

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

The mediating role of depressive symptoms in the association between social engagement and cognitive functioning among older adults: Evidence from Longitudinal Aging Study in India (LASI)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063336
Article Type:	Original research
Date Submitted by the Author:	03-Apr-2022
Complete List of Authors:	Kumar, Manish; International Institute for Population Sciences T., Muhammad; International Institute for Population Sciences Dwivedi2, Laxmi Kant; International Institute for Population Sciences
Keywords:	PUBLIC HEALTH, Neurology < INTERNAL MEDICINE, MENTAL HEALTH

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1	
1	The mediating role of depressive symptoms in the association between social
2	engagement and cognitive functioning among older adults: Evidence from Longitudinal
3	Aging Study in India (LASI)
4	Manish Kumar
5	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
6	Maharashtra, India, 400088
7	E-mail: kumarmanishiips@gmail.com
8	ORCID: 0000-0001-5297-6150
9	<u>Telephone number</u> : +91 9702511509
10 11	T. Muhammad
12	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
13	Maharashtra, India, 400088
14	E-mail: muhammad.iips@gmail.com
15	ORCID: 0000-0003-1486-7038
16	
17	Laxmi Kant Dwivedi, PhD
18	Professor, International Institute for Population Sciences, Mumbai, Maharashtra, India,
19	400088
20	Email: <u>laxmikdwivedi@gmail.com</u>
21	ORCID: 0000-0001-9737-2844
22	
23	Corresponding author:
24	Manish Kumar
25	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
26	Maharashtra, India, 400088
27	E-mail: kumarmanishiips@gmail.com
28	ORCID: 0000-0001-5297-6150
29	<u>Telephone number</u> : +91 9702511509
30	

The mediating role of depressive symptoms in the association between social engagement and cognitive functioning among older adults: Evidence from Longitudinal Aging Study in India (LASI)

Abstract

- Objective The present study attempts to determine the mediating role of depressive symptoms in the association between social engagement and cognitive functioning among older individuals, with special attention to sex differences.
- **Design** A cross-sectional large scale survey data was analyzed in this study.
- Setting and Participants The present study utilizes the individual-level data from the first wave of the Longitudinal Aging Study in India (LASI) conducted during 2017-19. The sample
- for the study included 20,084 individuals aged 60 years and above (10,526 men and 9,558
- 42 women).
- 43 Primary and Secondary outcome measures The primary outcome variable was cognitive
- 44 functioning which was based on different cognitive measures, including immediate and
- delayed word recall; orientation related to time, and place; executive functioning based on
- paper folding and pentagon drawing; arithmetic ability based on serial 7s, computation and
- 47 backward counting from 20; and object naming.
- 48 Results Linear regression results showed that higher levels of social engagements were
- significantly associated with better cognitive functioning for both men (β = 0.64, p<.001) and
- women (β = 0.34, p<.001) older adults, after adjusting for sociodemographic factors, lifestyle
- factors, and chronic conditions. Moreover, greater depressive symptoms significantly reduced
- 52 the cognitive functioning for both older men and women. KHB method identified a significant
- 53 mediating effect of depressive symptoms on the relationship between social engagement and
- 54 cognitive functioning, and the proportional mediation through depressive symptoms was
- 55 14.4% and 18.1% for men and women older adults, respectively.
- Conclusion The results suggest that a positive association of social engagement with cognitive
- 57 functioning was partly mediated by depressive symptoms. The findings support the possible
- benefits of maintaining quality social relations that help coping with depressive symptoms on

- cognitive functioning among older adults, which need to be confirmed with future
- interventional studies.
- **Keywords:** social engagement, cognitive functioning, depressive symptoms, KHB-method,
- older adults.

Strengths and limitations of this study

- The utilization of the national representative sample of older adults is a potential strength of the study
- Mediation analysis explains the mechanism by which social engagement affects cognitive function through a mediator, depressive symptoms
- The social engagements were significantly associated with better cognitive functioning for both men and women older adults
- The association of social engagement with cognitive functioning was partly mediated by depressive symptoms
- The inability to establish the causal relationship between social engagement and cognitive functioning is the limitation of the study

The mediating role of depressive symptoms in the association between social engagement and cognitive functioning among older adults: Evidence from Longitudinal Aging Study in India (LASI)

Background

With the growth of aging population, global challenges in mental health are on the rise. It includes the decline in late-life cognitive abilities which are generally associated with poor quality of life [1], functional disabilities [2], multimorbidity [3], and higher mortality risk [4]. India is currently facing rapid population aging, with an expected increase in the number of individuals aged 60 years and above from 104 million in 2011 to 319 million by 2050 [5]; consequently, the disease burden of cognitive impairment in the country is also expected to increase.

Social engagement is an umbrella concept usually referring to various factors such as social relationships, social and emotional connectedness with other people, and participation in social activities, which provide a sense of belonging, social identity, and fulfilment [6,7]. In the absence of effective pharmacological treatment for persons with cognitive impairment, especially for the long-term benefits, various methods such as improving social engagement and active participation in social activities are considered [8]. Multiple cross-sectional studies investigating the association between social environment and cognition in older adults showed that greater social functioning improves cognitive performances [9,10]. Moreover, several longitudinal studies among older adults have also indicated that greater engagements with relatives [11,12], rich social networks [12,13], and frequent participation in social activities [14] exert protective effects against cognitive decline. Therefore, in the long run, individuals who present trajectories of high and increasing social engagements experience lower levels of cognitive limitation [15].

Several interventional studies reported the protective effects of the improved social behaviours in preventing or delaying dementia among older adults with diagnosed cognitive impairment [16,17]. Most of the available research on social capital and engagement as to enhance cognitive reserve and protect cognitive health has been conducted in developed countries [18–21]. Little is known about the relationship between social engagement and cognitive functioning in developing countries like India, where the cultural and structural context of social engagement differ from developed countries. In India, traditionally, older adults are more

likely to live with their children in multigenerational households where cultural norms emphasize family ties and the virtue of filial piety [22,23], and a higher proportion of older people experience psychological distress and mental illnesses [24–26].

Similarly, depressive disorders are highly prevalent among older adults in low and middle income countries [27–29] and in India in particular [30]. Previously, various studies have found the beneficial effects of greater social engagements (with varying measurements and definitions) against depressive symptoms [31,32]. A cross-sectional study by Jang & Chiriboga (2011) [31] found that a higher level of participation in social activities was associated with a decline in depressive symptoms after controlling for the effects of demographic and healthrelated factors. Multiple longitudinal studies have also reported similar findings [33–37]. Also, increased participation in social activities and meaningful engagement by older adults may improve their mood, which benefits their emotional functioning and reduces depressive symptoms [38], which is linked to cognitive functioning [39]. According to the 'depression reduction hypothesis', depressive symptoms interferes with cognitive health; therefore, as evident from multiple longitudinal studies, practical strategies to reduce depressive symptoms will possibly improve cognitive functioning [40]. Two facts justify such a hypothesis; first, greater depressive symptoms are related to poor cognitive functioning among older adults [41,42]. Second, depressed older adults who engage in social activities may experience a decline in depressive symptoms and improve cognitive functioning [43]. Furthermore, in multiple cohort studies, cognitively impaired older adults with depressive symptoms were associated with more rapid cognitive decline than those without depression [44,45].

However, it is not clear to what extent social engagement may improve cognitive functioning by minimizing depressive symptoms. There is a dearth of studies in low- and middle-income countries on the association of social engagements and cognitive functioning and the mediating role of depressive symptoms in such association. On the other hand, an effective strategy to prevent or delay cognitive impairment for the aging population could be through increased engagements of older individuals in social activities which may enhance their mental health. Filling this gap, the present study using national-level data of older adults in India, attempts to determine the mediating role of depressive symptoms in the association between social engagement and cognitive functioning among older individuals. Previous research theorized gender as the crucial factor to be considered in understanding the role of social engagement and its positive mental health benefits [46]. Thus, the study also explores the sex difference in

the relationship between social engagement and cognitive functioning and the mediating effects of depressive symptoms. The present study hypothesized that the association between social engagement and cognitive functioning is partially mediated by depressive symptoms (Figure 1).

Methods

Data

The present study utilizes the individual-level data from the first wave of the Longitudinal Aging Study in India (LASI) conducted during 2017-19. LASI is a nationally representative longitudinal survey of more than 72000 older adults aged 45 years and over across all states and union territories of India that provides vital information on the social, physical, psychological, and cognitive health of the Indian aging population. The LASI survey was conducted through a partnership of the International Institute for Population Sciences (IIPS), Harvard T. H. Chan School of Public Health (HSPH), and the University of Southern California (USC). LASI is envisioned to be conducted every two years for the next 25 years. In LASI wave 1, the sample selection is based on a multistage stratified cluster sample design, including a three-stage sampling design in rural areas and a four-stage sampling design in urban areas. LASI survey provided internationally harmonized data that comparable to the United States Health and Retirement Study (HRS) and other HRS-type surveys in other countries, including England (English Longitudinal Study of Ageing) and China (China Health and Retirement Longitudinal Survey). Further, the details of sampling design, survey instruments, and data collection procedures are provided elsewhere [47].

The sample in the main LASI included 31,464 individuals aged 60 years and above. For the present analysis, we have excluded those cases with missing data for any variables of interest (n=7,842). To avoid potential reverse causality, we have excluded 3,390 individuals with poor cognitive functioning (lowest 10th percentile) [48] and 148 individuals with neurological problems such as Alzheimer's disease and dementia. Therefore, the sample for the present study included 20,084 individuals from the LASI survey, and among them 10,526 were men and 9,558 were women.

Measures

Cognitive function

By adopting the Health and Retirement Study (HRS) cognition module, the LASI collected information on measured cognition in various domains – including memory, orientation, executive functioning, arithmetic, and object naming (Table 1). Previously, various studies have established high validity and reliability of these cognitive domains for measuring cognitive impairment among older adults in community settings in the United States [49], China [50], and India [51]. The cognitive functioning in the present study is based on different cognitive measures, including immediate (0–10 points) and delayed word recall (0–10 points); orientation related to time (0-4 points), and place (0-4 points); executive functioning based on paper folding (0-3) and pentagon drawing (0-1); arithmetic ability based on serial 7s (0–5 points), computation (0-2) and backward counting from 20 (0–2 points); and object naming (0-2).

Domain	Measure	Measurement	Range
Memory	Immediate wordrecall	Interviewer read out a list of 10 words and respondents were asked to repeat the words.	0-10
	Delayed word recall	Respondents were asked to recall the same words read out for immediate recall after some time.	0-10
Orientation	Time	Respondents were asked to state today's date, month and year and day of the week. For each question, the score was 0 or 1. Correct responses received 1 point, incorrect responses received 0. The total score for timewas 0-4. Orientation towards place was captured based on	0-4
	Place	place of interview, name of the village, street number/colony name/landmark/neighborhood and name of the district. Each correct response scored 1 point. The total score ranged from 0-4.	0-4
Arithmetic function	Backward counting	Respondents were asked to count backward as quickly as possible from the number 20. The respondents were asked to stop after correctly counting backward from 20 to 11 or from 19 to 10. Correct counting received 2 points: counts with a mistake received 1 point. Those who could not countreceived 0 points.	0-2
	Serial 7	Respondents were asked to subtract seven from 100 in the first step and asked to continue subtracting seven from the previous number in each subsequent step for five times. Each correct response received 1 point.	0-5
	Computation	This test involved the mathematical operation of division. Respondents were asked to compute the net sale price of a product after considering a discount sale of half of the original price.	0-2
Executive function: 0-4	Executive (paper folding)	This is a three-stage command task. The respondents were instructed totake a piece of paper from the interviewer, turn it over, fold it in half, and give it back to the interviewer. Three points were given if each task was completed successfully.	0-3
	Pentagon	Visio-construction is the ability to coordinate fine motor skills	0-1

	drawing	with visio-spatial abilities, usually by reproducing geometric figures. Respondents were asked to copy two overlapping pentagons and scored 1 point for a correct drawing.	
Object naming: 0-2		The interviewer points to a specific object and asks the respondent to name it. Two objects were pointed out and 1 point was given for each correct response.	0-2
Cognition	Composite cognitive index	Combined score of memory (total word recall), orientation, arithmetic function, executive function, and object naming.	0-43

After adding the scores for each component, the overall score ranged from 0 to 43. Since we exclude those individuals who lie in the lowest 10th percentile in the distribution of cognitive function, and we have obtained a cut-off score of 16 for the lowest 10th percentile [48], the participants with a score of less than 16 were excluded. After re-scaling the cognition scores (subtracting 16 from each individual's score), our final cognition function scores range from 0 to 27, and a higher score indicates better cognitive functioning.

Social Engagements

Following the previous studies [52,53], we have derived social engagement based on five indicators: marital status, living arrangement, availability of confidant, and participation in indoor games, social and cultural functions. Current marital status was set to unmarried (single, widowed, separated, or divorced; coded as 0) versus married (married or living with a partner; coded as 1). Regarding living arrangements, living alone was categorized as 0, and living with extended family is categorized as 1. The availability of a confidant relationship (spouse, son or daughter, grandchildren, or relatives, etc.) was coded as no (0) or yes (1). Two more indicators based on participation in social activities including, playing cards or indoor games and attending social and cultural functions, were included (0 = less than weekly, 1 = weekly or more frequently). A composite index of social engagement was constructed by summing the scores for all five indicators, ranging from 0 to 5. Based on the distribution of the overall composite index, individuals were categorized as having low (0-2 social ties; 27.6 percent), medium (3 ties; 62 percent), or high (4-5 ties; 10.1 percent) levels of social engagement.

Depressive symptoms

The LASI has used an internationally validated 10-item Center for Epidemiological Studies-Depression (CES-D) scale to capture the presence of depressive symptoms in Indian older adults [54,55]. The ten items in CES-D consist of seven negative symptoms (feeling depressed, low energy, trouble concentrating, feeling alone, bothered by things, fear of something, and

everything is an effort) and three positive symptoms (feeling happy, satisfied, and hopeful). The possible responses for these items were: rarely or never (< 1 day), sometimes (1 or 2 days), often (3 or 4 days), and most or all of the time (5-7 days) in a week prior to the interview. For the negative symptoms, rarely or never (< 1 day) and sometimes (1 or 2 days) were scored zero, and often (3 or 4 days) and most or all of the time (5-7 days) categories were scored one. Scoring was reversed for positive symptoms. The overall depressive symptoms score, calculated by adding the scores from ten items, ranges from 0 to 10. A score of four or higher is considered to represent clinically significant symptoms in the 10-item scale [56].

Covariates

 After an extensive literature review, potentially related covariates were selected which include socio-demographic characteristics, lifestyle factors, health conditions, and cognitive and social activities. Socio-demographic characteristics were: age (in chronological years); gender (men, women); education (no education, primary, secondary, higher); currently working status (no, yes); residence (rural, urban); religion (Hindu, Muslim, Christian, others); Caste (Scheduled Caste, Scheduled Tribe, Other Backward Class (OBC), others), Region (North, Central, East, Northeast, West, and South), monthly per capita expenditure (MPCE) (poorest, poorer, middle, richer, and richest). The lifestyle factors were: currently smoking (no, yes); currently chewing tobacco (no, yes), alcohol drinking status (never, infrequent non-heavy, frequent non-heavy, heavy episodic drinker), and body mass index (underweight (<18.5 kg/m²), normal (18.5-24.9 kg/m²), overweight/obese (>25.0 kg/m²)). Health conditions include biometric measurementbased hypertension status (normal, pre-hypertensive, high blood pressure), and self-reported conditions such as diabetes, cancer, heart disease, and stroke were coded as no and yes. The older adults were categorized as having normal blood pressure (BP) (Systolic BP <120 mmHg and Diastolic BP<80 mmHg), pre-hypertensive (SBP: 120-139 mmHg and DBP: 80-89 mmHg), and high blood pressure (SBP≥ 140 mmHg and DBP≥ 90 mmHg).

According to the procedure suggested by Dong and Simon [57], we have included the four social participation activities: (1) eat out of the house, (2) go to the park/beach, visit relatives/friends, (3) go out to a movie, and (4) attend political/community group meetings. Based on the frequency of participation, responses were coded as '0' for less than weekly, '1' for weekly or more frequently for these activities.

Statistical analysis

Descriptive statistics (means and percentages) were used to assess the characteristics of the older adults included in the final sample. The analysis procedure in this study follows three procedures. First, linear regression models were employed to determine the association of social engagements and depressive symptoms with cognitive function. Second, correlation analysis and a linear regression model of depressive symptoms on social engagement were conducted. Third, the total effect was divided into direct effects (the association of social engagement with cognitive function controlling for depressive symptoms) and indirect or mediating effects (the association of social engagement with cognitive function through depressive symptoms) using linear regression based on Karlson-Holm-Breen (KHB) method [58,59] for the whole sample, and for men and women subsamples, separately. The KHB method is a recently developed method for assessing mediating effects that allow total effects to be divided into direct and indirect (i.e., mediational) effects for both discrete and continuous variables. Contrary to other decomposition methods, the KHB-method provides unbiased decomposition results [60]. The mediation percentage (the indirect effect divided by the total effect) is interpreted as the percentage of the association explained by the mediator variable. All statistical models were adjusted for various predictors, including age, gender, education, working status, residence, religion, caste, region, body mass index (BMI), monthly per capita expenditure (MPCE), smoking status, chewing tobacco status, alcohol drinking, hypertension, diabetes, cancer, heart disease, and stroke. The statistical analysis was performed using Stata 15.1. A p-value of less than 0.05 was considered statistically significant.

Patient and public involvement

No patient was involved.

Results

Table 2 presents the descriptive information for cognitive function, socio-demographic factors, lifestyle factors, and chronic conditions of older men and women included in the analysis. The mean cognition score of men was higher than that of women (11.0 vs. 7.8). Nearly 86% of older men had at least a medium level of social engagements, while this proportion was 57% for older women. Regarding depressive symptoms score, older women had a slightly higher mean score than older men (2.9 vs. 2.8). On average, men were slightly older than women (68.4 vs. 67.3 years). A higher proportion of older women were uneducated than older men (62.2% vs. 31.7%). Around 44.8% of the older men and 19.5% of women were currently working at the time of the survey. About 32% of older women and 21% of older men were overweight or

obese. A higher proportion of older women in the study compared to men were overweight or obese (32.3% vs. 21.2%). Around 25% of men and only 4% of women were current tobacco smokers, while 24% of men and 15% of women were consuming tobacco by chewing at the time of the survey. Alcohol consumption is way higher among older men than women (31.8% vs. 3.5%). According to measured hypertension status, the prevalence of high blood pressure is slightly higher among older women than men (39.2% vs. 38.1%). According to religion, around three-fourths of both older men and women participants were Hindus. Most of the participants were rural residents (72.1% men vs. 69.2% women).

Table 2. Descriptive statistics for sample characteristics of older adults included in the analysis, by gender, India, (N = 20,084)

	Men		Women		Total	
	n	%	n	%	n	%
Social Engagement						
Low	1,457	13.8	4,085	42.7	5,542	27.6
Medium	7,729	73.4	4,793	50.1	12,522	62.3
High	1,340	12.7	680	7.1	2,020	10.1
Cognition ^a	11.0	5.7	7.8	5.6	9.5	5.9
Depressive symptoms score ^a	2.8	1.6	2.9	1.7	2.8	1.6
Age (years) ^a	68.4	6.8	67.3	6.4	67.9	6.6
Social Activities (0-5) ^a	0.3	0.6	0.2	0.5	0.2	0.5
Education level						
No education	3,337	31.7	5,945	62.2	9,282	46.2
Primary	3,346	31.8	2,220	23.2	5,566	27.7
Secondary	2,500	23.8	988	10.3	3,488	17.4
Higher	1,343	12.8	405	4.2	1,748	8.7
Currently working	•				*	
No	5,815	55.2	7,694	80.5	13,509	67.3
Yes	4,711	44.8	1,864	19.5	6,575	32.7
Place of Residence	,				,	
Rural	6,978	66.3	5,904	61.8	12,882	64.1
Urban	3,548	33.7	3,654	38.2	7,202	35.9
Religion	,				,	
Hindu	7,775	73.9	7,121	74.5	14,896	74.2
Muslim	1,209	11.5	1,010	10.6	2,219	11.0
Christian	1,013	9.6	944	9.9	1,957	9.7
Others ^{\$}	529	5.0	482	5.0	1,011	5.0
Caste			-		<i>y</i> -	
Scheduled caste	1,749	16.6	1,524	16.0	3,273	16.3
Scheduled tribe	1,667	15.9	1,389	14.6	3,056	15.2
OBC#	4,165	39.6	3,785	39.7	7,950	39.6
Others	2,935	27.9	2,839	29.8	5,774	28.8
Regions	y		,		- 3 · ·	
North	1,965	18.7	1,810	18.9	3,775	18.8
Central	1,507	14.3	1,190	12.5	2,697	13.4
East	2,090	19.9	1,701	17.8	3,791	18.9
Northeast	1,248	11.9	1,108	11.6	2,356	11.7
West	1,279	12.2	1,280	13.4	2,559	12.7
South	2,437	23.2	2,469	25.8	4,906	24.4
BMI categories	-,,		_,	_5.0	.,, .	

Normal	5,934	56.4	4,673	48.9	10,607	52.8
Underweight	2,360	22.4	1,798	18.8	4,158	20.7
Overweight/Obese	2,232	21.2	3,087	32.3	5,319	26.5
MPCE quintile						
Poorest	2,021	19.2	1,831	19.2	3,852	19.2
Poorer	2,114	20.1	1,922	20.1	4,036	20.1
Middle	2,163	20.5	2,003	21.0	4,166	20.7
Richer	2,153	20.5	1,951	20.4	4,104	20.4
Richest	2,075	19.7	1,851	19.4	3,926	19.5
Currently smoking tobacco						
No	7,933	75.4	9,186	96.1	17,119	85.2
Yes	2,593	24.6	372	3.9	2,965	14.8
Currently chewing tobacco						
No	7,981	75.8	8,128	85.0	16,109	80.2
Yes	2,545	24.2	1,430	15.0	3,975	19.8
Drinking Status						
Never	7,180	68.2	9,252	96.8	16,432	81.8
Infrequent non-heavy	2,092	19.9	186	1.9	2,278	11.3
Frequent non-heavy	666	6.3	66	0.7	732	3.6
Heavy episodic drinker	588	5.6	54	0.6	642	3.2
Hypertension Status						
Normal	2,376	22.6	2,171	22.7	4,547	22.6
Pre-hypertensive	4,143	39.4	3,636	38.0	7,779	38.7
High BP	4,007	38.1	3,751	39.2	7,758	38.6
Diabetes						
No	8,792	83.5	7,997	83.7	16,789	83.6
Yes	1,734	16.5	1,561	16.3	3,295	16.4
Cancer						
No	10,456	99.3	9,482	99.2	19,938	99.3
Yes	70	0.7	76	0.8	146	0.7
Heart Disease						
No	9,879	93.9	9,136	95.6	19,015	94.7
Yes	647	6.1	422	4.4	1,069	5.3
Stroke						
No	10,257	97.4	9,410	98.5	19,667	97.9
Yes	269	2.6	148	1.5	417	2.1
Total	10,526	100.0	9,558	100.0	20,084	100.0
	10,320	100.0	2,330	100.0	40,004	100.0

Note: #Other Backward Classes, aMean and standard deviation; Sincludes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

The average cognitive score increased with an increase in the level of social engagement, and it was higher among the non-depressed older adults (9.8 vs. 8.5) (Supplementary; Table S1). Moreover, the prevalence of depressive symptoms decreased with an increase in the level of social engagement. Table 3 presents the results of linear regression of social engagement and depressive symptoms on cognitive function among older adults, adjusted for all the covariates, including socio-demographic factors, lifestyle factors, and chronic conditions. We included the full table in the supplementary material (Table S2). Results suggest that higher levels of social engagement was significantly associated with better cognitive function for older adults (β =

0.90, p<.001), in men (β= 0.90, p<.001) and women (β= 1.13, p<.001). Additionally, greater depressive symptoms significantly reduced the cognitive functioning among both older men (β= -0.31, p<.001) and women (β= -0.28, p<.001). The correlation between social engagement and depressive symptoms was -0.11 (p < .001) (Supplementary; Table S3). The linear regression model demonstrated that higher levels of social engagement was negative associated with depressive symptoms (β = -0.17, p < .001) (Supplementary; Table S4).

Table 3. Linear regression results of social engagement and depressive symptoms on cognitive functioning, by gender, (N = 20,084).

	Men		W	Women		otal
	β	(95% CI)	β	(95% CI)	β	(95% CI)
Social Engagement						
Low®						
Medium	0.64***	(0.38, 0.90)	0.34***	(0.15, 0.53)	0.49***	(0.34, 0.64)
High	0.90***	(0.51, 1.28)	1.13***	(0.70, 1.56)	0.90***	(0.63, 1.18)
Depressive symptoms score	-0.31***	(-0.36,-0.25)	-0.28***	(-0.33,-0.23)	-0.29***	(-0.33,-0.25)
N	10,526		9,558		20	0,084
\mathbb{R}^2	0.32		0.36		(0.38

Note: Controlled for age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, chewing tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval.

* p<0.05, ** p<0.01, *** p<0.001

Table 4 shows the mediation analysis results for the whole sample, the older men and women subsamples. After controlling for all the covariates in the entire sample, the results indicate that depressive symptoms significantly mediated 16.9% of the association between social engagement and cognitive function. In addition, we found significant mediation percentages for older men and women subsamples (14.4% men vs. 18.1% women).

Table 4. The Effect of Social Engagement on cognition mediated by depressive symptoms (the Karlson, Holm, and Breen Method), by gender, (N = 20,084), LASI, 2017-19

	Men		Women		Total	
	β	(95% CI)	β	(95% CI)	β	(95% CI)
Social Engagements					-	
Total Effect	0.41***	(0.24, 0.57)	0.26***	(0.13, 0.39)	0.31***	(0.21, 0.42)
Direct effect of social engagement	0.35***	(0.18,0.52)	0.21**	(0.08,0.34)	0.26***	(0.15,0.36)
Indirect effect via depressive symptoms	0.06***	(0.04, 0.08)	0.05***	(0.03,0.06)	0.05***	(0.04,0.06)

N	10,526	9,558	20,084
ConfPerca	14.4%	18.1%	16.9%

Note: Controlled for age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, chewing tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval. ^aConfounding percentage.

* p<0.05, ** p<0.01, *** p<0.001

Discussion

The present study examined the direct, indirect, and total effects of social engagement on the cognitive functioning mediated by the depressive symptoms among Indian older adults. We found that a higher level of social engagement was associated with greater cognitive functioning, whereas depressive symptoms mediated 16.9% of the observed association. In addition, gender-based mediation effects were also calculated which were 14.4% and 18.1% for men and women older adults, respectively.

Structural aspects of social network are recommended to be essential to maintain an optimal level of cognitive functioning [61]. As documented, social networks and activity are related concepts and individuals who have a larger social networks tend to take part in more social activities [62]. Similarly, the satisfaction achieved from the social and support networks was observed to lead to better episodic memory performance, and processing speed and global cognition [63]. The main effect hypothesis in the present study is confirmed by the results showing that social engagements are independently associated with a greater level of cognitive functioning. The finding is consistent with previous studies linking the social involvement enhancing the wellbeing and boosting the self-esteem and creating a sense of belonging that result in better cognitive functioning [64–66]. A systematic review reported that although the exact nature of the associations are unclear, different aspects of social relationships such as social activity, social networks and social support and a composite measures of social relationships are associated with cognitive functioning [67].

Although social engagements including the structural support from the spouse and family members are found to enhance cognitive functioning [68–70], the mechanism that mental illnesses adversely mediating the association is less investigated. A recent study found the mediating role of hippocampal volume of brain which is known to be affected by a variety of psychiatric disorders in the association of emotional support with specific cognitive domains [71]. Consistently, the current results showed that depressive symptoms were partial mediators of the social engagement-cognitive functioning relationship. The finding is also in parallel with a recent study conducted in China showing the mediating role of depressive symptoms in the protective effect of frequent exercise on cognitive functioning [72]. Therefore, our results support the previous finding that the protective effect of social relationships is more related to

the aspects of quality and functionality of such relationships than the quantity and structural characteristics [73].

Furthermore, the indirect effect of social engagements on cognitive functioning suggest that social resources can be related to better cognitive functioning through minimizing mental disorders in older adults, indicating that depressive symptoms may serve as an important intervening target and that reversing such illnesses might be related to a greater cognitive functioning. This is similar to an earlier finding that lack of social engagements may be particularly detrimental to late-life cognitive abilities when it is associated with mental illnesses [74]. Earlier meta-analyses and reviews have investigated loneliness, being one of the depressive symptoms, and social isolation together as part of health promotion interventions and suggested that loneliness is often experienced as a part of lack of social engagement and partly attribute to the factors of cognitive declines [75,76], indicating the need for social interventions that promote active participation of older people and help them in maintaining social and structural relationships and coping with age-related stress factors.

The available evidence suggests that there are gender differences in the relationship between social engagement and cognitive functioning. For instance, in developed countries, numerous studies have found that the cognitive performance of older women is as good as or better than that of men [77–79]. By contrast, studies of cognitive abilities in developing countries find older women often perform worse than older men [80,81]. Moreover, earlier studies in India reported a relatively lower cognitive functioning level among older women than men [82,83]. Also, another study suggests that a greater social engagement protects against rapid cognitive decline, particularly among low-educated older women [84]. In addition, social networks were reported as highly influential for women than men in determining better health behaviors related to cognitive maintenance [80]. Consistent with these previous studies, the current analyses have shown that social engagement of older women is strongly associated with better cognitive functioning with greater mediating effects of depressive symptoms compared to older men. Nevertheless, it still needs to be further investigated whether sex differences exist in the association of social engagements mediated by depressive symptoms with cognitive functioning and causally inferred with studies of longitudinal design.

There are several limitations of the present study to be noted. In the analysis, cognitively impaired older adults have been removed to address the reverse causality. However, the possibility of withdrawal of people from social contacts and social activities in the early stages

of pathological changes in cognition cannot be ignored. Therefore, the potential impact of reverse causality cannot be completely ruled out. The composite index of social engagement was generated from the questions which were self-reported. The responses may have been exaggerated or under-reported. However, self-reporting is endorsed as an optimal method to measure how the participants subjectively find themselves having social networks and involved in social activities. On the other hand, exploring the aspect of social engagements that include participating in indoor games for example, as distinct from domains of cognitive activities is questionable, since it is not feasible to completely differentiate social engagement from cognitive engagements. Also many activities have a psychiatric element which may have positive impacts on cognitive processes and a complex confounding effect in the associations of three key variables in our study. Hence, considering the differences in relationships between cognitive domains and the distinct forms of social engagements that also include structural support from marital status and living arrangements, it is important to define social relationships more clearly in future studies to achieve more reliable findings. Besides, in a population with huge proportion of illiterates, the assessment of cognitive functioning with multiple domains might be subject to measurement error which can bias the current findings. Similarly, older women in India who are largely deprived of education and other opportunities including work participation might have resulted in greater gender gap in cognitive functioning observed in our study. Another limitation is the inclusion of only males and females in the study. Since LASI collects the information from males and females only, the inclusion of the other gender was not possible. Finally, the present study was cross-sectional, and thus, a causal relationship between the variables cannot be inferred. Further investigation with longitudinal design is needed to explore the neural mechanisms that underlie the effects of social engagements on cognitive decline. Future research might also consider the impact of technology, internet and social media on social relationships, particularly feelings of social support.

Conclusion

The results suggest that a positive association of social engagement with cognitive functioning was partly mediated by depressive symptoms. The findings support the possible benefits of maintaining quality social relations that help coping with depressive symptoms on cognitive functioning among older adults, which need to be confirmed with future interventional studies. The study also highlights the potential of social engagements independently or with others as an intervention to prevent cognitive impairment among older individuals.

406	Abbreviations:
407	MPCE: Monthly Per capita Consumption Expenditure
408	CES-D: Center for Epidemiological Studies-Depression
409	KHB: Karlson–Holm–Breen
410	Declarations
411	Contributors MK and LKD conceived and designed the research paper. MK analyzed the data.
412	MK and TM contributed agents/materials/analysis tools. MK and TM wrote the manuscript.
413	LKD provides supervision and validation. MK, TM and LKD refined the manuscript. All
414	authors have read and approved the manuscript.
415	Funding No funding was received for the study.
416	Competing interest The authors declare that there is no competing interest.
417	Patient consent for publication Not required.
418	Ethics approval Not applicable/No human participants included. Therefore, no Ethics
419	Committee or Institutional Board approval is required.
420	Provenance and peer review Not commissioned; externally peer reviewed
421	Data availability statement The study uses secondary data which is available in the private
422	database and accessible on reasonable request through
423	https://www.iipsindia.ac.in/content/lasiwave-i
424	Consent for publication The administrative permission to access and use the data for the
425	present study was taken from the International Institute for Population Sciences, Mumbai,
426	which conducted the LASI survey.
427	Acknowledgements Not applicable
428	

Refer	ences

- Hsiao H-T, Li S-Y, Yang Y-P, *et al.* Cognitive function and quality of life in community-dwelling seniors with mild cognitive impairment in Taiwan. *Community Ment Health J* 2016;**52**:493–8.
- 433 2 McGuire LC, Ford ES, Ajani UA. The impact of cognitive functioning on mortality 434 and the development of functional disability in older adults with diabetes: the second 435 longitudinal study on aging. *BMC Geriatr* 2006;**6**:1–7.
- Aarts S, Van den Akker M, Tan FES, *et al.* Influence of multimorbidity on cognition in a normal aging population: a 12-year follow-up in the Maastricht aging study. *Int J Geriatr Psychiatry* 2011;**26**:1046–53.
- 439 4 Lv X, Li W, Ma Y, *et al.* Cognitive decline and mortality among community-dwelling Chinese older people. *BMC Med* 2019;**17**:1–10.
- 441 5 United Nation. World Population Ageing 2017 report. 2017.
- Bassuk SS, Glass TA, Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. *Ann Intern Med* 1999;**131**:165–73.
- Haltes MM. *The many faces of dependency in old age*. Cambridge University Press 1996.
- 446 8 Li Y, Xu L, Chi I, *et al.* Participation in productive activities and health outcomes 447 among older adults in urban China. *Gerontologist* 2014;**54**:784–96.
- Holtzman RE, Rebok GW, Saczynski JS, *et al.* Social network characteristics and
 cognition in middle-aged and older adults. *Journals Gerontol Ser B Psychol Sci Soc Sci* 2004;**59**:278–84. doi:10.1093/geronb/59.6.P278
- 451 10 Krueger KR, Wilson RS, Kamenetsky JM, *et al.* Social engagement and cognitive 452 function in old age. *Exp Aging Res* 2009;**35**:45–60.
- 453 doi:10.1080/03610730802545028.SOCIAL
- 454 11 Béland F, Zunzunegui MV, Alvarado B, *et al.* Trajectories of cognitive decline and 455 social relations. *Journals Gerontol - Ser B Psychol Sci Soc Sci* 2005;**60**:320–30.
- doi:10.1093/geronb/60.6.P320
- 457 12 Zunzunegui MV, Alvarado BE, Del Ser T, et al. Social networks, social integration,

45	8		and social engagement determine cognitive decline in community-dwelling Spanish
45	9		older adults. Journals Gerontol - Ser B Psychol Sci Soc Sci 2003;58:93–100.
46	0		doi:10.1093/geronb/58.2.S93
46	1 1	3	Kim YB, Lee SH. Social network types and cognitive decline among older Korean
46	2		adults: A longitudinal population-based study. <i>Int J Geriatr Psychiatry</i> 2019; 34 :1845–
46	3		54. doi:10.1002/gps.5200
46	4 1	4	Lee SH, Kim YB. Which type of social activities may reduce cognitive decline in the
46	5		elderly?: A longitudinal population-based study. <i>BMC Geriatr</i> 2016; 16 :1–9.
46	66		doi:10.1186/s12877-016-0343-x
46	7 1	5	Thomas PA. Trajectories of social engagement and limitations in late life. <i>J Health Soc</i>
46	8		Behav 2011; 52 :430–43.
46	9 1	6	Maffei L, Picano E, Andreassi MG, et al. Randomized trial on the effects of a
47	0		combined physical/cognitive training in aged MCI subjects: the Train the Brain study.
47	1		Sci Rep 2017;7:39471.
47	2 1	7	Straubmeier M, Behrndt E-M, Seidl H, et al. Non-pharmacological treatment in people
47	3		with cognitive impairment: results from the randomized controlled german day care
47	4		study. Dtsch Arztebl Int 2017;114:815.
47	5 1	8	Ihle A, Oris M, Baeriswyl M, et al. The longitudinal relation between social reserve
47	6		and smaller subsequent decline in executive functioning in old age is mediated via
47	7		cognitive reserve. Int Psychogeriatrics 2021;33:461–7.
47	8		doi:10.1017/S1041610219001789
47	9 1	9	González-Ortega I, González-Pinto A, Alberich S, et al. Influence of social cognition
48	0		as a mediator between cognitive reserve and psychosocial functioning in patients with
48	1		first episode psychosis. <i>Psychol Med</i> Published Online First: 2019.
48	2		doi:10.1017/S0033291719002794
48	3 2	20	Haslam C, Cruwys T, Haslam SA. 'The we's have it': Evidence for the distinctive
48	4		benefits of group engagement in enhancing cognitive health in aging. Soc Sci Med

Conroy RM, Golden J, Jeffares I, et al. Boredom-proneness, loneliness, social

engagement and depression and their association with cognitive function in older

2014;**120**:57–66. doi:10.1016/j.socscimed.2014.08.037

488		people: A population study. <i>Psychol Heal Med</i> 2010; 15 :463–73.
489		doi:10.1080/13548506.2010.487103
490	22	Samanta T, Chen F, Vanneman R. Living arrangements and health of older adults in
491		India. Journals Gerontol Ser B Psychol Sci Soc Sci 2015;70:937–47.
492	23	Srivastava S, Shaw S, Chaurasia H, et al. Feeling about living arrangements and
493		associated health outcomes among older adults in India: a cross-sectional study. BMC
494		Public Health 2021; 21 :1–14.
495	24	Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income status
496		with psychological distress and subjective well-being: a cross-sectional study among
497		older adults in India. <i>BMC Psychol</i> 2021; 9 :1–13. doi:10.1186/s40359-021-00588-5
498	25	Srivastava S, Chauhan S, Muhammad T, et al. Older adults' psychological and
499		subjective well-being as a function of household decision making role: Evidence from
500		cross-sectional survey in India. Clin Epidemiol Glob Heal 2021;10:100676.
501		doi:10.1016/j.cegh.2020.100676
502	26	Srivastava S, Purkayastha N, Chaurasia H, et al. Socioeconomic inequality in
503		psychological distress among older adults in India: a decomposition analysis. BMC
504		Psychiatry 2021;21:1–15. doi:10.1186/s12888-021-03192-4
505	27	Fernández-Niño JA, Bonilla-Tinoco LJ, Manrique-Espinoza BS, et al. Work status,
506		retirement, and depression in older adults: An analysis of six countries based on the
507		Study on Global Ageing and Adult Health (SAGE). SSM - Popul Heal 2018;6:1-8.
508		doi:10.1016/j.ssmph.2018.07.008
509	28	Anand A. Understanding Depression among Older Adults in Six Low-Middle Income
510		Countries using WHO-SAGE Survey. Behav Heal 2015;1.
511	29	Smith L, Il Shin J, McDermott D, et al. Association between food insecurity and
512		depression among older adults from low- and middle-income countries. Depress
513		Anxiety 2021;38:439–46. doi:10.1002/da.23147
514	30	Srivastava S, Debnath P, Shri N, et al. The association of widowhood and living alone
515		with depression among older adults in India. Sci Rep 2021;:1–13. doi:10.1038/s41598-
516		021-01238-x
517	31	Jang Y, Chiriboga DA. Social activity and depressive symptoms in Korean American

518		older adults: The conditioning role of acculturation. <i>J Aging Health</i> 2011; 23 :767–81.
519520521	32	Strauss J, Park A, Smith JP. Health Outcomes and Socio-Economic Status Among the Elderly in Gansu and Zhejiang Provinces, China: Evidence from the CHARLS Pilot. 2013; 3 :111–42. doi:10.1007/s12062-011-9033-9.Health
522523524	33	Chiao C, Weng L-J, Botticello AL. Social participation reduces depressive symptoms among older adults: an 18-year longitudinal analysis in Taiwan. <i>BMC Public Health</i> 2011; 11 :1–9.
525526527	34	Isaac V, Stewart R, Artero S, <i>et al.</i> Social activity and improvement in depressive symptoms in older people: a prospective community cohort study. <i>Am J Geriatr Psychiatry</i> 2009; 17 :688–96.
528529530	35	Lou VWQ, Chi I, Kwan CW, <i>et al.</i> Trajectories of social engagement and depressive symptoms among long-term care facility residents in Hong Kong. <i>Age Ageing</i> 2013; 42 :215–22.
531532	36	Takagi D, Kondo K, Kawachi I. Social participation and mental health: moderating effects of gender, social role and rurality. <i>BMC Public Health</i> 2013; 13 :1–8.
533534	37	Glass TA, De Leon CFM, Bassuk SS, <i>et al.</i> Social engagement and depressive symptoms in late life: longitudinal findings. <i>J Aging Health</i> 2006; 18 :604–28.
535536	38	Fiske A, Wetherell JL, Gatz M. Depression in older adults. <i>Annu Rev Clin Psychol</i> 2009; 5 :363–89.
537538	39	Pressman SD, Matthews KA, Cohen S, <i>et al.</i> Association of enjoyable leisure activities with psychological and physical well-being. <i>Psychosom Med</i> 2009; 71 :725.
539540541	40	Vance DE, Marson DC, Triebel KL, <i>et al.</i> Physical activity and cognitive function in older adults: The mediating effect of depressive symptoms. <i>J Neurosci Nurs J Am Assoc Neurosci Nurses</i> 2016; 48 :E2.
542543544	41	Muhammad T, Meher T. Association of late-life depression with cognitive impairment: evidence from a cross-sectional study among older adults in India. <i>BMC Geriatr</i> 2021; 21 :1–13. doi:10.1186/s12877-021-02314-7
545	42	van den Kommer TN, Comijs HC, Aartsen MJ, et al. Depression and cognition: how

do they interrelate in old age? Am J Geriatr Psychiatry 2013;21:398–410.

547	43	Dickinson WJ, Potter GG, Hybels CF, et al. Change in stress and social support as
548		predictors of cognitive decline in older adults with and without depression. Int J
549		Geriatr Psychiatry 2011; 26 :1267–74.
550	44	Van Der Mussele S, Fransen E, Struyfs H, et al. Depression in mild cognitive
551		impairment is associated with progression to alzheimer's disease: A longitudinal study.
552		J Alzheimer's Dis 2014; 42 :1239–50. doi:10.3233/JAD-140405
553	45	Verdelho A, Madureira S, Moleiro C, et al. Depressive symptoms predict cognitive
554		decline and dementia in older people independently of cerebral white matter changes:
555		The LADIS study. J Neurol Neurosurg Psychiatry 2013;84:1250-4. doi:10.1136/jnnp-
556		2012-304191
557	46	Agahi N, Parker MG. Leisure activities and mortality: does gender matter? J Aging
558		Health 2008; 20 :855–71.
559	47	International Institute for Population Sciences (IIPS), NPHCE, MoHFW HTHCS of
560		PH (HSPH) and the U of SC (USC). Longitudinal Ageing Study in India (LASI)
561		Wave 1, 2017-18, India Report. Mumbai.: 2020.
562	48	Pandav R, Fillenbaum G, Ratcliff G, et al. Sensitivity and specificity of cognitive and
563		functional screening instruments for dementia: The Indo-US Dementia Epidemiology
564		Study. J Am Geriatr Soc 2002; 50 :554–61.
565	49	Herzog AR, Wallace RB. Measures of cognitive functioning in the AHEAD study.
566		Journals Gerontol - Ser B Psychol Sci Soc Sci 1997; 52 :37–48.
567		doi:10.1093/geronb/52b.special_issue.37
568	50	Meng Q, Wang H, Strauss J, et al. Validation of neuropsychological tests for the China
569		Health and Retirement Longitudinal Study Harmonized Cognitive Assessment
570		Protocol. <i>Int Psychogeriatrics</i> 2019; 31 :1709–19. doi:10.1017/S1041610219000693
571	51	Gupta M, Gupta V, Nagar Buckshee R, et al. Validity and reliability of hindi translated
572		version of Montreal cognitive assessment in older adults. Asian J Psychiatr
573		2019; 45 :125–8. doi:10.1016/j.ajp.2019.09.022
574	52	Zhou Z, Mao F, Han Y, et al. Social engagement and cognitive impairment in older
575		Chinese adults: The mediating role of psychological well-being. J Aging Health

2020;32:573-81.

577 578 579	53	Sampson EL, Bulpitt CJ, Fletcher AE. Survival of community-dwelling older people: the effect of cognitive impairment and social engagement. <i>J Am Geriatr Soc</i> 2009; 57 :985–91.
580 581	54	Radloff LS. The CES-D scale: A self-report depression scale for research in the general population. <i>Appl Psychol Meas</i> 1977;1:385–401.
582 583	55	Irwin M, Artin KH, Oxman MN. Screening for Depression in the Older Adult. <i>Arch Intern Med</i> 1999; 159 :1701. doi:10.1001/archinte.159.15.1701
584 585 586	56	Kumar S, Nakulan A, Thoppil SP, <i>et al.</i> Screening for depression among community-dwelling elders: usefulness of the center for epidemiologic studies depression scale. <i>Indian J Psychol Med</i> 2016; 38 :483–5.
587 588 589	57	Dong X, Li Y, Simon MA. Social engagement among U.S. Chinese older adults-findings from the PINE study. <i>Journals Gerontol - Ser A Biol Sci Med Sci</i> 2014; 69 :S82–9. doi:10.1093/gerona/glu152
590 591	58	Karlson KB, Holm A. Decomposing primary and secondary effects: A new decomposition method. <i>Res Soc Stratif Mobil</i> 2011; 29 :221–37.
592593594	59	Karlson KB, Holm A, Breen R. Comparing regression coefficients between same-sample nested models using logit and probit: A new method. <i>Sociol Methodol</i> 2012; 42 :286–313.
595 596	60	Kohler U, Karlson KB, Kohler U, <i>et al.</i> KHB: Stata module to decompose total effects into direct and indirect via KHB-method. 2019.
597 598 599	61	Li M, Dong X. Is Social Network a Protective Factor for Cognitive Impairment in US Chinese Older Adults? Findings from the PINE Study. <i>Gerontology</i> 2018; 64 :246–56. doi:10.1159/000485616
600 601	62	Ozbay F, Johnson DC, Dimoulas E, <i>et al.</i> Social support and resilience to stress: from neurobiology to clinical practice. <i>Psychiatry (Edgmont)</i> 2007; 4 :35–40.
602 603 604	63	Hughes TF, Andel R, Small BJ, <i>et al.</i> The association between social resources and cognitive change in older adults: Evidence from the Charlotte County Healthy Aging Study. <i>Journals Gerontol - Ser B Psychol Sci Soc Sci</i> 2008; 63 :241–4.

doi:10.1093/geronb/63.4.P241

606 607	64	Thoits PA. Mechanisms linking social ties and support to physical and mental health. <i>J Health Soc Behav</i> 2011; 52 :145–61. doi:10.1177/0022146510395592
608 609 610	65	Kuiper JS, Zuidersma M, Zuidema SU, <i>et al.</i> Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. <i>Int J Epidemiol</i> 2016; 45 :1169–206. doi:10.1093/ije/dyw089
611 612 613	66	Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income sufficiency with cognitive impairment among older adults: a population-based study in India. <i>BMC Psychiatry</i> 2021; 21 :1–14. doi:10.1186/s12888-021-03257-4
614 615 616	67	Kelly ME, Duff H, Kelly S, <i>et al</i> . The impact ofsocial activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. <i>Syst Rev</i> 2017; 6 . doi:10.1186/s13643-017-0632-2
617 618	68	Barnes LL, De Leon CFM, Wilson RS, <i>et al.</i> Social resources and cognitive decline in a population of older African Americans and whites. <i>Neurology</i> 2004; 63 :2322–6.
619 620 621	69	Ayotte BJ, Allaire JC, Whitfield KE. Social support, physical functioning, and cognitive functioning among older African American adults. <i>Aging, Neuropsychol Cogn</i> 2013; 20 :494–510. doi:10.1080/13825585.2012.761669
622 623 624	70	Muhammad T, Govindu M, Srivastava S. Relationship between chewing tobacco, smoking, consuming alcohol and cognitive impairment among older adults in India: a cross-sectional study. <i>BMC Geriatr</i> 2021; 21 :85. doi:10.1186/s12888-021-03257-4
625 626 627	71	Kim GE, Han JW, Kim TH, <i>et al.</i> Hippocampus mediates the effect of emotional support on cognitive function in older adults Authors. <i>Journals Gerontol Ser A</i> 2020; 75 :1502–7.
628 629 630	72	Yuan M, Fu H, Liu R, <i>et al.</i> Effect of frequency of exercise on cognitive function in older adults: Serial mediation of depression and quality of sleep. <i>Int J Environ Res Public Health</i> 2020; 17 . doi:10.3390/ijerph17030709
631632633634	73	Amieva H, Stoykova R, Matharan F, <i>et al.</i> What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. <i>Psychosom Med</i> 2010; 72 :905–11. doi:10.1097/PSY.0b013e3181f5e121
635	74	Yang R, Wang H, Edelman LS, et al. Loneliness as a mediator of the impact of social

636		isolation on cognitive functioning of Chinese older adults. Age Ageing 2020;49:599–
637		604. doi:10.1093/ageing/afaa020
638	75	Valtorta N, Hanratty B. Loneliness, isolation and the health of older adults: Do we
639		need a new research agenda? JR Soc Med Suppl 2012;105:518–22.
640		doi:10.1258/jrsm.2012.120128
641	76	Cattan M, White M, Bond J, et al. Preventing social isolation and loneliness among
642		older people: A systematic review of health promotion interventions. Ageing Soc
643		2005; 25 :41–67. doi:10.1017/S0144686X04002594
644	77	Langa KM, Llewellyn DJ, Lang IA, et al. Cognitive health among older adults in the
645		United States and in England. BMC Geriatr 2009;9:1–11.
646	78	De Frias CM, Nilsson L-G, Herlitz A. Sex differences in cognition are stable over a
647		10-year period in adulthood and old age. Aging, Neuropsychol Cogn 2006;13:574–87.
648	79	Van Hooren S, Valentijn A, Bosma H, et al.
649		Cognitive_Functioning_in_Healthy_Older_A.pdf. 2007;:40–54.
650	80	Lei X, Hu Y, McArdle JJ, et al. Gender differences in cognition among older adults in
651		China. J Hum Resour 2012;47:951–71.
652	81	Maurer J. Education and male-female differences in later-life cognition: International
653		evidence from Latin America and the Caribbean. <i>Demography</i> 2011;48:915–30.
654	82	Lee J, Shih R, Feeney K, et al. Gender disparity in late-life cognitive functioning in
655		India: findings from the longitudinal aging study in India. Journals Gerontol Ser B
656		Psychol Sci Soc Sci 2014; 69 :603–11.
657	83	Angrisani M, Jain U, Lee J. Sex differences in cognitive health among older adults in
658		India. J Am Geriatr Soc 2020; 68 :S20–8.
659	84	Lee Y, Jean Yeung WJ. Gender matters: Productive social engagement and the
660		subsequent cognitive changes among older adults. Soc Sci Med 2019; 229 :87–95.
661		doi:10.1016/j.socscimed.2018.08.024

Figure Legend:

Figure 1. Framework for mediation analysis

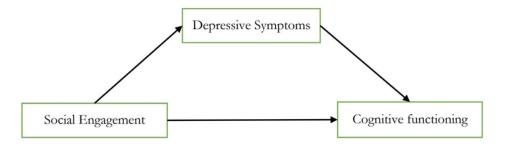


Figure 1. Framework for mediation analysis $68x27mm (300 \times 300 DPI)$

Supplementary file

Table S1. Descriptive statistics for the cognitive function (0-27) and level of social engagements according to selected variables, (N = 20.084)

				<u> </u>	ocial engag			
	Cognitive fo	unction (0-27)	Low (n=	=5,542)	Med (n=12		High (n	=2,020)
	N	Mean (sd.)						
Social Engagements		, ,						
Low	5,542	7.7 (5.5)	-	-	_	-	-	-
Medium	12,522	9.9 (5.8)	_	_	_	_	_	_
High	2,020	11.5 (5.8)	_	_	_	_	_	_
Depression ^a	2,020	11.5 (5.6)						
No	15,132	9.8 (5.9)	3,881	70.0	9,607	76.7	1,644	81.4
Yes	4,952	8.5 (5.6)	1,661	30.0	2,915	23.3	376	18.6
Age (years)	4,732	0.5 (5.0)	1,001	30.0	2,713	23.3	370	10.0
60-69	13,153	10.0 (5.9)	2,923	52.7	8,829	70.5	1,401	69.4
70-79	5,501	` '	1,887	34.0	3,075	24.6	539	26.7
80+		8.8 (5.8)			5,075 618		339 80	
	1,430	7.4 (5.5)	732	13.2	018	4.9	80	4.0
Social Activities	6.205	7.1 (5.1)	2 00 4	26.2	2.040	21.5	0.61	12.0
0	6,205	7.1 (5.1)	2,004	36.2	3,940	31.5	261	12.9
1	7,222	8.5 (5.4)	2,255	40.7	4,445	35.5	522	25.8
2	4,272	12.0 (5.5)	943	17.0	2,742	21.9	587	29.1
3+	2,385	13.8 (5.5)	340	6.1	1,395	11.1	650	32.2
Education level								
No education	9,282	6.2 (4.5)	3,269	59.0	5,359	42.8	654	32.4
Primary	5,566	10.3 (5.2)	1,400	25.3	3,544	28.3	622	30.8
Secondary	3,488	13.7 (4.7)	646	11.7	2,372	18.9	470	23.3
Higher	1,748	15.9 (4.4)	227	4.1	1,247	10.0	274	13.6
Currently working								
No	13,509	9.3 (5.9)	4,394	79.3	7,829	62.5	1,286	63.7
Yes	6,575	9.8 (5.8)	1,148	20.7	4,693	37.5	734	36.3
Place of Residence	•	` ,			•			
Rural	12,882	8.3 (5.6)	3,434	62.0	8,284	66.2	1,164	57.6
Urban	7,202	11.5 (5.9)	2,108	38.0	4,238	33.8	856	42.4
Religion	.,	()	_,_,		,,			
Hindu	14,896	9.5 (5.9)	4,294	77.5	9,537	76.2	1,065	52.7
Muslim	2,219	9.2 (5.6)	589	10.6	1,266	10.1	364	18.0
Christian	1,957	9.5 (5.7)	423	7.6	1,086	8.7	448	22.2
Others ^{\$}	1,011	9.4 (5.9)	235	4.2	633	5.1	143	7.1
Caste	1,011	9.4 (3.9)	233	4.2	033	3.1	143	7.1
Scheduled caste	2 272	0 1 (5 4)	992	17.0	2.092	16.6	199	9.9
Scheduled tribe	3,273	8.1 (5.4)		17.9	2,082			
	3,056	8.2 (5.6)	744	13.5	1,795	14.3	517	25.7
OBC#	7,950	9.6 (6)	2,245	40.6	5,077	40.6	628	31.2
Others	5,774	10.8 (5.8)	1,549	28.0	3,556	28.4	669	33.2
Regions								
North	3,775	9.3 (5.7)	928	16.7	2,339	18.7	508	25.1
Central	2,697	8.9 (5.6)	793	14.3	1,728	13.8	176	8.7
East	3,791	9 (5.8)	1,036	18.7	2,532	20.2	223	11.0
Northeast	2,356	9.5 (5.8)	543	9.8	1,332	10.6	481	23.8
West	2,559	9 (5.7)	664	12.0	1,597	12.8	298	14.8
South	4,906	10.4 (6.1)	1,578	28.5	2,994	23.9	334	16.5
BMI categories								
Normal	10,607	9.4 (5.8)	2,790	50.3	6,694	53.5	1,123	55.6
Underweight	4,158	7.4 (5.3)	1,333	24.1	2,553	20.4	272	13.5

Total	20,084	9.5 (5.9)	5,542	100.0	12,522	100.0	2,020	100.0
Yes	417	9.3 (5.6)	92	1.7	283	2.3	42	2.1
No	19,667	9.5 (5.9)	5,450	98.3	12,239	97.7	1,978	97.9
Stroke	40	0 = 1= 0	.	06.5	40.000	0==	4 0-0	0= 0
Yes	1,069	11.2 (5.8)	249	4.5	698	5.6	122	6.0
No	19,015	9.4 (5.9)	5,293	95.5	11,824	94.4	1,898	94.0
Heart Disease								
Yes	146	10.1 (5.8)	33	0.6	92	0.7	21	1.0
No	19,938	9.5 (5.9)	5,509	99.4	12,430	99.3	1,999	99.0
Cancer	•	` (•			
Yes	3,295	11.1 (5.9)	805	14.5	2,139	17.1	351	17.4
No	16,789	9.1 (5.8)	4,737	85.5	10,383	82.9	1,669	82.6
Diabetes	•		•		,			
High BP	7,758	9.6 (5.9)	2,408	43.5	4,614	36.8	736	36.4
Pre-hypertensive	7,779	9.7 (5.9)	2,022	36.5	4,930	39.4	827	40.9
Normal	4,547	8.9 (5.6)	1,112	20.1	2,978	23.8	457	22.6
Hypertension Status	312	7.1 (3.3)	101	1.0	.,.	2.0	37	5.5
Heavy episodic drinker	642	9.1 (5.5)	101	1.8	474	3.8	67	3.3
Frequent non-heavy	732	9.4 (5.6)	143	2.6	534	4.3	55	2.7
Infrequent non-heavy	2,278	10.3 (5.6)	360	6.5	1,622	13.0	296	14.7
Never	16,432	9.4 (5.9)	4,938	89.1	9,892	79.0	1,602	79.3
Drinking Status	3,913	0.7 (3.0)	1,073	17.4	4,333	20.2	303	10.1
Yes	3,975	9.0 (3.9) 8.9 (5.6)	1,075	19.4	2,535	20.2	365	18.1
No	16,109	9.6 (5.9)	4,467	80.6	9,987	79.8	1,655	81.9
tobacco								
Currently chewing	2,965	9.3 (5.5)	322	9.4	2,009	10.3	3/4	16.3
No Yes	17,119	9.5 (5.9)	5,020 522	90.6 9.4	10,453 2,069	83.5 16.5	1,646 374	81.5 18.5
tobacco	17 110	0.5 (5.0)	5.000	00.6	10 452	02.5	1 (4)	01 5
Currently smoking								
Richest	3,926	11.1 (6)	979	17.7	2,445	19.5	502	24.9
Richer	4,104	9.8 (5.8)	1,086	19.6	2,604	20.8	414	20.5
Middle	4,166	9.4 (5.8)	1,115	20.1	2,604	20.8	447	22.1
Poorer	4,036	8.8 (5.7)	1,179	21.3	2,510	20.0	347	17.2
Poorest	3,852	8.2 (5.6)	1,183	21.3	2,359	18.8	310	15.3
MPCE quintile						400		
N / I D / 1 I 7 4.* I								

Note: a overall score ranges from zero to 10 and individuals with score of four or more are considered as depressed; # Other Backward Classes, s includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

Table S2: Linear regression results of social engagement and depression on cognitive functioning, by gender, (N = 20,084), LASI, 2017-19

		<u>Ien</u>		omen	Total		
	β	(95% CI)	β	(95% CI)	β	(95% CI)	
Social Engagement							
Low®							
Medium	0.64***	(0.38, 0.90)	0.34***	(0.15, 0.53)	0.49***	(0.34, 0.64)	
High	0.90***	(0.51, 1.28)	1.13***	(0.70, 1.56)	0.90***	(0.63, 1.18)	
Depression score	-0.31***	(-0.36, -0.25)	-0.28***	(-0.33, -0.23)	-0.29***	(-0.33, -0.25)	
Social Activities	0.15	(-0.03, 0.32)	0.41***	(0.22, 0.60)	0.26***	(0.13, 0.39)	
Age (years)	-0.08***	(-0.09, -0.06)	-0.07***	(-0.08, -0.05)	-0.07***	(-0.08, -0.06)	
Gender							
Men®	-	-	-	-			
Women	_	-	-	-	-1.55***	(-1.71, -1.38)	
Education level							
No education®							
Primary	3.20***	(2.98, 3.43)	3.12***	(2.89, 3.36)	3.25***	(3.09, 3.41)	
Secondary	5.89***	(5.62,6.15)	6.92***	(6.59, 7.26)	6.34***	(6.14, 6.55)	
Higher	6.62***	(6.28, 6.95)	8.84***	(8.33, 9.35)	7.11***	(6.84, 7.38)	
Currently working							
No®							
Yes	0.01	(-0.19, 0.21)	0.31**	(0.08, 0.54)	0.14	(-0.00, 0.29)	
Place of Residence				, , ,		, , ,	
Rural®							
Urban	1.05***	(0.82, 1.28)	0.85***	(0.63, 1.06)	0.99***	(0.84, 1.15)	
Religion		(111) 1		(,		(,,	
Hindu®							
Muslim	0.38*	(0.07, 0.69)	0.01	(-0.30, 0.31)	0.21	(-0.01, 0.43)	
Christian	-0.14	(-0.76,0.48)	0.66*	(0.11,1.21)	0.32	(-0.10, 0.74)	
Others\$	-0.92***	(-1.41,-0.43)	0.68**	(0.20, 1.16)	-0.11	(-0.45,0.24)	
Caste	0.72	(1.11, 0.13)	0.00	(0.20,1.10)	0.11	(0.15,0.21)	
Scheduled caste®							
Scheduled tribe	-0.61**	(-1.02, -0.20)	-0.41*	(-0.81,-0.01)	-0.50***	(-0.79,-0.21)	
OBC#	0.35**	(0.10,0.61)	0.48***	(0.23, 0.73)	0.41***	(0.23, 0.59)	
None of them	0.30*	(0.01, 0.58)	0.30*	(0.02, 0.58)	0.30**	(0.10, 0.50)	
Region	0.50	(0.01,0.50)	0.50	(0.02,0.30)	0.50	(0.10,0.50)	
North®							
Central	0.56**	(0.22, 0.89)	1.43***	(1.11, 1.75)	0.99***	(0.76, 1.22)	
East	0.26	(-0.07,0.59)	1.04***	(0.73, 1.36)	0.66***	(0.76, 1.22) $(0.43, 0.88)$	
Northeast	0.85**	(0.23, 1.46)	1.32***	(0.73,1.90) $(0.72,1.92)$	1.06***	(0.43, 0.66) $(0.63, 1.49)$	
West	-1.14***	(0.23, 1.40) (-1.50, -0.79)	-0.37*	(-0.70,-0.04)	-0.74***	(-0.99,-0.50)	
South	0.07	(-0.28,0.42)	1.63***	(1.30,1.96)	0.87***	(0.63,1.11)	
BMI categories	0.07	(-0.20,0.42)	1.03	(1.50,1.70)	0.67	(0.03,1.11)	
Normal®							
Underweight	-0.82***	(-1.04,-0.60)	-0.87***	(-1.10,-0.64)	-0.85***	(-1.01,-0.69)	
Overweight/obese	0.60***	(0.36, 0.84)	0.74***	(0.52, 0.95)	0.69***	(0.53, 0.86)	
MPCE quintile	0.00	(0.30,0.04)	0.74	(0.32, 0.73)	0.07	(0.55,0.60)	
Poorest®							
Poorer	-0.17	(-0.45,0.11)	0.31*	(0.04, 0.57)	0.06	(-0.13,0.26)	
Middle	0.17	(-0.43,0.11)	0.31**	(0.04, 0.37) (0.22, 0.75)	0.06	(-0.13, 0.20) (0.09, 0.48)	
Richer	0.12	(0.10, 0.40) $(0.10, 0.68)$	0.48***	(0.24, 0.79)	0.28***	(0.09, 0.48) (0.26, 0.66)	
	0.52**		0.52***				
Richest	0.52**	(0.21, 0.83)	U./3***	(0.43, 1.02)	0.61***	(0.40, 0.83)	
Currently smoking							
tobacco No®							

Yes	0.01	(-0.22,0.23)	-0.56*	(106.005)	0.02	(0.18.0.22)
	0.01	(-0.22,0.23)	-0.36**	(-1.06,-0.05)	0.02	(-0.18,0.22)
Currently chewing						
tobacco						
No®	0.07	(0.15.0.20)	0.10	(0.42.0.00)	0.00	(016016)
Yes	0.07	(-0.15, 0.29)	-0.19	(-0.43, 0.06)	0.00	(-0.16, 0.16)
Drinking Status						
Never®						
Infrequent non-heavy	-0.34**	(-0.58, -0.10)	-0.49	(-1.29, 0.31)	-0.29*	(-0.51, -0.06)
Frequent non-heavy	-0.67**	(-1.09, -0.26)	-0.93	(-2.17, 0.30)	-0.72***	(-1.10, -0.34)
Heavy episodic drinker	-1.33***	(-1.78, -0.89)	-0.69	(-2.21, 0.83)	-1.27***	(-1.68, -0.86)
Hypertension Status						
Normal®						
Pre-hypertensive	0.15	(-0.08, 0.38)	0.09	(-0.14, 0.32)	0.11	(-0.05, 0.27)
High BP	0.36**	(0.12, 0.60)	0.01	(-0.22, 0.25)	0.18*	(0.01, 0.34)
Diabetes		(,,		(, ,		(,,
No®						
Yes	-0.68***	(-0.94, -0.42)	-0.66***	(-0.92, -0.41)	-0.74***	(-0.92,-0.56)
Cancer				, , ,		, , ,
No®						
Yes	0.34	(-0.91,1.58)	-0.16	(-1.27, 0.95)	0.19	(-0.64, 1.03)
Heart Disease		,,		(, ,		(, ,
No®						
Yes	0.68***	(0.30, 1.05)	-0.26	(-0.69, 0.17)	0.32*	(0.04, 0.60)
Stroke				(, ,		(,,
No®						
Yes	-0.85**	(-1.43, -0.27)	-0.59	(-1.29, 0.10)	-0.77***	(-1.21, -0.32)
* **		(·- , - · = /)		(, 0)	~	(,,

Observations	10,526	9,558	20,084
\mathbb{R}^2	0.34	0.39	0.41
V #0.1 D 1 1.01	Φ' 1 1 C'11 D 111' ·/	D 1111 X 1 D 1/17	1 1 DD D1 1

Note: #Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

^{*} p<0.05, ** p<0.01, *** p<0.001

Table S3: Mean, standard deviation, and correlation between social engagement and depression (n=20,084). LASI, 2017-19						
Variables	1	2				
Depression	-					
Social engagement	-0.11***	-				
Mean	2.81	1.78				
Standard deviation	1.64	0.67				

Table S4: Linear regress		sociai engageme Aen		omen		Total
	β	(95% CI)	β	(95% CI)	β	(95% CI)
Social Engagement	-0.17***	(-0.23,-0.12)	-0.18***	(-0.23,-0.13)	-0.17***	(-0.21,-0.14)
Cognitive function	-0.04***	(-0.04,-0.03)	-0.04***	(-0.05,-0.03)	-0.04***	(-0.04,-0.03)
Social Activities	0.02	(-0.04, 0.08)	0.06	(-0.02, 0.13)	0.04	(-0.01,0.09)
Age (years)	-0.01**	(-0.01, -0.00)	0.00	(-0.01, 0.01)	0.00	(-0.01, 0.00)
Gender		,		, , ,		, , ,
Men®	-	-	-	-		
Women	-	-	-	-	-0.06	(-0.12, 0.00)
Education level						
No education®						
Primary	0.04	(-0.04, 0.12)	0.00	(-0.09, 0.10)	0.02	(-0.05, 0.08)
Secondary	0.00	(-0.10, 0.09)	0.13	(-0.01, 0.27)	0.03	(-0.05, 0.11)
Higher	-0.06	(-0.18, 0.06)	0.29**	(0.09, 0.50)	0.03	(-0.07, 0.13)
Currently working						
No®						
Yes	-0.10**	(-0.17,-0.03)	-0.02	(-0.11, 0.06)	-0.06*	(-0.11, -0.01)
Place of Residence Rural®						
Urban	0.04	(-0.04, 0.12)	-0.02	(-0.11, 0.06)	0.01	(-0.05, 0.07)
Religion						
Hindu®						
Muslim	0.09	(-0.01, 0.20)	0.14*	(0.03, 0.26)	0.12**	(0.04, 0.19)
Christian	-0.41***	(-0.62,-0.20)	0.10	(-0.11, 0.31)	-0.14	(-0.28, 0.01)
Others ^{\$}	-0.37***	(-0.54,-0.20)	-0.21*	(-0.39, -0.03)	-0.30***	(-0.42, -0.17)
Caste						
Scheduled caste®						
Scheduled tribe	-0.22**	(-0.36,-0.08)	-0.08	(-0.23, 0.08)	-0.14**	(-0.24,-0.04)
OBC [#]	-0.22***	(-0.30,-0.13)	-0.03	(-0.12, 0.07)	-0.13***	(-0.19,-0.07)
None of them	-0.23***	(-0.33,-0.14)	-0.02	(-0.13,0.09)	-0.13***	(-0.20,-0.06)
Region						
North®	0.46444	(0.25.0.50)	0.60***	(0.47.0.72)	0.52444	(0.44.0.61)
Central	0.46***	(0.35, 0.58)	0.60***	(0.47, 0.72)	0.53***	(0.44, 0.61)
East	0.08	(-0.03,0.19)	0.03	(-0.09,0.15)	0.05	(-0.03,0.13)
Northeast	-0.20	(-0.40,0.01)	-0.37**	(-0.60,-0.14)	-0.28***	(-0.43,-0.12)
West	-0.56*** 0.35***	(-0.68,-0.44)	-0.58*** 0.27***	(-0.71,-0.46) (0.15,0.40)	-0.57*** 0.31***	(-0.65,-0.48)
South PMI estagories	0.33****	(0.23, 0.46)	0.27	(0.15, 0.40)	0.31	(0.23, 0.40)
BMI categories Normal®						
Underweight	0.29***	(0.22, 0.37)	0.06	(-0.03, 0.15)	0.19***	(0.13, 0.25)
Overweight/obese	0.29	(-0.03,0.14)	-0.09*	(-0.17,-0.01)	-0.02	(0.13, 0.23) (-0.08, 0.03)
MPCE quintile	0.03	(-0.03,0.14)	-0.09	(-0.17,-0.01)	-0.02	(-0.06,0.03)
Poorest®						
Poorer	-0.12*	(-0.21,-0.02)	-0.06	(-0.16,0.04)	-0.09**	(-0.16,-0.02)
Middle	-0.12	(-0.16,0.03)	-0.09	(-0.19, 0.04)	-0.09	(-0.14,-0.01)
Richer	-0.09	(-0.19,0.01)	-0.03	(-0.21,0.00)	-0.10**	(-0.17,-0.03)
Richest	-0.06	(-0.17,0.05)	-0.02	(-0.14,0.09)	-0.04	(-0.12,0.03)
Currently smoking toba		(0.17,0.00)	0.02	(3.1 1,0.07)	0.01	(3.12,3.03)
No®						
Yes	0.15***	(0.07, 0.22)	0.10	(-0.10,0.29)	0.15***	(0.08, 0.23)
Currently chewing tobac		(0.07,0.22)	0.10	(-0.10,0.29)	0.13	(0.00,0.23)
No®	cco					
	0.02	(0 00 0 00)	0.05	(004045)	0.00	(000000
Yes	-0.02	(-0.09,0.06)	0.05	(-0.04,0.15)	0.00	(-0.06, 0.06)

Observations	10	0,526	9	9,558	2	0,084
Yes	0.50***	(0.31, 0.70)	0.17	(-0.09,0.44)	0.39***	(0.23, 0.55)
No®						
Stroke						
Yes	0.09	(-0.04,0.22)	0.16	(-0.00,0.32)	0.12*	(0.02, 0.22)
No®						
Heart Disease				, , ,		, , ,
Yes	0.61**	(0.18, 1.03)	-0.52*	(-0.94,-0.09)	0.04	(-0.26, 0.34)
No®						
Cancer	0.10	(0.02,0.2)	0.01	(0.02,0.11)	0.00	(0.00,0.15)
Yes	0.10*	(0.02, 0.19)	0.01	(-0.09,0.11)	0.06	(-0.00,0.13)
No®						
Diabetes	-0.04	(-0.12,0.04)	0.03	(-0.00,0.12)	0.00	(-0.00,0.00)
High BP	-0.04	(-0.12,0.04)	0.03	(-0.17,-0.00)	0.00	(-0.12,-0.00)
Pre-hypertensive	-0.04	(-0.12,0.04)	-0.09*	(-0.17,-0.00)	-0.06*	(-0.12,-0.00)
Hypertension Status Normal®						
Heavy episodic drinker	0.05	(-0.10,0.20)	0.24	(-0.35,0.82)	0.06	(-0.09,0.21)
Frequent non-heavy	-0.10	(-0.24, 0.04)	-0.23	(-0.70, 0.24)	-0.11	(-0.24,0.03)
Infrequent non-heavy	-0.17***	(-0.25,-0.08)	0.25	(-0.06, 0.55)	-0.13**	(-0.21,-0.05)
Never®						
Drinking Status						

Note: ®reference category; *Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

0.08

0.08

0.10

* p<0.05, ** p<0.01, *** p<0.001

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Recommendation	Page No
Title and abstract	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction		
Background/rationale	Explain the scientific background and rationale for the investigation being reported	5-7
Objectives	State specific objectives, including any prespecified hypotheses	6-7
Methods		
Study design	Present key elements of study design early in the paper	7
Setting	Describe the setting, locations, and relevant dates, including periods of	7
C	recruitment, exposure, follow-up, and data collection	
Participants	(a) Give the eligibility criteria, and the sources and methods of selection of	7
-	participants	
Variables	Clearly define all outcomes, exposures, predictors, potential confounders, and	8-10
	effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	For each variable of interest, give sources of data and details of methods of	7
measurement	assessment (measurement). Describe comparability of assessment methods if	
	there is more than one group	
Study size	Explain how the study size was arrived at	7
Quantitative variables	Explain how quantitative variables were handled in the analyses. If applicable,	
	describe which groupings were chosen and why	
Statistical methods	(a) Describe all statistical methods, including those used to control for confounding	10-11
	(b) Describe any methods used to examine subgroups and interactions	
	(c) Explain how missing data were addressed	7
	(d) If applicable, describe analytical methods taking account of sampling	
	strategy	
	(e) Describe any sensitivity analyses	
Results		
Participants	(a) Report numbers of individuals at each stage of study—eg numbers	11-12
1	potentially eligible, examined for eligibility, confirmed eligible, included in the	
	study, completing follow-up, and analysed	
	(b) Give reasons for non-participation at each stage	
	(c) Consider use of a flow diagram	
Descriptive data	(a) Give characteristics of study participants (eg demographic, clinical, social)	11-12
-	and information on exposures and potential confounders	
	(b) Indicate number of participants with missing data for each variable of	
	interest	
Outcome data	Report numbers of outcome events or summary measures	12-14
Main results	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	12-14
	and their precision (eg, 95% confidence interval). Make clear which	
	confounders were adjusted for and why they were included	
	(b) Report category boundaries when continuous variables were categorized	

	(c) If relevant, consider translating estimates of relative risk into absolute risk	
	for a meaningful time period	
Other analyses	Report other analyses done-eg analyses of subgroups and interactions, and	
	sensitivity analyses	
Discussion		
Key results	Summarise key results with reference to study objectives	15
Limitations	Discuss limitations of the study, taking into account sources of potential bias or	17
	imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	Give a cautious overall interpretation of results considering objectives,	16-17
	limitations, multiplicity of analyses, results from similar studies, and other	
	relevant evidence	
Generalisability	Discuss the generalisability (external validity) of the study results	15-17
Other information		
Funding	Give the source of funding and the role of the funders for the present study and,	18
	if applicable, for the original study on which the present article is based	

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Assessing the role of depressive symptoms in the association between social engagement and cognitive functioning among older adults: analysis of cross-sectional data from the Longitudinal Aging Study in India (LASI)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063336.R1
Article Type:	Original research
Date Submitted by the Author:	28-Jul-2022
Complete List of Authors:	Kumar, Manish; International Institute for Population Sciences T., Muhammad; International Institute for Population Sciences Dwivedi2, Laxmi Kant; International Institute for Population Sciences, Department of Mathamatical Demography & Statistics
Primary Subject Heading :	Public health
Secondary Subject Heading:	Mental health
Keywords:	PUBLIC HEALTH, Neurology < INTERNAL MEDICINE, MENTAL HEALTH

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1	Assessing the role of depressive symptoms in the association between social engagement
2	and cognitive functioning among older adults: analysis of cross-sectional data from the
3	Longitudinal Aging Study in India (LASI)
4	Manish Kumar
5	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
6	Maharashtra, India, 400088
7	E-mail: kumarmanishiips@gmail.com
8	ORCID: 0000-0001-5297-6150
9	<u>Telephone number</u> : +91 9702511509
10	
11	T. Muhammad
12	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
13	Maharashtra, India, 400088
14	E-mail: muhammad.iips@gmail.com
15	ORCID: 0000-0003-1486-7038
16	
17	Laxmi Kant Dwivedi, PhD
18	Professor, International Institute for Population Sciences, Mumbai, Maharashtra, India,
19	400088
20	Email: laxmikdwivedi@gmail.com
21	ORCID: 0000-0001-9737-2844
4 1	ORCID. 0000 0001 7/3/ 2011
22	
<i>LL</i>	
22	
23	Corresponding author:
24	Manish Kumar
25	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,
26	Maharashtra, India, 400088
27	E-mail: <u>kumarmanishiips@gmail.com</u>
28	ORCID: 0000-0001-5297-6150
20	Telephone number: +91 9702511509

- Assessing the role of depressive symptoms in the association between social engagement
- and cognitive functioning among older adults: analysis of cross-sectional data from the
- 33 Longitudinal Aging Study in India (LASI)
- 34 Abstract
- **Objective:** The present study aimed to examine the confounding effects of depressive
- 36 symptoms and the role of gender in the association between social engagement and cognitive
- 37 functioning among older Indian adults.
- **Design:** A cross-sectional large scale survey data was analyzed in this study.
- **Setting and Participants:** Data from Longitudinal Aging Study in India (LASI; 2017-19) was
- 40 used in analysis. The sample included 23,584 individuals aged 60 years and above (11,403 men
- 41 and 12,181 women).
- **Primary and Secondary outcome measures:** The outcome variable was cognitive
- 43 functioning which was based on different measures, including immediate and delayed word
- 44 recall, orientation, executive functioning, arithmetic ability and object naming. Social
- 45 engagement measure consists of marital status, living arrangement, availability of confidant,
- and participation in indoor games, and social and cultural functions. Moreover, the Center for
- 47 Epidemiologic Studies Depression Scale (CES-D) was used to assess depressive symptoms.
- **Results:** Significant gender differences in the mean cognition scores (men: 25.8, women: 21.1;
- on a scale of 0-43) were observed. Regression results suggests that two-way interactions
- 50 between social engagement and depressive symptoms were significant after controlling for
- 51 explanatory factors. Men with high level of social engagements have significantly better
- cognitive functioning (β =1.12; 95%CI: 0.72-1.53) compared with their counterparts. Also, as
- compared to men with lower social engagements, women with higher social engagements
- performs poorly on the cognitive tests (-0.42; 95%CI: -0.95-0.11), however, the result was not
- significant. Three-way interaction between social engagement, gender, and depressive
- symptoms were significantly associated with the cognitive functioning and showed a female
- 57 disadvantage. KHB method identified a significant confounding effect of depressive symptoms
- on the relationship between social engagement and cognitive functioning.

- Conclusion: The positive association of social engagement with cognitive functioning was
- significantly confounded by depressive symptoms, suggesting the need for maintaining social
- relations that help improve cognitive functioning among older adults.
- **Keywords:** social engagement, cognitive functioning, depressive symptoms, KHB-method,
- older adults.

Strengths and limitations of this study

- The utilization of the national representative sample of older adults is a potential strength of the study
- KHB analysis explains the mechanism by which social engagement associated with cognitive function through a confounder, depressive symptoms
- The social engagements were significantly associated with better cognitive functioning for both older men and women
- The association of social engagement with cognitive functioning was significantly confounded by depressive symptoms
- The inability to establish the causal relationship between the variables of interest is the limitation of the study

Introduction

With the growth of aging population, global challenges in mental health are on the rise. It includes the decline in late-life cognitive abilities which are generally associated with poor quality of life [1], functional disabilities [2], multimorbidity [3], and higher mortality risk [4]. India is currently facing rapid population aging, with an expected increase in the number of individuals aged 60 years and above from 104 million in 2011 to 319 million by 2050 [5]; consequently, the disease burden of cognitive impairment in the country is also expected to increase.

Social engagement is an umbrella concept usually referring to various factors such as social relationships, social and emotional connectedness with other people, and participation in social activities, which provide a sense of belonging, social identity, and fulfilment [6, 7]. In the absence of effective pharmacological treatment for persons with cognitive impairment, especially for the long-term benefits, various methods such as improving social engagement and active participation in social activities are considered [8]. Multiple cross-sectional studies investigating the association between social environment and cognition in older adults showed that greater social functioning positively associated with cognitive performances [9, 10]. Moreover, several longitudinal studies among older adults have also indicated that greater engagements with relatives [11, 12], rich social networks [12, 13], and frequent participation in social activities [14] exert protective effects against cognitive decline. Therefore, in the long run, individuals who present trajectories of high and increasing social engagements experience lower levels of cognitive limitation [15].

Several interventional studies reported the protective effects of the improved social behaviours in preventing or delaying dementia among older adults with diagnosed cognitive impairment [16, 17]. Most of the available research on social capital and engagement as to enhance cognitive reserve and protect cognitive health has been conducted in developed countries [18–21]. Little is known about the relationship between social engagement and cognitive functioning in developing countries like India, where the cultural and structural context of social engagement differ from developed countries. In India, traditionally, older adults are more likely to live with their children in multigenerational households where cultural norms emphasize family ties and the virtue of filial piety [22, 23], and a higher proportion of older people experience psychological distress and mental illnesses [24–26].

Similarly, depressive disorders are highly prevalent among older adults in low and middle income countries [27–29] and in India in particular [30]. Previously, various studies have found the beneficial effects of greater social engagements (with varying measurements and definitions) against depressive symptoms [31, 32]. A cross-sectional study by Jang & Chiriboga (2011) [31] found that a higher level of participation in social activities was associated with a decline in depressive symptoms after controlling for the effects of demographic and health-related factors. Multiple longitudinal studies have also reported similar findings [33-37]. Also, increased participation in social activities and meaningful engagement by older adults may improve their mood, which benefits their emotional functioning and reduces depressive symptoms [38], which is linked to cognitive functioning [39]. According to the 'depression reduction hypothesis', depressive symptoms interferes with cognitive health; therefore, as evident from multiple longitudinal studies, practical strategies to reduce depressive symptoms will possibly improve cognitive functioning [40]. Two facts justify such a hypothesis; first, greater depressive symptoms are related to poor cognitive functioning among older adults [41, 42]. Second, depressed older adults who engage in social activities may experience a decline in depressive symptoms and improve cognitive functioning [43]. Furthermore, in multiple cohort studies, cognitively impaired older adults with depressive symptoms were associated with more rapid cognitive decline than those without depression [44, 45].

However, it is not clear to what extent social engagement may improve cognitive functioning by minimizing depressive symptoms. There is a dearth of studies in low- and middle-income countries on the association of social engagements and cognitive functioning and the role of depressive symptoms in such association. Filling this gap, the present study using national-level data of older adults in India, aimed to examine the role of the depressive symptoms on the association between social engagement and cognitive functioning (Figure 1). Previous research showed a greater female disadvantage and theorized gender as the crucial factor to be considered in understanding the differences in cognitive functioning in Indian context [46–48]. Also, studies have shown the significant gender differences in the association between social engagement and cognitive functioning [49, 50]. Thus, the study also explored the moderation effects of gender in the relationship between social engagement and cognitive functioning. The present study hypothesized that the association between social engagement and cognitive functioning is significantly confounded by depressive symptoms (Figure 2).

Methods

Data

The present study utilizes the individual-level data from the first wave of the Longitudinal Aging Study in India (LASI) conducted during 2017-19. LASI is a nationally representative longitudinal survey of more than 72000 older adults aged 45 years and over across all states and union territories of India that provides vital information on the social, physical, psychological, and cognitive health of the Indian aging population. The LASI survey was conducted through a partnership of the International Institute for Population Sciences (IIPS), Harvard T. H. Chan School of Public Health (HSPH), and the University of Southern California (USC). LASI is envisioned to be conducted every two years for the next 25 years. In LASI wave 1, the sample selection is based on a multistage stratified cluster sample design, including a three-stage sampling design in rural areas and a four-stage sampling design in urban areas. LASI survey provided internationally harmonized data that comparable to the United States Health and Retirement Study (HRS) and other HRS-type surveys in other countries, including England (English Longitudinal Study of Ageing) and China (China Health and Retirement Longitudinal Survey). Further, the details of sampling design, survey instruments, and data collection procedures are provided elsewhere [51].

In the sampled households, the individual survey schedule includes the biomedical examination administered to each consenting respondent aged 45 and above and their spouses (irrespective of age). The survey agencies authorized to conduct the survey have collected prior consent from all the respondents. Consent forms include the information brochure explaining the purpose of the survey, ways of protecting their privacy, and the safety of the health assessments as part of the ethics protocols. The Indian Council of Medical Research extended the necessary guidelines and ethics approval for undertaking the survey.

The sample in the main LASI included 31,464 individuals aged 60 years and above. For the present analysis, we have excluded those cases with missing data for any variables of interest (n=7,880). Therefore, the sample for the present study included 23,584 individuals from the LASI survey, and among them 11,403 were men and 12,181 were women.

Measures

Cognitive function

By adopting the Health and Retirement Study (HRS) cognition module, the LASI collected information on measured cognition in various domains – including memory, orientation,

executive functioning, arithmetic, and object naming (Table 1). Previously, various studies have established high validity and reliability of these cognitive domains for measuring cognitive impairment among older adults in community settings in the United States [52], China [53], and India [54]. The cognitive functioning in the present study is based on different cognitive measures, including immediate (0–10 points) and delayed word recall (0–10 points); orientation related to time (0-4 points), and place (0-4 points); executive functioning based on paper folding (0-3) and pentagon drawing (0-1); arithmetic ability based on serial 7s (0–5 points), computation (0-2) and backward counting from 20 (0–2 points); and object naming (0-2).

Table 1. Description of domain-wise cognitive measures in LASI, 2017-18							
Domain	Measure	Measurement	Range				
Memory	Immediate wordrecall	Interviewer read out a list of 10 words and respondents were asked to repeat the words.	0-10				
	Delayed word recall	Respondents were asked to recall the same words read out for immediate recall after some time.	0-10				
Orientation	Time	Respondents were asked to state today's date, month and year and day of the week. For each question, the score was 0 or 1. Correct responses received 1 point, incorrect responses received 0. The total score for time was 0-4.	0-4				
	Place	Orientation towards place was captured based on place of interview, name of the village, street number/colony name/landmark/neighborhood and name of the district. Each correct response scored 1 point. The total score ranged from 0-4.	0-4				
Arithmetic function	Backward counting	Respondents were asked to count backward as quickly as possible from the number 20. The respondents were asked to stop after correctly counting backward from 20 to 11 or from 19 to 10. Correct counting received 2 points: counts with a mistake received 1 point. Those who could not countreceived 0 points.	0-2				
	Serial 7	Respondents were asked to subtract seven from 100 in the first step and asked to continue subtracting seven from the previous number in each subsequent step for five times. Each correct response received 1 point.	0-5				
	Computation	This test involved the mathematical operation of division. Respondents were asked to compute the net sale price of a product after considering a discount sale of half of the original price.	0-2				
Executive function: 0-4	Executive (paper folding)	This is a three-stage command task. The respondents were instructed totake a piece of paper from the interviewer, turn it over, fold it in half, and give it back to the interviewer. Three points were given if each task was completed successfully.	0-3				
	Pentagon drawing	Visio-construction is the ability to coordinate fine motor skills with visio-spatial abilities, usually by reproducing geometric figures. Respondents were asked to copy two overlapping pentagons and scored 1 point for a correct drawing.	0-1				

Object naming: 0-2		The interviewer points to a specific object and asks the respondent to name it. Two objects were pointed out and 1 point was given for each correct response.	0-2
Cognition	Composite cognitive index	Combined score of memory (total word recall), orientation, arithmetic function, executive function, and object naming.	0-43

After adding the scores for each component, the overall score ranged from 0 to 43, and a higher score indicates better cognitive functioning.

Social Engagements

Following the previous studies [55, 56], we have derived social engagement based on five indicators: marital status, living arrangement, availability of confidant, and participation in indoor games, social and cultural functions. Current marital status was set to unmarried (single, widowed, separated, or divorced; coded as 0) versus married (married or living with a partner; coded as 1). Regarding current living arrangements, living alone was categorized as 0, and living with extended family is categorized as 1. The availability of a current confidant relationship (spouse, son or daughter, grandchildren, or relatives, etc.) was coded as no (0) or yes (1). Two more indicators based on participation in social activities including, playing cards or indoor games and attending social and cultural functions, were included (0 = less than weekly, 1 = weekly or more frequently). A composite index of social engagement was constructed by summing the scores for all five indicators, ranging from 0 to 5. Based on the distribution of the overall composite index, individuals were categorized as having low (0-2 social ties; 27.6 percent), medium (3 ties; 62 percent), or high (4-5 ties; 10.1 percent) levels of social engagement.

Depressive symptoms

The LASI has used an internationally validated 10-item Center for Epidemiological Studies-Depression (CES-D) scale to capture the presence of depressive symptoms in Indian older adults [57, 58]. The ten items in CES-D consist of seven negative symptoms (feeling depressed, low energy, trouble concentrating, feeling alone, bothered by things, fear of something, and everything is an effort) and three positive symptoms (feeling happy, satisfied, and hopeful). The possible responses for these items were: rarely or never (< 1 day), sometimes (1 or 2 days), often (3 or 4 days), and most or all of the time (5-7 days) in a week prior to the interview. For the negative symptoms, rarely or never (< 1 day) and sometimes (1 or 2 days) were scored zero, and often (3 or 4 days) and most or all of the time (5-7 days) categories were scored one.

Scoring was reversed for positive symptoms. The overall depressive symptoms score,

calculated by adding the scores from ten items, ranges from 0 to 10. A score of four or higher

is considered to represent clinically significant symptoms in the 10-item scale [59].

Covariates

After an extensive literature review, potentially related covariates were selected which include socio-demographic characteristics, lifestyle factors, health conditions, and cognitive and social activities. Socio-demographic characteristics were: age (in chronological years); gender (men, women); education (no education, primary, secondary, higher); currently working status (no, yes); residence (rural, urban); religion (Hindu, Muslim, Christian, others); and Region (North, Central, East, Northeast, West, and South), monthly per capita expenditure (MPCE) (poorest, poorer, middle, richer, and richest). The lifestyle factors were currently smoking (no, yes); currently consuming smokeless tobacco (no, yes), alcohol drinking (never, infrequent nonheavy, frequent non-heavy, heavy episodic drinker), and body mass index (underweight (<18.5 kg/m²), normal (18.5-24.9 kg/m²), overweight/obese (>25.0 kg/m²)). Health conditions include biometric measurement-based hypertension status (normal, pre-hypertensive, high blood pressure), and self-reported conditions such as diabetes, cancer, heart disease, and stroke were coded as no and yes. The older adults were categorized as having normal blood pressure (BP) (Systolic BP <120 mmHg and Diastolic BP<80 mmHg), pre-hypertensive (SBP: 120-139 mmHg and DBP: 80-89 mmHg), and high blood pressure (SBP \ge 140 mmHg and DBP \ge 90 mmHg).

The 'caste' of the household is reported by the head of the household, and it is generally grouped as four categories: Scheduled Caste (SC), Schedules Tribes (ST), Other Backward Class (OBC), and general class. Scheduled caste and scheduled tribe are considered as among the most deprived and socioeconomically disadvantaged groups in India. The individuals in the general class represent the hierarchically higher social status in India. On the other hand, although, Other Backward Class (OBC) is an educationally, economically, and socially backward group, but, hierarchically, this group is considered as in better social position than SC and ST category [60].

According to the procedure suggested by Dong and Simon [61], we included four social participation activities: (1) eat out of the house, (2) go to the park/beach, visit relatives/friends,

(3) go out to a movie, and (4) attend political/community group meetings. Based on the

frequency of participation, responses were coded as '0' for less than weekly, '1' for weekly or more frequently for these activities.

Statistical analysis

Descriptive statistics (means and percentages) were used to present the characteristics of the older adults included in the final sample. We used t-test to assess the gender differences in the mean cognition score according to various covariates. Moreover, linear regression models were employed to determine the association of two-way interaction of social engagements and depressive symptoms, and social engagement and gender with cognitive function. Also, linear regression models were used to assess the association of three-way interaction of social engagement, gender, and depressive symptoms with cognitive functioning. We conducted a correlation analysis and a linear regression analysis of depressive symptoms on social engagement. The total effect was divided into direct effects (the association of social engagement with cognitive function controlling for depressive symptoms) and indirect effects (the association of social engagement with cognitive function through depressive symptoms) using linear regression based on Karlson–Holm–Breen (KHB) method [62, 63] for the whole sample. The KHB method is a recently developed method for assessing the confounding effects that allow total effects to be divided into direct and indirect effects for both discrete and continuous variables. Contrary to other decomposition methods, the KHB-method provides unbiased decomposition results [64]. The confounding percentage (the indirect effect divided by the total effect) is interpreted as the percentage of the association explained by the confounder variable. All statistical models were adjusted for various predictors, including age, gender, education, working status, residence, religion, caste, region, body mass index (BMI), monthly per capita expenditure (MPCE), smoking status, consuming smokeless tobacco, alcohol drinking, hypertension, diabetes, cancer, heart disease, and stroke. The statistical analysis was performed using Stata 15.1. We incorporated the complex design of the survey data used in the study. Stata's survey command (svyset) was used to incorporate the complex design of LASI, and adjusted for sampling weight, clustering, and stratification in the sampling design. A p-value of less than 0.05 was considered statistically significant.

Patient and public involvement

No patient or public involvement.

282 Results

Table 2 presents the descriptive information for cognitive function, socio-demographic factors, lifestyle factors, and chronic conditions of older men and women included in the analysis. The mean cognition score of men was higher than that of women (25.9 vs. 21.3). Nearly 85% of older men had at least a medium level of social engagements, while this proportion was 53% for older women. Regarding depressive symptoms score, older women had a slightly higher mean score than older men (3.0 vs. 2.8). On average, men were slightly older than women (68.7 vs. 68.2 years). A higher proportion of older women were uneducated than older men (68.7% vs. 35.1%). Around 44.0% of the older men and 19.3% of women were currently working at the time of the survey. A higher proportion of older women were overweight or obese than men (28.6% vs. 20.2%). Around 25% of men and only 4% of women were current tobacco smokers, while 24% of men and 16% of women were consuming smokeless tobacco at the time of the survey. Alcohol consumption is much higher among older men than women (32.4% vs. 4.4%). According to measured hypertension status, the prevalence of high blood pressure was slightly higher among older women than men (39.9% vs. 37.9%). According to religion, around three-fourths of both older men and women participants were Hindus. Most of the participants were rural residents (67.7% men vs. 65.8% women).

Table 2. Descriptive statistics for sample characteristics of older adults included in the analysis, by gender, India, (N = 23,584)

by gender, mara, (in -	,,						
	Me	en	Won	Women		Total	
	n	%	n 🌽	%	n	%	
Social Engagement							
Low	1,681	14.7	5,720	47.0	7,401	31.4	
Medium	8,347	73.2	5,705	46.8	14,052	59.6	
High	1,375	12.1	756	6.2	2,131	9.0	
Cognition ^a	25.9	6.7	21.3	7.0	23.5	7.3	
Depressive symptoms							
score ^a	2.8	1.6	3.0	1.7	2.9	1.7	
Age (years) ^a	68.7	7.1	68.2	7.2	68.5	7.1	
Social Activities (0-5) ^a	0.3	0.6	0.2	0.5	0.2	0.5	
Education level							
No education	4,005	35.1	8,364	68.7	12,369	52.4	
Primary	3,505	30.7	2,404	19.7	5,909	25.1	
Secondary	2,537	22.2	1,006	8.3	3,543	15.0	
Higher	1,356	11.9	407	3.3	1,763	7.5	
Currently working							
No	6,383	56.0	9,830	80.7	16,213	68.7	
Yes	5,020	44.0	2,351	19.3	7,371	31.3	
Place of Residence	-						
Rural	7,719	67.7	8,018	65.8	15,737	66.7	
Urban	3,684	32.3	4,163	34.2	7,847	33.3	
Religion	,						

Hindu	8,405	73.7	9,009	74.0	17,414	73.8
Muslim	1,265	11.1	1,311	10.8	2,576	10.9
Christian	1,154	10.1	1,256	10.3	2,410	10.2
Others ^{\$}	579	5.1	605	5.0	1,184	5.0
Caste					, -	
Scheduled caste	1,921	16.8	2,032	16.7	3,953	16.8
Scheduled tribe	1,975	17.3	2,159	17.7	4,134	17.5
OBC#	4,428	38.8	4,681	38.4	9,109	38.6
Others	3,079	27.0	3,309	27.2	6,388	27.1
Regions	5,017	27.0	3,307	27.2	0,500	27.1
North	2,104	18.5	2,291	18.8	4,395	18.6
Central	1,588	13.9	1,531	12.6	3,119	13.2
East	2,276	20.0	2,246	18.4	4,522	19.2
Northeast	1,399	12.3	1,466	12.0	2,865	12.1
West	1,409	12.3	1,666	13.7	3,075	13.0
South	2,627	23.0	2,981	24.5	5,608	23.8
BMI categories	2,027	23.0	2,961	24.3	3,008	23.8
Normal	6 106	56.2	5 061	49 O	12,367	52.4
	6,406	23.7	5,961	48.9		
Underweight	2,698		2,738	22.5	5,436	23.0
Overweight/Obese	2,299	20.2	3,482	28.6	5,781	24.5
MPCE quintile	2 202	20.0	2.544	20.0	4.027	20.5
Poorest	2,283	20.0	2,544	20.9	4,827	20.5
Poorer	2,318	20.3	2,543	20.9	4,861	20.6
Middle	2,334	20.5	2,528	20.8	4,862	20.6
Richer	2,283	20.0	2,364	19.4	4,647	19.7
Richest	2,185	19.2	2,202	18.1	4,387	18.6
Currently smoking						
tobacco						
No	8,570	75.2	11,640	95.6	20,210	85.7
Yes	2,833	24.8	541	4.4	3,374	14.3
Currently consuming						
smokeless tobacco						
No	8,638	75.8	10,233	84.0	18,871	80.0
Yes	2,765	24.2	1,948	16.0	4,713	20.0
Drinking Status						
Never	7,718	67.7	11,650	95.6	19,368	82.1
Infrequent non-heavy	2,269	19.9	299	2.5	2,568	10.9
Frequent non-heavy	748	6.6	122	1.0	870	3.7
Heavy episodic						
drinker	668	5.9	110	0.9	778	3.3
Hypertension Status						
Normal	2,612	22.9	2,774	22.8	5,386	22.8
Pre-hypertensive	4,465	39.2	4,550	37.4	9,015	38.2
High BP	4,326	37.9	4,857	39.9	9,183	38.9
Diabetes						
No	9,599	84.2	10,388	85.3	19,987	84.7
Yes	1,804	15.8	1,793	14.7	3,597	15.3
Cancer	ŕ		,		ŕ	
No	11,332	99.4	12,088	99.2	23,420	99.3
Yes	71	0.6	93	0.8	164	0.7
Heart Disease						
No	10,721	94.0	11,678	95.9	22,399	95.0
Yes	682	6.0	503	4.1	1,185	5.0
Stroke	-				, - -	- 7 -

No Yes	11,091 312	97.3 2.7	11,978 203	98.3 1.7	23,069 515	97.8 2.2	
Total	11,403	100.0	12,181	100.0	23,584	100.0	
Note: #Other Backward Classes, aMean and standard deviation: \$includes Sikh, Buddhist/neo-							

Note: *Other Backward Classes, aMean and standard deviation; sincludes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

The average cognitive score increased with an increase in the level of social engagement, and it was higher among the non-depressed older adults (24.0 vs. 22.1) (Supplementary; Table S1). Moreover, the prevalence of depressive symptoms decreased with an increase in the level of social engagement.

Table 3. Gender comparison of the mean cognition score (0-43) according to background characteristics in older adults, India, (N = 23,584)

	Men	Women	Difference	p-value ¹
G				
Social Engagement	22.7	10.7	4.0	.0.001
Low	23.7	19.7	4.0	< 0.001
Medium	26.0	22.3	3.7	< 0.001
High	27.6	24.2	3.4	< 0.001
Age groups				
60-69	26.6	22.2	4.4	< 0.001
70-79	24.9	19.9	5.0	< 0.001
80+	23.3	18.2	5.1	< 0.001
Social activities				
0	23.1	18.7	4.4	< 0.001
1	25.3	21.3	4.0	< 0.001
2	28.8	25.1	3.7	< 0.001
3+	30	28.2	1.8	< 0.001
Education level				
No education	21.5	19.0	2.5	< 0.001
Primary	26.1	24.5	1.6	< 0.001
Secondary	29.7	29.6	0.1	0.203
Higher	31.0	31.9	-0.9	< 0.001
Currently working				
No	25.7	21.2	4.5	< 0.001
Yes	26.0	20.8	5.2	< 0.001
Place of Residence				
Rural	24.7	19.8	4.9	< 0.001
Urban	28.7	24.4	4.3	< 0.001
Religion				
Hindu	25.9	21.2	4.7	< 0.001
Muslim	25.9	20.5	5.4	< 0.001
Christian	24.6	21.8	2.8	< 0.001
Others ^{\$}	24.3	21.2	3.1	< 0.001
Caste				
Scheduled caste	24.1	19.4	4.7	< 0.001
Scheduled tribe	22.2	17.8	4.4	< 0.001
$\mathrm{OBC}^{\scriptscriptstyle\#}$	26.2	21.7	4.5	< 0.001
Others	27.4	22.4	5.0	< 0.001
Regions				

North	25.4	20.0	5.4	< 0.001
Central	25.9	20.8	5.1	< 0.001
East	25.4	20.2	5.2	< 0.001
Northeast	26.5	21.3	5.2	< 0.001
West	25.7	21.0	4.7	< 0.001
South	26.3	23.2	3.1	< 0.001
BMI categories				
Normal	26.0	20.8	5.2	< 0.001
Underweight	23.3	18.2	5.1	< 0.001
Overweight/Obese	28.7	24.5	4.2	< 0.001
MPCE quintile				
Poorest	24.2	19.6	4.6	< 0.001
Poorer	24.9	20.3	4.6	< 0.001
Middle	26.4	21.7	4.7	< 0.001
Richer	26.3	21.9	4.4	< 0.001
Richest	27.4	22.7	4.7	< 0.001
Currently smoking				
tobacco				
No	26.1	21.2	4.9	< 0.001
Yes	24.7	18.1	6.6	< 0.001
Currently consuming				
smokeless tobacco				
No	26.1	21.4	4.7	< 0.001
Yes	25.0	19.5	5.5	< 0.001
Drinking Status				
Never	26.2	21.2	5.0	< 0.001
Infrequent non-heavy	25.4	18.9	6.5	< 0.001
Frequent non-heavy	23.5	16.7	6.8	< 0.001
Heavy episodic drinker	22.9	15.7	7.2	< 0.001
Hypertension Status				
Normal	24.7	20.6	4.1	< 0.001
Pre-hypertensive	26.1	21.6	4.5	< 0.001
High BP	26.2	20.9	5.3	< 0.001
Diabetes				
No	25.5	20.8	4.7	< 0.001
Yes	27.7	23.3	4.4	< 0.001
Cancer				
No	25.8	21.1	4.7	< 0.001
Yes	27.8	22.4	5.4	< 0.001
Heart Disease				
No	25.7	21.1	4.6	< 0.001
Yes	27.7	22.5	5.2	< 0.001
Stroke				
No	25.8	21.1	4.7	< 0.001
Yes	24.3	19.4	4.9	< 0.001
			•••	0.001
Total	25.8	21.1	4.7	< 0.001
77 (ID 1) 1 (4 4	∠ 1,1	1./	-0.001

Note: ¹Based on two sample t-test.

^{*}Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain,

Parsi/Zoroastrian and others; BP- Blood Pressure.

Table 3 presents the gender differences in the mean cognition score according to various covariates. Results suggest a significant gender difference in the cognitive performance (difference=4.7; p<0.001). Men had significantly greater mean cognition score than women irrespective of age, education, working status, number of social activities, residence, obesity status, MPCE quintiles, tobacco and alcohol use, and morbidity status. Table 4 shows the linear regression results for the two-way interactions of social engagement and depressive symptoms, and social engagement and gender, and three-way interaction of the social engagement, gender, and depressive symptoms. The two-way interaction between social engagement and depressive symptoms were significant after controlling for various explanatory factors, including sociodemographic factors, lifestyle factors, and chronic conditions. The whole table is provided in the supplementary material (Table S2). In Table 4, the interaction between social engagement and gender suggests that men with high level of social engagements have significantly better cognitive functioning (β =1.12; 95%CI: 0.72-1.53) compared with men with low level of social engagements. On the other hand, women with high level of social engagement performs poorly on the cognitive tests (-0.42; 95%CI: -0.95-0.11) than the men with lower social engagements, however, the result was not significant. Also, three-way interaction between social engagement, gender, and depressive symptoms were significantly associated with the cognitive functioning and showed a female disadvantage. The correlation between social engagement and depressive symptoms was -0.12 (p<.001) (Supplementary; Table S3). The linear regression model demonstrated that higher levels of social engagement was significantly negatively associated with depressive symptoms ($\beta = -0.18$, p<.001) (Supplementary; Table S4).

Table 5 shows the KHB analysis results for the whole sample. After controlling for all the covariates in the entire sample, the results indicate that depressive symptoms significantly confounded 14.4% of the association between social engagement and cognitive function.

Table 4. Linear regression results of interaction of social engagement and depressive symptoms on cognitive functioning, by gender, (N = 23,584).

	I otal
β	(95% CI)
-0.61***	(-0.66, -0.56)
-0.28***	(-0.33, -0.23)
-0.10*	(-0.20, -0.01)
-2.32***	(-2.62, -2.03)
0.78***	(0.51, 1.05)
-1.27***	(-1.57, -0.97)
1.12***	(0.72, 1.53)
	β -0.61*** -0.28*** -0.10* -2.32*** 0.78*** -1.27***

High + Women	-0.42	(-0.95, 0.11)
Social engagements # Gender # Depressive		
symptoms		
Low + Men + depressive symptoms	-0.24***	(-0.31, -0.16)
Low + Women + depressive symptoms	-0.75***	(-0.80, -0.70)
Medium + Men + depressive symptoms	-0.07**	(-0.12, -0.02)
Medium + Women + depressive symptoms	-0.55***	(-0.60, -0.49)
High + Men + depressive symptoms	0.07	(-0.05, 0.18)
High + Women + depressive symptoms	-0.35***	(-0.50, -0.20)

Note: Controlled for age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, consuming smokeless tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval.

Table 5. The Effect of Social Engagement on cognition confounded by depressive symptoms (the Karlson, Holm, and Breen Method), by gender, (N = 23,584), LASI, 2017-19

	β	(95% CI)
Social Engagements		
Total Effect	0.52***	(0.40, 0.63)
Direct effect of social engagement	0.44***	(0.33, 0.55)
Indirect effect via depressive symptoms	0.07***	(0.06,0.09)

N	23,584
ConfPerca	14.40%

Note: Controlled for age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, consuming smokeless tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval. ^aConfounding percentage.

Discussion

The COVID-19 pandemic has called for international attention on the importance of social relationships/social engagement/social inclusion in terms of supporting the physical, emotional and cognitive health of older adults [65, 66]. Evidence suggests significant correlations exist between engaging in social activities with enhanced cognitive function outcomes [10, 50]. However, depression and other mental illnesses may lead to reduced social networks and activities that result in cognitive decline among older adults is little explored. The present study examined the direct, indirect, and total effects of social engagement on the cognitive functioning confounded by the effects of depressive symptoms among older adults in India. We found that a higher level of social engagement was associated with greater cognitive functioning, whereas depressive symptoms confounded 16.9% of the observed association. In addition, gender-based moderation effects were also examined which were found significant with female disadvantages.

^{*} p<0.05, ** p<0.01, *** p<0.001

^{*} p<0.05, ** p<0.01, *** p<0.001

Structural aspects of social network are recommended to be essential to maintain an optimal level of cognitive functioning [67]. As documented, social networks and activity are related concepts and individuals who have a larger social networks tend to take part in more social activities [68]. Similarly, the satisfaction achieved from the social and support networks was observed to lead to better episodic memory performance, and processing speed and global cognition [69]. The main effect hypothesis in the present study is confirmed by the results showing that social engagements are independently associated with a greater level of cognitive functioning. The finding is consistent with previous studies linking the social involvement enhancing the wellbeing and boosting the self-esteem and creating a sense of belonging that result in better cognitive functioning [70–72]. A systematic review reported that although the exact nature of the associations are unclear, different aspects of social relationships such as social activity, social networks and social support and a composite measures of social relationships are associated with cognitive functioning [73]. Thus, social engagement interventions should be prioritized in public policy to help older adults optimize their cognitive health, regardless of underlying mechanisms.

Although social engagements including the structural support from the spouse and family members are found to enhance cognitive functioning [74–76], the role of mental illnesses adversely affecting the association is less investigated. A recent study found the mediating role of hippocampal volume of brain which is known to be affected by a variety of psychiatric disorders in the association of emotional support with specific cognitive domains [77]. Consistently, the current results showed that depressive symptom was significant confounder in the social engagement-cognitive functioning relationship. The finding is also in parallel with a recent study conducted in China showing the mediating role of depressive symptoms in the protective effect of frequent exercise on cognitive functioning [78]. Therefore, our results support the previous finding that the protective effect of social relationships is more related to the aspects of quality and functionality of such relationships than the quantity and structural characteristics [79]. Furthermore, the indirect effect of social engagements on cognitive functioning suggest that social resources can be related to better cognitive functioning through minimizing mental disorders in older adults, indicating that depressive symptoms may serve as an important intervening target and that reversing such illnesses might be related to a greater cognitive functioning. This is similar to an earlier finding that lack of social engagements may be particularly detrimental to late-life cognitive abilities when it is associated with mental illnesses [80]. Earlier meta-analyses and reviews have investigated loneliness, being one of the

depressive symptoms, and social isolation together as part of health promotion interventions and suggested that loneliness is often experienced as a part of lack of social engagement and partly attribute to the factors of cognitive declines [81, 82], indicating the need for social interventions that promote active participation of older people and help them in maintaining social and structural relationships and coping with age-related stress factors.

The available evidence suggests that there are gender differences in the relationship between social engagement and cognitive functioning. For instance, in developed countries, numerous studies have found that the cognitive performance of older women is as good as or better than that of men [83–85]. By contrast, studies of cognitive abilities in developing countries find older women often perform worse than older men [86, 87]. Moreover, earlier studies in India reported a relatively lower cognitive functioning level among older women than men [46, 47]. In line with the previous literature, the current findings suggest a significant female disadvantage in cognitive function among older Indian adults and call for special attention with regard to public policy frameworks, clinical practice and future research.

On the other hand, studies suggest that a greater social engagement protects against rapid cognitive decline, particularly among low-educated older women [88]. In addition, social networks were reported as highly influential for women than men in determining better health behaviors related to cognitive maintenance [86]. Consistent with these previous studies, the current analyses have shown that social engagement of older women is strongly associated with better cognitive functioning with greater moderation effects of depressive symptoms compared to older men. Nevertheless, it still needs to be further investigated whether gender differences exist in the association of social engagements confounded by depressive symptoms with cognitive functioning and causally inferred with studies of longitudinal design.

There are several limitations of the present study to be noted. The composite index of social engagement was generated from the questions which were self-reported. The responses may have been exaggerated or under-reported. However, self-reporting is endorsed as an optimal method to measure how the participants subjectively find themselves having social networks and involved in social activities. On the other hand, exploring the aspect of social engagements that include participating in indoor games for example, as distinct from domains of cognitive activities is questionable, since it is not feasible to completely differentiate social engagement from cognitive engagements. Also many activities have a psychiatric element which may have positive impacts on cognitive processes and a complex confounding effect in the associations

of three key variables in our study. Hence, considering the differences in relationships between cognitive domains and the distinct forms of social engagements that also include structural support from marital status and living arrangements, it is important to define social relationships more clearly in future studies to achieve more reliable findings.

Besides, in a population with huge proportion of illiterates, the assessment of cognitive functioning with multiple domains might be subject to measurement error which can bias the current findings. Similarly, older women in India who are largely deprived of education and other opportunities including work participation might have resulted in greater gender gap in cognitive functioning observed in our study. Another limitation is the inclusion of only men and women in the study. Since LASI collects the information from men and women only, the inclusion of the other gender was not possible. Finally, the present study was cross-sectional, and thus, a causal relationship between the variables cannot be inferred. Further investigation with longitudinal design is needed to explore the neural mechanisms that underlie the effects of social engagements on cognitive decline. Future research might also consider the impact of technology, internet and social media on social relationships, particularly feelings of social support.

Conclusion

The positive association of social engagement with cognitive functioning was significantly confounded by depressive symptoms, suggesting the need for maintaining social relations that help improve cognitive functioning among older adults. This needs to be confirmed with future longitudinal and interventional studies. The study also highlights the potential of social engagements independently or with others as an intervention to prevent cognitive impairment among older individuals, especially among women.

Abbreviations:

- **MPCE**: Monthly Per capita Consumption Expenditure
- **CES-D**: Center for Epidemiological Studies-Depression
- **KHB**: Karlson–Holm–Breen

Declarations

- Contributors: MK and LKD conceived and designed the research paper. MK analyzed the data. MK and TM contributed agents/materials/analysis tools. MK and TM wrote the

440	manuscript. LKD provides supervision and validation. MK, TM and LKD refined the
441	manuscript. All authors have read and approved the manuscript.
442	Funding: No funding was received for the study.
443	Competing interest: The authors declare that there is no competing interest.
444	Patient consent for publication: Not required.
445	Ethics approval: The present study used the existing data, therefore, no ethics approval was
446	required.
447	Provenance and peer review: Not commissioned; externally peer reviewed
448	Data availability statement: The study uses secondary data which is available in the private
449	database and accessible on reasonable request through
450	https://www.iipsindia.ac.in/content/lasiwave-i
451	Consent for publication: The administrative permission to access and use the data for the
452	present study was taken from the International Institute for Population Sciences, Mumbai,
453	which conducted the LASI survey.
454	which conducted the LASI survey. Acknowledgements: Not applicable
455	

References

- Hsiao H-T, Li S-Y, Yang Y-P, et al. Cognitive function and quality of life in communitydwelling seniors with mild cognitive impairment in Taiwan. *Community mental health journal* 2016; 52: 493–498.
- 460 [2] McGuire LC, Ford ES, Ajani UA. The impact of cognitive functioning on mortality and the development of functional disability in older adults with diabetes: the second longitudinal study on aging. *BMC geriatrics* 2006; 6: 1–7.
- 463 [3] Aarts S, Van den Akker M, Tan FES, et al. Influence of multimorbidity on cognition in a
 464 normal aging population: a 12-year follow-up in the Maastricht aging study. *International*465 *journal of geriatric psychiatry* 2011; 26: 1046–1053.
- Lv X, Li W, Ma Y, et al. Cognitive decline and mortality among community-dwelling Chinese older people. *BMC medicine* 2019; 17: 1–10.
- 468 [5] United Nation. World Population Ageing 2017 report. 2017.
- Bassuk SS, Glass TA, Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. *Annals of internal medicine* 1999; 131: 165–173.
- 471 [7] Baltes MM. *The many faces of dependency in old age*. Cambridge University Press, 1996.
- 472 [8] Li Y, Xu L, Chi I, et al. Participation in productive activities and health outcomes among older adults in urban China. *The Gerontologist* 2014; 54: 784–796.
- Holtzman RE, Rebok GW, Saczynski JS, et al. Social network characteristics and cognition in middle-aged and older adults. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 2004; 59: 278–284.
- Krueger KR, Wilson RS, Kamenetsky JM, et al. Social engagement and cognitive function in old age. *Experimental aging research* 2009; 35: 45–60.
- 479 [11] Béland F, Zunzunegui MV, Alvarado B, et al. Trajectories of cognitive decline and social 480 relations. *Journals of Gerontology - Series B Psychological Sciences and Social Sciences* 481 2005; 60: 320–330.
- Zunzunegui MV, Alvarado BE, Del Ser T, et al. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults.
 Journals of Gerontology Series B Psychological Sciences and Social Sciences 2003; 58: 93– 100.
- 486 [13] Kim YB, Lee SH. Social network types and cognitive decline among older Korean adults: A
 487 longitudinal population-based study. *International Journal of Geriatric Psychiatry* 2019; 34:
 488 1845–1854.
- 489 [14] Lee SH, Kim YB. Which type of social activities may reduce cognitive decline in the elderly?: A longitudinal population-based study. *BMC Geriatrics* 2016; 16: 1–9.
- Thomas PA. Trajectories of social engagement and limitations in late life. *Journal of Health and Social Behavior* 2011; 52: 430–443.

- 493 [16] Maffei L, Picano E, Andreassi MG, et al. Randomized trial on the effects of a combined 494 physical/cognitive training in aged MCI subjects: the Train the Brain study. *Scientific Reports* 495 2017; 7: 39471.
- 496 [17] Straubmeier M, Behrndt E-M, Seidl H, et al. Non-pharmacological treatment in people with
 497 cognitive impairment: results from the randomized controlled german day care study.
 498 Deutsches Ärzteblatt International 2017; 114: 815.
- Inle A, Oris M, Baeriswyl M, et al. The longitudinal relation between social reserve and smaller subsequent decline in executive functioning in old age is mediated via cognitive reserve. *International Psychogeriatrics* 2021; 33: 461–467.
- 502 [19] González-Ortega I, González-Pinto A, Alberich S, et al. Influence of social cognition as a mediator between cognitive reserve and psychosocial functioning in patients with first episode psychosis. *Psychological Medicine*. Epub ahead of print 2019. DOI: 10.1017/S0033291719002794.
- Haslam C, Cruwys T, Haslam SA. 'The we's have it': Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. *Social Science and Medicine* 2014; 120: 57–66.
- 509 [21] Conroy RM, Golden J, Jeffares I, et al. Boredom-proneness, loneliness, social engagement and depression and their association with cognitive function in older people: A population study.

 511 *Psychology, Health and Medicine* 2010; 15: 463–473.
- 512 [22] Samanta T, Chen F, Vanneman R. Living arrangements and health of older adults in India.
 513 Journals of Gerontology Series B: Psychological Sciences and Social Sciences 2015; 70: 937–
 514 947.
- 515 [23] Srivastava S, Shaw S, Chaurasia H, et al. Feeling about living arrangements and associated health outcomes among older adults in India: a cross-sectional study. *BMC Public Health* 2021; 21: 1–14.
- 518 [24] Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income status with psychological distress and subjective well-being: a cross-sectional study among older adults in India. *BMC Psychology* 2021; 9: 1–13.
- 521 [25] Srivastava S, Chauhan S, Muhammad T, et al. Older adults' psychological and subjective well-522 being as a function of household decision making role: Evidence from cross-sectional survey 523 in India. *Clinical Epidemiology and Global Health* 2021; 10: 100676.
- 524 [26] Srivastava S, Purkayastha N, Chaurasia H, et al. Socioeconomic inequality in psychological distress among older adults in India: a decomposition analysis. *BMC Psychiatry* 2021; 21: 1–526 15.
- 527 [27] Fernández-Niño JA, Bonilla-Tinoco LJ, Manrique-Espinoza BS, et al. Work status, retirement, 528 and depression in older adults: An analysis of six countries based on the Study on Global 529 Ageing and Adult Health (SAGE). SSM - Population Health 2018; 6: 1–8.
- 530 [28] Anand A. Understanding Depression among Older Adults in Six Low-Middle Income 531 Countries using WHO-SAGE Survey. *Behavioral Health*; 1.
- 532 [29] Smith L, Il Shin J, McDermott D, et al. Association between food insecurity and depression 533 among older adults from low- and middle-income countries. *Depression and Anxiety* 2021; 38: 534 439–446.

- 535 [30] Srivastava S, Debnath P, Shri N, et al. The association of widowhood and living alone with depression among older adults in India. *Scientific Reports* 2021; 1–13.
- Jang Y, Chiriboga DA. Social activity and depressive symptoms in Korean American older adults: The conditioning role of acculturation. *Journal of Aging and Health* 2011; 23: 767–781.
- 539 [32] Strauss J, Park A, Smith JP. Health Outcomes and Socio-Economic Status Among the Elderly 540 in Gansu and Zhejiang Provinces, China: Evidence from the CHARLS Pilot. 2013; 3: 111– 541 142.
- 542 [33] Chiao C, Weng L-J, Botticello AL. Social participation reduces depressive symptoms among older adults: an 18-year longitudinal analysis in Taiwan. *BMC public health* 2011; 11: 1–9.
- Isaac V, Stewart R, Artero S, et al. Social activity and improvement in depressive symptoms in older people: a prospective community cohort study. *The American Journal of Geriatric Psychiatry* 2009; 17: 688–696.
- 547 [35] Lou VWQ, Chi I, Kwan CW, et al. Trajectories of social engagement and depressive 548 symptoms among long-term care facility residents in Hong Kong. *Age and Ageing* 2013; 42: 549 215–222.
- Takagi D, Kondo K, Kawachi I. Social participation and mental health: moderating effects of gender, social role and rurality. *BMC public health* 2013; 13: 1–8.
- Glass TA, De Leon CFM, Bassuk SS, et al. Social engagement and depressive symptoms in late life: longitudinal findings. *Journal of aging and health* 2006; 18: 604–628.
- Fiske A, Wetherell JL, Gatz M. Depression in older adults. *Annual review of clinical psychology* 2009; 5: 363–389.
- Pressman SD, Matthews KA, Cohen S, et al. Association of enjoyable leisure activities with psychological and physical well-being. *Psychosomatic medicine* 2009; 71: 725.
- Vance DE, Marson DC, Triebel KL, et al. Physical activity and cognitive function in older adults: The mediating effect of depressive symptoms. *The Journal of neuroscience nursing: journal of the American Association of Neuroscience Nurses* 2016; 48: E2.
- 561 [41] Muhammad T, Meher T. Association of late-life depression with cognitive impairment: 562 evidence from a cross-sectional study among older adults in India. *BMC Geriatrics* 2021; 21: 563 1–13.
- van den Kommer TN, Comijs HC, Aartsen MJ, et al. Depression and cognition: how do they interrelate in old age? *The American Journal of Geriatric Psychiatry* 2013; 21: 398–410.
- 566 [43] Dickinson WJ, Potter GG, Hybels CF, et al. Change in stress and social support as predictors 567 of cognitive decline in older adults with and without depression. *International journal of geriatric psychiatry* 2011; 26: 1267–1274.
- 569 [44] Van Der Mussele S, Fransen E, Struyfs H, et al. Depression in mild cognitive impairment is 570 associated with progression to alzheimer's disease: A longitudinal study. *Journal of Alzheimer's Disease* 2014; 42: 1239–1250.
- 572 [45] Verdelho A, Madureira S, Moleiro C, et al. Depressive symptoms predict cognitive decline and dementia in older people independently of cerebral white matter changes: The LADIS study.

 574 *Journal of Neurology, Neurosurgery and Psychiatry* 2013; 84: 1250–1254.

- Lee J, Shih R, Feeney K, et al. Gender disparity in late-life cognitive functioning in India:
 findings from the longitudinal aging study in India. *Journals of Gerontology Series B: Psychological Sciences and Social Sciences* 2014; 69: 603–611.
- 578 [47] Angrisani M, Jain U, Lee J. Sex differences in cognitive health among older adults in India.

 579 *Journal of the American Geriatrics Society* 2020; 68: S20–S28.
- 580 [48] Jain U, Angrisani M, Langa KM, et al. How much of the female disadvantage in late-life cognition in India can be explained by education and gender inequality. *Sci Rep* 2022; 12: 5684.
- 583 [49] Pillemer S, Ayers E, Holtzer R. Gender-stratified analyses reveal longitudinal associations 584 between social support and cognitive decline in older men. *Aging & mental health* 2019; 23: 585 1326–1332.
- 586 [50] Oh SS, Cho E, Kang B. Social engagement and cognitive function among middle-aged and older adults: gender-specific findings from the Korean longitudinal study of aging (2008–2018). *Scientific Reports* 2021; 11: 1–9.
- 589 [51] International Institute for Population Sciences (IIPS), NPHCE, MoHFW HTHCS of PH
 590 (HSPH) and the U of SC (USC). Longitudinal Ageing Study in India (LASI) Wave 1, 2017-18,
 591 India Report. Mumbai., 2020.
- [52] Herzog AR, Wallace RB. Measures of cognitive functioning in the AHEAD study. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 1997; 52: 37–48.
- 594 [53] Meng Q, Wang H, Strauss J, et al. Validation of neuropsychological tests for the China Health 595 and Retirement Longitudinal Study Harmonized Cognitive Assessment Protocol. *International Psychogeriatrics* 2019; 31: 1709–1719.
- 597 [54] Gupta M, Gupta V, Nagar Buckshee R, et al. Validity and reliability of hindi translated version 598 of Montreal cognitive assessment in older adults. *Asian Journal of Psychiatry* 2019; 45: 125– 599 128.
- [55] Zhou Z, Mao F, Han Y, et al. Social engagement and cognitive impairment in older Chinese
 adults: The mediating role of psychological well-being. *Journal of aging and health* 2020; 32:
 573–581.
- 603 [56] Sampson EL, Bulpitt CJ, Fletcher AE. Survival of community-dwelling older people: the effect 604 of cognitive impairment and social engagement. *Journal of the American Geriatrics Society* 605 2009; 57: 985–991.
- Radloff LS. The CES-D scale: A self-report depression scale for research in the general population. *Applied psychological measurement* 1977; 1: 385–401.
- [58] Irwin M, Artin KH, Oxman MN. Screening for Depression in the Older Adult. Archives of
 Internal Medicine 1999; 159: 1701.
- Kumar S, Nakulan A, Thoppil SP, et al. Screening for depression among community-dwelling elders: usefulness of the center for epidemiologic studies depression scale. *Indian Journal of Psychological Medicine* 2016; 38: 483–485.
- 613 [60] Chitnis S. Definition of the terms scheduled castes and scheduled tribes: a crisis of
 614 ambivalence. *The Politics of Backwardness: Reservation Policy in India New Delhi, India:*615 *Centre for Policy Research.*

- 616 [61] Dong X, Li Y, Simon MA. Social engagement among U.S. Chinese older adults-findings from the PINE study. *Journals of Gerontology Series A Biological Sciences and Medical Sciences* 2014; 69: S82–S89.
- 619 [62] Karlson KB, Holm A. Decomposing primary and secondary effects: A new decomposition method. *Research in Social Stratification and mobility* 2011; 29: 221–237.
- 621 [63] Karlson KB, Holm A, Breen R. Comparing regression coefficients between same-sample 622 nested models using logit and probit: A new method. *Sociological methodology* 2012; 42: 286– 623 313.
- 624 [64] Kohler U, Karlson KB, Kohler U, et al. KHB: Stata module to decompose total effects into direct and indirect via KHB-method.
- 626 [65] Bethell J, Aelick K, Babineau J, et al. Social Connection in Long-Term Care Homes: A
 627 Scoping Review of Published Research on the Mental Health Impacts and Potential Strategies
 628 During COVID-19. *Journal of the American Medical Directors Association* 2021; 22: 228629 237.e25.
- [66] Doll-Wilhelm JL. The Impact of Social Isolation and Cognitive Decline in Older Adults: A
 Systematic Literature Review.
- 632 [67] Li M, Dong X. Is Social Network a Protective Factor for Cognitive Impairment in US Chinese 633 Older Adults? Findings from the PINE Study. *Gerontology* 2018; 64: 246–256.
- 634 [68] Ozbay F, Johnson DC, Dimoulas E, et al. Social support and resilience to stress: from neurobiology to clinical practice. *Psychiatry (Edgmont (Pa : Township))* 2007; 4: 35–40.
- 636 [69] Hughes TF, Andel R, Small BJ, et al. The association between social resources and cognitive 637 change in older adults: Evidence from the Charlotte County Healthy Aging Study. *Journals of Gerontology - Series B Psychological Sciences and Social Sciences* 2008; 63: 241–244.
- Thoits PA. Mechanisms linking social ties and support to physical and mental health. *Journal* of Health and Social Behavior 2011; 52: 145–161.
- Kuiper JS, Zuidersma M, Zuidema SU, et al. Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. *International Journal of Epidemiology* 2016; 45: 1169–1206.
- 644 [72] Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income sufficiency 645 with cognitive impairment among older adults: a population-based study in India. *BMC Psychiatry* 2021; 21: 1–14.
- Kelly ME, Duff H, Kelly S, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. *Systematic Reviews*; 6. Epub ahead of print 2017. DOI: 10.1186/s13643-017-0632-2.
- Barnes LL, De Leon CFM, Wilson RS, et al. Social resources and cognitive decline in a population of older African Americans and whites. *Neurology* 2004; 63: 2322–2326.
- Ayotte BJ, Allaire JC, Whitfield KE. Social support, physical functioning, and cognitive
 functioning among older African American adults. *Aging, Neuropsychology, and Cognition* 2013; 20: 494–510.

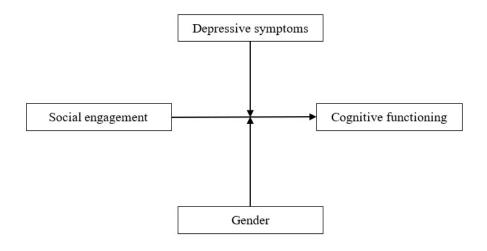
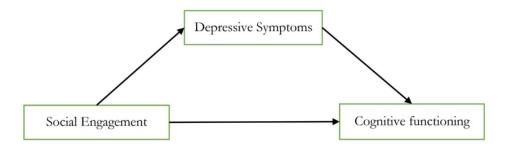

- 655 [76] Muhammad T, Govindu M, Srivastava S. Relationship between chewing tobacco, smoking, consuming alcohol and cognitive impairment among older adults in India: a cross-sectional study. *BMC Geriatrics* 2021; 21: 85.
- 658 [77] Kim GE, Han JW, Kim TH, et al. Hippocampus mediates the effect of emotional support on cognitive function in older adults Authors. *The Journals of Gerontology: Series A* 2020; 75: 1502–1507.
- Yuan M, Fu H, Liu R, et al. Effect of frequency of exercise on cognitive function in older adults: Serial mediation of depression and quality of sleep. *International Journal of Environmental Research and Public Health*; 17. Epub ahead of print 2020. DOI: 10.3390/ijerph17030709.
- Amieva H, Stoykova R, Matharan F, et al. What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. *Psychosomatic Medicine* 2010; 72: 905–911.
- Yang R, Wang H, Edelman LS, et al. Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. *Age and Ageing* 2020; 49: 599–604.
- Valtorta N, Hanratty B. Loneliness, isolation and the health of older adults: Do we need a new research agenda? *Journal of the Royal Society of Medicine, Supplement* 2012; 105: 518–522.
- 672 [82] Cattan M, White M, Bond J, et al. Preventing social isolation and loneliness among older 673 people: A systematic review of health promotion interventions. *Ageing and Society* 2005; 25: 674 41–67.
- Langa KM, Llewellyn DJ, Lang IA, et al. Cognitive health among older adults in the United States and in England. *BMC geriatrics* 2009; 9: 1–11.
- De Frias CM, Nilsson L-G, Herlitz A. Sex differences in cognition are stable over a 10-year period in adulthood and old age. *Aging, Neuropsychology, and Cognition* 2006; 13: 574–587.
- Van Hooren S, Valentijn A, Bosma H, et al. Cognitive_Functioning_in_Healthy_Older_A.pdf. 2007; 40–54.
- 681 [86] Lei X, Hu Y, McArdle JJ, et al. Gender differences in cognition among older adults in China.
 682 *Journal of Human Resources* 2012; 47: 951–971.
- 683 [87] Maurer J. Education and male-female differences in later-life cognition: International evidence from Latin America and the Caribbean. *Demography* 2011; 48: 915–930.
- Lee Y, Jean Yeung WJ. Gender matters: Productive social engagement and the subsequent cognitive changes among older adults. *Social Science and Medicine* 2019; 229: 87–95.

Figure Legend:

Figure 1. Moderation effects of gender and depressive symptoms on association between social engagement and cognitive functioning.


Figure 2. Confounding effects of depressive symptoms on association between social engagement and cognitive functioning

Moderation effects of gender and depressive symptoms on association between social engagement and cognitive functioning.

163x85mm (120 x 120 DPI)

Confounding effects of depressive symptoms on association between social engagement and cognitive functioning

68x27mm (300 x 300 DPI)

Supplementary file

Table S1. Descriptive statistics for the cognitive function (0-43) and level of social engagements according to selected variables, (N = 23.584), LASI, 2017-19

	_	ive function (0-43)	Low (n	<i>Low</i> (<i>n</i> =7,401)		ium ,052)	High (n=2,131)	
G 117	N	Mean (sd.)						
Social Engagements								
Low	7,401	20.7 (7.1)	-	-	-	-	-	-
Medium	14,052	24.5 (7)	-	-	-	-	-	-
High	2,131	26.8 (6.6)	-	-	-	-	-	-
Depression ^a								
No	17,432	24 (7.2)	5,022	67.9	10,683	76.0	1,727	81.0
Yes	6,152	22.1 (7.2)	2,379	32.1	3,369	24.0	404	19.0
Age (years)								
60-69	14,691	24.6 (6.9)	3,512	47.5	9,721	69.2	1,458	68.4
70-79	6,735	22.5 (7.2)	2,624	35.5	3,529	25.1	582	27.3
80+	2,158	19.3 (7.5)	1265	17.1	802	5.7	91	4.3
Social Activities								
0	8,235	20.4 (6.7)	3,133	42.3	4,808	34.2	294	13.8
1	8,380	22.9 (6.6)	2,849	38.5	4,968	35.4	563	26.4
2	4,522	27.2 (6.4)	1065	14.4	2,855	20.3	602	28.2
3+	2,447	29.4 (6)	354	4.8	1,421	10.1	672	31.5
Education level	,				ŕ			
No education	12,369	19.7 (6)	4,946	66.8	6,683	47.6	740	34.7
Primary	5,909	25.5 (6)	1,559	21.1	3,707	26.4	643	30.2
Secondary	3,543	29.5 (5.1)	663	9.0	2,405	17.1	475	22.3
Higher	1,763	31.8 (4.6)	233	3.1	1,257	8.9	273	12.8
Currently working	1,703	31.0 (1.0)	233	3.1	1,237	0.7	273	12.0
No	16,213	23.1 (7.4)	5,986	80.9	8,862	63.1	1,365	64.1
Yes	7,371	24.3 (6.9)	1,415	19.1	5,190	36.9	766	35.9
Place of Residence	7,371	24.3 (0.7)	1,713	17.1	3,170	30.7	700	33.7
Rural	15,737	22.1 (7)	4,915	66.4	9,570	68.1	1,252	58.8
Urban	7,847	26.3 (7)	2,486	33.6	4,482	31.9	879	41.2
Religion	7,047	20.3 (1)	2,400	33.0	4,462	31.9	019	41.2
Hindu	17,414	22 6 (7.2)	5 652	76.4	10,634	75.7	1 120	52.9
	,	23.6 (7.2)	5,652				1,128	
Muslim	2,576	23.3 (7)	789	10.7	1,407	10.0	380	17.8
Christian	2,410	22.9 (7.7)	645	8.7	1,293	9.2	472	22.1
Others ^{\$}	1,184	23.5 (7.2)	315	4.3	718	5.1	151	7.1
Caste	2.052	22 1 (6.7)	1256	10.2	0.204	17.0	010	10.0
Scheduled caste	3,953	22.1 (6.7)	1356	18.3	2,384	17.0	213	10.0
Scheduled tribe	4,134	21 (7.5)	1257	17.0	2,310	16.4	567	26.6
OBC [#]	9,109	24 (7.1)	2,895	39.1	5,556	39.5	658	30.9
Others	6,388	25.4 (7)	1,893	25.6	3,802	27.1	693	32.5
Regions								
North	4,395	23.5 (7.1)	1237	16.7	2,617	18.6	541	25.4
Central	3,119	23.2 (6.7)	1019	13.8	1,913	13.6	187	8.8
East	4,522	23 (7.2)	1,434	19.4	2,857	20.3	231	10.8
Northeast	2,865	23.1 (7.6)	796	10.8	1,567	11.2	502	23.6
West	3,075	22.9 (7.2)	928	12.5	1,825	13.0	322	15.1
South	5,608	24.7 (7.5)	1,987	26.8	3,273	23.3	348	16.3
BMI categories		· · · · · · · · · · · · · · · · · · ·						
Normal	12,367	23.6 (7.1)	3,674	49.6	7,511	53.5	1,182	55.5
Underweight	5,436	20.7 (6.9)	2,051	27.7	3,080	21.9	305	14.3

Overweight/Obese	5,781	26.1 (7)	1,676	22.6	3,461	24.6	644	30.2
MPCE quintile	-,	_===(,,	-,		-,			
Poorest	4,827	21.8 (7.1)	1,695	22.9	2,795	19.9	337	15.8
Poorer	4,861	22.7 (7.1)	1,614	21.8	2,873	20.4	374	17.6
Middle	4,862	23.6 (7.1)	1,478	20.0	2,909	20.7	475	22.3
Richer	4,647	24.3 (7.1)	1,389	18.8	2,832	20.2	426	20.0
Richest	4,387	25.6 (7.3)	1225	16.6	2,643	18.8	519	24.4
Currently smoking tobacco								
No	20,210	23.5 (7.3)	6,719	90.8	11,747	83.6	1,744	81.8
Yes	3,374	23.7 (6.7)	682	9.2	2,305	16.4	387	18.2
Currently chewing tobacco								
No	18,871	23.7 (7.3)	5,930	80.1	11,198	79.7	1,743	81.8
Yes	4,713	22.9 (6.9)	1,471	19.9	2,854	20.3	388	18.2
Drinking Status								
Never	19,368	23.4 (7.3)	6,573	88.8	11,099	79.0	1,696	79.6
Infrequent non-heavy	2,568	24.8 (6.9)	484	6.5	1,781	12.7	303	14.2
Frequent non-heavy	870	23.3 (7.2)	191	2.6	617	4.4	62	2.9
Heavy episodic drinker	778	22.9 (7.1)	153	2.1	555	3.9	70	3.3
Hypertension Status								
Normal	5,386	22.9 (7)	1,512	20.4	3,386	24.1	488	22.9
Pre-hypertensive	9,015	23.9 (7.2)	2,644	35.7	5,505	39.2	866	40.6
High BP	9,183	23.5 (7.4)	3,245	43.8	5,161	36.7	777	36.5
Diabetes								
No	19,987	23.1 (7.2)	6,436	87.0	11,782	83.8	1,769	83.0
Yes	3,597	25.9 (7)	965	13.0	2,270	16.2	362	17.0
Cancer								
No	23,420	23.5 (7.3)	7,355	99.4	13,955	99.3	2,110	99.0
Yes	164	24.5 (7.2)	46	0.6	97	0.7	21	1.0
Heart Disease								
No	22,399	23.4 (7.3)	7,096	95.9	13,300	94.6	2,003	94.0
Yes	1,185	25.8 (7)	305	4.1	752	5.4	128	6.0
Stroke								
No	23,069	23.5 (7.3)	7,258	98.1	13,726	97.7	2,085	97.8
Yes	515	23 (7.2)	143	1.9	326	2.3	46	2.2
TD 4.1	22.504	22 5 (5 2)	5 401	100.0	4 4 0 5 2	100.0	0.101	100.0

Note: ^a overall score ranges from zero to 10 and individuals with score of four or more are considered as depressed; [#] Other Backward Classes, ^{\$\\$} includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure

7,401

100.0 14,052 100.0

23.5 (7.3)

23,584

Note: *p<0.05, **p<0.01, ***p<0.001

Table S2. Linear regression results of interaction of social engagement and depressive symptoms on cognitive functioning, 51 by gender, (N = 23,584).

52	Men		V	Vomen	Total	
53	β	(95% CI)	β	(95% CI)	β	(95% CI)
54 Social engagements # Depressive 55 symptoms						
57 Low + depressive symptoms Medium + depressive	-0.53***	(-0.62,-0.45)	-0.49***	(-0.55,-0.43)	-0.61***	(-0.66,-0.56)
58 Wednum + depressive 59 symptoms 60 High + depressive symptoms	-0.33*** -0.19**	(-0.40,-0.27) (-0.31,-0.07)	-0.32*** -0.16*	(-0.39,-0.26) (-0.32,-0.01)	-0.28*** -0.10*	(-0.33,-0.23) (-0.20,-0.01)

BMJ Open Page 34 of 38

1							
2							
	cial Activities	0.26**	(0.07, 0.44)	0.76***	(0.55, 0.97)	0.48***	(0.33, 0.62)
	ge (years)	-0.11***	(-0.13, -0.10)	-0.15***	(-0.17, -0.14)	-0.11***	(-0.12, -0.10)
5 Ed	lucation level						
7	No education®	4. O saladada	(2.02.4.20)	4.004.444	(2.0 5.4.70)	4.00	(4.54.4.00)
8	Primary	4.06***	(3.82,4.30)	4.23***	(3.96,4.50)	4.82***	(4.64,4.99)
9	Secondary	6.92***	(6.63,7.21)	8.12***	(7.73, 8.52)	8.27***	(8.05,8.49)
10	Higher	7.61***	(7.24,7.97)	9.99***	(9.39,10.59)	9.28***	(8.99,9.56)
	irrently working No®						
12	Yes	0.31**	(0.10, 0.52)	0.59***	(0.35, 0.84)	0.87***	(0.71, 1.03)
13	ace of Residence	0.31	(0.10, 0.32)	0.39	(0.33,0.64)	0.67	(0.71,1.03)
15	Rural®						
16	Urban	1.28***	(1.03, 1.53)	1.26***	(1.02, 1.50)	1.16***	(0.99, 1.34)
	eligion	1.20	(1100,1100)	1.20	(1102,1100)	1110	(0.55,1.6.1)
18	Hindu®						
19	Muslim	0.72***	(0.38, 1.06)	-0.38*	(-0.70, -0.05)	0.37**	(0.13, 0.60)
20	Christian	-0.63	(-1.27, 0.00)	0.06	(-0.51, 0.63)	-0.26	(-0.70, 0.17)
21	Others\$	-0.65*	(-1.18, -0.13)	0.41	(-0.10, 0.91)	0.13	(-0.24, 0.49)
22 Ca	aste						
23	Scheduled caste®						
24 25	Scheduled tribe	-1.36***	(-1.78,-0.94)	-1.15***	(-1.55, -0.76)	-1.40***	(-1.69,-1.11)
26	OBC [#]	0.46**	(0.18, 0.73)	0.74***	(0.48, 1.00)	0.58***	(0.39, 0.77)
	None of them	0.40*	(0.10,0.71)	0.66***	(0.36, 0.95)	0.44***	(0.23, 0.66)
27 28 R e	egion						
29	North®	1 17 16 16 16	(0.01.1.50)	1 01 % % %	(1.47.0.15)	1	(1.00.1.00)
30	Central	1.17***	(0.81,1.53)	1.81***	(1.47,2.15)	1.58***	(1.33,1.83)
31	East Northeast	0.43* 1.10***	(0.08,0.78) (0.45,1.76)	0.96*** 1.10***	(0.63,1.29) (0.47,1.72)	0.69*** 0.87***	(0.45,0.93) (0.41,1.33)
32	West	-1.13***	(-1.51,-0.76)	-0.57**	(-0.92,-0.23)	-0.93***	(-1.19,-0.67)
33 34	South	0.27	(-0.10,0.64)	1.82***	(1.47,2.16)	1.11***	(0.85, 1.36)
	MI categories	0.27	(-0.10,0.04)	1.02	(1.47,2.10)	1.11	(0.05,1.50)
36	Normal®						
37	Underweight	-0.93***	(-1.17, -0.70)	-1.19***	(-1.42, -0.96)	-1.07***	(-1.24, -0.91)
38	Overweight/obese	0.76***	(0.50, 1.02)	1.00***	(0.76, 1.24)	0.77***	(0.59, 0.95)
39 M	PCE quintile		, , ,				, ,
40	Poorest®						
41	Poorer	0.03	(-0.27, 0.32)	0.15	(-0.12, 0.43)	0.10	(-0.11, 0.30)
42	Middle	0.39*	(0.09, 0.69)	0.60***	(0.32, 0.88)	0.38***	(0.17, 0.59)
43 44	Richer	0.73***	(0.42, 1.04)	0.70***	(0.40, 0.99)	0.65***	(0.43, 0.87)
4.5	Richest	0.79***	(0.45, 1.12)	0.72***	(0.41, 1.04)	0.63***	(0.40, 0.87)
46 Cu	irrently smoking tobacco						
47	No®	0.054	(0.00.0.40)	0.704	(1 00 0 00)	0.044555	(0.50.1.05)
48	Yes	0.25*	(0.00, 0.49)	-0.53*	(-1.03,-0.03)	0.84***	(0.63, 1.05)
	irrently chewing tobacco						
50	No® Yes	0.10	(0 14 0 22)	-0.23	(0 40 0 02)	0.25**	(0.07, 0.42)
51		0.10	(-0.14,0.33)	-0.23	(-0.49,0.02)	0.23	(0.07, 0.42)
52 D I 53	rinking Status Never®						
53 54	Infrequent non-heavy	-0.32*	(-0.58,-0.06)	-0.41	(-1.21,0.38)	0.39**	(0.15, 0.64)
55	Frequent non-heavy	-1.14***	(-1.58,-0.70)	-2.44***	(-3.55,-1.33)	-0.69***	(-1.09,-0.29)
56	Heavy episodic drinker	-1.74***	(-2.21,-1.28)	-2.56***	(-3.77,-1.36)	-1.22***	(-1.65,-0.78)
	ypertension Status		, , , , , , , , , , , , , , , , , , , ,		(, , , , , , , , , , , , , , , , , , ,		·,,
58	Normal®						
59	Pre-hypertensive	0.25*	(0.00, 0.50)	0.21	(-0.03, 0.46)	0.20*	(0.03, 0.38)
60	High BP	0.37**	(0.11, 0.63)	0.00	(-0.24, 0.25)	0.10	(-0.08, 0.28)

Page 35 of 38
1 2 3 Diabetes 4 No® 5 Yes 6 Cancer 7 No® 9 Yes 10 Heart Dis 11 No® 12 Yes 13 Stroke 14 No® 15 Yes
1 <u>5</u> Yes 16 N
17 R2
18 Note: # Otl
19 <i>Note:</i> *p<0
20
21
22
22 23
22 23 24
23
23 24
23 24 25
23 24 25 26

5	Yes	-0.59***	(-0.87, -0.30)	-0.47**	(-0.76, -0.18)	-0.52***	(-0.73, -0.32)
⁶ Ca	ncer						
8	No®						
0	Yes	0.81	(-0.57, 2.20)	-0.34	(-1.55, 0.87)	0.19	(-0.74, 1.12)
₁₀ He	eart Disease						
11	No®						
12	Yes	0.81***	(0.40, 1.22)	0.24	(-0.24, 0.71)	0.75***	(0.43, 1.06)
13 Str	roke						
14	No®						
15	Yes	-1.55***	(-2.14, -0.96)	-1.41***	(-2.11, -0.71)	-1.33***	(-1.79, -0.87)
16 N		1	1,403	1	2,181	2	23,584
17 R2	,		0.39		0.42		0.45
18 No	te: # Other Backward Classes, \$ incl	udes Sikh, Bud	ddhist/neo-Buddhis	st, Jain, Parsi/Z	Coroastrian and othe	ers; BP- Blood	Pressure.
	te: *p<0.05, **p<0.01, ***p<0.001						
20							

Table S3. Mean, standard deviation, and correlation between								
social engagement and depression (n=23,584). LASI, 2017-19								
1	2							
-								
-0.12***	-							
2.97	1.69							
1.68	0.67							
Note: *p<0.05, **p<0.01, ***p<0.001								
	ssion (n=23,584). L. 1 -0.12*** 2.97 1.68							

Table S4. Linear regression results of social engagement on depressive symptoms, by gender, (N = 23,584), LASI, 2017-

		Men		Vomen	Total	
	β	(95% CI)	β	(95% CI)	β	(95% CI)
Social Engagement	-0.16***	(-0.22, -0.11)	-0.21***	(-0.25, -0.16)	-0.18***	(-0.22,-0.15)
Cognitive function	-0.03***	(-0.04, -0.03)	-0.04***	(-0.05, -0.04)	-0.04***	(-0.04, -0.03)
Social Activities	0.01	(-0.04, 0.07)	0.06	(-0.01, 0.13)	0.04	(-0.00, 0.08)
Age (years)	-0.01**	(-0.01, -0.00)	0.00	(-0.00, 0.00)	0.00	(-0.01, 0.00)
Gender						
Men®	-	-	-	-		
Women	-	-	-	-	-0.06*	(-0.12, -0.00)
Education level						
No education®						
Primary	0.00	(-0.08, 0.08)	-0.01	(-0.10, 0.08)	-0.01	(-0.06, 0.05)
Secondary	-0.03	(-0.13, 0.06)	0.15*	(0.02, 0.29)	0.03	(-0.05, 0.10)
Higher	-0.08	(-0.20, 0.04)	0.33**	(0.13, 0.53)	0.03	(-0.07, 0.13)
Currently working						
No®						
Yes	-0.10**	(-0.16, -0.03)	-0.04	(-0.11, 0.04)	-0.06*	(-0.11, -0.01)
Place of Residence						
Rural ®						
Urban	0.03	(-0.04, 0.11)	-0.02	(-0.09, 0.06)	0.01	(-0.04, 0.06)
Religion						•

BMJ Open Page 36 of 38

1							
2 3	*** 1.0						
3 4	Hindu®	0.10	(0 00 0 00)	0.404	(0.00.00.0	0.4044	(0.07.0.40)
5	Muslim	0.10	(-0.00,0.20)	0.13*	(0.03, 0.24)	0.12**	(0.05, 0.19)
6	Christian	-0.41***	(-0.60,-0.21)	0.07	(-0.12,0.25)	-0.14*	(-0.28,-0.01)
7	Others\$	-0.41***	(-0.57, -0.25)	-0.18*	(-0.34,-0.01)	-0.29***	(-0.40, -0.18)
8	Caste						
9	Scheduled caste®						
10	Scheduled tribe	-0.27***	(-0.40, -0.14)	-0.03	(-0.15, 0.10)	-0.14**	(-0.23, -0.05)
11	$OBC^{\#}$	-0.25***	(-0.33, -0.16)	-0.05	(-0.13, 0.03)	-0.15***	(-0.21, -0.09)
12	None of them	-0.23***	(-0.33, -0.14)	-0.07	(-0.16, 0.03)	-0.15***	(-0.21, -0.08)
13	Region						
14	North®						
15	Central	0.46***	(0.35, 0.57)	0.60***	(0.49, 0.71)	0.53***	(0.45, 0.61)
16	East	0.07	(-0.03, 0.18)	0.08	(-0.03, 0.18)	0.08*	(0.00, 0.15)
17	Northeast	-0.15	(-0.35, 0.05)	-0.37***	(-0.57, -0.17)	-0.27***	(-0.41, -0.13)
18	West	-0.55***	(-0.67, -0.44)	-0.60***	(-0.71, -0.48)	-0.57***	(-0.65, -0.49)
19	South	0.35***	(0.23, 0.46)	0.25***	(0.13, 0.36)	0.30***	(0.22, 0.38)
20	BMI categories		, , ,		, , ,		, , ,
21	Normal®						
22	Underweight	0.29***	(0.22,0.36)	0.07	(-0.01, 0.14)	0.18***	(0.13, 0.23)
23	Overweight/obese	0.05	(-0.03, 0.14)	-0.08*	(-0.16, -0.00)	-0.02	(-0.08, 0.03)
24	MPCE quintile	5.50	(0.02,0.1 .)	0.00	(3.13, 3.33)	0.02	(0.00,0.00)
25	Poorest®						
26	Poorer	-0.09	(-0.18, 0.01)	-0.10*	(-0.19,-0.02)	-0.09**	(-0.16,-0.03)
27	Middle	-0.06	(-0.16,0.03)	-0.10*	(-0.19, -0.01)	-0.08*	(-0.14,-0.02)
28	Richer	-0.07	(-0.16,0.03)	-0.10*	(-0.19,-0.00)	-0.08*	(-0.15,-0.02)
29	Richest	-0.05	(-0.15,0.06)	-0.10	(-0.12,0.08)	-0.03	(-0.11,0.04)
30		-0.03	(-0.13,0.00)	-0.02	(-0.12,0.08)	-0.03	(-0.11,0.04)
31	Currently smoking tobacco No®						
32	Yes	0.14***	(0.07, 0.22)	0.03	(-0.13,0.20)	0.15***	(0.08, 0.21)
33		0.14	(0.07, 0.22)	0.03	(-0.13,0.20)	0.15	(0.06,0.21)
34	Currently chewing tobacco No®						
35 36	Yes	-0.01	(-0.08,0.07)	0.07	(-0.02, 0.15)	0.02	(0 04 0 07)
30 37		-0.01	(-0.08,0.07)	0.07	(-0.02,0.13)	0.02	(-0.04,0.07)
38	Drinking Status Never®						
39		0.15***	(-0.23,-0.07)	0.05	(0.20,0.21)	0.10**	(0 20 0 05)
40	Infrequent non-heavy	-0.15***	, , ,	0.05	(-0.20,0.31)	-0.12**	(-0.20,-0.05)
41	Frequent non-heavy	-0.22**	(-0.35,-0.08)	-0.41*	(-0.77,-0.06)	-0.24***	(-0.37,-0.12)
42	Heavy episodic drinker	-0.05	(-0.20,0.09)	-0.15	(-0.54, 0.24)	-0.07	(-0.20,0.07)
43	Hypertension Status						
44	Normal®	0.04	(0 10 0 00)	0.004	(0.17, 0.01)	0.054	(0.10, 0.01)
45	Pre-hypertensive	-0.04	(-0.12,0.03)	-0.09*	(-0.17,-0.01)	-0.07*	(-0.12,-0.01)
46	High BP	-0.04	(-0.12,0.04)	0.02	(-0.06, 0.09)	-0.01	(-0.07, 0.05)
47	Diabetes						
48	No®						
49	Yes	0.10*	(0.02, 0.19)	0.02	(-0.08, 0.11)	0.06	(-0.00, 0.13)
50	Cancer						
51	No®						
52	Yes	0.59**	(0.17, 1.01)	-0.36	(-0.75, 0.03)	0.06	(-0.23, 0.35)
53	Heart Disease						
54	No®						
55	Yes	0.11	(-0.01, 0.24)	0.17*	(0.01, 0.32)	0.14**	(0.04, 0.24)
56	Stroke						
57	\mathbf{No}						
58	Yes	0.56***	(0.38, 0.74)	0.31**	(0.09, 0.54)	0.46***	(0.32, 0.61)
59							
60	N	1	1,403	1	2,181	2	23,584

 \mathbb{R}^2 0.10 0.09 0.09 Note: # Other Backward Classes, \$ includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure. *Note:* *p<0.05, **p<0.01, ***p<0.001

TO COLOR ONL

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Recommendation	Page No
Title and abstract	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
	(b) Provide in the abstract an informative and balanced summary of what was	2-3
	done and what was found	
Introduction		
Background/rationale	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	State specific objectives, including any prespecified hypotheses	6
Methods		
Study design	Present key elements of study design early in the paper	7
Setting	Describe the setting, locations, and relevant dates, including periods of	7
-	recruitment, exposure, follow-up, and data collection	
Participants	(a) Give the eligibility criteria, and the sources and methods of selection of	7
	participants	
Variables	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-10
	effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	For each variable of interest, give sources of data and details of methods of	7
measurement	assessment (measurement). Describe comparability of assessment methods if	
	there is more than one group	
Study size	Explain how the study size was arrived at	7
Quantitative variables	Explain how quantitative variables were handled in the analyses. If applicable,	
	describe which groupings were chosen and why	
Statistical methods	(a) Describe all statistical methods, including those used to control for	11
	confounding	
	(b) Describe any methods used to examine subgroups and interactions	
	(c) Explain how missing data were addressed	7
	(d) If applicable, describe analytical methods taking account of sampling	
	strategy	
	(\underline{e}) Describe any sensitivity analyses	
Results		
Participants	(a) Report numbers of individuals at each stage of study—eg numbers	11
	potentially eligible, examined for eligibility, confirmed eligible, included in the	
	study, completing follow-up, and analysed	
	(b) Give reasons for non-participation at each stage	
	(c) Consider use of a flow diagram	
Descriptive data	(a) Give characteristics of study participants (eg demographic, clinical, social)	12
	and information on exposures and potential confounders	
	(b) Indicate number of participants with missing data for each variable of	
	interest	
Outcome data	Report numbers of outcome events or summary measures	12-16
Main results	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	12-16
	and their precision (eg, 95% confidence interval). Make clear which	
	confounders were adjusted for and why they were included	4
	(b) Report category boundaries when continuous variables were categorized	

	(c) If relevant, consider translating estimates of relative risk into absolute risk	
	for a meaningful time period	
Other analyses	Report other analyses done—eg analyses of subgroups and interactions, and	
	sensitivity analyses	
Discussion		
Key results	Summarise key results with reference to study objectives	17
Limitations	Discuss limitations of the study, taking into account sources of potential bias or	20
	imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	Give a cautious overall interpretation of results considering objectives,	17-20
	limitations, multiplicity of analyses, results from similar studies, and other	
	relevant evidence	
Generalisability	Discuss the generalisability (external validity) of the study results	17-20
Other information		
Funding	Give the source of funding and the role of the funders for the present study and,	21
	if applicable, for the original study on which the present article is based	

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Assessing the role of depressive symptoms in the association between social engagement and cognitive functioning among older adults: analysis of cross-sectional data from the Longitudinal Aging Study in India (LASI)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063336.R2
Article Type:	Original research
Date Submitted by the Author:	01-Sep-2022
Complete List of Authors:	Kumar, Manish; International Institute for Population Sciences T., Muhammad; International Institute for Population Sciences Dwivedi2, Laxmi Kant; International Institute for Population Sciences, Department of Mathamatical Demography & Statistics
Primary Subject Heading :	Public health
Secondary Subject Heading:	Mental health
Keywords:	PUBLIC HEALTH, Neurology < INTERNAL MEDICINE, MENTAL HEALTH

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1	Assessing the role of depressive symptoms in the association between social engagement				
2	and cognitive functioning among older adults: analysis of cross-sectional data from the				
3	Longitudinal Aging Study in India (LASI)				
4	Manish Kumar				
5	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,				
6	Maharashtra, India, 400088				
7	E-mail: kumarmanishiips@gmail.com				
8	ORCID: 0000-0001-5297-6150				
9	<u>Telephone number</u> : +91 9702511509				
10					
11	T. Muhammad				
12	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,				
13	Maharashtra, India, 400088				
14	E-mail: muhammad.iips@gmail.com				
15	ORCID: 0000-0003-1486-7038				
16					
17	Laxmi Kant Dwivedi, PhD				
18	Professor, International Institute for Population Sciences, Mumbai, Maharashtra, India,				
19	400088				
20	Email: laxmikdwivedi@gmail.com				
21	ORCID: 0000-0001-9737-2844				
22					
23	Correspondence to:				
23	Correspondence to.				
24	Manish Kumar				
25	Ph.D. Research scholar, International Institute for Population Sciences, Mumbai,				
26	Maharashtra, India, 400088				
27	E-mail: <u>kumarmanishiips@gmail.com</u>				
28	ORCID: 0000-0001-5297-6150				
29	Telephone number: +91 9702511509				

Abstract

- **Objective:** The present study aimed to examine the confounding effects of depressive
- 33 symptoms and the role of gender in the association between social engagement and cognitive
- 34 functioning among older Indian adults.
- **Design:** Large-scale, cross-sectional survey data was analyzed.
- 36 Setting and participants: Data from Longitudinal Aging Study in India (2017-19) were used
- in the analysis. The sample included 23,584 individuals aged 60 years and above (11,403 men
- 38 and 12,181 women).
- 39 Outcome measures: The outcome variable was cognitive functioning, which was based on
- 40 various measures including immediate and delayed word recall, orientation, executive
- 41 functioning, arithmetic ability and object naming. Social engagement measure consists of
- 42 marital status, living arrangement, availability of confidant, and participation in indoor games,
- and social and cultural functions. The Center for Epidemiologic Studies Depression Scale was
- used to assess depressive symptoms.
- **Results:** Significant gender differences in mean cognition scores (men: 25.8, women: 21.1; on
- a scale of 0-43) were observed. Two-way stratification between social engagement and
- depressive symptoms was significantly associated with cognitive functioning after controlling
- 48 for selected explanatory factors. Older men with low level of social engagements had
- 49 significantly poor cognitive functioning (β=-1.12; 95%CI: -1.53, -0.72) compared with men
- with high level of social engagements. On the other hand, women with higher level of social
- engagement performed poorly on cognitive tests (-1.54; 95%CI: -2.11, -0.98) compared with
- men with higher social engagements. Three-way stratification between social engagement,
- gender, and depressive symptoms suggests that social engagement's buffering effects are lower
- in women than in men. Karlson–Holm–Breen method identified significant confounding effect
- of depressive symptoms on the relationship between social engagement and cognitive
- 56 functioning.
- **Conclusion:** The positive association of social engagement with cognitive functioning was
- significantly confounded by depressive symptoms, suggesting the need for maintaining social
- relations that help improve mental health and cognitive functioning among older adults.

- 60 Keywords: social engagement, cognitive functioning, depressive symptoms, KHB-method,
- *older adults*.

Strengths and limitations of this study

- The study utilized data of large, nationally representative sample of older adults.
- Internationally validated scales of cognition and depressive symptoms were used.
- In a sample with large proportion of illiterate people, assessment of cognitive functioning might be subject to measurement error.
- The inability to establish a causal relationship between the variables of interest is the main limitation of the study.

Introduction

With the growth of aging population, global challenges in mental health are on the rise. It includes the decline in late-life cognitive abilities which are generally associated with poor quality of life [1], functional disabilities [2], multimorbidity [3], and higher mortality risk [4]. India is currently facing rapid population aging, with an expected increase in the number of individuals aged 60 years and above from 104 million in 2011 to 319 million by 2050 [5]; consequently, the disease burden of cognitive impairment in the country is also expected to increase.

Social engagement is an umbrella concept usually referring to various factors such as social relationships, social and emotional connectedness with other people, and participation in social activities, which provide a sense of belonging, social identity, and fulfilment [6, 7]. In the absence of effective pharmacological treatment for persons with cognitive impairment, especially for the long-term benefits, various methods such as improving social engagement and active participation in social activities are considered [8]. Multiple cross-sectional studies investigating the association between social environment and cognition in older adults showed that greater social functioning positively associated with cognitive performances [9, 10]. Moreover, several longitudinal studies among older adults have also indicated that greater engagements with relatives [11, 12], rich social networks [12, 13], and frequent participation in social activities [14] exert protective effects against cognitive decline. Therefore, in the long run, individuals who present trajectories of high and increasing social engagements experience lower levels of cognitive limitation [15].

Several interventional studies reported the protective effects of the improved social behaviours in preventing or delaying dementia among older adults with diagnosed cognitive impairment [16, 17]. Most of the available research on social capital and engagement as to enhance cognitive reserve and protect cognitive health has been conducted in developed countries [18–21]. Little is known about the relationship between social engagement and cognitive functioning in developing countries like India, where the cultural and structural context of social engagement differ from developed countries. In India, traditionally, older adults are more likely to live with their children in multigenerational households where cultural norms emphasize family ties and the virtue of filial piety [22, 23], and a higher proportion of older people experience psychological distress and mental illnesses [24–26].

Similarly, depressive disorders are highly prevalent among older adults in low- and middle income countries (LMICs) [27–29] and in India in particular [30]. Previously, various studies have found the beneficial effects of greater social engagements (with varying measurements and definitions) against depressive symptoms [31, 32]. A cross-sectional study by Jang & Chiriboga (2011) [31] found that a higher level of participation in social activities was associated with a decline in depressive symptoms after controlling for the effects of demographic and health-related factors. Multiple longitudinal studies have also reported similar findings [33-37]. Also, increased participation in social activities and meaningful engagement by older adults may improve their mood, which benefits their emotional functioning and reduces depressive symptoms [38], which is linked to cognitive functioning [39]. According to the 'depression reduction hypothesis', depressive symptoms interferes with cognitive health; therefore, as evident from multiple longitudinal studies, practical strategies to reduce depressive symptoms will possibly improve cognitive functioning [40]. Two facts justify such a hypothesis; first, greater depressive symptoms are related to poor cognitive functioning among older adults [41, 42]. Second, depressed older adults who engage in social activities may experience a decline in depressive symptoms and improve cognitive functioning [43]. Furthermore, in multiple cohort studies, cognitively impaired older adults with depressive symptoms were associated with more rapid cognitive decline than those without depression [44, 45].

However, it is not clear to what extent social engagement may improve cognitive functioning by minimizing depressive symptoms. There is a dearth of studies in LMICs on the association of social engagements and cognitive functioning and the role of depressive symptoms in such association. Filling this gap, the present study using national-level data of older adults in India, aimed to examine the role of the depressive symptoms on the association between social engagement and cognitive functioning (Figure 1). Previous research showed a greater female disadvantage and theorized gender as the crucial factor to be considered in understanding the differences in cognitive functioning in Indian context [46–48]. Also, studies have shown the significant gender differences in the association between social engagement and cognitive functioning [49, 50]. Thus, the study also explored the moderation effects of gender in the relationship between social engagement and cognitive functioning. The present study hypothesized that the association between social engagement and cognitive functioning is significantly confounded by depressive symptoms (Figure 2).

Methods

Data

The present study utilized the individual-level data from the first wave of the Longitudinal Aging Study in India (LASI) conducted during 2017-19. LASI is a nationally representative longitudinal survey of more than 72000 adults aged 45 years and over and their spouses regardless of age across all states and union territories of India that provides vital information on the social, physical, psychological, and cognitive health of the Indian aging population. The LASI survey was conducted through a partnership of the International Institute for Population Sciences (IIPS), Harvard T. H. Chan School of Public Health (HSPH), and the University of Southern California (USC). In LASI wave 1, the sample selection is based on a multistage stratified cluster sample design, including a three-stage sampling design in rural areas and a four-stage sampling design in urban areas. LASI survey provided internationally harmonized data that comparable to the United States Health and Retirement Study (HRS) and other HRS-type surveys in other countries, including England (English Longitudinal Study of Ageing) and China (China Health and Retirement Longitudinal Survey). Further, the details of sampling design, survey instruments, and data collection procedures are provided elsewhere [51].

In the sampled households, the individual survey schedule includes the biomedical examination administered to each consenting respondent aged 45 and above and their spouses (irrespective of age). The survey agencies authorized to conduct the survey have collected prior consent from all the respondents. Consent forms include the information brochure explaining the purpose of the survey, ways of protecting their privacy, and the safety of the health assessments as part of the ethics protocols. The Indian Council of Medical Research extended the necessary guidelines and ethics approval for undertaking the survey.

- 171 The sample in the main LASI survey data included 31,464 individuals aged 60 years and above.
- 172 For the present analysis, we have excluded those cases with missing data for any variable of
- interest (n=7,880). Therefore, the sample for the present study included 23,584 individuals
- aged 60 years and above from the LASI survey, and among them 11,403 were men and 12,181
- were women.
 - Measures
 - Cognitive function
- By adopting the Health and Retirement Study (HRS) cognition module, the LASI collected
- 179 information on measured cognition in various domains including memory, orientation,

executive functioning, arithmetic, and object naming (Table 1). Previously, various studies have established high validity and reliability of these cognitive domains for measuring cognitive impairment among older adults in community settings in the United States [52], China [53], and India [54]. The cognitive functioning in the present study is based on different cognitive measures, including immediate (0–10 points) and delayed word recall (0–10 points); orientation related to time (0-4 points), and place (0-4 points); executive functioning based on paper folding (0-3) and pentagon drawing (0-1); arithmetic ability based on serial 7s (0–5 points), computation (0-2) and backward counting from 20 (0–2 points); and object naming (0-2).

Domain	Measure	Measurement	Range
Memory	Immediate wordrecall	Interviewer read out a list of 10 words and respondents were asked to repeat the words.	0-10
	Delayed word recall	Respondents were asked to recall the same words read out for immediate recall after some time.	0-10
Orientation	Time	Respondents were asked to state today's date, month and year and day of the week. For each question, the score was 0 or 1. Correct responses received 1 point, incorrect responses received 0. The total score for time was 0-4.	0-4
	Place	Orientation towards place was captured based on place of interview, name of the village, street number/colony name/landmark/neighborhood and name of the district. Each correct response scored 1 point. The total score ranged from 0-4.	0-4
Arithmetic function	Backward counting	Respondents were asked to count backward as quickly as possible from the number 20. The respondents were asked to stop after correctly counting backward from 20 to 11 or from 19 to 10. Correct counting received 2 points: counts with a mistake received 1 point. Those who could not countreceived 0 points.	0-2
	Serial 7	Respondents were asked to subtract seven from 100 in the first step and asked to continue subtracting seven from the previous number in each subsequent step for five times. Each correct response received 1 point.	0-5
	Computation	This test involved the mathematical operation of division. Respondents were asked to compute the net sale price of a product after considering a discount sale of half of the original price.	0-2
Executive function: 0-4	Executive (paper folding)	This is a three-stage command task. The respondents were instructed totake a piece of paper from the interviewer, turn it over, fold it in half, and give it back to the interviewer. Three points were given if each task was completed successfully.	0-3
	Pentagon drawing	Visio-construction is the ability to coordinate fine motor skills with visio-spatial abilities, usually by reproducing geometric figures. Respondents were asked to copy two overlapping pentagons and scored 1 point for a correct drawing.	0-1

Object naming: 0-2		The interviewer points to a specific object and asks the respondent to name it. Two objects were pointed out and 1 point was given for each correct response.	0-2
Cognition	Composite cognitive index	Combined score of memory (total word recall), orientation, arithmetic function, executive function, and object naming.	0-43

190 After adding the scores for each component, the overall score ranged from 0 to 43, and a higher 191 score indicates better cognitive functioning.

Social engagements

Following the previous studies [55, 56], we have derived social engagement based on five indicators: marital status, living arrangement, availability of confidant, and participation in indoor games, social and cultural functions. Current marital status was set to unmarried (single, widowed, separated, or divorced; coded as 0) versus married (married or living with a partner; coded as 1). Regarding current living arrangements, living alone was categorized as 0, and living with extended family is categorized as 1. The availability of a current confidant relationship (spouse, son or daughter, grandchildren, or relatives, etc.) was coded as no (0) or yes (1). Two more indicators based on participation in social activities including, playing cards or indoor games and attending social and cultural functions, were included (0 = several times a month/at least once a month/rarely/once in a year/never/not relevant, 1 = daily/several times a week/less than weekly). A composite index of social engagement was constructed by summing the scores for all five indicators, ranging from 0 to 5. Based on the distribution of the overall composite index, individuals were categorized as having low (0-2 social ties; 27.6 percent), medium (3 ties; 62 percent), or high (4-5 ties; 10.1 percent) levels of social engagement.

Depressive symptoms

The LASI has used an internationally validated 10-item Center for Epidemiological Studies-Depression (CES-D) scale to capture the presence of depressive symptoms in Indian older adults [57, 58]. The ten items in CES-D consist of seven negative symptoms (feeling depressed, low energy, trouble concentrating, feeling alone, bothered by things, fear of something, and everything is an effort) and three positive symptoms (feeling happy, satisfied, and hopeful). The possible responses for these items were: rarely or never (< 1 day), sometimes (1 or 2 days), often (3 or 4 days), and most or all of the time (5-7 days) in a week prior to the interview. For the negative symptoms, rarely or never (< 1 day) and sometimes (1 or 2 days) were scored zero,

- 217 and often (3 or 4 days) and most or all of the time (5-7 days) categories were scored one. 218 Scoring was reversed for positive symptoms. The overall depressive symptoms score,
- calculated by adding the scores from ten items, ranges from 0 to 10. A score of four or higher
- is considered to represent clinically significant symptoms in the 10-item scale [59].

Covariates

- After an extensive literature review, potentially related covariates were selected which include socio-demographic characteristics, lifestyle factors, health conditions, and cognitive and social
- 225 Socio demographie endideteristics, mestyle factors, neutri conditions, and cognitive and social
- activities. Socio-demographic characteristics were: age (in chronological years); gender (men,
- women); education (no education, primary, secondary, higher); currently working status (no,
- yes); residence (rural, urban); religion (Hindu, Muslim, Christian, others); and Region (North,
- 227 Central, East, Northeast, West, and South), monthly per capita expenditure (MPCE) (poorest,
- poorer, middle, richer, and richest). The lifestyle factors were currently smoking (no, yes);
- 229 currently consuming smokeless tobacco (no, yes), alcohol drinking (never, infrequent non-
- 230 heavy, frequent non-heavy, heavy episodic drinker), and body mass index (BMI) (underweight
- $(<18.5 \text{ kg/m}^2)$, normal $(18.5-24.9 \text{ kg/m}^2)$, overweight/obese $(>25.0 \text{ kg/m}^2)$). Health conditions
- 232 include biometric measurement-based hypertension status (normal, pre-hypertensive, high
- blood pressure), and self-reported conditions such as diabetes, cancer, heart disease, and stroke
- were coded as no and yes. The older adults were categorized as having normal blood pressure
- 235 (BP) (Systolic BP < 120 mmHg and Diastolic BP < 80 mmHg), pre-hypertensive (SBP: 120-139
- mmHg and DBP: 80-89 mmHg), and high blood pressure (SBP≥ 140 mmHg and DBP≥ 90
- 237 mmHg).
- 238 The 'caste' of the household is reported by the head of the household, and it is generally
- grouped as four categories: Scheduled Caste (SC), Schedules Tribes (ST), Other Backward
- Class (OBC), and other than SC/ST/OBC. SC and ST are considered as among the most
- deprived and socioeconomically disadvantaged groups in India. The individuals in the general
- class represent the hierarchically higher social status in India. On the other hand, although,
- OBC is an educationally, economically, and socially backward group, but, hierarchically, this
- group is considered as in better social position than SC and ST category [60].
- According to the procedure suggested by Dong and Simon [61], we included four social
- participation activities: (1) eat out of the house, (2) go to the park/beach, visit relatives/friends,
- 247 (3) go out to a movie, and (4) attend political/community group meetings. Based on the
- frequency of participation, responses were coded as '1' for daily/several times a week/less than

weekly, and '0' for several times a month/at least once a month/rarely/once in a year/never/not relevant for these activities.

Statistical analysis

Descriptive statistics (means and percentages) were used to present the characteristics of the older adults included in the final sample. Two sample test for difference of mean/ proportion was used to assess the gender differences in the reporting of cognition score. Moreover, linear regression models were employed to determine the association of two-way stratification of social engagements and depressive symptoms, and social engagement and gender, and gender and depressive symptoms with cognitive function. Also, linear regression models were used to assess the association of three-way stratification of social engagement, gender, and depressive symptoms with cognitive functioning. We conducted a correlation analysis and a linear regression analysis of depressive symptoms on social engagement. The total effect was divided into direct effects (the association of social engagement with cognitive function controlling for depressive symptoms) and indirect effects (the association of social engagement with cognitive function through depressive symptoms) using linear regression based on Karlson–Holm–Breen (KHB) method [62–64] for the whole sample. The KHB method is a recently developed method for assessing the confounding effects that allow total effects to be divided into direct and indirect effects for both discrete and continuous variables. Contrary to other decomposition methods, the KHB-method provides unbiased decomposition results [65]. The confounding percentage (the indirect effect divided by the total effect) is interpreted as the percentage of the association explained by the confounder variable. All statistical models were adjusted for various predictors, including age, gender, education, working status, residence, religion, caste, region, BMI, MPCE, smoking status, consuming smokeless tobacco, alcohol drinking, hypertension, diabetes, cancer, heart disease, and stroke. The statistical analysis was performed using Stata 15.1. We incorporated the complex design of the survey data used in the study. Stata's survey command (svyset) was used to incorporate the complex design of LASI, and adjusted for sampling weight, clustering, and stratification in the sampling design. The data set do not contain the information of stratum and so, place of residence (rural/urban) is considered as two different strata. A p-value of less than 0.05 was considered statistically significant.

Patient and public involvement

279 None.

Results

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

60

Table 2 presents the descriptive information for cognitive function, socio-demographic factors, lifestyle factors, and chronic conditions of older men and women included in the analysis. The mean cognition score of men was higher than that of women (25.9 vs. 21.3). Nearly 85% of older men had at least a medium level of social engagements, while this proportion was 53% for older women. Regarding depressive symptoms score, older women had a slightly higher mean score than older men (3.0 vs. 2.8). On average, men were slightly older than women (68.7 vs. 68.2 years). A higher proportion of older women were uneducated than older men (68.7% vs. 35.1%). Around 44.0% of the older men and 19.3% of women were currently working at the time of the survey. A higher proportion of older women were overweight or obese than men (28.6% vs. 20.2%). Around 25% of men and only 4% of women were current tobacco smokers, while 24% of men and 16% of women were consuming smokeless tobacco at the time of the survey. Alcohol consumption is much higher among older men than women (32.4% vs. 4.4%). According to measured hypertension status, the prevalence of high blood pressure was slightly higher among older women than men (39.9% vs. 37.9%). According to religion, around three-fourths of both older men and women participants were Hindus. Most of the participants were rural residents (67.7% men vs. 65.8% women). Table 2 also shows the gender comparison across all the selected variable for the sample. The results indicate the significant gender differences in the social engagement, cognitive functioning, depressive symptoms, age, social activities, educational status, work status, residence, BMI, current use of tobacco use, heart disease and stroke.

Table 2. Descriptive statistics for sample characteristics of older adults included in the analysis, by gender, India (N = 23,584)

Men Women Difference p-value for % % (%)difference n n Social engagement Low 1,681 14.7 5,720 47.0 -32.3< 0.001 Medium 8,347 73.2 5,705 46.8 26.4 < 0.001 1,375 < 0.001 High 12.1 756 6.2 5.9 25.9 < 0.001 Cognition^a 6.7 21.3 7.0 4.6 Depressive symptoms score^a 2.8 1.6 3.0 1.7 -0.2< 0.001† Age (years)a 68.7 7.1 68.2 7.2 0.5 < 0.001 <0.001† Social Activities (0-5)^a 0.3 0.6 0.2 0.5 0.1 **Education level** 4,005 No education 35.1 8,364 68.7 -33.6 < 0.001 Primary 3,505 2,404 19.7 30.7 11.0 < 0.001 Secondary 2,537 22.2 1,006 8.3 13.9 < 0.001 Higher 1,356 11.9 407 3.3 < 0.001 8.6 **Currently working** 6,383 56.0 9.830 80.7 -24.7< 0.001 No Yes 5,020 44.0 19.3 24.7 < 0.001 2,351 Place of residence 65.8 1.9 0.002 Rural 7,719 67.7 8,018 Urban 3,684 32.3 4,163 34.2 -1.9 0.002

D.P.						
Religion	0.407	72.7	0.000	740	0.2	0.662
Hindu	8,405	73.7	9,009	74.0	-0.3	0.662
Muslim	1,265	11.1	1,311	10.8	0.3	0.416
Christian	1,154	10.1	1,256	10.3	-0.2	0.628
Others ^{\$}	579	5.1	605	5.0	0.1	0.697
Caste						
Scheduled caste	1,921	16.8	2,032	16.7	0.1	0.735
Scheduled tribe	1,975	17.3	2,159	17.7	-0.4	0.414
OBC#	4,428	38.8	4,681	38.4	0.4	0.525
Others	3,079	27.0	3,309	27.2	-0.2	0.778
Regions						
North	2,104	18.5	2,291	18.8	-0.3	0.482
Central	1,588	13.9	1,531	12.6	1.3	0.002
East	2,276	20.0	2,246	18.4	1.6	0.003
Northeast	1,399	12.3	1,466	12.0	0.3	0.583
West	1,409	12.4	1,666	13.7	-1.3	0.003
South	2,627	23.0	2,981	24.5	-1.5	0.010
BMI categories						
Normal	6,406	56.2	5,961	48.9	7.3	< 0.001
Underweight	2,698	23.7	2,738	22.5	1.2	0.031
Overweight/Obese	2,299	20.2	3,482	28.6	-8.4	< 0.001
MPCE quintile			•			
Poorest	2,283	20.0	2,544	20.9	-0.9	0.100
Poorer	2,318	20.3	2,543	20.9	-0.6	0.297
Middle	2,334	20.5	2,528	20.8	-0.3	0.588
Richer	2,283	20.0	2,364	19.4	0.6	0.236
Richest	2,185	19.2	2,202	18.1	1.1	0.033
Currently smoking tobacco	,		, -			
No	8,570	75.2	11,640	95.6	-20.4	< 0.001
Yes	2,833	24.8	541	4.4	20.4	< 0.001
Currently consuming	_,					
smokeless tobacco						
No	8,638	75.8	10,233	84.0	-8.2	< 0.001
Yes	2,765	24.2	1,948	16.0	8.2	< 0.001
Drinking status	_,,					
Never	7,718	67.7	11,650	95.6	-27.9	< 0.001
Infrequent non-heavy	2,269	19.9	299	2.5	17.4	< 0.001
Frequent non-heavy	748	6.6	122	1.0	5.6	< 0.001
Heavy episodic drinker	668	5.9	110	0.9	5.0	0.193
Hypertension Status		0.5	110		2.0	0.175
Normal	2,612	22.9	2,774	22.8	0.1	0.808
Pre-hypertensive	4,465	39.2	4,550	37.4	1.8	0.004
High BP	4,326	37.9	4,857	39.9	-2.0	0.002
Diabetes	.,520	57.5	.,007	23.3	2.0	0.002
No	9,599	84.2	10,388	85.3	-1.1	0.019
Yes	1,804	15.8	1,793	14.7	1.1	0.019
Cancer	1,001	13.0	1,775	1 1.7	1.1	0.01)
No	11,332	99.4	12,088	99.2	0.2	0.193
Yes	71	0.6	93	0.8	-0.2	0.193
Heart disease	/ 1	0.0)3	0.0	-0.2	0.193
No	10,721	94.0	11,678	95.9	-1.9	< 0.001
Yes	682	6.0	503	93.9 4.1	1.9	< 0.001
Stroke	002	0.0	503	7.1	1.7	\U.UU1
No	11,091	97.3	11,978	98.3	-1.0	< 0.001
Yes	312	97.3 2.7	203	98.3 1.7	1.0	< 0.001
168	312	2.1	203	1./	1.0	\0.001
Total	11,403	100	12,181	100		
Note #Other Backward Classes					uddhiat/maa 1	Duddhiat

Note. *Other Backward Classes, aMean and standard deviation; Sincludes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure.

The average cognitive score increased with an increase in the level of social engagement, and it was higher among the non-depressed older adults (24.0 vs. 22.1) (Supplementary; Table S1). Moreover, the prevalence of depressive symptoms decreased with an increase in the level of social engagement.

Table 3. Gender comparison of the mean cognition score (0-43) according to background characteristics in older adults, India (N = 23,584)

to background characteristics in older adults, India $(N = 23,584)$					
				p-value	
				for	
	Men	Women	Difference	difference1	
Social engagement					
Low	23.7	19.7	4.0	< 0.001	
Medium	26.0	22.3	3.7	< 0.001	
High	27.6	24.2	3.4	< 0.001	
Age groups					
60-69	26.6	22.2	4.4	< 0.001	
70-79	24.9	19.9	5.0	< 0.001	
80+	23.3	18.2	5.1	< 0.001	
Social activities					
0	23.1	18.7	4.4	< 0.001	
1	25.3	21.3	4.0	< 0.001	
2	28.8	25.1	3.7	< 0.001	
- 3+	30	28.2	1.8	< 0.001	
Education level		_0	1.0	0.001	
No education	21.5	19.0	2.5	< 0.001	
Primary	26.1	24.5	1.6	< 0.001	
Secondary	29.7	29.6	0.1	0.203	
Higher	31.0	31.9	-0.9	< 0.001	
Currently working	31.0	31.5	0.5	0.001	
No	25.7	21.2	4.5	< 0.001	
Yes	26.0	20.8	5.2	< 0.001	
Place of residence	20.0	20.0	3.2	10.001	
Rural	24.7	19.8	4.9	< 0.001	
Urban	28.7	24.4	4.3	< 0.001	
Religion	20.7	21.1	1.5	10.001	
Hindu	25.9	21.2	4.7	< 0.001	
Muslim	25.9	20.5	5.4	< 0.001	
Christian	24.6	21.8	2.8	< 0.001	
Others ^{\$}	24.3	21.2	3.1	< 0.001	
Caste	21.5	21.2	5.1	0.001	
Scheduled caste	24.1	19.4	4.7	< 0.001	
Scheduled tribe	22.2	17.8	4.4	< 0.001	
OBC#	26.2	21.7	4.5	< 0.001	
Others	27.4	22.4	5.0	< 0.001	
Regions	27.1	22.1	2.0	0.001	
North	25.4	20.0	5.4	< 0.001	
Central	25.9	20.8	5.1	< 0.001	
East	25.4	20.3	5.2	< 0.001	
Northeast	26.5	21.3	5.2	< 0.001	
West	25.7	21.0	4.7	< 0.001	
South	26.3	23.2	3.1	< 0.001	
Doum	20.5	23.2	J.1	·0.001	

BMI categories				
Normal	26.0	20.8	5.2	< 0.001
Underweight	23.3	18.2	5.1	< 0.001
Overweight/Obese	28.7	24.5	4.2	< 0.001
MPCE quintile				
Poorest	24.2	19.6	4.6	< 0.001
Poorer	24.9	20.3	4.6	< 0.001
Middle	26.4	21.7	4.7	< 0.001
Richer	26.3	21.9	4.4	< 0.001
Richest	27.4	22.7	4.7	< 0.001
Currently smoking				
tobacco				
No	26.1	21.2	4.9	< 0.001
Yes	24.7	18.1	6.6	< 0.001
Currently consuming				
smokeless tobacco				
No	26.1	21.4	4.7	< 0.001
Yes	25.0	19.5	5.5	< 0.001
Drinking status				
Never	26.2	21.2	5.0	< 0.001
Infrequent non-heavy	25.4	18.9	6.5	< 0.001
Frequent non-heavy	23.5	16.7	6.8	< 0.001
Heavy episodic drinker	22.9	15.7	7.2	< 0.001
Hypertension status				
Normal	24.7	20.6	4.1	< 0.001
Pre-hypertensive	26.1	21.6	4.5	< 0.001
High BP	26.2	20.9	5.3	< 0.001
Diabetes				
No	25.5	20.8	4.7	< 0.001
Yes	27.7	23.3	4.4	< 0.001
Cancer				
No	25.8	21.1	4.7	< 0.001
Yes	27.8	22.4	5.4	< 0.001
Heart disease				
No	25.7	21.1	4.6	< 0.001
Yes	27.7	22.5	5.2	< 0.001
Stroke				
No	25.8	21.1	4.7	< 0.001
Yes	24.3	19.4	4.9	< 0.001
Total	25.8	21.1	4.7	< 0.001

Note: ¹Based on two sample t-test.

PMI actogories

Parsi/Zoroastrian and others; BP- Blood Pressure.

Table 3 presents the gender differences in the mean cognition score according to selected covariates. Results suggest a significant gender difference in the cognitive performance (difference=4.7; p<0.001). Men had significantly greater mean cognition score than women irrespective of age, working status, number of social activities, residence, obesity status, MPCE

^{*}Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain,

quintiles, tobacco and alcohol use, and morbidity status. With regard to education, women with higher education had significantly greater mean cognitive score than men.

Table 4. Linear regression results of stratifications of social engagement, gender, and depressive symptoms on cognitive functioning (N = 23,584)

	β	(95% CI)
Social engagements # Depressive symptoms	-	
Low + depressive symptoms	-0.61***	(-0.66, -0.56)
Medium + depressive symptoms	-0.28***	(-0.33, -0.23)
High + depressive symptoms	-0.10*	(-0.20, -0.01)
Social engagements # Gender		
Low + Men	-1.12***	(-1.53, -0.72)
Low + Women	-3.45***	(-3.81, -3.08)
Medium + Men	-0.35*	(-0.68, -0.01)
Medium + Women	-2.39***	(-2.75, -2.03)
High + Men®		
High + Women	-1.54***	(-2.11, -0.98)
Gender # Depressive symptoms		
Men + depressive symptoms	-0.10***	(-0.15, -0.05)
Women + depressive symptoms	-0.66***	(-0.70, -0.61)
Social engagements # Gender # Depressive		
symptoms		
Low + Men + depressive symptoms	-0.24***	(-0.31, -0.16)
Low + Women + depressive symptoms	-0.75***	(-0.80, -0.70)
Medium + Men + depressive symptoms	-0.07**	(-0.12, -0.02)
Medium + Women + depressive symptoms	-0.55***	(-0.60, -0.49)
High + Men + depressive symptoms	0.07	(-0.05, 0.18)
High + Women + depressive symptoms	-0.35***	(-0.50, -0.20)

Note: Controlled variables were age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, consuming smokeless tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval; ® - reference category.

* p<0.05. ** p<0.01, *** p<0.001

 Table 4 shows the linear regression results for the two-way stratifications of social engagement and depressive symptoms, and social engagement and gender, and, gender and depressive symptoms, and three-way stratification of the social engagement, gender, and depressive symptoms on the cognitive functioning after adjusting the selected explanatory variables including socio-demographic, lifestyle, and chronic conditions. Two-way stratification of social engagements and depressive symptoms depicts the estimated effects of the depressive symptoms on cognitive functioning for all levels of social engagement. The negative relationship between depressive symptoms and cognitive score significantly reduces with higher level of social engagement. Furthermore, the two-way stratification of social engagement and gender suggests that men with low level of social engagements had significantly poor cognitive functioning (β =-1.12; 95%CI: -1.53,-0.72) compared with men

with high level of social engagements. On the other hand, women with higher level of social engagement performed poorly on cognitive tests (β =-1.54; 95%CI: -2.11,-0.98) than men with higher social engagements. The two-way stratification of the gender and depressive symptoms suggests that the magnitude of negative relationship between depressive symptoms and cognitive functioning is higher in women than in men. The results corresponding to three-way stratification between social engagement, gender, and depressive symptoms portrays that social engagement's buffering effects are lower in women than men. The complete table with all the covariates is provided in the supplementary material (Table S2).

Table 5. Linear regression results of stratifications of gender and education on cognitive functioning in older adults, LASI, 2017-18 (N = 23,584)

	β	(95% CI)
Gender # Education		
Men # No education®		
Men # Primary	3.95***	(3.71,4.19)
Men # Secondary	6.73***	(6.46, 7.01)
Men # Higher	7.24***	(6.90, 7.57)
Women # No education	-2.60***	(-2.82, -2.39)
Women # Primary	1.80***	(1.49, 2.10)
Women # Secondary	5.86***	(5.45, 6.27)
Women # Higher	7.67***	(7.06, 8.28)

Note: Controlled for age, social engagements, depressive symptoms working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, consuming smokeless tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval; ® - reference category.

* p<0.05, ** p<0.01, *** p<0.001

Table 5 presents the regression results for two-way stratification of gender and educational status on the cognitive functioning after controlling for selected covariates. The results indicate that men with higher education significantly better cognition than men with no education (β =7.24; 95% CI: 6.90, 7.57). Women with no education had poor cognitive performance than men with no education (β =-2.60; 95% CI: -2.82, -2.39). The complete table including all the covariates adjusted in the analysis, is provided in supplementary material (Table S3). The correlation between social engagement and depressive symptoms was -0.12 (p<.001) (Supplementary; Table S4).

The linear regression model demonstrated that higher levels of social engagement was significantly negatively associated with depressive symptoms (β =-0.18, p<.001) (Supplementary; Table S4). Table 6 shows the results obtained from KHB analysis for the

sample under study. After controlling the selected covariates, results indicate that depressive symptoms significantly confounded 14.4% of the association between social engagement and cognitive function.

Table 6. Effect of social engagement on cognition confounded by depressive symptoms (Karlson–Holm–Breen method), by gender, LASI, 2017-19 (N = 23,584)

	β	(95% CI)
Social Engagements		
Total Effect	0.52***	(0.40, 0.63)
Direct effect of social engagement	0.44***	(0.33, 0.55)
Indirect effect via depressive symptoms	0.07***	(0.06, 0.09)

N	23,584
ConfPerca	14.40%

Note: Controlled variables were age, gender, education, working status, social activities, place of residence, religion, caste, region, body mass index (BMI), MPCE, smoking status, consuming smokeless tobacco, alcohol status, hypertension, diabetes, cancer, heart disease, and stroke. CI = confidence interval. ^aConfounding percentage.

* p<0.05, ** p<0.01, *** p<0.001

Discussion

The COVID-19 pandemic has called for international attention on the importance of social relationships/ social engagement/ social inclusion in terms of supporting the physical, emotional and cognitive health of older adults [66, 67]. Evidence suggests significant correlations exist between engaging in social activities with enhanced cognitive outcomes [10, 50]. However, depression and other mental illnesses that may lead to reduced social networks and activities resulting in cognitive decline among older adults are little explored, especially in LMICs. The present study examined the direct, indirect, and total effects of social engagement on cognitive functioning confounded by depressive symptoms among older adults in India. We found that a higher level of social engagement was associated with greater cognitive functioning, whereas depressive symptoms confounded 14.4% of the observed association. In addition, gender-based moderation effects were also examined which were found significant with female disadvantages.

Structural aspects of social network are recommended to be essential to maintain an optimal level of cognitive functioning [68]. As documented, social networks and activity are related concepts and individuals who have a larger social networks tend to take part in more social activities [69]. Similarly, the satisfaction achieved from the social and support networks was observed to lead to better episodic memory performance, and processing speed and global

cognition [70]. The main effect hypothesis in the present study is confirmed by the results showing that social engagements are independently associated with a greater level of cognitive functioning. The finding is consistent with previous studies linking the social involvement enhancing the wellbeing and boosting the self-esteem and creating a sense of belonging that result in better cognitive functioning [71–73]. A systematic review reported that although the exact nature of the associations are unclear, different aspects of social relationships such as social activity, social networks and social support and composite measures of social relationships are associated with cognitive functioning [74]. Thus, social engagement interventions should be prioritized in public policy to help older adults optimize their cognitive health, regardless of underlying mechanisms.

Although social engagements including the structural support from the spouse and family members are found to enhance cognitive functioning [75–77], the role of mental illnesses adversely affecting the association is less investigated. A recent study found the mediating role of hippocampal volume of brain which is known to be affected by a variety of psychiatric disorders in the association of emotional support with specific cognitive domains [78]. Consistently, the current results showed that depressive symptom was significant confounder in the social engagement-cognitive functioning relationship. The finding is also in parallel with a recent study conducted in China showing the mediating role of depressive symptoms in the protective effect of frequent exercise on cognitive functioning [79]. Therefore, our results support the previous finding that the protective effect of social relationships is more related to the aspects of quality and functionality of such relationships than the quantity and structural characteristics [80]. Furthermore, the indirect effect of social engagements on cognitive functioning suggest that social resources can be related to better cognitive functioning through minimizing mental disorders in older adults, indicating that depressive symptoms may serve as an important intervening target and that reversing such illnesses might be related to a greater cognitive functioning. This is similar to an earlier finding that lack of social engagements may be particularly detrimental to late-life cognitive abilities when it is associated with mental illnesses [81]. Earlier meta-analyses and reviews have investigated loneliness, being one of the depressive symptoms, and social isolation together as part of health promotion interventions and suggested that loneliness is often experienced as a part of lack of social engagement and partly attribute to the factors of cognitive declines [82, 83]. This indicates the need for social interventions that promote active participation of older people and help them in maintaining social and structural relationships and coping with age-related stress factors.

The available evidence suggests that there are gender differences in the relationship between social engagement and cognitive functioning. For instance, in developed countries, numerous studies have found that the cognitive performance of older women is as good as or better than that of men [84–86]. In contrast, studies of cognitive abilities in developing countries find older women often perform worse than older men [87, 88]. Moreover, earlier studies in India reported a relatively lower cognitive functioning level among older women than men [46–48, 89]. In line with the previous literature, the current findings suggest a significant female disadvantage in cognitive function among older Indian adults and call for special attention with regard to public policy frameworks, clinical practice and future research.

On the other hand, studies suggest that a greater social engagement protects against rapid cognitive decline, particularly among low-educated older women [90]. In addition, social networks were reported as highly influential for women than men in determining better health behaviours related to cognitive maintenance [87]. In contrast to these studies, our findings suggest a greater buffering effects of the social engagements on cognitive functioning in men than in women. Nevertheless, it still needs to be further investigated whether gender differences exist in the association of social engagements confounded by depressive symptoms with cognitive functioning using longitudinal design.

There are several limitations of the present study to be noted. The composite index of social engagement was generated from the questions which were self-reported. The responses may have been exaggerated or under-reported. However, self-reporting is endorsed as an optimal method to measure how the participants subjectively find themselves having social networks and involved in social activities. On the other hand, exploring the aspect of social engagements that include participating in indoor games for example, as distinct from domains of cognitive activities is questionable, since it is not feasible to completely differentiate social engagement from cognitive engagements. Also, many activities have a psychiatric element which may have positive impacts on cognitive processes and a complex confounding effect in the associations of three key variables in our study. Hence, considering the differences in relationships between cognitive domains and the distinct forms of social engagements that also include structural support from marital status and living arrangements, it is important to define social relationships more clearly in future studies to achieve more reliable findings.

Besides, in a population with huge proportion of illiterate people, the assessment of cognitive functioning with multiple domains might be subject to measurement error which can create

bias in the current findings. Similarly, older women in India who are largely deprived of education and other opportunities including work participation might have resulted in greater gender gap in cognitive functioning observed in our study. Finally, the present study was cross-sectional, and thus, a causal relationship between the variables cannot be inferred. Further investigation with longitudinal design is needed to explore the neural mechanisms that underlie the effects of social engagements on cognitive decline. Future research might also consider the impact of technology, internet and social media on social relationships, particularly feelings of social support.

Conclusion

- The positive association of social engagement with cognitive functioning was significantly confounded by depressive symptoms, suggesting the need for maintaining social relations that help improve cognitive functioning among older adults. This needs to be confirmed with future longitudinal and interventional studies. The study also highlights the potential of social engagements independently or with others as an intervention to prevent cognitive impairment among older individuals, especially among women.
- **Abbreviations:**
- **MPCE**: Monthly Per capita Consumption Expenditure
- **CES-D**: Center for Epidemiological Studies-Depression
- **KHB**: Karlson–Holm–Breen
- **Declarations**
- **Contributors:** MK and LKD conceived and designed the research paper. MK analyzed the
- data. MK and TM contributed agents/materials/analysis tools. MK and TM wrote the
- 454 manuscript. LKD provides supervision and validation. MK, TM and LKD refined the
- 455 manuscript. All authors have read and approved the manuscript.
- **Funding:** No funding was received for the study.
- **Competing interests:** The authors declare that there is no competing interest.
- **Patient consent for publication:** Not required.
- Ethics approval: The present study used the existing data; therefore, no ethics approval was
- required. The administrative permission to access and use the data for the present study was

- taken from the International Institute for Population Sciences, Mumbai, which conducted the LASI survey.
 - **Provenance and peer review:** Not commissioned; externally peer reviewed.
- Data availability statement: The study uses secondary data which is available in the private database and accessible on reasonable request via

466 https://www.iipsindia.ac.in/content/lasiwave-i.

References

- Hsiao H-T, Li S-Y, Yang Y-P, et al. Cognitive function and quality of life in communitydwelling seniors with mild cognitive impairment in Taiwan. *Community mental health journal* 2016; 52: 493–498.
- 472 [2] McGuire LC, Ford ES, Ajani UA. The impact of cognitive functioning on mortality and the 473 development of functional disability in older adults with diabetes: the second longitudinal 474 study on aging. *BMC geriatrics* 2006; 6: 1–7.
- 475 [3] Aarts S, Van den Akker M, Tan FES, et al. Influence of multimorbidity on cognition in a normal aging population: a 12-year follow-up in the Maastricht aging study. *International journal of geriatric psychiatry* 2011; 26: 1046–1053.
- 478 [4] Lv X, Li W, Ma Y, et al. Cognitive decline and mortality among community-dwelling Chinese older people. *BMC medicine* 2019; 17: 1–10.
- 480 [5] United Nation. World Population Ageing 2017 report. 2017.
- Bassuk SS, Glass TA, Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. *Annals of internal medicine* 1999; 131: 165–173.
- 483 [7] Baltes MM. *The many faces of dependency in old age*. Cambridge University Press, 1996.
- 484 [8] Li Y, Xu L, Chi I, et al. Participation in productive activities and health outcomes among older adults in urban China. *The Gerontologist* 2014; 54: 784–796.
- Holtzman RE, Rebok GW, Saczynski JS, et al. Social network characteristics and cognition in middle-aged and older adults. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 2004; 59: 278–284.
- Krueger KR, Wilson RS, Kamenetsky JM, et al. Social engagement and cognitive function in old age. *Experimental aging research* 2009; 35: 45–60.
- 491 [11] Béland F, Zunzunegui MV, Alvarado B, et al. Trajectories of cognitive decline and social
 492 relations. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 493 2005; 60: 320–330.
- Zunzunegui MV, Alvarado BE, Del Ser T, et al. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults.
 Journals of Gerontology Series B Psychological Sciences and Social Sciences 2003; 58: 93– 100.
- Kim YB, Lee SH. Social network types and cognitive decline among older Korean adults: A
 longitudinal population-based study. *International Journal of Geriatric Psychiatry* 2019; 34:
 1845–1854.
- 501 [14] Lee SH, Kim YB. Which type of social activities may reduce cognitive decline in the elderly?: A longitudinal population-based study. *BMC Geriatrics* 2016; 16: 1–9.
- Thomas PA. Trajectories of social engagement and limitations in late life. *Journal of Health and Social Behavior* 2011; 52: 430–443.

- 505 [16] Maffei L, Picano E, Andreassi MG, et al. Randomized trial on the effects of a combined 506 physical/cognitive training in aged MCI subjects: the Train the Brain study. *Scientific Reports* 507 2017; 7: 39471.
- 508 [17] Straubmeier M, Behrndt E-M, Seidl H, et al. Non-pharmacological treatment in people with cognitive impairment: results from the randomized controlled german day care study.

 510 Deutsches Ärzteblatt International 2017; 114: 815.
- 511 [18] Ihle A, Oris M, Baeriswyl M, et al. The longitudinal relation between social reserve and smaller subsequent decline in executive functioning in old age is mediated via cognitive reserve. *International Psychogeriatrics* 2021; 33: 461–467.
- 514 [19] González-Ortega I, González-Pinto A, Alberich S, et al. Influence of social cognition as a mediator between cognitive reserve and psychosocial functioning in patients with first episode psychosis. *Psychological Medicine*. Epub ahead of print 2019. DOI: 10.1017/S0033291719002794.
- 518 [20] Haslam C, Cruwys T, Haslam SA. 'The we's have it': Evidence for the distinctive benefits of group engagement in enhancing cognitive health in aging. *Social Science and Medicine* 2014; 520 120: 57–66.
- 521 [21] Conroy RM, Golden J, Jeffares I, et al. Boredom-proneness, loneliness, social engagement and depression and their association with cognitive function in older people: A population study.

 523 Psychology, Health and Medicine 2010; 15: 463–473.
- [22] Samanta T, Chen F, Vanneman R. Living arrangements and health of older adults in India.
 Journals of Gerontology Series B: Psychological Sciences and Social Sciences 2015; 70: 937–947.
- 527 [23] Srivastava S, Shaw S, Chaurasia H, et al. Feeling about living arrangements and associated 528 health outcomes among older adults in India: a cross-sectional study. *BMC Public Health* 529 2021; 21: 1–14.
- Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income status with psychological distress and subjective well-being: a cross-sectional study among older adults in India. *BMC Psychology* 2021; 9: 1–13.
- 533 [25] Srivastava S, Chauhan S, Muhammad T, et al. Older adults' psychological and subjective well-534 being as a function of household decision making role: Evidence from cross-sectional survey 535 in India. *Clinical Epidemiology and Global Health* 2021; 10: 100676.
- 536 [26] Srivastava S, Purkayastha N, Chaurasia H, et al. Socioeconomic inequality in psychological distress among older adults in India: a decomposition analysis. *BMC Psychiatry* 2021; 21: 1–538 15.
- 539 [27] Fernández-Niño JA, Bonilla-Tinoco LJ, Manrique-Espinoza BS, et al. Work status, retirement, 540 and depression in older adults: An analysis of six countries based on the Study on Global 541 Ageing and Adult Health (SAGE). *SSM - Population Health* 2018; 6: 1–8.
- 542 [28] Anand A. Understanding Depression among Older Adults in Six Low-Middle Income 543 Countries using WHO-SAGE Survey. *Behavioral Health*; 1.
- 544 [29] Smith L, Il Shin J, McDermott D, et al. Association between food insecurity and depression 545 among older adults from low- and middle-income countries. *Depression and Anxiety* 2021; 38: 546 439–446.

- 547 [30] Srivastava S, Debnath P, Shri N, et al. The association of widowhood and living alone with depression among older adults in India. *Scientific Reports* 2021; 1–13.
- Jang Y, Chiriboga DA. Social activity and depressive symptoms in Korean American older adults: The conditioning role of acculturation. *Journal of Aging and Health* 2011; 23: 767–781.
- 551 [32] Strauss J, Park A, Smith JP. Health Outcomes and Socio-Economic Status Among the Elderly 552 in Gansu and Zhejiang Provinces, China: Evidence from the CHARLS Pilot. 2013; 3: 111– 553 142.
- 554 [33] Chiao C, Weng L-J, Botticello AL. Social participation reduces depressive symptoms among older adults: an 18-year longitudinal analysis in Taiwan. *BMC public health* 2011; 11: 1–9.
- Isaac V, Stewart R, Artero S, et al. Social activity and improvement in depressive symptoms in older people: a prospective community cohort study. *The American Journal of Geriatric Psychiatry* 2009; 17: 688–696.
- 559 [35] Lou VWQ, Chi I, Kwan CW, et al. Trajectories of social engagement and depressive 560 symptoms among long-term care facility residents in Hong Kong. *Age and Ageing* 2013; 42: 561 215–222.
- Takagi D, Kondo K, Kawachi I. Social participation and mental health: moderating effects of gender, social role and rurality. *BMC public health* 2013; 13: 1–8.
- Glass TA, De Leon CFM, Bassuk SS, et al. Social engagement and depressive symptoms in late life: longitudinal findings. *Journal of aging and health* 2006; 18: 604–628.
- Fiske A, Wetherell JL, Gatz M. Depression in older adults. *Annual review of clinical psychology* 2009; 5: 363–389.
- Pressman SD, Matthews KA, Cohen S, et al. Association of enjoyable leisure activities with psychological and physical well-being. *Psychosomatic medicine* 2009; 71: 725.
- 570 [40] Vance DE, Marson DC, Triebel KL, et al. Physical activity and cognitive function in older 571 adults: The mediating effect of depressive symptoms. *The Journal of neuroscience nursing: journal of the American Association of Neuroscience Nurses* 2016; 48: E2.
- 573 [41] Muhammad T, Meher T. Association of late-life depression with cognitive impairment: 574 evidence from a cross-sectional study among older adults in India. *BMC Geriatrics* 2021; 21: 575 1–13.
- van den Kommer TN, Comijs HC, Aartsen MJ, et al. Depression and cognition: how do they interrelate in old age? *The American Journal of Geriatric Psychiatry* 2013; 21: 398–410.
- 578 [43] Dickinson WJ, Potter GG, Hybels CF, et al. Change in stress and social support as predictors 579 of cognitive decline in older adults with and without depression. *International journal of geriatric psychiatry* 2011; 26: 1267–1274.
- Van Der Mussele S, Fransen E, Struyfs H, et al. Depression in mild cognitive impairment is associated with progression to alzheimer's disease: A longitudinal study. *Journal of Alzheimer's Disease* 2014; 42: 1239–1250.
- Verdelho A, Madureira S, Moleiro C, et al. Depressive symptoms predict cognitive decline and dementia in older people independently of cerebral white matter changes: The LADIS study. *Journal of Neurology, Neurosurgery and Psychiatry* 2013; 84: 1250–1254.

- Lee J, Shih R, Feeney K, et al. Gender disparity in late-life cognitive functioning in India:
 findings from the longitudinal aging study in India. *Journals of Gerontology Series B: Psychological Sciences and Social Sciences* 2014; 69: 603–611.
- 590 [47] Angrisani M, Jain U, Lee J. Sex differences in cognitive health among older adults in India.
 591 *Journal of the American Geriatrics Society* 2020; 68: S20–S28.
- Jain U, Angrisani M, Langa KM, et al. How much of the female disadvantage in late-life cognition in India can be explained by education and gender inequality. *Sci Rep* 2022; 12: 5684.
- 595 [49] Pillemer S, Ayers E, Holtzer R. Gender-stratified analyses reveal longitudinal associations 596 between social support and cognitive decline in older men. *Aging & mental health* 2019; 23: 597 1326–1332.
- 598 [50] Oh SS, Cho E, Kang B. Social engagement and cognitive function among middle-aged and older adults: gender-specific findings from the Korean longitudinal study of aging (2008–2018). *Scientific Reports* 2021; 11: 1–9.
- [51] International Institute for Population Sciences (IIPS), NPHCE, MoHFW HTHCS of PH
 (HSPH) and the U of SC (USC). Longitudinal Ageing Study in India (LASI) Wave 1, 2017-18,
 India Report. Mumbai., 2020.
- 604 [52] Herzog AR, Wallace RB. Measures of cognitive functioning in the AHEAD study. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 1997; 52: 37–48.
- 606 [53] Meng Q, Wang H, Strauss J, et al. Validation of neuropsychological tests for the China Health 607 and Retirement Longitudinal Study Harmonized Cognitive Assessment Protocol. *International Psychogeriatrics* 2019; 31: 1709–1719.
- Gupta M, Gupta V, Nagar Buckshee R, et al. Validity and reliability of hindi translated version of Montreal cognitive assessment in older adults. *Asian Journal of Psychiatry* 2019; 45: 125–128.
- Zhou Z, Mao F, Han Y, et al. Social engagement and cognitive impairment in older Chinese adults: The mediating role of psychological well-being. *Journal of aging and health* 2020; 32: 573–581.
- [56] Sampson EL, Bulpitt CJ, Fletcher AE. Survival of community-dwelling older people: the effect
 of cognitive impairment and social engagement. *Journal of the American Geriatrics Society* 2009; 57: 985–991.
- Radloff LS. The CES-D scale: A self-report depression scale for research in the general population. *Applied psychological measurement* 1977; 1: 385–401.
- [58] Irwin M, Artin KH, Oxman MN. Screening for Depression in the Older Adult. *Archives of Internal Medicine* 1999; 159: 1701.
- [59] Kumar S, Nakulan A, Thoppil SP, et al. Screening for depression among community-dwelling elders: usefulness of the center for epidemiologic studies depression scale. *Indian Journal of Psychological Medicine* 2016; 38: 483–485.
- [60] Chitnis S. Definition of the terms scheduled castes and scheduled tribes: a crisis of
 ambivalence. The Politics of Backwardness: Reservation Policy in India New Delhi, India:
 Centre for Policy Research.

- [61] Dong X, Li Y, Simon MA. Social engagement among U.S. Chinese older adults-findings from the PINE study. *Journals of Gerontology Series A Biological Sciences and Medical Sciences* 2014; 69: S82–S89.
- 631 [62] Karlson KB, Holm A. Decomposing primary and secondary effects: A new decomposition method. *Research in Social Stratification and mobility* 2011; 29: 221–237.
- [63] Karlson KB, Holm A, Breen R. Comparing regression coefficients between same-sample
 634 nested models using logit and probit: A new method. Sociological methodology 2012; 42: 286–
 635 313.
- Kohler U, Karlson KB, Holm A. Comparing coefficients of nested nonlinear probability models. *The Stata Journal* 2011; 11: 420–438.
- Kohler U, Karlson K. KHB: Stata module to decompose total effects into direct and indirect via KHB-method.
- 640 [66] Bethell J, Aelick K, Babineau J, et al. Social Connection in Long-Term Care Homes: A
 641 Scoping Review of Published Research on the Mental Health Impacts and Potential Strategies
 642 During COVID-19. Journal of the American Medical Directors Association 2021; 22: 228643 237.e25.
- 644 [67] Doll-Wilhelm JL. The Impact of Social Isolation and Cognitive Decline in Older Adults: A 645 Systematic Literature Review.
- 646 [68] Li M, Dong X. Is Social Network a Protective Factor for Cognitive Impairment in US Chinese 647 Older Adults? Findings from the PINE Study. *Gerontology* 2018; 64: 246–256.
- 648 [69] Ozbay F, Johnson DC, Dimoulas E, et al. Social support and resilience to stress: from neurobiology to clinical practice. *Psychiatry (Edgmont (Pa : Township))* 2007; 4: 35–40.
- [70] Hughes TF, Andel R, Small BJ, et al. The association between social resources and cognitive
 change in older adults: Evidence from the Charlotte County Healthy Aging Study. *Journals of Gerontology Series B Psychological Sciences and Social Sciences* 2008; 63: 241–244.
- Thoits PA. Mechanisms linking social ties and support to physical and mental health. *Journal* of Health and Social Behavior 2011; 52: 145–161.
- Kuiper JS, Zuidersma M, Zuidema SU, et al. Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. *International Journal of Epidemiology* 2016; 45: 1169–1206.
- 658 [73] Muhammad T, Srivastava S, Sekher T V. Association of self-perceived income sufficiency 659 with cognitive impairment among older adults: a population-based study in India. *BMC Psychiatry* 2021; 21: 1–14.
- Kelly ME, Duff H, Kelly S, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. *Systematic Reviews*; 6. Epub ahead of print 2017. DOI: 10.1186/s13643-017-0632-2.
- Barnes LL, De Leon CFM, Wilson RS, et al. Social resources and cognitive decline in a population of older African Americans and whites. *Neurology* 2004; 63: 2322–2326.

- 666 [76] Ayotte BJ, Allaire JC, Whitfield KE. Social support, physical functioning, and cognitive 667 functioning among older African American adults. *Aging, Neuropsychology, and Cognition* 668 2013; 20: 494–510.
- 669 [77] Muhammad T, Govindu M, Srivastava S. Relationship between chewing tobacco, smoking, consuming alcohol and cognitive impairment among older adults in India: a cross-sectional study. *BMC Geriatrics* 2021; 21: 85.
- Kim GE, Han JW, Kim TH, et al. Hippocampus mediates the effect of emotional support on cognitive function in older adults Authors. *The Journals of Gerontology: Series A* 2020; 75: 1502–1507.
- Yuan M, Fu H, Liu R, et al. Effect of frequency of exercise on cognitive function in older adults: Serial mediation of depression and quality of sleep. *International Journal of Environmental Research and Public Health*; 17. Epub ahead of print 2020. DOI: 10.3390/ijerph17030709.
- 679 [80] Amieva H, Stoykova R, Matharan F, et al. What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. *Psychosomatic Medicine* 2010; 72: 905–911.
- Yang R, Wang H, Edelman LS, et al. Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. *Age and Ageing* 2020; 49: 599–604.
- Valtorta N, Hanratty B. Loneliness, isolation and the health of older adults: Do we need a new research agenda? *Journal of the Royal Society of Medicine, Supplement* 2012; 105: 518–522.
- 686 [83] Cattan M, White M, Bond J, et al. Preventing social isolation and loneliness among older 687 people: A systematic review of health promotion interventions. *Ageing and Society* 2005; 25: 688 41–67.
- 689 [84] Langa KM, Llewellyn DJ, Lang IA, et al. Cognitive health among older adults in the United States and in England. *BMC geriatrics* 2009; 9: 1–11.
- 691 [85] De Frias CM, Nilsson L-G, Herlitz A. Sex differences in cognition are stable over a 10-year period in adulthood and old age. *Aging, Neuropsychology, and Cognition* 2006; 13: 574–587.
- 693 [86] Van Hooren S, Valentijn A, Bosma H, et al. Cognitive_Functioning_in_Healthy_Older_A.pdf. 2007; 40–54.
- 695 [87] Lei X, Hu Y, McArdle JJ, et al. Gender differences in cognition among older adults in China.

 696 *Journal of Human Resources* 2012; 47: 951–971.
- Maurer J. Education and male-female differences in later-life cognition: International evidence from Latin America and the Caribbean. *Demography* 2011; 48: 915–930.
- Muhammad T. The role of religiosity and religious participation in the relationship between depressive symptoms and cognitive impairment among older Indian adults. *Scientific reports* 2022; 12: 1–16.
- To [90] Lee Y, Jean Yeung WJ. Gender matters: Productive social engagement and the subsequent cognitive changes among older adults. *Social Science and Medicine* 2019; 229: 87–95.

Figure title:

Figure 1. Conceptual framework of the study

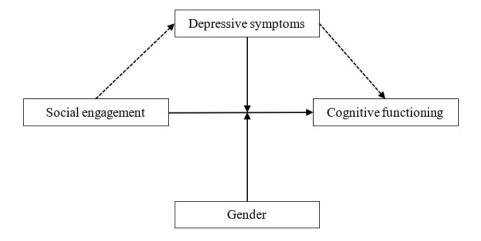


Figure 1. Conceptual framework of the study. $167x87mm (120 \times 120 DPI)$

Supplementary file

Table S1. Descriptive statistics for the cognitive function (0-43) and level of social engagements according to selected variables. (N = 23.584), LASI, 2017-19

selected variables, (N =								
	•	ive function 0-43)	Low (n	=7,401)	Med (n=14		High (n	=2,131,
	N	Mean (sd.)						
Social Engagements								
Low	7,401	20.7 (7.1)	-	-	-	-	-	-
Medium	14,052	24.5 (7)	-	-	-	-	-	-
High	2,131	26.8 (6.6)	-	-	-	-	-	-
Depressiona								
No	17,432	24 (7.2)	5,022	67.9	10,683	76.0	1,727	81.0
Yes	6,152	22.1 (7.2)	2,379	32.1	3,369	24.0	404	19.0
Age (years)								
60-69	14,691	24.6 (6.9)	3,512	47.5	9,721	69.2	1,458	68.4
70-79	6,735	22.5 (7.2)	2,624	35.5	3,529	25.1	582	27.3
80+	2,158	19.3 (7.5)	1265	17.1	802	5.7	91	4.3
Social Activities								
0	8,235	20.4 (6.7)	3,133	42.3	4,808	34.2	294	13.8
1	8,380	22.9 (6.6)	2,849	38.5	4,968	35.4	563	26.4
2	4,522	27.2 (6.4)	1065	14.4	2,855	20.3	602	28.2
3+	2,447	29.4 (6)	354	4.8	1,421	10.1	672	31.5
Education level	,				,			
No education	12,369	19.7 (6)	4,946	66.8	6,683	47.6	740	34.7
Primary	5,909	25.5 (6)	1,559	21.1	3,707	26.4	643	30.2
Secondary	3,543	29.5 (5.1)	663	9.0	2,405	17.1	475	22.3
Higher	1,763	31.8 (4.6)	233	3.1	1,257	8.9	273	12.8
Currently working	1,7 00	0110 (110)		0.1	1,20	0.5	_,,	12.0
No	16,213	23.1 (7.4)	5,986	80.9	8,862	63.1	1,365	64.1
Yes	7,371	24.3 (6.9)	1,415	19.1	5,190	36.9	766	35.9
Place of Residence	7,571	2 (0.)	1, 113	17.1	5,170	50.7	700	55.7
Rural	15,737	22.1 (7)	4,915	66.4	9,570	68.1	1,252	58.8
Urban	7,847	26.3 (7)	2,486	33.6	4,482	31.9	879	41.2
Religion	7,017	20.3 (1)	2,100	33.0	1,102	31.7	017	11.2
Hindu	17,414	23.6 (7.2)	5,652	76.4	10,634	75.7	1,128	52.9
Muslim	2,576	23.3 (7)	789	10.7	1,407	10.0	380	17.8
Christian	2,410	22.9 (7.7)	645	8.7	1,293	9.2	472	22.1
Others ^{\$}	1,184	23.5 (7.7)	315	4.3	718	5.1	151	7.1
Caste	1,104	23.3 (1.2)	313	т.Э	/10	J.1	131	/.1
Scheduled caste	3,953	22.1 (6.7)	1356	18.3	2,384	17.0	213	10.0
Scheduled tribe	4,134	21 (7.5)	1257	17.0	2,310	16.4	567	26.6
OBC [#]	9,109	24 (7.1)	2,895	39.1	5,556	39.5	658	30.9
Others	6,388	25.4 (7.1)	1,893	25.6	3,802	27.1	693	32.5
Regions	0,366	23.4 (1)	1,093	23.0	3,002	27.1	093	32.3
North	4,395	23.5 (7.1)	1237	16.7	2,617	18.6	541	25.4
	•	23.2 (6.7)	1019	13.8	1,913	13.6	341 187	8.8
Central	3,119 4,522							
East	4,522	23 (7.2)	1,434	19.4	2,857	20.3	231	10.8
Northeast	2,865	23.1 (7.6)	796	10.8	1,567	11.2	502	23.6
West	3,075	22.9 (7.2)	928	12.5	1,825	13.0	322	15.1
South	5,608	24.7 (7.5)	1,987	26.8	3,273	23.3	348	16.3
BMI categories	10.06	22 (7 1)	0.674	10.5	7.511	50.5	1 100	
Normal	12,367	23.6 (7.1)	3,674	49.6	7,511	53.5	1,182	55.5
Underweight	5,436	20.7 (6.9)	2,051	27.7	3,080	21.9	305	14.3

Overweight/Obese	5,781	26.1 (7)	1,676	22.6	3,461	24.6	644	30.2
MPCE quintile	4.027	21.0 (7.1)	1.605	22.0	2.705	10.0	227	150
Poorest	4,827	21.8 (7.1)	1,695	22.9	2,795	19.9	337	15.8
Poorer Middle	4,861 4,862	22.7 (7.1)	1,614	21.8 20.0	2,873	20.4 20.7	374 475	17.6 22.3
Richer	4,862 4,647	23.6 (7.1)	1,478	18.8	2,909	20.7	473 426	20.0
Richest	4,047	24.3 (7.1) 25.6 (7.3)	1,389 1225	16.6	2,832 2,643	18.8	519	24.4
Currently smoking tobacco	4,367	23.0 (7.3)	1223	10.0	2,043	10.0	319	24.4
No	20,210	23.5 (7.3)	6,719	90.8	11,747	83.6	1,744	81.8
Yes	3,374	23.7 (6.7)	682	9.2	2,305	16.4	387	18.2
Currently chewing tobacco	3,374	23.7 (0.7)	002	7.2	2,303	10.4	307	10.2
No	18,871	23.7 (7.3)	5,930	80.1	11,198	79.7	1,743	81.8
Yes	4,713	22.9 (6.9)	1,471	19.9	2,854	20.3	388	18.2
Drinking Status	1,713	22.5 (0.5)	1,171	17.7	2,03 1	20.3	300	10.2
Never	19,368	23.4 (7.3)	6,573	88.8	11,099	79.0	1,696	79.6
Infrequent non-heavy	2,568	24.8 (6.9)	484	6.5	1,781	12.7	303	14.2
Frequent non-heavy	870	23.3 (7.2)	191	2.6	617	4.4	62	2.9
Heavy episodic drinker	778	22.9 (7.1)	153	2.1	555	3.9	70	3.3
Hypertension Status		, ,						
Normal	5,386	22.9 (7)	1,512	20.4	3,386	24.1	488	22.9
Pre-hypertensive	9,015	23.9 (7.2)	2,644	35.7	5,505	39.2	866	40.6
High BP	9,183	23.5 (7.4)	3,245	43.8	5,161	36.7	777	36.5
Diabetes								
No	19,987	23.1 (7.2)	6,436	87.0	11,782	83.8	1,769	83.0
Yes	3,597	25.9 (7)	965	13.0	2,270	16.2	362	17.0
Cancer								
No	23,420	23.5 (7.3)	7,355	99.4	13,955	99.3	2,110	99.0
Yes	164	24.5 (7.2)	46	0.6	97	0.7	21	1.0
Heart Disease								
No	22,399	23.4 (7.3)	7,096	95.9	13,300	94.6	2,003	94.0
Yes	1,185	25.8 (7)	305	4.1	752	5.4	128	6.0
Stroke								
No	23,069	23.5 (7.3)	7,258	98.1	13,726	97.7	2,085	97.8
Yes	515	23 (7.2)	143	1.9	326	2.3	46	2.2
			- 405		440==	1006		100 -
Total	23,584	23.5 (7.3)	7,401	100.0	14,052	100.0	2,131	100.0

Note: a overall score ranges from zero to 10 and individuals with score of four or more are considered as depressed; *Other Backward Classes, * includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood

Note: *p<0.05, **p<0.01, ***p<0.001

		E	BMJ Open			/bmjopen-		Pa
						2022-06		
Table S2. Linear regression results of stratification		engagement, gen		pressive sympto		nitive&unctionii		
7 • • • • • • • • • • • • • • • • • • •	β	(95% CI)	β	(95% CI)	β	(95% CI)	β	(95% CI)
Social engagements # Depressive symptoms						n 6		
Low + depressive symptoms	-0.61***	(-0.66,-0.56)	-	-	-	-	-	-
Medium + depressive symptoms	-0.28***	(-0.33,-0.23)	-	-	-	tob -	-	-
High + depressive symptoms	-0.10*	(-0.20, -0.01)	-	-	-	면 -	-	-
Social engagements # Gender					-	202	-	-
Low + Men®	-	-	-1.12***	(-1.53, -0.72)	-	•	-	-
Low + Women	-	-	-3.45***	(-3.81, -3.08)	-	 Downloaded	-	-
Medium + Men	-	-	-0.35*	(-0.68, -0.01)	-	vnic	-	-
Medium + Women		-	-2.39***	(-2.75, -2.03)	-	oad -	-	-
High + Men	-/-	-			-		-	-
High + Women		-	-1.54***	(-2.11, -0.98)	-	from _	-	-
Gender # Depressive symptoms	_		-	-	-		-	-
Men + depressive symptoms	-	- (-) h	-	-	-0.10***	(-0.45, -0.05)	-	-
Women + depressive symptoms	-	-	-	-	-0.66***	(-0.70, -0.61)	-	-
Social engagements # Gender # Depressive						<u> J</u> i		
symptoms						per	-	-
Low + Men + depressive symptoms	-	-	-	-	-	1.b	-0.24***	(-0.31, -0.16)
Low + Women + depressive symptoms	-	-	-	O -	-	njopen.bmj.com/	-0.75***	(-0.80, -0.70)
Medium + Men + depressive symptoms	-	-	-	-/-	-	Off -	-0.07**	(-0.12, -0.02)
Medium + Women + depressive symptoms	-	-	-	V -	-	n on '-	-0.55***	(-0.60, -0.49)
High + Men + depressive symptoms	-	-	-	_	-		0.07	(-0.05, 0.18)
High + Women + depressive symptoms	-	-	-	-		April	-0.35***	(-0.50, -0.20)
Social Activities	0.48***	(0.33, 0.62)	0.43***	(0.28, 0.57)	0.57***	(0.43, 0.71)	0.48***	(0.34, 0.63)
Age (years)	-0.11***	(-0.12, -0.10)	-0.13***	(-0.14, -0.12)	-0.14***	(-0.15, -0.13)	-0.13***	(-0.14, -0.12)
Education level						024		
No education®						by		
Primary	4.82***	(4.64, 4.99)	4.31***	(4.13,4.49)	4.47***	(4. 2 9,4.65)	4.45***	(4.27, 4.63)
Secondary	8.27***	(8.05, 8.49)	7.49***	(7.26, 7.72)	7.78***	(7.56, 8.01)	7.76***	(7.53, 7.98)
Higher	9.28***	(8.99, 9.56)	8.09***	(7.79, 8.39)	8.57***	(8.28, 8.87)	8.54***	(8.25, 8.84)
Currently working	-	, , /		, ,,		<u>o</u>		, ,,
No®						lecte		
Yes	0.87***	(0.71, 1.03)	0.42***	(0.26, 0.58)	0.59***	(0.33, 0.75)	0.58***	(0.43, 0.74)
Place of Residence	-	, , ,,		, ,,		y copyright.		· //

Page 35 of	f 41		E	BMJ Open			ʻbmjopen-2022-0633		
1)22-		
2	D 16						063		
4	Rural®	1 1 2 4 4 4	(0.00.1.24)	1 27444	(1.00.1.55)	1 05444	3 (1 8 1 42)	1 0 6 4 4 4	(1.00.1.42)
5	Urban	1.16***	(0.99, 1.34)	1.37***	(1.20, 1.55)	1.25***	(1.98, 1.42)	1.26***	(1.09, 1.43)
6	Religion						า 6		
7	Hindu® Muslim	0.37**	(0.13, 0.60)	0.1	(-0.13,0.34)	0.26*	(0. \(\) 3,0.50)	0.24*	(0.00.0.47)
8	Christian	-0.26	(0.13, 0.00) (-0.70, 0.17)	-0.15		-0.11	(0.85, 0.30) (-0.84, 0.32)	-0.16	(0.00,0.47)
9	Others\$	0.13		0.13	(-0.59,0.28) (-0.30,0.44)	0.06		0.16	(-0.59,0.27)
10	Caste	0.13	(-0.24,0.49)	0.07	(-0.30,0.44)	0.00	(-0. 3 0,0.43)	0.03	(-0.31,0.42)
11	Scheduled caste®						io		
12	Scheduled tribe	-1.40***	(-1.69,-1.11)	-1.24***	(-1.52,-0.95)	-1.28***	(-1. § 7,-0.99)	-1.29***	(-1.57,-1.00)
13	OBC#	0.58***	(0.39,0.77)	0.65***	(0.46, 0.84)	0.64***	(0.\$5, 0.83)	0.62***	(0.43,0.81)
14	None of them	0.44***	(0.39, 0.77) $(0.23, 0.66)$	0.59***	(0.40, 0.84) $(0.38, 0.81)$	0.54***	(0.35, 0.83) (0.32, 0.75)	0.52***	(0.43, 0.81) (0.31, 0.74)
15 16	Region	0.44	(0.23,0.00)	0.57	(0.36,0.61)	0.54	(0. <u>8</u> 2,0.73)	0.32	(0.31,0.74)
17	North®						ZO T		
18	Central	1.58***	(1.33, 1.83)	1.36***	(1.12, 1.61)	1.52***	(1.27,1.77)	1.55***	(1.30, 1.79)
19	East	0.69***	(0.45, 0.93)	0.73***	(0.48, 0.97)	0.70***	(0.46, 0.94)	0.72***	(0.48, 0.96)
20	Northeast	0.87***	(0.43,0.33) $(0.41,1.33)$	1.21***	(0.75, 1.67)	0.92***	(0.46, 1.38)	0.72	(0.52, 1.43)
21	West	-0.93***	(-1.19,-0.67)	-0.61***	(-0.86,-0.35)	-0.91***	(-1.17,-0.65)	-0.86***	(-1.12,-0.61)
22	South	1.11***	(0.85,1.36)	1.07***	(0.82,1.33)	1.02***	(0.76, 1.27)	1.10***	(0.84, 1.35)
23	BMI categories	1.11	(0.05,1.50)	1.07	(0.02,1.03)	1.02	3	1.10	(0.01,1.55)
24	Normal®						.00		
25	Underweight	-1.07***	(-1.24, -0.91)	-1.15***	(-1.31, -0.98)	-1.14***	(-1.31, -0.97)	-1.11***	(-1.28, -0.95)
26	Overweight/obese	0.77***	(0.59, 0.95)	0.98***	(0.80, 1.16)	0.90***	(0.72, 1.08)	0.87***	(0.69, 1.05)
27	MPCE quintile		, , ,		, , ,		A pr		, , ,
28 29	Poorest®						ii 10		
30	Poorer	0.10	(-0.11, 0.30)	0.15	(-0.06, 0.35)	0.08	(-0.12, 0.29)	0.09	(-0.11, 0.30)
31	Middle	0.38***	(0.17, 0.59)	0.50***	(0.30, 0.71)	0.48***	(0.27, 0.68)	0.44***	(0.24, 0.65)
32	Richer	0.65***	(0.43, 0.87)	0.79***	(0.57, 1.00)	0.73***	(0.51, 0.94)	0.71***	(0.49, 0.93)
33	Richest	0.63***	(0.40, 0.87)	0.78***	(0.55, 1.02)	0.76***	(0.42, 0.99)	0.72***	(0.49, 0.95)
34	Currently smoking tobacco						est		
35	No®						. · _D		
36	Yes	0.84***	(0.63, 1.05)	0.16	(-0.05, 0.38)	0.38***	$(0.\frac{9}{6}, 0.59)$	0.39***	(0.17, 0.60)
37	Currently chewing tobacco						(0. 2 6,0.59)		
38	No®						. <mark>Φ</mark>		
39	Yes	0.25**	(0.07, 0.42)	0.00	(-0.18, 0.17)	0.06	(-0.41,0.23) (-0.60) (0.08	(-0.09, 0.26)
40							уру		
41							righ		
42 43									

						-06		
Drinking Status						ယ္ ယ္လ		
Never®						36		
Infrequent non-heavy	0.39**	(0.15, 0.64)	-0.27*	(-0.52, -0.03)	-0.04	(-0.38, 0.20)	-0.02	(-0.26, 0.22)
Frequent non-heavy	-0.69***	(-1.09, -0.29)	-1.31***	(-1.72, -0.90)	-1.13***	(-1.53, -0.72)	-1.11***	(-1.51, -0.71)
Heavy episodic drinker	-1.22***	(-1.65, -0.78)	-1.85***	(-2.29, -1.42)	-1.63***	(-2.66, -1.20)	-1.63***	(-2.06, -1.20)
Hypertension Status						ber		
Normal®						20		
Pre-hypertensive	0.20*	(0.03, 0.38)	0.22*	(0.04, 0.39)	0.16	(-0.01, 0.34)	0.19*	(0.01, 0.36)
High BP	0.10	(-0.08, 0.28)	0.14	(-0.04, 0.32)	0.07	(-0.51, 0.25)	0.12	(-0.05, 0.30)
Diabetes						nw		
No®						loa		
Yes	-0.52***	(-0.73, -0.32)	-0.64***	(-0.85, -0.44)	-0.57***	$(-0.\cancel{5}8, -0.37)$	-0.58***	(-0.79, -0.38)
Cancer						1 frc		
No®						<u> </u>		
Yes	0.19	(-0.74, 1.12)	0.27	(-0.65, 1.20)	0.17	(-0.35, 1.10)	0.15	(-0.77, 1.07)
Heart Disease						0://b		
No®						<u>)</u>		
Yes	0.75***	(0.43, 1.06)	0.52**	(0.21, 0.84)	0.70***	(0.39, 1.01)	0.66***	(0.35, 0.97)
Stroke						n.b		
No®						, <u>3</u> .		
Yes	-1.33***	(-1.79,-0.87)	-1.71***	(-2.16,-1.25)	-1.54***	(-2.60,-1.08)	-1.51***	(-1.96,-1.05)
Nata CI and data and #Other De	-1 \$:1	1 C'1-1 D 1	11. 1 -4 / D	1 11. 1 T. 1 T	://	4 O 1	. DD D1 1	D

Note: CI = confidence interval. *Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure; and ®reference category. April 19, 2024 by guest. Protected by copyright.

* p<0.05, ** p<0.01, *** p<0.001

Table S3. Linear regression results of stratifications of gender and education on cognitive functioning in older adults, LASI, 2017-18 (N = 23,584).

2017-18 (N = 25,584).	β	(95% CI)
Gender # Education		
Men # No education®		
Men # Primary	3.95***	(3.71,4.19)
Men # Secondary	6.73***	(6.46, 7.01)
Men # Higher	7.24***	(6.90, 7.57)
Women # No education	-2.60***	(-2.82, -2.39)
Women # Primary	1.80***	(1.49, 2.10)
Women # Secondary	5.86***	(5.45, 6.27)
Women # Higher	7.67***	(7.06, 8.28)
Depressive symptoms	-0.38***	(-0.42, -0.34)
Social engagements		
Low®		
Medium	0.84***	(0.68, 1.00)
High	1.28***	(0.98, 1.58)
Social Activities	0.43***	(0.28, 0.57)
Age (years)	-0.13***	(-0.14, -0.12)
Currently working		
No®		
Yes	0.41***	(0.25, 0.57)
Place of Residence		
Rural®		
Urban	1.27***	(1.10, 1.45)
Religion		
Hindu®	0.10	(0.10.0.26)
Muslim	0.13	(-0.10,0.36)
Christian	-0.27	(-0.70,0.16)
Others\$	-0.08	(-0.45,0.28)
Caste Scheduled caste®		
Scheduled tribe	-1.28***	(-1.57,-1.00)
OBC#	0.59***	(0.40, 0.77)
None of them	0.51***	
	0.51	(0.30, 0.73)
Region North®		
Central	1.54***	(1.29, 1.78)
East	0.71***	(0.47, 0.95)
Northeast	1.07***	(0.47, 0.53) $(0.61, 1.52)$
West	-0.84***	(-1.10, -0.59)
South	1.11***	(0.86, 1.36)
BMI categories	1.11	(0.00,1.50)
Normal®		
Underweight	-1.08***	(-1.25, -0.92)
Overweight/obese	0.90***	(0.72,1.08)
MPCE quintile	0.70	(01,72,1100)
Poorest®		
Poorer	0.11	(-0.09,0.31)
Middle	0.46***	(0.26, 0.67)
Richer	0.72***	(0.50, 0.93)
Richest	0.75***	(0.52,0.98)
Currently smoking tobacco	5.75	(0.52,0.70)
No®		
Yes	0.13	(-0.08, 0.35)
	2	(

Currently chewing tobacco		
No®		
Yes	-0.02	(-0.19, 0.15)
Drinking Status		
Never®		
Infrequent non-heavy	-0.34**	(-0.58, -0.09)
Frequent non-heavy	-1.46***	(-1.86, -1.05)
Heavy episodic drinker	-1.93***	(-2.36, -1.50)
Hypertension Status		
Normal®		
Pre-hypertensive	0.20*	(0.03, 0.37)
High BP	0.16	(-0.01, 0.34)
Diabetes		
No®		
Yes	-0.57***	(-0.78, -0.37)
Cancer		
No®		
Yes	0.23	(-0.69, 1.14)
Heart Disease		
No®		
Yes	0.58***	(0.27, 0.89)
Stroke		
No®		
Yes	-1.49***	(-1.94,-1.04)

Note: *Other Backward Classes; \$includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure; CI = confidence interval; ® - reference category.

* p<0.05, ** p<0.01, *** p<0.001

Table S4. Mean, standard of	leviation, and corre	elation between
social engagement and dep	ression (n=23,584)	. LASI, 2017-19
Variables	1	2
Depression	_	
Social engagement	-0.12***	-
Mean	2.97	1.69
Standard deviation	1.68	0.67
<i>Note:</i> *p<0.05, **p<0.01, ***	p<0.001	

Table S5. Linear regression results of social engagement on depressive symptoms, by gender, (N = 23,584), LASI, 2017-19

19		Mara	T 1	V	,	Total
		Men (059/ CT)		(95% CI)		Total (059/ CT)
Social Engagement	β -0.16***	(95% CI) (-0.22,-0.11)	-0.21***	(-0.25,-0.16)	β -0.18***	(95% CI) (-0.22,-0.15)
Cognitive function	-0.16***	(-0.22,-0.11)	-0.21****	(-0.25,-0.16)	-0.18**** -0.04***	(-0.22,-0.13)
Social Activities	0.01	(-0.04,-0.03)	0.06	(-0.03,-0.04)	0.04	(-0.04,-0.03)
Age (years)	-0.01**	(-0.04,0.07)	0.00	(-0.01, 0.13) (-0.00, 0.00)	0.04	(-0.01,0.00)
Age (years) Gender	-0.01	(-0.01,-0.00)	0.00	(-0.00,0.00)	0.00	(-0.01,0.00)
Men®	_	_	_	_		
Women			_	_	-0.06*	(-0.12,-0.00)
Education level			_	_	-0.00	(-0.12,-0.00)
No education®						
Primary	0.00	(-0.08, 0.08)	-0.01	(-0.10, 0.08)	-0.01	(-0.06, 0.05)
Secondary	-0.03	(-0.13,0.06)	0.15*	(0.02, 0.29)	0.03	(-0.05,0.10)
Higher	-0.08	(-0.20,0.04)	0.33**	(0.13, 0.53)	0.03	(-0.07,0.13)
Currently working		(0.20,0.0 .)	0.00	(0.12,0.22)	0.02	(0.07,0.12)
No®						
Yes	-0.10**	(-0.16, -0.03)	-0.04	(-0.11, 0.04)	-0.06*	(-0.11, -0.01)
Place of Residence		2, 3.02)		, , , , , , ,		,/
Rural®						
Urban	0.03	(-0.04, 0.11)	-0.02	(-0.09, 0.06)	0.01	(-0.04, 0.06)
Religion				, ,		, , ,
Hindu®						
Muslim	0.10	(-0.00, 0.20)	0.13*	(0.03, 0.24)	0.12**	(0.05, 0.19)
Christian	-0.41***	(-0.60, -0.21)	0.07	(-0.12, 0.25)	-0.14*	(-0.28, -0.01)
Others\$	-0.41***	(-0.57,-0.25)	-0.18*	(-0.34, -0.01)	-0.29***	(-0.40, -0.18)
Caste						
Scheduled caste®						
Scheduled tribe	-0.27***	(-0.40, -0.14)	-0.03	(-0.15, 0.10)	-0.14**	(-0.23, -0.05)
$OBC^{\#}$	-0.25***	(-0.33, -0.16)	-0.05	(-0.13, 0.03)	-0.15***	(-0.21, -0.09)
None of them	-0.23***	(-0.33, -0.14)	-0.07	(-0.16, 0.03)	-0.15***	(-0.21, -0.08)
Region						
North®						
Central	0.46***	(0.35, 0.57)	0.60***	(0.49, 0.71)	0.53***	(0.45, 0.61)
East	0.07	(-0.03, 0.18)	0.08	(-0.03, 0.18)	0.08*	(0.00, 0.15)
Northeast	-0.15	(-0.35, 0.05)	-0.37***	(-0.57, -0.17)	-0.27***	(-0.41, -0.13)
West	-0.55***	(-0.67, -0.44)	-0.60***	(-0.71, -0.48)	-0.57***	(-0.65, -0.49)
South	0.35***	(0.23, 0.46)	0.25***	(0.13, 0.36)	0.30***	(0.22, 0.38)
BMI categories						
Normal®	0.000	(0.00.0.5.5	0.05	(001010	0.4000	(0.12.0.55)
Underweight	0.29***	(0.22, 0.36)	0.07	(-0.01,0.14)	0.18***	(0.13, 0.23)
Overweight/obese	0.05	(-0.03,0.14)	-0.08*	(-0.16,-0.00)	-0.02	(-0.08, 0.03)
MPCE quintile						
Poorest®	0.00	(0.10.0.01)	0.104	(0.10, 0.02)	O OO dada	(0.15, 0.02)
Poorer	-0.09	(-0.18,0.01)	-0.10*	(-0.19,-0.02)	-0.09**	(-0.16,-0.03)
Middle	-0.06	(-0.16,0.03)	-0.10*	(-0.19,-0.01)	-0.08*	(-0.14,-0.02)
Richer	-0.07	(-0.16,0.03)	-0.10*	(-0.19,-0.00)	-0.08*	(-0.15,-0.02)
Richest	-0.05	(-0.15,0.06)	-0.02	(-0.12,0.08)	-0.03	(-0.11,0.04)
Currently smoking tobacco						
No® Vas	0.14***	(0.07.0.22)	0.02	(0.12 0.20)	0 15***	(0.00.0.21)
Yes	0.14***	(0.07, 0.22)	0.03	(-0.13,0.20)	0.15***	(0.08, 0.21)
Currently chewing tobacco No®						
Yes	-0.01	(-0.08,0.07)	0.07	(-0.02,0.15)	0.02	(-0.04,0.07)
1 62	-0.01	(-0.00,0.07)	0.07	(-0.02,0.13)	0.02	(-0.04,0.07)

Drinking Status						
Never®						
Infrequent non-heavy	-0.15***	(-0.23, -0.07)	0.05	(-0.20, 0.31)	-0.12**	(-0.20, -0.05)
Frequent non-heavy	-0.22**	(-0.35, -0.08)	-0.41*	(-0.77, -0.06)	-0.24***	(-0.37, -0.12)
Heavy episodic drinker	-0.05	(-0.20, 0.09)	-0.15	(-0.54, 0.24)	-0.07	(-0.20, 0.07)
Hypertension Status						
Normal®						
Pre-hypertensive	-0.04	(-0.12, 0.03)	-0.09*	(-0.17, -0.01)	-0.07*	(-0.12, -0.01)
High BP	-0.04	(-0.12, 0.04)	0.02	(-0.06, 0.09)	-0.01	(-0.07, 0.05)
Diabetes						
No®						
Yes	0.10*	(0.02, 0.19)	0.02	(-0.08, 0.11)	0.06	(-0.00, 0.13)
Cancer						
No®						
Yes	0.59**	(0.17, 1.01)	-0.36	(-0.75, 0.03)	0.06	(-0.23, 0.35)
Heart Disease						
No®						
Yes	0.11	(-0.01, 0.24)	0.17*	(0.01, 0.32)	0.14**	(0.04, 0.24)
Stroke						
No®						
Yes	0.56***	(0.38, 0.74)	0.31**	(0.09, 0.54)	0.46***	(0.32, 0.61)
N	1	1,403		12,181	2	23,584
\mathbb{R}^2		0.10		0.09		0.09

Note: * Other Backward Classes, \$ includes Sikh, Buddhist/neo-Buddhist, Jain, Parsi/Zoroastrian and others; BP- Blood Pressure; ® reference category.

Note: *p<0.05, **p<0.01, ***p<0.001

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Recommendation	Page No
Title and abstract	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
	(b) Provide in the abstract an informative and balanced summary of what was	2-3
	done and what was found	
Introduction		
Background/rationale	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	State specific objectives, including any prespecified hypotheses	6
Methods		
Study design	Present key elements of study design early in the paper	7
Setting	Describe the setting, locations, and relevant dates, including periods of	7
Setting	recruitment, exposure, follow-up, and data collection	'
Participants	(a) Give the eligibility criteria, and the sources and methods of selection of	7
1 articipants	participants	'
Variables	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-10
variables	effect modifiers. Give diagnostic criteria, if applicable	/-10
Data gauraga/		7
Data sources/	For each variable of interest, give sources of data and details of methods of	'
measurement	assessment (measurement). Describe comparability of assessment methods if	
C4-1:	there is more than one group	7
Study size	Explain how the study size was arrived at	7
Quantitative variables	Explain how quantitative variables were handled in the analyses. If applicable,	
~	describe which groupings were chosen and why	4.4
Statistical methods	(a) Describe all statistical methods, including those used to control for	11
	confounding	
	(b) Describe any methods used to examine subgroups and interactions	
	(c) Explain how missing data were addressed	7
	(d) If applicable, describe analytical methods taking account of sampling	
	strategy	
	(<u>e</u>) Describe any sensitivity analyses	
Results		
Participants	(a) Report numbers of individuals at each stage of study—eg numbers	11
	potentially eligible, examined for eligibility, confirmed eligible, included in the	
	study, completing follow-up, and analysed	
	(b) Give reasons for non-participation at each stage	
	(c) Consider use of a flow diagram	
Descriptive data	(a) Give characteristics of study participants (eg demographic, clinical, social)	12
	and information on exposures and potential confounders	
	(b) Indicate number of participants with missing data for each variable of	
	interest	
Outcome data	Report numbers of outcome events or summary measures	12-16
Main results	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	12-16
	and their precision (eg, 95% confidence interval). Make clear which	
	confounders were adjusted for and why they were included	
	(b) Report category boundaries when continuous variables were categorized	1

	(c) If relevant, consider translating estimates of relative risk into absolute risk	
	for a meaningful time period	
Other analyses	Report other analyses done—eg analyses of subgroups and interactions, and	
	sensitivity analyses	
Discussion		
Key results	Summarise key results with reference to study objectives	18
Limitations	Discuss limitations of the study, taking into account sources of potential bias or	20
	imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	Give a cautious overall interpretation of results considering objectives,	17-20
	limitations, multiplicity of analyses, results from similar studies, and other	
	relevant evidence	
Generalisability	Discuss the generalisability (external validity) of the study results	17-20
Other information		
Funding	Give the source of funding and the role of the funders for the present study and,	21
	if applicable, for the original study on which the present article is based	

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.