

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:A Prospective Cardiovascular Risk Screening Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063594
Article Type:	Cohort profile
Date Submitted by the Author:	04-Apr-2022
Complete List of Authors:	Lambert, Matthew ; NHS Tayside, Stroke Houston, J; University of Dundee, Division of Molecular and Clinical Medicine Littleford, Roberta; University of Dundee, Division of Molecular and Clinical Medicine Fitton, Catherine; University of Dundee, Division of Molecular and Clinical Medicine Struthers, Allan; University of Dundee, Division of Molecular and Clinical Medicine Sullivan, Frank; University of St. Andrews; North York General hospital, Gandy, Stephen; NHS Tayside, Medical Physics Belch, Jill; University of Dundee, Division of Molecular and Clinical Medicine
Keywords:	Magnetic resonance imaging < RADIOLOGY & IMAGING, CARDIOLOGY, Cardiovascular imaging < RADIOLOGY & IMAGING
	•

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:

A Prospective Cardiovascular Risk Screening Study.

Matthew A Lambert¹, J Graeme Houston¹, Roberta Littleford¹, Catherine A Fitton¹, Allan Struthers¹, Frank Sullivan^{1,2}, Stephen Gandy³ Jill JF Belch¹. On behalf of the TASCFORCE Trial Consortium.

¹ Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY.

² Present address: St Andrews University, St Andrews, Scotland

³ Medical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

Correspondence:

General:

Prof Jill JF Belch

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

P.P.P.

Tel: 01382 383721

j.j.f.belch@dundee.ac.uk

Imaging:

Prof J Graeme Houston

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

Tel: 01382 383721

j.g.houston@dundee.ac.uk

Word count: 3792 Figures: 1 Tables: 6

BMJ Open

Abstract

Purpose: Risk factor based models struggle to accurately predict development of cardiovascular disease (CVD) at the level of the individual. Ways of identifying people with low predicted risk who will develop CVD would allow stratified advice/treatment, and this is the aim of this study.

Participants: The Tayside Screening for Cardiac Events (TASCFORCE) study recruited men and women aged ≥40yrs, free from known CVD, with a predicted 10-year risk of coronary heart disease (CHD) <20%. If BNP was greater than their gender-median, participants were offered a whole-body contrast enhanced magnetic resonance (WBCE-MRI) scan (cardiac imaging, whole-body angiography to determine left ventricular parameters, delayed gadolinium enhancement, atheroma burden). Blood, including DNA, was stored for future biomarker assays. Participants are being followed up using electronic record-linkage cardiovascular outcomes.

Findings to date: 4423 (1740, 39.3% male) were recruited. Mean age 52.3 years. Median BNP 7.50ng/L and 15.30ng/L for men and women respectively. 602 have a predicted 10-year risk of 10-19.9%, with the remainder <10%. Age, female sex, ex-smoking status, lower heart rate, higher high-density lipoprotein and lower total cholesterol were independently associated with higher log10 BNP levels. Mean left ventricular mass was 129.2g and 87.0g in men and women respectively.

Future plans: The TASCFORCE study is investigating the ability of a screening programme, using BNP and WBCE-MRI, to evaluate prediction of CVD in a population at low/intermediate risk at the time of enrolment. Blood stored for future biomarker analyses will allow testing/development of novel biomarkers. We believe this could be a new UK Framingham study allowing study for many years to come.

Clinical Trial Registration: ISRCTN38976321 <u>https://doi.org/10.1186/ISRCTN38976321</u> registered 4th April 2007

Key words: Cardiovascular risk; Clinical Trial; magnetic resonance imaging; natriuretic peptide; Cardiovascular Biomarkers 1. This study is one of the largest MRI/Cardiovascular risk studies to be published. It could be a UK Framingham

BMJ Open

2. The MRI Scanning is a novel element to a cardiovascular risk trial, particularly as it is whole body and contrast enhanced

3. As many of the participants have also signed up to SHARE, it will be possible to link all subsequent blood tests from SHARE with our cohort details to study novel biomarkers as they are discovered

4. As these were 'healthy' volunteers it will take some time for cardiovascular events to occur

5. Not all participants underwent MRI scanning due to cost, only those above the BNP cut off,

however numbers (n=1528) are sufficient to allow evaluations, and all (n=4423) had the

demographic, and blood screening.-

2

3	
4	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
20 21 22 23	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

List of abbreviations

TASCFORCE - The Tayside Screening for Cardiac Events

CVD - Cardiovascular disease

WBCE-MRI -whole-body contrast enhanced magnetic resonance scan

BNP - B-type natriuretic peptide

- CHD Coronary Heart Disease
- **GP** General Practice
- ECG electrocardiogram
- **BP** Blood pressure
- SAS - standardised atheroma score
- SD standard deviation
- IQR -inter-quartile range
- CT Computerised Tomography

Introduction

Currently statins and other drugs for cardiovascular disease (CVD) primary prevention is targeted at those at increased risk by using risk estimation tools, but these have poor external validity.[1] A significant number of CVD occurs in people with "low" or "intermediate" cardiovascular risk [2] and many in these groups have evidence of atherosclerosis.[3,4] Offering statins to a wider range of the population has been suggested.[5] However, offering statins more widely raises a number of economic and ethical questions and concerns,[6,7] so improved targeting therapy may be more acceptable. Risk factor-based models struggle to predict development of disease at an individual person level, and an alternative approach could be the detection of preclinical disease - an approach successful employed in cancer. A similar strategy for CVD could facilitate individualised risk assessment and aid decisions about treatment.

The **Ta**yside **Sc**reening for **C**ardiac **E**vents (TASCFORCE) study is investigating the ability of a screening programme using B-type natriuretic peptide (BNP) and whole-body contrast enhanced magnetic resonance imaging (WBCE-MRI) incorporating cardiac imaging and whole-body angiography to detect preclinical disease, and predict future clinical CVD in a large population at low or intermediate risk. Blood stored for future analyses will allow validation of future proposed biomarkers. The study is novel in using a relatively cheap biomarker (BNP) to decide who proceeds to a relatively expensive test (MRI scan). In this paper we describe the aims and design of the study, and the baseline characteristics of participants including demographics, cardiovascular risk factors, BNP and imaging results.

 BMJ Open

Cohort description

1.1. Study design

TASCFORCE is a prospective normal volunteer cardiovascular risk screening study (ISRCTN number: ISRCTN38976321).

The aim of this study is to provide baseline data on both imaging and blood biomarkers, to understand which, if any, may predict future Cardiovascular events. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with the blood and imaging biomarkers and robust follow up via electronic record linkage will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham'.

Men and women aged 40 years or older living in Tayside or Fife, Scotland, who were free from CVD and had a predicted 10-year risk of coronary heart disease (CHD) <20% were recruited. Participants were excluded if they were pregnant, breast-feeding, of child-bearing potential not using adequate contraception, unable to give consent, or had another accepted indication for statin therapy. To produce a cohort able to participate in a potential future statin intervention study those with contraindications to a statin were excluded, including known alcohol abuse or participation in a clinical trial other than observational trials or registries concurrently or within 30 days prior to screening, were excluded.

Participants were recruited from General Practice (GP) surgeries, local employers, publicity campaigns, via press and radio coverage of the project, direct mailing and using ethically approved leaflets. We aimed to obtain a locally representative population, so recruitment was targeted at socioeconomic and ethnic groups often under-represented in studies. Participants were recruited between November 2007 and February 2013.

1.2 Patient and Public Involvement

The Souter Foundation trustees ('lay' people) were involved in the design of the study. Volunteers who were recruited to the study were involved in the design, regarding the scheduling and timing of testing, to improve convenience to participants. Many volunteers were involved in further recruitment, by passing on information via word of mouth. Results of the final analysis using linked data will be disseminated to the participants via postal address.

1.3 Screening visit and risk estimation

Following written informed consent for the study, and for data-linkage for 20 years, the following information was obtained: medical history, lifestyle risk factors (diet/exercise/smoking status), risk perception question, family history of premature CVD, and concomitant medication. Subjects were examined to obtain their height, weight, waist circumference and blood pressure (BP) and a 12-lead electrocardiogram (ECG) was recorded. Plasma BNP, random lipid profile and random plasma glucose levels were determined using near patient testing equipment (Alere Triage BNP assay with Alere Triage MeterPro for BNP, and Alere Cholestech LDX analyser for lipids and glucose).

Each participant's predicted CHD event rate was calculated by using the National Cholesterol Education Program Adult Treatment Panel III (ATP III) guidelines.[8] Participants who had a predicted risk \geq 20% or a BP >145/90 mmHg were excluded but were asked for consent to be followed up. Ineligible subjects were informed of their risk factors, given a copy of their results and asked to attend their GP for formal review. All participants received counselling on modifiable risk factors by study staff aided by British Heart Foundation leaflets.

1.4 Magnetic resonance imaging

Those with a BNP greater than the median (determined after 200 participants) were invited to attend for a WBCE-MRI scan. At a prespecified review after 1000 subjects it was observed that the median BNP was higher for women than men. The trial steering committee (comprising of the authors) decided to invite for a scan based on gender specific median BNP and the protocol was amended accordingly. Those recruited earlier who would be eligible based on their gender specific median were recalled. If the delay was greater than three months, they had their BNP, cholesterol and CHD risk score rechecked to ensure continued eligibility.

Combined cardiac and whole-body angiography MRI scans were performed on a 32-channel 3T Magnetom Trio scanner (Siemens, Erlangen, Germany) and used gadoteric acid contrast agent (Dotarem; Guerbet Laboratories, France). The scan protocol development and validation has been described in detail elsewhere.[9,10]

Details of the image acquisition, analysis and validation of the technique have been described and validated in earlier publications.[9,10,11] Cardiac magnetic resonance (CMR) images were analysed offline by four blinded observers using commercial software ('Argus', Siemens Multi-modality Work

BMJ Open

Platform, version VB15). Electronic region of interest contours were placed around endocardial and epicardial left ventricular borders at end-diastole and end-systole on all CMR image slices identified to contain ≥50% full-thickness myocardium. Quantitative measurement of left ventricular mass (LVM), ejection fraction, end-diastolic volume, end-systolic volume and stroke volume were derived. The presence of luminal stenosis was assessed in 30 arterial segments from the internal carotids to the distal anterior tibial arteries (the coeliac artery was not included due to marked anatomical variation resulting in poor inter-observer agreement). A categorical grading scale from 0-4 was applied to each arterial segment as follows: grade 0=healthy segment, grade 1=1-50% stenosis, grade 2=51-70% stenosis, grade 3=71-99% stenosis, and grade 4=vessel occlusion. An additional point was added for presence of aneurysm >50% of the native vessel diameter. If any arterial segment was uninterpretable because of poor image quality, it was not allocated a numeric score. A standardised atheroma score (SAS) to express atheroma burden severity across the body as a percentage was calculated using the following equation where n is the number of interpretable segments:

 $SAS=[(\sum score/n)x1/4]x100$

1528 (74.8% of those invited) completed or partially completed an MRI scan. 34 were not safe to scan due to metal in situ. 373 did not consent to a scan, and 12 failed to attend. 101 participants abandoned their scan mainly due to claustrophobia (n=83), with others abandoned due to large body habitus, problems with IV access or other technical issues. 32 participants (2.1% participants scanned) had an incidental finding on their MRI scan (MI detected by delayed enhancement, structural cardiac abnormality, benign masses, malignant masses, peripheral vascular abnormality, anatomical variation).

1.5 Baseline characteristics

Participant flow is summarised in the CONSORT diagram (figure 1). 5015 people (n=2066, 41.2% male) were screened. 438 failed screening due to either hypertension (n=291, 137 (47.1%) male), a predicted 10-year CHD risk ≥20% (n=146, 142 (97.3%) male) or marked dyslipidaemia (n=1, female). (table 1). 4423 (1740, 39.3% male) participants were eligible for the study.

		Hypertensive (BP> 145/90 mmHg) (n=291)	10-year CHD risk >20% (n=146)
Median (IQR) age (years)		58.2 (12.24)	58.7 (15.23)
No (%) men		138 (47.4)	142 (97.3)
No (%) current smokers		34 (11.7)	85 (58.2)
No (%) former smokers		65 (22.3)	24 (16.4)
No (%) never smokers		151 (51.9) <i>[N/A41]</i>	37 (25.3)
Mean (SD) systolic BP(mmHg)		156.5 (9.75)	132.2 (10.91)
Mean (SD) diastolic BP(mmHg)		88.9 (9.68)	77.3 (9.46)
Medan (IQR) heart rate (beats per min)		72.0 (16) [<i>N/A215]</i>	68.0 (14) <i>[N/A11]</i>
Mean (SD) total cholesterol (mmol/L)		5.69 (1.03) <i>[N/A55]</i>	6.07 (1.02)
Mean (SD) high density lipoprotein (mmol/l)		1.42 (0.48) <i>[N/A58]</i>	0.89 (0.24)
Mean (SD) low density lipoprotein (mmol/l)		3.34 (0.92) <i>[N/A71]</i>	3.93 (0.93) <i>[N/A17]</i>
Median (IQR) triglycerides (mmol/l)		1.82 (1.38) <i>[N/</i> A55]	2.50 (1.93)
Median (IQR) Body mass index (kg/m²)		27.5 (5.5) <i>[N/A202]</i>	28.3 (4.7) <i>[N/A6]</i>
Median (IQR) weight (kg)		82.0 (18.60) <i>[N/A202]</i>	83.6 (17.30) <i>[N/A6]</i>
Mean (SD) height (cm)		168.5 (8.16) [N/A202]	173.4 (7.51) <i>[N/A6]</i>
Mean (SD) waist circumference (cm)		91.1 (13.35) <i>[N/A216]</i>	97.0 (12.93) <i>[N/A10]</i>
Median (IQR) 10-year CHD event risk (%)		5.0 (9.0) <i>[N/A72]</i>	20.0 (5.0)
No (%) with family history of cardiovascular dise	ase	49 (16.8) <i>[N/A96]</i>	35 (23.2) <i>[N/A9]</i>
Scottish Index of Multiple Deprivation decile,	1	12 (4.1)	8 (5.5)
number (%)	2	19 (6.5)	11 (7.5)
	3	29 (10.0)	20 (13.7)
	4	19 (6.5)	10 (6.8)
	5	14 (4.8)	10 (6.8)
	6	21 (7.2)	14 (9.6)
	7	45 (15.5)	22 (15.1)
	8	51 (17.5)	22 (15.1)
	9	61 (21.0)	24 (16.4)
	10	18 (6.2)	4 (2.7)
	N/A	2 (0.7)	1 (0.7)

Table 1. Characteristics of subjects excluded due to presence of increased CHD risk or hypertension.

BP, blood pressure, CHD, coronary heart disease, IQR, inter-quartile range, SD, standard deviation. Full data were not collected for all screen failed participants: the number of participants with missing data is indicated in italics.

BMJ Open

Median (IQR) BNP levels for men and women were 7.50 (8.90) and 15.30 (17.63) ng/L respectively. The cut-off BNP values for being offered an MRI scan were 8.2 and 16.4 ng/L respectively. The characteristics of those invited for an MRI scan (MRI/BNP group), and those not invited (BNP group) are summarised in table 2.

ν RI scan (k

	BNP group	MRI/BNP group	Difference
	(n=2376)	(n=2047)	between BNF
			and MRI/BNF
			groups*
Median (IQR) age (years)	49.5 (10.6)	53.4 (12.5)	p<0.001
No (%) men	937 (39.4)	803 (39.3)	p=0.94
No (%) current smokers	351 (14.8)	221 (10.8)	p<0.001
No (%) former smokers	663 (27.9)	563 (27.5)	p=0.81
No (%) never smokers	1361 (57.3)	1256 (61.4)	p=0.004
Mean (SD) systolic	122.1 (11.74)	122.9 (11.97)	p=0.027
BP(mmHg)			
Mean (SD) diastolic BP	73.6 (9.40)	73.1 (9.23)	p=0.06
(mmHg)			
Median (IQR) heart rate	67.0 (14)	63.0 (12)	p<0.001
(beats per min)			
Mean (SD) total cholesterol	5.47 (1.02)	5.48 (0.99)	p=0.79
(mmol/L)			
Mean (SD) high density	1.34 (0.44)	1.43 (0.42)	p<0.001
lipoprotein (mmol/l)			
Mean (SD) low density	3.41 (0.92)	3.40 (0.42)	p=0.84
lipoprotein (mmol/l)			
Median (IQR) triglycerides	1.38 (1.18)	1.29 (1.02)	p<0.001
(mmol/l)			
Median (IQR) body mass	26.7 (5.80)	26.2 (5.35)	p<0.001
index (kg/m ²)			
Median (IQR) weight (kg)	75.0 (21.23)	74.1 (19.95)	p=0.08
Mean (SD) height (cm)	167.10 (9.09)	167.67 (9.29)	p=0.041
Mean (SD) waist	88.0 (13.56)	86.9 (12.95)	p=0.006
circumference (cm)			
Median (IQR) 10-year CHD	2.0 (5.0)	2.0 (5.0)	p<0.001
event risk estimation (%)			
No (%) with 10-year CHD	286 (12.0)	316 (15.4)	p=0.001
risk 10-19.9%			

Table 2. Baseline characteristics of participants.

No (%) with family his	tory of	561 (23.6)	514 (25.1)	p=0.25
cardiovascular diseas	e			
Scottish Index of	1	132 (5.6)	85 (4.2)	p=0.054
Multiple Deprivation	2	145 (6.1)	106 (5.2)	
decile, number (%)	3	208 (8.8)	149 (7.3)	
	4	134 (5.6)	116 (5.7)	
	5	143 (6.0)	126 (6.2)	
	6	218 (9.2)	206 (10.1)	
	7	349 (14.7)	334 (16.3)	
	8	442 (18.6)	401 (19.6)	
	9	428 (18.0)	371 (18.1)	
	10	169 (7.1)	150 (7.3)	
	N/A	8 (0.3)	3 (0.1)	-

BNP, B-type natriuretic peptide, MRI, magnetic resonance imaging, IQR, inter-quartile range, SD, standard deviation, CHD, coronary artery disease. *Comparisons for variables with normal distributions are independent samples t-tests and for skewed distribution the Mann-Whitney-Wilcoxon test.

1.6 Follow up

Electronic anonymised data linkage by the Health Informatics Centre at the University of Dundee will provide follow up data on hospital admissions (including diagnoses and procedures) and GP prescriptions at regular intervals for up to 20 years. This uses data from the Scottish Office's Information Services Division which collects data on all hospital and GP encounters including prescriptions, diagnoses and procedures and from the General Registrar's office which collects data on all deaths in Scotland. Endpoints of interest are myocardial infarction, hospitalisation for angina, requirement for any endovascular procedure, stroke, critical limb ischemia, amputation, sudden death, cardiac and all-cause mortality. Underlying cause of death recorded on death certificates is supplemented by information from hospital records, including post-mortem examinations, if performed.

1.7 Statistical analysis

Analysis was performed using R (v.3.1) and SPSS (v.21). Continuous variables were expressed as mean and standard deviation (SD) for those with a normal distribution or median and inter-quartile range (IQR) for those with a skewed distribution, and categorical variables were expressed as numbers and percentages. When comparing characteristics between participant groups independent samples t-tests were used for variables with a normal distribution and Wilcoxon Mann-Whitney tests were used for those with a skewed distribution. To reduce skewness BNP levels were log10 transformed before regression analyses. Multivariable linear regression analysis was used to determine independent predictors of log10 BNP level. Analysis of correlations used Pearson correlation coefficients for variables with a normal distribution and Spearman Rank correlation for those with a skewed distribution.

Findings to date

Increasing age, female sex, ex-smoking status (but not current smoking status), lower heart rate, higher HDL and lower total cholesterol were significantly associated with higher log10 BNP levels (table 3). The following variables were initially included in the model: age, gender, smoking status, systolic BP, diastolic BP, heart rate, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, glucose, BMI, waist circumference, family history of CVD and Scottish index of multiple deprivation (SIMD) decile.

<text><text><text>

	Unstandardised Coefficient (95%	
	confidence intervals)	p value
Age (years)	0.010 (0.009, 0.011)	<0.001
Male sex	-0.211 (-0.230, -0.192)	<0.001
Ex-smoker	-0.026 (-0.045, -0.006)	0.01
Heart rate (bpm)	-0.006 (-0.007, -0.005)	<0.001
Total cholesterol (mmol/l)	-0.020 (-0.028, -0.011)	<0.001
High density lipoprotein (mmol/l)	0.055 (0.033, 0.076)	<0.001

Table 3. Predictors of log10 BNP: multivariable regression analysis.

The left ventricular characteristics are shown in table 4. A total of 10 patients (0.67%) displayed LGE, indicating the presence of an unidentified myocardial infarct (UMI) [12].

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 21 22 24 25 26 27 28 9 30
20
21
22
23
24
25
26
27
28
29
30
31
32
32 33
34 35 36 37 38
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59 60

Table 4. Left ventricular c	characteristics by gender
-----------------------------	---------------------------

	Men		Wor	Women		
	Mean	SD	Mean	SD	p value*	
LVM (g)	129.2	24.4	87.0	16.7	<0.001	
LVEDV (ml)	155.0	27.7	119.6	21.1	<0.001	
LVESV (ml)	50.2	14.8	37.1	12.0	<0.001	
LVM/LVEDV (g/ml)	0.85	0.16	0.74	0.13	<0.001	
Ejection fraction (%)	67.9	6.2	69.3	6.6	<0.001	
Stroke volume (ml)	104.8	19.0	82.5	14.2	<0.001	
Cardiac output (I/min)	6.46	1.20	5.47	1.13	<0.001	
LVM/height	73.2	13.1	53.5	9.8	<0.001	
LVM/height ^{1.7}	49.3	8.7	38.1	7.0	<0.001	
LVM/height ^{2.7}	28.0	5.0	23.5	4.4	<0.001	
LVM/BSA	64.3	10.6	49.5	8.0	<0.001	

SD, standard deviation, LVM, left ventricular mass, LVEDV, left ventricular end-diastolic volume, LVESV, left ventricular end systolic volume, BSA, body surface area. *Comparison between men and women using independent samples t-test.

Three cases (0.2%) were consistent with UMI, and 7 were considered non-specific and located in the mid-myocardium (n=4), epicardium (n=1), or right ventricular insertion points (n=2). Spearman rank correlations of left ventricular measurements with predicted CHD risk score are shown in table 5.

Table 5: Correlations of left ventricular measures with predicted 10-year coronary

heart disease risk

	LVM	LVM/height	LVM/height ^{1.7}	LVM/height ^{2.7}	LVMI/BSA	LVM/LVEDV
		(g/m)	(g/m ^{1.7})	(g/m ^{2.7})	(g/m²)	(g/ml)
Men	-0.07 (0.12)	-0.04 (0.31)	-0.02 (0.67)	-0.01 (0.73)	-0.05 (0.24)	0.17 (<0.001)
Women	0.08 (0.018)	0.11 (0.001)	0.13 (<0.001)	0.16 (<0.001)	0.10 (0.002)	0.30 (<0.001)

LVM, left ventricular mass, BSA, body surface area, LVEDV, left ventricular end diastolic volume. Correlations are Spearman rank correlations (p and (p) values are given) with predicted 10 year coronary heart disease risk using the ATPIII algorithm.

For WB-MRA 2468 segment locations (5%) demonstrated stenoses, of which 1649 (3.5%) showed stenosis <50% and 484 (1.0%) showed stenosis \geq 50% [13]. The median, 80th percentile and 90th percentiles of SASs were 0.00, 1.67 and 3.33 respectively for men, and 0.83, 2.50, and 4.17 for women. There was no significant difference between SASs for men and women (p=0.08). The predicted CHD scores for those with a SAS above and below 80th centile and with and without the presence of any stenosis are shown in table 6.

R. ONL

Table 6: Predicted CHD risk in those with standardised atheroma scores above and

		Men			Women	
	≤80 th	>80 th		≤80 th	>80 th	
	centile	centile		centile	centile	
	SAS	SAS		SAS	SAS	
	(n=464)	(n=113)	p value*	(n=786)	(n=150)	p value*
Median (IQR) predicted CHD	6 (6)	10 (5)	< 0.001	1 (2)	2 (3)	<0.001
risk score (%/10 years)						
	No	Any		No	Any	
	stenosis	stenosis		stenosis	stenosis	
	(n=308)	(n=269)	p value*	(n=457)	(n=479)	p value*
Median (IQR) predicted CHD	6 (6)	8 (7)	<0.001	1 (2)	1 (2)	<0.001
risk score (%/10 years)						

below 80th percentile and in those with and without any stenosis.

*Mann-Whitney test used to compare groups. SAS, standardised atheroma score. 80th centile 1.67 for men and 2.50 for women.

The TASCFORCE study assesses the ability of a novel screening programme combining "traditional" clinical cardiovascular risk estimation with BNP and WBCE-MRI to predict future cardiovascular events. No other studies have investigated screening using this combination of blood and imaging biomarkers of preclinical disease as a potential method to predict future CVD in people free from and at "low" or "intermediate" predicted risk of future disease. The cohort is large and well characterised in terms of cardiovascular risk factors, with an Index of Multiple Deprivation similar to the community from which it was drawn. 602 of those recruited have a predicted 10-year risk of 10-19.9% (classified as intermediate risk); a group that is often debated as to what approach should be taken in terms of primary prevention.

During recruitment a significant number of people had a previously unknown predicted risk ≥20% over 10 years. 97% were men, and were from areas with increased deprivation compared to those who were lower risk and entered the main study. These findings also highlight the problem of currently undetected cardiovascular risk, particularly amongst men and those from areas of deprivation, illustrating the need for improved identification and engagement of those at risk. This could bring greater public health benefits than giving statins to more people at lower risk.

As expected, the BNP levels in the TASCFORCE population were within a "normal" clinical range and were significantly higher in women compared to men, justifying our use of gender specific medians for

BMJ Open

invitation for MRI scan.[12,13] Age was independently associated with BNP levels. This is well recognised,[14,15,16] although the exact mechanism for the association remains unclear. Age related alterations in production, secretion, biological effect or degradation of BNP may be responsible.[17,18] The effect of age is independent of renal function, atrial volume, left ventricular dimension and LV mass.[14] Increasing levels with age may suggest that age specific reference ranges of BNP should be used. However, because age is an important risk factor for CVD, BNP may be reflecting this increased risk. Thus correcting for age when using BNP as a screening tool is inadvisable.

MRI is a safe, relatively non-invasive imaging modality, free from ionising radiation making it more acceptable for use as a screening tool compared to coronary artery calcification scoring using CT. By combining cardiac imaging with whole body angiography, it is conceivable that the sensitivity to detect subclinical disease may be improved as more target organs are imaged. The images also provide a reference for normal values within a low/intermediate risk population. The MRI protocol was kept simple, with the main constituents being WBCE-MRI together with CMR for quantification of LV structure and function – all completed within 45 minutes. The CMR acquisition was undertaken at the midpoint of the protocol (commencing after the first Gd contrast injection) to optimise the protocol in terms of time usage and to enable an assessment of late gadolinium enhancement (LGE) at this stage. The acquisition of other measures such as T1, extracellular volume (ECV), T2 mapping or myocardial strain would have been desirable, but the study was limited by the time available and the technological capabilities of the scanner.

The mean LVM values in our cohort are similar to those reported by other studies that have used steady state free precision imaging sequence MRI to determine LVM in a healthy population without CVD and free from hypertension, high cholesterol or treatment.[19] Mean LVM was also higher in men than women similar to other studies. Increased LVM-to-volume ratio (a marker of left ventricular remodelling) was more strongly correlated with predicted CHD risk than LVM or LVM index in both men and women. This measure has been shown to be independently associated with incident CHD [20] and stroke,[20,21] and suggests this may be a better measure of risk than LVM or LVM index which may not be able to differentiate between physiologically increased LVM due to, for example, exercise.

BMJ Open

The majority of participants had no evidence of atheroma, however, a higher SAS was associated with a higher predicted CHD risk. A WBCE-MRI angiography derived atheroma score similar to ours was associated with traditional cardiovascular risk factors [22], and with the combined end point of cardiac death, MI, stroke or coronary revascularisation when adjusted for multiple risk factors in a study of 70 year olds, some of whom had a history of CVD.[23] The score improved discrimination and reclassification when added to the Framingham risk score. In our study, the median SAS of 0.83% for females indicates that at least half the female group did have detectable arterial narrowing. This median approached statistical significance (p=0.08) relative to the equivalent for males, although we do not believe this has clinical implications since the overwhelming number of segments assessed (over 40000, 94.7%) were classified as normal.

We report a sex-differential regarding LVM and 10y-CHD risk, where LVM and indexed LVM were not correlated among men, but significantly correlated among women. Three large observational studies (n=1715-4988) reported raised LVM and LVMI, which was associated with higher incident CVD events, but did not report any sex difference.[24-26] Our finding that the LVM and LVMI was significantly associated with predicted 10-year CHD risk in females, but not in males, appears novel.

Healthcare in Scotland is delivered within the public sector National Health Service, and all healthcare contacts, diagnoses and procedures are systematically recorded. Further, all prescribing information from GPs is available in an anonymised form. Follow up is via electronic record linkage, which will reduce the number lost to follow up as direct contact is not required. This will allow analysis of whether the combination of BNP with cardiac MRI markers are able to improve prediction of future CVD. Stored serum, plasma and DNA will allow future novel biomarkers to be discovered or validated.

There is potential bias in the imaged population as those imaged are at the upper end of the BNP range. The MRI results therefore may not represent the low risk population and will prevent comparison of imaging biomarkers between those with high and low BNP levels. However, clinical outcomes between the two groups will be analysed to determine if lower BNP levels can exclude future events.

Given the cost of MRI, the economic viability of this program will need to be assessed. This will be done through a comprehensive follow up which will involve collecting data on hospital admissions and prescriptions, facilitating future economic evaluations of this screening programme.

In conclusion, the TASCFORCE study is investigating the ability of a novel screening programme incorporating BNP and WBCE-MRI to predict future cardiovascular events in a population at low or intermediate predicted risk of CHD. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with blood and imaging biomarkers, and robust follow up via electronic record linkage, will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham'.

Collaboration

All data and materials are available stored in the University of Dundee, patient identifiable data is stored in the University of Dundee and NHS Tayside Health Informatics Centre, a Safe Haven. The datasets generated and/or analysed during the current study are not publicly available due to ongoing 10-year analyses but are available from the corresponding author on reasonable request.

Etł	nics approval and consent to participate
Th	e protocol was approved by the Tayside Committee of Medical Research Ethics B (reference
nu	mber: 07/S1402/42) and is available at http://www.controlled-
<u>tria</u>	als.com/ISRCTN38976321/TASCFORCE.
Со	nsent for publication
All	authors give consent for this data to be published
Av	ailability of data and materials
All	data and materials are available stored in the University of Dundee; patient identifiable data is
sto	ored in the Safe Haven. The datasets generated and/or analysed during the current study are no
•	blicly available due to ongoing 10-year analyses but are available from the corresponding author asonable request.
Со	mpeting interests
Th	ere are no competing interests
Fu	nding
Th	is study was funded by Chest Heart and Stroke (Scotland) and the Souter Foundation
Au	thors' contributions
JJF	FB and GH wrote the protocol, obtained the funding and contributed to writing the paper
MA	AL analysed the data to date and contributed to writing the paper
RL	was the study coordinator and contributed to writing the paper
AS	and FS were on the Trial Steering committee and contributed to writing the paper
CA	F contributed to writing the paper and will be analysing future data
Ac	knowledgements
Th	e Study consortium would like to thank the participants for taking part, and CHSS/the Souter
Fo	undation for the funding/
Au	thors' Information
1Di	ivision of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical
Sc	hool, Dundee. DD1 9SY.
² P	resent address: St Andrews University, St Andrews, Scotland
	ledical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
79	
40	
40 41	
40	
40 41	
40 41 42 43	
40 41 42 43 44	
40 41 42 43 44 45	
40 41 42 43 44 45 46	
40 41 42 43 44 45	
40 41 42 43 44 45 46	
40 41 42 43 44 45 46 47 48	
40 41 42 43 44 45 46 47 48 49	
40 41 42 43 44 45 46 47 48 49 50	
40 41 42 43 44 45 46 47 48 49 50 51	
40 41 42 43 44 45 46 47 48 49 50 51 52	
40 41 42 43 44 45 46 47 48 49 50 51	
40 41 42 43 44 45 46 47 48 49 50 51 52 53	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	

to beet teries only

1	
2	
3	
4	
5	
6	
7	
8 9	
9 10	
12 13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27 28	
28 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
50 59	
60	

References

[1] Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006;92:1752-9.

[2] Brindle PM, McConnachie A, Upton MN, Hart CL, Davey Smith G, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br. J. Gen. Pract. 2005;55:838-45.

[3] Michos ED, Vasamreddy CR, Becker DM, Yanek LR, Moy TF, Fishman EK, et al. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am. Heart. J. 2005;150:1276-81.

[4] Eleid MF, Lester SJ, Wiedenbeck TL, Patel SD, Appleton CP, Nelson MR, et al. Carotid ultrasound identifies high risk subclinical atherosclerosis in adults with low framingham risk scores. J. Am. Soc. Echocardiogr. 2010;23:802-8.

[5] Ebrahim S, Taylor FC, Brindle P. Statins for the primary prevention of cardiovascular disease.BMJ. 2014;348:g280.

[6] Smeeth L, Hemingway H. Improving vascular health: are pills the answer? BMJ. 2012;344:e3802.[7] Ebrahim S, Casas JP. Statins for all by the age of 50 years? Lancet. 2012;380:545-7.

[8] Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-97.

[9] Gandy SJ, Lambert M, Belch JJ, Cavin ID, Crowe E, Littleford R, et al. Technical assessment of whole body angiography and cardiac function within a single MRI examination. Clin. Radiol. 2015;70:595-603.

[10] Gandy SJ, Lambert M, Belch J, Cavin I, Crowe E, Littleford R, MacFarlane JA, Matthew SZ,
Martin P, Nicholas RS, Struthers A, Sullivan F, Waugh SA, White RD, Weir-McCall JR, Houston JG.
3T MRI investigation of cardiac left ventricular structure and function in a UK population: The tayside screening for the prevention of cardiac events (TASCFORCE) study. J Magn Reson Imaging 2016;44:1186–1196.

[11] Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for

healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539-42.

[12] Weir-McCall JR, Fitzgerald K, Papaguircopulo CJ, Gandy SJ, Lambert M, Belch JJF, Cavin I, Littleford R, Macfarlane JA, Matthew SZ, Nicholas RS Struthers AD, Sullivan FM, Shelley WA, White RD, Houston JG. Prevalence of unrecognized myocardial infarction in a low–intermediate risk asymptomatic cohort and its relation to systemic atherosclerosis Eur Heart J Cardiovasc Imaging. 2017 Jun 1;18(6):657-662. doi: 10.1093/ehjci/jew155

[13] Matthew A. Lambert, Jonathan R. Weir-McCall, Marco Salsano, Stephen J. Gandy, Daniel Levin,
Ian Cavin, Roberta Littleford, Jennifer A. MacFarlane, Shona Z. Matthew, Richard S. Nicholas, Allan
D. Struthers, Frank Sullivan, Shelley A. Henderson, Richard D. White, Jill J. F. Belch, J. Graeme
Houston. Prevalence and Distribution of Atherosclerosis in a Low- to Intermediate-Risk Population:
Assessment with Whole-Body MR Angiography. Radiology. 2018 Jun;287(3):795-804.

[14] Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-97.
[15] Nakamura M, Tanaka F, Takahashi T, Makita S, Ishisone T, Onodera M, et al. Sex-specific threshold levels of plasma B-type natriuretic peptide for prediction of cardiovascular event risk in a Japanese population initially free of cardiovascular disease. Am. J. Cardiol. 2011;108:1564-9.
[16] Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC, Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology. 2002;40:976-82.

[17] Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 2002;90:254-8.

[18] Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology. 2006;47:345-53.

[19] Kawai K, Hata K, Tanaka K, Kubota Y, Inoue R, Masuda E, et al. Attenuation of biologic compensatory action of cardiac natriuretic peptide system with aging. Am. J. Cardiol. 2004;93:719-23.
[20] Giannessi D, Andreassi MG, Del Ry S, Clerico A, Colombo MG, Dini N. Possibility of age regulation of the natriuretic peptide C-receptor in human platelets. J. Endocrinol. Invest. 2001;24:8-16.

Page 27 of 31

1

2

BMJ Open

כ ⊿
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24 25
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
46 47
48
49 50
50
51
52
53
54
55
56
57
58
59
60

[21] Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB,Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children.Journal of Cardiovascular Magnetic Resonance. 2015;17:29.

[22] Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 2008;52:2148-55.

[23] Jain A, McClelland RL, Polak JF, Shea S, Burke GL, Bild DE, et al. Cardiovascular imaging for assessing cardiovascular risk in asymptomatic men versus women: the multi-ethnic study of atherosclerosis (MESA). Circ. Cardiovasc. Imaging. 2011;4:8-15.

[24] Hansen T, Ahlstrom H, Wikstrom J, Lind L, Johansson L. A total atherosclerotic score for whole-body MRA and its relation to traditional cardiovascular risk factors. Eur. Radiol. 2008;18:1174-80.
[25] Lundberg C, Johansson L, Barbier CE, Lind L, Ahlstrom H, Hansen T. Total atherosclerotic burden by whole body magnetic resonance angiography predicts major adverse cardiovascular events. Atherosclerosis. 2013;228:148-52.

[26] Gupta S, Berry JD, Ayers CR, Peshock RM, Khera A, de Lemos JA, et al. Left VentricularHypertrophy, Aortic Wall Thickness, and Lifetime Predicted Risk of Cardiovascular Disease:the DallasHeart Study. JACC Cardiovasc Imaging. 2010;3(6):605-13.

[27] Tsao CW, Gona PN, Salton CJ, Chuang ML, Levy D, Manning WJ, et al. Left Ventricular
 Structure and Risk of Cardiovascular Events: A Framingham Heart Study Cardiac Magnetic
 Resonance Study . J Am Heart Assoc 2015; 4(9): e002188

[28] Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left Ventricular Mass at MRI and Long-Term Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiol, 2019; 293:107–114

The TASCFORCE Consortium

Prof Jill JF Belch (Principal Investigator), Prof J Graeme Houston, Dr Matthew A Lambert, Prof Allan Struthers, Prof Frank Sullivan (Co-investigators); Dr Roberta Littleford (Trial Manager); Anita Hutcheon, Janice Rowland (Trial Nurses); Dr Jonathan Weir McCall (Imaging methods); Daniel Levin, (statistical analysis); and Prof Colin Palmer (genetics lead).

to peet teriewony

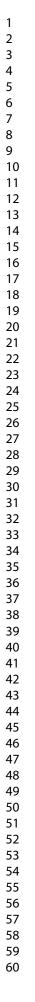
Table legends

Figure 1: Consort diagram showing TASCFORCE study recruitment

Table 1. Characteristics of subjects excluded due to presence of increased CHD risk or

hypertension.

- Table 2. Baseline characteristics of participants.
- Table 3. Predictors of log10 BNP: multivariable regression analysis.
- Table 4. Left ventricular characteristics by gender


Table 5: Correlations of left ventricular measures with predicted 10-year coronary heart

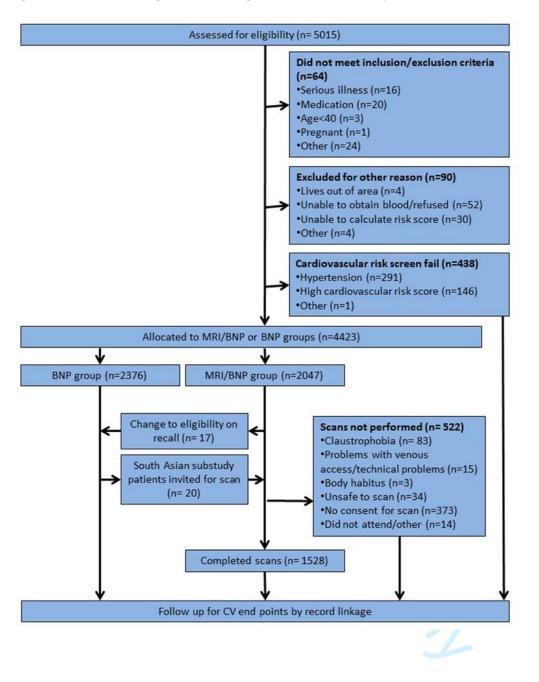

disease risk

Table 6: Predicted CHD risk in those with standardised atheroma scores above and below

80th percentile and in those with and without any stenosis.

Figure 1: Consort diagram showing TASCFORCE study recruitment

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6
Turterpunts		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	6
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6/7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how due study size was arrived at Explain how quantitative variables were handled in the analyses. If	
Quantitative variables	11	applicable, describe which groupings were chosen and why	
Statistical mathada	12	(<i>a</i>) Describe all statistical methods, including those used to control for	13
Statistical methods	12		15
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	1
		(<u>e</u>) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8-1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8-1
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8-1
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N//
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/2
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	N/2
		Case-control study—Report numbers in each exposure category, or summary	N/2
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	14-
			18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	14-
		their precision (eg, 95% confidence interval). Make clear which confounders were	18
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	N/2
		sensitivity analyses	
Discussion			_
Key results	18	Summarise key results with reference to study objectives	14-
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	19/
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	20/
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19/
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	4
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:A Prospective Cardiovascular Risk Screening Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063594.R1
Article Type:	Cohort profile
Date Submitted by the Author:	13-Sep-2022
Complete List of Authors:	Lambert, Matthew ; NHS Tayside, Stroke Houston, J; University of Dundee, Division of Molecular and Clinical Medicine Littleford, Roberta; University of Dundee, Division of Molecular and Clinical Medicine Fitton, Catherine; University of Dundee, Division of Molecular and Clinical Medicine Struthers, Allan; University of Dundee, Division of Molecular and Clinical Medicine Sullivan, Frank; University of St. Andrews; North York General hospital, Gandy, Stephen; NHS Tayside, Medical Physics Belch, Jill; University of Dundee, Division of Molecular and Clinical Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Public health
Keywords:	Magnetic resonance imaging < RADIOLOGY & IMAGING, CARDIOLOGY, Cardiovascular imaging < RADIOLOGY & IMAGING
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:

A Prospective Cardiovascular Risk Screening Study.

Matthew A Lambert¹, J Graeme Houston¹, Roberta Littleford¹, Catherine A Fitton¹, Allan Struthers¹, Frank Sullivan^{1,2}, Stephen Gandy³ Jill JF Belch¹. On behalf of the TASCFORCE Trial Consortium.

¹ Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY.

² Present address: St Andrews University, St Andrews, Scotland

³ Medical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

Correspondence:

General:

Prof Jill JF Belch

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

P.P.P.

Tel: 01382 383721

j.j.f.belch@dundee.ac.uk

Imaging:

Prof J Graeme Houston

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

Tel: 01382 383721

j.g.houston@dundee.ac.uk

Word count: 3899 Figures: 1 Tables: 6

Abstract

Purpose: Risk factor based models struggle to accurately predict development of cardiovascular disease (CVD) at the level of the individual. Ways of identifying people with low predicted risk who will develop CVD would allow stratified advice and support informed treatment decisions about the initiation or adjustment of preventive medication, and this is the aim of this prospective cohort study.

Participants: The Tayside Screening for Cardiac Events (TASCFORCE) study recruited male and females aged ≥40yrs, free from known CVD, with a predicted 10-year risk of coronary heart disease (CHD) <20%. If B-type natriuretic peptide (BNP) was greater than their gender-median, participants were offered a whole-body contrast enhanced magnetic resonance (WBCE-MRI) scan (cardiac imaging, whole-body angiography to determine left ventricular parameters, delayed gadolinium enhancement, atheroma burden). Blood, including DNA, was stored for future biomarker assays. Participants are being followed up using electronic record-linkage cardiovascular outcomes.

Findings to date: 4423 (1740, 39.3% male) were recruited. Mean age 52.3 years. Median BNP 7.50ng/L and 15.30ng/L for male and females respectively. 602 had a predicted 10-year risk of 10-19.9%, with the remainder <10%. Age, female sex, ex-smoking status, lower heart rate, higher high-density lipoprotein and lower total cholesterol were independently associated with higher log10 BNP levels. Mean left ventricular mass was 129.2g and 87.0g in males and females respectively.

Future plans: The TASCFORCE study is investigating the ability of a screening programme, using BNP and WBCE-MRI, at the time of enrolment, to evaluate prediction of CVD in a population at low/intermediate risk.. Blood stored for future biomarker analyses will allow testing/development of novel biomarkers. We believe this could be a new UK Framingham study allowing study for many years to come.

Clinical Trial Registration: ISRCTN38976321 <u>https://doi.org/10.1186/ISRCTN38976321</u> registered 4th April 2007

Key words: Cardiovascular risk; Clinical Trial; magnetic resonance imaging; B-type natriuretic peptide; Cardiovascular Biomarkers

Strengths and weaknesses

1. This study is one of the largest MRI/Cardiovascular risk studies to be published. It could be a UK Framingham

2. The MRI Scanning is a novel element to a cardiovascular risk trial, particularly as it is whole body and contrast enhanced

3. As many of the participants have also signed up to SHARE, it will be possible to link all subsequent blood tests from SHARE with our cohort details to study novel biomarkers as they are discovered

4. As these were 'healthy' volunteers it will take some time for cardiovascular events to occur

5. Not all participants underwent MRI scanning due to cost, only those above the BNP cut off, however numbers (n=1528) are sufficient to allow evaluations, and all (n=4423) had the demographic, and blood screening.

Page 5 of 31	BMJ Open
1	List of abbreviations
2 3	
4 5	TASCFORCE - The Tayside Screening for Cardiac Events
6 7	CVD – Cardiovascular disease
8 9	WBCE-MRI -whole-body contrast enhanced magnetic resonance scan
10 11	BNP - B-type natriuretic peptide
12 13	CHD – Coronary Heart Disease
14 15	GP – General Practice
16 17 18	ECG – electrocardiogram
19	BP – Blood pressure
20 21 22	ATPIII – Adult Treatment Panel III
23 24	CMR - Cardiac magnetic resonance
25 26	LVM - left ventricular mass
27 28	SAS - standardised atheroma score
29 30	SD - standard deviation
31 32	IQR -inter-quartile range
33 34 35	CT – Computerised Tomography
36 37	MRI – Magnetic Resonance Imaging
37 38 39	CT – Computerised Tomography MRI – Magnetic Resonance Imaging HDL – High Density Lipoprotein LDL – Low Density Lipoprotein MI – Myocardial Infarction SIMD - Scottish index of multiple deprivation LGE – late gadolinium enhancement
40 41	LDL – Low Density Lipoprotein
42 43	MI – Myocardial Infarction
44 45	SIMD - Scottish index of multiple deprivation
46 47	LGE – late gadolinium enhancement
48 49	UMI – unidentified myocardial infarct
50 51	ECV - extracellular volume
52 53	BMI – Body Mass Index
54 55	
56	
57 58	
59	
60	

Introduction

Currently statins and other drugs for cardiovascular disease (CVD) primary prevention is targeted at those at increased risk by using risk estimation tools, but these have poor external validity.[1] A significant number of CVD occurs in people with "low" or "intermediate" cardiovascular risk [2] and many in these groups have evidence of atherosclerosis.[3,4] Offering statins to a wider range of the population has been suggested.[5] However, offering statins more widely raises a number of economic and ethical questions and concerns,[6,7] so improved targeted therapy may be more acceptable. Risk factor-based models struggle to predict development of disease at an individual person level, and an alternative approach could be the detection of preclinical disease - an approach successfully employed in cancer. A similar strategy for CVD could facilitate individualised risk assessment and aid decisions about treatment.

The **Ta**yside **Sc**reening for **C**ardiac **E**vents (TASCFORCE) study is investigating the ability of a screening programme using B-type natriuretic peptide (BNP) and whole-body contrast enhanced magnetic resonance imaging (WBCE-MRI) incorporating cardiac imaging and whole-body angiography to detect preclinical disease and predict future clinical CVD in a large population at low or intermediate risk. Blood stored will allow validation of future proposed biomarkers. The study is novel in using a relatively cheap biomarker (BNP) to decide who proceeds to a relatively expensive test (MRI scan).

The aim of this study is to provide baseline data on both imaging and blood biomarkers, to understand which, if any, may predict future Cardiovascular events. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with the blood and imaging biomarkers and robust follow up via electronic health record linkage will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham.'

Cohort description

1.1. Study design

TASCFORCE is a prospective normal volunteer cardiovascular risk screening study (ISRCTN number: ISRCTN38976321). The East of Scotland Research Ethics Committee approved the protocols (07/S1402/42). The study was conducted at Ninewells Hospital and Medical School, Dundee, UK, in accordance with the Good Clinical Practice Declaration of Helsinki. The volunteers gave written informed consent to participate in this study.

The study is registered on http://www.controlled-trials.com/ISRCTN38976321/TASCFORCE.

Males and females aged 40 years or older living in Tayside or Fife, Scotland, who were free from CVD and had a predicted 10-year risk of coronary heart disease (CHD) <20% were recruited. Participants were excluded if they were pregnant, breast-feeding, of child-bearing potential not using adequate contraception, unable to give consent, or had another accepted indication for statin therapy. To produce a cohort able to participate in a potential future statin intervention study those with contraindications to a statin were excluded, including known alcohol abuse or participation in a clinical trial other than observational trials or registries concurrently or within 30 days prior to screening, were excluded.

Participants were recruited from General Practice (GP) surgeries, local employers, publicity campaigns, via press and radio coverage of the project, direct mailing and using Human Research Ethics Committee approved leaflets. We aimed to obtain a locally representative population, so recruitment was targeted at socioeconomic and ethnic groups often under-represented in studies. Participants were recruited between November 2007 and February 2013.

1.2 Patient and Public Involvement

The Souter Foundation trustees ('lay' people) were involved in the design of the study. Volunteers who were recruited to the study were involved in the design, regarding the scheduling and timing of testing, to improve convenience for participants. Many volunteers were involved in further recruitment, by passing on information via word of mouth. Results of the final analysis using linked data will be disseminated to the participants via postal address.

1.3 Screening visit and risk estimation

BMJ Open

Following written informed consent for the study, and for data-linkage for up to 20 years, the following information was obtained: medical history, lifestyle risk factors (diet/exercise/smoking status), risk perception question, family history of premature CVD, and concomitant medication. Risk perception included questions regarding family history, exercise frequency, cigarette smoking and added salt to food. Subjects were examined to obtain their height, weight, waist circumference and blood pressure (BP) and a 12-lead electrocardiogram (ECG) was recorded. Plasma BNP, random lipid profile and random plasma glucose levels were determined using point of care testing equipment (Alere Triage BNP assay with Alere Triage MeterPro for BNP, and Alere Cholestech LDX analyser for lipids and glucose).

Each participant's predicted CHD event rate was calculated by using the National Cholesterol Education Program Adult Treatment Panel III (ATP III) guidelines.[8] Participants who had a predicted risk \geq 20% or a BP >145/90 mmHg were excluded but were asked for consent to be followed up. Ineligible subjects were informed of their risk factors, given a copy of their results, and asked to attend their GP for formal review. All participants received counselling on modifiable risk factors by study staff aided by British Heart Foundation leaflets.

1.4 Magnetic resonance imaging

Those with a BNP greater than the median (determined after 200 participants) were invited to attend for a WBCE-MRI scan. At a prespecified review after 1000 subjects it was observed that the median BNP was higher for females than males. The trial steering committee (comprising of the authors) decided to invite for a scan based on gender specific median BNP and the protocol was amended accordingly. Those recruited earlier who would be eligible based on the amended gender specific median were recalled. If the delay was greater than three months, they had their BNP, cholesterol and CHD risk score reassessed to ensure continued eligibility.

Combined cardiac and whole-body angiography MRI scans were performed on a 32-channel 3T Magnetom Trio scanner (Siemens, Erlangen, Germany) and used gadoteric acid contrast agent (Dotarem; Guerbet Laboratories, France). The scan protocol development and validation has been described in detail elsewhere.[9,10]

Details of the image acquisition, analysis and validation of the technique have been described and validated in earlier publications.[9,10,11] Cardiac magnetic resonance (CMR) images were analysed offline by four blinded observers using commercial software ('Argus', Siemens Multi-modality Work

BMJ Open

Platform, version VB15). Electronic region of interest contours were placed around endocardial and epicardial left ventricular borders at end-diastole and end-systole on all CMR image slices identified to contain ≥50% full-thickness myocardium. Quantitative measurement of left ventricular mass (LVM), ejection fraction, end-diastolic volume, end-systolic volume, and stroke volume were derived. The presence of luminal stenosis was assessed in 30 arterial segments from the internal carotids to the distal anterior tibial arteries (the coeliac artery was not included due to marked anatomical variation resulting in poor inter-observer agreement). A categorical grading scale from 0-4 was applied to each arterial segment as follows: grade 0=healthy segment, grade 1=1-50% stenosis, grade 2=51-70% stenosis, grade 3=71-99% stenosis, and grade 4=vessel occlusion. An additional point was added for presence of aneurysm >50% of the native vessel diameter. If any arterial segment was uninterpretable because of poor image quality, it was not allocated a numeric score. A standardised atheroma score (SAS) to express atheroma burden severity across the body as a percentage was calculated using the following equation where n is the number of interpretable segments:

 $SAS=[(\sum score/n)x1/4]x100$

Of those invited, 1528 (74.8%) completed or partially completed an MRI scan. Thirty-four were not safe to scan due to metal in situ, 373 did not agree to proceed to have a scan, and 12 failed to attend. One hundred and one participants abandoned their scan mainly due to claustrophobia (n=83), with others abandoned due to large body habitus, problems with IV access or other technical issues. Thirty-two participants (2.1% participants scanned) had an incidental finding on their MRI scan (MI detected by delayed enhancement, structural cardiac abnormality, benign masses, malignant masses, peripheral vascular abnormality, anatomical variation). These subjects were removed from the key study group.

1.5 Baseline characteristics

Participant flow is summarised in the CONSORT diagram (figure 1); 5015 people (n=2066, 41.2% male) were screened. In total, 438 failed screening due to either hypertension (n=291, 137 (47.1%) male), a predicted 10-year CHD risk ≥20% (n=146, 142 (97.3%) male) or marked dyslipidaemia (n=1, female). The enrolled population was determined to be at low or intermediate risk of CVD. (Supplemental Table 1). We have a specific ethnic group of South Asian people (n=19) deliberately

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

enrolled to attempt to cater for ethnic diversity. These subjects were recruited with the help of a local Mosque. The remainder are white British. These two ethnic groups are dominant in Tayside and the relative proportions enrolled reflects the distribution in the population. Further we have documented the Scottish Index of Multiple Deprivation (SIMD) for all subjects i.e., the area of deprivation in which they lived at time of enrolment. As the Scottish population is not very mobile, we believe this can be used in our 10y analyses. We also have other risk factors which relate to socioeconomic status such as obesity (BMI, waist Circumference), cigarette smoking and sex. These social determinants will all be evaluated in our 10y analysis. A total of 4423 (1740, 39.3% male) participants were eligible for the study.

Median (IQR) BNP levels for men and women were 7.50 (8.90) and 15.30 (17.63) ng/L respectively. The cut-off BNP values for being offered an MRI scan were 8.2 and 16.4 ng/L respectively; all South Asian participants were invited for MRI irrespective of BNP level. The characteristics of those invited for an MRI scan (MRI/BNP group), and those not invited (BNP group) are summarised in table 1.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BNP group	MRI/BNP group	Difference
	(n=2376)	(n=2047)	between BNP
			and MRI/BNP
			groups*
Median (IQR) age (years)	49.5 (10.6)	53.4 (12.5)	p<0.001
No (%) men	937 (39.4)	803 (39.3)	p=0.94
No (%) current smokers	351 (14.8)	221 (10.8)	p<0.001
No (%) former smokers	663 (27.9)	563 (27.5)	p=0.81
No (%) never smokers	1361 (57.3)	1256 (61.4)	p=0.004
Mean (SD) systolic BP	122.1 (11.74)	122.9 (11.97)	p=0.027
mmHg)			
Mean (SD) diastolic BP	73.6 (9.40)	73.1 (9.23)	p=0.06
mmHg)			
/ledian (IQR) heart rate	67.0 (14)	63.0 (12)	p<0.001
beats per min)			
Mean (SD) total cholesterol	5.47 (1.02)	5.48 (0.99)	p=0.79
mmol/L)			
Mean (SD) high density	1.34 (0.44)	1.43 (0.42)	p<0.001
ipoprotein (mmol/l)			
Mean (SD) low density	3.41 (0.92)	3.40 (0.42)	p=0.84
ipoprotein (mmol/l)			
/ledian (IQR) triglycerides	1.38 (1.18)	1.29 (1.02)	p<0.001
mmol/l)			
Median (IQR) body mass	26.7 (5.80)	26.2 (5.35)	p<0.001
ndex (kg/m²)			
/ledian (IQR) weight (kg)	75.0 (21.23)	74.1 (19.95)	p=0.08
Mean (SD) height (cm)	167.10 (9.09)	167.67 (9.29)	p=0.041
Mean (SD) waist	88.0 (13.56)	86.9 (12.95)	p=0.006
circumference (cm)			
Median (IQR) 10-year CHD	2.0 (5.0)	2.0 (5.0)	p<0.001
event risk estimation (%)			
No (%) with 10-year CHD	286 (12.0)	316 (15.4)	p=0.001

No (%) with family history of		561 (23.6)	514 (25.1)	p=0.25
cardiovascular disease	е			
Scottish Index of	1	132 (5.6)	85 (4.2)	p=0.054
Multiple Deprivation	2	145 (6.1)	106 (5.2)	
decile, number (%)	3	208 (8.8)	149 (7.3)	
	4	134 (5.6)	116 (5.7)	
	5	143 (6.0)	126 (6.2)	
	6	218 (9.2)	206 (10.1)	
	7	349 (14.7)	334 (16.3)	
	8	442 (18.6)	401 (19.6)	
	9	428 (18.0)	371 (18.1)	
	10	169 (7.1)	150 (7.3)	
	N/A	8 (0.3)	3 (0.1)	-

BNP, B-type natriuretic peptide, MRI, magnetic resonance imaging, IQR, inter-quartile range, SD, standard deviation, CHD, coronary artery disease. *Comparisons for variables with normal distributions are independent samples t-tests and for skewed distribution the Mann-Whitney-Wilcoxon test.

BMJ Open

1.6 Follow up

Electronic anonymised data linkage by the Health Informatics Centre at the University of Dundee will provide follow up data on hospital admissions (including diagnoses and procedures) and GP prescriptions at regular intervals for up to 20 years (10, 15 and 20 years planned). This uses data from the Scottish Office's Information Services Division which collects data on all hospital and GP encounters including prescriptions, diagnoses, and procedures and from the General Registrar's office which collects data on all deaths in Scotland. Endpoints of interest are myocardial infarction, hospitalisation for angina, requirement for any endovascular procedure, stroke, critical limb ischemia, amputation, sudden death, cardiac and all-cause mortality. Underlying cause of death recorded on death certificates is supplemented by information from hospital records, including post-mortem examinations, if performed.

1.7 Statistical analysis

Analysis was performed using R (v.3.1) and SPSS (v.21). Continuous variables were expressed as mean and standard deviation (SD) for those with a normal distribution or median and inter-quartile range (IQR) for those with a skewed distribution, and categorical variables were expressed as numbers and percentages. When comparing characteristics between participant groups independent samples t-tests were used for variables with a normal distribution and Wilcoxon Mann-Whitney tests were used for those with a skewed distribution. To reduce skewness BNP levels were log10 transformed before regression analyses. Multivariable linear regression analysis was used to determine independent predictors of log10 BNP level. The following variables were initially included in the model: age, sex, smoking status, systolic BP, diastolic BP, heart rate, total cholesterol, HDL cholesterol, triglycerides, glucose, BMI, waist circumference, family history of CVD and Scottish index of multiple deprivation (SIMD) decile. Analysis of correlations used Pearson correlation coefficients for variables with a normal distribution and Spearman Rank correlation for those with a skewed distribution.

Findings to date

Increasing age, female sex, ex-smoking status (but not current smoking status), lower heart rate, higher HDL and lower total cholesterol were significantly associated with higher log10 BNP levels (table 2).

Julie

l	Jnstandardised Coefficient (95%	
	confidence intervals)	p value
Age (years)	0.010 (0.009, 0.011)	<0.001
Male sex	-0.211 (-0.230, -0.192)	<0.001
Ex-smoker	-0.026 (-0.045, -0.006)	0.01
Heart rate (bpm)	-0.006 (-0.007, -0.005)	<0.001
Total cholesterol (mmol/l)	-0.020 (-0.028, -0.011)	<0.001
High density lipoprotein (mmol/l)	0.055 (0.033, 0.076)	<0.001

Table 2. Predictors of log10 BNP: multivariable regression analysis

The left ventricular characteristics are shown in table 3. A total of 10 patients (0.67%) displayed LGE, indicating the presence of an unidentified myocardial infarct (UMI) [12].

	M	en	Wor	nen	
	Mean	SD	Mean	SD	p value*
LVM (g)	129.2	24.4	87.0	16.7	<0.001
LVEDV (ml)	155.0	27.7	119.6	21.1	<0.001
LVESV (ml)	50.2	14.8	37.1	12.0	<0.001
LVM/LVEDV (g/ml)	0.85	0.16	0.74	0.13	<0.001
Ejection fraction (%)	67.9	6.2	69.3	6.6	<0.001
Stroke volume (ml)	104.8	19.0	82.5	14.2	<0.001
Cardiac output (l/min)	6.46	1.20	5.47	1.13	<0.001
LVM/height	73.2	13.1	53.5	9.8	<0.001
LVM/height ^{1.7}	49.3	8.7	38.1	7.0	<0.001
LVM/height ^{2.7}	28.0	5.0	23.5	4.4	<0.001
LVM/BSA	64.3	10.6	49.5	8.0	<0.001

Table 3. Left ventricular characteristics by gender

SD, standard deviation, LVM, left ventricular mass, LVEDV, left ventricular end-diastolic volume, LVESV, left ventricular end systolic volume, BSA, body surface area. *Comparison between men and women using independent samples t-test.

Three cases (0.2%) were consistent with UMI, and 7 were considered non-specific and located in the mid-myocardium (n=4), epicardium (n=1), or right ventricular insertion points (n=2). Spearman rank correlations of left ventricular measurements with predicted CHD risk score are shown in table 4.

Table 4: Correlations of left ventricular measures with predicted 10-year coronary

heart disease risk

	LVM	LVM/height	LVM/height ^{1.7}	LVM/height ^{2.7}	LVMI/BSA	LVM/LVEDV
		(g/m)	(g/m ^{1.7})	(g/m ^{2.7})	(g/m²)	(g/ml)
Men	-0.07 (0.12)	-0.04 (0.31)	-0.02 (0.67)	-0.01 (0.73)	-0.05 (0.24)	0.17 (<0.001)
Women	0.08 (0.018)	0.11 (0.001)	0.13 (<0.001)	0.16 (<0.001)	0.10 (0.002)	0.30 (<0.001)

LVM, left ventricular mass, BSA, body surface area, LVEDV, left ventricular end diastolic volume. Correlations are Spearman rank correlations (ρ and (p) values are given) with predicted 10-year coronary heart disease risk using the ATPIII algorithm.

For WB-MRA 2468 segment locations (5%) demonstrated stenoses, of which 1649 (3.5%) showed stenosis <50% and 484 (1.0%) showed stenosis \geq 50% [13]. The median, 80th percentile and 90th percentiles of SASs were 0.00, 1.67 and 3.33 respectively for men, and 0.83, 2.50, and 4.17 for women. There was no significant difference between SASs for men and women (p=0.08). The predicted CHD scores for those with a SAS above and below 80th centile and with and without the presence of any stenosis are shown in table 5.

Revenue on the second

Table 5: Predicted CHD risk in those with standardised atheroma scores above and

		Males			Females	
	<u>≤</u> 80 th	>80 th		<u>≤</u> 80 th	>80 th	
	centile	centile		centile	centile	
	SAS	SAS		SAS	SAS	
	(n=464)	(n=113)	p value*	(n=786)	(n=150)	p value*
Median (IQR) predicted CHD	6 (6)	10 (5)	< 0.001	1 (2)	2 (3)	<0.001
risk score (%/10 years)						
	No	Any		No	Any	
	stenosis	stenosis		stenosis	stenosis	
	(n=308)	(n=269)	p value*	(n=457)	(n=479)	p value*
Median (IQR) predicted CHD	6 (6)	8 (7)	<0.001	1 (2)	1 (2)	<0.001
risk score (%/10 years)						

below 80th percentile and in those with and without any stenosis.

*Mann-Whitney test used to compare groups. SAS, standardised atheroma score. 80th centile 1.67 for men and 2.50 for women.

The TASCFORCE study assesses the ability of a novel screening programme combining "traditional" clinical cardiovascular risk estimation with BNP and WBCE-MRI to predict future cardiovascular events. No other studies have investigated screening using this combination of blood and imaging biomarkers of preclinical disease as a potential method to predict future CVD in people free from and at "low" or "intermediate" predicted risk of future disease. The cohort is large and well characterised in terms of cardiovascular risk factors, with an Index of Multiple Deprivation similar to the community from which it was drawn. Of those recruited, 602 have a predicted 10-year risk of 10-19.9% (classified as intermediate risk); a group that is often debated as to what approach should be taken in terms of primary prevention.

During recruitment, a significant number of people had a previously unknown predicted risk ≥20% over 10 years. A total of 97% were males, and from areas with increased deprivation compared to those who were lower risk and entered the main study. These findings also highlight the problem of currently undetected cardiovascular risk, particularly amongst males and those from areas of deprivation, illustrating the need for improved identification and engagement of those at risk. This could bring greater public health benefits than giving statins to more people at lower risk.

As expected, the BNP levels in the TASCFORCE population were within a "normal" clinical range and were significantly higher in females compared to males, justifying our use of gender specific medians

BMJ Open

for invitation for MRI scan.[12,13] Age was independently associated with BNP levels. This is well recognised,[14,15,16] although the exact mechanism for the association remains unclear. Age related alterations in production, secretion, biological effect or degradation of BNP may be responsible.[17,18] The effect of age is independent of renal function, atrial volume, left ventricular dimension and LV mass.[14] Increasing levels with age may suggest that age specific reference ranges of BNP should be used. However, because age is an important risk factor for CVD, BNP may be reflecting this increased risk. Thus, correcting for age when using BNP as a screening tool is inadvisable.

MRI is a safe, relatively non-invasive imaging modality, free from ionising radiation making it more acceptable for use as a screening tool compared to coronary artery calcification scoring using CT. By combining cardiac imaging with whole body angiography, it is conceivable that the sensitivity to detect subclinical disease may be improved as more target organs are imaged. The images also provide a reference for normal values within a low/intermediate risk population. The MRI protocol was kept simple, with the main constituents being WBCE-MRI together with CMR for quantification of LV structure and function – all completed within 45 minutes. The CMR acquisition was undertaken at the midpoint of the protocol (commencing after the first Gd contrast injection) to optimise the protocol in terms of time usage and to enable an assessment of late gadolinium enhancement (LGE) at this stage. The acquisition of other measures such as T1, extracellular volume (ECV), T2 mapping or myocardial strain would have been desirable, but the study was limited by the time available and the technological capabilities of the scanner.

The mean LVM values in our cohort are similar to those reported by other studies that have used steady state free precision imaging sequence MRI to determine LVM in a healthy population without CVD and free from hypertension, high cholesterol or treatment.[19] Mean LVM was also higher in males than females similar to other studies. Increased LVM-to-volume ratio (a marker of left ventricular remodelling) was more strongly correlated with predicted CHD risk than LVM or LVM index in both males and females. This measure has been shown to be independently associated with incident CHD [20] and stroke,[20,21] and suggests this may be a better measure of risk than LVM or LVM or LVM index which may not be able to differentiate between physiologically increased LVM due to, for example, exercise.

BMJ Open

The majority of participants had no evidence of atheroma; however, a higher SAS was associated with a higher predicted CHD risk. A WBCE-MRI angiography derived atheroma score similar to ours was associated with traditional cardiovascular risk factors [22], and with the combined end point of cardiac death, MI, stroke or coronary revascularisation when adjusted for multiple risk factors in a study of 70 year olds, some of whom had a history of CVD.[23] The score improved discrimination and reclassification when added to the Framingham risk score. In our study, the median SAS of 0.83% for females indicates that at least half the female group did have detectable arterial narrowing. This median approached statistical significance (p=0.08) relative to the equivalent for males, although we do not believe this has clinical implications since the overwhelming number of segments assessed (over 40000, 94.7%) were classified as normal.

We report a sex-differential regarding LVM and 10y-CHD risk, where LVM and indexed LVM were not correlated among males, but significantly correlated among females. Three large observational studies (n=1715-4988) reported raised LVM and LVMI, which was associated with higher incident CVD events, but did not report any sex difference.[24-26] Our finding that the LVM and LVMI was significantly associated with predicted 10-year CHD risk in females, but not in males, appears novel.

Healthcare in Scotland is delivered within the public sector National Health Service, and all healthcare contacts, diagnoses and procedures are systematically recorded. Further, all prescribing information from GPs is available in an anonymised form. Follow up is via electronic health record linkage, which will reduce the number lost to follow up as direct contact is not required. This will allow analysis of whether the combination of BNP with cardiac MRI markers are able to improve prediction of future CVD. Stored serum, plasma and DNA will allow future novel biomarkers to be discovered or validated.

There is potential bias in the imaged population as those imaged are at the upper end of the BNP range. The MRI results therefore may not represent the low-risk population and will prevent comparison of imaging biomarkers between those with high and low BNP levels. However, clinical outcomes between the two groups will be analysed to determine if lower BNP levels can exclude future events.

Given the cost of MRI, the economic viability of this program will need to be assessed. This will be done through a comprehensive follow up which will involve collecting data on hospital admissions and prescriptions, facilitating future economic evaluations of this screening programme.

BMJ Open

In conclusion, the TASCFORCE study is investigating the ability of a novel screening programme incorporating BNP and WBCE-MRI to predict future cardiovascular events in a population at low or intermediate predicted risk of CHD. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with blood and imaging biomarkers, and robust follow up via electronic record linkage, will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham.'

Collaboration

All data and materials are available stored in the University of Dundee, patient identifiable data is stored in the University of Dundee and NHS Tayside Health Informatics Centre, a Safe Haven. The datasets generated and/or analysed during the current study are not publicly available due to ongoing 10-year analyses but are available from the corresponding author on reasonable request.

Further details

Ethics approval and consent to participate

The protocol was approved by the Tayside Committee of Medical Research Ethics B (reference

number: 07/S1402/42) and is available at http://www.controlled-

trials.com/ISRCTN38976321/TASCFORCE.

Consent for publication

All authors give consent for this data to be published

Availability of data and materials

All data and materials are available stored in the University of Dundee; anonymised patient data is stored in the Safe Haven. The datasets generated and/or analysed during the current study are not publicly available due to ongoing 10-year analyses but are available from the corresponding author on reasonable request.

Competing interests

There are no competing interests

Funding

This study was funded by Chest Heart and Stroke (Scotland) and the Souter Foundation

Authors' contributions

JJFB and GH wrote the protocol, obtained the funding, and contributed to writing the paper

MAL analysed the data to date and contributed to writing the paper

RL was the study coordinator and contributed to study design and writing the paper

AS and FS were on the Trial Steering committee and contributed to writing the paper

SG obtained the MRI data and contributed to writing the paper

CAF contributed to writing the paper and will be analysing future data

Acknowledgements

The Study consortium would like to thank the participants for taking part, and CHSS/the Souter Foundation for the funding/

Authors' Information

¹Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY.

² Present address: St Andrews University, St Andrews, Scotland

to beet teriewony

³ Medical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

References

[1] Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006;92:1752-9.

[2] Brindle PM, McConnachie A, Upton MN, Hart CL, Davey Smith G, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br. J. Gen. Pract. 2005;55:838-45.

[3] Michos ED, Vasamreddy CR, Becker DM, Yanek LR, Moy TF, Fishman EK, et al. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am. Heart. J. 2005;150:1276-81.

[4] Eleid MF, Lester SJ, Wiedenbeck TL, Patel SD, Appleton CP, Nelson MR, et al. Carotid ultrasound identifies high risk subclinical atherosclerosis in adults with low framingham risk scores. J. Am. Soc. Echocardiogr. 2010;23:802-8.

[5] Ebrahim S, Taylor FC, Brindle P. Statins for the primary prevention of cardiovascular disease.BMJ. 2014;348:g280.

[6] Smeeth L, Hemingway H. Improving vascular health: are pills the answer? BMJ. 2012;344:e3802.[7] Ebrahim S, Casas JP. Statins for all by the age of 50 years? Lancet. 2012;380:545-7.

[8] Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-97.

[9] Gandy SJ, Lambert M, Belch JJ, Cavin ID, Crowe E, Littleford R, et al. Technical assessment of whole body angiography and cardiac function within a single MRI examination. Clin. Radiol. 2015;70:595-603.

[10] Gandy SJ, Lambert M, Belch J, Cavin I, Crowe E, Littleford R, MacFarlane JA, Matthew SZ,
Martin P, Nicholas RS, Struthers A, Sullivan F, Waugh SA, White RD, Weir-McCall JR, Houston JG.
3T MRI investigation of cardiac left ventricular structure and function in a UK population: The tayside screening for the prevention of cardiac events (TASCFORCE) study. J Magn Reson Imaging 2016;44:1186–1196.

[11] Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for

BMJ Open

healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539-42.

[12] Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-97.
[13] Nakamura M, Tanaka F, Takahashi T, Makita S, Ishisone T, Onodera M, et al. Sex-specific threshold levels of plasma B-type natriuretic peptide for prediction of cardiovascular event risk in a Japanese population initially free of cardiovascular disease. Am. J. Cardiol. 2011;108:1564-9.
[14] Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC, Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology. 2002;40:976-82.

[15] Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 2002;90:254-8.

[16] Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology. 2006;47:345-53.

[17] Kawai K, Hata K, Tanaka K, Kubota Y, Inoue R, Masuda E, et al. Attenuation of biologic compensatory action of cardiac natriuretic peptide system with aging. Am. J. Cardiol. 2004;93:719-23.
[18] Giannessi D, Andreassi MG, Del Ry S, Clerico A, Colombo MG, Dini N. Possibility of age regulation of the natriuretic peptide C-receptor in human platelets. J. Endocrinol. Invest. 2001;24:8-16.
[19] Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children.
Journal of Cardiovascular Magnetic Resonance. 2015;17:29.

[20] Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 2008;52:2148-55.

[21] Jain A, McClelland RL, Polak JF, Shea S, Burke GL, Bild DE, et al. Cardiovascular imaging for assessing cardiovascular risk in asymptomatic men versus women: the multi-ethnic study of atherosclerosis (MESA). Circ. Cardiovasc. Imaging. 2011;4:8-15.

[22] Hansen T, Ahlstrom H, Wikstrom J, Lind L, Johansson L. A total atherosclerotic score for whole-body MRA and its relation to traditional cardiovascular risk factors. Eur. Radiol. 2008;18:1174-80.
[23] Lundberg C, Johansson L, Barbier CE, Lind L, Ahlstrom H, Hansen T. Total atherosclerotic burden by whole body magnetic resonance angiography predicts major adverse cardiovascular events. Atherosclerosis. 2013;228:148-52.

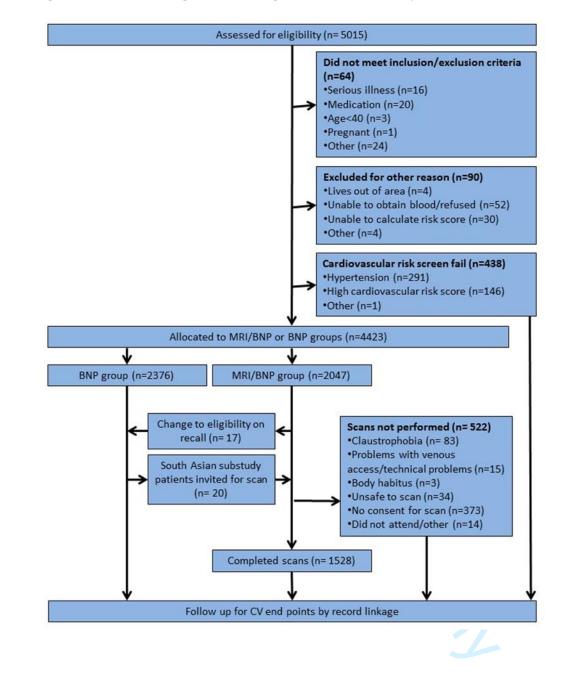
[24] Gupta S, Berry JD, Ayers CR, Peshock RM, Khera A, de Lemos JA, et al. Left VentricularHypertrophy, Aortic Wall Thickness, and Lifetime Predicted Risk of Cardiovascular Disease:the DallasHeart Study. JACC Cardiovasc Imaging. 2010;3(6):605-13.

[25] Tsao CW, Gona PN, Salton CJ, Chuang ML, Levy D, Manning WJ, et al. Left Ventricular Structure and Risk of Cardiovascular Events: A Framingham Heart Study Cardiac Magnetic Resonance Study . J Am Heart Assoc 2015; 4(9): e002188

[26] Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left Ventricular Mass at MRI and Long-Term Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiol, 2019; 293:107–114

Teliezoni

The TASCFORCE Consortium


Prof Jill JF Belch (Principal Investigator), Prof J Graeme Houston, Dr Matthew A Lambert, Prof Allan Struthers, Prof Frank Sullivan (Co-investigators); Dr Roberta Littleford (Trial Manager); Anita Hutcheon, Janice Rowland (Trial Nurses); Dr Jonathan Weir McCall (Imaging methods); Daniel Levin, (statistical analysis); and Prof Colin Palmer (genetics lead).

for open teries only

Figure legends

Figure 1: Consort diagram showing TASCFORCE study recruitment

For peer teries only

Figure 1: Consort diagram showing TASCFORCE study recruitment

Supplemental Table 1. Characteristics of subjects excluded due to presence of increased CHD risk or hypertension.

		Hypertensive (BP> 145/90 mmHg) (n=291)	10-year CHD risk >20% (n=146)
Median (IQR) age (years)		58.2 (12.24)	58.7 (15.23)
No (%) men		138 (47.4)	142 (97.3)
No (%) current smokers		34 (11.7)	85 (58.2)
No (%) former smokers		65 (22.3)	24 (16.4)
No (%) never smokers		151 (51.9) <i>[N/A41]</i>	37 (25.3)
Mean (SD) systolic BP (mmHg)		156.5 (9.75)	132.2 (10.91)
Mean (SD) diastolic BP (mmHg)		88.9 (9.68)	77.3 (9.46)
Medan (IQR) heart rate (beats per min)		72.0 (16) [<i>N/A215]</i>	68.0 (14) <i>[N/A11]</i>
Mean (SD) total cholesterol (mmol/L)		5.69 (1.03) <i>[N/A55]</i>	6.07 (1.02)
Mean (SD) high density lipoprotein (mmol/l)		1.42 (0.48) <i>[N/A58]</i>	0.89 (0.24)
Mean (SD) low density lipoprotein (mmol/l)		3.34 (0.92) <i>[N/A71]</i>	3.93 (0.93) <i>[N/A17]</i>
Median (IQR) triglycerides (mmol/l)		1.82 (1.38) <i>[N/A55]</i>	2.50 (1.93)
Median (IQR) Body mass index (kg/m²)		27.5 (5.5) <i>[N/A202]</i>	28.3 (4.7) <i>[N/A6]</i>
Median (IQR) weight (kg)		82.0 (18.60) <i>[N/A202]</i>	83.6 (17.30) <i>[N/A6]</i>
Mean (SD) height (cm)		168.5 (8.16) <i>[N/A202]</i>	173.4 (7.51) <i>[N/A6]</i>
Mean (SD) waist circumference (cm)		91.1 (13.35) <i>[N/A216]</i>	97.0 (12.93) <i>[N/A10]</i>
Median (IQR) 10-year CHD event risk (%)		5.0 (9.0) <i>[N/A72]</i>	20.0 (5.0)
No (%) with family history of cardiovascular disea	ase	49 (16.8) <i>[N/A96]</i>	35 (23.2) <i>[N/A9]</i>
Scottish Index of Multiple Deprivation decile,	1	12 (4.1)	8 (5.5)
number (%)	2	19 (6.5)	11 (7.5)
	3	29 (10.0)	20 (13.7)
	4	19 (6.5)	10 (6.8)
	5	14 (4.8)	10 (6.8)
	6	21 (7.2)	14 (9.6)
	7	45 (15.5)	22 (15.1)
	8	51 (17.5)	22 (15.1)
	9	61 (21.0)	24 (16.4)
	10	18 (6.2)	4 (2.7)
	N/A	2 (0.7)	1 (0.7)

BP, blood pressure, CHD, coronary heart disease, IQR, inter-quartile range, SD, standard deviation. Full data were not collected for all screen failed participants: the number of participants with missing data is indicated in italics.

STROBE Statement—checklist of items that should be included in reports of observational studies

No 1	(a) Indicate the study's design with a commonly used term in the title or	No
		1
	the abstract	
	(b) Provide in the abstract an informative and balanced summary of what	2
	was done and what was found	
		1
2	Explain the scientific background and rationale for the investigation being	5
	*	<u> </u>
3	State specific objectives, including any prespecified hypotheses	5
4	Present key elements of study design early in the paper	6
5	Describe the setting, locations, and relevant dates, including periods of	6
	recruitment, exposure, follow-up, and data collection	
6	(a) Cohort study—Give the eligibility criteria, and the sources and	6
	methods of selection of participants. Describe methods of follow-up	
	Case-control study—Give the eligibility criteria, and the sources and	
	methods of case ascertainment and control selection. Give the rationale	
	for the choice of cases and controls	
	Cross-sectional study—Give the eligibility criteria, and the sources and	
		6
	number of controls per case	
7	Clearly define all outcomes, exposures, predictors, potential confounders,	6/7
8*		
9		1
		-
	· · ·	+
11		
12		13
12		15
		+
		+
		+
	3 4 5 6	reported 3 State specific objectives, including any prespecified hypotheses 4 Present key elements of study design early in the paper 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias 10 Explain how the study size was arrived at 11 Explain how qua

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	8-1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8-1
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8-1
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N//
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/2
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	N/2
		Case-control study—Report numbers in each exposure category, or summary	N/2
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	14-
			18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	14-
		their precision (eg, 95% confidence interval). Make clear which confounders were	18
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	N/2
		sensitivity analyses	
Discussion			_
Key results	18	Summarise key results with reference to study objectives	14-
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	19/
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	20/
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19/
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	4
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:A Prospective Cardiovascular Risk Screening Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063594.R2
Article Type:	Cohort profile
Date Submitted by the Author:	26-Sep-2022
Complete List of Authors:	Lambert, Matthew ; NHS Tayside, Stroke Houston, J; University of Dundee, Division of Molecular and Clinical Medicine Littleford, Roberta; University of Dundee, Division of Molecular and Clinical Medicine Fitton, Catherine; University of Dundee, Division of Molecular and Clinical Medicine Struthers, Allan; University of Dundee, Division of Molecular and Clinical Medicine Sullivan, Frank; University of St. Andrews; North York General hospital, Gandy, Stephen; NHS Tayside, Medical Physics Belch, Jill; University of Dundee, Division of Molecular and Clinical Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Public health
Keywords:	Magnetic resonance imaging < RADIOLOGY & IMAGING, CARDIOLOGY, Cardiovascular imaging < RADIOLOGY & IMAGING

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

Cohort profile: The Tayside Screening For Cardiac Events (TASCFORCE) Study:

A Prospective Cardiovascular Risk Screening Study.

Matthew A Lambert¹, J Graeme Houston¹, Roberta Littleford¹, Catherine A Fitton¹, Allan Struthers¹, Frank Sullivan^{1,2}, Stephen Gandy³ Jill JF Belch¹. On behalf of the TASCFORCE Trial Consortium.

¹ Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY.

² Present address: St Andrews University, St Andrews, Scotland

³ Medical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

Correspondence:

General:

Prof Jill JF Belch

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

P.P.P.

Tel: 01382 383721

j.j.f.belch@dundee.ac.uk

Imaging:

Prof J Graeme Houston

Division of Molecular and Clinical Medicine,

University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY

Tel: 01382 383721

j.g.houston@dundee.ac.uk

Word count: 3792 Figures: 1 Tables: 6

Abstract

Purpose: Risk factor based models struggle to accurately predict development of cardiovascular disease (CVD) at the level of the individual. Ways of identifying people with low predicted risk who will develop CVD would allow stratified advice and support informed treatment decisions about the initiation or adjustment of preventive medication, and this is the aim of this prospective cohort study.

Participants: The Tayside Screening for Cardiac Events (TASCFORCE) study recruited male and females aged ≥40yrs, free from known CVD, with a predicted 10-year risk of coronary heart disease (CHD) <20%. If B-type natriuretic peptide (BNP) was greater than their gender-median, participants were offered a whole-body contrast enhanced magnetic resonance (WBCE-MRI) scan (cardiac imaging, whole-body angiography to determine left ventricular parameters, delayed gadolinium enhancement, atheroma burden). Blood, including DNA, was stored for future biomarker assays. Participants are being followed up using electronic record-linkage cardiovascular outcomes.

Findings to date: 4423 (1740, 39.3% male) were recruited. Mean age was 52.3 years with a median BNP of 7.50ng/L and 15.30ng/L for male and females respectively. 602 had a predicted 10-year risk of 10-19.9%, with the remainder <10%. Age, female sex, ex-smoking status, lower heart rate, higher high-density lipoprotein and lower total cholesterol were independently associated with higher log10 BNP levels. Mean left ventricular mass was 129.2g and 87.0g in males and females respectively.

Future plans: The TASCFORCE study is investigating the ability of a screening programme, using BNP and WBCE-MRI, at the time of enrolment, to evaluate prediction of CVD in a population at low/intermediate risk. Blood stored for future biomarker analyses will allow testing/development of novel biomarkers. We believe this could be a new UK Framingham study allowing study for many years to come.

Clinical Trial Registration: ISRCTN38976321 <u>https://doi.org/10.1186/ISRCTN38976321</u> registered 4th April 2007

Key words: Cardiovascular risk; Clinical Trial; magnetic resonance imaging; B-type natriuretic peptide; Cardiovascular Biomarkers

Strengths and weaknesses

1. This study is one of the largest MRI/Cardiovascular risk studies to be published. It could be a UK Framingham

2. The MRI Scanning is a novel element to a cardiovascular risk trial, particularly as it is whole body and contrast enhanced

3. As many of the participants have also signed up to SHARE, it will be possible to link all subsequent blood tests from SHARE with our cohort details to study novel biomarkers as they are discovered

4. As these were 'healthy' volunteers it will take some time for cardiovascular events to occur

5. Not all participants underwent MRI scanning due to cost, only those above the BNP cut off, however numbers (n=1528) are sufficient to allow evaluations, and all (n=4423) had the demographic, and blood screening.

1 2	List of abbreviations
3	
4	TASCFORCE - The Tayside Screening for Cardiac Events
5	
6 7	CVD – Cardiovascular disease
8	
9	WBCE-MRI -whole-body contrast enhanced magnetic resonance scan
10	
11	BNP - B-type natriuretic peptide
12	
13	CHD – Coronary Heart Disease
14	
15	GP – General Practice
16 17	
17	ECG – electrocardiogram
19	PD Blood procesure
20	BP – Blood pressure
21	ATPIII – Adult Treatment Panel III
22	
23	CMR - Cardiac magnetic resonance
24	
25	LVM - left ventricular mass
26 27	
28	SAS - standardised atheroma score
29	
30	SD - standard deviation
31	
32	IQR -inter-quartile range
33	CT Computational Temperature
34 35	CT – Computerised Tomography
36	MRI – Magnetic Resonance Imaging
37	
38	HDL – High Density Lipoprotein
39	
40	LDL – Low Density Lipoprotein
41	LDL – Low Density Lipoprotein MI – Myocardial Infarction
42 43	MI – Myocardial Infarction
44	
45	SIMD - Scottish index of multiple deprivation
46	
47	LGE – late gadolinium enhancement
48	UMI – unidentified myocardial infarct
49	
50 51	ECV - extracellular volume
52	
53	BMI – Body Mass Index
54	
55	WB-MRA – Whole Body – Magnetic Resonance Angiography
56	
57	LVMI -Left Ventricular Mass Index
58 50	
59 60	

Introduction

Currently statins and other drugs for cardiovascular disease (CVD) primary prevention is targeted at those at increased risk by using risk estimation tools, but these have poor external validity.[1] A significant number of CVD occurs in people with "low" or "intermediate" cardiovascular risk [2] and many in these groups have evidence of atherosclerosis.[3,4] Offering statins to a wider range of the population has been suggested.[5] However, offering statins more widely raises a number of economic and ethical questions and concerns,[6,7] so improved targeted therapy may be more acceptable. Risk factor-based models struggle to predict development of disease at an individual person level, and an alternative approach could be the detection of preclinical disease - an approach successfully employed in cancer. A similar strategy for CVD could facilitate individualised risk assessment and aid decisions about treatment.

The **Ta**yside **Sc**reening for **C**ardiac **E**vents (TASCFORCE) study is investigating the ability of a screening programme using B-type natriuretic peptide (BNP) and whole-body contrast enhanced magnetic resonance imaging (WBCE-MRI) incorporating cardiac imaging and whole-body angiography to detect preclinical disease and predict future clinical CVD in a large population at low or intermediate risk. Blood stored will allow validation of future proposed biomarkers. The study is novel in using a relatively cheap biomarker (BNP) to decide who proceeds to a relatively expensive test (MRI scan).

The aim of this study is to provide baseline data on both imaging and blood biomarkers, to understand which, if any, may predict future Cardiovascular events. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with the blood and imaging biomarkers and robust follow up via electronic health record linkage will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham.'

Cohort description

1.1. Study design

TASCFORCE is a prospective normal volunteer cardiovascular risk screening study (ISRCTN number: ISRCTN38976321). The East of Scotland Research Ethics Committee approved the protocols (07/S1402/42). The study was conducted at Ninewells Hospital and Medical School, Dundee, UK, in accordance with the Good Clinical Practice Declaration of Helsinki. The volunteers gave written informed consent to participate in this study.

The study is registered on http://www.controlled-trials.com/ISRCTN38976321/TASCFORCE.

Males and females aged 40 years or older living in Tayside or Fife, Scotland, who were free from CVD and had a predicted 10-year risk of coronary heart disease (CHD) <20% were recruited. Participants were excluded if they were pregnant, breast-feeding, of child-bearing potential not using adequate contraception, unable to give consent, or had another accepted indication for statin therapy. To produce a cohort able to participate in a potential future statin intervention study those with contraindications to a statin were excluded, including known alcohol abuse or participation in a clinical trial other than observational trials or registries concurrently or within 30 days prior to screening, were excluded.

Participants were recruited from General Practice (GP) surgeries, local employers, publicity campaigns, via press and radio coverage of the project, direct mailing and using Human Research Ethics Committee approved leaflets. We aimed to obtain a locally representative population, so recruitment was targeted at socioeconomic and ethnic groups often under-represented in studies. Participants were recruited between November 2007 and February 2013.

1.2 Patient and Public Involvement

The Souter Foundation trustees ('lay' people) were involved in the design of the study. Volunteers who were recruited to the study were involved in the design, regarding the scheduling and timing of testing, to improve convenience for participants. Many volunteers were involved in further recruitment, by passing on information via word of mouth. Results of the final analysis using linked data will be disseminated to the participants via postal address.

1.3 Screening visit and risk estimation

BMJ Open

Following written informed consent for the study, and for data-linkage for up to 20 years, the following information was obtained: medical history, lifestyle risk factors (diet/exercise/smoking status), risk perception question, family history of premature CVD, and concomitant medication. Risk perception included questions regarding family history, exercise frequency, cigarette smoking and added salt to food. Subjects were examined to obtain their height, weight, waist circumference and blood pressure (BP) and a 12-lead electrocardiogram (ECG) was recorded. Plasma BNP, random lipid profile and random plasma glucose levels were determined using point of care testing equipment (Alere Triage BNP assay with Alere Triage MeterPro for BNP, and Alere Cholestech LDX analyser for lipids and glucose).

Each participant's predicted CHD event rate was calculated by using the National Cholesterol Education Program Adult Treatment Panel III (ATP III) guidelines.[8] Participants who had a predicted risk \geq 20% or a BP >145/90 mmHg were excluded but were asked for consent to be followed up. Ineligible subjects were informed of their risk factors, given a copy of their results, and asked to attend their GP for formal review. All participants received counselling on modifiable risk factors by study staff aided by British Heart Foundation leaflets.

1.4 Magnetic resonance imaging

Those with a BNP greater than the median (determined after 200 participants) were invited to attend for a WBCE-MRI scan. At a prespecified review after 1000 subjects it was observed that the median BNP was higher for females than males. The trial steering committee (comprising of the authors) decided to invite for a scan based on gender specific median BNP and the protocol was amended accordingly. Those recruited earlier who would be eligible based on the amended gender specific median were recalled. If the delay was greater than three months, they had their BNP, cholesterol and CHD risk score reassessed to ensure continued eligibility.

Combined cardiac and whole-body angiography MRI scans were performed on a 32-channel 3T Magnetom Trio scanner (Siemens, Erlangen, Germany) and used gadoteric acid contrast agent (Dotarem; Guerbet Laboratories, France). The scan protocol development and validation has been described in detail elsewhere.[9,10]

Details of the image acquisition, analysis and validation of the technique have been described and validated in earlier publications.[9,10,11] Cardiac magnetic resonance (CMR) images were analysed offline by four blinded observers using commercial software ('Argus', Siemens Multi-modality Work

BMJ Open

Platform, version VB15). Electronic region of interest contours were placed around endocardial and epicardial left ventricular borders at end-diastole and end-systole on all CMR image slices identified to contain ≥50% full-thickness myocardium. Quantitative measurement of left ventricular mass (LVM), ejection fraction, end-diastolic volume, end-systolic volume, and stroke volume were derived. The presence of luminal stenosis was assessed in 30 arterial segments from the internal carotids to the distal anterior tibial arteries (the coeliac artery was not included due to marked anatomical variation resulting in poor inter-observer agreement). A categorical grading scale from 0-4 was applied to each arterial segment as follows: grade 0=healthy segment, grade 1=1-50% stenosis, grade 2=51-70% stenosis, grade 3=71-99% stenosis, and grade 4=vessel occlusion. An additional point was added for presence of aneurysm >50% of the native vessel diameter. If any arterial segment was uninterpretable because of poor image quality, it was not allocated a numeric score. A standardised atheroma score (SAS) to express atheroma burden severity across the body as a percentage was calculated using the following equation where n is the number of interpretable segments:

 $SAS=[(\sum score/n)x1/4]x100$

Of those invited, 1528 (74.8%) completed or partially completed an MRI scan. Thirty-four were not safe to scan due to metal in situ, 373 did not agree to proceed to have a scan, and 12 failed to attend. One hundred and one participants abandoned their scan mainly due to claustrophobia (n=83), with others abandoned due to large body habitus, problems with IV access or other technical issues. Thirty-two participants (2.1% participants scanned) had an incidental finding on their MRI scan (MI detected by delayed enhancement, structural cardiac abnormality, benign masses, malignant masses, peripheral vascular abnormality, anatomical variation). These subjects were removed from the key study group.

1.5 Baseline characteristics

Participant flow is summarised in the CONSORT diagram (figure 1); 5015 people (n=2066, 41.2% male) were screened. In total, 438 failed screening due to either hypertension (n=291, 137 (47.1%) male), a predicted 10-year CHD risk ≥20% (n=146, 142 (97.3%) male) or marked dyslipidaemia (n=1, female). The enrolled population was determined to be at low or intermediate risk of CVD. (Supplemental Table 1). We have a specific ethnic group of South Asian people (n=20) deliberately

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

enrolled to attempt to cater for ethnic diversity. These subjects were recruited with the help of a local Mosque. The remainder are white British. These two ethnic groups are dominant in Tayside and the relative proportions enrolled reflects the distribution in the population. Further we have documented the Scottish Index of Multiple Deprivation (SIMD) for all subjects i.e., the area of deprivation in which they lived at time of enrolment. As the Scottish population is not very mobile, we believe this can be used in our 10y analyses. We also have other risk factors which relate to socioeconomic status such as obesity (BMI, waist Circumference), cigarette smoking and sex. These social determinants will all be evaluated in our 10y analysis. A total of 4423 (1740, 39.3% male) participants were eligible for the study.

Median (IQR) BNP levels for men and women were 7.50 (8.90) and 15.30 (17.63) ng/L respectively. The cut-off BNP values for being offered an MRI scan were 8.2 and 16.4 ng/L respectively; all South Asian participants were invited for MRI irrespective of BNP level. The characteristics of those invited for an MRI scan (MRI/BNP group), and those not invited (BNP group) are summarised in table 1.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BNP group	MRI/BNP group	Difference
	(n=2376)	(n=2047)	between BNP
			and MRI/BNP
			groups*
Median (IQR) age (years)	49.5 (10.6)	53.4 (12.5)	p<0.001
No (%) men	937 (39.4)	803 (39.3)	p=0.94
No (%) current smokers	351 (14.8)	221 (10.8)	p<0.001
No (%) former smokers	663 (27.9)	563 (27.5)	p=0.81
No (%) never smokers	1361 (57.3)	1256 (61.4)	p=0.004
Mean (SD) systolic BP	122.1 (11.74)	122.9 (11.97)	p=0.027
mmHg)			
lean (SD) diastolic BP	73.6 (9.40)	73.1 (9.23)	p=0.06
mmHg)			
/ledian (IQR) heart rate	67.0 (14)	63.0 (12)	p<0.001
eats per min)			
Mean (SD) total cholesterol	5.47 (1.02)	5.48 (0.99)	p=0.79
mmol/L)			
Mean (SD) high density	1.34 (0.44)	1.43 (0.42)	p<0.001
poprotein (mmol/l)			
lean (SD) low density	3.41 (0.92)	3.40 (0.42)	p=0.84
ipoprotein (mmol/l)			
Median (IQR) triglycerides	1.38 (1.18)	1.29 (1.02)	p<0.001
mmol/l)			
/ledian (IQR) body mass	26.7 (5.80)	26.2 (5.35)	p<0.001
ndex (kg/m²)			
/ledian (IQR) weight (kg)	75.0 (21.23)	74.1 (19.95)	p=0.08
/lean (SD) height (cm)	167.10 (9.09)	167.67 (9.29)	p=0.041
/lean (SD) waist	88.0 (13.56)	86.9 (12.95)	p=0.006
ircumference (cm)			
ledian (IQR) 10-year CHD	2.0 (5.0)	2.0 (5.0)	p<0.001
event risk estimation (%)			
lo (%) with 10-year CHD	286 (12.0)	316 (15.4)	p=0.001

No (%) with family his	tory of	561 (23.6)	514 (25.1)	p=0.25
cardiovascular disease	е			
Scottish Index of	1	132 (5.6)	85 (4.2)	p=0.054
Multiple Deprivation	2	145 (6.1)	106 (5.2)	
decile, number (%)	3	208 (8.8)	149 (7.3)	
	4	134 (5.6)	116 (5.7)	
	5	143 (6.0)	126 (6.2)	
	6	218 (9.2)	206 (10.1)	
	7	349 (14.7)	334 (16.3)	
	8	442 (18.6)	401 (19.6)	
	9	428 (18.0)	371 (18.1)	
	10	169 (7.1)	150 (7.3)	
	N/A	8 (0.3)	3 (0.1)	-

BNP, B-type natriuretic peptide, MRI, magnetic resonance imaging, IQR, inter-quartile range, SD, standard deviation, CHD, coronary artery disease. *Comparisons for variables with normal distributions are independent samples t-tests and for skewed distribution the Mann-Whitney-Wilcoxon test.

BMJ Open

1.6 Follow up

Electronic anonymised data linkage by the Health Informatics Centre at the University of Dundee will provide follow up data on hospital admissions (including diagnoses and procedures) and GP prescriptions at regular intervals for up to 20 years (10, 15 and 20 years planned). This uses data from the Scottish Office's Information Services Division which collects data on all hospital and GP encounters including prescriptions, diagnoses, and procedures and from the General Registrar's office which collects data on all deaths in Scotland. Endpoints of interest are myocardial infarction, hospitalisation for angina, requirement for any endovascular procedure, stroke, critical limb ischemia, amputation, sudden death, cardiac and all-cause mortality. Underlying cause of death recorded on death certificates is supplemented by information from hospital records, including post-mortem examinations, if performed.

1.7 Statistical analysis

Analysis was performed using R (v.3.1) and SPSS (v.21). Continuous variables were expressed as mean and standard deviation (SD) for those with a normal distribution or median and inter-quartile range (IQR) for those with a skewed distribution, and categorical variables were expressed as numbers and percentages. When comparing characteristics between participant groups independent samples t-tests were used for variables with a normal distribution and Wilcoxon Mann-Whitney tests were used for those with a skewed distribution. To reduce skewness BNP levels were log10 transformed before regression analyses. Multivariable linear regression analysis was used to determine independent predictors of log10 BNP level. The following variables were initially included in the model: age, sex, smoking status, systolic BP, diastolic BP, heart rate, total cholesterol, HDL cholesterol, triglycerides, glucose, BMI, waist circumference, family history of CVD and Scottish index of multiple deprivation (SIMD) decile. Analysis of correlations used Pearson correlation coefficients for variables with a normal distribution and Spearman Rank correlation for those with a skewed distribution.

Findings to date

Increasing age, female sex, ex-smoking status (but not current smoking status), lower heart rate, higher HDL and lower total cholesterol were significantly associated with higher log10 BNP levels (table 2).

Julie

l	Jnstandardised Coefficient (95%	
	confidence intervals)	p value
Age (years)	0.010 (0.009, 0.011)	<0.001
Male sex	-0.211 (-0.230, -0.192)	<0.001
Ex-smoker	-0.026 (-0.045, -0.006)	0.01
Heart rate (bpm)	-0.006 (-0.007, -0.005)	<0.001
Total cholesterol (mmol/l)	-0.020 (-0.028, -0.011)	<0.001
High density lipoprotein (mmol/l)	0.055 (0.033, 0.076)	<0.001

Table 2. Predictors of log10 BNP: multivariable regression analysis

The left ventricular characteristics are shown in table 3. A total of 10 patients (0.67%) displayed LGE, indicating the presence of an unidentified myocardial infarct (UMI) [12].

	M	en	Wor	nen	
	Mean	SD	Mean	SD	p value*
LVM (g)	129.2	24.4	87.0	16.7	<0.001
LVEDV (ml)	155.0	27.7	119.6	21.1	<0.001
LVESV (ml)	50.2	14.8	37.1	12.0	<0.001
LVM/LVEDV (g/ml)	0.85	0.16	0.74	0.13	<0.001
Ejection fraction (%)	67.9	6.2	69.3	6.6	<0.001
Stroke volume (ml)	104.8	19.0	82.5	14.2	<0.001
Cardiac output (l/min)	6.46	1.20	5.47	1.13	<0.001
LVM/height	73.2	13.1	53.5	9.8	<0.001
LVM/height ^{1.7}	49.3	8.7	38.1	7.0	<0.001
LVM/height ^{2.7}	28.0	5.0	23.5	4.4	<0.001
LVM/BSA	64.3	10.6	49.5	8.0	<0.001

Table 3. Left ventricular characteristics by gender

SD, standard deviation, LVM, left ventricular mass, LVEDV, left ventricular end-diastolic volume, LVESV, left ventricular end systolic volume, BSA, body surface area. *Comparison between men and women using independent samples t-test.

Three cases (0.2%) were consistent with UMI, and 7 were considered non-specific and located in the mid-myocardium (n=4), epicardium (n=1), or right ventricular insertion points (n=2). Spearman rank correlations of left ventricular measurements with predicted CHD risk score are shown in table 4.

Table 4: Correlations of left ventricular measures with predicted 10-year coronary

heart disease risk

	LVM	LVM/height	LVM/height ^{1.7}	LVM/height ^{2.7}	LVMI/BSA	LVM/LVEDV
		(g/m)	(g/m ^{1.7})	(g/m ^{2.7})	(g/m²)	(g/ml)
Men	-0.07 (0.12)	-0.04 (0.31)	-0.02 (0.67)	-0.01 (0.73)	-0.05 (0.24)	0.17 (<0.001)
Women	0.08 (0.018)	0.11 (0.001)	0.13 (<0.001)	0.16 (<0.001)	0.10 (0.002)	0.30 (<0.001)

LVM, left ventricular mass, BSA, body surface area, LVEDV, left ventricular end diastolic volume. Correlations are Spearman rank correlations (ρ and (p) values are given) with predicted 10-year coronary heart disease risk using the ATPIII algorithm.

For WB-MRA 2468 segment locations (5%) demonstrated stenoses, of which 1649 (3.5%) showed stenosis <50% and 484 (1.0%) showed stenosis \geq 50% [13]. The median, 80th percentile and 90th percentiles of SASs were 0.00, 1.67 and 3.33 respectively for men, and 0.83, 2.50, and 4.17 for women. There was no significant difference between SASs for men and women (p=0.08). The predicted CHD scores for those with a SAS above and below 80th centile and with and without the presence of any stenosis are shown in table 5.

Revenue on the second

Table 5: Predicted CHD risk in those with standardised atheroma scores above and

		Males			Females	
	<u>≤</u> 80 th	>80 th		<u>≤</u> 80 th	>80 th	
	centile	centile		centile	centile	
	SAS	SAS		SAS	SAS	
	(n=464)	(n=113)	p value*	(n=786)	(n=150)	p value*
Median (IQR) predicted CHD	6 (6)	10 (5)	< 0.001	1 (2)	2 (3)	<0.001
risk score (%/10 years)						
	No	Any		No	Any	
	stenosis	stenosis		stenosis	stenosis	
	(n=308)	(n=269)	p value*	(n=457)	(n=479)	p value*
Median (IQR) predicted CHD	6 (6)	8 (7)	<0.001	1 (2)	1 (2)	<0.001
risk score (%/10 years)						

below 80th percentile and in those with and without any stenosis.

*Mann-Whitney test used to compare groups. SAS, standardised atheroma score. 80th centile 1.67 for men and 2.50 for women.

The TASCFORCE study assesses the ability of a novel screening programme combining "traditional" clinical cardiovascular risk estimation with BNP and WBCE-MRI to predict future cardiovascular events. No other studies have investigated screening using this combination of blood and imaging biomarkers of preclinical disease as a potential method to predict future CVD in people free from and at "low" or "intermediate" predicted risk of future disease. The cohort is large and well characterised in terms of cardiovascular risk factors, with an Index of Multiple Deprivation similar to the community from which it was drawn. Of those recruited, 602 have a predicted 10-year risk of 10-19.9% (classified as intermediate risk); a group that is often debated as to what approach should be taken in terms of primary prevention.

During recruitment, a significant number of people had a previously unknown predicted risk ≥20% over 10 years. A total of 97% were males, and from areas with increased deprivation compared to those who were lower risk and entered the main study. These findings also highlight the problem of currently undetected cardiovascular risk, particularly amongst males and those from areas of deprivation, illustrating the need for improved identification and engagement of those at risk. This could bring greater public health benefits than giving statins to more people at lower risk.

As expected, the BNP levels in the TASCFORCE population were within a "normal" clinical range and were significantly higher in females compared to males, justifying our use of gender specific medians

BMJ Open

for invitation for MRI scan.[12,13] Age was independently associated with BNP levels. This is well recognised,[14,15,16] although the exact mechanism for the association remains unclear. Age related alterations in production, secretion, biological effect or degradation of BNP may be responsible.[17,18] The effect of age is independent of renal function, atrial volume, left ventricular dimension and LV mass.[14] Increasing levels with age may suggest that age specific reference ranges of BNP should be used. However, because age is an important risk factor for CVD, BNP may be reflecting this increased risk. Thus, correcting for age when using BNP as a screening tool is inadvisable.

MRI is a safe, relatively non-invasive imaging modality, free from ionising radiation making it more acceptable for use as a screening tool compared to coronary artery calcification scoring using CT. By combining cardiac imaging with whole body angiography, it is conceivable that the sensitivity to detect subclinical disease may be improved as more target organs are imaged. The images also provide a reference for normal values within a low/intermediate risk population. The MRI protocol was kept simple, with the main constituents being WBCE-MRI together with CMR for quantification of LV structure and function – all completed within 45 minutes. The CMR acquisition was undertaken at the midpoint of the protocol (commencing after the first Gd contrast injection) to optimise the protocol in terms of time usage and to enable an assessment of late gadolinium enhancement (LGE) at this stage. The acquisition of other measures such as T1, extracellular volume (ECV), T2 mapping or myocardial strain would have been desirable, but the study was limited by the time available and the technological capabilities of the scanner.

The mean LVM values in our cohort are similar to those reported by other studies that have used steady state free precision imaging sequence MRI to determine LVM in a healthy population without CVD and free from hypertension, high cholesterol or treatment.[19] Mean LVM was also higher in males than females similar to other studies. Increased LVM-to-volume ratio (a marker of left ventricular remodelling) was more strongly correlated with predicted CHD risk than LVM or LVM index in both males and females. This measure has been shown to be independently associated with incident CHD [20] and stroke,[20,21] and suggests this may be a better measure of risk than LVM or LVM or LVM index which may not be able to differentiate between physiologically increased LVM due to, for example, exercise.

BMJ Open

The majority of participants had no evidence of atheroma; however, a higher SAS was associated with a higher predicted CHD risk. A WBCE-MRI angiography derived atheroma score similar to ours was associated with traditional cardiovascular risk factors [22], and with the combined end point of cardiac death, MI, stroke or coronary revascularisation when adjusted for multiple risk factors in a study of 70 year olds, some of whom had a history of CVD.[23] The score improved discrimination and reclassification when added to the Framingham risk score. In our study, the median SAS of 0.83% for females indicates that at least half the female group did have detectable arterial narrowing. This median approached statistical significance (p=0.08) relative to the equivalent for males, although we do not believe this has clinical implications since the overwhelming number of segments assessed (over 40000, 94.7%) were classified as normal.

We report a sex-differential regarding LVM and 10y-CHD risk, where LVM and indexed LVM were not correlated among males, but significantly correlated among females. Three large observational studies (n=1715-4988) reported raised LVM and LVMI, which was associated with higher incident CVD events, but did not report any sex difference.[24-26] Our finding that the LVM and LVMI was significantly associated with predicted 10-year CHD risk in females, but not in males, appears novel.

Healthcare in Scotland is delivered within the public sector National Health Service, and all healthcare contacts, diagnoses and procedures are systematically recorded. Further, all prescribing information from GPs is available in an anonymised form. Follow up is via electronic health record linkage, which will reduce the number lost to follow up as direct contact is not required. This will allow analysis of whether the combination of BNP with cardiac MRI markers are able to improve prediction of future CVD. Stored serum, plasma and DNA will allow future novel biomarkers to be discovered or validated.

There is potential bias in the imaged population as those imaged are at the upper end of the BNP range. The MRI results therefore may not represent the low-risk population and will prevent comparison of imaging biomarkers between those with high and low BNP levels. However, clinical outcomes between the two groups will be analysed to determine if lower BNP levels can exclude future events.

Given the cost of MRI, the economic viability of this program will need to be assessed. This will be done through a comprehensive follow up which will involve collecting data on hospital admissions and prescriptions, facilitating future economic evaluations of this screening programme.

BMJ Open

In conclusion, the TASCFORCE study is investigating the ability of a novel screening programme incorporating BNP and WBCE-MRI to predict future cardiovascular events in a population at low or intermediate predicted risk of CHD. The comprehensive collection of baseline cardiovascular risk and demographic data in combination with blood and imaging biomarkers, and robust follow up via electronic record linkage, will allow further investigation of the development of CVD in this population, which we hope may become the Scottish 'Framingham.'

Collaboration

All data and materials are available stored in the University of Dundee, patient identifiable data is stored in the University of Dundee and NHS Tayside Health Informatics Centre, a Safe Haven. The datasets generated and/or analysed during the current study are not publicly available due to ongoing 10-year analyses but are available from the corresponding author on reasonable request.

Further details

Ethics approval and consent to participate

The protocol was approved by the Tayside Committee of Medical Research Ethics B (reference

number: 07/S1402/42) and is available at http://www.controlled-

trials.com/ISRCTN38976321/TASCFORCE.

Consent for publication

All authors give consent for this data to be published

Availability of data and materials

All data and materials are available stored in the University of Dundee; anonymised patient data is stored in the Safe Haven. The datasets generated and/or analysed during the current study are not publicly available due to ongoing 10-year analyses but are available from the corresponding author on reasonable request.

Competing interests

There are no competing interests

Funding

This study was funded by Chest Heart and Stroke (Scotland) and the Souter Foundation

Authors' contributions

JJFB and GH wrote the protocol, obtained the funding, and contributed to writing the paper

MAL analysed the data to date and contributed to writing the paper

RL was the study coordinator and contributed to study design and writing the paper

AS and FS were on the Trial Steering committee and contributed to writing the paper

SG obtained the MRI data and contributed to writing the paper

CAF contributed to writing the paper and will be analysing future data

Acknowledgements

The Study consortium would like to thank the participants for taking part, and CHSS/the Souter Foundation for the funding/

Authors' Information

¹Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee. DD1 9SY.

² Present address: St Andrews University, St Andrews, Scotland

to beet teriewony

³ Medical Physics, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY

References

[1] Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006;92:1752-9.

[2] Brindle PM, McConnachie A, Upton MN, Hart CL, Davey Smith G, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br. J. Gen. Pract. 2005;55:838-45.

[3] Michos ED, Vasamreddy CR, Becker DM, Yanek LR, Moy TF, Fishman EK, et al. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am. Heart. J. 2005;150:1276-81.

[4] Eleid MF, Lester SJ, Wiedenbeck TL, Patel SD, Appleton CP, Nelson MR, et al. Carotid ultrasound identifies high risk subclinical atherosclerosis in adults with low framingham risk scores. J. Am. Soc. Echocardiogr. 2010;23:802-8.

[5] Ebrahim S, Taylor FC, Brindle P. Statins for the primary prevention of cardiovascular disease.BMJ. 2014;348:g280.

[6] Smeeth L, Hemingway H. Improving vascular health: are pills the answer? BMJ. 2012;344:e3802.[7] Ebrahim S, Casas JP. Statins for all by the age of 50 years? Lancet. 2012;380:545-7.

[8] Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-97.

[9] Gandy SJ, Lambert M, Belch JJ, Cavin ID, Crowe E, Littleford R, et al. Technical assessment of whole body angiography and cardiac function within a single MRI examination. Clin. Radiol. 2015;70:595-603.

[10] Gandy SJ, Lambert M, Belch J, Cavin I, Crowe E, Littleford R, MacFarlane JA, Matthew SZ,
Martin P, Nicholas RS, Struthers A, Sullivan F, Waugh SA, White RD, Weir-McCall JR, Houston JG.
3T MRI investigation of cardiac left ventricular structure and function in a UK population: The tayside screening for the prevention of cardiac events (TASCFORCE) study. J Magn Reson Imaging 2016;44:1186–1196.

[11] Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for

BMJ Open

healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539-42.

[12] Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-97.
[13] Nakamura M, Tanaka F, Takahashi T, Makita S, Ishisone T, Onodera M, et al. Sex-specific threshold levels of plasma B-type natriuretic peptide for prediction of cardiovascular event risk in a Japanese population initially free of cardiovascular disease. Am. J. Cardiol. 2011;108:1564-9.
[14] Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC, Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology. 2002;40:976-82.

[15] Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 2002;90:254-8.

[16] Costello-Boerrigter LC, Boerrigter G, Redfield MM, Rodeheffer RJ, Urban LH, Mahoney DW, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology. 2006;47:345-53.

[17] Kawai K, Hata K, Tanaka K, Kubota Y, Inoue R, Masuda E, et al. Attenuation of biologic compensatory action of cardiac natriuretic peptide system with aging. Am. J. Cardiol. 2004;93:719-23.
[18] Giannessi D, Andreassi MG, Del Ry S, Clerico A, Colombo MG, Dini N. Possibility of age regulation of the natriuretic peptide C-receptor in human platelets. J. Endocrinol. Invest. 2001;24:8-16.
[19] Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children.
Journal of Cardiovascular Magnetic Resonance. 2015;17:29.

[20] Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 2008;52:2148-55.

[21] Jain A, McClelland RL, Polak JF, Shea S, Burke GL, Bild DE, et al. Cardiovascular imaging for assessing cardiovascular risk in asymptomatic men versus women: the multi-ethnic study of atherosclerosis (MESA). Circ. Cardiovasc. Imaging. 2011;4:8-15.

[22] Hansen T, Ahlstrom H, Wikstrom J, Lind L, Johansson L. A total atherosclerotic score for whole-body MRA and its relation to traditional cardiovascular risk factors. Eur. Radiol. 2008;18:1174-80.
[23] Lundberg C, Johansson L, Barbier CE, Lind L, Ahlstrom H, Hansen T. Total atherosclerotic burden by whole body magnetic resonance angiography predicts major adverse cardiovascular events. Atherosclerosis. 2013;228:148-52.

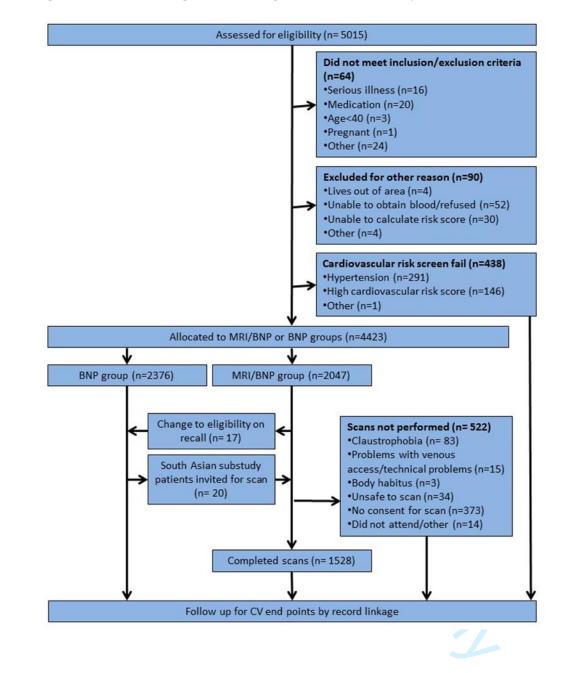
[24] Gupta S, Berry JD, Ayers CR, Peshock RM, Khera A, de Lemos JA, et al. Left VentricularHypertrophy, Aortic Wall Thickness, and Lifetime Predicted Risk of Cardiovascular Disease:the DallasHeart Study. JACC Cardiovasc Imaging. 2010;3(6):605-13.

[25] Tsao CW, Gona PN, Salton CJ, Chuang ML, Levy D, Manning WJ, et al. Left Ventricular Structure and Risk of Cardiovascular Events: A Framingham Heart Study Cardiac Magnetic Resonance Study . J Am Heart Assoc 2015; 4(9): e002188

[26] Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left Ventricular Mass at MRI and Long-Term Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiol, 2019; 293:107–114

Teliezoni

The TASCFORCE Consortium


Prof Jill JF Belch (Principal Investigator), Prof J Graeme Houston, Dr Matthew A Lambert, Prof Allan Struthers, Prof Frank Sullivan (Co-investigators); Dr Roberta Littleford (Trial Manager); Anita Hutcheon, Janice Rowland (Trial Nurses); Dr Jonathan Weir McCall (Imaging methods); Daniel Levin, (statistical analysis); and Prof Colin Palmer (genetics lead).

for open teries only

Figure legends

Figure 1: Consort diagram showing TASCFORCE study recruitment

For peer teries only

Figure 1: Consort diagram showing TASCFORCE study recruitment

Supplemental Table 1. Characteristics of subjects excluded due to presence of increased CHD risk or hypertension.

		Hypertensive (BP> 145/90 mmHg) (n=291)	10-year CHD risk >20% (n=146)
Median (IQR) age (years)		58.2 (12.24)	58.7 (15.23)
No (%) men		138 (47.4)	142 (97.3)
No (%) current smokers		34 (11.7)	85 (58.2)
No (%) former smokers		65 (22.3)	24 (16.4)
No (%) never smokers		151 (51.9) <i>[N/A41]</i>	37 (25.3)
Mean (SD) systolic BP (mmHg)		156.5 (9.75)	132.2 (10.91)
Mean (SD) diastolic BP (mmHg)		88.9 (9.68)	77.3 (9.46)
Medan (IQR) heart rate (beats per min)		72.0 (16) [<i>N/A215</i>]	68.0 (14) <i>[N/A11]</i>
Mean (SD) total cholesterol (mmol/L)		5.69 (1.03) <i>[N/A55]</i>	6.07 (1.02)
Mean (SD) high density lipoprotein (mmol/l)		1.42 (0.48) <i>[N/A58]</i>	0.89 (0.24)
Mean (SD) low density lipoprotein (mmol/l)		3.34 (0.92) <i>[N/A71]</i>	3.93 (0.93) <i>[N/A17]</i>
Median (IQR) triglycerides (mmol/l)		1.82 (1.38) <i>[N/A55]</i>	2.50 (1.93)
Median (IQR) Body mass index (kg/m²)		27.5 (5.5) <i>[N/A202]</i>	28.3 (4.7) <i>[N/A6]</i>
Median (IQR) weight (kg)		82.0 (18.60) <i>[N/A202]</i>	83.6 (17.30) <i>[N/A6]</i>
Mean (SD) height (cm)		168.5 (8.16) <i>[N/A202]</i>	173.4 (7.51) <i>[N/A6]</i>
Mean (SD) waist circumference (cm)		91.1 (13.35) <i>[N/A216]</i>	97.0 (12.93) <i>[N/A10]</i>
Median (IQR) 10-year CHD event risk (%)		5.0 (9.0) <i>[N/A72]</i>	20.0 (5.0)
No (%) with family history of cardiovascular disea	ase	49 (16.8) <i>[N/A96]</i>	35 (23.2) <i>[N/A9]</i>
Scottish Index of Multiple Deprivation decile,	1	12 (4.1)	8 (5.5)
number (%)	2	19 (6.5)	11 (7.5)
	3	29 (10.0)	20 (13.7)
	4	19 (6.5)	10 (6.8)
	5	14 (4.8)	10 (6.8)
	6	21 (7.2)	14 (9.6)
	7	45 (15.5)	22 (15.1)
	8	51 (17.5)	22 (15.1)
	9	61 (21.0)	24 (16.4)
	10	18 (6.2)	4 (2.7)
	N/A	2 (0.7)	1 (0.7)

BP, blood pressure, CHD, coronary heart disease, IQR, inter-quartile range, SD, standard deviation. Full data were not collected for all screen failed participants: the number of participants with missing data is indicated in italics.

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			_
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6
1		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	6
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6/7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	10	Explain how due study size was arrived at Explain how quantitative variables were handled in the analyses. If	
Quantitative variables	11	applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	13
Statistical methods	12		15
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	1

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8-1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8-1
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8-1
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N//
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/2
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	N/2
		Case-control study—Report numbers in each exposure category, or summary	N/2
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	14-
			18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	14-
		their precision (eg, 95% confidence interval). Make clear which confounders were	18
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	N/2
		sensitivity analyses	
Discussion			_
Key results	18	Summarise key results with reference to study objectives	14-
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	19/
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	20/
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19/
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	4
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.