

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Service Discharges Among US Army Personnel with Rheumatic Disease Conditions

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063371
Article Type:	Original research
Date Submitted by the Author:	28-Mar-2022
Complete List of Authors:	Nelson, D. Alan; Stanford University School of Medicine, Department of Medicine Kaplan, Robert ; Stanford University School of Medicine Weisman, Michael M; Stanford University School of Medicine, Department of Medicine Kurina, Lianne; Stanford University School of Medicine, Department of Medicine
Keywords:	EPIDEMIOLOGY, RHEUMATOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Service Discharges Among US Army Personnel with Rheumatic Disease Conditions

D. Alan Nelson;¹ Robert M. Kaplan, PhD;² Michael H. Weisman, MD;³ Lianne M. Kurina, PhD¹

Affiliations

1. Department of Medicine, Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford CA, USA

2. Clinical Excellence Research Center, Stanford University School of Medicine, Stanford CA,

USA

3. Department of Medicine, Division of Rheumatology, Stanford University School of Medicine,

Department of Medicine, Division of Rheumatology

Corresponding author: Lianne Kurina, 450 Jane Stanford Way, Building 20, Stanford University, Stanford CA 94305-2160; kurina.com, kurina.com, kurina.com, kurina.com, kurina.com, www.ukurina.com, kurina.com, kurina.com, www.ukurina.com, kurina.com, kurina.com, www.ukurina.com, <a href="https://www.ukurina.com"/

Word Count: 2387

Keywords: epidemiology; military personnel; rheumatic diseases

BMJ Open

ABSTRACT

Objectives: To determine the probability of discharge from military service among soldiers following an incident diagnosis of ankylosing spondylitis (AS), rheumatoid arthritis (RA), psoriasis (Ps) or systemic lupus erythematous (SLE).

Methods: All soldiers on active-duty in the U.S. Army between January 2014 and June 2017 were included in a retrospective cohort analysis. Termination from service was ascertained using personnel records. Diagnostic codes were used to identify incident cases of the four rheumatic diseases and, for comparison, diabetes mellitus (DM). Time to discharge was modeled using sex stratified multivariate survival analysis.

Results: The analysis included 657,417 individuals with a total of 1.2-million-person years of observation. An elevated risk of discharge was observed in association with each of the five chronic conditions studied. The increase in adjusted risk of discharge was highest among soldiers with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI 1.4, 3.2) and with DM (male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5), followed by those with RA (male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4).

Conclusions: Military discharges are consequential for the service and the servicemember. The doubling in risk of discharge for those with AS or RA was comparable to that for personnel with diabetes mellitus. Conditions that affect the spine and peripheral joints may often incompatible with military readiness. Nevertheless, a substantial fraction of servicemembers with these diagnoses continued in service.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Very little is known about the military trajectories of those developing rheumatic conditions.
- Utilizing the total active-duty US Army population from 2014-17, we found a doubling of the likelihood of leaving military service following a diagnosis of ankylosing spondylitis and rheumatoid arthritis.
- Conditions impacting the spine and peripheral joints may present challenges but do not appear invariably incompatible with continued military service.
- Our results cannot necessarily be generalized to other US military branches or to servicemembers of other nations.

BMJ Open

INTRODUCTION

Rheumatic disease (sometimes referred to as "auto-immune") conditions may pose important challenges for military personnel. In many cases, affected individuals could be unable to carry out their military duties and would thus be given a medical discharge. Given the operational and economic costs of discharges, as well as the human impact on the soldier from the onset of a chronic disease, it is critical to better understand typical career trajectories in the military following onset of rheumatic diseases.¹

Although military clinicians are provided substantial guidance with respect to both diagnosing and managing rheumatic disorders², we were unable to identify prior research specifically addressing the risk of military service terminations associated with rheumatic disease diagnoses. Insufficient evidence could potentially lead to either hastening service discharges for those still ably serving under effective management, or supporting a delayed action that could permit disease progression associated with a subsequent service discharge.³ Thus, determining the current risk of military discharge, if any, associated with such conditions is important for the military mission as well as for clinicians and patients alike.

In this study, our objective was to characterize the associations between a selection of commonly encountered chronic rheumatic conditions, including ankylosing spondylitis, rheumatoid arthritis, psoriasis and systemic lupus erythematosus, and discharge from service among active-duty service members, adjusting for a range of demographic, health-related, and military-specific characteristics. For comparison, we also analyzed the risk of discharge following diagnosis with diabetes mellitus, which is among the most prevalent chronic diseases in the military population⁴.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

METHODS

We utilized a longitudinal panel dataset from the Stanford Military Data Repository (SMDR), a de-identified dataset comprising administrative and health-related datasets on the active-duty US Army. The current retrospective cohort analysis is based on person-months of active military service among individuals who served with the US Army between January 2014 and June 2017. Demographic and military service data, including terminations of active-duty service, were obtained from official personnel records provided by the Defense Manpower Data Center (DMDC)⁵.

We focused on four chronic rheumatic diseases – ankylosing spondylitis (AS), rheumatoid arthritis (RA), psoriasis (Ps), and systemic lupus erythematosus (SLE) and used a commonly encountered metabolic condition, diabetes mellitus (DM), for comparison purposes.

To identify incident diagnoses of AS, RA, Ps, SLE, or DM (either Type 1 or 2), we employed two approaches. First, we used clinical data from the Military Health System Data Repository, which includes records of out- and inpatient care provided to US service members in military as well as civilian facilities. For encounters occurring between January 2014 and October 2015, conditions were identified using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) data. ICD-10 codes were used for encounters occurring between November 2015 and June 2017. For each condition, the ICD-9-CM and ICD-10 diagnosis codes were, respectively: AS, 720.0 and M45.x; RA, 714.x and M05.x, M06.x; Ps, 696.x and L40.x; SLE, 710.0 and M32.1x, M32.9x; and DM, 250.x and E.08.x – E.11.x, E13.x.

The second source for identifying incident cases was "eProfile", the official system of record in which soldiers' duty restrictions and the clinical diagnoses warranting them are

BMJ Open

archived. A free-text search algorithm was used to filter clinician entries of the selected medical conditions; the accuracy of captured diagnoses was then confirmed with a visual review.

Subjects who began their military service during the observed time period were examined for incident diagnoses beginning at the outset of their service. Military enlistment policies require initial screening examinations. Any of the five conditions considered in this study (AS, RA, Ps, SLE, and DM) normally disqualify an individual from induction into service (AR 40-501). All new soldiers in the dataset were therefore presumed to be free of known diagnoses of these conditions when they entered service.

The remaining individuals entered service at a wide variety of times prior to January 2014, and could, therefore, have been diagnosed with one or more of these conditions before our study period. Thus, for those soldiers enlisting prior to January 2014, we applied a "wash-out" or "run-in" period in which at least 12 initial months of observation were required to rule out follow-up care for previously diagnosed conditions in their health records and duty restrictions. This time period was chosen because each member is required to undergo an annual Periodic Health Assessment, a health screening⁶ in which major medical problems are typically identified. Observation for incident conditions thus began in January 2015 among those entering service prior to January 2014.

Dependent variable

The primary outcome variable was a discharge from service for any reason. The discharge information was identified from the DMDC personnel records.

Independent variables

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

We included a wide range of independent variables to minimize possible confounding of the associations between the selected disorders and service discharges. Independent variables whose values varied with time were continuously updated in each subject's longitudinal data. The covariates included sex, age, race, marital status, statement of tobacco use at a prior health encounter, military pay grade, and active-duty service time. We categorized the two quantitative variables. For age, we divided individuals in approximate quartiles on the basis of age. For active-duty service time, we categorized in such a way as to capture typical career eras for soldiers. Specifically, we employed a category for <4 years to capture those in their first term of service and a 4-10 year category for people in the decision window before choosing whether to remain in service until retirement. We then divided the remaining group, who are composed largely of people remaining in service until retirement into two groups: >10-16 and >16 years.

In addition, we created a dichotomous variable to capture whether each member held a combat-focused occupation versus a job description functioning in a support role. We also included an additional categorical variable to account for the type of military unit in which the subject served to adjust for any related systematic difference in exposures. The categories were: combat deployable units; those involved in training and administrative functions; special operations forces; medical units; and all other or unknown unit types.

Patient and public involvement

Study participants were not involved in the design, recruitment, or conduct of the study, as this was a retrospective analysis of passively collected data on military service members. All service members will be able to view the study results upon publication of the paper.

Statistical analysis

To provide a descriptive overview of the study population, we examined subjects at the lastavailable, person-specific monthly observation, stratifying on presence or absence of service discharge. We tested for differences in categorical variable distributions using chi square tests and applied two-sided t-tests for continuous variables.

To estimate adjusted associations between the selected conditions and service discharge, we computed multivariable survival models. The models used the Weibull distribution to estimate adjusted hazard ratios for service discharge. Because of possible differences between males and females in the rates of the conditions being studied and in rates of separation of the Army, the unadjusted and adjusted analyses were sex-stratified.

All analyses were conducted using Stata statistical software version 14.2 (StataCorp, College Station, Texas). We considered p-values ≤ 0.05 to be statistically significant. The study was approved by the institutional review board at Stanford University (Protocol 31161) and also underwent secondary review by the human research protections office of the Defense Health Agency.

RESULTS

The analysis included 657,417 eligible subjects who were observed for a total of 1.2 million person-years of time at risk for the regression models. On average, each subject was observed for 1.8 years (median: 2.4; standard deviation [SD]: 0.9).

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Table 1. Rheumatic disease percentages in the U.S. Army study population, 2014-7 (N = 657,417), stratified by sex and military discharge status, as of the last person-specific observation. Values represent numbers (percentages) and p-values are derived from of chi square tests comparing factor distributions.

	Males; n = 56	50,243 (85.2)	Females; n =	97,174 (14.8)
	No discharge	Discharged	No discharge	Discharged
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
Ankylosing spondyliti	5	I		I
Yes	146 (55.3)	118 (44.7)	33 (56.9)	25 (43.1)
No	386,290 (69.0)	173,689 (31.0)	66,800 (68.8)	30,316 (31.2
	P < 0	0.001	<i>P</i> = 0.051	
Rheumatoid arthritis		CL CL		
Yes	303 (62.1)	185 (37.9)	153 (62.2)	93 (37.8)
No	386,133 (69.0)	173,622 (31.0)	66,680 (68.8)	30,248 (31.2
	P = 0).001	P = 0	.026
Psoriasis				
Yes	1534 (69.8)	664 (30.2)	314 (68.3)	146 (31.7)
No	384,902 (69.0)	173,143 (31.0)	66,519 (68.8)	30,195 (31.2
	P = 0).408	P = 0.811	

Systemic lupus eryth	ematosus			
Yes	59 (62.8)	35 (37.2)	95 (66.9)	47 (33.1)
No	386,377 (69.0)	173,772 (31.0)	66,738 (68.8)	30,294 (31.2)
	<i>P</i> = ().193	P = 0	.629
Diabetes mellitus				
Yes	1175 (55.5)	942 (44.5)	259 (61.1)	165 (38.9)
No	385,261 (69.0)	172,865 (31.0)	66,574 (68.8)	30,176 (31.2)
	<i>P</i> < 0).001	P = 0	.001

The unadjusted results are presented in Table 1. Overall, 31.0% of males and 31.2% of females without the conditions of interest were discharged during the follow-up time. A significantly higher proportion of those with a diagnosis of AS, RA and DM were discharged. AS patients were most likely to be discharged, with 44.7% of males and 43.1% of females discharged. Among the RA patients, 37.9% of the males and 37.8% of the females were discharged. Among those with DM, 44.5% of the males and 38.9% of the females were discharged. No significant difference in the unadjusted probability of discharge was observed in association with either Ps or SLE. Men and women with psoriasis experienced the lowest discharge rates of those with the selected conditions, respectively involving 30.2% and 31.7% of subjects with this diagnostic history.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

<i>Table 2. Characteristics of the U.S. Army study population, 2014-7 (N = $657,417$) as of the last</i>
person-specific observation, stratified by sex and military discharge. Values represent numbers
(percentages) unless otherwise noted.

	1		1		
	Males; n = 560	0,243 (85.2)	Females; n =	97,174 (14.8)	
	No discharge	Discharged	No discharge	Discharged	
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)	
Age, years	P < 0.0)01 ^A	P < ().001 ^A	
≤22	98,351 (69.1)	43,912 (30.9)	17,941 (64.8)	9754 (35.2)	
23 to 27	102,712 (66.1)	52,620 (33.9)	18,487 (68.3)	8591 (31.7)	
28 to 35	101,863 (72.0)	39,570 (28.0)	17,733 (72.8)	6621 (27.2)	
≥36	83,510 (68.9)	37,705 (31.1)	12,672 (70.2)	5375 (29.8)	
Mean [median,	P=1.	00 ^в	P < 0.001 ^B		
standard deviation]	29.0 [27, 8.1]	29.0 [26, 8.6]	28.5 [27, 7.9]	27.9 [26, 8.6]	
Race	P < 0.001 ^A		P < 0.001 ^A		
White	269,731 (68.2)	126,022 (31.8)	32,726 (66.8)	16,256 (33.2)	
Black	75,041 (69.5)	32,972 (30.5)	24,364 (69.1)	10,899 (30.9)	
Asian or Pacific	22,021 (75.0)	7322 (25.0)	5112 (76.0)	1612 (24.0)	
Islander					
Native American or	2711 (66.2)	1381 (33.8)	616 (62.9)	364 (37.1)	
Alaskan					
	1	I	1	I	

Multiracial, other	16,932 (73.5)	6110 (26.5)	4015 (76.8)	1210 (23.2)
or unspecified				
Marital status	<i>P</i> < 0.	001 ^A	P = 0).001 ^A
Married	222,598 (70.3)	94,033 (29.7)	32,376 (69.3)	14,350 (30.7)
Never married	148,065 (67.6)	70,942 (32.4)	26,584 (68.5)	12,243 (31.5
Formerly married	15,773 (64.1)	8832 (35.9)	7873 (67.8)	3748 (32.2)
Military pay grade	<i>P</i> < 0.	001 ^A	P = 0).001 ^A
≤E-4	170,482 (62.9)	100,574 (37.1)	30,841 (61.5)	19,310 (38.5
E-5 & E-6	101,670 (72.5)	38,602 (27.5)	15,433 (74.8)	5200 (25.2)
E-7 to E-9	41,859 (74.1)	14,635 (25.9)	5464 (75.2)	1801 (24.8)
W-1 to O-3	48,957 (78.6)	13,346 (21.4)	10,544 (79.1)	2793 (20.9)
≥ O-4	23,468 (77.9)	6650 (22.1)	4551 (78.6)	1237 (21.4)
Active military	<i>P</i> < 0.	001 ^A	P < 0	0.001 ^A
service time, years			0	
< 4	168,536 (68.8)	76,450 (31.2)	32,520 (67.7)	15,502 (32.3
> 4 to 10	102,350 (66.4)	51,694 (33.6)	17,546 (66.6)	8780 (33.4)
> 10 to 16	59,802 (77.2)	17,675 (22.8)	9063 (78.6)	2466 (21.4)
> 16	55,748 (66.6)	27,988 (33.4)	7704 (68.2)	3593 (31.8)
Mean [median,	<i>P</i> < 0.	001 ^B	P < ().001 ^B
standard deviation]	7.5 [4.9, 6.9]	7.8 [4.9, 7.4]	6.6 [4.2, 6.4]	6.4 [3.9, 6.9]

Held a combat-	<i>P</i> < 0.0	001 ^A	P = 0).255 ^A
focused occupation				
No	245,696 (70.5)	102,832 (29.5)	63,017 (68.7)	28,704 (31.3)
Yes	140,740 (66.5)	70,975 (33.5)	3726 (69.5)	1637 (30.5)
Military unit type	<i>P</i> < 0.0)01 ^A	P < ().001 ^A
Combat-deployable,	182,518 (66.0)	94,133 (34.0)	28,819 (68.4)	13,291 (31.6)
conventional	0			
Training-related or	68,369 (67.5)	32,949 (32.5)	11,832 (59.4)	8097 (40.6)
administrative				
Special operations	28,852 (82.2)	6249 (17.8)	1567 (83.2)	317 (16.8)
Medical	15,894 (65.4)	8402 (34.6)	8794 (70.6)	3654 (29.4)
Other or uncertain	90,803 (73.9)	32,074 (26.1)	15,821 (76.0)	4982 (24.0)
Self-reported tobacco	<i>P</i> < 0.0	001 ^A	P < 0).001 ^A
use			0	
No	229,160 (71.3)	92,056 (28.7)	52,010 (69.8)	22,503 (30.2)
Yes	157,276 (65.8)	81,751 (34.2)	14,823 (65.4)	7838 (34.6)

Notes:

- A. Results of chi square tests.
- B. Results of two-sided t-tests.

BMJ Open

Unadjusted discharge rates varied significantly by the demographic factors of age, race, marital status as well as by military occupational characteristics (Table 2). Males in combatfocused professions were at the highest unadjusted probability of discharge (33.5% of these men; P < 0.001), whereas no association was observed between occupation and discharge among females. Crude associations between military unit type and discharge also varied by sex. Males in medical units had the highest proportion of those discharged (34.6%); among females, those in training and administrative units were most likely to be discharged (40.6%). Tobacco users were also significantly more likely to be discharged than non-users in both sexes.

Table 3. Adjusted hazard ratios (aHRs) from sex-stratified multivariable Weibull regression models for military service discharge (N = 657,417). Models adjusted for all listed variables.

	Males; r	n = 560,243	Females; n = 97,174	
	aHR ¹	95%	aHR1	95%
Factor		confidence		confidence
		interval	5,	interval
Had ankylosing spondylitis	2.5***	2.1 - 3.0	2.1***	1.4 - 3.2
Had rheumatoid arthritis	1.8***	1.5 - 2.2	1.8***	1.4 - 2.4
Had psoriasis	1.4***	1.3 - 1.5	1.4***	1.2 – 1.7
Had systemic lupus	1.7**	1.2 – 2.3	1.5*	1.0 - 2.1
erythematosus				
Had diabetes mellitus	2.4***	2.2 - 2.7	2.2***	1.8 - 2.5
	•			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Age, years (referent: ≤ 22)				
23 to 27	1.3**	1.1 – 1.5	0.9	0.8 - 1.1
28 to 35	1.4***	1.2 – 1.6	1.0	0.8 - 1.2
≥36	1.7***	1.5 - 2.0	1.2	1.0 - 1.4
Race (referent: Asian or Pacific	Islander)			
White	1.3***	1.3 – 1.4	1.5***	1.4 – 1.6
Black	1.2***	1.2 – 1.2	1.2***	1.1 – 1.3
Native American or Alaskan	1.3***	1.2 – 1.5	1.5***	1.3 – 1.7
Multiracial, other or	1.2***	1.1 – 1.2	1.1*	1.0 - 1.2
unspecified				
Marital status (referent: marrie	d)	2.		
Never married	1.2***	1.2 – 1.2	0.9*	0.8 - 1.0
Formerly married	1.3***	1.2 – 1.3	1.1***	1.0 - 1.1
<i>Military pay grade (referent:</i> \geq	<i>O-4)</i>			
≤E-4	6.6***	5.7 - 7.6	5.4***	4.7 – 6.1
E-5 & E-6	2.0***	1.8 – 2.2	1.8***	1.5 - 2.0
E-7 to E-9	1.2**	1.1 – 1.3	1.1	0.9 - 1.2
W-1 to O-3	1.6***	1.4 – 1.7	1.4***	1.3 – 1.6
· · · · · · ·	 ers (referent: <	4)		
Active military service time, yea				

> 10 to 16	1.9***	1.8 – 2.1	1.7***	1.5 – 2.0
> 16	3.8***	3.4 - 4.2	3.5***	3.0 - 3.9
Held a combat-focused	1.2***	1.1 – 1.4	1.2*	1.0 – 1.4
occupation				
Military unit type (referent: spe	cial operations))	1	
Combat-deployable,	1.9***	1.8 - 2.0	1.7***	1.4 - 2.0
conventional				
Training-related or	2.2***	1.8 - 2.8	2.8***	1.9 - 4.0
administrative	0			
Medical	2.3***	1.9 - 2.7	1.7***	1.4 – 2.1
Other or uncertain	1.4***	1.2 – 1.7	1.2	1.0 - 1.6

1. Statistical significance: ****P*<0.001; ***P*<0.01; **P*<0.05.

The results of the adjusted models are shown in Table 3. An elevated risk of discharge was observed in association with each of the five chronic conditions studied, relative to soldiers without these conditions during the same time period. The increase in adjusted risk of discharge was highest among soldiers with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI 1.4, 3.2) and with DM (male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5), followed by those with RA (male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4). For those with Ps, the adjusted hazard of discharge was 40% higher (male HR = 1.4, 95% CI: 1.3, 1.5; female HR = 1.4, 95% CI: 1.2, 1.7). For those with SLE, the adjusted hazard of

discharge was 70% higher among males (HR = 1.7, 95% CI: 1.2, 2.3) and 50% higher among females (HR = 1.5, 95% CI: 1.0, 2.1).

Considering the other predictors, the probability of discharge increased significantly with both age and service time (Table 3). Compared to those in the Asian/Pacific Islander category, individuals in each of the "other" race categories were significantly more likely to be discharged. Relative to those in special operations, hazard of discharge was significantly higher in each of the other types of military units. Finally, those in a combat-focused occupation were slightly but significantly more likely to be discharged than those occupying administrative or support roles.

DISCUSSION

In this large study of the total US Army population between 2014 and 2017, we found that those service members with ankylosing spondylitis and rheumatoid arthritis were approximately twice as likely to be discharged. The increase in risk of military discharge was very similar to those soldiers with the non-rheumatic comparison condition of diabetes mellitus. Significant elevations in the risk of military discharge were observed in association with each of the conditions studied, ranging from 40% increases for soldiers with psoriasis or systemic lupus erythematosus to 150% increases among males or females with ankylosing spondylitis. It is clear that diagnoses of these conditions are strongly associated with a decreased likelihood of remaining on active-duty military service.

The differences in effect sizes for the selected conditions may be related to occupational limitations, the current state of treatment options, and the possibility that military readiness activities might make the condition worse. For example, given the importance of spine health to military service, AS may be the most limiting, regardless of treatment.⁷ It could also be more

Page 19 of 25

BMJ Open

concerning with respect to the impact of military exposures on disease progression or to the risk of trauma causing spinal fracture. Multiple studies have shown that spinal fractures occur in AS patients at a higher frequency in all ages and disease durations; although most are low impact, many are localized to the cervical spine which in turn could cause serious injury to the spinal cord and result in death⁸⁻¹⁴. Such risks may be elevated in the military, given the physical conditioning and duties required; service members and clinicians may thus act more conservatively when the diagnosis of AS is made.

Similarly, it would be expected that the diagnosis of RA would represent a challenge to military readiness in both male and female soldiers. Rheumatoid arthritis affects the hands, knees, and feet in such a manner that produces pain, stiffness, and diminished mobility with profound effects, in the untreated patient, on locomotion and fine manipulation¹⁵.

We observed a slightly smaller increase in risk of discharge associated with a diagnosis of SLE, which may reflect the heterogeneity of the condition. Patients with SLE may not have visible signs of the disease; at the same time soldiers with SLE may experience minimal effects of the disease on the musculoskeletal system, which may often be easily managed with anti-inflammatory agents. Alternatively, error with regard to the SLE diagnoses may account for the lower rates of service discharge in this group relative to AS or DM. Anti-nuclear antibodies are necessary for the diagnosis of SLE, but it has been shown that the rate of ANA positivity in the general population is increasing in recent years even in the absence of SLE.¹⁶ It is possible that the comparatively lower rate of discharge of subjects with SLE in this study could reflect misclassification of these subjects with a positive ANA as having a bona-fide diagnosis of SLE as opposed to a false positive test in the subject's health record.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

We also observed, comparatively, a relatively minimal impact of psoriasis on military discharge rates. In the most recent report of the NHANES population-based survey of psoriasis prevalence in adults in the United States, psoriasis was quite common (3%) and prevalence has remained largely unchanged over the last two decades¹⁷. However, the majority of patients with a diagnosis of psoriasis had very few symptoms or findings at the time of the survey suggesting that psoriasis was mild in most cases. If the same pattern were to hold for the Army population, this could explain the relatively minimal increase in discharge likelihood in association with a psoriasis diagnosis.

We utilized another chronic disease, diabetes mellitus, as a comparison condition for our study of rheumatic conditions. Interestingly, though not a condition that impacts the musculoskeletal system, we observed very comparable increases in discharge rates in association with diabetes mellitus compared to ankylosing spondylitis. It is possible that the complexities of disease management of this condition pose challenges in the military operational context.

It is clear that the conditions we studied are associated with high rates of medical discharge in the US Army. Such discharges likely reflect basic incompatibilities of some features of these conditions with military readiness in the Army. It should be noted, however, that although discharge rates were elevated following diagnoses, it was by no means universal, with a large fraction of individuals remaining in service following diagnosis for the period of our study. Symptoms for each of the conditions manifest on a spectrum of severity and it is encouraging that many soldiers were able to remain in service despite diagnoses of these chronic medical conditions. It should be noted that this analysis was limited to the Army. It is possible, but not certain, that our results would generalize to the other military branches given commonalities across branches with regard to career-associated physical demands. Further research is needed to

BMJ Open

ACKNOWLEDGMENTS

The authors gratefully acknowledge data sharing by and support of the US Army Office of the Surgeon General, which have permitted this research to occur. We are grateful for the helpful feedback on the manuscript provided by Dr. Y Sammy Choi. This manuscript was produced by the authors and does not represent the position of the US Army, the US Department of Defense, or the US federal government.

FUNDING

This research was funded, in part, by the Spondylitis Association of America. The funders played no role in the conduct of the study, interpretation of the results, or drafting of the manuscript.

DATA AVAILABILITY STATEMENT

The data used in this study were provided via agreements with the Defense Health Agency and with the US Army Office of the Surgeon General. These agreements preclude us from making the data available.

CONTRIBUTORSHIP STATEMENT

All authors contributed to study design, interpretation of the analyses, and to the drafting of the manuscript. DAN and LMK were responsible for procuring and organizing the data. DAN was responsible for running the analyses.

CONFLICT OF INTEREST

The authors have no financial interests or relationships to disclose.

REFERENCES

1. Berner C, Haider S, Grabovac I, et al. Work ability and employment in rheumatoid arthritis: a cross-sectional study on the role of muscle strength and lower extremity function. *International journal of rheumatology*. 2018;2018

2. Dominick KL, Golightly YM, Jackson GL. Arthritis prevalence and symptoms among US non-veterans, veterans, and veterans receiving Department of Veterans Affairs Healthcare. *The Journal of rheumatology*. 2006;33(2):348-354.

3. Benedict TM, Singleton MD, Nitz AJ, Shing TL, Kardouni JR. Effect of chronic low back pain and post-traumatic stress disorder on the risk for separation from the US army. *Military medicine*. 2019;184(9-10):431-439.

4. Gorham ED, Garland FC, Barrett-Connor E, Garland CF, Wingard DL, Pugh WM. Incidence of insulin-dependent diabetes mellitus in young adults: experience of 1,587,630 US Navy enlisted personnel. *American journal of epidemiology*. 1993;138(11):984-987.

Defense Do. Defense Manpower Data Center. . <u>https://dwp.dmdc.osd.mil/dwp/app/main</u>
 Command UAHR.

https://www.hrc.army.mil/content/Periodic%20Health%20Assessment%20(PHA)

BMJ Open

7. Carvalho PD, Ruyssen-Witrand A, Marreiros A, Machado PM. Long-term association between disease activity and disability in early axial spondyloarthritis: results from the DESIR cohort. *Arthritis Care & Research*. 2020;

8. Westerveld L, Verlaan J, Oner F. Spinal fractures in patients with ankylosing spinal disorders: a systematic review of the literature on treatment, neurological status and complications. *European Spine Journal*. 2009;18(2):145-156.

9. Vosse D, Landewé R, van der Heijde D, van der Linden S, van Staa T-P, Geusens P. Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. *Annals of the rheumatic diseases*. 2009;68(12):1839-1842.

10. Geusens P, De Winter L, Quaden D, et al. The prevalence of vertebral fractures in spondyloarthritis: relation to disease characteristics, bone mineral density, syndesmophytes and history of back pain and trauma. *Arthritis research & therapy*. 2015;17(1):1-8.

11. Maas F, Spoorenberg A, van der Slik BP, et al. Clinical risk factors for the presence and development of vertebral fractures in patients with ankylosing spondylitis. *Arthritis care & research*. 2017;69(5):694-702.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

12. Prieto-Alhambra D, Muñoz-Ortego J, De Vries F, et al. Ankylosing spondylitis confers substantially increased risk of clinical spine fractures: a nationwide case-control study. *Osteoporosis International*. 2015;26(1):85-91.

13. Rustagi T, Drazin D, Oner C, et al. Fractures in spinal ankylosing disorders: a narrative review of disease and injury types, treatment techniques, and outcomes. *Journal of orthopaedic trauma*. 2017;31:S57-S74.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

14. Van der Weijden M, Van der Horst-Bruinsma I, Van Denderen J, Dijkmans B, Heymans
M, Lems W. High frequency of vertebral fractures in early spondylarthropathies. *Osteoporosis International*. 2012;23(6):1683-1690.

Brasington RD. Clinical features of rheumatoid arthritis. *Rheumatology: Sixth Edition*.
 Elsevier Inc.; 2015:704-711.

16. Dinse GE, Parks CG, Weinberg CR, et al. Increasing prevalence of antinuclear antibodies in the United States. *Arthritis & Rheumatology*. 2020;72(6):1026-1035.

17. Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CE. Psoriasis Prevalence in Adults in the United States. *JAMA dermatology*. 2021;

2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract:
		See methods section of abstract, p. 2.
		(b) Provide in the abstract an informative and balanced summary of what was done
_		and what was found: See methods and results section of abstract, p. 2.
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported: See paragraphs 1 & 2 of the Introduction, p. 4.
Objectives	3	State specific objectives, including any prespecified hypotheses: See paragraph 3 of the Introduction, p. 4.
Methods		
Study design	4	Present key elements of study design early in the paper: See paragraph 1 of the Methods, p. 5.
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection: See paragraph 1 of the Methods, p. 5.
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants. Describe methods of follow-up: See Methods section, paragraph 1 (p. 5)
		and paragraphs 5 & 6, p. 6.
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed: Not applicable (N/A).
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable: See Methods: paragraphs 2 & 3 (p.
		5); the Dependent variable section (p. 6) and the Independent variables section (pp. 6
		7).
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group: See Methods: paragraph 1 (p. 5); paragraphs 3 & 4 (p. 5); the
		Dependent variable section (p. 6) and the Independent variables section (pp. 6-7).
Bias	9	Describe any efforts to address potential sources of bias: See Methods, paragraph 6
		(p. 6).
Study size	10	Explain how the study size was arrived at: See Methods, paragraphs 5 & 6 (p. 6).
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why: See first paragraph of the
		Independent variables section of Methods, p. 7.
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding:
		See the "Statistical analysis" section of the Methods section, pp. 7-8.
		(b) Describe any methods used to examine subgroups and interactions: See the second
		paragraph of the Statistical Analysis section of the Methods section, p. 8.
		(c) Explain how missing data were addressed: Not applicable to our study.
		(d) If applicable, explain how loss to follow-up was addressed: Not applicable to our
		study.
		(\underline{e}) Describe any sensitivity analyses: Not applicable to our study.
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially

		(b) Give reasons for non-participation at each stage: Not applicable to our study.
		(c) Consider use of a flow diagram: Not applicable to our study.
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders: See Table 1, pp. 9-10 and Table
		2, pp. 11-13.
		(b) Indicate number of participants with missing data for each variable of interest: No
		applicable to our study.
		(c) Summarise follow-up time (eg, average and total amount): See first paragraph of
		the Results, p. 8.
Outcome data	15*	Report numbers of outcome events or summary measures over time: See Table 1, pp.
		9-10 and the second paragraph of the Results section, p. 10.
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included: See Table 3, pp. 14-16.
		(b) Report category boundaries when continuous variables were categorized: See
		Table 2 (pp. 11-13) and Table 3 (pp 14-16).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period: Not applicable to our study.
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses: Not applicable to our study.
Discussion		
Key results	18	Summarise key results with reference to study objectives: See first paragraph of the
		Discussion section, p. 17.
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias: See fourth
		paragraph of the Discussion section, p. 18.
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence: See
		Discussion section, pp. 17-20.
Generalisability	21	Discuss the generalisability (external validity) of the study results: See seventh
		paragraph of the Discussion section, p. 19.
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
U		applicable, for the original study on which the present article is based. See the
		Funding section, p. 20.

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Service Discharges Among US Army Personnel with Selected Musculoskeletal and Skin Conditions

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063371.R1
Article Type:	Original research
Date Submitted by the Author:	23-Aug-2022
Complete List of Authors:	Nelson, D. Alan; Stanford University School of Medicine, Department of Medicine Kaplan, Robert ; Stanford University School of Medicine Weisman, Michael M; Stanford University School of Medicine, Department of Medicine Kurina, Lianne; Stanford University School of Medicine, Department of Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Epidemiology, Rheumatology
Keywords:	EPIDEMIOLOGY, RHEUMATOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

	BS
	2
-	BMJ Open: first published as 10.1136/bmiopen-2022-063371 on 14 October 2022. Downloaded from I
	ר בי
_	first p
	ldud
	ishe
	å 0
	5
	0.1
	136
	/bm
-	<u>lo</u>
	en-
	202
	2-0
	623
	2
	d as 10.1136/bmiopen-2022-063371 on 14 October 2022. D
	140
	ber
	20
	22.
	Do
	N N
	oad
	ed 1
	ron
	htt
	om http://bmiop
-	ope
	ñ.b
	<u>B</u> .
	ğ
	or
-	A
	Ĭ.
	pril 18. 2024 bv av
	202
	4 0
Ċ	< מכ
	lest
	P
	otec
	teo
	þ
_	ŝ
	Vric
C	Ħ.

1		
2 3 4	1	Service Discharges Among US Army Personnel with Selected Musculoskeletal and Skin
4 5 6	2	Conditions
7 8	3	
9 10	4	D. Alan Nelson, PhD; ¹ Robert M. Kaplan, PhD; ² Michael H. Weisman, MD; ³ Lianne M. Kurina,
11 12 13	5	PhD ¹
13 14 15	6	
16 17	7	Affiliations
18 19	8	1. Department of Medicine, Division of Primary Care and Population Health, Stanford
20 21 22	9	University School of Medicine, Stanford CA, USA
23 24	10	2. Clinical Excellence Research Center, Stanford University School of Medicine, Stanford CA,
25 26 27	11	USA
27 28 29	12	3. Department of Medicine, Division of Rheumatology, Stanford University School of Medicine,
30 31	13	Department of Medicine, Division of Rheumatology
32 33 34	14	
35 36	15	Corresponding author: Lianne Kurina, 450 Jane Stanford Way, Building 20, Stanford
37 38	16	University, Stanford CA 94305-2160; <u>lkurina@stanford.edu</u>
39 40 41	17	
42 43	18	Word Count: 2886
44 45	19	
46 47 48	20	Keywords: epidemiology; military personnel; rheumatic diseases
49 50	21	
51 52	22	
53 54 55	23	
55 56 57		
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 26

1

58 59

60

BMJ Open

2		
3 4	24	ABSTRACT
5 6	25	Objectives: To determine the probability of discharge from military service among soldiers
7 8 9	26	following an incident diagnosis of ankylosing spondylitis (AS), rheumatoid arthritis (RA),
9 10 11	27	psoriasis (Ps) or systemic lupus erythematous (SLE).
12 13	28	
14 15	29	Methods: All soldiers on active duty in the U.S. Army between January 2014 and June 2017
16 17	30	were included in a retrospective cohort analysis. Termination from service was ascertained using
18 19 20	31	personnel records. Diagnostic codes were used to identify incident cases of the four
21 22	32	musculoskeletal and skin diseases and, for comparison, diabetes mellitus (DM). Time to
23 24	33	discharge was modeled using sex stratified multivariate survival analysis.
25 26	34	
27 28 29	35	Results : The analysis included 657,417 individuals with a total of 1.2-million-person years of
30 31	36	observation. An elevated risk of discharge was observed in association with each of the five
32 33	37	chronic conditions studied. The increase in adjusted risk of discharge was highest among soldiers
34 35 36	38	with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI 1.4, 3.2) and with DM
37 38	39	(male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5), followed by those with RA
39 40	40	(male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4).
41 42 43	41	
43 44 45	42	Conclusions : Military discharges are consequential for the service and the servicemember. The
46 47	43	doubling in risk of discharge for those with AS or RA was comparable to that for personnel with
48 49	44	diabetes mellitus. Conditions that affect the spine and peripheral joints may often be
50 51 52	45	incompatible with military readiness. Nevertheless, a substantial fraction of servicemembers with
53 54	46	these diagnoses continued in service.
55 56	-	
57		

1 ว		
2 3 4	47	
5 6	48	STRENGTHS AND LIMITATIONS OF THIS STUDY
7 8 9	49	• Before this work, very little has been known about the military trajectories of those
9 10 11	50	developing chronic musculoskeletal and skin conditions.
12 13	51	• Utilizing the total active-duty US Army population from 2014-17, we found a doubling
14 15 16	52	of the adjusted hazard of leaving military service following a diagnosis of ankylosing
17 18	53	spondylitis and rheumatoid arthritis.
19 20 21	54	• Conditions impacting the spine and peripheral joints may present challenges but do not
21 22 23	55	appear invariably incompatible with continued military service.
24 25	56	• Our results cannot necessarily be generalized to other US military branches or to
26 27 28	57	servicemembers of other nations.
28 29 30	58	
31 32	59	
33 34 35	60	
35 36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53		
54 55		
56		
57 58		
59 60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

61	INTRODUCTION
62	Chronic musculoskeletal and skin conditions may pose important challenges for military
63	personnel. In many cases, affected individuals could be unable to carry out their military duties
64	and would thus be given a medical discharge. Given the operational and economic costs of such
65	discharges, as well as the human impact on the soldier from the onset of a chronic disease, it is
66	critical to better understand typical career trajectories in the military following onset of these
67	diseases. ¹
68	Although military clinicians are provided substantial guidance with respect to both
69	diagnosing and managing musculoskeletal and skin disorders 2 we were unable to identify prior

diagnosing and managing musculoskeletal and skin disorders,² we were unable to identify prior
research specifically addressing the risk of military service terminations associated with
diagnoses of these diseases. Insufficient evidence could potentially lead to either hastening
service discharges for those still ably serving under effective management or delayed actions that
could permit disease progression associated with a subsequent service discharge.² Thus,
determining the risk of military discharge, if any, associated with such conditions is important
for the military mission as well as for clinicians and patients alike.

In this study, our objective was to characterize the associations between a selection of
commonly encountered chronic musculoskeletal and skin conditions including ankylosing
spondylitis (AS), rheumatoid arthritis (RA), psoriasis (Ps) and systemic lupus erythematosus
(SLE), and discharge from service among active-duty service members when adjusting for a
range of demographic, health-related, and military-specific characteristics. For comparison, we
also analyzed the risk of discharge following diagnosis with diabetes mellitus, which is among
the most prevalent chronic diseases in the military population.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

84 METHODS

85 Data Sources.

We utilized a longitudinal panel dataset from the Stanford Military Data Repository (SMDR), a de-identified dataset comprising administrative and health-related datasets on the active-duty US Army. The current retrospective cohort analysis is based on person-months of active military service among individuals who served with the US Army between January 2014 and June 2017. Demographic and military service data, including terminations of active-duty service, were obtained from official personnel records provided by the Defense Manpower Data Center (DMDC)³. The data sources used to identify individuals with our outcomes of interest were the Military Health System Data Repository or MDR⁴ which includes records of out- and inpatient care provided to US service members in military as well as civilian facilities, and the "eProfile" system⁴, the official system of record in which soldiers' duty restrictions and the clinical diagnoses warranting them are archived. To identify incident diagnoses of AS, RA, Ps, SLE or DM (either type 1 or 2), we first used the clinical data from the MDR. For encounters occurring between January 2014 and October 2015, conditions were identified using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) data. ICD-10 codes were used for encounters occurring between November 2015 and June 2017. For each condition, the ICD-9-CM and ICD-10 diagnosis codes were, respectively: AS, 720.0 and M45.x; RA, 714.x and M05.x, M06.x; Ps, 696.x and L40.x; SLE, 710.0 and M32.1x, M32.9x; and DM, 250.x and E.08.x - E.11.x, E13.x. The second source for identifying incident cases was "eProfile" due to the potential for some cases to solely be diagnosed in eProfile as a summative finding after deferred assignments

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of definitive diagnoses. Such trajectories could be seen, for example, if diagnoses were uncertain

Page 7 of 26

BMJ Open

1 2	
3 4	107
5 6	108
7 8 9	109
9 10 11	110
12 13	111
14 15	112
16 17 18	113
19 20	114
21 22	115
23 24 25	116
25 26 27	117
28 29	118
30 31 22	119
32 33 34	120
35 36	121
37 38	122
39 40 41	123
41 42 43	124
44 45	125
46 47	126
48 49 50	127
50 51 52	128
53 54	129
55 56	
57	
58 59	

60

and were confirmed only by specialists late in the care process after initial primary care
evaluation, at which time appropriate duty restrictions might be better understood. A free-text
search algorithm was used to filter clinician entries of the selected medical conditions; the
accuracy of captured diagnoses was then confirmed with a visual review.

Subjects who began their military service during the observed time period were examined
for incident diagnoses beginning at the outset of their service. Military enlistment policies
require initial screening examinations. Any of the five conditions considered in this study (AS,
RA, Ps, SLE, and DM) normally disqualify an individual from induction into service (AR 40501) ⁵. All new soldiers in the dataset were therefore presumed to be free of known diagnoses of
these conditions when they entered service.

The remaining individuals entered service at a wide variety of times prior to January .19 2014 and could therefore have been diagnosed with one or more of these conditions before our 20 21 study period. Thus, for those soldiers enlisting prior to January 2014, we applied a "wash-out" or "run-in" period in which at least 12 initial months of observation were required. This wash-out 22 .23 period was used to rule out follow-up care for previously diagnosed conditions in their health 24 records and duty restrictions. The one-year duration of the period was chosen because each member is required to undergo an annual Periodic Health Assessment, a health screening⁶ in 25 26 which major medical problems are typically identified. Observation for incident conditions thus began in January 2015 among those entering service prior to January 2014. .27

129 Dependent variable

Procedure

1 2

3 4	130	The primary outcome variable was a discharge from service for any reason. The discharge
5 6	131	information was identified from the DMDC personnel records.
7 8 9	132	
9 10 11	133	Independent variables
12 13	134	We included a wide range of independent variables to minimize possible confounding of
14 15	135	the associations between the selected disorders and service discharges. Independent variables
16 17 18	136	whose values varied with time were continuously updated in each subject's longitudinal data.
19 20	137	The covariates included sex, age, race, marital status, statement of tobacco use at a prior health
21 22	138	encounter, active-duty service time and military pay grade, which captures soldiers'
23 24 25	139	socioeconomic status ⁷ .
26 27	140	We categorized the two quantitative variables. We divided individuals in approximate
28 29	141	quartiles on the basis of age. For active-duty service time, we categorized in such a way as to
30 31 32	142	capture typical career eras for soldiers. Specifically, we employed a category for <4 years to
33 34	143	capture those in their first term of service and a 4–10-year category for people who may be in the
35 36	144	decision window before choosing whether to remain in service until retirement. We then divided
37 38 39	145	the remaining subjects into two subgroups: those with >10-16 and >16 years.
39 40 41	146	In addition, we created a dichotomous variable to capture whether each member held a
42 43	147	combat-focused occupation versus a job description functioning in a support role. We also
44 45	148	included an additional categorical variable to account for the type of military unit in which the
46 47 48	149	subject served to adjust for any related systematic difference in exposures. The categories were:
49 50	150	combat deployable units; those involved in training and administrative functions; special
51 52	151	operations forces; medical units; and all other or unknown unit types.
53 54 55	152	
56 57		
58 59		7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntmi

BMJ Open

1	
2	
3	
4	
5 6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
1/ 10	
10	
19	
7 8 9 10 11 13 14 15 16 17 18 20 21 22 22 22 22 20 30 30	
21	
22	
23	
24	
25	
26	
27	
28 28	
20	
29	
50 21	
31	
32	
32 33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
58	
59	

153 Patient and public involvement

154 Study participants were not involved in the design, recruitment, or conduct of the study, 155 as this was a retrospective analysis of passively collected data on military service members. All 156 service members will be able to view the study results upon publication of the paper.

158 Statistical analysis

To provide a descriptive overview of the study population, we examined subjects at the last-available, person-specific monthly observation and stratified on the presence or absence of service discharge. We tested for differences in categorical variable distributions using chi square tests and applied two-sided t-tests for continuous variables.

- To estimate adjusted associations between the selected conditions and service discharge, we computed multivariable survival models. The models used the Weibull distribution to estimate adjusted hazard ratios for service discharge. Because of possible differences between males and females in the rates of the conditions being studied and in rates of separation of the Army, the unadjusted and adjusted analyses were sex stratified.
- All analyses were conducted using Stata statistical software version 14.2 (StataCorp,
- 169 College Station, Texas). We considered p-values ≤ 0.05 to be statistically significant.
- 2 2 170

60

5 171 RESULTS

The analysis included 657,417 eligible subjects who were observed for a total of 1.2 million person-years of time at risk for the regression models. On average, each subject was observed for 1.8 years (median: 2.4; standard deviation [SD]: 0.9). We found that small percentages of subjects with each of the selected medical conditions were additionally detected

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

Race

176	when using the eProfile data	in addition to MD	R information. Th	he relevant findi	ngs were as
177	follows for each of the condi	tions, with the for	mat representing 1	the total number	of affected
178	subjects, the number of addit	tional cases solely	identified in ePro	file and, in parer	ntheses, the
179	percentage of total cases dete	ected solely in ePr	ofile: for AS, 322	, 15 (4.7%); for	RA, 734, 7
180	(1.0%); for DM, 2541, 44 (1	.7%); for Ps, 2658	, 17 (0.6%); and f	for SLE, 236, 8 (3.4%).
181	Table 1 presents the u	unadjusted results	for demographic	and health behav	vior variables
182	while Table 2 presents the un	nadjusted results for	or military charact	teristics. Tobacc	o users were
183	significantly more likely to b	e discharged than	non-users in both	sexes (Table 1)	
184					
185	Table 1. Demographic and h	ealth behavior ch	aracteristics of the	e U.S. Army stud	ly population,
186	2014-7 ($N = 657,417$) as of t	the last person-spe	ecific observation.	Values represer	nt numbers
187	(percentages).				
		Males; $n = 50$	60,243 (85.2)	Females; n =	97,174 (14.8)
		No discharge	Discharged	No discharge	Discharged
	Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
	Age, years	P < 0	.001 ^A	P < 0	0.001 ^A
	≤22	98,351 (69.1)	43,912 (30.9)	17,941 (64.8)	9754 (35.2)
	23 to 27	102,712 (66.1)	52,620 (33.9)	18,487 (68.3)	8591 (31.7)
	28 to 35	101,863 (72.0)	39,570 (28.0)	17,733 (72.8)	6621 (27.2)
	≥36	83,510 (68.9)	37,705 (31.1)	12,672 (70.2)	5375 (29.8)

 $P < 0.001^{\text{A}}$

 $P < 0.001^{\text{A}}$

		126,022 (31.8)	32,726 (66.8)	16,256 (33.2)
Black	75,041 (69.5)	32,972 (30.5)	24,364 (69.1)	10,899 (30.9)
Asian or Pacific Islander	22,021 (75.0)	7322 (25.0)	5112 (76.0)	1612 (24.0)
Native American or	2711 (66.2)	1381 (33.8)	616 (62.9)	364 (37.1)
Alaska Native				
Multiracial, other or	16,932 (73.5)	6110 (26.5)	4015 (76.8)	1210 (23.2)
unspecified	*			
Marital status	<i>P</i> < 0	.001 ^A	P = 0	0.001 ^A
Married	222,598 (70.3)	94,033 (29.7)	32,376 (69.3)	14,350 (30.7
Never married	148,065 (67.6)	70,942 (32.4)	26,584 (68.5)	12,243 (31.5
Formerly married	15,773 (64.1)	8832 (35.9)	7873 (67.8)	3748 (32.2)
Tobacco use	<i>P</i> < 0	.001 ^A	P < 0	0.001 ^A
No	229,160 (71.3)	92,056 (28.7)	52,010 (69.8)	22,503 (30.2)
Yes	157,276 (65.8)	81,751 (34.2)	14,823 (65.4)	7838 (34.6)

Note:

> A. Results of chi square tests.

In terms of military characteristics (Table 2), males in combat-focused professions were at the highest unadjusted probability of discharge (33.5% of these men; P < 0.001) whereas no association was observed between occupation and discharge among females. Crude associations between military unit type and discharge also varied by sex. Males in medical units had the

Page 12 of 26

highest proportion of those discharged (34.6%); among females, those in training and

administrative units were most likely to be discharged (40.6%).

198 *Table 2. Military characteristics of the U.S. Army study population, 2014-7 (N = 657,417) as of*

199 the last person-specific observation. Values represent numbers (percentages).

	Males; $n = 50$	60,243 (85.2)	Females; n =	97,174 (14.8)
	No discharge	Discharged	No discharge	Discharged
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
Military pay grade	<i>P</i> < 0	.001 ^A	P = 0	0.001 ^A
≤E-4	170,482 (62.9)	100,574 (37.1)	30,841 (61.5)	19,310 (38.5)
E-5 & E-6	101,670 (72.5)	38,602 (27.5)	15,433 (74.8)	5200 (25.2)
E-7 to E-9	41,859 (74.1)	14,635 (25.9)	5464 (75.2)	1801 (24.8)
W-1 to O-3	48,957 (78.6)	13,346 (21.4)	10,544 (79.1)	2793 (20.9)
≥ O-4	23,468 (77.9)	6650 (22.1)	4551 (78.6)	1237 (21.4)
Active service time	<i>P</i> < 0	.001 ^A	<i>P</i> < 0).001 ^A
< 4 years	168,536 (68.8)	76,450 (31.2)	32,520 (67.7)	15,502 (32.3)
> 4 to 10 years	102,350 (66.4)	51,694 (33.6)	17,546 (66.6)	8780 (33.4)
> 10 to 16 years	59,802 (77.2)	17,675 (22.8)	9063 (78.6)	2466 (21.4)
> 16 years	55,748 (66.6)	27,988 (33.4)	7704 (68.2)	3593 (31.8)
Combat-focused	<i>P</i> < 0	.001 ^A	P = 0).255 ^A

No	245,696 (70.5)	102,832 (29.5)	63,017 (68.7)	28,704 (31.
Yes	140,740 (66.5)	70,975 (33.5)	3726 (69.5)	1637 (30.5
Military unit type	<i>P</i> < 0	.001 ^A	<i>P</i> < 0	0.001 ^A
Combat-deployable	182,518 (66.0)	94,133 (34.0)	28,819 (68.4)	13,291 (31.
Training/administration	68,369 (67.5)	32,949 (32.5)	11,832 (59.4)	8097 (40.6
Special operations	28,852 (82.2)	6249 (17.8)	1567 (83.2)	317 (16.8
Medical	15,894 (65.4)	8402 (34.6)	8794 (70.6)	3654 (29.4
Other/uncertain	90,803 (73.9)	32,074 (26.1)	15,821 (76.0)	4982 (24.0

201 A. Results of chi square tests.

Table 3 presents the unadjusted distributions of study subpopulations organized in terms of their diagnoses. Overall, 31.0% of males and 31.2% of females without the conditions of interest were discharged during the follow-up time. A significantly higher proportion of those with a diagnosis of AS, RA and DM were discharged. Discharges were most common among AS patients with 44.7% of males and 43.1% of females discharged. Among the RA patients, 37.9% of the males and 37.8% of the females were discharged. Among those with DM, 44.5% of the males and 38.9% of the females were discharged. No significant difference in the unadjusted probability of discharge was observed in association with either Ps or SLE. Men and women with psoriasis experienced the lowest discharge rates among subjects with the selected conditions, respectively involving 30.2% and 31.7% of subjects with those diagnostic histories.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	
2	
3	214
4	
5	215
6 7	210
8	216
9	
10	217
11	
12	218
13	
14 15	
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57	
58	

59

60

14	Table 3. Disease percentages in the U.S. Army study population, $2014-7$ (N = 657,417),	

stratified by sex and military discharge status, as of the last person-specific observation. Values

represent numbers (percentages) and p-values are derived from of chi square tests comparing

217 *factor distributions*.

	Males; $n = 56$	50,243 (85.2)	Females; $n = 9$	97,174 (14.8)	
	No discharge	Discharged	No discharge	Discharged	
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)	
Ankylosing spondylitis			<u> </u>		
Yes	146 (55.3)	118 (44.7)	33 (56.9)	25 (43.1)	
No	386,290 (69.0)	173,689 (31.0)	66,800 (68.8)	30,316 (31.2)	
	P < 0	0.001	P = 0	.051	
Rheumatoid arthritis		CL CL			
Yes	303 (62.1)	185 (37.9)	153 (62.2)	93 (37.8)	
No	386,133 (69.0)	173,622 (31.0)	66,680 (68.8)	30,248 (31.2)	
	P = 0	0.001	P=0	.026	
Psoriasis					
Yes	1534 (69.8)	664 (30.2)	314 (68.3)	146 (31.7)	
No	384,902 (69.0)	173,143 (31.0)	66,519 (68.8)	30,195 (31.2)	
	P = 0	0.408	P = 0.811		

Yes		59 (62.8) 35 (37.2)		95 (66.9)	47 (33.1)
No		386,377 (69.0)	173,772 (31.0)	66,738 (68.8)	30,294 (31.2)
		P = 0	.193	P = 0	.629
Diabetes mellitu	s				
Yes		1175 (55.5)	942 (44.5)	259 (61.1)	165 (38.9)
No		385,261 (69.0)	172,865 (31.0)	66,574 (68.8)	30,176 (31.2)
	4	P < 0	.001	P = 0	.001

was highest among soldiers with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI

1.4, 3.2) and with DM (male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5),

followed by those with RA (male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4).

For those with Ps, the adjusted hazard of discharge was 40% higher (male HR = 1.4, 95% CI:

1.3, 1.5; female HR = 1.4, 95% CI: 1.2, 1.7). For those with SLE, the adjusted hazard of

discharge was 70% higher among males (HR = 1.7, 95% CI: 1.2, 2.3) and 50% higher among

229 females (HR = 1.5, 95% CI: 1.0, 2.1).

Considering the other predictors, the probability of discharge increased significantly with
both age and service time (Table 4). Compared to those in the Asian/Pacific Islander category,

individuals in each of the "other" race categories were significantly more likely to be discharged.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

Relative to those in special operations, hazard of discharge was significantly higher in each of
the other types of military units. Finally, those in a combat-focused occupation were slightly but
significantly more likely to be discharged than those occupying administrative or support roles.

237Table 4. Adjusted hazard ratios (aHR) with 95% confidence intervals (CI) from sex-stratified

238 multivariable Weibull regression models for military service discharge (N = 657,417). Models 239 adjusted for all listed variables.

	Males; n	= 560,243	Females; 1	n = 97,174
Factor	aHR1	95% CI	aHR1	95% CI
Had ankylosing spondylitis	2.5***	2.1 - 3.0	2.1***	1.4 - 3.2
Had rheumatoid arthritis	1.8***	1.5 – 2.2	1.8***	1.4 - 2.4
Had psoriasis	1.4***	1.3 – 1.5	1.4***	1.2 – 1.7
Had systemic lupus erythematosus	1.7**	1.2 – 2.3	1.5*	1.0 - 2.1
Had diabetes mellitus	2.4***	2.2 – 2.7	2.2***	1.8 - 2.5
Age, years (referent: ≤ 22)				
23 to 27	1.3**	1.1 – 1.5	0.9	0.8 – 1.1
28 to 35	1.4***	1.2 – 1.6	1.0	0.8 – 1.2
≥ 36	1.7***	1.5 – 2.0	1.2	1.0 – 1.4
Race (referent: Asian or Pacific Islande	r)			
White	1.3***	1.3 – 1.4	1.5***	1.4 – 1.6
Black	1.2***	1.2 – 1.2	1.2***	1.1 – 1.3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 26

BMJ Open

Native American or Alaskan	1.3***	1.2 – 1.5	1.5***	1.3 – 1.7
Multiracial, other or unspecified	1.2***	1.1 - 1.2	1.1*	1.0 - 1.2
Marital status (referent: married)				
Never married	1.2***	1.2 – 1.2	0.9*	0.8 - 1.0
Formerly married	1.3***	1.2 – 1.3	1.1***	1.0 - 1.1
<i>Military pay grade (referent:</i> \geq <i>O</i> -4)				
≤E-4	6.6***	5.7 - 7.6	5.4***	4.7 - 6.1
E-5 & E-6	2.0***	1.8 - 2.2	1.8***	1.5 – 2.0
E-7 to E-9	1.2**	1.1 – 1.3	1.1	0.9 - 1.2
W-1 to O-3	1.6***	1.4 – 1.7	1.4***	1.3 – 1.6
Active military service time, years (ref	<i>Terent: < 4)</i>	•		
> 4 to 10	2.1***	1.9 – 2.2	2.1***	1.9 - 2.2
> 10 to 16	1.9***	1.8 - 2.1	1.7***	1.5 - 2.0
> 16	3.8***	3.4 - 4.2	3.5***	3.0 - 3.9
Held a combat-focused occupation	1.2***	1.1 – 1.4	1.2*	1.0 - 1.4
Military unit type (referent: special op	erations)			
Combat-deployable	1.9***	1.8 - 2.0	1.7***	1.4 – 2.0
Training/administration	2.2***	1.8 - 2.8	2.8***	1.9 – 4.0
Taining/administration				

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Other/uncertain	1.4***	1.2 – 1.7	1.2	1.0 - 1.6
Self-reported tobacco use	1.4***	1.3 – 1.5	1.3***	1.2 – 1.3

1. Statistical significance: ****P*<0.001; ***P*<0.01; **P*<0.05.

242 DISCUSSION

In this large study of the total US Army population between 2014 and 2017, we found that those service members with ankylosing spondylitis and rheumatoid arthritis were approximately twice as likely to be discharged in comparison to peers without these diagnoses. The increase in risk of military discharge was very similar to those soldiers with the comparison condition of diabetes mellitus. Significant elevations in the risk of military discharge were observed in association with each of the conditions studied, ranging from 40% increases for soldiers with psoriasis or systemic lupus erythematosus to 150% increases among males or females with ankylosing spondylitis. It is clear that diagnoses of these conditions are strongly associated with a decreased likelihood of remaining on active-duty military service.

The differences in effect sizes for the selected conditions may be related to occupational limitations, the current state of treatment options, and the possibility that military readiness activities might make the condition worse. For example, given the importance of spine health to military service, AS may be the most limiting, regardless of treatment.⁸ It could also be more concerning with respect to the impact of military exposures on disease progression or to the risk of trauma causing spinal fracture. Multiple studies have shown that spinal fractures occur in AS patients at a higher frequency in all ages and disease durations; although most are low impact, many are localized to the cervical spine which in turn could cause serious injury to the spinal cord and result in death⁹⁻¹⁵. Such risks may be elevated in the military, given the physical

Page 19 of 26

BMJ Open

conditioning and duties required; service members and clinicians may thus act more conservatively when the diagnosis of AS is made.

Similarly, it would be expected that the diagnosis of RA would represent a challenge to military readiness in both male and female soldiers. Rheumatoid arthritis affects the hands, knees, and feet in such a manner that produces pain, stiffness, and diminished mobility with profound effects, in the untreated patient, on locomotion and fine manipulation 16 .

We observed a slightly smaller increase in risk of discharge associated with a diagnosis of SLE, which may reflect the heterogeneity of the condition. Patients with SLE may not have visible signs of the disease; at the same time soldiers with SLE may experience minimal effects of the disease on the musculoskeletal system, which may often be easily managed with anti-inflammatory agents. Alternatively, error with regard to the SLE diagnoses may account for the lower rates of service discharge in this group relative to AS or DM. Anti-nuclear antibodies are necessary for the diagnosis of SLE, but it has been shown that the rate of ANA positivity in the general population is increasing in recent years even in the absence of SLE.¹⁷ It is possible that the comparatively lower rate of discharge of subjects with SLE in this study could reflect misclassification of these subjects with a positive ANA as having a bona-fide diagnosis of SLE as opposed to a false positive test in the subject's health record.

We also observed, comparatively, a relatively minimal impact of psoriasis on military discharge rates. In the most recent report of the NHANES population-based survey of psoriasis prevalence in adults in the United States, psoriasis was quite common (3%) and prevalence has remained largely unchanged over the last two decades¹⁸. However, the majority of patients with a diagnosis of psoriasis had very few symptoms or findings at the time of the survey suggesting that psoriasis was mild in most cases. If the same pattern were to hold for the Army population,

Page 20 of 26

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

this could explain the relatively minimal increase in discharge likelihood in association with a
psoriasis diagnosis. Interestingly, while we observed no significant difference in the percentages
of soldiers discharged with either SLE or psoriasis in the univariate analyses, our adjusted
analyses showed significant increases, although reasonably modest, in association with each of
these conditions. This indicates confounding by one or more of the covariates we included in our
adjusted regression model.

We utilized another chronic disease, diabetes mellitus, as a comparison condition for our study of musculoskeletal and skin conditions. Interestingly, though not a condition that typically impacts the musculoskeletal system, we observed very comparable increases in discharge rates in association with diabetes mellitus compared to ankylosing spondylitis. It is possible that the complexities of disease management of this condition pose challenges in the military operational context.

Our results must be interpreted in light of several limitations. First, the analysis was limited to the Army. It is possible, but not certain, that our results would generalize to the other military branches given commonalities across branches with regard to career-associated physical demands. Further research is needed to clarify the treatment and disease progression trajectories for the selected conditions, many of whom (including RA and AS) can be managed early and aggressively with modern drugs producing an almost disease-free condition with full activity capabilities.

A second limitation is that the analyses depended on administrative data taken from Army records systems rather than, for example, being done with a chart review. For this reason, the diagnoses were not validated, and we had limited visibility on treatments. Our limited access

Page 21 of 26

BMJ Open

to clinical findings is an unavoidable constraint. Third, we do not have access to the codes associated with military separation; some discharges may be due to non-medical causes. In conclusion, our study found elevated risks of discharge from the U.S. Army in association with selected musculoskeletal and skin conditions, several of which have an auto-immune etiology. Such discharges may well reflect basic incompatibilities of some features of these conditions with military readiness in the Army. It should be noted, however, that although discharge rates were elevated following diagnoses, discharge was by no means universal, with a large fraction of individuals remaining in service following diagnosis for the period of our study. Symptoms for each of the conditions manifest on a spectrum of severity, and it is encouraging that many soldiers were able to remain in service despite diagnoses of these chronic medical conditions. ACKNOWLEDGMENTS The authors gratefully acknowledge data sharing by and support of the US Army Office of the Surgeon General, which have permitted this research to occur. We are grateful for the helpful feedback on the manuscript provided by Dr. Y Sammy Choi. This manuscript was produced by the authors and does not represent the position of the US Army, the US Department of Defense, or the US federal government.

7 325 FUNDING

326 This research was funded, in part, by the Spondylitis Association of America; no award or grant
 327 number is available. The funders played no role in the conduct of the study, interpretation of the
 328 results, or drafting of the manuscript.

1 2		
2 3 4	329	
5 6	330	DATA AVAILABILITY STATEMENT
7 8 9 10 11 12 13	331	The data used in this study were provided via agreements with the Defense Health Agency and
	332	with the US Army Office of the Surgeon General. These agreements preclude us from making
	333	the data available.
14 15	334	
16 17 18	335	CONTRIBUTORSHIP STATEMENT
19 20	336	DAN, RMK, MHW, and LMK all contributed to study design, interpretation of the analyses, and
21 22	337	to the drafting of the manuscript. DAN and LMK were responsible for procuring and organizing
23 24 25	338	the data. DAN was responsible for running the analyses.
26 27	339	
28 29 30 31 32	340	CONFLICT OF INTEREST
	341	The authors have no financial interests or relationships to disclose.
32 33 34	342	
35 36	343	ETHICS APPROVAL
37 38	344	The study was approved by the institutional review board at Stanford University (Protocol
39 40 41	345	31161) and also underwent secondary review by the human research protections office of the
42 43	346	Defense Health Agency.
44 45	347	
46 47 48	348	REFERENCES
49 50	349	1. Berner C, Haider S, Grabovac I, et al. Work ability and employment in rheumatoid
51 52	350	arthritis: a cross-sectional study on the role of muscle strength and lower extremity function.
53 54 55	351	International journal of rheumatology. 2018;2018
55 56 57		
58 59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	352	2. Benedict TM, Singleton MD, Nitz AJ, Shing TL, Kardouni JR. Effect of chronic low
5 6	353	back pain and post-traumatic stress disorder on the risk for separation from the US army.
7 8	354	<i>Military medicine</i> . 2019;184(9-10):431-439.
9 10 11	355	3. Defense Do. Defense Manpower Data Center <u>https://dwp.dmdc.osd.mil/dwp/app/main</u>
12 13	356	4. Health.mil. MDR, M2, ICDs Functional References and Specification. Military Health
14 15	357	Systems. Accessed August 11, 2022, https://www.health.mil/Military-Health-
16 17	358	Topics/Technology/Support-Areas/MDR-M2-ICD-Functional-References-and-Specification-
18 19 20	359	Documents
21 22	360	5. Army Regulation: Record Details for AR 40-501. Army Publishing Directorate. Accessed
23 24	361	August 11, 2022, 2022.
25 26 27	362	https://armypubs.army.mil/ProductMaps/PubForm/Details.aspx?PUB_ID=1004688
28 29 30 31	363	6. Command UAHR.
	364	https://www.hrc.army.mil/content/Periodic%20Health%20Assessment%20(PHA)
32 33 34	365	7. Basic Pay: Active Duty Soldiers. US Army. Accessed August 11, 2022, 2022.
35 36	366	https://www.goarmy.com/benefits/money/basic-pay-active-duty-soldiers.html
37 38	367	8. Carvalho PD, Ruyssen-Witrand A, Marreiros A, Machado PM. Long-term association
39 40	368	between disease activity and disability in early axial spondyloarthritis: results from the DESIR
41 42 43	369	cohort. Arthritis Care & Research. 2020;
44 45	370	9. Westerveld L, Verlaan J, Oner F. Spinal fractures in patients with ankylosing spinal
46 47	371	disorders: a systematic review of the literature on treatment, neurological status and
48 49 50	372	complications. European Spine Journal. 2009;18(2):145-156.
51 52		
53		
54 55		
56 57		
58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

2			
3 4	373	10.	Vosse D, Landewé R, van der Heijde D, van der Linden S, van Staa T-P, Geusens P.
5 6	374	Ankyl	osing spondylitis and the risk of fracture: results from a large primary care-based nested
7 8	375	case-c	ontrol study. Annals of the rheumatic diseases. 2009;68(12):1839-1842.
9 10 11	376	11.	Geusens P, De Winter L, Quaden D, et al. The prevalence of vertebral fractures in
12 13	377	spond	yloarthritis: relation to disease characteristics, bone mineral density, syndesmophytes and
14 15	378	history	y of back pain and trauma. Arthritis research & therapy. 2015;17(1):1-8.
16 17 18	379	12.	Maas F, Spoorenberg A, van der Slik BP, et al. Clinical risk factors for the presence and
19 20	380	develo	opment of vertebral fractures in patients with ankylosing spondylitis. Arthritis care &
21 22	381	resear	rch. 2017;69(5):694-702.
23 24 25	382	13.	Prieto-Alhambra D, Muñoz-Ortego J, De Vries F, et al. Ankylosing spondylitis confers
25 26 27	383	substa	ntially increased risk of clinical spine fractures: a nationwide case-control study.
28 29	384	Osteop	porosis International. 2015;26(1):85-91.
30 31	385	14.	Rustagi T, Drazin D, Oner C, et al. Fractures in spinal ankylosing disorders: a narrative
32 33 34	386	review	of disease and injury types, treatment techniques, and outcomes. Journal of orthopaedic
35 36	387	traum	a. 2017;31:S57-S74.
37 38	388	15.	Van der Weijden M, Van der Horst-Bruinsma I, Van Denderen J, Dijkmans B, Heymans
39 40 41	389	M, Le	ms W. High frequency of vertebral fractures in early spondylarthropathies. Osteoporosis
41 42 43	390	Intern	ational. 2012;23(6):1683-1690.
44 45	391	16.	Brasington RD. Clinical features of rheumatoid arthritis. Rheumatology: Sixth Edition.
46 47	392	Elsevi	er Inc.; 2015:704-711.
48 49 50	393	17.	Dinse GE, Parks CG, Weinberg CR, et al. Increasing prevalence of antinuclear antibodies
51 52 53	394	in the	United States. Arthritis & Rheumatology. 2020;72(6):1026-1035.
54 55 56			
57 58			
59 60			2 , For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	395	18. Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CE. Psoriasis
5 6	396	Prevalence in Adults in the United States. JAMA dermatology. 2021;
7 8	397	
9 10		
11 12		
13 14 15		
16 17		
18 19		
20 21		
22 23 24		
25 26		
27 28		
29 30 31		
31 32 33		
34 35		
36 37		
38 39 40		
41 42		
43 44		
45 46		
47 48 49		
50 51		
52 53		
54 55		
56 57 58		
59 60		2 . For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	STROBES
3 4 5 6	Title and al
7 8 9 10	
11	Introduction
12 13 14	Background
15 16	Objectives
17 18	Methods
19 20	Study design
21 22 23	Setting
24 25 26 27	Participants
28 29 30 31 32	Variables
33 34	Data sources
35 36 37 38	measuremen
39 40	Bias
41 42	Study size
43 44	Quantitative
45 46 47 48	Statistical mo
49 50 51 52 53 54 55 56 57	Results Participants
58 59 60	Participants

Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract:
		See methods section of abstract, p. 2, line 30.
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found: See methods and results section of abstract, p. 2, lines 29-40.
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported: See Introduction, p. 4, lines 62-75.
Objectives	3	State specific objectives, including any prespecified hypotheses: See Introduction, p. 4, lines 76-82.
Methods		
Study design	4	Present key elements of study design early in the paper: See Methods, p. 5, lines 86- 96.
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection: See Methods, p. 5, lines 86-96.
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up: See Methods, p. 6, lines 113-127.
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed: Not applicable (N/A).
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable: See Methods pp. 5-6, lines 97-110 for the exposures of interest; Methods pp. 6-7, lines 129-131 for the Dependent
		variable; and Methods p. 7, lines 133-151, for the Independent variables.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group: See Methods: p. 5, lines 90-110; p. 6, lines 130-131; and p. 7, lines 134-151.
Bias	9	Describe any efforts to address potential sources of bias: See Methods, p. 6, lines 119- 127.
Study size	10	Explain how the study size was arrived at: See Methods, p. 6, lines 113-127.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why: See Methods, p. 7, lines 140-145.
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding: See Methods, p. 8, lines 159-172. (b) Describe any methods used to examine subgroups and interactions: See Methods
		 (b) Describe any methods used to examine subgroups and interactions. See Methods p. 8, lines 163-167.
		(c) Explain how missing data were addressed: Not applicable to our study.
		(<i>d</i>) If applicable, explain how loss to follow-up was addressed: Not applicable to our study.
		(\underline{e}) Describe any sensitivity analyses: Not applicable to our study.
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed: See Results, p. 9, lines 172-173.
		(b) Give reasons for non-participation at each stage: Not applicable to our study.

BMJ Open

		(c) Consider use of a flow diagram: Not applicable to our study.
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders: See Table 1, pp. 9-10, lines 185
		189 and Table 2, pp. 11-12, lines 198-201.
		(b) Indicate number of participants with missing data for each variable of interest: No
		applicable to our study.
		(c) Summarise follow-up time (eg, average and total amount): See Results, p. 8, lines
		173-174.
Outcome data	15*	Report numbers of outcome events or summary measures over time: See Table 1, pp.
		9-10, lines 185-189.
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included: See Table 3, pp. 13-14, lines 214-219 and
		Table 4, pp. 15-17, lines 237-240.
		(b) Report category boundaries when continuous variables were categorized: See
		Table 1, p. 9 (age variable); Table 2, p. 11 (active service time variable); Table 4, pp.
		15-16 (age and active service time variables).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period: Not applicable to our study.
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
		sensitivity analyses: Not applicable to our study.
Discussion		
Key results	18	Summarise key results with reference to study objectives: See first paragraph of the
		Discussion section, p. 17, lines 243-251.
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias: See
		Discussion section, p. 18, lines 271-277 and pp. 19-20, lines 296-307.
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence: See
		Discussion section, p. 20, lines 308-316.
Generalisability	21	Discuss the generalisability (external validity) of the study results: See seventh
-		paragraph of the Discussion section, p. 19, lines 297-299.
Other information		···· 2/
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based: See the

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Service Discharges Among US Army Personnel with Selected Musculoskeletal and Skin Conditions: A Retrospective Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063371.R2
Article Type:	Original research
Date Submitted by the Author:	02-Sep-2022
Complete List of Authors:	Nelson, D. Alan; Stanford University School of Medicine, Department of Medicine Kaplan, Robert ; Stanford University School of Medicine Weisman, Michael M; Stanford University School of Medicine, Department of Medicine Kurina, Lianne; Stanford University School of Medicine, Department of Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Epidemiology, Rheumatology
Keywords:	EPIDEMIOLOGY, RHEUMATOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

	m
	≌
	BMJ Op
	$\overline{}$
-	5
	3
	en: first published as 10.113
	ົດ
	÷
	p_
	₽
	Ē
	÷
	Ð
	~
	as
	_
	5
	<u>``</u>
	<u>~</u>
	မ္တ
	×
	ĭ
•	≓
-	Ы
	₫
	7
	2
	-2022-0
	Ň
	6
	õ
	ω
	~
	<u>`</u>
	ō
	3371 on 1
	~
	*
	ပ္ရ
	읊.
	5
	ĕ
	2
	Ň
	2022. D
	ŏ
	Š
	_
	2
	<u> </u>
	nload
	nloade
	nloaded
	nloaded fro
	nloaded fron
	nloaded from
	nloaded from ht
	nloaded from http
_	nloaded from http://
	nloaded from http://b
	nloaded from http://bm
-	nloaded from http://bmio
-	nloaded from http://bmiope
	nloaded from http://bmiopen
	nloaded from http://bmiopen.b
	nloaded from http://bmiopen.br
	nloaded from http://bmiopen.bmi.
	nloaded from http://bmiopen.bmi.co
	nloaded from http://bmiopen.bmi.con
	nloaded from http://bmiopen.bmi.com/
	nloaded from http://bmiopen.bmi.com/ o
	nloaded from http://bmiopen.bmi.com/ on
	nloaded from http://bmiopen.bmi.com/ on A
	nloaded from http://bmiopen.bmi.com/ on Apr
	nloaded from http://bmiopen.bmi.com/ on April
	nloaded from http://bmiopen.bmi.com/ on April 1
-	en.bmi.com/ on April 18.
	en.bmi.com/ on April 18.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.
-	en.bmi.com/ on April 18, 2024 by quest.

1 2		
2 3 4	1	Service Discharges Among US Army Personnel with Selected Musculoskeletal and Skin
5 6	2	Conditions: A Retrospective Cohort Study
7 8	3	
9 10 11	4	D. Alan Nelson, PhD; ¹ Robert M. Kaplan, PhD; ² Michael H. Weisman, MD; ³ Lianne M. Kurina,
12 13	5	PhD^{1}
14 15	6	
16 17 18	7	Affiliations
19 20	8	1. Department of Medicine, Division of Primary Care and Population Health, Stanford
21 22	9	University School of Medicine, Stanford CA, USA
23 24 25	10	2. Clinical Excellence Research Center, Stanford University School of Medicine, Stanford CA,
26 27	11	USA
28 29	12	3. Department of Medicine, Division of Rheumatology, Stanford University School of Medicine,
30 31 32	13	Department of Medicine, Division of Rheumatology
33 34	14	
35 36 27	15	Corresponding author: Lianne Kurina, 450 Jane Stanford Way, Building 20, Stanford
37 38 39	16	University, Stanford CA 94305-2160; <u>lkurina@stanford.edu</u>
40 41	17	
42 43 44	18	Word Count: 2886
44 45 46	19	
47 48	20	Keywords: epidemiology; military personnel; rheumatic diseases
49 50	21	
51 52 53	22	
54 55	23	
56 57 58		
59		1

Page 3 of 26

1

58 59

60

BMJ Open

2		
3 4	24	ABSTRACT
5 6	25	Objectives: To determine the probability of discharge from military service among soldiers
7 8 9	26	following an incident diagnosis of ankylosing spondylitis (AS), rheumatoid arthritis (RA),
10 11	27	psoriasis (Ps) or systemic lupus erythematous (SLE).
12 13	28	
14 15	29	Methods: All soldiers on active duty in the U.S. Army between January 2014 and June 2017
16 17 18	30	were included in a retrospective cohort analysis. Termination from service was ascertained using
19 20	31	personnel records. Diagnostic codes were used to identify incident cases of the four
21 22	32	musculoskeletal and skin diseases and, for comparison, diabetes mellitus (DM). Time to
23 24	33	discharge was modeled using sex stratified multivariate survival analysis.
25 26 27	34	
28 29	35	Results: The analysis included 657,417 individuals with a total of 1.2-million-person years of
30 31	36	observation. An elevated risk of discharge was observed in association with each of the five
32 33 34	37	chronic conditions studied. The increase in adjusted risk of discharge was highest among soldiers
35 36	38	with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI 1.4, 3.2) and with DM
37 38	39	(male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5), followed by those with RA
39 40 41	40	(male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4).
42 43	41	
44 45	42	Conclusions: Military discharges are consequential for the service and the servicemember. The
46 47	43	doubling in risk of discharge for those with AS or RA was comparable to that for personnel with
48 49 50	44	diabetes mellitus. Conditions that affect the spine and peripheral joints may often be
51 52	45	incompatible with military readiness. Nevertheless, a substantial fraction of servicemembers with
53 54 55 56 57	46	these diagnoses continued in service.

1 ว		
2 3 4	47	
5 6	48	STRENGTHS AND LIMITATIONS OF THIS STUDY
7 8 9	49	• Before this work, very little has been known about the military trajectories of those
9 10 11	50	developing chronic musculoskeletal and skin conditions.
12 13	51	• Utilizing the total active-duty US Army population from 2014-17, we found a doubling
14 15 16	52	of the adjusted hazard of leaving military service following a diagnosis of ankylosing
17 18	53	spondylitis and rheumatoid arthritis.
19 20 21	54	• Conditions impacting the spine and peripheral joints may present challenges but do not
21 22 23	55	appear invariably incompatible with continued military service.
24 25	56	• Our results cannot necessarily be generalized to other US military branches or to
26 27 28	57	servicemembers of other nations.
28 29 30	58	
31 32	59	
33 34 25	60	
35 36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		3
60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

61	INTRODUCTION
62	Chronic musculoskeletal and skin conditions may pose important challenges for military
63	personnel. In many cases, affected individuals could be unable to carry out their military duties
64	and would thus be given a medical discharge. Given the operational and economic costs of such
65	discharges, as well as the human impact on the soldier from the onset of a chronic disease, it is
66	critical to better understand typical career trajectories in the military following onset of these
67	diseases. ¹
68	Although military clinicians are provided substantial guidance with respect to both
69	diagnosing and managing musculoskeletal and skin disorders 2 we were unable to identify prior

diagnosing and managing musculoskeletal and skin disorders,² we were unable to identify prior
research specifically addressing the risk of military service terminations associated with
diagnoses of these diseases. Insufficient evidence could potentially lead to either hastening
service discharges for those still ably serving under effective management or delayed actions that
could permit disease progression associated with a subsequent service discharge.² Thus,
determining the risk of military discharge, if any, associated with such conditions is important
for the military mission as well as for clinicians and patients alike.

In this study, our objective was to characterize the associations between a selection of
commonly encountered chronic musculoskeletal and skin conditions including ankylosing
spondylitis (AS), rheumatoid arthritis (RA), psoriasis (Ps) and systemic lupus erythematosus
(SLE), and discharge from service among active-duty service members when adjusting for a
range of demographic, health-related, and military-specific characteristics. For comparison, we
also analyzed the risk of discharge following diagnosis with diabetes mellitus, which is among
the most prevalent chronic diseases in the military population.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

84 METHODS

85 Data Sources.

We utilized a longitudinal panel dataset from the Stanford Military Data Repository (SMDR), a de-identified dataset comprising administrative and health-related datasets on the active-duty US Army. The current retrospective cohort analysis is based on person-months of active military service among individuals who served with the US Army between January 2014 and June 2017. Demographic and military service data, including terminations of active-duty service, were obtained from official personnel records provided by the Defense Manpower Data Center (DMDC)³. The data sources used to identify individuals with our outcomes of interest were the Military Health System Data Repository or MDR⁴ which includes records of out- and inpatient care provided to US service members in military as well as civilian facilities, and the "eProfile" system⁴, the official system of record in which soldiers' duty restrictions and the clinical diagnoses warranting them are archived. To identify incident diagnoses of AS, RA, Ps, SLE or DM (either type 1 or 2), we first used the clinical data from the MDR. For encounters occurring between January 2014 and October 2015, conditions were identified using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) data. ICD-10 codes were used for encounters occurring between November 2015 and June 2017. For each condition, the ICD-9-CM and ICD-10 diagnosis codes were, respectively: AS, 720.0 and M45.x; RA, 714.x and M05.x, M06.x; Ps, 696.x and L40.x; SLE, 710.0 and M32.1x, M32.9x; and DM, 250.x and E.08.x - E.11.x, E13.x. The second source for identifying incident cases was "eProfile" due to the potential for some cases to solely be diagnosed in eProfile as a summative finding after deferred assignments

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of definitive diagnoses. Such trajectories could be seen, for example, if diagnoses were uncertain

Page 7 of 26

BMJ Open

1 2	
2 3 4	107
5 6	108
7 8 9	109
9 10 11	110
12 13	111
14 15 16	112
16 17 18	113
19 20	114
21 22	115
23 24 25	116
26 27	117
28 29	118
30 31 32	119
32 33 34	120
35 36	121
37 38	122
39 40 41	123
42 43	124
44 45	125
46 47 48	126
49 50	127
51 52	128
53 54 55	129
56	
57 50	
58 59	

60

and were confirmed only by specialists late in the care process after initial primary care
evaluation, at which time appropriate duty restrictions might be better understood. A free-text
search algorithm was used to filter clinician entries of the selected medical conditions; the
accuracy of captured diagnoses was then confirmed with a visual review.

Subjects who began their military service during the observed time period were examined
for incident diagnoses beginning at the outset of their service. Military enlistment policies
require initial screening examinations. Any of the five conditions considered in this study (AS,
RA, Ps, SLE, and DM) normally disqualify an individual from induction into service (AR 40501) ⁵. All new soldiers in the dataset were therefore presumed to be free of known diagnoses of
these conditions when they entered service.

The remaining individuals entered service at a wide variety of times prior to January .19 2014 and could therefore have been diagnosed with one or more of these conditions before our 20 21 study period. Thus, for those soldiers enlisting prior to January 2014, we applied a "wash-out" or "run-in" period in which at least 12 initial months of observation were required. This wash-out 22 .23 period was used to rule out follow-up care for previously diagnosed conditions in their health 24 records and duty restrictions. The one-year duration of the period was chosen because each member is required to undergo an annual Periodic Health Assessment, a health screening⁶ in 25 26 which major medical problems are typically identified. Observation for incident conditions thus began in January 2015 among those entering service prior to January 2014. .27

129 Dependent variable

Procedure

1 2

3 4	130	The primary outcome variable was a discharge from service for any reason. The discharge
5 6	131	information was identified from the DMDC personnel records.
7 8 9	132	
9 10 11	133	Independent variables
12 13	134	We included a wide range of independent variables to minimize possible confounding of
14 15	135	the associations between the selected disorders and service discharges. Independent variables
16 17 18	136	whose values varied with time were continuously updated in each subject's longitudinal data.
19 20	137	The covariates included sex, age, race, marital status, statement of tobacco use at a prior health
21 22	138	encounter, active-duty service time and military pay grade, which captures soldiers'
23 24 25	139	socioeconomic status ⁷ .
26 27	140	We categorized the two quantitative variables. We divided individuals in approximate
28 29	141	quartiles on the basis of age. For active-duty service time, we categorized in such a way as to
30 31 32	142	capture typical career eras for soldiers. Specifically, we employed a category for <4 years to
33 34	143	capture those in their first term of service and a 4–10-year category for people who may be in the
35 36	144	decision window before choosing whether to remain in service until retirement. We then divided
37 38 39	145	the remaining subjects into two subgroups: those with >10-16 and >16 years.
39 40 41	146	In addition, we created a dichotomous variable to capture whether each member held a
42 43	147	combat-focused occupation versus a job description functioning in a support role. We also
44 45	148	included an additional categorical variable to account for the type of military unit in which the
46 47 48	149	subject served to adjust for any related systematic difference in exposures. The categories were:
49 50	150	combat deployable units; those involved in training and administrative functions; special
51 52	151	operations forces; medical units; and all other or unknown unit types.
53 54 55	152	
56 57		
58 59		7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntmi

BMJ Open

1	
2	
3	
4	
5 6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
1/ 10	
10	
19	
7 8 9 10 11 13 14 15 16 17 18 20 21 22 22 22 22 20 30 30	
21	
22	
23	
24	
25	
26	
27	
28 28	
20	
29	
50 21	
31	
32	
32 33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
58	
59	

153 Patient and public involvement

154 Study participants were not involved in the design, recruitment, or conduct of the study, 155 as this was a retrospective analysis of passively collected data on military service members. All 156 service members will be able to view the study results upon publication of the paper.

158 Statistical analysis

To provide a descriptive overview of the study population, we examined subjects at the last-available, person-specific monthly observation and stratified on the presence or absence of service discharge. We tested for differences in categorical variable distributions using chi square tests and applied two-sided t-tests for continuous variables.

- To estimate adjusted associations between the selected conditions and service discharge, we computed multivariable survival models. The models used the Weibull distribution to estimate adjusted hazard ratios for service discharge. Because of possible differences between males and females in the rates of the conditions being studied and in rates of separation of the Army, the unadjusted and adjusted analyses were sex stratified.
- All analyses were conducted using Stata statistical software version 14.2 (StataCorp,
- 169 College Station, Texas). We considered p-values ≤ 0.05 to be statistically significant.
- 2 2 170

60

5 171 RESULTS

The analysis included 657,417 eligible subjects who were observed for a total of 1.2 million person-years of time at risk for the regression models. On average, each subject was observed for 1.8 years (median: 2.4; standard deviation [SD]: 0.9). We found that small percentages of subjects with each of the selected medical conditions were additionally detected

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

Race

176	when using the eProfile data	in addition to MD	R information. Th	he relevant findi	ngs were as
177	follows for each of the condi	tions, with the for	mat representing 1	the total number	of affected
178	subjects, the number of addit	tional cases solely	identified in ePro	file and, in parer	ntheses, the
179	percentage of total cases dete	ected solely in ePr	ofile: for AS, 322	, 15 (4.7%); for	RA, 734, 7
180	(1.0%); for DM, 2541, 44 (1	.7%); for Ps, 2658	, 17 (0.6%); and f	for SLE, 236, 8 (3.4%).
181	Table 1 presents the u	unadjusted results	for demographic	and health behav	vior variables
182	while Table 2 presents the un	nadjusted results for	or military charact	teristics. Tobacc	o users were
183	significantly more likely to b	e discharged than	non-users in both	sexes (Table 1)	
184					
185	Table 1. Demographic and h	ealth behavior ch	aracteristics of the	e U.S. Army stud	ly population,
186	2014-7 ($N = 657,417$) as of t	the last person-spe	ecific observation.	Values represer	nt numbers
187	(percentages).				
		Males; $n = 50$	60,243 (85.2)	Females; n =	97,174 (14.8)
		No discharge	Discharged	No discharge	Discharged
	Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
	Age, years	P < 0	.001 ^A	P < 0	0.001 ^A
	≤22	98,351 (69.1)	43,912 (30.9)	17,941 (64.8)	9754 (35.2)
	23 to 27	102,712 (66.1)	52,620 (33.9)	18,487 (68.3)	8591 (31.7)
	28 to 35	101,863 (72.0)	39,570 (28.0)	17,733 (72.8)	6621 (27.2)
	≥36	83,510 (68.9)	37,705 (31.1)	12,672 (70.2)	5375 (29.8)
		1			

 $P < 0.001^{\text{A}}$

 $P < 0.001^{\text{A}}$

		126,022 (31.8)	32,726 (66.8)	16,256 (33.2)
Black	75,041 (69.5)	32,972 (30.5)	24,364 (69.1)	10,899 (30.9)
Asian or Pacific Islander	22,021 (75.0)	7322 (25.0)	5112 (76.0)	1612 (24.0)
Native American or	2711 (66.2)	1381 (33.8)	616 (62.9)	364 (37.1)
Alaska Native				
Multiracial, other or	16,932 (73.5)	6110 (26.5)	4015 (76.8)	1210 (23.2)
unspecified	*			
Marital status	<i>P</i> < 0	.001 ^A	P = 0	0.001 ^A
Married	222,598 (70.3)	94,033 (29.7)	32,376 (69.3)	14,350 (30.7
Never married	148,065 (67.6)	70,942 (32.4)	26,584 (68.5)	12,243 (31.5
Formerly married	15,773 (64.1)	8832 (35.9)	7873 (67.8)	3748 (32.2)
Tobacco use	<i>P</i> < 0	.001 ^A	P < 0	0.001 ^A
No	229,160 (71.3)	92,056 (28.7)	52,010 (69.8)	22,503 (30.2)
Yes	157,276 (65.8)	81,751 (34.2)	14,823 (65.4)	7838 (34.6)

Note:

> A. Results of chi square tests.

In terms of military characteristics (Table 2), males in combat-focused professions were at the highest unadjusted probability of discharge (33.5% of these men; P < 0.001) whereas no association was observed between occupation and discharge among females. Crude associations between military unit type and discharge also varied by sex. Males in medical units had the

Page 12 of 26

highest proportion of those discharged (34.6%); among females, those in training and

administrative units were most likely to be discharged (40.6%).

198 *Table 2. Military characteristics of the U.S. Army study population, 2014-7 (N = 657,417) as of*

199 the last person-specific observation. Values represent numbers (percentages).

	Males; $n = 50$	60,243 (85.2)	Females; n =	97,174 (14.8)
	No discharge	Discharged	No discharge	Discharged
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
Military pay grade	<i>P</i> < 0	.001 ^A	P = 0	0.001 ^A
≤E-4	170,482 (62.9)	100,574 (37.1)	30,841 (61.5)	19,310 (38.5)
E-5 & E-6	101,670 (72.5)	38,602 (27.5)	15,433 (74.8)	5200 (25.2)
E-7 to E-9	41,859 (74.1)	14,635 (25.9)	5464 (75.2)	1801 (24.8)
W-1 to O-3	48,957 (78.6)	13,346 (21.4)	10,544 (79.1)	2793 (20.9)
≥ O-4	23,468 (77.9)	6650 (22.1)	4551 (78.6)	1237 (21.4)
Active service time	P < 0.001 ^A		P < 0.001 ^A	
< 4 years	168,536 (68.8)	76,450 (31.2)	32,520 (67.7)	15,502 (32.3)
> 4 to 10 years	102,350 (66.4)	51,694 (33.6)	17,546 (66.6)	8780 (33.4)
> 10 to 16 years	59,802 (77.2)	17,675 (22.8)	9063 (78.6)	2466 (21.4)
> 16 years	55,748 (66.6)	27,988 (33.4)	7704 (68.2)	3593 (31.8)
Combat-focused	P < 0.001 ^A		$P = 0.255^{\text{A}}$	

No	245,696 (70.5)	102,832 (29.5)	63,017 (68.7)	28,704 (31.
Yes	140,740 (66.5)	70,975 (33.5)	3726 (69.5)	1637 (30.5
Military unit type	<i>P</i> < 0	.001 ^A	<i>P</i> < 0	0.001 ^A
Combat-deployable	182,518 (66.0)	94,133 (34.0)	28,819 (68.4)	13,291 (31.
Training/administration	68,369 (67.5)	32,949 (32.5)	11,832 (59.4)	8097 (40.6
Special operations	28,852 (82.2)	6249 (17.8)	1567 (83.2)	317 (16.8
Medical	15,894 (65.4)	8402 (34.6)	8794 (70.6)	3654 (29.4
Other/uncertain	90,803 (73.9)	32,074 (26.1)	15,821 (76.0)	4982 (24.0

201 A. Results of chi square tests.

Table 3 presents the unadjusted distributions of study subpopulations organized in terms of their diagnoses. Overall, 31.0% of males and 31.2% of females without the conditions of interest were discharged during the follow-up time. A significantly higher proportion of those with a diagnosis of AS, RA and DM were discharged. Discharges were most common among AS patients with 44.7% of males and 43.1% of females discharged. Among the RA patients, 37.9% of the males and 37.8% of the females were discharged. Among those with DM, 44.5% of the males and 38.9% of the females were discharged. No significant difference in the unadjusted probability of discharge was observed in association with either Ps or SLE. Men and women with psoriasis experienced the lowest discharge rates among subjects with the selected conditions, respectively involving 30.2% and 31.7% of subjects with those diagnostic histories.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	
2	
3	214
4	
5	215
6 7	210
8	216
9	
10	217
11	
12	218
13	
14 15	
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57	
58	

59

60

14	Table 3. Disease percentages in the U.S. Army study population, $2014-7$ (N = 657,417),	

stratified by sex and military discharge status, as of the last person-specific observation. Values

represent numbers (percentages) and p-values are derived from of chi square tests comparing

217 *factor distributions*.

	Males; $n = 56$	50,243 (85.2)	Females; $n = 9$	97,174 (14.8)
	No discharge	Discharged	No discharge	Discharged
Factor	386,436 (69.0)	173,807 (31.0)	66,833 (68.8)	30,341 (31.2)
Ankylosing spondylitis			<u> </u>	
Yes	146 (55.3)	118 (44.7)	33 (56.9)	25 (43.1)
No	386,290 (69.0)	173,689 (31.0)	66,800 (68.8)	30,316 (31.2)
	P < 0	0.001	P = 0	.051
Rheumatoid arthritis		CL CL		
Yes	303 (62.1)	185 (37.9)	153 (62.2)	93 (37.8)
No	386,133 (69.0)	173,622 (31.0)	66,680 (68.8)	30,248 (31.2)
	P = 0	0.001	P=0	.026
Psoriasis				
Yes	1534 (69.8)	664 (30.2)	314 (68.3)	146 (31.7)
No	384,902 (69.0)	173,143 (31.0)	66,519 (68.8)	30,195 (31.2)
	P = 0	0.408	P = 0	.811

Yes	59 (62.8)) 35 (37.2)	95 (66.9)	47 (33.1)	
No	386,377 (69	9.0) 173,772 (31.0)	66,738 (68.8)	30,294 (31.2)	
	<i>P</i> = 0.193		<i>P</i> = 0.629		
Diabetes mellitus					
Yes	1175 (55.5	5) 942 (44.5)	259 (61.1)	165 (38.9)	
No	385,261 (69	0.0) 172,865 (31.0)	66,574 (68.8)	30,176 (31.2)	
	R	P < 0.001		<i>P</i> = 0.001	
	N		1		

was highest among soldiers with AS (male HR = 2.5, 95% CI 2.1, 3.0; female HR = 2.1, 95% CI

1.4, 3.2) and with DM (male HR = 2.4, 95% CI 2.2, 2.7; female HR = 2.2, 95% CI 1.8, 2.5),

followed by those with RA (male HR = 1.8, 95% CI 1.5, 2.2; female HR = 1.8, 95% CI 1.4, 2.4).

For those with Ps, the adjusted hazard of discharge was 40% higher (male HR = 1.4, 95% CI:

1.3, 1.5; female HR = 1.4, 95% CI: 1.2, 1.7). For those with SLE, the adjusted hazard of

discharge was 70% higher among males (HR = 1.7, 95% CI: 1.2, 2.3) and 50% higher among

229 females (HR = 1.5, 95% CI: 1.0, 2.1).

Considering the other predictors, the probability of discharge increased significantly with
both age and service time (Table 4). Compared to those in the Asian/Pacific Islander category,

individuals in each of the "other" race categories were significantly more likely to be discharged.

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

Relative to those in special operations, hazard of discharge was significantly higher in each of
the other types of military units. Finally, those in a combat-focused occupation were slightly but
significantly more likely to be discharged than those occupying administrative or support roles.

237Table 4. Adjusted hazard ratios (aHR) with 95% confidence intervals (CI) from sex-stratified

238 multivariable Weibull regression models for military service discharge (N = 657,417). Models 239 adjusted for all listed variables.

	Males; n	= 560,243	Females; 1	n = 97,174
Factor	aHR1	95% CI	aHR1	95% CI
Had ankylosing spondylitis	2.5***	2.1 - 3.0	2.1***	1.4 - 3.2
Had rheumatoid arthritis	1.8***	1.5 – 2.2	1.8***	1.4 – 2.4
Had psoriasis	1.4***	1.3 – 1.5	1.4***	1.2 – 1.7
Had systemic lupus erythematosus	1.7**	1.2 – 2.3	1.5*	1.0 - 2.1
Had diabetes mellitus	2.4***	2.2 – 2.7	2.2***	1.8 - 2.5
Age, years (referent: ≤ 22)				
23 to 27	1.3**	1.1 – 1.5	0.9	0.8 – 1.1
28 to 35	1.4***	1.2 – 1.6	1.0	0.8 - 1.2
≥ 36	1.7***	1.5 – 2.0	1.2	1.0 – 1.4
Race (referent: Asian or Pacific Islande	r)			
White	1.3***	1.3 – 1.4	1.5***	1.4 – 1.6
Black	1.2***	1.2 – 1.2	1.2***	1.1 – 1.3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 26

BMJ Open

Native American or Alaskan	1.3***	1.2 – 1.5	1.5***	1.3 – 1.7
Multiracial, other or unspecified	1.2***	1.1 – 1.2	1.1*	1.0 - 1.2
Marital status (referent: married)				
Never married	1.2***	1.2 – 1.2	0.9*	0.8 - 1.0
Formerly married	1.3***	1.2 – 1.3	1.1***	1.0 - 1.1
<i>Military pay grade (referent:</i> \geq <i>O</i> -4)				
≤E-4	6.6***	5.7 - 7.6	5.4***	4.7 - 6.1
E-5 & E-6	2.0***	1.8 - 2.2	1.8***	1.5 – 2.0
E-7 to E-9	1.2**	1.1 – 1.3	1.1	0.9 - 1.2
W-1 to O-3	1.6***	1.4 – 1.7	1.4***	1.3 – 1.6
Active military service time, years (ref	<i>Terent: < 4)</i>	•		
>4 to 10	2.1***	1.9 – 2.2	2.1***	1.9 – 2.2
> 10 to 16	1.9***	1.8 - 2.1	1.7***	1.5 - 2.0
>16	3.8***	3.4 - 4.2	3.5***	3.0 - 3.9
Held a combat-focused occupation	1.2***	1.1 – 1.4	1.2*	1.0 - 1.4
Military unit type (referent: special op	erations)			
Combat-deployable	1.9***	1.8 - 2.0	1.7***	1.4 – 2.0
Training/administration	2.2***	1.8 - 2.8	2.8***	1.9 – 4.0
e				1

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Other/uncertain	1.4***	1.2 – 1.7	1.2	1.0 - 1.6
Self-reported tobacco use	1.4***	1.3 – 1.5	1.3***	1.2 – 1.3

1. Statistical significance: ****P*<0.001; ***P*<0.01; **P*<0.05.

242 DISCUSSION

In this large study of the total US Army population between 2014 and 2017, we found that those service members with ankylosing spondylitis and rheumatoid arthritis were approximately twice as likely to be discharged in comparison to peers without these diagnoses. The increase in risk of military discharge was very similar to those soldiers with the comparison condition of diabetes mellitus. Significant elevations in the risk of military discharge were observed in association with each of the conditions studied, ranging from 40% increases for soldiers with psoriasis or systemic lupus erythematosus to 150% increases among males or females with ankylosing spondylitis. It is clear that diagnoses of these conditions are strongly associated with a decreased likelihood of remaining on active-duty military service.

The differences in effect sizes for the selected conditions may be related to occupational limitations, the current state of treatment options, and the possibility that military readiness activities might make the condition worse. For example, given the importance of spine health to military service, AS may be the most limiting, regardless of treatment.⁸ It could also be more concerning with respect to the impact of military exposures on disease progression or to the risk of trauma causing spinal fracture. Multiple studies have shown that spinal fractures occur in AS patients at a higher frequency in all ages and disease durations; although most are low impact, many are localized to the cervical spine which in turn could cause serious injury to the spinal cord and result in death⁹⁻¹⁵. Such risks may be elevated in the military, given the physical

Page 19 of 26

BMJ Open

conditioning and duties required; service members and clinicians may thus act more conservatively when the diagnosis of AS is made.

Similarly, it would be expected that the diagnosis of RA would represent a challenge to military readiness in both male and female soldiers. Rheumatoid arthritis affects the hands, knees, and feet in such a manner that produces pain, stiffness, and diminished mobility with profound effects, in the untreated patient, on locomotion and fine manipulation 16 .

We observed a slightly smaller increase in risk of discharge associated with a diagnosis of SLE, which may reflect the heterogeneity of the condition. Patients with SLE may not have visible signs of the disease; at the same time soldiers with SLE may experience minimal effects of the disease on the musculoskeletal system, which may often be easily managed with anti-inflammatory agents. Alternatively, error with regard to the SLE diagnoses may account for the lower rates of service discharge in this group relative to AS or DM. Anti-nuclear antibodies are necessary for the diagnosis of SLE, but it has been shown that the rate of ANA positivity in the general population is increasing in recent years even in the absence of SLE.¹⁷ It is possible that the comparatively lower rate of discharge of subjects with SLE in this study could reflect misclassification of these subjects with a positive ANA as having a bona-fide diagnosis of SLE as opposed to a false positive test in the subject's health record.

We also observed, comparatively, a relatively minimal impact of psoriasis on military discharge rates. In the most recent report of the NHANES population-based survey of psoriasis prevalence in adults in the United States, psoriasis was quite common (3%) and prevalence has remained largely unchanged over the last two decades¹⁸. However, the majority of patients with a diagnosis of psoriasis had very few symptoms or findings at the time of the survey suggesting that psoriasis was mild in most cases. If the same pattern were to hold for the Army population,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 26

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

this could explain the relatively minimal increase in discharge likelihood in association with a
psoriasis diagnosis. Interestingly, while we observed no significant difference in the percentages
of soldiers discharged with either SLE or psoriasis in the univariate analyses, our adjusted
analyses showed significant increases, although reasonably modest, in association with each of
these conditions. This indicates confounding by one or more of the covariates we included in our
adjusted regression model.

We utilized another chronic disease, diabetes mellitus, as a comparison condition for our study of musculoskeletal and skin conditions. Interestingly, though not a condition that typically impacts the musculoskeletal system, we observed very comparable increases in discharge rates in association with diabetes mellitus compared to ankylosing spondylitis. It is possible that the complexities of disease management of this condition pose challenges in the military operational context.

Our results must be interpreted in light of several limitations. First, the analysis was limited to the Army. It is possible, but not certain, that our results would generalize to the other military branches given commonalities across branches with regard to career-associated physical demands. Further research is needed to clarify the treatment and disease progression trajectories for the selected conditions, many of whom (including RA and AS) can be managed early and aggressively with modern drugs producing an almost disease-free condition with full activity capabilities.

A second limitation is that the analyses depended on administrative data taken from Army records systems rather than, for example, being done with a chart review. For this reason, the diagnoses were not validated, and we had limited visibility on treatments. Our limited access

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 26

BMJ Open

to clinical findings is an unavoidable constraint. Third, we do not have access to the codes associated with military separation; some discharges may be due to non-medical causes. In conclusion, our study found elevated risks of discharge from the U.S. Army in association with selected musculoskeletal and skin conditions, several of which have an auto-immune etiology. Such discharges may well reflect basic incompatibilities of some features of these conditions with military readiness in the Army. It should be noted, however, that although discharge rates were elevated following diagnoses, discharge was by no means universal, with a large fraction of individuals remaining in service following diagnosis for the period of our study. Symptoms for each of the conditions manifest on a spectrum of severity, and it is encouraging that many soldiers were able to remain in service despite diagnoses of these chronic medical conditions. ACKNOWLEDGMENTS The authors gratefully acknowledge data sharing by and support of the US Army Office of the Surgeon General, which have permitted this research to occur. We are grateful for the helpful feedback on the manuscript provided by Dr. Y Sammy Choi. This manuscript was produced by the authors and does not represent the position of the US Army, the US Department of Defense, or the US federal government.

7 325 FUNDING

326 This research was funded, in part, by the Spondylitis Association of America; no award or grant
 327 number is available. The funders played no role in the conduct of the study, interpretation of the
 328 results, or drafting of the manuscript.

1 2		
2 3 4	329	
5 6	330	DATA AVAILABILITY STATEMENT
7 8	331	The data used in this study were provided via agreements with the Defense Health Agency and
9 10 11	332	with the US Army Office of the Surgeon General. These agreements preclude us from making
12 13	333	the data available.
14 15	334	
16 17 18	335	CONTRIBUTORSHIP STATEMENT
19 20	336	DAN, RMK, MHW, and LMK all contributed to study design, interpretation of the analyses, and
21 22	337	to the drafting of the manuscript. DAN and LMK were responsible for procuring and organizing
23 24 25	338	the data. DAN was responsible for running the analyses.
26 27	339	
28 29 30 31 32	340	CONFLICT OF INTEREST
	341	The authors have no financial interests or relationships to disclose.
32 33 34	342	
35 36	343	ETHICS APPROVAL
37 38	344	The study was approved by the institutional review board at Stanford University (Protocol
39 40 41	345	31161) and also underwent secondary review by the human research protections office of the
42 43	346	Defense Health Agency.
44 45	347	
46 47 48	348	REFERENCES
49 50	349	1. Berner C, Haider S, Grabovac I, et al. Work ability and employment in rheumatoid
51 52	350	arthritis: a cross-sectional study on the role of muscle strength and lower extremity function.
53 54 55	351	International journal of rheumatology. 2018;2018
55 56 57		
58 59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		
2 3 4	352	2. Benedict TM, Singleton MD, Nitz AJ, Shing TL, Kardouni JR. Effect of chronic low
5 6	353	back pain and post-traumatic stress disorder on the risk for separation from the US army.
7 8	354	<i>Military medicine</i> . 2019;184(9-10):431-439.
9 10 11	355	3. Defense Do. Defense Manpower Data Center <u>https://dwp.dmdc.osd.mil/dwp/app/main</u>
12 13	356	4. Health.mil. MDR, M2, ICDs Functional References and Specification. Military Health
14 15	357	Systems. Accessed August 11, 2022, https://www.health.mil/Military-Health-
16 17 18	358	Topics/Technology/Support-Areas/MDR-M2-ICD-Functional-References-and-Specification-
19 20	359	Documents
21 22	360	5. Army Regulation: Record Details for AR 40-501. Army Publishing Directorate. Accessed
23 24 25	361	August 11, 2022, 2022.
25 26 27	362	https://armypubs.army.mil/ProductMaps/PubForm/Details.aspx?PUB_ID=1004688
28 29	363	6. Command UAHR.
30 31	364	https://www.hrc.army.mil/content/Periodic%20Health%20Assessment%20(PHA)
32 33 34	365	7. Basic Pay: Active Duty Soldiers. US Army. Accessed August 11, 2022, 2022.
35 36	366	https://www.goarmy.com/benefits/money/basic-pay-active-duty-soldiers.html
37 38	367	8. Carvalho PD, Ruyssen-Witrand A, Marreiros A, Machado PM. Long-term association
39 40 41 42 43	368	between disease activity and disability in early axial spondyloarthritis: results from the DESIR
	369	cohort. Arthritis Care & Research. 2020;
44 45	370	9. Westerveld L, Verlaan J, Oner F. Spinal fractures in patients with ankylosing spinal
46 47 48 49 50	371	disorders: a systematic review of the literature on treatment, neurological status and
	372	complications. European Spine Journal. 2009;18(2):145-156.
51 52		
53		
54 55		
56 57		
58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1

BMJ Open: first published as 10.1136/bmjopen-2022-063371 on 14 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

2			
3 4	373	10.	Vosse D, Landewé R, van der Heijde D, van der Linden S, van Staa T-P, Geusens P.
5 6	374	Ankyl	osing spondylitis and the risk of fracture: results from a large primary care-based nested
7 8	375	case-c	ontrol study. Annals of the rheumatic diseases. 2009;68(12):1839-1842.
9 10 11	376	11.	Geusens P, De Winter L, Quaden D, et al. The prevalence of vertebral fractures in
12 13	377	spond	yloarthritis: relation to disease characteristics, bone mineral density, syndesmophytes and
14 15	378	history	y of back pain and trauma. Arthritis research & therapy. 2015;17(1):1-8.
16 17 18	379	12.	Maas F, Spoorenberg A, van der Slik BP, et al. Clinical risk factors for the presence and
19 20	380	develo	opment of vertebral fractures in patients with ankylosing spondylitis. Arthritis care &
21 22	381	resear	rch. 2017;69(5):694-702.
23 24 25	382	13.	Prieto-Alhambra D, Muñoz-Ortego J, De Vries F, et al. Ankylosing spondylitis confers
25 26 27	383	substa	ntially increased risk of clinical spine fractures: a nationwide case-control study.
28 29	384	Osteop	porosis International. 2015;26(1):85-91.
30 31	385	14.	Rustagi T, Drazin D, Oner C, et al. Fractures in spinal ankylosing disorders: a narrative
32 33 34	386	review	of disease and injury types, treatment techniques, and outcomes. Journal of orthopaedic
35 36	387	traum	a. 2017;31:S57-S74.
37 38	388	15.	Van der Weijden M, Van der Horst-Bruinsma I, Van Denderen J, Dijkmans B, Heymans
39 40 41	389	M, Le	ms W. High frequency of vertebral fractures in early spondylarthropathies. Osteoporosis
41 42 43	390	Intern	ational. 2012;23(6):1683-1690.
44 45	391	16.	Brasington RD. Clinical features of rheumatoid arthritis. Rheumatology: Sixth Edition.
46 47	392	Elsevi	er Inc.; 2015:704-711.
48 49 50	393	17.	Dinse GE, Parks CG, Weinberg CR, et al. Increasing prevalence of antinuclear antibodies
51 52 53	394	in the	United States. Arthritis & Rheumatology. 2020;72(6):1026-1035.
54 55 56			
57 58			
59 60			2 , For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		
2 3 4	395	18. Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CE. Psoriasis
5 6	396	Prevalence in Adults in the United States. JAMA dermatology. 2021;
7 8	397	
9 10		
11 12		
13 14 15		
16 17		
18 19		
20 21		
22 23 24		
25 26		
27 28		
29 30 31		
31 32 33		
34 35		
36 37		
38 39 40		
41 42		
43 44		
45 46		
47 48 49		
50 51		
52 53		
54 55		
56 57 58		
59 60		2 . For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	STROBE
3 4 5 6 7	Title and al
8 9 10	
11 12	Introduction
13 14	Background/
15 16	Objectives
17 18	Methods
19 20	Study design
21 22 23	Setting
24 25 26 27	Participants
28 29 30 31 32 33	Variables
34	Data sources
35 36 37	measuremen
38 39 40	Bias
41	
42 43	Study size
44	Quantitative
45 46 47 48	Statistical mo
49 50 51 52 53 54 55 56 57 58 59	Results Participants
60	

Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract:
		See methods section of abstract, p. 2, line 30.
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found: See methods and results section of abstract, p. 2, lines 29-40.
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported: See Introduction, p. 4, lines 62-75.
Objectives	3	State specific objectives, including any prespecified hypotheses: See Introduction, p. 4, lines 76-82.
Methods		
Study design	4	Present key elements of study design early in the paper: See Methods, p. 5, lines 86- 96.
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection: See Methods, p. 5, lines 86-96.
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up: See Methods, p. 6, lines 113-127.
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed: Not applicable (N/A).
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable: See Methods pp. 5-6, lines 97-110 for the exposures of interest; Methods pp. 6-7, lines 129-131 for the Dependent
Data sources/	8*	variable; and Methods p. 7, lines 133-151, for the Independent variables. For each variable of interest, give sources of data and details of methods of
measurement	C	assessment (measurement). Describe comparability of assessment methods if there is more than one group: See Methods: p. 5, lines 90-110; p. 6, lines 130-131; and p. 7, lines 134-151.
Bias	9	Describe any efforts to address potential sources of bias: See Methods, p. 6, lines 119- 127.
Study size	10	Explain how the study size was arrived at: See Methods, p. 6, lines 113-127.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why: See Methods, p. 7, lines 140-145.
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding: See Methods, p. 8, lines 159-172.
		(<i>b</i>) Describe any methods used to examine subgroups and interactions: See Methodsp. 8, lines 163-167.
		(c) Explain how missing data were addressed: Not applicable to our study.
		(<i>d</i>) If applicable, explain how loss to follow-up was addressed: Not applicable to our study.
		(<u>e</u>) Describe any sensitivity analyses: Not applicable to our study.
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed: See Results, p. 9, lines 172-173.
		(b) Give reasons for non-participation at each stage: Not applicable to our study.

BMJ Open

		(c) Consider use of a flow diagram: Not applicable to our study.
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders: See Table 1, pp. 9-10, lines 185
		189 and Table 2, pp. 11-12, lines 198-201.
		(b) Indicate number of participants with missing data for each variable of interest: No
		applicable to our study.
		(c) Summarise follow-up time (eg, average and total amount): See Results, p. 8, lines
		173-174.
Outcome data	15*	Report numbers of outcome events or summary measures over time: See Table 1, pp.
		9-10, lines 185-189.
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included: See Table 3, pp. 13-14, lines 214-219 and
		Table 4, pp. 15-17, lines 237-240.
		(b) Report category boundaries when continuous variables were categorized: See
		Table 1, p. 9 (age variable); Table 2, p. 11 (active service time variable); Table 4, pp.
		15-16 (age and active service time variables).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period: Not applicable to our study.
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
		sensitivity analyses: Not applicable to our study.
Discussion		
Key results	18	Summarise key results with reference to study objectives: See first paragraph of the
		Discussion section, p. 17, lines 243-251.
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias: See
		Discussion section, p. 18, lines 271-277 and pp. 19-20, lines 296-307.
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence: See
		Discussion section, p. 20, lines 308-316.
Generalisability	21	Discuss the generalisability (external validity) of the study results: See seventh
		paragraph of the Discussion section, p. 19, lines 297-299.
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based: See the
		Funding section, p. 20, lines 326-328.

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.