Gender- Females (%, 95% CI)                          | 55.3, 95% CI 52.7-57.8   | 101               |
| Smokers (%, 95% CI)                                  | 9.9, 95% CI 0.5-55.6     | 44                |
| Participants on OHA (%, 95% CI)                      | 65.0, 95% CI 34.0-96.6   | 51                |
| Participants on insulin (%, 95% CI)                  | 31.3, 95% CI 26.3-36.2   | 52                |
| Participants on lipid lowering agents (%, 95% CI)    | 25.7, 95% CI 0.5-86.7    | 14                |
| Participants on anti-hypertensive agents (%, 95% CI) | 73.3, 95% CI 64.1-82.5   | 18                |
| BMI in kg/m <sup>2</sup> (Mean ± SD)                 | 27.9 ± 0.5               | 40                |
| HbA1c in % (Mean ± SD)                               | 9.0 ± 1.5                | 40                |
| 2 HbA1c in mmol/mol (Mean ± SD)                      | 75.0 ± 1.5               | 40                |
| BMI- Body mass index, HbA1c- Glycated                | haemoglobin, OHA- Oral h | ypoglycaemic      |
| agents, SD- Standard deviation                       |                          |                   |
| 8<br>9                                               |                          |                   |
| 0                                                    |                          |                   |
| 1<br>2                                               |                          |                   |
| 3                                                    |                          |                   |
| 4<br>5                                               |                          |                   |
| 6                                                    |                          |                   |

# Table 2. Indicators of optimal glycated haemoglobin goal

| <sup>6</sup> Optimal glycated haer   | noglobin (Hb | A1c) goal ( | n= 34 studies) | : Pooled rate of | attainment o | f optimal HbA1c                       |
|--------------------------------------|--------------|-------------|----------------|------------------|--------------|---------------------------------------|
| $^{7}_{\circ}$ goal = 27% (95% Cl 24 |              |             |                |                  |              |                                       |
| Attainment of the opti               |              |             |                |                  |              |                                       |
| 113-34), Northern: 24% (             |              |             |                |                  |              |                                       |
| First author & year                  | Country      | Region      | No of study    |                  |              | · · · · · · · · · · · · · · · · · · · |
| 12                                   | (ies)        | of Africa   | participants   | participants     | females      | optimal                               |
| 13                                   |              |             |                |                  |              | HbA1c                                 |
| <sup>14</sup> Adentunji et al 2006   | Nigeria      | Western     | 50             |                  |              | 52.0                                  |
| Agboghoroma et al,                   | Nigeria      | Western     | 200            |                  |              | 19.0                                  |
| 1 <del>2</del> 020                   |              |             |                |                  |              |                                       |
| 1Akalu et al 2020                    | Ethiopia     | Eastern     | 378            |                  | 38.6         | 40.7                                  |
| <sup>1</sup> Amod et al 2012         | South        | Southern    | 701            | 57.4             | 43.9         | 30.4                                  |
| 20                                   | Africa       |             |                |                  |              |                                       |
| $^{2}_{22}$ Amour et al, 2019        | Tanzania 🧹   | Eastern     | 238            | 57.2             | 65.7         | 9.2                                   |
| $_{25}$ Ashur et al 2016             | Libya        | Northern    | 523            | 54.4             | 47.0         | 21.8                                  |
| ₂ <b>A</b> ttoye et al 2020          | Nigeria      | Western     | 260            |                  |              | 34.6                                  |
| <sup>2</sup> Awadalla et al, 2017    | Sudan        | Northern    | 424            |                  | 49.3         | 15.6                                  |
| <sup>2</sup> Balogun et al 2011      | Nigeria      | Western     | 40             | 59.4             | 62.5         | 52.5                                  |
| Bentata et al, 2015                  | Morocco      | Northern    | 637            | 58.5             | 62.3         | 30.1                                  |
| 2βlum et al 2020                     | DRC          | Central     | 319            |                  | 33.5         | 14.1                                  |
| ₃©airncross et al, 2017              | South        | Southern    | 203            |                  | 72.5         | 31.3                                  |
| 31                                   | Africa       |             |                |                  |              |                                       |
| <sup>3</sup> ਊamara et al 2015       | Cameroon     | Central     | 1267           | 58.0             | 61.0         | 26.0                                  |
| 33<br>34                             | and Guinea   | and         |                |                  |              |                                       |
| 35                                   | Conakry      | Western     |                |                  |              |                                       |
| $_{3}$ Chadli et al. 2016            | Morocco      | Northern    | 498            | 58.0             | 62.4         | 26.8                                  |
| 3€hamba et al 2017                   | Tanzania     | Eastern     | 119            | 58.1             | 49.6         | 39.3                                  |
| <sup>3</sup> Chetoui et al 2019      | Morocco      | Northern    | 1456 🧹         | 56.2             | 73.4         | 33.7                                  |
| <sup>3</sup> Cohen DB et al 2010     | Malawi       | Southern    | 620            | 52.2             | 60.1         | 36.0                                  |
| <sup>4</sup> Diaf et al 2017         | Algeria      | Northern    | 210            | 55.6             | 65.0         | 51.4                                  |
| 4∱Hall et al, 2017                   | Cameroon     | Central     | 261            | 56.0             | 56.3         | 27.2                                  |
| 4 <b>s</b> wuala et al 2015          | Nigeria      | Western     | 100            | 59.9             | 62.0         | 45.0                                  |
| <sup>4</sup> Kibirige et al 2017     | Uganda       | Eastern     | 425            |                  | 67.0         | 26.5                                  |
| <sup>4</sup> Kimando et al 2017      | Kenya        | Eastern     | 385            | 62.1             | 65.5         | 39.5                                  |
| ₄Kisozi et al 2017                   | Uganda       | Eastern     | 288            | 48.5             | 38.0         | 23.3                                  |
| 4 Mbwete et al., 2020                | Tanzania     | Eastern     | 161            | 63.9             | 67.1         | 49.7                                  |
| 4Megallaa et al, 2019                | Egypt        | Northern    | 180            |                  | 24.4         | 4.4                                   |
| <sup>5</sup> Molefe-Baikai et al,    | Botswana     | Southern    | 289            | 50.7             | 66.1         | 29.4                                  |
| <sup>5</sup> 2018                    |              |             |                |                  |              |                                       |
| Muddu et al. 2019                    | Uganda       | Eastern     | 175            | 46.0             | 48.6         | 8.1                                   |
| ₅́ <u></u> Muddu et al., 2016        | Uganda       | Eastern     | 202            | 46.0             | 49.5         | 8.4                                   |
| 5 Mwebaze et al 2014                 | Uganda       | Eastern     | 146            | 53.9             | 48.6         | 19.2                                  |
| <sup>5</sup> Mwita et al 2019        | Botswana     | Southern    | 500            | 58.9             | 66.0         | 32.3                                  |
| <sup>5</sup> Noor et al., 2016       | Sudan        | Northern    | 387            |                  | 49.6         | 15.0                                  |
| <sup>58</sup><br>50 mar et al 2018   | Sudan        | Northern    | 339            | 54.8             | 69.9         | 28.1                                  |
| 60                                   |              | •           |                |                  | •            |                                       |

¢

| 1<br>2                                                   |                                                                       |                                 |      |      |      |      |
|----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|------|------|------|------|
| <sup>3</sup> Sobngwi et al 2011<br>5<br>6<br>7<br>8<br>9 | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and Nigeria | Eastern,<br>Western,<br>Central | 2352 | 53.0 | 61.1 | 29.2 |
| <sup>1</sup> Uloko et al., 2012                          | Nigeria                                                               | Western                         | 531  | 57.1 | 60.5 | 32.4 |
| 11<br>12<br>13<br>14<br>15                               |                                                                       |                                 |      |      |      |      |

7

1

# Table 3. Indicators of optimal blood pressure goal

6 Optimal blood pressure goal (n=26 studies): Pooled rate of attainment of optimal blood pressure goal = 38% (95% CI 30-46, I<sup>2</sup>=98.7% 95% CI 98.6-99.0), and I<sup>2</sup> after meta-regression-95.4%)

8 Attainment of the optimal blood pressure goal per region: Western: 31% (95% Cl 20-43), Eastern: 9 140% (95% CI 24-57), Southern: 40% (95% CI 26-55), Central: 41% (95% CI 38-45), and Northern: 42% 11 (95% CI 24-61).

| <sup>2</sup> Author & year                 | Country                                                               | Region                          | No of study  | Mean age of  | % of    | % with     |
|--------------------------------------------|-----------------------------------------------------------------------|---------------------------------|--------------|--------------|---------|------------|
| <sup>+</sup> Aution & year<br><sup>3</sup> | (ies)                                                                 | of Africa                       | participants | participants | females | optimal BP |
| Abdissa et al, 2020                        | Ethiopia                                                              | Eastern                         | 229          |              | 40.4    | 31.0       |
| Agboghoroma et al,<br>2020                 | Nigeria                                                               | Western                         | 200          |              |         | 30.0       |
| <sup>8</sup> Akalu et al 2020              | Ethiopia                                                              | Eastern                         | 378          |              | 38.6    | 57.7       |
| Amour et al, 2019                          | Tanzania                                                              | Eastern                         | 238          | 57.2         | 65.7    | 21.7       |
| Awadalla et al, 2017                       | Sudan                                                                 | Northern                        | 424          |              | 49.3    | 60.1       |
| Balogun et al 2011                         | Nigeria                                                               | Western                         | 40           | 59.4         | 62.5    | 55.0       |
| Chadli et al. 2016                         | Morocco 🧹                                                             | Northern                        | 498          | 58.0         | 62.4    | 20.2       |
| 6 Chahbi et al, 2018                       | Morocco                                                               | Northern                        | 300          |              | 93.0    | 32.6       |
| Chisha et al 2017                          | Ethiopia                                                              | Eastern                         | 270          |              | 48.9    | 85.9       |
| Cohen DB et al 2010                        | Malawi                                                                | Southern                        | 620          | 52.2         | 60.1    | 48.0       |
| Hall et al, 2017                           | Cameroon                                                              | Central                         | 261          | 56.0         | 56.3    | 43.0       |
| Hayfron-Benjamin et<br>al, 2019            | Ghana                                                                 | Western                         | 206          | 52.9         | 68.9    | 37.9       |
| Jingi et al, 2015                          | Cameroon                                                              | Central                         | 407          | 54.2         | 41.8    | 40.4       |
| Kahloun et al, 2014                        | Tunisia                                                               | Northern                        | 2320         | 54.5         | 60.2    | 62.5       |
| Kimando et al 2017                         | Kenya                                                                 | Eastern                         | 385          | 62.1         | 65.5    | 50.4       |
| Lewis et al, 2018                          | Zambia                                                                | Southern                        | 921          | 56.0         | 45.0    | 46.6       |
| Lumu et al 2017                            | Uganda                                                                | Eastern                         | 425 🧹        | 52.2         | 67.0    | 54.7       |
| Magan et al, 2019                          | Uganda                                                                | Eastern                         | 44           | <u>50.4</u>  | 63.4    | 34.1       |
| Megallaa et al, 2019                       | Egypt                                                                 | Northern                        | 180          |              | 24.4    | 37.8       |
| Muddu et al., 2016                         | Uganda                                                                | Eastern                         | 202          | 46.0         | 49.5    | 38.1       |
| Mwebaze et al 2014                         | Uganda                                                                | Eastern                         | 146          | 53.9         | 48.6    | 1.5        |
| Mwita JC et al 2019                        | Botswana                                                              | Southern                        | 500          | 58.9         | 66.0    | 54.2       |
| Onakpoya et al, 2015                       | Nigeria                                                               | Western                         | 133          |              | 48.1    | 24.1       |
| Rotchford et al., 2002                     | South<br>Africa                                                       | Southern                        | 253          | 56.5         | 73.1    | 14.0       |
| Sobngwi et al 2011                         | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and Nigeria | Eastern,<br>Western,<br>Central | 2352         | 53.0         | 61.1    | 21.0       |
| , Uloko et al., 2012                       | Nigeria                                                               | Western                         | 531          | 57.1         | 60.5    | 17.0       |

58

# Table 4. Indicators of optimal LDLC goal

# <sup>6</sup>Optimal LDLC goal (n= 11 studies)

Pooled rate of attainment of optimal LDLC goal = 42% (95% CI 32-52,  $I^2$ =97.4% 95% CI 96.5-98.1), and <sup>°</sup><sub>9</sub>I<sup>2</sup> after meta-regression-92.1%)

Attainment of the optimal LDLC goal per region: Southern: 27% (95% CI 24-30), Eastern: 37% (95% CI 30-45), Western: 51% (95% CI 43-58), and Northern: 53% (95% CI 32-74),

| Country  | Region                                                                                                                  |                                                                                                                                                                                              | •                                                                                                                                                                                                                    | % of                                                                                                                                                                                                                                                                     | % with                                                                                                                                                                                                                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ies)    | of Africa                                                                                                               | participants                                                                                                                                                                                 | participants                                                                                                                                                                                                         | females                                                                                                                                                                                                                                                                  | optimal LDLC                                                                                                                                                                                                                                                                                                                   |
| Nigeria  | Western                                                                                                                 | 200                                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          | 50.5                                                                                                                                                                                                                                                                                                                           |
| Tanzania | Eastern                                                                                                                 | 238                                                                                                                                                                                          | 57.2                                                                                                                                                                                                                 | 65.7                                                                                                                                                                                                                                                                     | 26.0                                                                                                                                                                                                                                                                                                                           |
| Sudan    | Northern                                                                                                                | 424                                                                                                                                                                                          |                                                                                                                                                                                                                      | 49.3                                                                                                                                                                                                                                                                     | 47.4                                                                                                                                                                                                                                                                                                                           |
| Morocco  | Northern                                                                                                                | 498                                                                                                                                                                                          | 58.0                                                                                                                                                                                                                 | 62.4                                                                                                                                                                                                                                                                     | 38.6                                                                                                                                                                                                                                                                                                                           |
| Tanzania | Eastern                                                                                                                 | 119                                                                                                                                                                                          | 58.1                                                                                                                                                                                                                 | 49.6                                                                                                                                                                                                                                                                     | 27.7                                                                                                                                                                                                                                                                                                                           |
| Sudan    | Northern                                                                                                                | 250                                                                                                                                                                                          | 52.0                                                                                                                                                                                                                 | 62.0                                                                                                                                                                                                                                                                     | 84.8                                                                                                                                                                                                                                                                                                                           |
| Uganda 🛛 | Eastern                                                                                                                 | 288                                                                                                                                                                                          | 48.5                                                                                                                                                                                                                 | 38.0                                                                                                                                                                                                                                                                     | 37.0                                                                                                                                                                                                                                                                                                                           |
| Uganda   | Eastern                                                                                                                 | 425                                                                                                                                                                                          | 52.2                                                                                                                                                                                                                 | 67.0                                                                                                                                                                                                                                                                     | 38.9                                                                                                                                                                                                                                                                                                                           |
| Egypt    | Northern                                                                                                                | 180                                                                                                                                                                                          |                                                                                                                                                                                                                      | 24.4                                                                                                                                                                                                                                                                     | 37.8                                                                                                                                                                                                                                                                                                                           |
| Uganda   | Eastern                                                                                                                 | 146                                                                                                                                                                                          | 53.9                                                                                                                                                                                                                 | 48.6                                                                                                                                                                                                                                                                     | 48.6                                                                                                                                                                                                                                                                                                                           |
| Botswana | Southern                                                                                                                | 500                                                                                                                                                                                          | 58.9                                                                                                                                                                                                                 | 66.0                                                                                                                                                                                                                                                                     | 20.4                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                |
|          | Country<br>(ies)<br>Nigeria<br>Tanzania<br>Sudan<br>Morocco<br>Tanzania<br>Sudan<br>Uganda<br>Uganda<br>Egypt<br>Uganda | Country<br>(ies)Region<br>of AfricaNigeriaWesternTanzaniaEasternSudanNorthernMoroccoNorthernTanzaniaEasternSudanNorthernUgandaEasternUgandaEasternEgyptNorthernUgandaEasternBotswanaSouthern | (ies)of AfricaparticipantsNigeriaWestern200TanzaniaEastern238SudanNorthern424MoroccoNorthern498TanzaniaEastern119SudanNorthern250UgandaEastern288UgandaEastern425EgyptNorthern180UgandaEastern146BotswanaSouthern500 | Country<br>(ies)Region<br>of AfricaNo of study<br>participantsMean age of<br>participantsNigeriaWestern200TanzaniaEastern23857.2SudanNorthern424MoroccoNorthern49858.0TanzaniaEastern11958.1SudanNorthern25052.0UgandaEastern28848.5UgandaEastern180UgandaEastern14653.9 | Country<br>(ies)Region<br>of AfricaNo of study<br>participantsMean age of<br>participants% of<br>femalesNigeriaWestern200TanzaniaEastern23857.265.7SudanNorthern42449.3MoroccoNorthern49858.062.4TanzaniaEastern11958.149.6SudanNorthern25052.062.0UgandaEastern28848.538.0UgandaEastern14653.948.6BotswanaSouthern50058.966.0 |

1 2

# Table 5. Prevalence of diabetic nephropathy

<sup>6</sup>Prevalence of diabetic nephropathy (n= 40 studies): Pooled prevalence= 31% (95% CI 22-41, I<sup>2</sup>=99.3% <sup>7</sup>95% CI 99.2-99.4), and I<sup>2</sup> after meta-regression-95.6%). <sup>8</sup>Prevalence of diabetic nephropathy per region: Central: 22% (95% CI 9-39), Eastern: 25% (95% CI 10-

|                                                           | 1 <del>6</del> 3), Southern: 28% (95% CI 18-40), Northern: 38% (95% CI 14-65), and Western: 47% (95% CI 25-69)<br>1 <b>Author &amp; year No of study Country Region of Mean age of % of Prevalence of</b> |                  |          |                          |              |                              |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------------------------|--------------|------------------------------|--|--|
| 1 <b>Author &amp; year</b>                                | No of study participants                                                                                                                                                                                  | Country<br>(ies) | Africa   | Mean age of participants | % of females | Prevalence of nephropathy, % |  |  |
| <sup>13</sup> Abejew et al, 2015                          | 216                                                                                                                                                                                                       | Ethiopia         | Eastern  | 45.0                     | 42.6         | 2.2                          |  |  |
| 1 Adeniyi et al, 2020                                     | 327                                                                                                                                                                                                       | South            | Southern |                          | 70.3         | 24.5                         |  |  |
| 16                                                        |                                                                                                                                                                                                           | Africa           |          |                          |              |                              |  |  |
| <sup>1</sup> Adentunji et al 2006                         | 50                                                                                                                                                                                                        | Nigeria          | Western  |                          |              | 83.0                         |  |  |
| $^{13}_{19}$ Ahmed et al, 2017                            | 316                                                                                                                                                                                                       | Sudan            | Northern | 58.0                     | 41.5         | 40.2                         |  |  |
| 2Albalawi et al 2020                                      | 159                                                                                                                                                                                                       | Sudan            | Northern | 58.1                     | 65.4         | 26.4                         |  |  |
| 2Alebiosu et al 2013                                      | 342                                                                                                                                                                                                       | Nigeria          | Western  | 53.4                     |              | 28.4                         |  |  |
| $^{2}$ Amour et al 2019                                   | 315                                                                                                                                                                                                       | Tanzania         | Eastern  | 57.2                     | 65.7         | 72.2                         |  |  |
| ${}_{2}\mathbf{\tilde{\beta}}$ alogun et al 2011          | 40                                                                                                                                                                                                        | Nigeria          | Western  | 59.4                     | 62.5         | 90.0                         |  |  |
| <sup>2</sup> Bello et al, 2017                            | 358                                                                                                                                                                                                       | Nigeria          | Western  | 57.8                     | 61.7         | 53.4                         |  |  |
| <sup>2</sup> Bentata et al, 2015                          | 637                                                                                                                                                                                                       | Morocco          | Northern | 58.5                     | 62.3         | 77.2                         |  |  |
| 2 <b>₿</b> lum et al 2020                                 | 319                                                                                                                                                                                                       | DRC              | Central  |                          | 33.5         | 38.6                         |  |  |
| <sup>2</sup> Bouaziz et al 2012                           | 73                                                                                                                                                                                                        | Tunisia          | Northern | 59.3                     |              | 11.0                         |  |  |
| $_{3}^{30}$ Chahbi et al, 2018                            | 300                                                                                                                                                                                                       | Morocco          | Northern |                          | 93.0         | 26.3                         |  |  |
| 3€ohen et al 2010                                         | 620                                                                                                                                                                                                       | Malawi           | Southern | 52.2                     | 60.1         | 34.7                         |  |  |
| $^{33}_{32}$ Deribe et al, 2014                           | 216                                                                                                                                                                                                       | Ethiopia         | Eastern  | 50.7                     | 40.3         | 8.8                          |  |  |
| <sup>3</sup> Dzudie et al 2012                            | 420                                                                                                                                                                                                       | Cameroon         | Central  | 56.7                     | 51.0         | 15.9                         |  |  |
| <sup>3</sup> €fundem et al, 2017                          | 162                                                                                                                                                                                                       | Cameroon         | Central  | 55.3                     | 67.3         | 14.2                         |  |  |
| <sup>3</sup> Èghan-Jr et al 2007                          | 109                                                                                                                                                                                                       | Ghana            | Western  | 54.1                     | 75.0         | 43.0                         |  |  |
| $_{3}$ Fasil, et al 2019                                  | 367                                                                                                                                                                                                       | Ethiopia         | Eastern  | 48.6                     | 59.3         | 4.4                          |  |  |
| 4 <b>G</b> ill et al 2008                                 | 105                                                                                                                                                                                                       | Ethiopia         | Eastern  | 41.0                     | 30.0         | 51.0                         |  |  |
| <sup>4</sup> Goro et al, 2019                             | 208                                                                                                                                                                                                       | Ethiopia         | Eastern  | 54.8                     | 47.1         | 26.0                         |  |  |
| 45 Hayfron-Benjamin<br>4 <b>∉</b> t al, 2019              | 206                                                                                                                                                                                                       | Ghana            | Western  | 52.9                     | 68.9         | 32.0                         |  |  |
| 4Ĵanmohamed at al<br>⁴2013                                | 369                                                                                                                                                                                                       | Tanzania         | Eastern  | 54.0                     | 53.4         | 83.7                         |  |  |
| <sup>4</sup> Kahloun et al, 2014                          | 2320                                                                                                                                                                                                      | Tunisia          | Northern |                          | 60.2         | 3.4                          |  |  |
| ₄Khalil et al 2019                                        | 506                                                                                                                                                                                                       | Egypt            | Northern |                          |              | 33.2                         |  |  |
| <sup>5</sup> Lebeta et al, 2017                           | 344                                                                                                                                                                                                       | Ethiopia         | Eastern  | 40.5                     | 42.7         | 11.4                         |  |  |
| 5<br>5<br>52<br>Machingura et al,<br>52017                | 260                                                                                                                                                                                                       | Zimbabwe         | Southern | 57.6                     | 72.7         | 45.4                         |  |  |
| <sup>5</sup> Makwero et al 2018                           | 150                                                                                                                                                                                                       | Lesotho          | Southern | 58.2                     | 80.7         | 6.7                          |  |  |
| <sup>55</sup> Megallaa et al, 2019<br><sup>56</sup><br>57 | 180                                                                                                                                                                                                       | Egypt            | Northern |                          | 24.4         | 86.1                         |  |  |
| 5Mohmad et al 2011                                        | 71                                                                                                                                                                                                        | Sudan            | Central  |                          | 42.0         | 50.7                         |  |  |
| 59                                                        |                                                                                                                                                                                                           |                  |          |                          |              |                              |  |  |

| 2                                                                                                                                                                                                                                            |      |                                                                          |                                 |      |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------|---------------------------------|------|------|------|--|
| <sup>3</sup> Molefe-Baikai et al,<br><sup>4</sup> 2018                                                                                                                                                                                       | 289  | Botswana                                                                 | Southern                        | 50.7 | 66.1 | 44.6 |  |
| <sub>6</sub> Muddu et al. 2019                                                                                                                                                                                                               | 175  | Uganda                                                                   | Eastern                         | 46.0 | 48.6 | 47.4 |  |
| 7Neuhann et al 2001                                                                                                                                                                                                                          | 474  | Tanzania                                                                 | Eastern                         | 53.8 | 46.0 | 7.5  |  |
| <sup>8</sup> Olamoyegun et al,<br><sub>9</sub> 2015                                                                                                                                                                                          | 90   | Nigeria                                                                  | Western                         | 62.5 | 50.0 | 54.3 |  |
| <sup>1</sup> Rotchford et al.,<br>12002                                                                                                                                                                                                      | 253  | South<br>Africa                                                          | Southern                        | 56.5 | 73.1 | 46.4 |  |
| 1 <b>Sobngwi et al 2011</b><br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                                                                                                                        | 2352 | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>Nigeria | Eastern,<br>Western,<br>Central | 53.0 | 61.1 | 2.4  |  |
| <sup>2</sup> Tesfaye et al 2015                                                                                                                                                                                                              | 247  | Ethiopia                                                                 | Eastern                         |      | 40.5 | 6.5  |  |
| <sup>22</sup> hinyane et al 2013                                                                                                                                                                                                             | 80   | Lesotho                                                                  | Southern                        | 49.0 | 49.0 | 6.0  |  |
| 2Uloko et al, 2012                                                                                                                                                                                                                           | 531  | Nigeria                                                                  | Western                         | 57.1 | 60.5 | 3.2  |  |
| <sup>2</sup> Worku et al 2010                                                                                                                                                                                                                | 305  | Ethiopia                                                                 | Eastern                         | 44.4 | 37.1 | 15.7 |  |
| Product of the left     Description     Lation of the left     Description       27       28       29       30       31       32       33       34       35       36       37       38       39       40       41       42       43       46 |      |                                                                          |                                 |      |      |      |  |

1 2

 Table 6. Prevalence of diabetic peripheral neuropathy

<sup>6</sup>**Prevalence of diabetic peripheral neuropathy (n=36 studies):** Pooled prevalence= 38% (95% CI 31-[45, I<sup>2</sup>=98.2% 95% CI 98.7-99.0), and I<sup>2</sup> after meta-regression-88%).

Prevalence of diabetic peripheral neuropathy per region: Central: 22% (95% CI 18-27), Eastern: 26% (95% CI 16-38), Northern: 45% (95% CI 30-61), Southern: 46% (95% CI 42-49), and Western: 61% (95% 1CI 45-75)

| Author & year                                   | No of study  | Country         | Region of      | Mean age of  | % of    |               |
|-------------------------------------------------|--------------|-----------------|----------------|--------------|---------|---------------|
| 13                                              | participants | (ies)           | Africa         | participants | females | neuropathy, % |
| Abejew et al, 2015                              | 216          | Ethiopia        | Eastern        | 45.0         | 42.6    | 14.4          |
| Albalawi et al 2020                             | 159          | Sudan           | Northern       | 58.1         | 65.4    | 40.3          |
| 1Assaad-Khalil et al                            | 958          | Egypt           | Northern       | 57.3         | 50.0    | 29.3          |
| $^{13}_{20}$ wadalla et al 2017                 | 424          | Sudan           | Northern       |              | 49.3    | 68.2          |
| 2Bello et al 2019                               | 175          | Nigeria         | Western        | 59.8         | 57.7    | 41.7          |
| <sup>2</sup> Bentata et al, 2015                | 637          | Morocco         | Northern       | 58.5         | 62.3    | 39.6          |
| ₂Chiwanga et al,<br>₂2015                       | 404          | Tanzania        | Eastern        | 53.6         | 55.4    | 44.0          |
| 2Cohen et al 2010                               | 620          | Malawi          | Southern       | 52.2         | 60.1    | 46.4          |
| <sup>2</sup> Deribe et al, 2014                 | 216          | Ethiopia        | Eastern        | 50.7         | 40.3    | 10.6          |
| 2<br>Dzudie et al 2012                          | 420          | Cameroon        | Central        | 56.7         | 51.0    | 22.4          |
| 3€de et al 2018                                 | 90           | Nigeria         | Western        | 58.6         | 34.4    | 83.3          |
| Ekoru K et al. 2019                             | 2784         | Nigeria,        | Western        | 56.0         | 61.0    | 46.0          |
| 32<br>33<br>34                                  |              | Ghana,<br>Kenya | and<br>Eastern |              |         |               |
| ₃ <b>F</b> asil, et al 2019                     | 367          | Ethiopia        | Eastern        | 48.6         | 59.3    | 7.9           |
| <sup>3</sup> Gill et al 2008                    | 105          | Ethiopia        | Eastern        | 41.0         | 30.0    | 41.0          |
| <sup>37</sup><br><sub>38</sub> Jarso et al 2011 | 384          | Ethiopia        | Eastern        |              | 54.1    | 77.0          |
| 39ember et al 2017                              | 368          | Ethiopia        | Eastern        | 49.0         | 41.6    | 52.2          |
| <sup>4</sup> Kahloun et al, 2014                | 2320         | Tunisia         | Northern       |              | 60.2    | 18.7          |
| ₄ <u>K</u> halil et al 2019                     | 506          | Egypt           | Northern       |              |         | 20.0          |
| <sup>4</sup> Kisozi et al 2017                  | 288          | Uganda          | Eastern        | 48.5         | 38.0    | 29.4          |
| 44<br>45<br>42016                               | 321          | Cameroon        | Western        | 59.8         | 64.1    | 33.3          |
| 4zebeta et al, 2017                             | 344          | Ethiopia        | Eastern        | 40.5         | 42.7    | 7.7           |
| <sup>4</sup> Makwero et al 2018                 | 150          | Lesotho         | Southern       | 58.2         | 80.7    | 43.3          |
| <sup>49</sup><br>Megallaa et al, 2019           | 180          | Egypt           | Northern       |              | 24.4    | 82.0          |
| <sup>5</sup> Miriam et al, 2017                 | 279          | Ethiopia        | Eastern        | 48.8         | 44.8    | 10.0          |
| <sup>5</sup> Mohmad et al 2011                  | 71           | Sudan           | Central        |              | 42.0    | 69.0          |
| $_{54}^{53}$ Neuhann et al 2001                 | 474          | Tanzania        | Eastern        | 53.8         | 46.0    | 44.0          |
| 5<br>Diamoyegun et al,<br>2015                  | 90           | Nigeria         | Western        | 62.5         | 50.0    | 69.6          |
| <sup>5</sup> Seyum et al 2010                   | 429          | Eritrea         | Eastern        | 57.4         |         | 4.0           |
| 58<br>5§mide et al 2009                         | 145          | Tanzania        | Eastern        | 46.0         | 48.0    | 30.0          |

60

| 7 -                                                            |      |                                                                          |                                 |      |      |      |
|----------------------------------------------------------------|------|--------------------------------------------------------------------------|---------------------------------|------|------|------|
| <sup>3</sup> Sobngwi et al 2011<br>5<br>6<br>7<br>8<br>9<br>10 | 2352 | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>Nigeria | Eastern,<br>Western,<br>Central | 53.0 | 61.1 | 48.4 |
| <sup>1</sup> Tesfaye et al 2015                                | 247  | Ethiopia                                                                 | Eastern                         |      | 40.5 | 10.1 |
| 1∃ilahun et al, 2017                                           | 236  | Ethiopia                                                                 | Eastern                         | 47.8 | 46.6 | 25.4 |
| <sup>1</sup> €goya et al 2006                                  | 180  | Nigeria                                                                  | Western                         | 53.0 | 51.6 | 75.0 |
| 15<br>10 loko et al, 2012                                      | 531  | Nigeria                                                                  | Western                         | 57.1 | 60.5 | 59.2 |
| 1¥ogt et al 2017                                               | 100  | Zanzibar                                                                 | Eastern                         | 54.0 | 49.0 | 45.0 |
| <sup>18</sup> Worku et al 2010                                 | 305  | Ethiopia                                                                 | Eastern                         | 44.4 | 37.1 | 29.5 |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33       |      |                                                                          |                                 |      |      |      |

1 2

# Table 7. Prevalence of diabetic retinopathy

<sup>6</sup>**Prevalence of diabetic retinopathy (n= 51 studies):** Pooled prevalence= 32% (95% CI 28-36, I<sup>2</sup>=98% 95% <sup>7</sup>CI 97.8-98.3), and I<sup>2</sup> after meta-regression-88.5%).

Prevalence of diabetic retinopathy per region: Eastern: 23% (95% CI 19-28), Western: 27% (95% CI 19-136), Southern: 30% (95% CI 23-37), Central: 34% (95% CI 22-47), and Northern: 51% (95% CI 37-65).

| 1 <b>3</b> 6), Southern: 30% (95<br>1 <b>Author &amp;year</b> | <b>No of study</b> |          | Region of |              | <b>% of</b> | Prevalence of  |
|---------------------------------------------------------------|--------------------|----------|-----------|--------------|-------------|----------------|
| 12                                                            | participants       | (ies)    | Africa    | participants | females     | retinopathy, % |
| <sup>1</sup> Abejew et al, 2015                               | 216                | Ethiopia | Eastern   | 45.0         | 42.6        | 28.9           |
| 14<br>15 Ahmed et al, 2017                                    | 316                | Sudan    | Northern  | 58.0         | 41.5        | 39.8           |
| Albalawi et al 2020                                           | 159                | Sudan    | Northern  | 58.1         | 65.4        | 34.6           |
| <sup>1</sup> Assaad-Khalil et al<br>12019                     | 506                | Egypt    | Northern  |              |             | 34.6           |
| 26 wadalla et al 2017                                         | 424                | Sudan    | Northern  |              | 49.3        | 72.6           |
| <sup>2</sup> Bello et al 2019                                 | 175                | Nigeria  | Western   | 59.8         | 57.7        | 33.1           |
| $^{23}_{\rm p}$ Bello et al, 2017                             | 358                | Nigeria  | Western   | 57.8         | 61.7        | 20.1           |
| 2Bentata et al, 2015                                          | 637                | Morocco  | Northern  | 58.5         | 62.3        | 35.6           |
| <sup>2</sup> Blake et al 2015                                 | 1307               | Botswana | Southern  | 55.0         | 67.9        | 17.7           |
| $_{p}^{26}$ Bouaziz et al 2012                                | 73                 | Tunisia  | Northern  | 59.3         |             | 27.0           |
| 28Burgress et al 2014                                         | 322                | Malawi   | Southern  | 55.2         | 64.6        | 50.1           |
| <sup>2</sup> Chahbi et al, 2018                               | 300                | Morocco  | Northern  |              | 93.0        | 34.3           |
| <sup>30</sup><br>Chisha et al 2017                            | 270                | Ethiopia | Eastern   |              | 48.9        | 13.0           |
| 3£leland et al, 2015                                          | 5729               | Tanzania | Eastern   | 60.8         | 60.3        | 27.9           |
| <sup>3</sup> €ohen et al 2010                                 | 620                | Malawi   | Southern  | 52.2         | 60.1        | 34.7           |
| <sup>34</sup><br>2, Dzudie et al 2012                         | 420                | Cameroon | Central   | 56.7         | 51.0        | 15.7           |
| 3€koru K et al. 2019                                          | 2784               | Nigeria, | Western   | 56.0         | 61.0        | 15.0           |
| 37                                                            |                    | Ghana,   | and       |              |             |                |
| 38                                                            |                    | Kenya    | Eastern   |              |             |                |
| <sup>39</sup> Elwali et al 2017                               | 316                | Sudan    | Northern  | 58.7         | 40.8        | 82.6           |
| <sup>4</sup> Fasil, et al 2019                                | 367                | Ethiopia | Eastern   | 48.6         | 59.3        | 17.7           |
| <sup>4</sup> Gill et al 2008                                  | 105                | Ethiopia | Eastern   | 41.0         | 30.0        | 21.0           |
| $^{43}_{44}$ Glover et al 2011                                | 281                | Malawi   | Southern  | 56.4         | 72.8        | 32.5           |
| ₄ <b>ೖ</b> all et al, 2017                                    | 261                | Cameroon | Central   | 56.0         | 56.3        | 27.2           |
| <sup>4</sup> Hayfron-Benjamin et<br><sup>4</sup> al, 2019     | 206                | Ghana    | Western   | 52.9         | 68.9        | 11.0           |
| <sub>49</sub> Jingi et al, 2014                               | 407                | Cameroon | Central   | 54.2         | 41.8        | 38.8           |
| 5dingi et al, 2015                                            | 407                | Cameroon | Central   |              | 41.8        | 40.3           |
| <sup>5</sup> Kahloun et al, 2014                              | 2320               | Tunisia  | Northern  |              | 60.2        | 26.3           |
| 5<br>Kizor-Akarairwe et al<br>5<br>2018                       | 80                 | Nigeria  | Western   | 61.2         | 48.8        | 32.1           |
| 5 <b>⊾artey et al</b> , 2018                                  | 208                | Ghana    | Western   | 57.5         | 70.7        | 15.5           |
| <sup>5</sup> Lebeta et al, 2017                               | 344                | Ethiopia | Eastern   | 40.5         | 42.7        | 25.5           |
| $_{54}^{54}$ ewis et al, 2018                                 | 921                | Zambia   | Southern  | 56.0         | 45.0        | 44.0           |
| 5 <b>Magan et al, 2019</b>                                    | 44                 | Uganda   | Eastern   | 50.4         | 63.4        | 19.5           |

| 1 |
|---|
| 2 |

| 2                                                                     |      |                                                                          |                                        |      |      |      |
|-----------------------------------------------------------------------|------|--------------------------------------------------------------------------|----------------------------------------|------|------|------|
| <sup>3</sup> Makwero et al 2018                                       | 150  | Lesotho                                                                  | Southern                               | 58.2 | 80.7 | 4.7  |
| <sup>5</sup> Megallaa et al, 2019                                     | 180  | Egypt                                                                    | Northern                               |      | 24.4 | 90.0 |
| 6Mohmad et al 2011                                                    | 71   | Sudan                                                                    | Central                                |      | 42.0 | 71.2 |
| <sup>7</sup> Neuhann et al 2001                                       | 474  | Tanzania                                                                 | Eastern                                | 53.8 | 46.0 | 14.0 |
| 9Njikam et al, 2016                                                   | 371  | Cameroon                                                                 | Central                                | 59.2 | 54.7 | 49.9 |
| ¹ <b>℗</b> lamoyegun et al,<br>¹ <u>2</u> 015                         | 90   | Nigeria                                                                  | Western                                | 62.5 | 50.0 | 48.9 |
| <sup>12</sup> Onakpoya et al, 2015                                    | 133  | Nigeria                                                                  | Western                                |      | 48.1 | 27.8 |
| 1 <b>₽irie et al</b> , 2014                                           | 292  | South<br>Africa                                                          | Southern                               | 59.2 | 79.0 | 39.0 |
| <sup>1</sup> Rotchford et al., 2002                                   | 253  | South<br>Africa                                                          | Southern                               | 56.5 | 73.1 | 40.3 |
| <sup>1</sup> Seyum et al 2010                                         | 429  | Eritrea                                                                  | Eastern                                | 57.4 |      | 33.0 |
| 2 <b>Sobngwi et al 2011</b><br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 2352 | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal,<br>and<br>Nigeria | Eastern,<br>Western,<br>and<br>Central | 53.0 | 61.1 | 18.3 |
| 2 <b>Tesfaye et al 2015</b>                                           | 247  | Ethiopia                                                                 | Eastern                                |      | 40.5 | 11.7 |
| <sup>2</sup> Thinyane et al 2013                                      | 80   | Lesotho                                                                  | Southern                               | 49.0 | 49.0 | 35.0 |
| 30<br>31 homas et al 2013<br>32                                       | 3978 | South<br>Africa                                                          | Southern                               | 56.8 | 33.3 | 20.5 |
| 3 <b>∃</b> ilahun et al, 2017                                         | 236  | Ethiopia                                                                 | Eastern                                | 47.8 | 46.6 | 20.3 |
| <sup>3</sup> Uloko et al, 2012                                        | 531  | Nigeria                                                                  | Western                                | 57.1 | 60.5 | 35.5 |
| 36 Webb et al 2016                                                    | 599  | South<br>Arica                                                           | Southern                               | 57.8 | 68.0 | 24.9 |
| 3Woodward et al, 2020                                                 | 91   | Tanzania                                                                 | Eastern 🧹                              | 59.2 | 62.6 | 42.9 |
| <sup>39</sup> Worku et al 2010                                        | 305  | Ethiopia                                                                 | Eastern                                | 44.4 | 37.1 | 33.8 |
| 40<br>41<br>42<br>43<br>44<br>45                                      |      |                                                                          |                                        | 31   |      |      |

1

# Table 8. Prevalence of diabetic foot ulcers

**Prevalence of diabetic foot ulcers (n= 29 studies):** Pooled prevalence= 11% (95% CI 9-14, I<sup>2</sup>=97.4% 95% CI 96.9-97.8), and I<sup>2</sup> after meta-regression-1.4%)

 $\binom{9}{9}$  **Prevalence of diabetic foot ulcers per region:** Southern: 7% (95% CI 5-11), Western: 8% (95% CI 6-10 10), Eastern: 10% (95% CI 8-12), and Northern: 21% (95% CI 4-48).

| 11 Author & year<br>12<br>13                                          | No of study<br>participants | Country (ies)                                                         | · · ·                           |      | % of females | Prevalence<br>of foot<br>ulcers, % |
|-----------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|---------------------------------|------|--------------|------------------------------------|
| <sup>14</sup> / <sub>15</sub> Abbas et al, 2002                       | 627                         | Tanzania                                                              | Eastern                         | 53.0 | 35.0         | 15.0                               |
| 16 Abbas et al, 2011                                                  | 11866                       | Tanzania                                                              | Eastern                         |      |              | 12.0                               |
| <sup>17</sup> Abdissa et al, 2020                                     | 229                         | Ethiopia                                                              | Eastern                         |      | 40.4         | 12.7                               |
| <sup>18</sup> <sub>19</sub> Abejew et al, 2015                        | 216                         | Ethiopia                                                              | Eastern                         | 45.0 | 42.6         | 4.4                                |
| 20 Albalawi et al 2020                                                | 159                         | Sudan                                                                 | Northern                        | 58.1 | 65.4         | 2.5                                |
| $^{21}$ Amour et al 2019                                              | 315                         | Tanzania                                                              | Eastern                         | 57.2 | 65.7         | 10.0                               |
| <sup>22</sup> <sub>23</sub> Assaad-Khalil et al<br><sub>24</sub> 2014 | 958                         | Egypt                                                                 | Northern                        | 57.3 | 50.0         | 6.1                                |
| 25 Awadalla et al<br>26 2017                                          | 424                         | Sudan                                                                 | Northern                        |      | 49.3         | 12.7                               |
| <sup>27</sup> Chalya et al, 2011<br><sup>28</sup> 105                 | 136                         | Tanzania                                                              | Eastern                         | 54.3 | 45.6         | 3.2                                |
| <sup>29</sup> Chiwanga et al,<br>31 2015                              | 404                         | Tanzania                                                              | Eastern                         | 53.6 | 55.4         | 15.0                               |
| 32 Deribe et al, 2014                                                 | 216                         | Ethiopia                                                              | Eastern                         | 50.7 | 40.3         | 14.8                               |
| <sup>33</sup> Ekoru K et al. 2019<br><sup>34</sup><br><sup>35</sup>   | 2784                        | Nigeria,<br>Ghana,<br>Kenya                                           | Western<br>and<br>Eastern       | 56.0 | 61.0         | 5.0                                |
| 37 Elwali et al 2017                                                  | 316                         | Sudan                                                                 | Northern                        | 58.7 | 40.8         | 17.7                               |
| <sup>38</sup> Gebrekirstos et al,<br><sup>39</sup> 2015               | 228                         | Ethiopia                                                              | Eastern                         |      | 38.0         | 12.0                               |
| <sup>40</sup> <sub>41</sub> Lebeta et al, 2017                        | 344                         | Ethiopia                                                              | Eastern                         | 40.5 | 42.7         | 21.2                               |
| 42 Mamo et al, 2015                                                   | 200                         | Ethiopia                                                              | Eastern                         | 50.0 | 72.5         | 15.0                               |
| <sup>4</sup> <sup>3</sup> Mariam et al, 2017                          | 279                         | Ethiopia                                                              | Eastern                         | 48.8 | 44.8         | 13.6                               |
| $^{44}_{45}$ Megallaa et al,<br>$^{46}_{46}$ 2019                     | 180                         | Egypt                                                                 | Northern                        |      | 24.4         | 86.7                               |
| 47 Neuhann et al<br>48 2001                                           | 474                         | Tanzania                                                              | Eastern                         | 53.8 | 46.0         | 10.0                               |
| <sup>49</sup> Nyamu et al, 2003                                       | 1788                        | Kenya                                                                 | Eastern                         | 56.9 |              | 4.6                                |
| <sup>50</sup><br>51 Rotchford et al.,<br>52 2002                      | 253                         | South Africa                                                          | Southern                        | 56.5 | 73.1         | 6.0                                |
| 53 Sevum et al 2010                                                   | 429                         | Eritrea                                                               | Eastern                         | 57.4 |              | 14.0                               |
| 54 Sobngwi et al 2011<br>55<br>56<br>57<br>58<br>59<br>60             | 2352                        | Tanzania,<br>Kenya,<br>Cameroon,<br>Ghana,<br>Senegal, and<br>Nigeria | Eastern,<br>Western,<br>Central | 53.0 | 61.1         | 11.7                               |

| 2   |                          |     |          |          |      |      |      |
|-----|--------------------------|-----|----------|----------|------|------|------|
| 3   | Tesfaye et al 2015       | 247 | Ethiopia | Eastern  |      | 40.5 | 0.4  |
| -   | Thinyane et al<br>2013   | 80  | Lesotho  | Southern | 49.0 | 49.0 | 14.0 |
|     | Tilahun et al, 2017      | 236 | Ethiopia | Eastern  | 47.8 | 46.6 | 8.5  |
| 8   | Uloko et al, 2012        | 531 | Nigeria  | Western  | 57.1 | 60.5 | 3.8  |
| • • | Unachukwu et al,<br>2006 | 315 | Nigeria  | Western  | 54.6 | 36.7 | 19.1 |
| 12  | Worku et al 2010         | 305 | Ethiopia | Eastern  | 44.4 | 37.1 | 4.6  |

to peet teries only

# Table 9. Prevalence of peripheral arterial disease

<sup>6</sup>Prevalence of peripheral arterial disease (PAD) (n= 18 studies): Pooled prevalence= 19% (95% CI 12-<sup>7</sup>25, I<sup>2</sup>=98.1% 95% CI 97.6-98.4), and I<sup>2</sup> after meta-regression-70.9%).

Prevalence of PAD per region: Southern: 8% (95% CI 6-10), Northern: 15% (95% CI 4-29), Eastern: 18% (95% CI 11-27), and Western: 29% (95% CI 13-48)

| 1Author & year                    | No of study  | Country   | Region of | -            |         | Prevalence of |
|-----------------------------------|--------------|-----------|-----------|--------------|---------|---------------|
| 12                                | participants | (ies)     | Africa    | participants | females | PAD, %        |
| <sup>1</sup> Agboghoroma et al,   | 200          | Nigeria   | Western   |              |         | 38.5          |
| 12020                             |              |           |           |              |         |               |
| $^{1}$ Åkalu et al, 2020          | 280          | Ethiopia  | Eastern   |              | 38.6    | 30.7          |
| 1Assaad-Khalil et al              | 958          | Egypt     | Northern  | 57.3         | 50.0    | 11.0          |
| 12014                             |              |           |           |              |         |               |
| <sup>1</sup> Chahbi et al, 2018   | 300          | Morocco   | Northern  |              | 93.0    | 2.7           |
| <sup>2</sup> Chiwanga et al, 2015 | 404          | Tanzania  | Eastern   | 53.6         | 55.4    | 15.0          |
| <sup>2</sup> Cohen et al 2010     | 620          | Malawi    | Southern  | 52.2         | 60.1    | 7.6           |
| ₂Ģill et al 2008                  | 105          | Ethiopia  | Eastern   | 41.0         | 30.0    | 6.0           |
| 2#Hayfron-Benjamin et             | 206          | Ghana     | Western   | 52.9         | 68.9    | 11.2          |
| <sup>2</sup> āl, 2019             |              |           |           |              |         |               |
| <sup>2</sup> Khalil et al 2019    | 506          | Egypt     | Northern  |              |         | 32.6          |
| $^{2}$ Mariam et al, 2017         | 279          | Ethiopia  | Eastern   | 48.8         | 44.8    | 9.7           |
| <sup>2</sup> Megallaa et al, 2019 | 180          | Egypt     | Northern  |              | 24.4    | 20.0          |
| 3 <b>M</b> webaze et al 2014      | 146          | Uganda 🧹  | Eastern   | 53.9         | 48.6    | 39.0          |
| <sup>3</sup> Ogbera et al 2015    | 225          | Nigeria   | Western   | 61.4         | 57.0    | 40.0          |
| <sup>3</sup> Okello et al 2014    | 229          | Uganda    | Eastern   | 60.0         | 63.7    | 24.0          |
| Dyelade et al 2012                | 219          | Nigeria   | Western   |              | 58.9    | 52.5          |
| $_{3}$ Şmide et al 2008           | 145          | Tanzania  | Eastern   | 46.0         | 48.0    | 13.0          |
| ₃&obngwi et al 2011               | 2352         | Tanzania, | Eastern,  | 53.0         | 61.1    | 4.7           |
| 37                                |              | Kenya,    | Western,  |              |         |               |
| 38                                |              | Cameroon, | Central 🧹 |              |         |               |
| 39                                |              | Ghana,    |           |              |         |               |
| 40<br>41                          |              | Senegal,  |           |              |         |               |
| 42                                |              | and       |           |              |         |               |
| 43                                |              | Nigeria   |           |              |         |               |
| 4Uloko et al, 2012                | 531          | Nigeria   | Western   | 57.1         | 60.5    | 10.7          |
| 45                                | I            | l         | I         |              | I       | l             |

## **Figures caption**

Figure 1: PRISMA flow diagram of selection of eligible studies

**Figure 2:** Forest plot summarising studies on the proportion of attainment of an optimal low-density lipoprotein cholesterol goal in percentage

**Figure 3:** Forest plot summarising studies on the proportion of attainment of an optimal blood pressure goal in percentage

**Figure 4:** Forest plot summarising studies on the proportion of attainment of an optimal glycated haemoglobin goal in percentage

Figure 5: Forest plot summarising studies on the prevalence of diabetic retinopathy

Figure 6: Forest plot summarising studies on the prevalence of diabetic foot ulcers

Figure 7: Forest plot summarising studies on the prevalence of diabetic nephropathy

Figure 8: Forest plot summarising studies on the prevalence of diabetic neuropathy

**Figure 9**: Forest plot summarising studies on the prevalence of peripheral arterial disease

Supplementary figure 1: Funnel plot for studies investigating prevalence of diabetic nephropathy

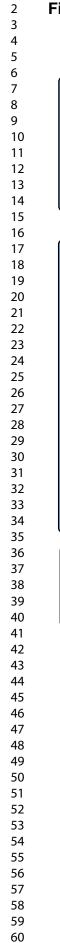
Supplementary figure 2: Funnel plot for studies investigating prevalence of diabetic neuropathy

**Supplementary figure 3:** Funnel plot for studies investigating prevalence of peripheral arterial disease

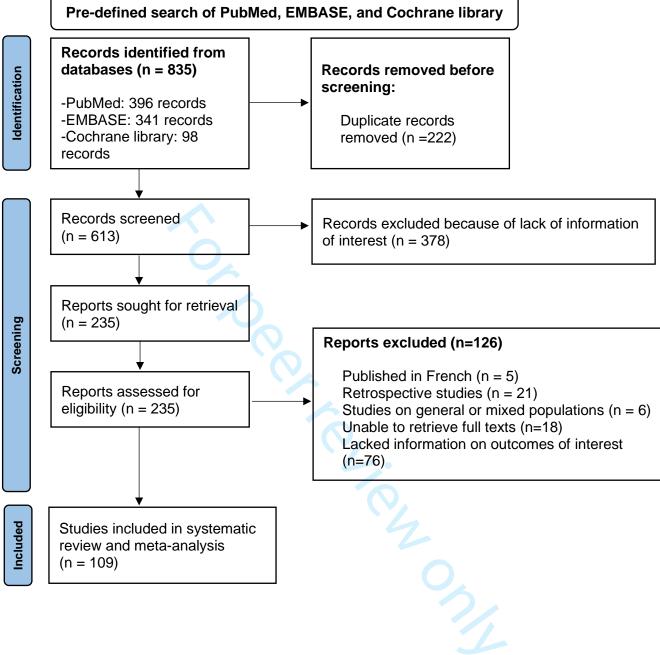
**Supplementary figure 4:** Funnel plot for studies investigating prevalence of diabetic retinopathy

**Supplementary figure 5:** Funnel plot for studies investigating prevalence of diabetic foot ulcers

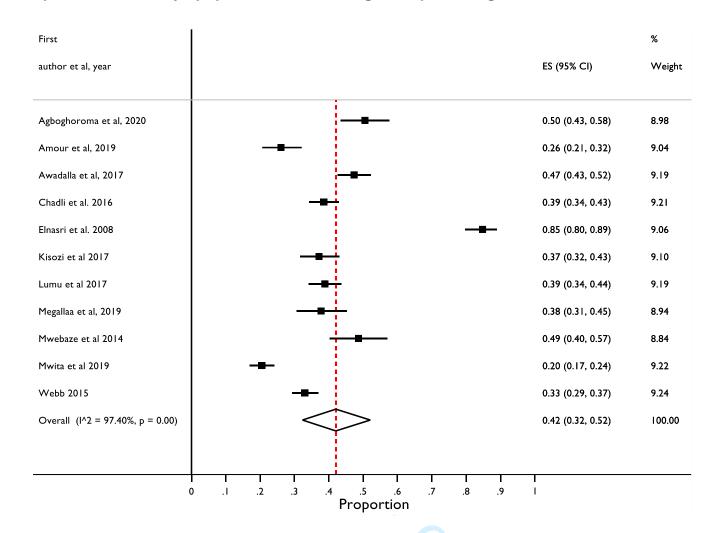
| 2                                |  |
|----------------------------------|--|
| 3                                |  |
| ر<br>۸                           |  |
| 4                                |  |
| 5                                |  |
| 6<br>7                           |  |
| 7                                |  |
| 8                                |  |
| 9                                |  |
| 9                                |  |
| 10                               |  |
| 11                               |  |
| 12                               |  |
| 13                               |  |
| 14                               |  |
| 15                               |  |
| 12<br>13<br>14<br>15<br>16<br>17 |  |
| 10                               |  |
| 17                               |  |
| 18                               |  |
| 10                               |  |
| 20                               |  |
|                                  |  |
| 22                               |  |
| 22                               |  |
| 23                               |  |
| 24                               |  |
| 25                               |  |
| 26                               |  |
| 26<br>27                         |  |
| 28                               |  |
|                                  |  |
| 29                               |  |
| 30                               |  |
| 31                               |  |
| 32                               |  |
| 33                               |  |
| 34                               |  |
| 34                               |  |
| 35                               |  |
| 36                               |  |
| 36<br>37                         |  |
| 38                               |  |
|                                  |  |
| 39                               |  |
| 40                               |  |
| 41                               |  |
| 42                               |  |
| 43                               |  |
| 44                               |  |
| 45                               |  |
|                                  |  |
| 46                               |  |
| 47                               |  |
| 48                               |  |
| 49                               |  |
| 50                               |  |
| 51                               |  |
|                                  |  |
| 52                               |  |
| 53                               |  |
| 54                               |  |
| 55                               |  |
| 56                               |  |
|                                  |  |
| 57                               |  |
| 58                               |  |
| 59                               |  |


60

Supplementary figure 6: Funnel plot for studies investigating rate of attainment of an optimal HbA1c goal


**Supplementary figure 7:** Funnel plot for studies investigating rate of attainment of an optimal BP goal

**Supplementary figure 8:** Funnel plot for studies investigating rate of attainment of an optimal LDLC goal

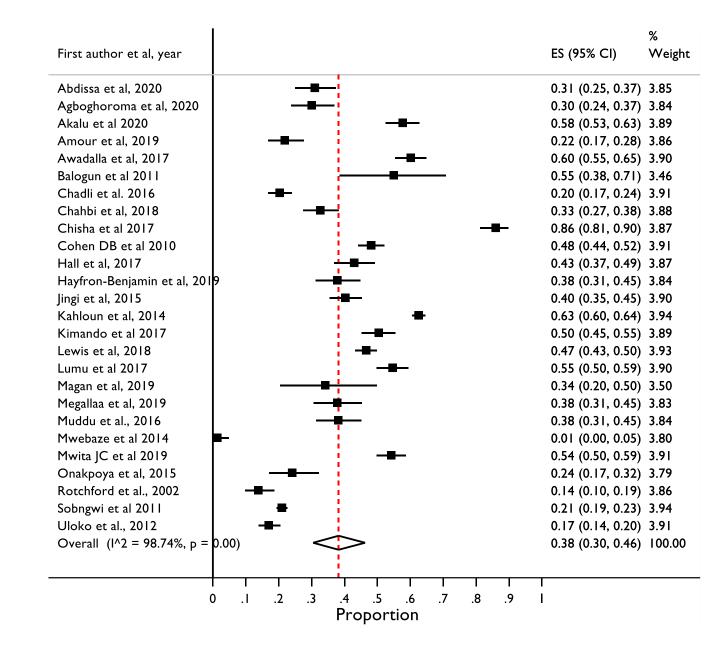

<text>



## Figure 1. PRISMA flow diagram of selection of eligible studies



# Figure 2. Forest plot summarising studies on the proportion of attainment of an optimal low-density lipoprotein cholesterol goal in percentage




ES= Effect size

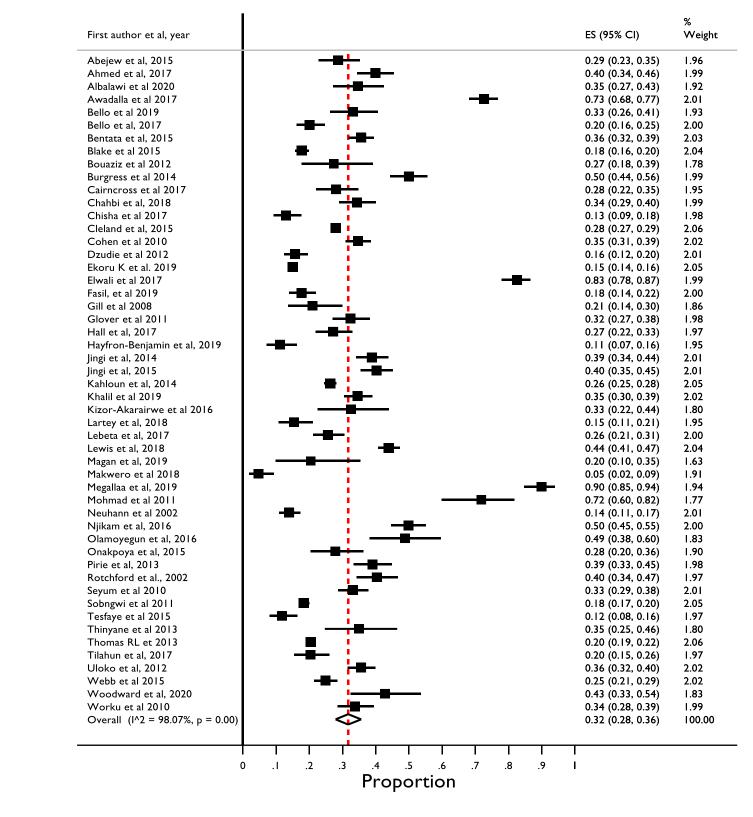


### Figure 3. Forest plot summarising studies on the proportion of attainment of an

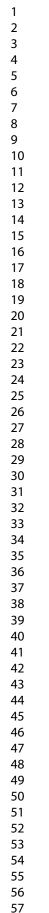
### optimal blood pressure goal in percentage

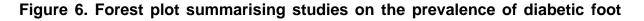


#### ES= Effect size

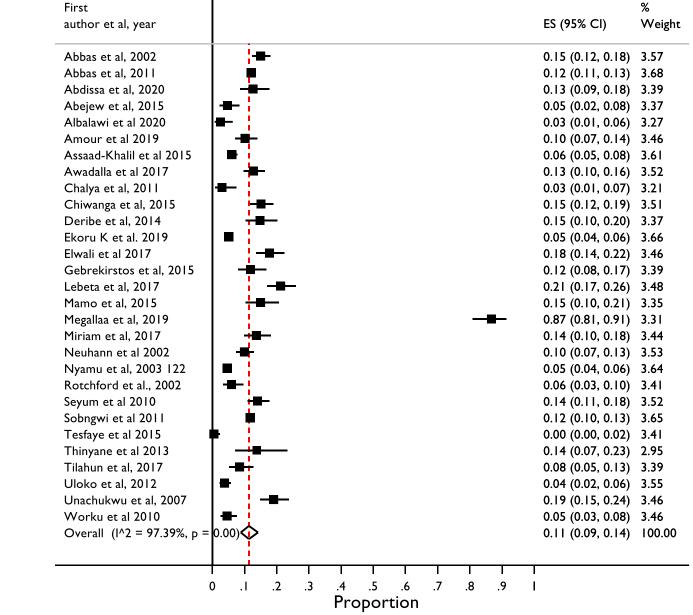

## Figure 4. Forest plot summarising studies on the proportion of attainment of an

### optimal glycated haemoglobin in percentage


| First author et al, year            | ES (95% CI)                       | %<br>Weigh |
|-------------------------------------|-----------------------------------|------------|
|                                     |                                   | -          |
| Adentunji et al 2006                | 0.52 (0.37, 0.66)                 | 2.18       |
| Agboghoroma et al, 2020 —           | 0.19 (0.14, 0.25)                 | 2.88       |
| Akalu et al 2020                    |                                   | 3.04       |
| Amod et al 2012                     | - 0.30 (0.27, 0.34)               | 3.12       |
| Amour et al, 2019 -                 | 0.09 (0.06, 0.14)                 | 2.93       |
| Ashur et al 2016 -                  | 0.22 (0.18, 0.26)                 | 3.09       |
| Attoye et al 2020 —                 | 0.35 (0.29, 0.41)                 | 2.96       |
| Awadalla et al, 2017 -              | 0.16 (0.12, 0.19)                 | 3.06       |
| Balogun et al 2011                  | 0.52 (0.36, 0.68)                 | 2.01       |
| Bentata et al, 2015                 | - 0.30 (0.27, 0.34)               | 3.11       |
| Blum et al 2020 -                   | 0.14 (0.10, 0.18)                 | 3.00       |
| Cairncross et al, 2017              | 0.32 (0.25, 0.38)                 | 2.89       |
| Camara et al 2015                   | 0.26 (0.24, 0.28)                 | 3.17       |
| Chadli et al. 2016                  | 0.27 (0.23, 0.31)                 | 3.08       |
| Chetoui et al 2019                  | 0.34 (0.31, 0.36)                 | 3.18       |
| Cohen DB et al 2010                 |                                   | 3.11       |
| Diaf et al 2017                     | 0.51 (0.44, 0.58)                 | 2.90       |
| Hall et al, 2017 -                  | - 0.27 (0.22, 0.33)               | 2.96       |
| Iwuala et al 2015                   | 0.45 (0.35, 0.55)                 | 2.60       |
| Kibirige et al 2017                 | 0.27 (0.22, 0.31)                 | 3.06       |
| Kimando et al 2017                  |                                   | 3.04       |
| Kisozi et al 2017                   | 0.23 (0.19, 0.29)                 | 2.98       |
| Mbwete et al., 2020                 | 0.50 (0.42, 0.58)                 | 2.81       |
| Megallaa et al, 2019                | 0.04 (0.02, 0.09)                 | 2.85       |
| Molefe-Baikai et al, 2018           | — 0.29 (0.24, 0.35)               | 2.98       |
| Muddu et al. 2019                   | 0.08 (0.04, 0.13)                 | 2.84       |
| Muddu et al., 2016                  | 0.08 (0.05, 0.13)                 | 2.88       |
| Mwebaze et al 2014                  | 0.19 (0.13, 0.27)                 | 2.77       |
| Mwita et al 2019                    | - 0.32 (0.28, 0.36)               | 3.08       |
| Noor et al., 2016                   | 0.15 (0.12, 0.19)                 | 3.04       |
| Omar et al 2018                     | - 0.28 (0.23, 0.33)               | 3.02       |
| Sobngwi et al 2011                  | 0.29 (0.27, 0.31)                 | 3.20       |
| Uloko et al., 2012                  | - 0.32 (0.28, 0.37)               | 3.09       |
| Webb 2015                           | 0.27 (0.24, 0.31)                 | 3.11       |
| Overall $(1^2 = 94.70\%, p = 0.00)$ | 0.27 (0.24, 0.30)                 | 100.00     |
|                                     |                                   |            |
| 0 .1 .2 .3                          | .4 .5 .6 .7 .8 .9 I<br>Proportion |            |

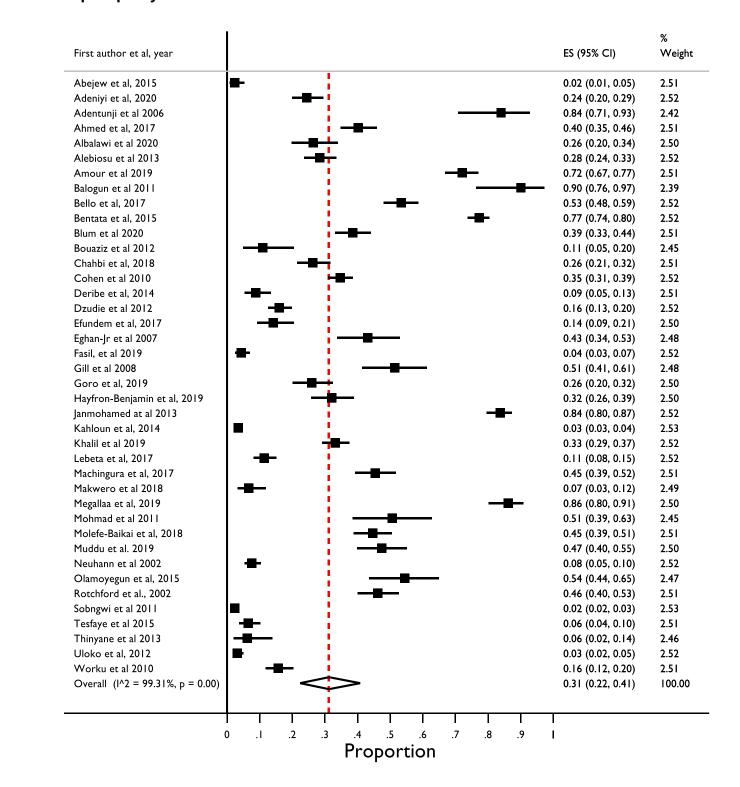

#### ES= Effect size

## Figure 5. Forest plot summarising studies on the prevalence of diabetic retinopathy

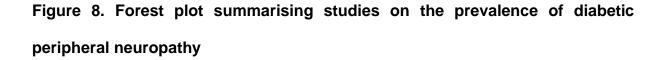


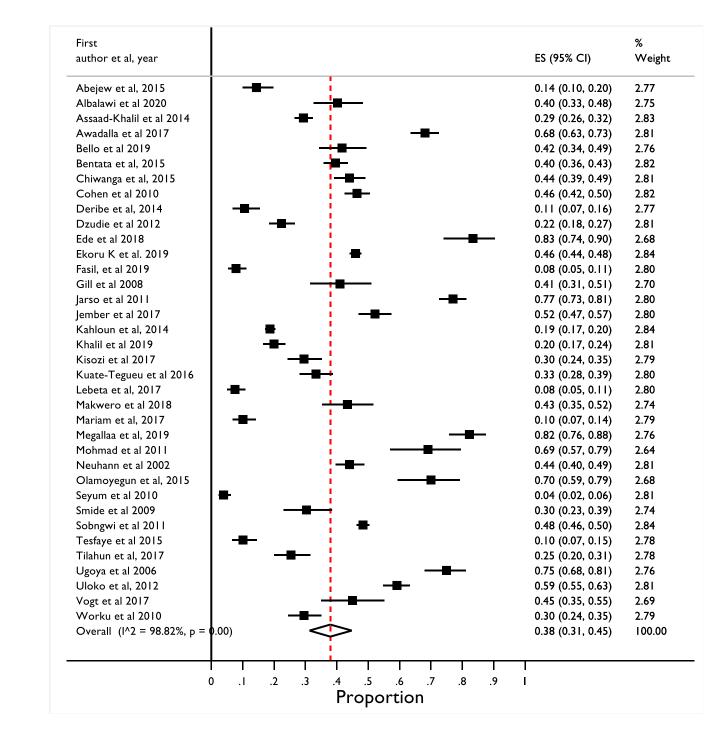

### ES= Effect size



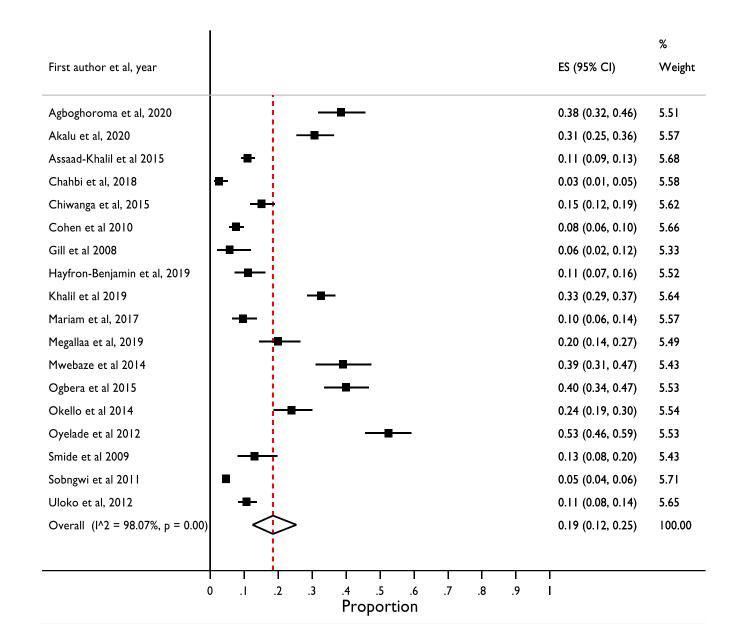



#### ulcers





#### ES= Effect size

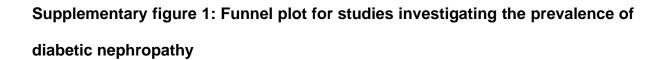
## Figure 7. Forest plot summarising studies on the prevalence of diabetic nephropathy

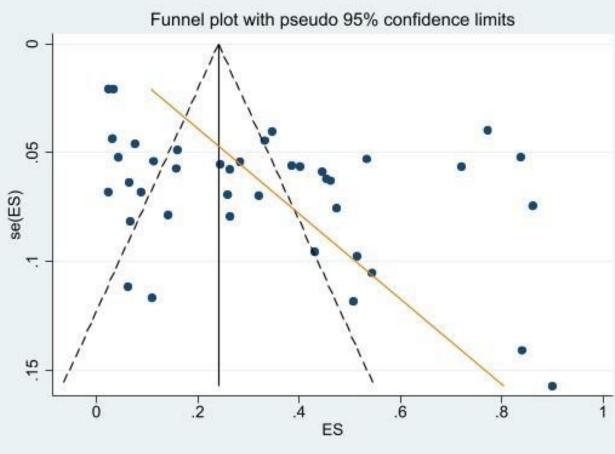



#### ES= Effect size

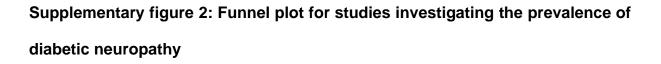


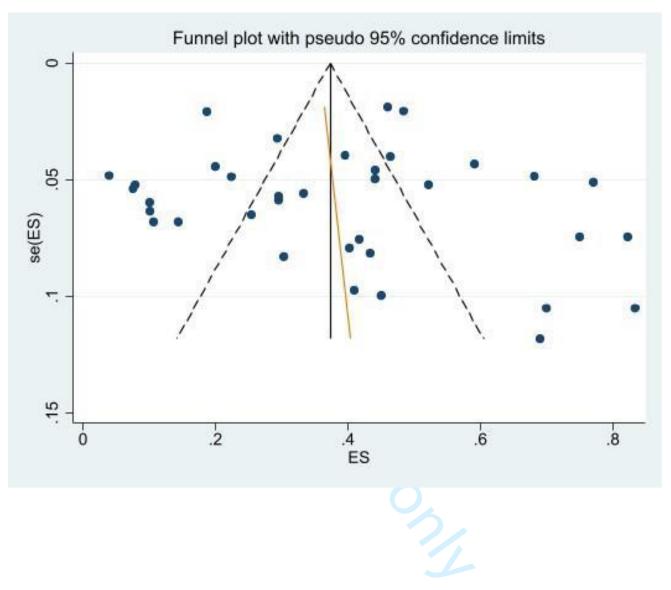



#### ES= Effect size

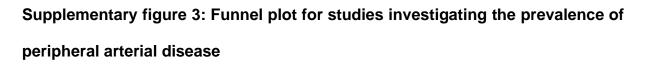


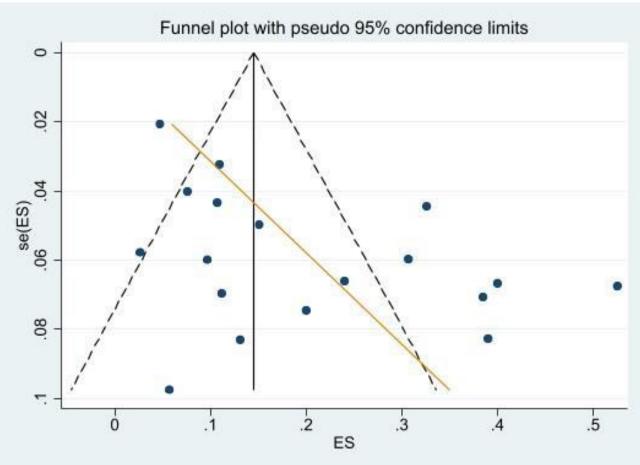

## Figure 9. Forest plot summarising studies on the prevalence of peripheral arterial disease


#### ES= Effect size


BMJ Open

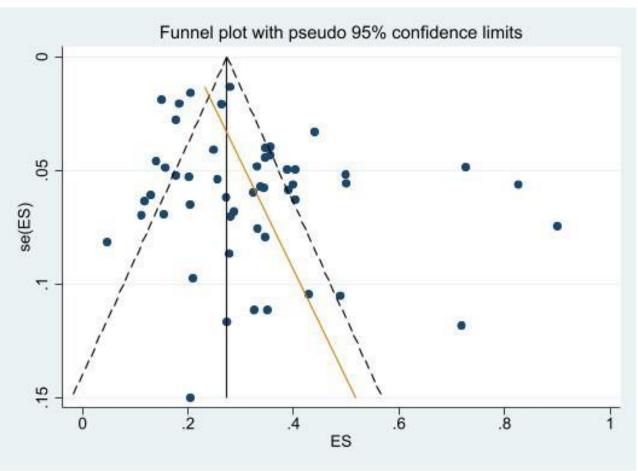




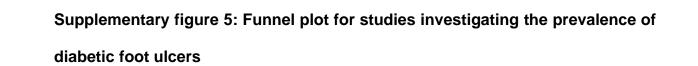



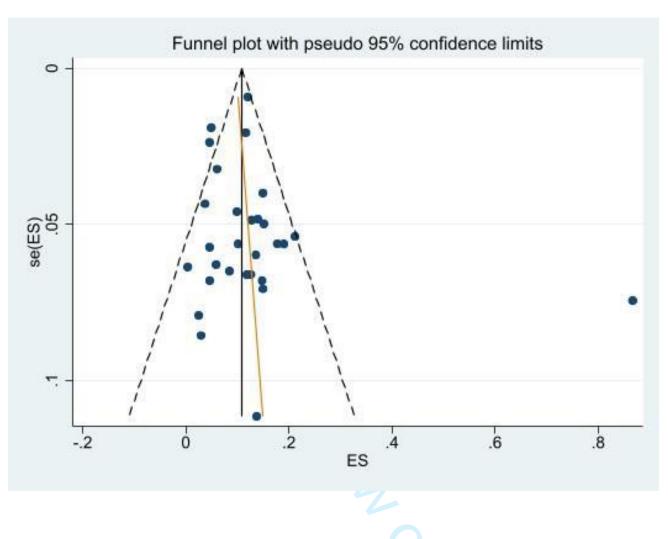




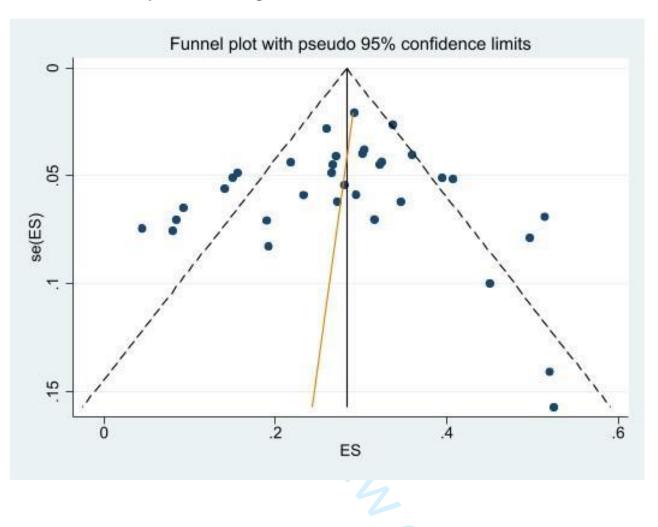


BMJ Open



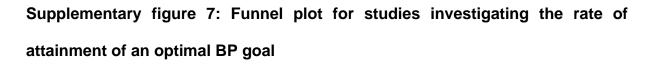


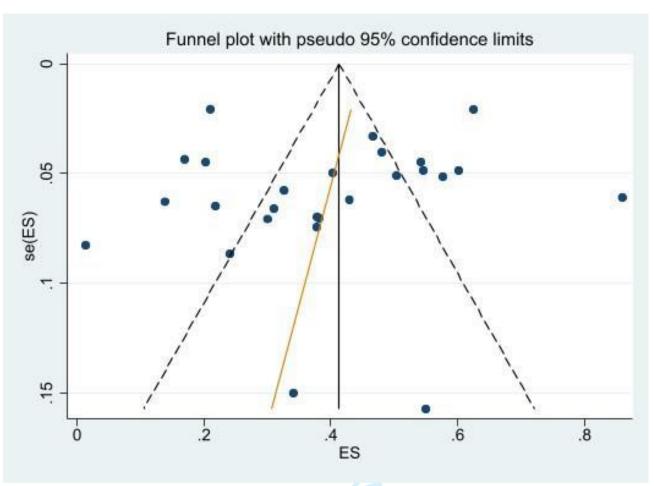




# Supplementary figure 4: Funnel plot for studies investigating the prevalence of diabetic retinopathy

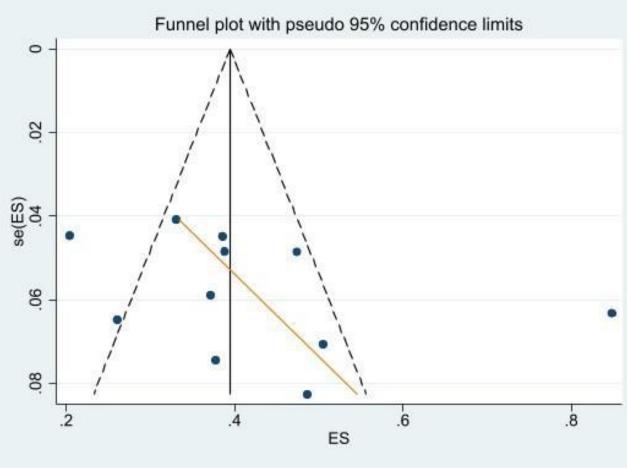





# Supplementary figure 6: Funnel plot for studies investigating the rate of attainment of an optimal HbA1c goal




BMJ Open





# Supplementary figure 8: Funnel plot for studies investigating the rate of attainment of an optimal LDLC goal



4 5

6 7

## Supplementary table 1. PRISMA checklist for the systematic review and meta-

## analysis

| )                              | Section and Topic             | Item # | Checklist item                                                                                                                                                                                                                                                                                                   | Page where item is reported |  |  |  |
|--------------------------------|-------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
|                                | TITLE                         |        | -                                                                                                                                                                                                                                                                                                                |                             |  |  |  |
|                                | Title                         | 1      | Identify the report as a systematic review.                                                                                                                                                                                                                                                                      | 1                           |  |  |  |
|                                | ABSTRACT                      |        |                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |
|                                | Abstract                      | 2      | See the PRISMA 2020 for Abstracts checklist.                                                                                                                                                                                                                                                                     | 3                           |  |  |  |
|                                | INTRODUCTION                  |        |                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |
|                                | Rationale                     |        |                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |
|                                | Objectives                    | 4      | Provide an explicit statement of the objective(s) or question(s) the review addresses.                                                                                                                                                                                                                           | 6                           |  |  |  |
|                                | METHODS                       |        | -                                                                                                                                                                                                                                                                                                                |                             |  |  |  |
|                                | Eligibility criteria          | 8      |                                                                                                                                                                                                                                                                                                                  |                             |  |  |  |
|                                | Information sources           | 6      | Specify all databases, registers, websites, organisations, reference<br>lists and other sources searched or consulted to identify studies.<br>Specify the date when each source was last searched or consulted.                                                                                                  | 6                           |  |  |  |
| 3                              | Search strategy               | 7      | Present the full search strategies for all databases, registers and websites, including any filters and limits used.                                                                                                                                                                                             | 6-7                         |  |  |  |
| 0<br>1<br>2<br>3<br>4<br>5     | Selection process 8           |        | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.                                 | 7-8                         |  |  |  |
| 6<br>7<br>8<br>9               | Data collection process       | 9      | Specify the methods used to collect data from reports, including how<br>many reviewers collected data from each report, whether they<br>worked independently, any processes for obtaining or confirming<br>data from study investigators, and if applicable, details of automation<br>tools used in the process. | 8                           |  |  |  |
| 1<br>2<br>3<br>4<br>5          | Data items                    | 10a    | List and define all outcomes for which data were sought. Specify<br>whether all results that were compatible with each outcome domain<br>in each study were sought (e.g. for all measures, time points,<br>analyses), and if not, the methods used to decide which results to<br>collect.                        | 9-10                        |  |  |  |
| 5<br>7<br>8<br>9               |                               | 10b    | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.                                                                                                     | 9-10                        |  |  |  |
| )<br> <br>2<br> <br> <br> <br> | Study risk of bias assessment | 11     | Specify the methods used to assess risk of bias in the included<br>studies, including details of the tool(s) used, how many reviewers<br>assessed each study and whether they worked independently, and<br>if applicable, details of automation tools used in the process.                                       | 10                          |  |  |  |
| ;                              | Effect measures               | 12     | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.                                                                                                                                                                              | 10                          |  |  |  |
| 7<br>8<br>9<br>0               | Synthesis methods             | 13a    | Describe the processes used to decide which studies were eligible<br>for each synthesis (e.g. tabulating the study intervention<br>characteristics and comparing against the planned groups for each<br>synthesis (item #5)).                                                                                    | 10-11                       |  |  |  |

| Section and Topic             | Item # | Checklist item                                                                                                                                                                                                                                                                                    | Page where<br>item is reported |
|-------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                               | 13b    | Describe any methods required to prepare the data for presentation<br>or synthesis, such as handling of missing summary statistics, or data<br>conversions.                                                                                                                                       | 10-11                          |
|                               | 13c    | Describe any methods used to tabulate or visually display results of individual studies and syntheses.                                                                                                                                                                                            | 10                             |
|                               | 13d    | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.                                       | 10-11                          |
|                               | 13e    | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).                                                                                                                                                              | 10-11                          |
|                               | 13f    | Describe any sensitivity analyses conducted to assess robustness of the synthesized results.                                                                                                                                                                                                      | 11                             |
| Reporting bias assessment     | 14     | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).                                                                                                                                                                           | 11                             |
| Certainty assessment          | 15     | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.                                                                                                                                                                                             | 11                             |
| RESULTS                       | 1      |                                                                                                                                                                                                                                                                                                   |                                |
| Study selection               | 16a    | Describe the results of the search and selection process, from the<br>number of records identified in the search to the number of studies<br>included in the review, ideally using a flow diagram.                                                                                                | 11-12                          |
|                               | 16b    | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.                                                                                                                                                                       | 12                             |
| Study characteristics         | 17     | Cite each included study and present its characteristics.                                                                                                                                                                                                                                         | 12                             |
| Risk of bias in studies       | 18     | Present assessments of risk of bias for each included study.                                                                                                                                                                                                                                      | 13-14                          |
| Results of individual studies | 19     | For all outcomes, present, for each study: (a) summary statistics for<br>each group (where appropriate) and (b) an effect estimate and its<br>precision (e.g. confidence/credible interval), ideally using structured<br>tables or plots.                                                         | 14-17                          |
| Results of syntheses          | 20a    | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.                                                                                                                                                                                            | 13-14                          |
|                               | 20b    | Present results of all statistical syntheses conducted. If meta-<br>analysis was done, present for each the summary estimate and its<br>precision (e.g. confidence/credible interval) and measures of<br>statistical heterogeneity. If comparing groups, describe the direction<br>of the effect. | 14-17                          |
|                               | 20c    | Present results of all investigations of possible causes of heterogeneity among study results.                                                                                                                                                                                                    | 12                             |
|                               | 20d    | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.                                                                                                                                                                                        | 17                             |
| Reporting biases              | 21     | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.                                                                                                                                                                           | 13                             |
| Certainty of evidence         | 22     | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.                                                                                                                                                                                               | 13                             |
| DISCUSSION                    |        |                                                                                                                                                                                                                                                                                                   |                                |
| Discussion                    | 23a    | Provide a general interpretation of the results in the context of other evidence.                                                                                                                                                                                                                 | 17-21                          |
|                               | 23b    | Discuss any limitations of the evidence included in the review.                                                                                                                                                                                                                                   | 21                             |

|                                                      |                                                                                  |                                                                                                                                                                                                                                                     | Page where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Section and Topic                                    | Item #                                                                           | Checklist item                                                                                                                                                                                                                                      | item is reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                      | 23c                                                                              | Discuss any limitations of the review processes used.                                                                                                                                                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      | 23d                                                                              | 23d Discuss implications of the results for practice, policy, and future 2 research.                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| <b>OTHER INFORMATIO</b>                              |                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Registration and protocol                            | 24a                                                                              | Provide registration information for the review, including register<br>name and registration number, or state that the review was not<br>registered.                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                      | 24b                                                                              | Indicate where the review protocol can be accessed, or state that a protocol was not prepared.                                                                                                                                                      | A protocol was<br>not prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                      | 24c                                                                              | Describe and explain any amendments to information provided at registration or in the protocol.                                                                                                                                                     | Search period<br>was changed<br>from September<br>2020 to<br>December 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Support 25                                           |                                                                                  | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.                                                                                                                       | 22-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Competing interests 26                               |                                                                                  | Declare any competing interests of review authors.                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Availability of data,<br>code and other<br>materials | 27                                                                               | Report which of the following are publicly available and where they<br>can be found: template data collection forms; data extracted from<br>included studies; data used for all analyses; analytic code; any other<br>materials used in the review. | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      |                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                      | RegistrationandprotocolSupportCompeting interestsAvailabilityofdata,codeandother | 23c23d23dOTHER INFORMATIONRegistration and protocol24a24b24b24c24cSupport25Competing interests26Availability of data, code and other27                                                                                                              | 23c         Discuss any limitations of the review processes used.           23d         Discuss implications of the results for practice, policy, and future research.           OTHER INFORMATION         Provide registration information for the review, including register name and registration number, or state that the review was not registered.           24b         Indicate where the review protocol can be accessed, or state that a protocol was not prepared.           24c         Describe and explain any amendments to information provided at registration or in the protocol.           Support         25         Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.           Competing interests         26         Declare any competing interests of review authors.           Availability of data, code and other materials         27         Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other |  |  |  |

|                                           | BMJ Open G                       |                    |                          |                                  |                   |                               |                      | Page 84 of 8  |
|-------------------------------------------|----------------------------------|--------------------|--------------------------|----------------------------------|-------------------|-------------------------------|----------------------|---------------|
| 1<br>2<br>3 <b>Supplement</b><br>4        | tary table 2. Criteria for       | the adapted        | d Newcastle-Ottawa       | a Scale regarding s              | tar allocation to | 2022-060<br>assess quality of | included studies     |               |
| 5                                         |                                  | Sele               | ection                   |                                  | Comparability     | 0<br>D<br>&                   | Outcome              |               |
| 7 Study details<br>8 (Author et al, year) | Representativeness of sample (*) | Sample<br>size (*) | Non<br>respondents (*)   | Ascertainment<br>of exposure (*) | (**)              | Assessment                    | Statistical test (*) | Total<br>(8*) |
| 9 Mariam et al, 2017                      | *                                | *                  | *                        | *                                | **                | ber                           | *                    | 8             |
| <sup>1</sup> Okello et al, 2014           | *                                | *                  | *                        | *                                | **                | Ž0:                           | *                    | 8             |
| <sup>1</sup> Amour et al, 2019            | *                                | *                  | *                        | *                                | **                | N7*                           | *                    | 8             |
| <sup>1</sup> Abdissa et al, 2019          | *                                | *                  | *                        | *                                | **                | D*<br>0                       | *                    | 8             |
| <sup>13</sup> Fasil et al, 2019           | *                                | *                  | *                        | *                                | **                | wnlo                          | *                    | 8             |
| Jember et al,2017                         | *                                | *                  | *                        | *                                | **                | Dat                           | *                    | 8             |
| $\frac{1}{16}$ Chisha et al, 2017         | *                                | *                  | *                        | *                                | **                | 0*                            | *                    | 8             |
| 17 Deribe et al, 2014                     | *                                | *                  | *                        | *                                | **                | fr*                           | *                    | 8             |
| 18 Seyum et al, 2008                      | *                                | *                  | *                        | *                                | **                | P*                            | *                    | 8             |
| 19 Muddu et al,2019                       | *                                | *                  | *                        | *                                | **                | to:/                          | *                    | 8             |
| 20 Mamo et al., 2015                      | *                                | *                  | *                        | *                                | **                | /*<br>n                       | *                    | 8             |
| <sup>2</sup> Muddu et al., 2019           | *                                | *                  | *                        | *                                | **                |                               | *                    | 8             |
| <sup>22</sup> Blake et al., 2015          | *                                | *                  | *                        | *                                | **                | •<br>•                        | *                    | 8             |
| <sup>2</sup> Bello et al., 2019           | *                                | *                  | *                        | *                                | **                | <b>D</b> *                    | *                    | 8             |
| <sup>24</sup> Elnasri et al., 2008        | *                                | *                  | *                        | *                                | **                |                               | *                    | 8             |
| <sup>2</sup> ] Iwuala et al., 2015        | *                                | *                  | *                        | *                                | **                | <b>B</b> *                    | *                    | 8             |
| <sup>20</sup> Chadli et al., 2016         | *                                | *                  | *                        | *                                | **                | o*                            | *                    | 8             |
| 2 <mark>8</mark> Jingi et al., 2014       | *                                | *                  | *                        | *                                | **                | Apr                           | *                    | 8             |
| 29 Hall et al., 2017                      | *                                | *                  | *                        | *                                | **                | ii*<br>2                      | *                    | 8             |
| 30 Efundem et al., 2017                   | *                                | *                  | *                        | *                                | **                | ω,<br>                        | *                    | 8             |
| 31 Attoye et al., 2020                    | *                                | *                  | *                        | *                                | **                | 0<br>22                       | *                    | 8             |
| 32 Chetoui et al., 2020                   | *                                | *                  | *                        | *                                | **                | Ď,                            | *                    | 8             |
| <sup>33</sup> Diaf et al., 2017           | *                                | *                  | *                        | *                                | **                | Q*                            | *                    | 8             |
| <sup>34</sup> Elwali et al., 2017         | *                                | *                  | *                        | *                                | **                | est<br>st                     | *                    | 8             |
| <sup>3</sup> Kahloun et al., 2014         | *                                | *                  | *                        | *                                | **                | <u>ר</u>                      | *                    | 8             |
| <sup>36</sup> Noor et al., 2017           | *                                | *                  | *                        | *                                | **                | ot*                           | *                    | 8             |
| Bello et al., 2017                        | *                                | *                  | *                        | *                                | **                | Ct*                           | *                    | 8             |
| 30 Uloko et al., 2012                     | *                                | *                  | *                        | *                                | **                | a*<br>b                       | *                    | 8             |
| 40 Ede et al., 2018                       | *                                | *                  | *                        | *                                | **                | <pre></pre>                   | *                    | 8             |
| 41<br>42<br>43<br>44                      |                                  | For peer rev       | view only - http://bmjop | en.bmj.com/site/about/           |                   | pyright.                      |                      |               |

| Page 85 of 85                                              | BMJ Open |   |   |   |    | f 85 BMJ Open                                                                                                                                                                                               |   |   |  |
|------------------------------------------------------------|----------|---|---|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|
| 1                                                          |          |   |   |   |    | 1-2022                                                                                                                                                                                                      |   |   |  |
| 2                                                          |          |   |   |   |    | 2-06                                                                                                                                                                                                        |   |   |  |
| <sup>3</sup> Hayfron-Benjamin et<br><sup>4</sup> al., 2019 | *        | * | * | * | ** | 2022-060 <del>786 c</del>                                                                                                                                                                                   | * | 8 |  |
| <sup>5</sup> Kizor-Akaraiwe et al.,                        | *        | * | * | * | ** | α<br>α<br>Ο                                                                                                                                                                                                 | * | 8 |  |
| <sup>7</sup> Ogbera et al., 2015                           | *        | * | * | * | ** | ven                                                                                                                                                                                                         | * | 8 |  |
| Olamoyegun et al.,<br>102015                               | *        | * | * | * | ** | n<br>Dot<br>P<br>D<br>P<br>D<br>P<br>D<br>P<br>D<br>P<br>D<br>P<br>D<br>P<br>D<br>D<br>P<br>D<br>D<br>P<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | * | 8 |  |
| 1 Oyelade et al., 2012                                     | *        | * | * | * | ** | 0<br>>*<br>>                                                                                                                                                                                                | * | 8 |  |
| 12 Ugoya et al., 2006                                      | *        | * | * | * | ** | о<br>Ф                                                                                                                                                                                                      | * | 8 |  |
| 13 Ahmed et al., 2017                                      | *        | * | * | * | ** | 0<br>W*                                                                                                                                                                                                     | * | 8 |  |
| 14 Albalawi et al., 2020                                   | *        | * | * | * | ** | 0*<br>0                                                                                                                                                                                                     | * | 8 |  |
| <sup>15</sup> Ashur et al., 2016                           | *        | * | * | * | ** |                                                                                                                                                                                                             | * | 8 |  |
| <sup>16</sup> Blum et al., 2020                            | *        | * | * | * | ** | o *rc                                                                                                                                                                                                       | * | 8 |  |
| Burgess et al., 2014                                       | *        | * | * | * | ** | B*                                                                                                                                                                                                          | * | 8 |  |
| Glover et al., 2012                                        | *        | * | * | * | ** | *                                                                                                                                                                                                           | * | 8 |  |
| Lewis et al., 2018                                         | *        | * | * | * | ** | ·                                                                                                                                                                                                           | * | 8 |  |
| Machingura et al.,<br>2) 2017                              | *        | * | * | * | ** |                                                                                                                                                                                                             | * | 8 |  |
| 23 Molefe-Baikai et al.,<br>24 2018                        | *        | * | * | * | ** |                                                                                                                                                                                                             | * | 8 |  |
| 25 Mwita et al., 2019                                      | *        | * | * | * | ** | Q*                                                                                                                                                                                                          | * | 8 |  |
| <sup>26</sup> Pirie et al., 2014                           | *        | * | * | * | ** | o*                                                                                                                                                                                                          | * | 8 |  |
| <sup>27</sup> Rotchford et al., 2002                       | *        | * | * | * | ** | <u>₿</u><br>⊳*                                                                                                                                                                                              | * | 8 |  |
| <sup>28</sup> Thomas et al., 2013                          | *        | * | * | * | ** | <del>þ</del><br>ri:                                                                                                                                                                                         | * | 8 |  |
| <sup>2</sup> Webb et al., 2015                             | *        | * | * | * | ** | 2.*<br>3.*                                                                                                                                                                                                  | * | 8 |  |
| <sup>30</sup> Omar et al., 2018                            | *        | * | * | * | ** | 2*<br>0                                                                                                                                                                                                     | * | 8 |  |
| Adeniyi et al., 2020                                       | *        | * | * | * | ** | 24*                                                                                                                                                                                                         | * | 8 |  |
| <sub>33</sub> Assaad-Khalil et al.,<br><sub>34</sub> 2015  | *        | * | * | * | ** | by gue                                                                                                                                                                                                      | * | 8 |  |
| 35 Khalil et al., 2019                                     | *        | * | * | * | ** | 0<br>\$1*                                                                                                                                                                                                   | * | 8 |  |
| 36 Awadalla et al., 2017                                   | *        | * | * | * | ** | P.<br>o                                                                                                                                                                                                     | * | 8 |  |
| Bentata et al., 2015                                       | *        | * | * | * | ** | e*<br>0                                                                                                                                                                                                     | * | 8 |  |
| <sup>38</sup> Bouaziz et al., 2012                         | *        | * | * | * | ** | ₫ <u>*</u>                                                                                                                                                                                                  | * | 8 |  |
| <sup>39</sup> Jingi et al., 2015                           | *        | * | * | * | ** | <b>♀</b> ∗                                                                                                                                                                                                  | * | 8 |  |
| 40<br>41<br>42<br>43                                       | 1        | 1 | 1 | 1 |    | _¢opyright.                                                                                                                                                                                                 | 1 |   |  |

| Page 86 of 85 |
|---------------|
|---------------|

| BMJ Open                                         |   |              |                         |                        |    |                    |   | Page 86 of 85 |
|--------------------------------------------------|---|--------------|-------------------------|------------------------|----|--------------------|---|---------------|
| 1<br>2                                           |   |              |                         |                        |    | -2022-06           |   |               |
| <sup>-</sup><br><sup>3</sup> Chahbi et al., 2018 | * | *            | *                       | *                      |    | \$0 <b>*</b> 8     | * | 8             |
| <sup>4</sup> Adetunji et al., 2006               | * | *            | *                       | *                      | ** | 8<br>6.*           | * | 8             |
| <sup>5</sup> Jarso et al., 2011                  | * | *            | *                       | *                      | ** | σ<br>∞*            | * | 8             |
| <sup>6</sup> Janmohamed et al,                   | * | *            | *                       | *                      | *  | Z*                 | * | 7             |
| 1 2012                                           |   |              |                         |                        |    | Wer                |   |               |
| 9 Chalya et al, 2011                             | * | *            | *                       | *                      | *  | 5<br>0*<br>0       | * | 7             |
| 10 Goro et al, 2019                              | * | *            | *                       | *                      |    | * *<br>2(*         | * | 7             |
| 1 Muddu et al, 2016                              | * | *            | -                       | *                      |    | 0<br>2*<br>2       | * | 7             |
| 12 Kisozi et al, 2017                            | * | *            | *                       | *                      |    | Ď                  | * | 7             |
| <sup>1</sup> <sup>3</sup> Akalu et al, 2020      | * | *            | *                       | *                      | *  | ow*                | * | 7             |
| <sup>14</sup> Lumu et al, 2017                   | * | *            | *                       | *                      | *  | 0*<br>0a           | * | 7             |
| <sup>1</sup> Chamba et al, 2017                  | * | *            |                         | *                      | ** | 0<br>e*<br>C       | * | 7             |
| 16 Smide et al, 2008                             | * | -            | *                       | *                      | ** | fro                | * | 7             |
| Sobngwi et al 2011                               | * | -            | *                       | *                      | ** | ₿*                 | * | 7             |
| 16 Camara et al, 2014                            | * | -            | *                       | *                      | ** | <b>*</b>           | * | 7             |
| Ekoru et al,2019                                 | * | -            | *                       | *                      | ** |                    | * | 7             |
| 2 Mwebaze et al, 2014                            | * | *            | *                       | *                      | *  | B*                 | * | 7             |
| 22 Agboghoroma et                                | * | *            | *                       | *                      | *  | 0*                 | * | 7             |
| 23 al,2020                                       |   |              |                         |                        |    | r. br              |   |               |
| <sup>2</sup> 4 Kimando et al, 2017               | * | *            | -                       | *                      | ** | 2*                 | * | 7             |
| <sup>25</sup> Clealand et al, 2015               | * | *            | *                       | *                      | *  | 0*<br>B            | * | 7             |
| <sup>2</sup> ∮ Njikam et al., 2016               | * | *            | -                       | *                      | ** | on<br>*            | * | 7             |
| <sup>2</sup> Dzudie et al., 2012                 | * | *            | *                       | -                      | ** | Åp                 | - | 7             |
| Alebiosu et al., 2003                            | * | *            | -                       | *                      | ** |                    | * | 7             |
| $_{30}^{27}$ Kuate-Tegueu et al.,                | * | *            | -                       | *                      | ** | ώ*                 | * | 7             |
| 31 2015                                          |   |              |                         |                        |    | 202                |   |               |
| 32 Mohmad et al., 2011                           | * | *            | -                       | *                      | ** | 4*<br>5            | * | 7             |
| 33 Cohen et al., 2010                            | * | *            | -                       | *                      | ** | <*<br>0            | * | 7             |
| 34 Makwero et al., 2018                          | * | *            | -                       | *                      | ** |                    | * | 7             |
| 3 <u>5 Onakpoya et al., 2016</u>                 | * | -            | -                       | *                      | ** | r**<br>10          | * | 7             |
| <sup>36</sup> Lebeta et al, 2016                 | * | *            | *                       | *                      |    |                    | * | 6             |
| <sup>3</sup> Kibirige et al, 2017                | * | -            | -                       | *                      |    | ecte               | * | 6             |
| <sup>38</sup> Mbwete et al, 2020                 | * | -            | *                       | *                      | *  | ő*<br><del>5</del> | * | 6             |
| <sup>3</sup> Tiahun et al,2017<br>40             | * | *            | *                       | *                      | -  | 0<br>< *<br>Q      | * | 6             |
| 40<br>41<br>42<br>43                             |   | For peer rev | iew only - http://bmjop | en.bmj.com/site/about/ |    | opvright.          |   |               |

| Page 87 of 85                                                             |   | omjoper      |                        |                        |                  |                              |   |   |
|---------------------------------------------------------------------------|---|--------------|------------------------|------------------------|------------------|------------------------------|---|---|
| 1<br>2                                                                    |   |              |                        |                        |                  | ח-2022-06                    |   |   |
| <sup>3</sup> Chiwanga et al, 2015                                         | * | _            | *                      | *                      | *                | \$0 <u>*</u> 8               | * | 6 |
| $\frac{4}{2}$ Lumu et al, 2017                                            | * | _            |                        | *                      | **               | ರ್ಕ್                         | * | 6 |
| <sup>5</sup> Balogu et al., 2011                                          | * | _            | -                      | *                      | **               | ວົ<br>ສີ<br>ໝ*               | * | 6 |
| 6 Megallaa et al., 2019                                                   | * | -<br>*       | *                      | *                      | -                | 3<br>Z*<br>0                 | * | 6 |
| <sup>′</sup> Eshan shal 0007                                              | * | *            | -                      | -                      | - **             | oven                         | * | 6 |
| 0                                                                         | * |              | -                      | *                      | **               | B<br>5*<br>0                 | * | 6 |
| 9 Unachukwu et al.,<br>10 2007                                            |   | -            | -                      |                        |                  | r 20                         |   |   |
| 11 Abejew et al, 2015                                                     | * | *            | -                      | *                      | -                | 2×2                          | * | 5 |
| 12 Nyamu et al, 2003                                                      | * |              | *                      | *                      | -                | Ď                            | * | 5 |
| <sup>1</sup> <sup>3</sup> Gulam-Abbas et al,                              | * | -            | *                      | *                      | -                | Wn                           | * | 5 |
| <sup>1</sup> <sup>4</sup> 2002                                            |   |              |                        |                        |                  | loa                          |   |   |
| <sup>1</sup> Abbas et al, 2011                                            | * | *            | *                      | *                      | -                | dec                          | - | 5 |
| <sup>16</sup> Gill et al, 2008                                            | * | *            | *                      | *                      | -                | frc                          | - | 5 |
| Cairncross et al., 2017                                                   | - | -            | - 4                    | *                      | **               | B*                           | * | 5 |
| 16 Amod et al., 2012                                                      | * | *            | *                      | -                      | -                | *                            | * | 5 |
| 20 Vogt et al, 2017                                                       | * | -            | -                      | *                      | -                | .*/b                         | * | 4 |
| 2 Worku et al, 2010                                                       | * | *            | *                      | 0                      | -                | B*                           | - | 4 |
| 22 Gebrekirstos et al,<br>23 2015                                         | * | -            | *                      | *                      | -                | 0 *<br>0<br>0                | - | 4 |
|                                                                           |   |              |                        | *                      |                  | •<br>•                       | * |   |
| 24 Magan et al, 2019                                                      | - | -            | -                      | *                      | -                | 0<br>0*                      | * | 3 |
| <sup>25</sup> Woodward et al, 2020                                        | - | -            | -                      | *                      | -                | <u> </u>                     | * | 3 |
| <sup>26</sup> Lartey et al., 2018<br><sup>27</sup> Testatsion et al. 2015 | - | -            | -                      | *                      |                  | on<br>A*                     |   | 3 |
|                                                                           | - | -            | -                      | *                      |                  | April                        | - | 2 |
| <sup>28</sup> Neuhann et al, 2001                                         | - | -            | -                      |                        | -                | 123,                         | - | Z |
| 30                                                                        |   |              |                        |                        |                  |                              |   |   |
| 31                                                                        |   |              |                        |                        |                  | 2024 by gr                   |   |   |
| 32                                                                        |   |              |                        |                        |                  | t þý                         |   |   |
| 33                                                                        |   |              |                        |                        |                  |                              |   |   |
| 34                                                                        |   |              |                        |                        |                  | lest                         |   |   |
| 35                                                                        |   |              |                        |                        |                  | est. Protected by copyright. |   |   |
| 36                                                                        |   |              |                        |                        |                  | ote                          |   |   |
| 37                                                                        |   |              |                        |                        |                  | čte                          |   |   |
| 38<br>39                                                                  |   |              |                        |                        |                  | с<br>С                       |   |   |
| 40                                                                        |   |              |                        |                        |                  | < c                          |   |   |
| 41                                                                        |   |              |                        |                        | :                | Vdc                          |   |   |
| 42                                                                        |   |              |                        |                        |                  | righ                         |   |   |
| 43                                                                        |   | Бакистич     |                        |                        |                  | Ħ.                           |   |   |
| 44                                                                        |   | For peer rev | ew only - nttp://bmjop | en.bmj.com/site/about/ | guidelines.xhtml |                              |   |   |
| 45                                                                        |   |              |                        |                        |                  |                              |   |   |
| 46                                                                        |   |              |                        |                        |                  |                              |   |   |