

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Perceived quality of care among households ever enrolled in a community-based health insurance scheme in two districts of northeast Ethiopia: a multilevel analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063098
Article Type:	Original research
Date Submitted by the Author:	22-Mar-2022
Complete List of Authors:	Hussien, Mohammed; Bahir Dar University, Health Systems Management and Health Economics Azage, Muluken; Bahir Dar University, Environmental Health Bayou , Negalign ; Jimma University, Health Policy and Management
Keywords:	Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2		
3 4	1	Perceived quality of care among households ever enrolled in a
5 6 7	2	community-based health insurance scheme in two districts of
7 8 9	3	northeast Ethiopia: a multilevel analysis
10 11 12 13	4	
14 15 16 17	5	
18 19 20	6	Mohammed Hussien ^{1*} , Muluken Azage ² and Negalign Berhanu Bayou ³
21 22 23	7	
24 25 26	8	
27 28	9	¹ Department of Health Systems Management and Health Economics, School of Public Health,
29 30 31	10	College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
32 33	11	² Department of Environmental Health, School of Public Health, College of Medicine and Health
34 35 36	12	Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
37 38 39	13	³ Department of Health Policy and Management, Faculty of Public Health, Institute of Health,
40 41 42	14	Jimma University, Jimma, Ethiopia.
43 44 45	15	
46 47 48	16	
49 50 51	17	
52 53	18	*Correspondence: muhamedun@gmail.com
54 55 56 57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

19 ABSTRACT

- 21 health care they received and to identify associated factors at the individual and facility-level.
- **Design:** A community-based, cross-sectional study
- **Setting:** Health centers in two districts

Participants: 1081 rural households who had ever been enrolled in a community-based health
insurance and had visited a health center at least once in the previous 12 months, as well as 194
health care providers working in 12 health centers.

Outcome measures: The outcome variable of interest was the perceived quality of care, which was measured using a 17-item scale. Respondents were asked to rate the degree to which they agreed on 5-point response items relating to their experiences with health care in the outpatient departments of nearby health centers. A multilevel linear regression analysis was used to identify predictors of perceived quality of care. BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Results: The mean perceived quality of care was 70.28 (SD=8.39). Five dimensions of perceived quality of care were extracted from the factor analysis, with the patient-provider communication dimension having the highest mean score (M=77.84, SD=10.12), and information provision having the lowest (M=64.67, SD=13.87). Wealth status, current insurance status, perceived health status, presence of chronic illness, time since the most recent health center visit, work experience of health care providers and patient volume were the factors significantly associated with perceived quality of care. An interaction term between patient volume and staff job satisfaction also showed significant association.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Conclusions: Much work remains to improve the quality of care, especially on information provision and access to care quality dimensions. A range of individual and cluster-level characteristics influence the perceived quality of care. For a better quality of care, it is vital to optimize the patient-provider ratio, and enhance staff job satisfaction.

Strengths and limitations of this study

- ▶ The study tried to assess the quality of care from the clients' point of view using a validated multidimensional scale.
- This is the first cross-sectional study in Ethiopia, which considered health center (cluster) level variables that have association with perceived quality of care.
- We tested for the existence of endogeneity between current insurance status and quality of care. Although the results indicated no evidence of endogeneity, it is still possible due to omitted variables. Active insurance members may report a higher perception score quality of care as a result of their desire to stay in the scheme.
 - Because of the cross-sectional nature of the study, it is impossible to establish a cause-andeffect relationship.

INTRODUCTION

Health care providers and patients define quality of care differently and attach varying levels of importance to its attributes. When assessing the quality of care, health care professionals tend to prioritize technical competence, while patients place a high value on patient-centeredness, amenities, and reputation.¹ The emphasis on health care quality measurement has shifted away from the viewpoints of health care providers to people-centered approaches that rely on patient perceptions.²⁻⁴ Patients' perception of health care quality has become an essential element of quality measurement due to its link with health service utilization. It is based on a mix of patient Page 5 of 43

BMJ Open

experiences, processed information and rumors.⁵ Patient experience surveys elicit data on the transactional components of care, which are process-related, as well as the interpersonal interactions that occur over the course of care.⁶ Individuals receiving care are asked about their experiences of health facility encounters to report if particular processes or events occurred.⁷ Patient experience measurements have received increased attention and are widely employed to inform quality improvement, and pay-for-performance.⁸ Patient experience is consistently and positively associated with patient safety and clinical effectiveness, adherence to prevention and treatment recommendations, and technical quality of care.910

Quality of health care is vital to the success of universal health coverage (UHC) initiatives, like community-based health insurance (CBHI). The development of CBHI schemes must be accompanied by improvements in the quality of care.¹¹¹² To build sustainable CBHI schemes, members must believe that the benefits of health care provided via health insurance coverage outweigh the benefits of not being insured.¹³ Patients' positive experiences with the quality of care provided under insurance schemes increase their trust in the health system and insurance schemes.^{14 15} As a result, they are more likely to use health care services and participate in health insurance plans.¹⁶ If insured clients are unable to access high quality services, they lose trust in service providers and seek care elsewhere,¹⁷ making them less likely to pay premiums.¹⁸¹⁹

The ultimate goal of UHC is to ensure that all people who need health services receive high quality care without financial strain.²⁰ Although increased health care coverage is promising with the implementation of CBHI, quality of care remains a key impediment to achieving UHC.^{20 21} Increasing access to essential health services without improving their quality would not bring the intended health outcomes.^{2 4} For example, more than eight million deaths amenable to a high

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

quality of care occurred in low- and middle-income countries, making poor-quality of care a bigger
 obstacle to mortality reduction than lack of access to care.²¹

Poor quality of care is also a major issue that jeopardizes the long-term viability of many CBHI schemes.^{11 22} Findings of systematic reviews revealed that the quality of care was a key factor that influenced enrollment and renewal decisions of CBHI membership.^{23 24} Some quality concerns include 'unavailability and perceived poor quality of prescribed medicines, misbehavior of health professionals, and the differential treatment of the insured in favor of the uninsured patients, unclean hospital environment, long queues, lack of diagnostic equipment, and long waiting hours to obtain health care'.²⁴

To promote optimal utilization, stable finance, and better outcomes, the quality of health care must be monitored on a regular basis.¹⁷ Previous studies in Ethiopia focused on surveys of client satisfaction and did not employ multidimensional measurement scales.^{25 26} To our knowledge, the quality of care delivered under the CBHI in Ethiopia has never been investigated using multidimensional metrics from the perspective of service users at the community level. There is also a paucity of literature on facility-level variables that influence the quality of care. Therefore, the purpose of this study was to examine the perceived quality of care (PQoC) from the perspective of clients, and identify associated factors at the individual and facility-level.

Improving quality of care and CBHI are among Ethiopia's top priorities in its health sector strategic
 plan.²⁷ The findings of this study will inform relevant stakeholders on the current state of clients'
 perceptions of the quality of care, and will be an essential input for quality improvement initiatives.

BMJ Open

105 It will also provide useful information for decision-makers to address challenges in the country's106 endeavors to establish higher-level insurance pools.

METHODS

108 Study setting and population

A community-based cross-sectional study was conducted in rural parts of two neighboring districts in northeast Ethiopia, Tehulederie and Kallu, Tehulederie is divided into 20 rural and seven urban Kebeles (subdistricts) with a population of 145,625, of which 87.5% reside in rural areas. There are five health centers and one primary hospital in the district. It was one of the 13 districts in Ethiopia where CBHI was piloted in 2011. The scheme was introduced in Kallu district after two years, in July 2013. Kallu is divided into 36 rural and four urban Kebeles, and has nine health centers. It is the most populous district in the zone, with a population of 234,624, of which 89.11% live in the rural area.²⁸

The study population of interest were rural households who had ever been enrolled in the CBHI scheme before January 2020. To minimize recall bias, households who had not used health care in the 12-month period before data collection were excluded from the study. The sample size was calculated using MedCalc software by assuming a mean difference of two independent groups. A previous study on PQoC reported mean scores of 5.2 and 5.4 with standard deviations (SD) of 0.8 and 0.7 among insured and uninsured respondents, respectively.²⁹ Using this output and assuming an 80% power, 95% confidence level and equally sized groups, a sample size of 446 was calculated. Considering a design effect of 1.5 attributable to multi-stage sampling and a potential

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

non-response rate of 10%, the effective sample size was estimated to be 736 households.
Alternative sample sizes were calculated for a PhD study on the sustainability of CBHI with 1257
being the largest estimated sample size. Among those, 1081 eligible households participated in
this study. Furthermore, 194 health care providers from 12 health centers participated in the study
to provide cluster-level data.

Data collection and measurement

The data were collected from 04 February to 21 March 2021. The study participants were recruited using a three-level multistage sampling approach. First, 12 clusters of *Kebeles* organized under a health center catchment area were selected. Then, 14 rural Kebeles were drawn randomly using a lottery method proportional to the number of Kebeles under each cluster. Accordingly, five Kebeles from Tehulederie and nine from Kallu were included. A list of households who have ever been enrolled in the CBHI was obtained from the membership registration logbook of each Kebele. The required sample was generated at random from each Kebele, proportional to the number of households who have ever enrolled in the scheme, using random number generator software.

Individual-level data was collected through face-to-face interviews with household heads at their homes using a structured questionnaire via an electronic data collection platform. The data collectors submit the completed forms to a data aggregating server on a daily basis, which allowed us to review the submissions and streamline the supervision process.

143 The PQoC, which is the outcome variable of interest, was measured using a 17-item scale designed 144 after a thorough review of validated tools. ²⁹⁻³³ Respondents were asked to rate the extent to which 145 they agreed on a set of items relating to their experiences with the health care they received in the Page 9 of 43

BMJ Open

outpatient departments of nearby health centers. Each item was designed on a 5-point response format, with 1=strongly disagree, 2=disagree, 3=neutral, 4=agree and 5=strongly agree. The summary scores for the PQoC and its dimensions were calculated for individual respondents by adding the scores for each item. This gives a scale ranging from 17 (1 ×17) to 85 (5 × 17) for the overall PQoC score. When reporting the results, the scores were arithmetically transformed to a scale of 20 to 100.³⁴ This allows the comparison of mean scores of PQoC with its dimensions, and measurement items on a common scale.

Wealth index was generated using the principal component analysis method. The scores for 15 types of assets were translated into latent factors, and a wealth index was created based on the first factor that explained most of the variation. The study households were grouped into wealth tertile - lower, medium and higher based on the index. Perceived health status was measured based on a household head's subjective assessment of the health status of the household, and was rated as "poor, fair, good, very-good, or excellent". However, for analysis purpose, it was recategorized into "fair, good, and very-good", by merging the two extreme response categories to the next option due to fewer replies.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Before the data collection, the questionnaire was pre-tested on a sample of 84 randomly selected participants in one *Kebele*. As part of the pre-test, a cognitive interview was conducted on selected items using the verbal probe technique among eight respondents to determine if the items and response categories were understood, and interpreted by the potential respondents as intended. Accordingly, the phrasing of some items and response options were modified, and some items were omitted.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

167 Cluster-level data were collected from 12 health centers that provide health care for the population 168 in the sampled *Kebeles*. Patient volume data were obtained by reviewing the monthly service 169 delivery reports of health centers, while data related to work experience, affective commitment 170 and job satisfaction were collected through a self-administered questionnaire among health care 171 providers who worked more than one year in the current facility.

Patient volume was measured using the daily average number of patients managed by a health care provider in the outpatient department. It was calculated by dividing the number of patients who visited the health center in the last six months before the study by the number of working days, and then by the number of consultation rooms in each health center. Affective commitment and job satisfaction were composite variables which were assessed using a 5-point Likert scale. Affective commitment was measured with a seven-item questionnaire based on a modified version of the Meyer et al. scale, which had previously been used in a hospital setup.³⁵ Staff job satisfaction was measured using a 10-item scale, which was adapted from a previous study among health care workers in Ethiopia.³⁶ Average affective commitment and job satisfaction scores were computed for each health center.

182 Data analysis

The data were analyzed using Stata version 17.0. Exploratory factor analysis was performed to assess the validity of the quality measurement scale. The Bartlett's test of Sphericity and Kaiser-Mayer-Olkin's (KMO) measure of sampling adequacy were performed to assess the appropriateness of the data for factor analysis. The principal component factor method of extraction and Promax rotation with Kaiser Normalization was used. The Eigenvalue greater than Page 11 of 43

BMJ Open

one decision rule was used to determine the appropriate number of factors to be extracted. Items with loadings below 0.40 were removed from the analysis.³⁷ Correlation coefficients were used to test construct validity. Item-total score correlation, dimension-total score correlation and dimension intercorrelation were computed. The total score was the mean score of the ratings for all items of the scale, and the dimension score was the factor scores. A questionnaire has good construct validity when the item-total score correlations are higher than 0.40, dimension intercorrelations are less than 0.80, and dimension-total score correlations are higher than dimension intercorrelations.³¹ Cronbach's alpha coefficients were generated for each dimension to assess the internal consistency. Reliability of the scale was considered acceptable if Cronbach's alpha coefficient was 0.60 or higher.³⁷

To compare mean scores of PQoC and its dimensions among subgroups, an independent t-test and a one-way analysis of variance (ANOVA) with Tukey's post-hoc test were used. Because the outcome variable was considered as a continuous variable, a multilevel linear regression model was fitted to identify its predictors. The Restricted Maximum Likelihood estimation approach was used because it is appropriate for smaller cluster sizes.³⁸ The PQoC was assumed to be influenced by the characteristics of households (individual-level variables) as well as the characteristics of health centers (cluster-level variables). Cluster-level data were linked to individual-level data based on the usual source of health care for each study participant. Considering the hierarchical structure of the data, where patients are nested within health centers, a two-level linear regression model was applied. Four models were estimated to choose the one that best fits the data. The first model, or the null model (a model without predictors) is given by:

 $209 \qquad Y_{ij} = \gamma_{00} + u_{0j} + \varepsilon_{ij}$

(1)

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The null model estimates three parameters: the average intercept (Y_{00}) , the between health center error, or deviation, from the average intercept (u_{0i}) , and the individual-level residual, or variation in individual scores within health centers (ε_{ii}). The second model estimated PQoC (Y_{ii}) for individual household *i* at health center *j*. We treat PQoC as a function of a matrix of individual-level variables (X_{ii}) which include age, gender, education and marital status of the household head; wealth status; household size; current health insurance status; presence of chronic illness in the household; perceived health status, and time since the most recent visit to a health center, and expressed as:

218
$$Y_{ij} = \gamma_{00} + \gamma_{10}X_{1ij} + \gamma_{20}X_{2ij} + u_{1j}X_{1ij} + u_{2j}X_{2ij} + \dots + \gamma_{n0}X_{nij} + u_{nj}X_{nij} + u_{0j} + \varepsilon_{ij}$$
(2)

219 where u_{1j} , u_{2j} ... u_{nj} indicate the random error terms connected to each X_{ij} .

The third model estimated the PQoC as a function of cluster-level variables (Z_j) that include work experience, affective commitment and job satisfaction of health care providers, and patient volume. The model takes into account the differences between health centers and explains these differences in terms of these characteristics. It is given by:

224
$$Y_{ij} = \gamma_{00} + \gamma_{01}Z_{1j} + \gamma_{02}Z_{2j} + \dots + \gamma_{0n}Z_{nj} + \gamma_{11}PV_j * JS_j + u_{0j} + \varepsilon_{ij}$$
(3)

where $PV_j * JS_j$ indicates an interaction term between patient volume and job satisfaction in which job satisfaction was assumed to moderate the effect between patient volume and PQoC. The interaction effect was tested by plotting the marginal effects of interaction terms. The two variables were centered towards the grand mean to facilitate the interpretation of the coefficients.

By combining model II and III, the fourth model estimated the PQoC as a function of bothindividual and cluster-level variables, and can be written as:

 $Y_{ij} = \gamma_{00} + \gamma'_{10}X_{ij} + \gamma'_{01}Z_j + \gamma_{11}PV_j * JS_j + u'_jX_{ij} + u_{0j} + \varepsilon_{ij}$ (4)

where γ_{10} and γ_{01} are the vector of coefficients of *n* explanatory variables whose values are at X_{1ij} , X_{2ij}, \ldots, X_{nij} for the *i*th individual within the *j*th cluster, and $Z_{1j}, Z_{2j}, \ldots, Z_{nj}$ for the *j*th cluster, respectively. The intercept γ_{00} and slopes γ_{01} , γ_{10} and γ_{11} are fixed effects, while u_{0j} , u_j and ε_{ij} are random effects.

This multilevel regression decomposes the total variances into two independent components: σ_e^2 , which is the variance of individual-level errors ε_{ij} , and σ_{u0}^2 , which is the variance of cluster-level errors u_{0j} . From this model we can define the intraclass correlation (ICC) by the equation:³⁹

$$ICC = \sigma_{u0}^2 / \left(\sigma_{u0}^2 + \sigma_e^2\right)$$

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

The ICC and proportional change in variance (PCV) were used to report the measures of variation (random effects). The need for multilevel analysis, which considers cluster-level factors, was tested using the ICC. The ICC shows the variation in PQoC accounted for cluster-level characteristics. Statistically significant variability between health centers justifies the need to consider cluster-level factors.⁴⁰ The PCV expresses the change in the cluster-level variance between the empty model and models with more terms, and is calculated by $PCV = (V_A - V_B)/V_A$, where V_A = variance of the null model, and V_B = variance of the model with more terms. It measures the total variation explained by individual and cluster-level factors.

The measures of association (fixed-effects) estimate the association between the PQoC score and various explanatory variables. The existence of a statistically significant association was determined at p-values of <0.05. The degree of the association was assessed using regression

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

coefficients, and their statistical significance was determined at a 95% confidence interval. Models were compared using the Deviance Information Criteria (DIC) and Akaike Information Criteria (AIC). The best fit model was determined to have the lowest DIC and AIC values. The preliminary analysis confirmed no violation of the assumptions of normality, linearity, homoscedasticity, and multicollinearity. The presence of multicollinearity was determined using Variance Inflation Factor with a cutoff point of 5.

257 Patient and Public Involvement

258 No patient involved

RESULTS

260 Background characteristics of the study population

The household survey included 1081 respondents who had visited a health center at least once in the previous 12 months prior to the study. The average age of the study participants was 49.25 years (SD=12.07), with slightly more than half (51.34%) were between the age ranges of 45 and 64, and 12.67% being 65 and older. Of the total household heads, 938 (86.77%) were men, and 1003 (92.78%) were currently married. One-fifth of the study participants (20.91%) attended formal education, and 62.72% had a household size of five or above.

Nearly ninety percent of the households (87.14%) were active members of the CBHI scheme at the time of the study. A quarter of households (25.72%) had one or more individuals with a known chronic illness informed by a healthcare provider. One-third of respondents (33.58%) rated their Page 15 of 43

BMJ Open

household health status as very-good, while 207 (19.15%) and 511 (47.27%) rated it as fair and
good, respectively. Nearly half of the households (46.16%) had visited a health center within three
months prior to the study, while 31.73% and 22.11% had their most recent visit to a health center
before 6-12 and 3-6 months, respectively (Table 1).

The median work experience of health care providers involved in this study ranges from three to ten years. The mean scores of affective commitment and job satisfaction were 29.00 and 30.95 (SD=2.08 and 3.17), respectively. The average patient volume was 32.17 per day per care provider, with a range of 19 to 43 (SD=7.83).

278 Factor analysis

Sampling was adequate as measured by the KMO (0.83), and Bartlett's test of sphericity was significant (p < 0.001). Two items were removed from further analysis due to loadings below 0.40, and one item was removed due to low communality. The factor analysis extracted five dimensions that explained 59.25% of the total variation (online supplemental file 1). The item-total score correlations ranged from 0.268 to 0.622, four items had correlations less than 0.40. The dimension intercorrelations varied from 0.031 to 0.434, all of which were less than the 0.80 criterion, indicating that each dimension was distinct enough to be considered an independent measure. Dimension-total score correlation ranged between 0.463 and 0.743, all significant at a p-value of 0.001, and were higher than dimension intercorrelation. The scale was tested for reliability and had an overall Cronbach's alpha coefficient of 0.804. The Cronbach's alpha coefficients for the five dimensions exceeded 0.60, except for the access to care subscale, which had an alpha coefficient of 0.531.

찔

ξ
ò
en:
pen: first pu
tpu
blis
hec
las
blished as 10.1
1136/b
6/bi
njo
pen
-20
22-(
63
860
st published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded fror
17 C
O _C
obe
۳ 2C
October 2022. D
D
۷n
oad
ed f
rom
htt
p://t
http://bmjop
ope
n.br
nj.o
ίΩ MO
on
Apr
-ii - 1 (
9, 2
024
by
gue
st. I
Prot
ecte
g pe
уу с
opy
righ

Table 1: Independent t-test and one-way ANOVA comparing mean scores of the PQoC (20-100 scale)
 across respondent characteristics in two districts of northeast Ethiopia, 2021

				PQoC	score	
Variable	Categories	N=1081	%	М	SD	t/F-test
Age in years	25 – 44	389	35.99	69.97	7.78	1.08
	45 – 64	555	51.34	70.26	8.52	
	65+	137	12.67	71.20	9.49	
Gender	Men	938	86.77	70.15	8.21	-1.31
	Women	143	13.23	71.13	9.51	
Marital status	Divorced/widowed	78	7.22	71.61	10.95	1.46
	Married	1003	92.78	70.17	8.16	
Attend formal education	No	855	79.09	70.29	8.48	0.07
	Yes	226	20.91	70.24	8.05	
Household size	< Five	403	37.28	70.85	8.63	1.73
	≥ Five	678	62.72	69.94	8.25	
Wealth tertile	Lowest	361	33.40	71.77	9.15	8.83#
	Medium	360	33.30	69.36 ^b	8.16	
	Highest	360	33.30	69.70 ^b	7.62	
Current insurance status	Ex-member	139	12.86	67.66	9.65	-3.96#
	Active-member	942	87.14	70.66	8.13	
Perceived health status	Fair	207	19.15	72.28	8.84	8.04#
	Good	511	47.27	70.08 ^b	7.83	
	Very-good	363	33.58	69.41 ^b	8.73	
Chronic illness	No	803	74.28	69.54	8.29	-4.96#
	Yes	278	25.72	72.40	8.33	
Last health center visit	< 3 months	499	46.16	70.75 ^b	8.99	4.78§
	3-6 months	239	22.11	70.94 ^b	7.60	
	6-12 months	343	31.73	69.13	7.92	
Total		1081	100	70.28	70.28	

Statistical significance for t-test/F-test is indicated by p<0.01, and p<0.001. Based on Tukey's post-hoc test, mean values sharing letter 'b' are not significantly different in the group at the 5% level.

295 Perceived quality of care

The minimum and maximum PQoC scores were 37.65 and 97.65, respectively. The mean score was 70.28 (95% CI: 69.77, 70.78) with an SD of 8.39. The aggregated mean score at the health

 center-level ranges from 64.94 to 74.06. Patient-provider communication had the highest mean score (M=77.84, SD=10.12) of the five quality dimensions, while information provision had the lowest score (M=64.67, SD=13.87). The mean score for each measurement item is summarized by online supplemental file 2.

An independent t-test and a one-way ANOVA were performed to compare the mean scores of PQoC and its dimensions between subgroups. As shown under Table 1, there was a significant difference in the PQoC mean score for wealth tertile at p < 0.05 (F=8.83, p = 0.001). Tukey's post-hoc test indicated that the mean score of PQoC for the lowest wealth tertile (M=71.77, SD=9.15) was significantly different from both the medium (M=69.36, SD=8.16) and highest (M=69.70, SD=7.62) wealth tertile. However, no significant difference was seen between medium and high wealth tertile. The ANOVA test also showed that the PQoC mean score showed significant differences based on the respondents perceived health status and most recent visit to a health center, with (F=8.04, p < 0.001) and (F=4.78, p < 0.01), respectively. There was a significant difference in the mean score of PQoC between active insurance members (M=3.53, SD=0.41) and ex-members (M=3.38, SD=0.48); t = 3.96, p<0.001. The mean PQoC score of households with chronic illness (M=3.62, SD=0.42) was also significantly higher compared to those who did not have chronic illness (M=3.48, SD=0.42); t = 4.95, p < 0.001. The results of an independent t-test and a one-way ANOVA that compare the differences in mean scores of the five dimensions between subgroups is displayed by Table 2.

Table 2: Independent t-test and one-way ANOVA comparing mean scores of PQoC dimensions (20-100 scale) across respondent characteristics in two districts of northeast Ethiopia, 2021

Variables	Ν	Techn	ical care	Comr	nunication	Inform	ation provision	Acces	ss to care	Trust	in providers
		М	SD	М	SD	М	SD	М	SD	М	SD
					16						
F	orneer	roviow o	nly - http:	//hmio	non hmi c	om/sita	/about/quide	linos vl	html		

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

25 – 44	389	68.33	15.61	77.60	9.89	62.75 ^b	13.73	69.99	11.64	73.59 ^b	10.1 ⁻
45 – 64	555	68.14	15.19	77.71	10.01	64.60 ^b	14.03	69.41	12.04	73.61 ^b	10.9
65+	137	69.15	14.44	79.03	11.19	70.36 [#]	14.03	68.25	10.97	70.46 [§]	13.2 ⁻
Gender	157	09.15	14.44	79.05	11.19	70.30	12.09	00.25	10.97	70.40°	13.2
	938	68.36	15.15	77.67	10.17	64.40	13.80	69.34	11.67	73.18	10.80
Men Women	938 143	68.48	16.00	78.93	9.81	66.40	13.80	70.31	12.42	73.38	12.3
Marital status	143	00.40	10.00	10.95	9.01	00.40	14.27	70.31	12.42	13.30	12.5
	78	70 77	14 74	70.00	10.10	70 77#	10 50	67.10	13.03	70.04	14.0
Divorced/widowed	70 1003	70.77	14.74	78.80	12.10 9.96	70.77#	13.58	67.18		72.31	14.0
Married	1003	68.15	15.27	77.76	9.90	64.19	13.79	69.65	11.65	73.27	10.7
Formal education	055	00.07	45 44	77 70	10.00	04.40	12.00	<u> </u>	11.04	70.00	
No	855	68.37	15.41	77.78	10.29	64.43	13.98	69.63	11.64	73.39	11.1
Yes	226	68.20	14.62	78.05	9.54	65.55	13.46	68.89	12.24	72.51	10.5
Household size	100	00.40	45.04	70 54	40.07	05.44			44.05	70.40	
< Five	403	69.10	15.21	78.51	10.07	65.14	14.31	70.37	11.25	73.18	11.9
≥ Five	678	67.89	15.25	77.43	10.14	64.39	13.61	68.94	12.04	73.22	10.4
Wealth tertile											
Lowest	361	69.64	14.42	79.56#	9.94	70.21 ^{a#}	12.84	68.70	11.49	72.13ª	13.0
Medium	360	67.11	15.28	76.80 ^b	10.57	63.08ª	14.40	69.00	11.82	73.02*	10.4
Highest	360	68.26	15.93	7 7.13⁵	9.65	60.69ª	12.54	70.63	11.94	74.46ª	9.04
Insurance status											
Ex-member	139	64.75§	15.73	74.29§	12.91	63.13	14.46	67.05§	13.56	70.79§	13.0
Active-member	942	68.87	15.10	78.36	9.54	64.89	13.78	69.83	11.44	73.56	10.6
Self-rated health											
Fair	207	71.76 ^b	13.73	80.35#	9.55	70.02#	12.87	68.62	11.51	72.59*	11.8
Good	511	68.85 ^b	14.73	76.73 ^b	10.06	63.86 ^b	13.95	69.18	11.14	74.16ª	9.83
Very-good	363	65.67#	16.31	77.96 ^b	10.29	62.74 ^b	13.59	70.37	12.71	72.21ª	11.9
Chronic illness											
No	803	67.39#	15.58	77.30§	10.35	63.09#	13.74	69.13	11.90	73.07	10.9
Yes	278	71.08	13.90	79.38	9.29	69.21	13.26	70.47	11.33	73.60	11.2
Last health center visit											
< 3 months	499	68.08	15.10	78.46	10.25	68.07#	13.95	68.88 ^b	11.49	71.77#	12.2
3-6 months	239	69.71	14.79	77.68	9.97	62.97 ^b	12.90	71.67§	11.28	75.06 ^b	9.31
6-12 months	343	67.76	15.74	77.03	10.02	60.90 ^b	13.26	68.80 ^b	12.34	73.99 ^b	10.0
Total	1081	68.34	15.24	77.84	10.12	64.67	13.87	69.47	11.77	73.20	11.0

320 mean values sharing letter 'a' are significantly different; while mean values sharing letter 'b' are not significantly

 $\frac{46}{47}$ 321 different in the group at the 5% level.

48 322 The mean PQoC score was significantly different among health centers (F=11.85, p<0.001). The 49 323 mean scores for the five dimensions were also significantly different among health centers at

p < 0.001 level: technical care (F=8.66), patient-provider communication (F=6.65), information

provision (F=47.42), access to care (F=36.87) and trust in care providers (F=6.98). The mean scores of the PQoC and its dimensions across the 12 health centers are depicted using a radar chart (Figure 1). The chart shows a comparison of mean scores on a scale of 10 to 90. For example, respondents from 11 health centers had a higher perception score on patient-provider communication than other dimensions with less variation, while the information provision dimension was mostly ranked lowest with more variability.

Figure 1: Summary of the mean scores of the PQoC and its dimensions across 12 health centers in
two districts of northeast Ethiopia, 2021

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

334 Predictors of perceived quality of care: Multilevel analysis

The fixed effects (measures of association) and the random effects (measures of variation) for the multilevel linear regression model are depicted in Table 3. In the null model, 8.5% of the total variance in PQoC was attributed to cluster-level variables. The variability between clusters was statistically significant (τ =5.90, p<0.001). Furthermore, the null model shows a significant improvement in fit relative to a standard linear model, demonstrating the importance of developing a multilevel model. The cluster-level variation in Model II remained significant ($\tau = 6.33$, p < 0.001), with 9.31% of the total variability attributed to differences across clusters. The PCV was negative in this model, indicating that individual-level characteristics did not play a role in explaining the between cluster variation. In Model III, cluster-level variables accounted for just 1.33% of the variation in PQoC across clusters. The PCV showed that cluster-level variables explained 85.42% of the between health centers variation, indicating the importance of including cluster-level

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

characteristics to build a more robust explanatory model. We interpreted the results of the regression analysis using Model IV, which has the lowest DIC and AIC. After adjusting for other individual and cluster-level factors, the mean POoC score for households with higher wealth tertile increased by 1.79 points compared to those with lower wealth tertile

(b=1.79; 95% CI: 0.37, 3.21). Households who were active members of CBHI at the time of the study had a 2.70-point higher PQoC score than ex-members (b=2.70; 95% CI: 1.25, 4.14). The PQoC score of households who rated their health status as very-good was 1.80 points lower compared to those who rated it as fair (b=-1.80; 95% CI: -3.31, -0.29). Compared to households without a chronic illness, those with one or more family members with a chronic illness had a 1.42 point higher perception score (b=1.42; 95% CI: 0.22, 2.63). Time since the most recent visit to a health center was also significantly associated with PQoC score. The mean score for households who had their most recent visit to a health center before 3-6 months was 1.89 points higher compared to those whose recent visit was within 3-months prior to the study (b=1.89; 95% CI: 0.61, 3.17).

Regarding cluster-level variables, the work experience of health care providers and patient volume had statistically significant associations with PQoC. A 1.07-point improvement in the average PQoC score of health centers was noted for every year increase in the median work experience of health care providers (b=1.07; 95% CI: 0.74, 1.40). An interaction term between patient volume and job satisfaction was positively associated with PQoC, implying that increasing staff job satisfaction would buffer or lessen the effect between patient volume and PQoC. At an average staff job satisfaction, a 0.42-point drop in the average PQoC score of health centers was observed for a unit increase in patient volume (b=-0.42; 95% CI: -0.50, -0.33). A one-unit increase in patient Page 21 of 43

BMJ Open

368 volume would only result in a 26% fall in average PQoC if the average job satisfaction is set one 369 SD above the mean. This prediction was substantiated by the fact that the margins graph for patient 370 volume showed the flattest slope for high job satisfaction. However, the buffering role is observed 371 in health centers with an average patient volume of 30.75 or higher.

DISCUSSIONS

In this study, the mean PQoC score was 70.28 from a scale of 20-100 with an SD of 8.39. The patient-provider communication received the highest score (M=77.84, SD=10.12) among the five quality dimensions. In 2015, the Ethiopian government incorporated the development of caring, respectful and compassionate health care providers as one of the main transformation agendas in its five-year strategic plan.²⁷ Our finding may be attributed partly to the government's ongoing training initiative aimed at producing caring, respectful and compassionate health care providers. The perception score for the information provision dimension, on the other hand, was the lowest (M=64.67, SD=13.87). This could be attributed to an increase in patient volume following the implementation of CBHI.²⁶ Items loaded under this dimension appear less practical in the presence of a larger patient load. If health care providers are required to treat a large number of patients, consultation times will be reduced. They are unlikely to provide the necessary information to their clients if they are under time constraints. Regarding item level observations, waiting time and medicine availability received the lowest perception scores (62.96 and 63.50, respectively), which could also be related to increased patient load. This is consistent with previous studies in Ethiopia, which showed insured clients frequently complain about a lack of medicine and long wait times at CBHI-affiliated health facilities.^{41 42}

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Table 3: Multilevel linear regression analysis of factors associated with PQoC among households ever
 enrolled in a CBHI scheme in two districts of northeast Ethiopia, 2021

Variables		Model I	Model II	Model III	Model IV				
	Category		b (95% CI)	b (95% CI)	b (95% CI)				
Fixed effects									
Age			-0.02 (-0.06, 0.03)		-0.03 (-0.07, 0.02)				
Gender	Women		0.64 (-1.06, 2.34)		0.80 (-0.88, 2.49)				
Marital status	Married		-0.14 (-2.42, 2.15)		0.18 (-2.09, 2.45)				
Modern education	Yes		-0.07 (-1.34, 1.19)		-0.25 (-1.49, 1.00)				
Wealth tertile	Medium		-0.57 (-1.89, 0.74)		-0.16 (-1.40, 1.09)				
	High		0.73 (-0.87, 2.34)		1.79 (0.37, 3.21)*				
Household size	Large (≥ 5)		-0.28 (-1.28, 0.72)		-0.31 (-1.31, 0.68)				
Insurance status	Active member		2.65 (1.20, 4.11)#		2.70 (1.25, 4.14)#				
Perceived health	Good		-0.75 (-2.16, 0.66)		-0.73 (-2.14, 0.67)				
status	Very-good		-1.78 (-3.29, -0.26)*		-1.80 (-3.31, -0.29)*				
Chronic illness	Yes		1.55 (0.34, 2.76)*		1.42 (0.22, 2.63)*				
Last health center	3-6 months		1.64 (0.35, 2.94)*		1.89 (0.61, 3.17)§				
visit	6-12 months		0.77 (-0.45, 1.99)		1.02 (-0.18, 2.21)				
Work experience				0.75 (0.33, 1.17) [§]	1.07 (0.74, 1.40)#				
Affective commitment	t			0.48 (0.04, 1.00)	0.27 (-0.10, 0.65)				
Patient volume				-0.33 (-0.45, -0.21)#	-0.42 (-0.50, -0.33)*				
ob satisfaction				0.01 (-0.24, 0.27)	0.07 (-0.10, 0.24)				
atient volume x Job	satisfaction			0.06 (0.02, 0.11) [§]	0.05 (0.02, 0.08)§				
Random effect									
τ (SE)		5.90 (2.78)#	6.33 (3.10)#	0.86 (0.94)	≈ 0.00				
ICC (%)		8.50	9.31	1.33	≈ 0.00				
PCV (%)		Reference	-7.29	85.42	≈ 100				
Model fitness									
DIC		7578.01	7528.89	7572.79	7516.90				
AIC		7584.01	7560.89	7588.79	7558.90				
*p<0.05; §p<0.01; # p	<0.001; τ - Cluster	-level variance,	ICC - Intraclass Correla	tion; PCV - Proportiona	al Change in				
Variance; DIC - Devi	iance Information (Criterion; AIC - A	Akaike Information Crite	rion; SE – standard err	or; b -				
Variance; DIC - Deviance Information Criterion; AIC - Akaike Information Criterion; SE – standard error; b - regression coefficient; CI – Confidence Interval.									
regression coefficier									
-	gression analysi	is revealed the	at households with	higher wealth tertil	e had a higher				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 43

BMJ Open

the richest group had a lower perception score. This discrepancy could be attributed to the use of different metrics to assess quality of care. People with higher economic status may be more aware of health issues and able to bargain with health care providers to obtain the best possible care. Furthermore, if prescribed medicines are not available in CBHI-affiliated health facilities (which is one of the lowest-rated items in this study), they can afford to buy from private pharmacies. On the contrary, it may be irritating for people with lower economic status to buy medicines with limited money or to forgo treatment due to lack of money. In this regard, they may develop a negative perception of the quality of care.

Households who were active members of CBHI at the time of the study had a higher rating of PQoC compared to ex-members. Contrary to our finding, a study in Ghana showed that previously insured clients had a higher perception of quality of care compared to actively insured clients (statistical significance is not reported). The authors argue this was due to the more time-consuming nature of the service delivery processes for insured clients.⁴⁴ At least three possible explanations exist for the relationship between CBHI status and PQoC. First, because they do not have to pay for health care, active members have better access to and enjoy its benefits, resulting in a favorable perception of its quality. Second, the relationship could be due to an endogeneity issue. It is plausible that higher quality score reported by active members is due to their desire to stay in the scheme, which could be influenced by unobserved variables. We tested for endogeneity between current insurance status and PQoC using the Durbin–Wu–Hausman test, and the results showed no evidence of endogeneity. However, there is still the possibility of endogeneity due to omitted variables. Third, ex-members of CBHI may have had negative experiences with health services, which led to the decision to discontinue their membership. As a result, they would be

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

critical in rating the quality of care provided. In support of the latter argument, it was evidenced that poor quality of care was a major reason for insurance members to leave the scheme.^{24 45} A statistically significant association was also reported between dropout and low quality of care.⁴⁵⁻⁴⁷ This study verified that the PQoC score of households who rated their health status as very-good was significantly lower compared to those who rated it as fair. The households' chronic illness experiences also influence the PQoC rating. The PQoC score of households with a chronic illness was higher compared to those without a chronic illness. This may be true for people who perceive their health as fair or who live with chronic conditions to appreciate the gains or benefits of the health care they received. In this respect, they may be more likely than their counterparts to rate quality of care higher. The results also indicated that households who had their most recent visit to a health center before

428 The results also indicated that households who had their most recent visit to a health center before 429 3-6 months had higher PQoC scores compared to those whose recent visit was within 3-months 430 prior to the study. Patients may experience varying levels of emotional highs and lows, depending 431 on the length of the most recent facility visit. Although patients' perceptions of quality may 432 develop over time,⁵ patients who recently visited a health facility may be more critical of the 433 quality of care due to strong emotions attached to negative events or health services that fall short 434 of their expectations.

Our findings revealed that the work experience of health care providers was positively associated
with PQoC. Work experience is linked to task specialization, which can lead to a faster work pace,
more output in less time, and higher quality.⁴⁸ This could be more pronounced in Ethiopia, where
the number of outpatient visits to CBHI-affiliated health centers had increased dramatically.²⁶

Page 25 of 43

BMJ Open

439 Providers with more experience take less time to make diagnoses and treatment decisions, while 440 still providing recommended practical aspects of care, such as good communication, physical 441 examination, and provision of relevant health information.⁴⁸ As a result, they can reduce waiting 442 times, and their management outcomes may be more effective than inexperienced providers.

Conditional on the average staff job satisfaction, patient volume has a negative association with PQoC. A study in Ethiopia identified a non-linear significant association (an inverted U-shape) between patient volume and quality. Quality decreased with increasing patient volume in health facilities that treated 90.6 or more patients per day, while quality increased with increasing patient volume in health facilities that treated less than 90.6 patients per day in the outpatient departments.⁴⁹ Our finding is consistent with a study at public hospitals in China,³⁰ where overcrowding was negatively associated with clients' perception of quality of care. There are two possible explanations for the observed relationship between patient volume and PQoC. First, increased patient volume would put a great deal of pressure on health care providers to treat a large number of patients in a short time. This may result in shorter consultation time and the omission of important practical aspects of care. Second, an increase in patient volume would mean longer waiting times at various service delivery points. Both these factors could have contributed to a negative patient experience and influenced their perception on overall quality of care. Some studies reported a positive relationship between patient volume and quality of basic maternal care, and postoperative infections.^{50 51} The alternative direction of this relationship, in which quality drives patient volume, is based on the assumption that the provision of high quality care will attract more patients. This may be true in areas where patients have access to competitive health care facilities, and health care providers are incentivized for providing higher quality care. This is not the case in

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

> 461 low-income countries, like Ethiopia, where health care facilities are hard to reach for most rural 462 populations. Members of CBHI are further limited to use health services only in public health 463 facilities affiliated with the scheme.

This study found no relationship between staff job satisfaction and PQoC. This contrasts with the findings of Kvist et al,⁵² which reported a positive relationship between job satisfaction among nursing staff and patients' perceptions of quality of care. Despite this, it moderates the relationship between patient volume and PQoC in a nonlinear fashion. Increased job satisfaction buffers the negative relationship between patient volume and PQoC in health centers with an average patient volume of 30.75 or higher. When the average patient volume is less than 30.75, however, an increase in job satisfaction enhances the effect between patient volume and PQoC. It is plausible that the buffering role of provider job satisfaction as patient volume rises indicates that provider job satisfaction is a result of the intrinsic rewards of higher work performance. Providers may also be fully available during working hours at the health facility due to the increased number of clients. On the other hand, the moderating role of enhancing the relationship as patient volume decreases could suggest that a low workload is one source of job satisfaction. Because clients are in small numbers, providers may not be fully engaged during working hours. They may have the freedom to do other businesses outside the health facility, leaving patients unattended and dissatisfied.

The findings of this study will be an essential input for quality improvement initiatives as well as addressing challenges in the country's efforts to establish higher-level insurance pools. This is the first study of its kind to consider cluster-level variables associated with PQoC in Ethiopia. It gives an important lesson to health care managers and other relevant stakeholders to consider clusterlevel characteristics in healthcare quality improvement efforts. It also pointed out quality

dimensions that require special consideration in managerial decisions. Despite the significant findings of the current study, some caution should be taken in interpreting the findings. One noteworthy limitation of this study is the cross-sectional nature of the data. The study's analysis was conducted to identify for associations rather than prove causation. Second, the association between current insurance status and PQoC could be due to the possibility of endogeneity. Third, patient volume data based on secondary data may not reflect the true figure due to the possibility of under or over reporting.

490 CONCLUSIONS

Despite encouraging findings on patient-provider communication, much work remains to be done to improve information provision and access to care quality dimensions. According to the findings, people's perceptions of quality of care varied depending on a variety of individual and cluster-level factors. The household's wealth status, current insurance membership, perceived health status, presence of chronic illness in the household, and time since the most recent visit to a health center were individual-level predictors of PQoC. At the cluster-level, patient volume and work experience of health care providers were associated with PQoC. A lower patient volume allows the health care provider to devote more time and attention to each patient, address their patients' individual needs, and have more time to improve communication with and provide behavior change counseling, which has an impact on quality of care.⁵³ Therefore, to ensure that patients have access to a better quality of care, it is critical to determine an appropriate patient volume per care provider. Staff job satisfaction was an important factor that buffers the effect between patient volume and PQoC. Hence, it is vital to devise mechanisms to improve staff job satisfaction,

especially in health facilities with higher patient volume. More importantly, health centers should go to great lengths to ensure that every patient has access to the necessary medications. This will boost clients' trust in health care providers, which will be critical for health insurance schemes to retain and attract members. Acknowledgements The authors would like to acknowledge the health offices of Tehulederie and Kallu districts, health extension workers, Kebele leaders, data collectors, supervisors, and study participants. **Contributors** MH conceptualized the study, designed the study, collected the data, analyzed and interpreted the data, and drafted the manuscript. MA and NBB contributed to survey design, data collection and statistical analysis, and reviewed the manuscript. All authors read and approved the final manuscript. **Funding** The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. Competing interests None declared. Patient consent for publication Not required. Ethics approval Ethical approval was obtained from the Institutional Review Board (IRB) of College of Medicine and Health Science, Bahir Dar University with protocol number 001/2021. A support letter was communicated to the district health offices to gain entry permission into the community where the research was conducted. Before the interview, oral informed consent was secured from each of the study participants. Confidentiality was assured through collecting

Page 29 of 43

BMJ Open

1 2		
2 3 4	525	anonymous information and informing the participants that personal identifiers would not be
5 6	526	revealed to a third party.
7 8 9	527	Provenance and peer review Not commissioned; externally peer reviewed.
10 11	528	Data availability statement Data are available in a public, open access repository. The datasets
12 13 14	529	generated, and analyzed during the current study are available in the Dryad repository, at
14 15 16	530	https://doi.org/10.5061/dryad.ncjsxksw5
17 18	531	Open access This is an open access article distributed in accordance with the Creative Commons
19 20 21	532	Attribution Non-Commercial (CC BY- NC 4.0) license, which permits others to distribute, remix,
21 22 23	533	adapt, build upon this work non- commercially, and license their derivative works on different
24 25	534	terms, provided the original work is properly cited, appropriate credit is given, any changes made
26 27	535	indicated, and the use is non- commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ .
28 29 30	536	ORCID iD
31 32	537	Mohammed Hussien https://orcid.org/0000-0002-5747-8967
33 34	538	Muluken Azage https://orcid.org/0000-0003-3222-0158
35 36 27	539	Negalign Berhanu Bayou https://orcid.org/0000-0002-0975-8358
37 38 39 40	540	RERENCES
41 42	541	1. Nash DB, Joshi MS, Ransom ER, et al. The healthcare quality book : vision, strategy, and tools. 4th ed.
43	542	Washington, DC: Health Administration Press 2019.
44 45	543	2. WHO, OECD, and, et al. Delivering quality health services: a global imperative for universal health
46	544	coverage. Geneva: World Health Organization, Organisation for Economic Co-operation and
47 48	545	Development, and The World Bank, 2018.
49 50	546	3. Larson E, Sharma J, Bohren MA, et al. When the patient is the expert: measuring patient experience and
50 51	547	satisfaction with care. Bull World Health Organ 2019;97(8):563-69. doi: 10.2471/BLT.18.225201
52 53	548	[published Online First: 2019/08/07]
54		28
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	549	4. National Academies of Sciences Engineering and Medicine. Crossing the global quality chasm:
4 5	550	Improving health care worldwide. Washington (DC): The National Academies Press 2018.
6	551	5. Hanefeld J, Powell-Jacksona T, Balabanovaa D. Understanding and measuring quality of care: dealing
7 8	552	with complexity. Bull World Health Organ 2017 2017;95:368–74. doi: 10.2471/BLT.16.179309
9 10	553	6. Goodrich J, Fitzsimons B. Capturing patient experience to improve healthcare services. Nurs Stand
11	554	2019;34(8):24-28. doi: 10.7748/ns.2018.e11177 [published Online First: 2018/11/02]
12 13	555	7. Golda N, Beeson S, Kohli N, et al. Analysis of the patient experience measure. JAM ACAD DERMATOL
14	556	2018;78(4) doi: 10.1016/j.jaad.2017.03.051
15 16	557	8. Fujisawa R, Klazinga NS. Measuring patient experiences (PREMS): Progress made by the OECD and
17 18	558	its member countries between 2006 and 2016. OECD Health Working Papers 102. Paris, 2017.
19	559	9. Doyle C, Lennox L, Bell D. A systematic review of evidence on the links between patient experience
20 21	560	and clinical safety and effectiveness. BMJ Open 2013;3(1) doi: 10.1136/bmjopen-2012-001570
22	561	10. Anhang Price R, Elliott MN, Zaslavsky AM, et al. Examining the role of patient experience surveys in
23 24	562	measuring health care quality. Med Care Res Rev 2014;71(5):522-54. doi: 10.1177/1077558714541480
25 26	563	[published Online First: 2014/07/17]
27	564	11. Soors W, Devadasan N, Durairaj V, et al. Community Health Insurance and Universal Coverage:
28 29	565	Multiple paths, many rivers to cross. Geneva: World Health Organization, 2010.
30	566	12. Lagomarsino G, Garabrant A, Adyas A, et al. Moving towards universal health coverage: health
31 32	567	insurance reforms in nine developing countries in Africa and Asia. The Lancet 2012;380(9845):933-43.
33 34	568	doi: 10.1016/s0140-6736(12)61147-7 [published Online First: 2012/09/11]
35	569	13. Lagomarsino G, Kundra SS. Overcoming the Challenges of Scaling Voluntary Risk Pools in Low-
36 37	570	Income Settings: Results for Development Institute, 2008.
38	571	14. Boateng D, Awunyor-Vitor D. Health insurance in Ghana: evaluation of policy holders' perceptions and
39 40	572	factors influencing policy renewal in the Volta region. Int J Equity Health 2013;12:50. doi:
41 42	573	10.1186/1475-9276-12-50 [published Online First: 2013/07/05]
42 43	574	15. Alhassan RK, Duku SO, Janssens W, et al. Comparison of Perceived and Technical Healthcare Quality
44 45	575	in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana.
46	576	PLoS One 2015;10(10):e0140109. doi: 10.1371/journal.pone.0140109 [published Online First:
47 48	577	2015/10/16]
49	578	16. Aggrey M, Appiah SCY. The influence of clients' perceived quality on health care utilization.
50 51	579	International Journal of Innovation and Applied Studies 2014;9(2):918-24.
52 53		
54 55		29

Page 31 of 43

BMJ Open

1		
2 3	580	17. Akachi Y, Kruk ME. Quality of care: measuring a neglected driver of improved health. Bull World
4 5	581	<i>Health Organ</i> 2017;95(6):465-72. doi: 10.2471/BLT.16.180190 [published Online First: 2017/06/13]
6	582	18. Dror DM, Hossain SAS, Majumdar A, et al. What Factors Affect Voluntary Uptake of Community-
7 8	583	Based Health Insurance Schemes in Low- and Middle-Income Countries? A Systematic Review and
9 10	584	Meta-Analysis. PLoS One 2016;11(8):e0160479. doi: 10.1371/journal.pone.0160479 [published Online
11	585	First: 2016/09/01]
12 13	586	19. Fadlallah R, El-Jardali F, Hemadi N, et al. Barriers and facilitators to implementation, uptake and
14	587	sustainability of community-based health insurance schemes in low- and middle-income countries: a
15 16	588	systematic review. Int J Equity Health 2018;17(1):13. doi: 10.1186/s12939-018-0721-4 [published
17 18	589	Online First: 2018/01/31]
18	590	20. Primary Health Care on the Road to Universal Health Coverage: 2019 global monitoring report. Geneva:
20 21	591	WHO, UNICEF, UNFPA, OECD and World Bank., 2019.
22	592	21. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development
23 24	593	Goals era: time for a revolution. The Lancet 2018;6(11):e1196-e252. doi: 10.1016/S2214-
25 26	594	109X(18)30386-3 [published Online First: 2018/09/10]
27	595	22. Alhassan RK, Nketiah-Amponsah E, Arhinful DK. A Review of the National Health Insurance Scheme
28 29	596	in Ghana: What Are the Sustainability Threats and Prospects? PLoS One 2016;11(11):e0165151. doi:
30	597	10.1371/journal.pone.0165151 [published Online First: 2016/11/11]
31 32	598	23. Adebayo EF, Uthman OA, Wiysonge CS, et al. A systematic review of factors that affect uptake of
33 34	599	community-based health insurance in low-income and middle-income countries. BMC Health Serv Res
35	600	2015;15(543):543. doi: 10.1186/s12913-015-1179-3 [published Online First: 2015/12/10]
36 37	601	24. Hussien M, Azage M. Barriers and Facilitators of Community-Based Health Insurance Policy Renewal
38	602	in Low- and Middle-Income Countries: A Systematic Review. Clinicoecon Outcomes Res 2021;13:359-
39 40	603	75. doi: 10.2147/CEOR.S306855 [published Online First: 2021/05/20]
41 42	604	25. Tefera BB, Kibret MA, Molla YB, et al. The interaction of healthcare service quality and community-
43	605	based health insurance in Ethiopia. PLoS One 2021;16(8):e0256132. doi:
44 45	606	10.1371/journal.pone.0256132 [published Online First: 2021/08/20]
46	607	26. Shigute Z, Mebratie AD, Sparrow R, et al. The Effect of Ethiopia's Community-Based Health Insurance
47 48	608	Scheme on Revenues and Quality of Care. Int J Environ Res Public Health 2020;17(22) doi:
49 50	609	10.3390/ijerph17228558 [published Online First: 2020/11/22]
51	610	27. FMHO. Health Sector Transformation Plan 2016-2020. Addis Ababa, Ethiopia: Federal Ministry of
52 53	611	Health, 2015.
54		30
55 56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

28. Zonal Health Department. Community-based health insurance performance report of South Wollo Zone, 2020. 29. Robyn PJ, Bärnighausen T, Souares A, et al. Does enrollment status in community-based insurance lead to poorer quality of care? Evidence from Burkina Faso. International Journal for Equity in Health 2013;12(31) 30. Bao Y, Fan G, Zou D, et al. Patient experience with outpatient encounters at public hospitals in Shanghai: Examining different aspects of physician services and implications of overcrowding. PLoS One 2017;12(2) doi: 10.1371/journal.pone.0171684 31. Hu Y, Zhang Z, Xie J, et al. The Outpatient Experience Questionnaire of comprehensive public hospital in China: development, validity and reliability. Int J Qual Health Care 2017;29(1):40-46. doi: 10.1093/intqhc/mzw133 32. Baltussen R, Ye Y. Quality of care of modern health services as perceived by users and non-users in Burkina Faso. Int J Qual Health Care 2006;18(1):30-34. 33. Webster TR, Mantopoulos J, Jackson E, et al. A brief questionnaire for assessing patient healthcare experiences in low-income settings. Int J Qual Health Care 2011;23(3):258-68. 34. Benson T, Potts HW. A short generic patient experience questionnaire: howRwe development and validation. BMC Health Serv Res 2014;14:499. doi: 10.1186/s12913-014-0499-z [published Online First: 2014/10/22] 35. Altindis S. Job motivation and organizational commitment among the health professionals: A questionnaire survey Afr J Bus Manage 2011;5(21):8601-09. 36. Alpern R, Canavan ME, Thompson JT, et al. Development of a brief instrument for assessing healthcare employee satisfaction in a low-income setting. PLoS One 2013;8(11):e79053. doi: 10.1371/journal.pone.0079053 [published Online First: 2013/11/14] 37. Hair JF, Black WC, Babin BJ, et al. Multivariate Data Analysis. 8th ed: CENAGE 2019. 38. Elff M, Heisig JP, Schaeffer M, et al. Multilevel Analysis with Few Clusters: Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference. British Journal of Political Science 2020;51(1):412-26. doi: 10.1017/s0007123419000097 39. Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction To Basic And Advanced Multilevel Modeling. 2nd ed. London, UK: SAGE 2012. 40. Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. J

58 59

60

BMJ Open

2		
3 4	643	Epidemiol Community Health 2005;59(6):443-9. doi: 10.1136/jech.2004.023473 [published Online
5	644	First: 2005/05/25]
6 7	645	41. Mebratie AD, Sparrow R, Yilma Z, et al. Enrollment in Ethiopia's Community-Based Health Insurance
8	646	Scheme. World Development 2015;74:58-76. doi: 10.1016/j.worlddev.2015.04.011
9 10	647	42. Benjamin J, Haile M, Abebe Z. Community-Based Health Insurance Program in Ethiopia: Assessing
11 12	648	Institutional and Financial Sustainability. Rockville, MD: Health Finance & Governance Project, Abt
13	649	Associates Inc., 2018.
14 15	650	43. Amo-Adjei J, Anku PJ, Amo HF, et al. Perception of quality of health delivery and health insurance
16	651	subscription in Ghana. BMC Health Serv Res 2016;16:317. doi: 10.1186/s12913-016-1602-4 [published
17 18	652	Online First: 2016/07/31]
19	653	44. Duku SKO, Nketiah-Amponsah E, Janssens W, et al. Perceptions of healthcare quality in Ghana: Does
20 21	654	health insurance status matter? PLoS One 2018;13(1):e0190911. doi: 10.1371/journal.pone.0190911
22 23	655	[published Online First: 2018/01/18]
23 24	656	45. Eseta WA, Lemma TD, Geta ET. Magnitude and Determinants of Dropout from Community-Based
25 26	657	Health Insurance Among Households in Manna District, Jimma Zone, Southwest Ethiopia. Clinicoecon
27	658	Outcomes Res 2020;12:747-60. doi: 10.2147/CEOR.S284702 [published Online First: 2020/12/29]
28 29 30	659	46. Herberholz C, Fakihammed WA. Determinants of Voluntary National Health Insurance Drop-Out in
	660	Eastern Sudan. Appl Health Econ Health Policy 2016;15(2):215-26. doi: 10.1007/s40258-016-0281-y
31 32	661	[published Online First: 2016/10/04]
33 34	662	47. Mladovsky P. Why do people drop out of community-based health insurance? Findings from an
35	663	exploratory household survey in Senegal. Soc Sci Med 2014;107:78-88. doi:
36 37	664	10.1016/j.socscimed.2014.02.008 [published Online First: 2014/03/13]
38	665	48. Kraus TW, Buchler MW, Herfarth C. Relationships between volume, efficiency, and quality in surgery-
39 40	666	-a delicate balance from managerial perspectives. World J Surg 2005;29(10):1234-40. doi:
41	667	10.1007/s00268-005-7988-5 [published Online First: 2005/09/02]
42 43	668	49. Arsenault C, Yakob B, Tilahun T, et al. Patient volume and quality of primary care in Ethiopia: findings
44 45	669	from the routine health information system and the 2014 Service Provision Assessment survey. BMC
46	670	Health Serv Res 2021;21(1) doi: 10.1186/s12913-021-06524-y
47 48	671	50. Kruk ME, Leslie HH, Verguet S, et al. Quality of basic maternal care functions in health facilities of
49	672	five African countries: an analysis of national health system surveys. The Lancet Global Health
50 51	673	2016;4(11):e845-e55. doi: 10.1016/s2214-109x(16)30180-2
52		
53 54		22
55		32
56 57		

1		
2 3	674	51. Kruse FM, van Nieuw Amerongen MC, Borghans I, et al. Is there a volume-quality relationship within
4 5	675	the independent treatment centre sector? A longitudinal analysis. <i>BMC Health Serv Res</i> 2019;19(1):853.
6	676	doi: 10.1186/s12913-019-4467-5 [published Online First: 2019/11/23]
7		
8 9	677	52. Kvist T, Voutilainen A, Mäntynen R, et al. The relationship between patients' perceptions of care
10	678	quality and three factors: nursing staff job satisfaction, organizational characteristics and patient age
11 12	679	<i>BMC</i> Health <i>Serv Res</i> 2014;14(466)
13	680	53. Raffoul M, Moore M, Kamerow D, et al. A Primary Care Panel Size of 2500 Is neither Accurate nor
14 15	681	Reasonable. J Am Board Fam Med 2016;29(4):496-9. doi: 10.3122/jabfm.2016.04.150317 [published
16	682	Online First: 2016/07/09]
17 18	683	
19		
20 21	684	
22		
23 24	685	Figure 2: Summary of the mean scores of the PQoC and its dimensions across 12 health centers in
25	686	two districts of northeast Ethiopia, 2021
26 27	080	two districts of northeast Ethiopia, 2021
28	687	
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		33
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Responses to Reviewers

Dear editor, we are enclosing herewith the revised version on the manuscript **# bmjopen-2021-058499** entitled **"Perceived quality of care among households ever enrolled in a community-based health insurance scheme in two districts of northeast Ethiopia: a multilevel analysis**"

We thank the editor and reviewers for the time they spent reviewing our manuscript. Our responses to the concerns raised during the review process are presented below.

Reviewers' comments are in bold and numbered

4 Authors' responses in normal typeface and bulleted

Reviewer #1 Evaluation

Major comments

- 1. The empirical approach presented under your "Data analysis" section does not seem to correspond to your research topic and objectives. Looking at your title "... Health centers affiliated with CBHI...", I was expecting your analysis to follow the direction of comparison between "Affiliated" and "Non-affiliated" health centers. However, what you carry out is a comparison between "current" and "previous" enrolment of individual households. Are all the health centers affiliated with the CBHI scheme?
 - Thank you for raising these important issues, that could create confusion for readers. Now we modify the title as "Perceived quality of care among households ever enrolled in a community-based health insurance scheme in two districts of northeast Ethiopia: a multilevel analysis". Here it should be understood that our study is **not comparative.** The term "households ever enrolled in CBHI" is mentioned to indicate the specific population participated in the study. We aim to assess the experiences of people who received health care under CBHI, on quality of care. We classify the population in to previous and current members as an independent variable. Just it is one independent variable. Some similar clarifications are provided under the 4th comment. We believe the data analysis is in line with the objectives (1. Assessing perceived quality, 2. Identify individual and health center level factors associated with perceived quality). Currently, all health centers in the study districts are affiliated with CBHI.
- 2. The authors propose multilevel analysis as the major line of econometric technique and analysis in their study. However, the findings presented from the data analysis are very

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

shallow and rushed. From the onset, the authors need to present a model showing what has been done in the different specifications with a clear motivation. These are key in evaluating what has gone to the analysis and evaluating whether the methods and results support or fail to support the conclusions made in the manuscript.

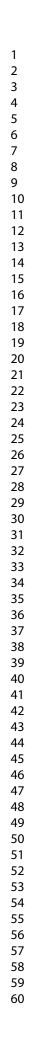
- Thank you. We prepared the manuscript based on a standardized reporting format for cross-sectional studies (STROBE Guide). Based on the guide presenting the analysis model is not a requirement. It is also less common in public health research to specify analysis models. That is why we fail to include the model. Now we tried to show the multilevel linear regression analysis models that we employed (line 207 234). Regarding presentation of the result, we believe it describes and include all important findings in line with the objectives. It seems "shallow and rushed", but we don't think that is so. Rather we tried to present the result concisely, without missing important findings. Further the main findings are more elaborated under the discussion part. Now, although we tried to add some more details under the results part (line 303-317, 366.374 we are not sure this is up to the expectation of the reviewer) we prefer to make it more concise. In addition, even with the previous version, we pass the journals word limit of 4000 words. The journal recommends that exceeding this limit will impact upon the paper's 'readability', and we were guided in part by this recommendation.
- 3. I also have a major concern on the appropriateness of the linear definition that you applied in converting your discrete outcome variable to a continuous outcome unless this was explicitly communicated to the respondents during data collection. Alternatively, the authors might consider estimating marginal effects using an ordered-probit model or creating dummy variables from the categorical variable and estimating a linear probability model. The descriptive statistics provided in Table 1 should also include the descriptive statistics on your outcome variable.
 - Thank you for raising this important issue. We converted the discrete outcome variable to a continuous outcome based on recommendations of a validated tool by Benson and Potts 2014, http://www.biomedcentral.com/1472-6963/14/499. But your concern "unless this was explicitly communicated to the respondents during data collection" is acceptable as the option "0" (zero) was not available during the interview. This was what we missed out and fail to understand the approach suggested by the tool. They included the option (0) during their data collection. Now we modify the approach based on recommendations of the above tool (Benson and Potts 2014), and now it reads as "The summary scores for the PQoC and its dimensions were calculated for".

individual respondents by adding the scores for each item. This gives a scale ranging from 17 (1 \times 17) to 85 (5 \times 17) for the overall PQoC score. When reporting the results, the scores were arithmetically transformed to a scale of 20 to 100. This allows the comparison of mean scores of PQoC with its dimensions, and measurement items on a common scale." Accordingly, we did the whole analysis again. One more change we made on the analysis is the estimation method. We change the Maximum Likelihood estimation method to Restricted Maximum Likelihood method, because it is more appropriate for smaller cluster sizes. Regarding alternative analysis approaches, still there is a great debate whether to treat a Likert scale data as a continuous or a categorical ordinal data. Initially we considered to do multilevel ordinal regression analysis. Accordingly, we created a five level categorical data by performing factor analysis, and divide the index into quintiles (with no literature supporting the approach). We compared the two models (the multilevel linear VS ordinal) using AIC, and found the linear approach better fits the data. Furthermore, it is recommended that, if the measurement items are more than 8, it is better to add the scores of each item and treat as a continuous variable. On the other hand (as to our search) there is no agreed up on method of converting multidimensional Likert scale data to ordinal categories. As a result, we opted to create a continuous variable from the sum of all the 17 item scores and do multilevel linear regression analysis. The approaches you suggested may also be other alternatives, but we public health researchers conventionally apply biostatistics approaches. Our primary readers are also oriented towards biostatical approaches. The outcome variable is included as part of the descriptive statistics under table 1, based on your suggestion. What we

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

4. Previous works, also discussed in your literature review, identify quality in health care (including perceived quality of care) as a major factor in insurance uptake and dropout from voluntary insurance schemes such as community-based health insurance schemes. However, you use the variable capturing past versus current enrolment as your main regressor. It is highly likely for your outcome to suffer from contamination from past experience than perceived quality of care in the period you identified for the analysis. This concern is partially founded on the fact that you only consider households enrolled in the scheme in the past or present. Was there any specific reason why you chose to focus on ever enrolment than the conventional choice between insured vs non-insured?

- Thank you again. Let us give some clarifications on this concern. The main intention of this study was to identify the different variables that influence the perceived quality of care, with special interest to facility level factors which are not assessed so far. "Past versus current enrolment" was not our main regressor. Just it was treated as one independent variable (covariate). We did not indicate it as a main regressor, either.
 - The interest was what do people "perceive" about the quality of care in general, not in a specified time, which is based on their past experience. The period (use of health care in the last one year) was identified for the sake of minimizing recall bias for some questions that need their recall. This is why the title was framed as "Perceived quality of care" rather than patient satisfaction which is based on the service received at a point in time. Contamination due to past experience works for both active and ex-members. But this is more evident among ex-members. As we stated in the introduction part (line 62), perceived quality is shaped by past experience, and even with rumors. In addition, three possible explanations were given for the observed association between insurance status and PQoC, one of which is (line 419), "ex-members of CBHI may have had negative experiences with health services, which led to the decision to discontinue their membership." In fact, perceived quality of care is a "patient experience study". One more point is that it is not only in our study that contamination is an issue (if it is). We could not control it in cross-sectional studies. Narrowing the study population to a specific group may minimize this bias, as we did, since one group may have more contamination than the other.
- As mentioned above, our aim is not comparative. Rather to assess the perceived quality with the eyes of people who have health insurance membership experience. Rather than doing the study on the general population, we prefer a specific population, that is "ever insured". In addition, the advantage of choosing this group helps to assess the role of health care quality on membership retention. We have no other reason to focus on ever enrolment.


Minor comments

1. The manuscript needs some reorganization in the structure, presentation, formatting and coherence. Some (sub-) sections be made more concise by combining sub-sections and removing repetitions with no added value. For example, sub-sections "Study setting" up to "Data collection" can be combined in a maximum of two sub-sections. Table 2 can be divided in to two Tables. The same applies to Table 3. You write the caption for Figure 1 without the figure. Either remove it or bring the Figure inside the text.

- These are all important comments and we tried to revise the paper accordingly.
- The methods part is restructured, some subsections merged together, hence duplications are avoided
- Table 2 is reformatted and its size is minimized, some part was splinted and included under table one (description of the outcome variable).
- Table 3 show the final regression output, better to display all models together for comparison purpose, we keep as it is, but we remove the reference category, as it is specified in table two.
- It is the journal's requirement to upload figures as separate files rather than embedding them in the manuscript. We upload it separately and attached at the end of the manuscript.
- 2. Although language is not a major issue, the manuscript will benefit from an editorial work.
 - 4 Yes, it is. We go through in detail and made many corrections on the editorials.
- 3. There is no point in including the reference categories in the results Table, Table 3 since you have already presented them in the previous Tables.
 - We remove it accordingly.

Reviewer #2 Evaluation

- In the introduction section, authors are interchangeably using terms "perceived quality of care" and "quality of care". This are two different things. Terminology must be accurate. Please check the text.
- 2. There are few typos in the text, proof-reading recommended.
 - Thank you for your comments. We try to check and edit to avoid interchangeable use of the two terms. But we use "quality of care" in some places to indicate the relationship between the two.
 - We found this issue and go through in detail and made many corrections on the editorials.

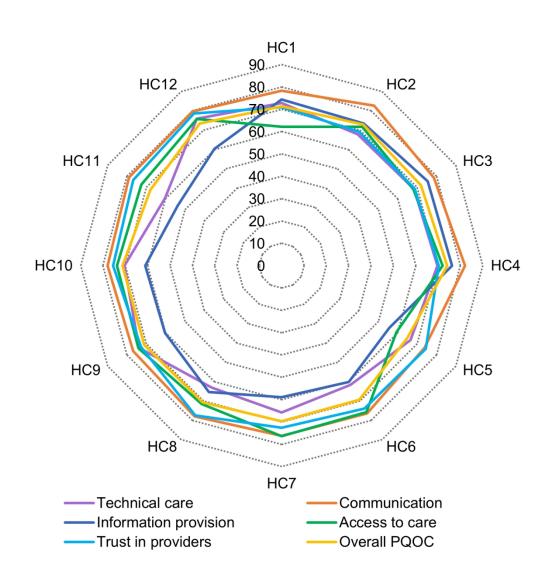


Figure 1: Summary of the mean scores of the PQoC and its dimensions across 12 health centers in two districts of northeast Ethiopia, 2021

130x135mm (300 x 300 DPI)

Dimensions and items		Loadings under each dimension					
		1	2	3	4		
Technical care							
The necessary Laboratory tests were	performed	0.911					
Health care providers perform the neo	essary physical examinations	0.818					
Health care providers make a good di	agnosis	0.740					
Patient-provider communication							
Health care providers actively ask que	estions to understand your situation		0.846				
Health care providers listened to you	carefully what you had to say		0.845				
Health care providers treated you with	o courtesy and respect		0.542				
Information provision							
Health care providers clearly explained	d the use and side effects of medicines			0.787			
Health care providers clearly explaine	d the results of tests and examination			0.760			
Health care providers explain things in	n a way you could understand			0.672			
Health care providers spent sufficient	time examining patients			0.510			
Access to care							
Patients do not wait long in the health	center to receive treatment				0.799		
All prescribed medicines are available	e on the spot				0.624		
Facility assistants are friendly and hel	pful to patients				0.559		
The health facility serves all patients f	airly				0.463		
Trust in care providers							
Treatment is effective for recovery an	d cure						
Health care providers prescribe appro	priate medicines for patients						

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Supplementary file 2: Mean score of each measurement item of the perceived quality of care (20-100 scale) among households enrolled in a CBHI in two districts of northeast Ethiopia, 2021

Factors and items				95	5% CI
		Mean	SD	LCI	UCI
Technical care		68.34	15.24	67.43	69.25
The necessary Laboratory tests	were performed	69.20	18.36	68.10	70.29
Health care providers perform th	e necessary physical examinations	68.23	18.89	67.11	69.36
Health care providers make good	d diagnosis	67.59	17.69	66.53	68.64
Patient-provider communication	on	77.84	10.12	77.23	78.44
Health care providers actively as	k questions to understand your situation	80.39	11.68	79.69	81.09
Health care providers listened to	you carefully what you had to say	79.61	10.93	78.96	80.26
Health care providers treated you	u with courtesy and respect	73.51	16.72	72.51	74.50
Information provision		64.67	13.87	63.84	65.49
Health care providers clearly exp	lained the use and side effects of medicines	62.90	19.87	61.72	64.09
Health care providers clearly exp	lained the results of tests and examination	62.50	19.48	61.34	63.66
Health care providers explain thi	ngs in a way you could understand	69.36	17.42	68.32	70.40
Health care providers spent suffi	cient time to examine patients	63.90	20.18	62.70	65.11
Access to care		69.47	11.77	68.77	70.17
Patients do not wait long in the h	ealth center to receive treatment	62.96	20.17	61.76	64.16
All prescribed medicines are ava	ilable on the spot	63.50	20.37	62.28	64.71
Facility assistants are friendly an	d helpful to patients	73.38	16.07	72.42	74.34
The health facility serves all patie	ents fairly	78.06	15.90	77.11	79.01
Trust in care providers		73.20	11.02	72.55	73.86
Treatment is effective for recover	ry and cure	72.47	14.78	71.59	73.35
Health care providers prescribe a	appropriate medicines for patients	75.47	12.90	74.70	76.24
You have confidence in the comp	petence of health care providers	71.67	14.36	70.82	72.53
Overall perceived quality of ca	re (PQoC)	70.28	8.39	69.77	70.78

Page 43 of 43

43		BMJ Open	
	STI	ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Section/Topic	ltem #	Recommendation 17	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction	•		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper 5	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6, 7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11, 12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	7, 8
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groutings were chosen and why	9, 10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9, 10
		(b) Describe any methods used to examine subgroups and interactions 전 전	11
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	10
		(e) Describe any sensitivity analyses	NA
Results		(e) Describe any sensitivity analyses 0 9 9 9 9 9 9	

 bmjopen-20

copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine d for eligibility,	13
	_	confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	13, 15
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	15
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16, 17
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	20
Discussion			
Key results	18	Summarise key results with reference to study objectives	20, 21-26
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	26
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-26
Generalisability	21	Discuss the generalisability (external validity) of the study results	26
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	27

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in case-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinebrg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strong.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Perceived quality of care among households ever enrolled in a community-based health insurance scheme in two districts of northeast Ethiopia: A community-based, crosssectional study

BMJ Open
bmjopen-2022-063098.R1
Original research
09-Sep-2022
Hussien, Mohammed; Bahir Dar University, Health Systems Management and Health Economics Azage, Muluken; Bahir Dar University, Environmental Health Bayou , Negalign ; Jimma University, Health Policy and Management
Health services research
Health economics, Health policy
Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2		
3 4	1	Perceived quality of care among households ever enrolled in a
5 6	2	community-based health insurance scheme in two districts of
7 8 9	3	northeast Ethiopia: A community-based, cross-sectional study
10 11	4	
12 13 14	5	
15 16 17		
17 18 19	6	Mohammed Hussien ^{1*} , Muluken Azage ² and Negalign Berhanu Bayou ³
20 21 22	7	
23 24 25	8	
26 27 28	9	¹ Department of Health Systems Management and Health Economics, School of Public Health,
29 30 31	10	College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
32 33	11	² Department of Environmental Health, School of Public Health, College of Medicine and Health
34 35 36	12	Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
37 38 39	13	³ Department of Health Policy and Management, Faculty of Public Health, Institute of Health,
40 41 42	14	Jimma University, Jimma, Ethiopia.
43 44 45	15	
46 47 48	16	
49 50 51 52	17	*Correspondence: muhamedun@gmail.com
53 54		1
55 56 57		
59		For peer review only - http://bmjopen.bmi.com/site/about/quidelines.xhtml
58		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

57 58 59

60

2		
3 4 5	18	ABSTRACT
6 7	19	Objectives: The purpose of this study was to examine how clients perceived the quality of health
8 9	20	care they received and to identify associated factors both at the individual and facility levels.
10 11 12	21	Design: A community-based, cross-sectional study.
13 14	22	Setting: Two rural districts of northeast Ethiopia, Tehulederie and Kallu.
15 16 17	23	Participants: 1081 rural households who had ever been enrolled in community-based health
17 18 19	24	insurance and visited a health center at least once in the previous 12 months. Furthermore, 194
20 21	25	health care providers participated in the study to provide cluster-level data.
22 23 24	26	Outcome measures: The outcome variable of interest was the perceived quality of care, which
25 26	27	was measured using a 17-item scale. Respondents were asked to rate the degree to which they
27 28 29	28	agreed on 5-point response items relating to their experiences with health care in the outpatient
30 31	29	departments of nearby health centers. A multilevel linear regression analysis was used to identify
32 33	30	predictors of perceived quality of care.
34 35 36	31	Results: The mean perceived quality of care was 70.28 (SD=8.39). Five dimensions of perceived
37 38	32	quality of care were extracted from the factor analysis, with the patient-provider communication
39 40 41	33	dimension having the highest mean score (M=77.84, SD=10.12), and information provision
41 42 43	34	having the lowest (M=64.67, SD=13.87). Wealth status, current insurance status, perceived
44 45	35	health status, presence of chronic illness, time to a recent health center visit, work experience of
46 47 48	36	health care providers, and patient volume were the factors significantly associated with
49 50	37	perceived quality of care. An interaction term between patient volume and staff job satisfaction
51 52 53	38	also showed a significant association.
55 55	-	2
56		

Page 4 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

39 Conclusions: Much work remains to improve the quality of care, especially on information 40 provision and access to care quality dimensions. A range of individual and cluster-level 41 characteristics influence the perceived quality of care. For a better quality of care, it is vital to 42 optimize the patient-provider ratio and enhance staff job satisfaction.

Strengths and limitations of this study

- The study tried to assess the quality of care from the clients' point of view using a validated multidimensional scale.
- This is the first cross-sectional study in Ethiopia, which considered health center (cluster)
 level variables that have an association with perceived quality of care.
- A statistically significant association was observed between current insurance status and
 perceived quality of care. The relationship could be due to an endogeneity issue created
 by omitted variables. It is plausible that higher quality score reported by active members
 is due to such variables, as the desire to continue their membership.
 - Because of the cross-sectional nature of the study, it is impossible to establish a causeand-effect relationship.

INTRODUCTION

Health care providers and patients define the quality of care differently and attach varying levels of importance to its attributes. When assessing the quality of care, health care professionals tend to prioritize technical competence, while patients place a high value on patient-centeredness, amenities, and reputation.¹ The emphasis on health care quality measurement has shifted away from the viewpoints of health care providers to people-centered approaches that rely on patient perceptions.²⁻⁴ Patients' perception of health care quality has become an essential element of

quality measurement due to its link with health service utilization. It is based on a mix of patient
 experiences, processed information and rumors.⁵

Patient experience surveys elicit data on the transactional components of care, which are process-related, as well as the interpersonal interactions that occur over the course of care.⁶ Individuals receiving care are asked about their experiences of health facility encounters to report if particular processes or events occurred.⁷ Patient experience measurements have received increased attention and are widely employed to inform quality improvement, and pay-for-performance.⁸ Patient experience is consistently and positively associated with patient safety and clinical effectiveness, adherence to prevention and treatment recommendations, and technical quality of care.910

Patient experience is a reflection of the patient journey, which consists of the myriad interactions patients have with health care providers and the healthcare system over time and in a variety of settings. It is shaped by the health care team, the organization, and the surrounding policy and regulatory environment. A negative patient experience is a proxy for a larger health system failure, underscoring the need to apply a systems approach to improving health care quality.⁴ BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Quality of health care is vital to the success of universal health coverage (UHC) initiatives, like community-based health insurance (CBHI). To achieve the desired outcomes, the development of CBHI schemes must be accompanied by improvements in health care quality.^{2 4 11-13} To build sustainable CBHI schemes, members must believe that the benefits of health care provided via health insurance coverage outweigh the benefits of not being insured.¹⁴ Patients' positive

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

experiences with the quality of care provided under insurance schemes increase their trust in the health system and insurance schemes.^{15 16} As a result, they are more likely to use health care services and participate in health insurance plans.¹⁷ If insured clients are unable to access highquality services, they lose trust in service providers and seek care elsewhere,¹⁸ making them less likely to pay premiums.^{19 20} Low perception of health care quality further deters people from interacting with the health system in the future.⁴

Although increased health care coverage is promising with the implementation of CBHI initiatives, quality of care remains a key impediment to achieving UHC.^{13 21} For example, more than eight million deaths amenable to a high quality of care occurred in low- and middle-income countries, making the poor quality of care a bigger obstacle to mortality reduction than lack of access to care.²¹ Poor quality of care is also a major issue that jeopardizes the long-term viability of many CBHI schemes.^{11 22} Findings of systematic reviews revealed that the quality of care was a key factor that influenced enrollment and renewal decisions of CBHI membership.^{23 24} Some quality concerns include 'unavailability and perceived poor quality of prescribed medicines, misbehavior of health professionals, and the differential treatment of the insured in favor of the uninsured patients, unclean hospital environment, long queues, lack of diagnostic equipment, and long waiting hours to obtain health care.²⁴

98 To promote optimal utilization, stable finance, and better outcomes, the quality of health care 99 must be monitored on a regular basis.¹⁸ Previous studies in Ethiopia focused on surveys of client 100 satisfaction and did not employ multidimensional measurement scales.^{25 26} To our knowledge, 101 the quality of care delivered under the CBHI in Ethiopia has never been investigated using

multidimensional metrics from the perspective of service users at the community level. There is
also a paucity of literature on facility-level variables that influence the quality of care. Therefore,
the purpose of this study was to examine the perceived quality of care (PQoC) from the
perspective of clients and identify associated factors at the individual and facility level.

106 Improving the quality of care under the CBHI is among Ethiopia's top priorities in its health sector 107 strategic plan.²⁷ The findings of this study will inform relevant stakeholders on the current state 108 of clients' perceptions of the quality of care and will be an essential input for quality improvement 109 initiatives. It will also provide useful information for decision-makers to address challenges in the 110 country's endeavors to establish higher-level insurance pools. BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

111 METHODS

112 Study setting and population

A community-based cross-sectional study was conducted in rural parts of two neighboring districts in northeast Ethiopia, Tehulederie and Kallu. Tehulederie is divided into 20 rural and seven urban *Kebeles* (subdistricts) with a population of 145,625, of which 87.5% reside in rural areas. There are five health centers and one primary hospital in the district. It was one of the 13 districts in Ethiopia where CBHI was piloted in 2011. The scheme was introduced in Kallu district after two years, in July 2013. Kallu is divided into 36 rural and four urban Kebeles and has nine health centers. It is the most populous district in the zone, with a population of 234,624, of which 89.11% live in rural areas.²⁸

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

121 The study population of interest was rural households who had been ever enrolled in the CBHI 122 scheme before January 2020. To minimize recall bias, households who had not used health care 123 in the 12 months before data collection were excluded from the study.

124 Sample size and sampling procedure

The sample size was calculated using MedCalc software by assuming a mean difference of two independent groups. A previous study on PQoC reported mean scores of 5.2 and 5.4 with standard deviations (SD) of 0.8 and 0.7 among insured and uninsured respondents, respectively.²⁹ Using this output and assuming an 80% power, 95% confidence level and equally sized groups, a sample size of 446 was calculated. Considering a design effect of 1.5 attributable to multi-stage sampling and a potential non-response rate of 10%, the effective sample size was estimated to be 736 households. An alternative sample size of 1257 was calculated for a companion article as part of a research project examining the sustainability of a CBHI in Ethiopia.³⁰ Among those, 1081 eligible households participated in this study. Furthermore, 194 health care providers from 12 health centers participated in the study to provide cluster-level data.

The study participants were recruited using a three-level multistage sampling approach. First, 12 clusters of *Kebeles* organized under a health center catchment area were selected. Then, 14 rural *Kebeles* were drawn randomly using a lottery method proportional to the number of *Kebeles* under each cluster. Accordingly, five *Kebeles* from Tehulederie and nine from Kallu were included. A list of households who have ever been enrolled in the CBHI was obtained from the

BMJ Open

membership registration logbook of each Kebele. The required sample was generated at random from each Kebele, proportional to the number of households who have ever been enrolled in the scheme, using random number generator software. Data collection and measurement The data were collected from 04 February to 21 March 2021. Individual-level data were collected through face-to-face interviews with household heads at their homes or workplace using a structured questionnaire via an electronic data collection platform. The data collectors submit the completed forms to a data aggregating server daily, which allowed us to review the submissions and streamline the supervision process. The PQoC, which is the outcome variable of interest, was measured using a 17-item scale designed after a thorough review of validated tools.^{29 31-34} Respondents were asked to rate the extent to which they agreed on a set of items relating to their experiences with the health care they received in the outpatient departments of nearby health centers. Each item was designed on a 5-point response format, with 1=strongly disagree, 2=disagree, 3=neutral, 4=agree and 5=strongly agree. The summary scores for the PQoC and its dimensions were calculated for individual respondents by adding the scores of each item. This gives a scale ranging from 17 (1×17) to 85 (5×17) for the overall PQoC score. For guality dimensions consisting of three and four items, the scale ranges from 3 to 15 and 4 to 20, respectively. When reporting the results, the scores were arithmetically transformed to a scale of 20 to 100.³⁵ This allows the comparison of mean scores of PQoC, its dimensions, and each measurement item on a common scale.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Wealth index was generated using the principal component analysis method. The scores for 15 types of assets were translated into latent factors, and a wealth index was created based on the first factor that explained most of the variation. The study households were grouped into wealth tertile – lower, medium, and higher based on the index. Perceived health status was measured based on a household head's subjective assessment of the health status of the household, and was rated as "poor, fair, good, very good, or excellent". However, for analysis purposes, it was recategorized into "fair, good, and very-good", by merging the two extreme response categories to the next option due to fewer replies.

Before the data collection, the questionnaire was pre-tested on a sample of 84 randomly selected participants in one *Kebele*. As part of the pre-test, a cognitive interview was conducted on selected items using the verbal probe technique among eight respondents to determine if the items and response categories were understood, and interpreted by the potential respondents as intended. Accordingly, the phrasing of some items and response options were modified, and some items were omitted.

175 Cluster-level data were collected from 12 health centers that provide health care for the 176 population in the sampled *Kebeles*. Patient volume data were obtained by reviewing the monthly 177 service delivery reports of health centers, while data related to work experience, affective 178 commitment, and job satisfaction were collected through a self-administered questionnaire 179 among health care providers who worked more than one year in the current facility.

Patient volume was measured using the daily average number of patients managed by a health care provider in the outpatient department. It was calculated by dividing the number of patients who visited the health center in the last six months before the study by the number of working days, and then by the number of consultation rooms in each health center.³⁶ Affective commitment and job satisfaction were composite variables that were assessed using a 5-point Likert scale. Affective commitment was measured with a seven-item questionnaire based on a modified version of the Meyer et al. scale, which had previously been used in a hospital setup.³⁷ Staff job satisfaction was measured using a 10-item scale, which was adapted from a previous study among health care workers in Ethiopia.³⁸ Average affective commitment and job satisfaction scores were computed for each health center.

190 Data analysis

The data were analyzed using Stata version 17.0. Exploratory factor analysis was performed to assess the validity of the quality measurement scale. Bartlett's test of Sphericity and Kaiser-Mayer-Olkin's (KMO) measure of sampling adequacy were performed to assess the appropriateness of the data for factor analysis. The principal component factor method of extraction and Promax rotation with Kaiser Normalization was used. The Eigenvalue greater than one decision rule was used to determine the appropriate number of factors to be extracted. Items with both loadings and communalities below 0.40 were removed from the analysis.³⁹ Correlation coefficients were used to test construct validity. Item-total score correlation, dimension-total score correlation, and dimension intercorrelation were computed. The total

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

score was the mean score of the ratings for all items of the scale, and the dimension score was the factor score. A questionnaire has good construct validity when the item-total score correlations are higher than 0.40, dimension intercorrelations are less than 0.80, and dimensiontotal score correlations are higher than dimension intercorrelations.³² Cronbach's alpha coefficients were generated for each dimension to assess the internal consistency. The reliability of the scale was considered acceptable if Cronbach's alpha coefficient was 0.60 or higher.³⁹

To compare mean scores of PQoC and its dimensions among subgroups, an independent t-test and a one-way analysis of variance (ANOVA) with Tukey's post-hoc test were used. Because the outcome variable was considered a continuous variable, a multilevel linear regression model was fitted to identify its predictors. The PQoC was assumed to be influenced by the characteristics of households (individual-level variables) as well as the characteristics of health centers (cluster-level variables). Cluster-level data were linked to individual-level data based on the usual source of health care for each study participant. Considering the hierarchical structure of the data, where patients are nested within health centers, a two-level linear regression model was applied. In this study, there were 12 health centers, hence the Restricted Maximum Likelihood estimation approach was employed because it is appropriate for smaller cluster sizes.⁴⁰ Four models were estimated to choose the one that best fits the data. The first model or the null model (a model without predictors) is given by:

 $218 \qquad Y_{ij} = \gamma_{00} + u_{0j} + \varepsilon_{ij}$

(1)

The null model estimates three parameters: the average intercept (Y_{00}), the between health center error, or deviation, from the average intercept (u_{0i}) , and the individual-level residual, or variation in individual scores within health centers (ε_{ii}). The second model estimated PQoC (Y_{ii}) for individual household i at health center j. We treat PQoC as a function of a matrix of individual-level variables (X_{ii}) which include age, gender, education, and marital status of the household head; wealth status; household size; current health insurance status; the presence of chronic illness in the household; perceived health status, and time to a recent visit to a health center, and expressed as: $Y_{ij} = \gamma_{00} + \gamma_{10}X_{1ij} + \gamma_{20}X_{2ij} + u_{1j}X_{1ij} + u_{2j}X_{2ij} + \dots + \gamma_{n0}X_{nij} + u_{nj}X_{nij} + u_{0j} + \varepsilon_{ij}$ (2)

where u_{1j} , $u_{2j...}u_{nj}$ indicate the random error terms connected to each X_{ij} .

The third model estimated the PQoC as a function of cluster-level variables (Z_j) that include average work experience, affective commitment and job satisfaction of health care providers, and patient volume. The model takes into account the differences between health centers and explains these differences in terms of these characteristics. It is given by: BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

233
$$Y_{ij} = \gamma_{00} + \gamma_{01}Z_{1j} + \gamma_{02}Z_{2j} + \dots + \gamma_{0n}Z_{nj} + \gamma_{11}PV_j * JS_j + u_{0j} + \varepsilon_{ij}$$
(3)

where PV_j*JS_j indicates an interaction term between patient volume and job satisfaction in which job satisfaction was assumed to moderate the effect between patient volume and PQoC. The interaction effect was tested by plotting the marginal effects of interaction terms. The two variables were centered toward the grand mean to facilitate the interpretation of the

coefficients. By combining models II and III, the fourth model estimated the PQoC as a function of both individual and cluster-level variables, and can be written as: $Y_{ij} = \gamma_{00} + \gamma_{10}X_{1ij} + \gamma_{20}X_{2ij} + u_{1j}X_{1ij} + u_{2j}X_{2ij} + \dots + \gamma_{n0}X_{nij} + u_{nj}X_{nij} + \gamma_{01}Z_{1j} + \gamma_{02}Z_{2j}$ $+...+\gamma_{0n}Z_{ni}+\gamma_{11}PV_{i}*JS_{i}+u_{0i}+\varepsilon_{ii}$ where γ_{10} and γ_{01} are the vector of coefficients of *n* explanatory variables whose values are at X_{1ij} , X_{2ij} , ..., X_{nij} for the *i*th individual within the *j*th cluster, and Z_{1j} , Z_{2j} , ..., Z_{nj} for the *j*th cluster, respectively. The intercept γ_{00} and slopes γ_{01} , γ_{10} and γ_{11} are fixed effects, while u_{0i} , u_{i} and ε_{ii} are random effects. This multilevel regression decomposes the total variances into two independent components: σ_e^2 , which is the variance of individual-level errors ε_{ij} , and σ_{u0}^2 , which is the variance of cluster-level errors u_{0j} . From this model, we can define the intraclass correlation (ICC) by the equation:⁴¹ $ICC = \sigma_{u0}^2 / (\sigma_{u0}^2 + \sigma_e^2)$ The ICC and proportional change in variance (PCV) were used to report the measures of variation (random effects). The need for multilevel analysis, which considers cluster-level factors, was tested using the ICC. The ICC shows the variation in PQoC accounted for cluster-level characteristics. Statistically significant variability between health centers justifies the need to consider cluster-level factors.⁴² The PCV expresses the change in the cluster-level variance between the empty model and models with more terms and is calculated by PCV = $(V_A - V_B)/V_A$, where V_A = variance of the null model, and V_B = variance of the model with more terms. It measures the total variation explained by individual and cluster-level factors.

The measures of association (fixed-effects) estimate the association between the PQoC score and various explanatory variables. The existence of a statistically significant association was determined at p-values of <0.05. The degree of the association was assessed using regression coefficients, and their statistical significance was determined at a 95% confidence interval. Models were compared using the Deviance Information Criteria (DIC) and Akaike Information Criteria (AIC). The best fit model was determined to have the lowest DIC and AIC values. The preliminary analysis confirmed no violation of the assumptions of normality, linearity, homoscedasticity, and multicollinearity. The presence of multicollinearity was determined using the Variance Inflation Factor with a cutoff point of 5.

267 Patient and Public Involvement

268 No patient involved

RESULTS

270 Background characteristics of the study participants

The household survey included 1081 respondents who had visited a health center at least once in the previous 12 months prior to the study. The average age of the study participants was 49.25 years (SD=12.07), with slightly more than half (51.34%) between the age ranges of 45 and 64, and 12.67% being 65 and older. Of the total study participants, 938 (86.77%) were men, and 1003 (92.78%) were currently married. One-fifth of the study participants (20.91%) attended formal education, and 62.72% had a household size of five or above.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Nearly ninety percent of the households (87.14%) were active members of the CBHI scheme at the time of the study. A quarter of households (25.72%) had one or more individuals with a known chronic illness informed by a healthcare provider. One-third of respondents (33.58%) rated their household health status as very good, while 207 (19.15%) and 511 (47.27%) rated it as fair and good, respectively. Nearly half of the households (46.16%) had visited a health center within three months prior to the study, while 31.73% and 22.11% had their most recent visit to a health center before 6-12 and 3-6 months, respectively (Table 1).

The median work experience of health care providers involved in this study ranges from three to ten years. The mean scores of affective commitment and job satisfaction were 29.00 and 30.95 (SD=2.08 and 3.17), respectively. The average patient volume was 32.17 per day per care provider, with a range of 19 to 43 (SD=7.83).

288 Factor analysis

Sampling was adequate as measured by the KMO (0.83), and Bartlett's test of sphericity was significant (p < 0.001). Two items were removed from further analysis due to loadings below 0.40, and one item was removed due to low communality. The factor analysis extracted five dimensions that explained 59.25% of the total variation (online supplemental file 1). The item-total score correlations ranged from 0.268 to 0.622, four items had correlations less than 0.40. The dimension intercorrelations varied from 0.031 to 0.434, all of which were less than the 0.80 criterion, indicating that each dimension was distinct enough to be considered an independent measure. Dimension-total score correlation ranged from 0.417 to 0.772, all significant at a p-value of 0.001, and are higher than dimension intercorrelations. The scale was tested for

reliability and had an overall Cronbach's alpha coefficient of 0.804. The Cronbach's alpha coefficients for the five dimensions exceeded 0.60, except for the access to care subscale, which had an alpha coefficient of 0.531.

Table 1: Independent t-test and one-way ANOVA comparing mean scores of the PQoC (20-100 scale) across respondent characteristics in two districts of northeast Ethiopia, 2021

				PQoC	score	
Variable	Categories	N=1081	%	М	SD	t/F-test
Age in years	25 – 44	389	35.99	69.97	7.78	1.08
	45 – 64	555	51.34	70.26	8.52	
	65+	137	12.67	71.20	9.49	
Gender	Men	938	86.77	70.15	8.21	-1.31
	Women	143	13.23	71.13	9.51	
Marital status	Divorced/widowed	78	7.22	71.61	10.95	1.46
	Married	1003	92.78	70.17	8.16	
Attend formal education	No	855	79.09	70.29	8.48	0.07
	Yes	226	20.91	70.24	8.05	
Household size	< Five	403	37.28	70.85	8.63	1.73
	≥ Five	678	62.72	69.94	8.25	
Wealth tertile	Lowest	361	33.40	71.77	9.15	8.83#
	Medium	360	33.30	69.36 ^b	8.16	
	Highest	360	33.30	69.70 ^b	7.62	
Current insurance status	Ex-member	139	12.86	67.66	9.65	-3.96#
	Active-member	942	87.14	70.66	8.13	
Perceived health status	Fair	207	19.15	72.28	8.84	8.04#
	Good	511	47.27	70.08 ^b	7.83	
	Very good	363	33.58	69.41 ^b	8.73	
Chronic illness	No	803	74.28	69.54	8.29	-4.96#
	Yes	278	25.72	72.40	8.33	
Last health center visit	< 3 months	499	46.16	70.75 ^b	8.99	4.78 [§]
	3-6 months	239	22.11	70.94 ^b	7.60	
	6-12 months	343	31.73	69.13	7.92	
Tota	I	1081	100	70.28	70.28	

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Statistical significance for t-test/F-test is indicated by [§]p<0.01, and [#]p<0.001. Based on Tukey's post-hoc test, mean values sharing letter 'b' are not significantly different in the group at the 5% level.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Perceived quality of care

The minimum and maximum PQoC scores were 37.65 and 97.65, respectively. The mean score was 70.28 (95% CI: 69.77, 70.78) with an SD of 8.39. The aggregated mean score at the health center level ranges from 64.94 to 74.06. Patient-provider communication had the highest mean score (M=77.84, SD=10.12) of the five quality dimensions, while information provision had the lowest score (M=64.67, SD=13.87). The mean score for each measurement item is summarized in the online supplemental file 2.

An independent t-test and a one-way ANOVA were performed to compare the mean scores of PQoC and its dimensions between subgroups. As shown in Table 1, there was a significant difference in the PQoC mean score for wealth tertile at p<0.05 (F=8.83, p=0.001). Tukey's post-hoc test indicated that the mean score of PQoC for the lowest wealth tertile (M=71.77, SD=9.15) was significantly different from both the medium (M=69.36, SD=8.16) and highest (M=69.70, SD=7.62) wealth tertile. However, no significant difference was seen between medium and high wealth tertile. The ANOVA test also showed that the PQoC mean score showed significant differences based on the respondents' perceived health status and time to a recent visit to a health center, with (F=8.04, p<0.001) and (F=4.78, p<0.01), respectively. There was a significant difference in the mean score of PQoC between active insurance members (M=3.53, SD=0.41) and ex-members (M=3.38, SD=0.48); t = 3.96, p<0.001. The mean PQoC score of households with chronic illness (M=3.62, SD=0.42) was also significantly higher compared to those who did not have a chronic illness (M=3.48, SD=0.42); t = 4.95, p<0.001. The results of an independent t-test and a one-way ANOVA that compare the differences in mean scores of the five dimensions between subgroups are displayed in Table 2.

BMJ Open

Variables	Ν	Technic	al care	Communication		Information provision	Access to care		Trust in provid		
		М	SD	М	SD	М	SD	М	SD	Μ	SD
Age in years											
25 – 44	389	68.33	15.61	77.60	9.89	62.75 ^b	13.73	69.99	11.64	73.59 ^b	10.11
45 – 64	555	68.14	15.19	77.71	10.01	64.60 ^b	14.03	69.41	12.04	73.61 ^b	10.96
65+	137	69.15	14.44	79.03	11.19	70.36#	12.09	68.25	10.97	70.46 [§]	13.21
Gender											
Men	938	68.36	15.15	77.67	10.17	64.40	13.80	69.34	11.67	73.18	10.80
Women	143	68.48	16.00	78.93	9.81	66.40	14.27	70.31	12.42	73.38	12.37
Marital status											
Divorced/widowed	78	70.77	14.74	78.80	12.10	70.77#	13.58	67.18	13.03	72.31	14.01
Married	1003	68.15	15.27	77.76	9.96	64.19	13.79	69.65	11.65	73.27	10.75
Formal education											
No	855	68.37	15.41	77.78	10.29	64.43	13.98	69.63	11.64	73.39	11.13
Yes	226	68.20	14.62	78.05	9.54	65.55	13.46	68.89	12.24	72.51	10.56
Household size											
< Five	403	69.10	15.21	78.51	10.07	65.14	14.31	70.37	11.25	73.18	11.94
≥ Five	678	67.89	15.25	77.43	10.14	64.39	13.61	68.94	12.04	73.22	10.44
Wealth tertile											
Lowest	361	69.64	14.42	79.56#	9.94	70.21ª#	12.84	68.70	11.49	72.13ª	13.07
Medium	360	67.11	15.28	76.80 ^b	10.57	63.08ª	14.40	69.00	11.82	73.02*	10.45
Highest	360	68.26	15.93	77.13 ^b	9.65	60.69ª	12.54	70.63	11.94	74.46 ^a	9.04
Insurance status											
Ex-member	139	64.75 [§]	15.73	74.29 [§]	12.91	63.13	14.46	67.05 [§]	13.56	70.79 [§]	13.07
Active-member	942	68.87	15.10	78.36	9.54	64.89	13.78	69.83	11.44	73.56	10.64
Self-rated health											
Fair	207	71.76 ^b	13.73	80.35#	9.55	70.02#	12.87	68.62	11.51	72.59*	11.83
Good	511	68.85 ^b	14.73	76.73 ^b	10.06	63.86 ^b	13.95	69.18	11.14	74.16ª	9.83
Very good	363	65.67#	16.31	77.96 ^b	10.29	62.74 ^b	13.59	70.37	12.71	72.21ª	11.99
Chronic illness											
No	803	67.39#	15.58	77.30§	10.35	63.09#	13.74	69.13	11.90	73.07	10.94
Yes	278	71.08	13.90	79.38	9.29	69.21	13.26	70.47	11.33	73.60	11.25
Last health center visit											
< 3 months	499	68.08	15.10	78.46	10.25	68.07#	13.95	68.88 ^b	11.49	71.77#	12.20
3-6 months	239	69.71	14.79	77.68	9.97	62.97 ^b	12.90	71.67§	11.28	75.06 ^b	9.31
6-12 months	343	67.76	15.74	77.03	10.02	60.90 ^b	13.26	68.80 ^b	12.34	73.99 ^b	10.01

329 Statistical significance for t-test/F-test is indicated by p<0.05, p<0.01, and p<0.001. Based on Tukey's post-hoc test, mean 330 values sharing letter 'a' are significantly different; while mean values sharing letter 'b' are not significantly different in the group 331 at the 5% level.

77.84

10.12

64.67

13.87

69.47

11.77

73.20

11.02

Total

68.34

15.24

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

The mean PQoC score was significantly different among health centers (F=11.85, p<0.001). The mean scores for the five dimensions were also significantly different among health centers at p<0.001 level: technical care (F=8.66), patient-provider communication (F=6.65), information provision (F=47.42), access to care (F=36.87) and trust in care providers (F=6.98). The mean scores of the PQoC and its dimensions across the 12 health centers are depicted using a radar chart (Figure 1). The chart shows a comparison of mean scores on a scale of 10 to 90. For example, respondents from 11 health centers had a higher perception score on patient-provider communication than other dimensions with less variation, while the information provision dimension was mostly ranked lowest with more variability.

Figure 1: Summary of the mean scores of the PQoC and its dimensions across 12 health centers
in two districts of northeast Ethiopia, 2021

344 Predictors of perceived quality of care: Multilevel analysis

The fixed effects (measures of association) and the random effects (measures of variation) for the multilevel linear regression model are depicted in Table 3. In the null model, 8.5% of the total variance in PQoC was attributed to cluster-level variables. The variability between clusters was statistically significant (τ =5.90, p<0.001). Furthermore, the null model showed a significant improvement in fit relative to a standard linear model, demonstrating the importance of developing a multilevel model. The cluster-level variation in Model II remained significant (τ =6.33, p<0.001), with 9.31% of the total variability attributed to differences across clusters. The

PCV was negative in this model, indicating that individual-level characteristics did not play a role in explaining the variation between clusters. In Model III, cluster-level variables accounted for just 1.33% of the variation in PQoC across clusters. The PCV showed that cluster-level variables explained 85.42% of the variation between health centers, indicating the importance of including cluster-level characteristics to build a more robust explanatory model. We interpreted the results of the regression analysis using Model IV, which has the lowest DIC and AIC.

After adjusting for other individual and cluster-level factors, the mean PQoC score for households with higher wealth tertile increased by 1.79 points compared to those with lower wealth tertile (b=1.79; 95% CI: 0.37, 3.21). Households who were active members of CBHI at the time of the study had a 2.70-point higher PQoC score than ex-members (b=2.70; 95% CI: 1.25, 4.14). The PQoC score of households who rated their health status as very good was 1.80 points lower compared to those who rated it as fair (b=-1.80; 95% CI: -3.31, -0.29). Compared to households without a chronic illness, those with one or more family members with a chronic illness had a 1.42-point higher perception score (b=1.42; 95% CI: 0.22, 2.63). Time to a recent visit to a health center was also significantly associated with PQoC score. The mean score for households who had their most recent visit to a health center before 3-6 months was 1.89 points higher compared to those whose recent visit was within 3 months prior to the study (b=1.89; 95% CI: 0.61, 3.17).

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Regarding cluster-level variables, the average work experience of health care providers and patient volume had statistically significant associations with PQoC. A 1.07-point improvement in the average PQoC score of health centers was noted for every year's increase in the median work

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

372	experience of health care providers (b=1.07; 95% CI: 0.74, 1.40). An interaction term between
373	patient volume and job satisfaction was positively associated with PQoC, implying that improving
374	staff job satisfaction would buffer or lessen the effect between patient volume and PQoC. At an
375	average staff job satisfaction, a 0.42-point drop in the average PQoC score of health centers was
376	observed for a unit increase in patient volume (b=-0.42; 95% CI: -0.50, -0.33). A one-unit increase
377	in patient volume would only result in a 26% fall in average PQoC if the average job satisfaction
378	is set one SD above the mean. This prediction was substantiated by the fact that the margins
379	graph for patient volume showed the flattest slope for higher job satisfaction. However, the
380	buffering role is observed in health centers with an average patient volume of 30.75 or higher.
381	buffering role is observed in health centers with an average patient volume of 30.75 or higher.
382	
502	
383	
384	
385	
386	
387	
388	
389	
	21

390 Table	e 3: Multilevel linear regression analysis of factors associated with PQoC among households ever enrolled in a
-----------	--

CBHI scheme in two districts of northeast Ethiopia, 2021

Variables		Model I	Model II	Model III	Model IV
	Category		b (95% Cl)	b (95% CI)	b (95% CI)
Fixed effects					
Age			-0.02 (-0.06, 0.03)		-0.03 (-0.07, 0.0
Gender	Women		0.64 (-1.06, 2.34)		0.80 (-0.88, 2.4
Marital status	Married		-0.14 (-2.42, 2.15)		0.18 (-2.09, 2.4
Modern education	Yes		-0.07 (-1.34, 1.19)		-0.25 (-1.49, 1.0
Wealth tertile	Medium		-0.57 (-1.89, 0.74)		-0.16 (-1.40, 1.0
	High		0.73 (-0.87, 2.34)		1.79 (0.37, 3.2
Household size	Large (≥ 5)		-0.28 (-1.28, 0.72)		-0.31 (-1.31, 0.0
Insurance status	Active member		2.65 (1.20, 4.11)#		2.70 (1.25, 4.1
Perceived health	Good		-0.75 (-2.16, 0.66)		-0.73 (-2.14, 0.
status	Very good		-1.78 (-3.29, -0.26)*		-1.80 (-3.31, -0
Chronic illness	Yes		1.55 (0.34, 2.76)*		1.42 (0.22, 2.6
Last health center	3-6 months		1.64 (0.35, 2.94)*		1.89 (0.61, 3.1
visit	6-12 months		0.77 (-0.45, 1.99)		1.02 (-0.18, 2.2
Work experience				0.75 (0.33 <i>,</i> 1.17)§	1.07 (0.74, 1.4
Affective commitment				0.48 (0.04, 1.00)	0.27 (-0.10, 0.
Patient volume				-0.33 (-0.45, -0.21)#	-0.42 (-0.50, -0
Job satisfaction				0.01 (-0.24, 0.27)	0.07 (-0.10, 0.
Patient volume x Job s	atisfaction			0.06 (0.02, 0.11) [§]	0.05 (0.02, 0.0
Random effect					
τ (SE)		5.90 (2.78)#	6.33 (3.10)#	0.86 (0.94)	≈ 0.00
ICC (%)		8.50	9.31	1.33	≈ 0.00
PCV (%)		Reference	-7.29	85.42	≈ 100
Model fitness					
DIC		7578.01	7528.89	7572.79	7516.90
AIC		7584.01	7560.89	7588.79	7558.90

Deviance Information Criterion; AIC - Akaike Information Criterion; SE - standard error; b - regression coefficient; CI -

Confidence Interval.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

DISCUSSIONS

Individuals with health insurance will continue to be members if they believe they are receiving the highest possible quality of health care. ^{19 20} In this study, the mean PQoC score was 70.28 on a scale of 20-100 with an SD of 8.39. The patient-provider communication received the highest score (M=77.84, SD=10.12) among the five quality dimensions. In 2015, the Ethiopian government incorporated the development of caring, respectful, and compassionate health care providers as one of the main transformation agendas in its five-year health sector strategic plan, and movements were created around it.²⁷ Our finding may be attributed partly to the government's ongoing training initiatives aimed at producing health care providers who are competent in this aspect. The perception score for the information provision dimension, on the other hand, was the lowest (M=64.67, SD=13.87). This could be attributed to an increase in patient volume following the implementation of CBHI.²⁶ Items loaded under this dimension appear less practical in the presence of a larger patient load. If health care providers are required to treat a large number of patients, consultation times will be reduced. They are unlikely to provide the necessary information to their clients if they are under time constraints. Regarding item level observations, waiting time and medicine availability received the lowest perception scores (62.96 and 63.50, respectively), which could also be related to increased patient load. This is in line with earlier studies in Ethiopia, which revealed that clients with health insurance frequently complain about a lack of medicine and long wait times at CBHI-affiliated health facilities.43 44

Page 25 of 41

BMJ Open

Results of the regression analysis revealed that households with higher wealth tertile had a higher PQoC score than those with lower wealth tertile. This is in contrast to other studies whereby the richest group had a lower perception score.^{16 45} This discrepancy could be partly attributed to the use of different metrics to assess the quality of care. People with higher economic status may be more aware of health issues and able to bargain with health care providers to obtain the best possible care. Furthermore, if prescribed medicines are not available in CBHI-affiliated health facilities, for instance, they can afford to buy from private pharmacies. On the contrary, it may be irritating for people with lower economic status to buy medicines with limited money or to forgo treatment due to lack of money. In this regard, they may develop a negative perception of the quality of care.

Households who were active members of CBHI at the time of the study had a higher rating of PQoC compared to ex-members. Contrary to our finding, a study in Ghana showed that previously insured clients had a higher perception of quality of care compared to actively insured clients (statistical significance is not reported). The authors argue this was due to the more time-consuming nature of the service delivery processes for insured clients.⁴⁶ At least three possible explanations exist for the relationship between CBHI status and PQoC. First, because they do not have to pay for health care, active members have better access to and enjoyment of its benefits, resulting in a favorable perception of its quality. Second, the relationship could be due to an endogeneity issue created by omitted variables. It is plausible that higher quality score reported by active members is due to such variables, as the desire to continue their membership. Third, ex-members of CBHI may have had negative experiences with health services, which led to the

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

decision to discontinue their membership. As a result, they would be critical in rating the quality of care provided. In support of the latter argument, it was evidenced that poor quality of care was a major reason for insurance members to leave the scheme.^{24 47} Elsewhere, a statistically significant association was also reported between dropout and low quality of care.4849 This study verified that the PQoC score of households who rated their health status as very good was significantly lower compared to those who rated it as fair. The households' chronic illness experiences also influence the PQoC rating. The PQoC score of households with a chronic illness was higher compared to those without a chronic illness. This may be true for people who perceive their health as fair or who live with chronic conditions to appreciate the gains or benefits of the health care they received. In this respect, they may be more likely to rate the quality of care higher than their counterparts. The results also indicated that households who had their most recent visit to a health center before 3-6 months had higher PQoC scores compared to those whose recent visit was within 3-months prior to the study. Patients may experience varying levels of emotional highs and lows, depending on the length of the most recent facility visit. Although patients' perceptions of quality may develop over time,⁵ patients who recently visited a health facility may be more critical of the quality of care due to strong emotions attached to negative events or health services that fall short of their expectations. Our findings revealed that the average work experience of health care providers was positively associated with PQoC. Work experience is linked to task specialization, which can lead to a faster

456 work pace, more output in less time, and higher quality. Providers with more experience take 457 less time to make diagnoses and treatment decisions, while still providing recommended 458 practical aspects of care, such as good communication, physical examination, and provision of 459 relevant health information.⁵⁰ As a result, they can reduce waiting times, and their management 460 outcomes may be more effective than inexperienced providers. This could be more pronounced 461 in Ethiopia, where the number of outpatient visits to CBHI-affiliated health centers had increased 462 dramatically.²⁶

Conditional to the average staff job satisfaction, patient volume is negatively correlated with PQoC. A study in Ethiopia identified a non-linear significant association (an inverted U-shape) between patient volume and quality. Quality decreased with increasing patient volume in health facilities that treated 90.6 or more patients per day, while quality increased with increasing patient volume in health facilities that treated less than 90.6 patients per day in the outpatient departments.⁵¹ Our finding is consistent with a study at public hospitals in China where overcrowding was negatively associated with clients' perception of quality of care.³¹ The apparent correlation between patient volume and PQoC could be explained by factors such as increased demand for health care providers and longer wait times. An increased patient volume would put a great deal of pressure on health care providers to treat a large number of patients in a short time. This may result in shorter consultation time and the omission of important practical aspects of care. On top of that, an increase in patient volume would mean longer waiting times at various service delivery points. Both these factors could have contributed to a negative patient experience and influenced their perception of overall quality of care. Some studies

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 28 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

> reported a positive relationship between patient volume and quality of basic maternal care, and postoperative infections.^{52 53} The alternative direction of this relationship, in which quality drives patient volume, is based on the assumption that the provision of high-quality care will attract more patients. This may be true in areas where patients have access to competitive health facilities, and health care providers are incentivized for providing higher quality care. This is not the case in low-income countries, like Ethiopia, where health care facilities are hard to reach for most rural populations. Members of CBHI are further limited to using health services only in public health facilities affiliated with the scheme.

This study found no relationship between staff job satisfaction and PQoC. This contrasts with the findings of Kvist et al. 2014, which reported a positive relationship between job satisfaction among the nursing staff and patients' perceptions of quality of care.⁵⁴ Despite this, it moderates the relationship between patient volume and PQoC in a nonlinear fashion. Improved job satisfaction buffers the negative relationship between patient volume and PQoC in health centers with an average patient volume of 30.75 or higher. When the average patient volume is less than 30.75, however, improving job satisfaction enhances the effect between patient volume and PQoC. It is plausible that the buffering role of provider job satisfaction as patient volume rises indicates that service provider job satisfaction is a result of the intrinsic rewards of higher work performance. Providers may also be fully available during working hours at the health facility due to the increased number of clients. On the other hand, the moderating role of enhancing the relationship as patient volume decreases could suggest that a low workload is one source of job satisfaction. Because clients are in small numbers, providers may not be fully engaged during

498 working hours. They may have the freedom to do other businesses outside the health facility,499 leaving patients unattended and dissatisfied.

The findings of this study will be an essential input for quality improvement initiatives as well as addressing challenges in the country's efforts to establish higher-level insurance pools. This is the first study of its kind to consider cluster-level variables associated with PQoC in Ethiopia. It gives an important lesson to healthcare managers and other relevant stakeholders to consider cluster-level characteristics in healthcare quality improvement efforts. It also pointed out quality dimensions that require special consideration in managerial decisions. Despite the significant findings of the current study, some caution should be taken in interpreting the findings. One noteworthy limitation of this study is the cross-sectional nature of the data. The study's analysis was conducted to identify associations rather than prove causation. Second, the association between current insurance status and PQoC could be due to the possibility of endogeneity. Third, patient volume data based on secondary data may not reflect the true figure due to the possibility of under or over-reporting.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

512 CONCLUSIONS

513 Despite encouraging findings on patient-provider communication, much work remains to be 514 done to improve information provision and access to care quality dimensions. According to the 515 findings, people's perceptions of quality of care varied depending on a variety of individual and 516 cluster-level factors. The household's wealth status, current insurance membership, perceived 517 health status, presence of chronic illness in the household, and time to a recent visit to a health

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

center were individual-level predictors of PQoC. At the cluster level, patient volume and work experience of health care providers were associated with PQoC. A lower patient volume allows the health care provider to devote more time and attention to each patient, address the individual patient's needs, and have more time to improve communication with and provide behavior change counseling, which has an impact on the quality of care.⁵⁵ Therefore, to ensure that patients have access to a better quality of care, it is critical to determine an appropriate patient volume per care provider. Staff job satisfaction was an important factor that buffers the effect between patient volume and PQoC. Hence, it is vital to devise mechanisms to improve staff job satisfaction, especially in health facilities with higher patient volumes. More importantly, health centers should go to great lengths to ensure that every patient has access to the necessary medications. This will boost clients' trust in health care providers, which will be critical for health insurance schemes to retain and attract members. Acknowledgments The authors would like to acknowledge the health offices of Tehulederie and

Kallu districts, health extension workers, *Kebele* leaders, data collectors, supervisors, and study
 participants. I (MH) want to acknowledge Bahir Dar university for the opportunity it has given me to
 pursue my Ph.D. study.

Contributors

535 MH conceptualized the study, designed the study, collected the data, analyzed and interpreted 536 the data, and drafted the manuscript. MA and NBB contributed to survey design, data collection,

1 2		
2 3 4	537	and statistical analysis and reviewed the manuscript. All authors read and approved the final
5 6 7	538	manuscript.
8 9 10	539	Funding The authors have not declared a specific grant for this research from any funding agency
11 12	540	in the public, commercial or not-for-profit sectors.
13 14 15	541	Competing interests None declared.
16 17 18	542	Patient consent for publication Not required.
19 20	543	Ethics approval Ethical approval was obtained from the Institutional Review Board (IRB) of the
21 22 22	544	College of Medicine and Health Science, Bahir Dar University with protocol number 001/2021. A
23 24 25	545	support letter was communicated to the district health offices to gain entry permission into the
26 27	546	community where the research was conducted. Before the interview, verbal informed consent
28 29 30	547	was secured from each of the study participants. Confidentiality was assured by collecting
31 32	548	anonymous information and informing the participants that personal identifiers would not be
33 34 35	549	revealed to a third party.
36 37	550	Provenance and peer review Not commissioned; externally peer-reviewed.
38 39 40	551	Data availability statement Data are available in a public, open access repository. The datasets
40 41 42	552	generated, and analyzed during the current study are available in the Dryad repository, at
43 44	553	https://doi.org/10.5061/dryad.ncjsxksw5
45 46 47	554	Open access This is an open access article distributed in accordance with the Creative Commons
48 49	555	Attribution Non-Commercial (CC BY- NC 4.0) license, which permits others to distribute, remix,
50 51 52	556	adapt, build upon this work non- commercially, and license their derivative works on different
53 54 55 56 57 58		30
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2		
3 4	557	terms, provided the original work is properly cited, appropriate credit is given, any changes made
5 6 7	558	indicated, and the use is non- commercial. See: <u>http://creativecommons.org/licenses/by-nc/4.0/</u>
8 9	559	
10 11 12 13	560	ORCID iD
14 15	561	Mohammed Hussien https://orcid.org/0000-0002-5747-8967
16 17	562	Muluken Azage https://orcid.org/0000-0003-3222-0158
18 19	563	Negalign Berhanu Bayou https://orcid.org/0000-0002-0975-8358
20 21 22	564	RERENCES
23 24	565	1. Nash DB, Joshi MS, Ransom ER, et al. The healthcare quality book : vision, strategy, and tools. 4th ed.
25 26	566	Washington, DC: Health Administration Press 2019.
27	567	2. WHO, OECD, and, et al. Delivering quality health services: a global imperative for universal health
28 29	568	coverage. Geneva: World Health Organization, Organisation for Economic Co-operation and
30 31	569	Development, and The World Bank, 2018.
32	570	3. Larson E, Sharma J, Bohren MA, et al. When the patient is the expert: measuring patient experience
33 34	571	and satisfaction with care. Bull World Health Organ 2019;97(8):563-69. doi: 10.2471/BLT.18.225201
35 36	572	4. National Academies of Sciences Engineering and Medicine. Crossing the global quality chasm: Improving
37	573	health care worldwide. Washington (DC): The National Academies Press 2018.
38 39	574	5. Hanefeld J, Powell-Jacksona T, Balabanovaa D. Understanding and measuring quality of care: dealing
40 41	575	with complexity. Bull World Health Organ 2017 2017;95:368–74. doi: 10.2471/BLT.16.179309
42	576	6. Goodrich J, Fitzsimons B. Capturing patient experience to improve healthcare services. Nurs Stand
43 44	577	2019;34(8):24-28. doi: 10.7748/ns.2018.e11177
45 46	578	7. Golda N, Beeson S, Kohli N, et al. Analysis of the patient experience measure. JAM ACAD DERMATOL
47	579	2018;78(4) doi: 10.1016/j.jaad.2017.03.051
48 49	580	8. Fujisawa R, Klazinga NS. Measuring patient experiences (PREMS): Progress made by the OECD and its
50 51 52	581	member countries between 2006 and 2016. OECD Health Working Papers 102. Paris, 2017.
53 54 55 56 57		31
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 33 of 41

BMJ Open

1 2											
3	582	9. Doyle C, Lennox L, Bell D. A systematic review of evidence on the links between patient experience and									
5 6 7 8 9	583	clinical safety and effectiveness. BMJ Open 2013;3(1) doi: 10.1136/bmjopen-2012-001570									
	584	10. Anhang Price R, Elliott MN, Zaslavsky AM, et al. Examining the role of patient experience surveys in									
	585	measuring health care quality. <i>Med Care Res Rev</i> 2014;71(5):522-54. doi:									
10	586	10.1177/1077558714541480									
11 12	587	11. Soors W, Devadasan N, Durairaj V, et al. Community Health Insurance and Universal Coverage:									
13 14	588	Multiple paths, many rivers to cross. Geneva: World Health Organization, 2010.									
15	589	12. Lagomarsino G, Garabrant A, Adyas A, et al. Moving towards universal health coverage: health									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	590	insurance reforms in nine developing countries in Africa and Asia. The Lancet 2012;380(9845):933-43.									
	591	doi: 10.1016/s0140-6736(12)61147-7									
	592	13. Primary Health Care on the Road to Universal Health Coverage: 2019 global monitoring report.									
	593	Geneva: WHO, UNICEF, UNFPA, OECD and World Bank., 2019.									
	594	14. Lagomarsino G, Kundra SS. Overcoming the Challenges of Scaling Voluntary Risk Pools in Low-Income									
25 26 27 28 29 30 31	595	Settings. New York: The Rockefeller Foundation, 2008.									
	596	15. Boateng D, Awunyor-Vitor D. Health insurance in Ghana: evaluation of policy holders' perceptions and									
	597	factors influencing policy renewal in the Volta region. Int J Equity Health 2013;12:50. doi:									
	598	10.1186/1475-9276-12-50									
	599	16. Alhassan RK, Duku SO, Janssens W, et al. Comparison of Perceived and Technical Healthcare Quality									
	600	in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana.									
35	601	PLoS One 2015;10(10):e0140109. doi: 10.1371/journal.pone.0140109									
	602	17. Aggrey M, Appiah SCY. The influence of clients' perceived quality on health care utilization.									
	603	International Journal of Innovation and Applied Studies 2014;9(2):918-24.									
40	604	18. Akachi Y, Kruk ME. Quality of care: measuring a neglected driver of improved health. Bull World Health									
	605	Organ 2017;95(6):465-72. doi: 10.2471/BLT.16.180190									
	606	19. Dror DM, Hossain SAS, Majumdar A, et al. What Factors Affect Voluntary Uptake of Community-Based									
45	607	Health Insurance Schemes in Low- and Middle-Income Countries? A Systematic Review and Meta-									
	608	Analysis. PLoS One 2016;11(8):e0160479. doi: 10.1371/journal.pone.0160479									
	609	20. Fadlallah R, El-Jardali F, Hemadi N, et al. Barriers and facilitators to implementation, uptake and									
50	610	sustainability of community-based health insurance schemes in low- and middle-income countries: a									
	611	systematic review. Int J Equity Health 2018;17(1):13. doi: 10.1186/s12939-018-0721-4									
		22									
55		32									
57											
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml									

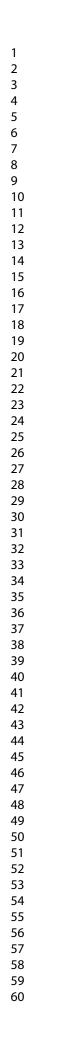
21. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. The Lancet 2018;6(11):e1196-e252. doi: 10.1016/S2214-109X(18)30386-3 22. Alhassan RK, Nketiah-Amponsah E, Arhinful DK. A Review of the National Health Insurance Scheme in Ghana: What Are the Sustainability Threats and Prospects? PLoS One 2016;11(11):e0165151. doi: 10.1371/journal.pone.0165151 23. Adebayo EF, Uthman OA, Wiysonge CS, et al. A systematic review of factors that affect uptake of community-based health insurance in low-income and middle-income countries. BMC Health Serv Res 2015;15(543):543. doi: 10.1186/s12913-015-1179-3 24. Hussien M, Azage M. Barriers and Facilitators of Community-Based Health Insurance Policy Renewal in Low- and Middle-Income Countries: A Systematic Review. Clinicoecon Outcomes Res 2021;13:359-75. doi: 10.2147/CEOR.S306855 25. Tefera BB, Kibret MA, Molla YB, et al. The interaction of healthcare service quality and community-based health insurance in Ethiopia. PLoS One 2021;16(8):e0256132. doi: 10.1371/journal.pone.0256132 26. Shigute Z, Mebratie AD, Sparrow R, et al. The Effect of Ethiopia's Community-Based Health Insurance Scheme on Revenues and Quality of Care. Int J Environ Res Public Health 2020;17(22) doi: 10.3390/ijerph17228558 27. FMHO. Health Sector Transformation Plan 2016-2020. Addis Ababa: Federal Ministry of Health of Ethiopia, 2015. 28. Zonal Health Department. Community-based health insurance performance report of South Wollo Zone. Dessie. 2020. 29. Robyn PJ, Bärnighausen T, Souares A, et al. Does enrollment status in community-based insurance lead to poorer quality of care? Evidence from Burkina Faso. Int J Equity Health 2013;12(31) 30. Hussien M, Azage M, Bayou NB. Continued adherence to community-based health insurance scheme in two districts of northeast Ethiopia: application of accelerated failure time shared frailty models. Int J Equity Health 2022;21(1):16. doi: 10.1186/s12939-022-01620-9 31. Bao Y, Fan G, Zou D, et al. Patient experience with outpatient encounters at public hospitals in Shanghai: Examining different aspects of physician services and implications of overcrowding. PLoS One 2017;12(2) doi: 10.1371/journal.pone.0171684

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1

60

BMJ Open


2			
3 4	642	32.	Hu Y, Zhang Z, Xie J, et al. The Outpatient Experience Questionnaire of comprehensive public hospital
5	643		in China: development, validity and reliability. Int J Qual Health Care 2017;29(1):40-46. doi:
6 7	644		10.1093/intqhc/mzw133
8 9	645	33.	Baltussen R, Ye Y. Quality of care of modern health services as perceived by users and non-users in
10	646		Burkina Faso. Int J Qual Health Care 2006;18(1):30-34.
11 12	647	34.	Webster TR, Mantopoulos J, Jackson E, et al. A brief questionnaire for assessing patient healthcare
13 14	648		experiences in low-income settings. Int J Qual Health Care 2011;23(3):258–68.
15	649	35.	Benson T, Potts HW. A short generic patient experience questionnaire: howRwe development and
16 17	650		validation. BMC Health Serv Res 2014;14:499. doi: 10.1186/s12913-014-0499-z
18 19	651	36.	Shirom A, Nirel N, Vinokur AD. Overload, Autonomy, and Burnout as Predictors of Physicians' Quality
20	652		of Care. J Occup Health Psychol 2006;11(4):328–42. doi: 10.1037/1076-8998.11.4.328
21 22	653	37.	Altindis S. Job motivation and organizational commitment among the health professionals: A
23 24	654		questionnaire survey Afr J Bus Manage 2011;5(21):8601-09.
25	655	38.	Alpern R, Canavan ME, Thompson JT, et al. Development of a brief instrument for assessing healthcare
26 27	656		employee satisfaction in a low-income setting. PLoS One 2013;8(11):e79053. doi:
28 29	657		10.1371/journal.pone.0079053
30	658	39.	Hair JF, Black WC, Babin BJ, et al. Multivariate Data Analysis. 8th ed. UK: CENAGE 2019.
31 32	659	40.	Elff M, Heisig JP, Schaeffer M, et al. Multilevel Analysis with Few Clusters: Improving Likelihood-Based
33 34	660		Methods to Provide Unbiased Estimates and Accurate Inference. British Journal of Political Science
35	661		2020;51(1):412-26. doi: 10.1017/s0007123419000097
36 37	662	41.	Hox JJ, Moerbeek M, Schoot Rvd. Multilevel Analysis: Techniques and Applications. 3rd ed. New York:
38 39	663		Routledge 2018.
40	664	42.	Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology:
41 42	665		linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol
43 44	666		Community Health 2005;59(6):443-9. doi: 10.1136/jech.2004.023473
45	667	43.	Mebratie AD, Sparrow R, Yilma Z, et al. Enrollment in Ethiopia's Community-Based Health Insurance
46 47	668		Scheme. World Development 2015;74:58-76. doi: 10.1016/j.worlddev.2015.04.011
48 49	669	44.	Benjamin J, Haile M, Abebe Z. Community-Based Health Insurance Program in Ethiopia: Assessing
50	670		Institutional and Financial Sustainability. Rockville, MD: Abt Associates Inc., 2018.
51 52			
53 54			24
55			34
56 57			
58 59			

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

45. Amo-Adjei J, Anku PJ, Amo HF, et al. Perception of quality of health delivery and health insurance subscription in Ghana. BMC Health Serv Res 2016;16:317. doi: 10.1186/s12913-016-1602-4 46. Duku SKO, Nketiah-Amponsah E, Janssens W, et al. Perceptions of healthcare quality in Ghana: Does health insurance status matter? PLoS One 2018;13(1):e0190911. doi: 10.1371/journal.pone.0190911 47. Eseta WA, Lemma TD, Geta ET. Magnitude and Determinants of Dropout from Community-Based Health Insurance Among Households in Manna District, Jimma Zone, Southwest Ethiopia. Clinicoecon *Outcomes Res* 2020;12:747-60. doi: 10.2147/CEOR.S284702 48. Herberholz C, Fakihammed WA. Determinants of Voluntary National Health Insurance Drop-Out in Eastern Sudan. Appl Health Econ Health Policy 2016;15(2):215-26. doi: 10.1007/s40258-016-0281-y 49. Mladovsky P. Why do people drop out of community-based health insurance? Findings from an household survey Sci Med exploratory in Senegal. Soc 2014;107:78-88. doi: 10.1016/j.socscimed.2014.02.008 50. Kraus TW, Buchler MW, Herfarth C. Relationships between volume, efficiency, and quality in surgery--a delicate balance from managerial perspectives. World J Surg 2005;29(10):1234-40. doi: 10.1007/s00268-005-7988-5 51. Arsenault C, Yakob B, Tilahun T, et al. Patient volume and quality of primary care in Ethiopia: findings from the routine health information system and the 2014 Service Provision Assessment survey. BMC *Health Serv Res* 2021;21(1) doi: 10.1186/s12913-021-06524-y 52. Kruk ME, Leslie HH, Verguet S, et al. Quality of basic maternal care functions in health facilities of five African countries: an analysis of national health system surveys. The Lancet Global Health 2016;4(11):e845-e55. doi: 10.1016/s2214-109x(16)30180-2 53. Kruse FM, van Nieuw Amerongen MC, Borghans I, et al. Is there a volume-quality relationship within the independent treatment centre sector? A longitudinal analysis. BMC Health Serv Res 2019;19(1):853. doi: 10.1186/s12913-019-4467-5 54. Kvist T, Voutilainen A, Mäntynen R, et al. The relationship between patients' perceptions of care quality and three factors: nursing staff job satisfaction, organizational characteristics and patient age BMC Health Serv Res 2014;14(466) 55. Raffoul M, Moore M, Kamerow D, et al. A Primary Care Panel Size of 2500 Is neither Accurate nor Reasonable. J Am Board Fam Med 2016;29(4):496-9. doi: 10.3122/jabfm.2016.04.150317 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5		
1		
2		
3	701	
4 5		
6	702	
7 8		
1 2 3 4 5 6 7 8 9 10		
10 11		
12		
13 14		
15		
16 17		
18		
19 20		
21		
22 23		
24		
25 26		
27		
28 29		
30		
31 32		
33 34 35		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55		36
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

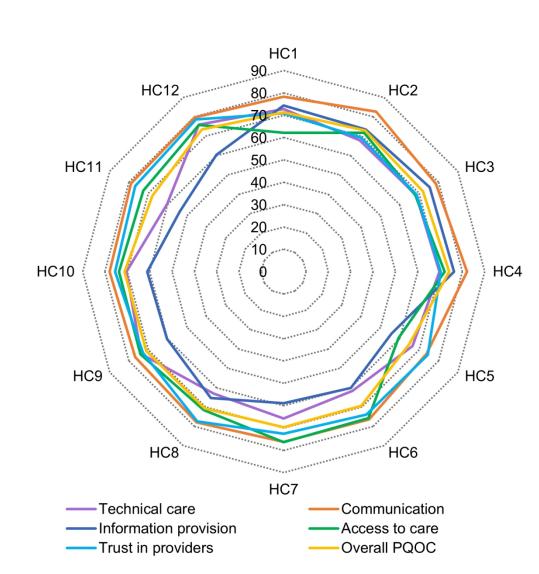


Figure 1: Summary of the mean scores of the PQoC and its dimensions across 12 health centers in two districts of northeast Ethiopia, 2021

130x135mm (300 x 300 DPI)

Supplementary file 1: Factor analysis of the measurement scale to assess the perceived quality of care among households ever enrolled in a CBHI in two districts of northeast Ethiopia, 2021

Dimensions and items	Loading	gs under	each dir	nension	
	1	2	3	4	5
Technical care					
The necessary Laboratory tests were performed	0.911				
Health care providers perform the necessary physical examinations	0.818				
Health care providers make a good diagnosis	0.740				
Patient-provider communication					
Health care providers actively ask questions to understand your situation		0.846			
lealth care providers listened to you carefully what you had to say		0.845			
Health care providers treated you with courtesy and respect		0.542			
Information provision					
Health care providers clearly explained the use and side effects of medicines			0.787		
Health care providers clearly explained the results of tests and examination			0.760		
Health care providers explain things in a way you could understand			0.672		
Health care providers spent sufficient time examining patients			0.510		
Access to care					
Patients do not wait long in the health center to receive treatment				0.799	
All prescribed medicines are available on the spot				0.624	
Facility assistants are friendly and helpful to patients				0.559	
The health facility serves all patients fairly				0.463	
Trust in care providers					
Treatment is effective for recovery and cure					0.754
Health care providers prescribe appropriate medicines for patients					0.672
You have confidence in the competence of health care providers					0.662

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Supplementary file 2: Mean score of each measurement item of the perceived quality of care (20-100 scale) among households ever enrolled in a CBHI in two districts of northeast Ethiopia, 2021

Factors and items		95%		
	Mean	SD	LCI	UCI
Technical care	68.34	15.24	67.43	69.25
The necessary Laboratory tests were performed	69.20	18.36	68.10	70.29
Health care providers perform the necessary physical examinations	68.23	18.89	67.11	69.36
Health care providers make a good diagnosis	67.59	17.69	66.53	68.64
Patient-provider communication	77.84	10.12	77.23	78.44
Health care providers actively ask questions to understand your situation	80.39	11.68	79.69	81.09
Health care providers listened to you carefully what you had to say	79.61	10.93	78.96	80.26
Health care providers treated you with courtesy and respect	73.51	16.72	72.51	74.50
Information provision	64.67	13.87	63.84	65.49
Health care providers clearly explained the use and side effects of medicines	62.90	19.87	61.72	64.09
Health care providers clearly explained the results of tests and examination	62.50	19.48	61.34	63.66
Health care providers explain things in a way you could understand	69.36	17.42	68.32	70.40
Health care providers spent sufficient time to examining patients	63.90	20.18	62.70	65.11
Access to care	69.47	11.77	68.77	70.17
Patients do not wait long in the health center to receive treatment	62.96	20.17	61.76	64.16
All prescribed medicines are available on the spot	63.50	20.37	62.28	64.71
Facility assistants are friendly and helpful to patients	73.38	16.07	72.42	74.34
The health facility serves all patients fairly	78.06	15.90	77.11	79.01
Trust in care providers	73.20	11.02	72.55	73.86
Treatment is effective for recovery and cure	72.47	14.78	71.59	73.35
Health care providers prescribe appropriate medicines for patients	75.47	12.90	74.70	76.24
You have confidence in the competence of health care providers	71.67	14.36	70.82	72.53
Overall perceived quality of care (PQoC)	70.28	8.39	69.77	70.78

Page 41 of 41

 BMJ Open

Section/Topic	ltem #	Recommendation 09 17	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction		2022	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods		adec	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6, 7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11, 12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7, 8
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9, 10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9, 10
		(b) Describe any methods used to examine subgroups and interactions 건	11
		(b) Describe any methods used to examine subgroups and interactions Pool (c) Explain how missing data were addressed Pool	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	10
		(e) Describe any sensitivity analyses	NA

bmjopen-2022-

 bmjopen-20

copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine for eligibility,	13
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	13, 15
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence	16, 17
		interval). Make clear which confounders were adjusted for and why they were included 호	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time deriod	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	20
Discussion		ttp://	
Key results	18	Summarise key results with reference to study objectives	20, 21-26
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	26
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-26
Generalisability	21	Discuss the generalisability (external validity) of the study results	26
Other information		pril 1	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	27
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in case-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinebrg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strong.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Perceived quality of care among households ever enrolled in a community-based health insurance scheme in two districts of northeast Ethiopia: A community-based, crosssectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063098.R2
Article Type:	Original research
Date Submitted by the Author:	27-Sep-2022
Complete List of Authors:	Hussien, Mohammed; Bahir Dar University, Health Systems Management and Health Economics Azage, Muluken; Bahir Dar University, Environmental Health Bayou , Negalign ; Jimma University, Health Policy and Management
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Health economics, Health policy
Keywords:	Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2		
3 4	1	Perceived quality of care among households ever enrolled in a
5 6 7	2	community-based health insurance scheme in two districts of
, 8 9	3	northeast Ethiopia: A community-based, cross-sectional study
10 11 12	4	
13 14 15	5	
16		
17 18 19	6	Mohammed Hussien ^{1*} , Muluken Azage ² and Negalign Berhanu Bayou ³
20 21 22	7	
23 24 25	8	
26 27 28	9	¹ Department of Health Systems Management and Health Economics, School of Public Health,
29 30 31	10	College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
32 33	11	² Department of Environmental Health, School of Public Health, College of Medicine and Health
34 35 36	12	Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
37 38 39	13	³ Department of Health Policy and Management, Faculty of Public Health, Institute of Health,
40 41 42	14	Jimma University, Jimma, Ethiopia.
43 44 45	15	
46 47 48	16	
49 50 51 52	17	*Correspondence: muhamedun@gmail.com
53 54 55		1
56 57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18 ABSTRACT

Objectives: To examine how clients perceived the quality of health care they received and identify associated factors both at the individual and facility levels. **Design:** A community-based, cross-sectional study. **Setting:** Two rural districts of northeast Ethiopia, Tehulederie and Kallu. Participants: 1081 rural households who had ever been enrolled in community-based health insurance and visited a health center at least once in the previous 12 months. Furthermore, 194 health care providers participated in the study to provide cluster-level data. **Outcome measures**: The outcome variable of interest was the perceived quality of care, which was measured using a 17-item scale. Respondents were asked to rate the degree to which they agreed on 5-point response items relating to their experiences with health care in the outpatient departments of nearby health centers. A multilevel linear regression analysis was used to identify predictors of perceived quality of care. Results: The mean perceived quality of care was 70.28 (SD=8.39). Five dimensions of perceived guality of care were extracted from the factor analysis, with the patient-provider communication dimension having the highest mean score (M=77.84, SD=10.12), and information provision having the lowest (M=64.67, SD=13.87). Wealth status, current insurance status, perceived health status, presence of chronic illness, and time to a recent health center visit were individual level variables that showed a significant association with the outcome variable. At the cluster

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

level, the work experience of health care providers, patient volume, and an interaction term between patient volume and staff job satisfaction also showed a significant association. Conclusions: Much work remains to improve the quality of care, especially on information provision and access to care quality dimensions. A range of individual and cluster-level characteristics influence the perceived quality of care. For a better quality of care, it is vital to optimize the patient-provider ratio and enhance staff job satisfaction. Strengths and limitations of this study The study tried to assess the quality of care from the clients' point of view using a validated multidimensional scale. This is the first cross-sectional study in Ethiopia, which considered health center (cluster) level variables that have an association with perceived quality of care. The observed association between current insurance status and perceived quality of care could be due to an endogeneity issue created by omitted variables. The use of a relatively small cluster sample size in this study may limit the accuracy of the estimates in the multilevel modeling. Because of the cross-sectional nature of the study, it is impossible to establish a cause-and-effect relationship. INTRODUCTION Health care providers and patients define the quality of care differently and attach varying levels of importance to its attributes. When assessing the quality of care, health care professionals tend

- 57 to prioritize technical competence, while patients place a high value on patient-centeredness,
- 58 amenities, and reputation.¹ The emphasis on health care quality measurement has shifted away

from the viewpoints of health care providers to people-centered approaches that rely on patient perceptions.²⁻⁴ Patients' perception of health care quality has become an essential element of quality measurement due to its link with health service utilization. It is based on a mix of patient experiences, processed information and rumors.⁵

Patient experience surveys elicit data on the transactional components of care, which are process-related, as well as the interpersonal interactions that occur over the course of care.⁶ Individuals receiving care are asked about their experiences of health facility encounters to report if particular processes or events occurred.⁷ Patient experience measurements have received increased attention and are widely employed to inform quality improvement, and payfor-performance.⁸ Patient experience is consistently and positively associated with patient safety and clinical effectiveness, adherence to prevention and treatment recommendations, and technical quality of care.910

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Patient experience is a reflection of the patient journey, which consists of the myriad interactions patients have with health care providers and the healthcare system over time and in a variety of settings. It is shaped by the health care team, the organization, and the surrounding policy and regulatory environment. A negative patient experience is a proxy for a larger health system failure, underscoring the need to apply a systems approach to improving health care quality.⁴

Quality of health care is vital to the success of universal health coverage (UHC) initiatives, like
 community-based health insurance (CBHI). To achieve the desired outcomes, the development
 of CBHI schemes must be accompanied by improvements in health care quality.^{2 4 11-13} To build

Page 6 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

sustainable CBHI schemes, members must believe that the benefits of health care provided via health insurance coverage outweigh the benefits of not being insured.¹⁴ Patients' positive experiences with the quality of care provided under insurance schemes increase their trust in the health system and insurance schemes.¹⁵ ¹⁶ As a result, they are more likely to use health care services and participate in health insurance plans.¹⁷ If insured clients are unable to access high-quality services, they lose trust in service providers and seek care elsewhere,¹⁸ making them less likely to pay premiums.^{19 20} Low perception of health care quality further deters people from interacting with the health system in the future.⁴

Although increased health care coverage is promising with the implementation of CBHI initiatives, quality of care remains a key impediment to achieving UHC.^{13 21} For example, more than eight million deaths amenable to a high quality of care occurred in low- and middle-income countries, making the poor quality of care a bigger obstacle to mortality reduction than lack of access to care.²¹ Poor quality of care is also a major issue that jeopardizes the long-term viability of many CBHI schemes.^{11 22} Findings of systematic reviews revealed that the quality of care was a key factor that influenced enrollment and renewal decisions of CBHI membership.^{23 24} Some guality concerns include 'unavailability and perceived poor guality of prescribed medicines, misbehavior of health professionals, and the differential treatment of the insured in favor of the uninsured patients, unclean hospital environment, long queues, lack of diagnostic equipment, and long waiting hours to obtain health care.²⁴

98 To promote optimal utilization, stable finance, and better outcomes, the quality of health care 99 must be monitored on a regular basis.¹⁸ Previous studies in Ethiopia focused on surveys of client

satisfaction and did not employ multidimensional measurement scales.^{25 26} To our knowledge, the quality of care delivered under the CBHI in Ethiopia has never been investigated using multidimensional metrics from the perspective of service users at the community level. There is also a paucity of literature on facility-level variables that influence the quality of care. Therefore, the purpose of this study was to examine the perceived quality of care (PQoC) from the perspective of clients and identify associated factors at the individual and facility level.

106 Improving the quality of care under the CBHI is among Ethiopia's top priorities in its health sector 107 strategic plan.²⁷ The findings of this study will inform relevant stakeholders on the current state 108 of clients' perceptions of the quality of care and will be an essential input for quality improvement 109 initiatives. It will also provide useful information for decision-makers to address challenges in the 110 country's endeavors to establish higher-level insurance pools.

icy

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

111 METHODS

112 Study setting and population

A community-based cross-sectional study was conducted in rural parts of two neighboring districts in northeast Ethiopia, Tehulederie and Kallu. Tehulederie is divided into 20 rural and seven urban *Kebeles* (subdistricts) with a population of 145,625, of which 87.5% reside in rural areas. There are five health centers and one primary hospital in the district. It was one of the 13 districts in Ethiopia where CBHI was piloted in 2011. The scheme was introduced in Kallu district after two years, in July 2013. Kallu is divided into 36 rural and four urban *Kebeles* and has nine

health centers. It is the most populous district in the zone, with a population of 234,624, of which
89.11% live in rural areas.²⁸

121 The study population of interest was rural households who had been ever enrolled in the CBHI 122 scheme before January 2020. To minimize recall bias, households who had not used health care 123 in the 12 months before data collection were excluded from the study.

Sample size and sampling procedure

The sample size was calculated using MedCalc software by assuming a mean difference of two independent groups. A previous study on PQoC reported mean scores of 5.2 and 5.4 with standard deviations (SD) of 0.8 and 0.7 among insured and uninsured respondents, respectively.²⁹ Using this output and assuming an 80% power, 95% confidence level and equally sized groups, a sample size of 446 was calculated. Considering a design effect of 1.5 attributable to multi-stage sampling and a potential non-response rate of 10%, the effective sample size was estimated to be 736 households. An alternative sample size of 1257 was calculated for a companion article as part of a research project examining the sustainability of a CBHI in Ethiopia.³⁰ Among those, 1081 eligible households participated in this study. Furthermore, 194 health care providers from 12 health centers participated in the study to provide cluster-level data.

The study participants were recruited using a three-level multistage sampling approach. First, 12
 clusters of *Kebeles* organized under a health center catchment area were selected. Then, 14 rural
 Kebeles were drawn randomly using a lottery method proportional to the number of *Kebeles*

under each cluster. Accordingly, five *Kebeles* from Tehulederie and nine from Kallu were included. A list of households who have ever been enrolled in the CBHI was obtained from the membership registration logbook of each *Kebele*. The required sample was generated at random from each *Kebele*, proportional to the number of households who have ever been enrolled in the scheme, using random number generator software.

144 Data collection and measurement

The data were collected from 04 February to 21 March 2021. Individual-level data were collected through face-to-face interviews with household heads at their homes or workplace using a structured questionnaire via an electronic data collection platform. The data collectors submit the completed forms to a data aggregating server daily, which allowed us to review the submissions and streamline the supervision process. BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

The PQoC, which is the outcome variable of interest, was measured using a 17-item scale designed after a thorough review of validated tools.^{29 31-34} Respondents were asked to rate the extent to which they agreed on a set of items relating to their experiences with the health care they received in the outpatient departments of nearby health centers. Each item was designed on a 5-point response format with 1 - strongly disagree, 2 - disagree, 3 - neutral, 4 - agree and 5 - strongly agree. The summary scores for the PQoC and its dimensions were calculated for individual respondents by adding the scores of each item. This gives a scale ranging from 17 (1×17) to 85 (5×17) for the overall PQoC score. For quality dimensions consisting of three and four items, the scale ranges from 3 to 15 and 4 to 20, respectively. When reporting the results,

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

the scores were arithmetically transformed to a scale of 20 to 100.³⁵ This allows the comparison
 of mean scores of PQoC, its dimensions, and each measurement item on a common scale.

Wealth index was generated using the principal component analysis method. The scores for 15 types of assets were translated into latent factors, and a wealth index was created based on the first factor that explained most of the variation. The study households were grouped into wealth tertile – lower, medium, and higher based on the index. Perceived health status was measured based on a household head's subjective assessment of the health status of the household, and was rated as "poor, fair, good, very good, or excellent". However, for analysis purposes, it was recategorized into "fair, good, and very-good", by merging the two extreme response categories to the next option due to fewer replies.

Before the data collection, the questionnaire was pre-tested on a sample of 84 randomly selected participants in one *Kebele*. As part of the pre-test, a cognitive interview was conducted on selected items using the verbal probe technique among eight respondents to determine if the items and response categories were understood, and interpreted by the potential respondents as intended. Accordingly, the phrasing of some items and response options were modified, and some items were omitted.

175 Cluster-level data were collected from 12 health centers that provide health care for the 176 population in the sampled *Kebeles*. Patient volume data were obtained by reviewing the monthly 177 service delivery reports of health centers, while data related to work experience, affective

178 commitment, and job satisfaction were collected through a self-administered questionnaire179 among health care providers who worked more than one year in the current facility.

Patient volume was measured using the daily average number of patients managed by a health care provider in the outpatient department. It was calculated by dividing the number of patients who visited the health center in the last six months before the study by the number of working days, and then by the number of consultation rooms in each health center.³⁶ Affective commitment and job satisfaction were composite variables that were assessed using a 5-point Likert scale. Affective commitment was measured with a seven-item questionnaire based on a modified version of the Meyer et al. scale, which had previously been used in a hospital setup.³⁷ Staff job satisfaction was measured using a 10-item scale, which was adapted from a previous study among health care workers in Ethiopia.³⁸ Average affective commitment and job satisfaction scores were computed for each health center.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

190 Data analysis

The data were analyzed using Stata version 17.0. Exploratory factor analysis was performed to assess the validity of the quality measurement scale. Bartlett's test of Sphericity and Kaiser-Mayer-Olkin's (KMO) measure of sampling adequacy were performed to assess the appropriateness of the data for factor analysis. The principal component factor method of extraction and Promax rotation with Kaiser Normalization was used. The Eigenvalue greater than one decision rule was used to determine the appropriate number of factors to be extracted. Items with both loadings and communalities below 0.40 were removed from the analysis.³⁹

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Correlation coefficients were used to test construct validity. Item-total score correlation, dimension-total score correlation, and dimension intercorrelation were computed. The total score was the mean score of the ratings for all items of the scale, and the dimension score was the factor score. A questionnaire has good construct validity when the item-total score correlations are higher than 0.40, dimension intercorrelations are less than 0.80, and dimension-total score correlations are higher than dimension intercorrelations.³² Cronbach's alpha coefficients were generated for each dimension to assess the internal consistency. The reliability of the scale was considered acceptable if Cronbach's alpha coefficient was 0.60 or higher.³⁹ To compare mean scores of PQoC and its dimensions among subgroups, an independent t-test and a one-way analysis of variance (ANOVA) with Tukey's post-hoc test were used. Because the outcome variable was considered a continuous variable, a multilevel linear regression model was fitted to identify its predictors. The PQoC was assumed to be influenced by the characteristics of households (individual-level variables) as well as the characteristics of health centers (cluster-level variables). Cluster-level data were linked to individual-level data based on the usual source of health care for each study participant. Considering the hierarchical structure of the data, where patients are nested within health centers, a two-level linear regression model was applied. In this study, there were 12 health centers (level-two units), hence the Restricted Maximum Likelihood estimation approach was employed because it is appropriate for smaller cluster sizes.⁴⁰ Four models were estimated to choose the one that best fits the data. The first model or the null model (a model without predictors) is given by:

 $Y_{ij} = \gamma_{00} + u_{0j} + \varepsilon_{ij}$ (1)The null model estimates three parameters: the average intercept (Y_{00}), the between health center error, or deviation, from the average intercept (u_{0i}) , and the individual-level residual, or variation in individual scores within health centers (ε_{ii}). The second model estimated PQoC (Y_{ii}) for individual household i at health center j. We treat PQoC as a function of a matrix of individual-level variables (X_{ii}) which include age, gender, education, and marital status of the household head; wealth status; household size; current health insurance status; the presence of chronic illness in the household; perceived health status, and time to a recent visit to a health center, and expressed as: $Y_{ij} = \gamma_{00} + \gamma_{10}X_{1ij} + \gamma_{20}X_{2ij} + u_{1j}X_{1ij} + u_{2j}X_{2ij} + \dots + \gamma_{n0}X_{nij} + u_{nj}X_{nij} + u_{0j} + \varepsilon_{ij}$ (2) where u_{1j} , u_{2j} , u_{nj} indicate the random error terms connected to each X_{ij} . The third model estimated the PQoC as a function of cluster-level variables (Z_i) that include average work experience, affective commitment and job satisfaction of health care providers, and patient volume. The model accounts for the variation amongst health centers and explains it in terms of these characteristics. It is given by: $Y_{ij} = \gamma_{00} + \gamma_{01}Z_{1j} + \gamma_{02}Z_{2j} + \dots + \gamma_{0n}Z_{nj} + \gamma_{11}PV_j * JS_j + u_{0j} + \varepsilon_{ij}$ (3) where *PV_i*JS_i* indicates an interaction term between patient volume and job satisfaction in which job satisfaction was assumed to moderate the effect between patient volume and PQoC. The

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

interaction effect was tested by plotting the marginal effects of interaction terms. The two

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

variables were centered toward the grand mean to facilitate the interpretation of the coefficients. By combining models II and III, the fourth model estimated the PQoC as a function of both individual and cluster-level variables, and can be written as: $Y_{ij} = \gamma_{00} + \gamma_{10}X_{1ij} + \gamma_{20}X_{2ij} + u_{1j}X_{1ij} + u_{2j}X_{2ij} + \dots + \gamma_{n0}X_{nij} + u_{nj}X_{nij} + \gamma_{01}Z_{1j} + \gamma_{02}Z_{2j}$ $+\ldots + \gamma_{0n}Z_{nj} + \gamma_{11}PV_j * JS_j + u_{0j} + \varepsilon_{ij}$ (4) where γ_{10} and γ_{01} are the vector of coefficients of *n* explanatory variables whose values are at X_{1ii} , X_{2ij} , ..., X_{nij} for the *i*th individual within the *j*th cluster, and Z_{1j} , Z_{2j} , ..., Z_{nj} for the *j*th cluster, respectively. The intercept γ_{00} and slopes γ_{01} , γ_{10} and γ_{11} are fixed effects, while u_{0j} , u_{j} , and ε_{ij} are random effects. This multilevel regression decomposes the total variances into two independent components: σ_e^2 , which is the variance of individual-level errors ε_{ij} , and σ_{u0}^2 , which is the variance of cluster-level errors u_{0j} . From this model, we can define the intraclass correlation (ICC) by the equation:⁴¹ $ICC = \sigma_{u0}^2 / (\sigma_{u0}^2 + \sigma_e^2)$ The ICC and proportional change in variance (PCV) were used to report the measures of variation (random effects). The need for multilevel analysis, which considers cluster-level factors, was

tested using the ICC. The ICC shows the variation in PQoC accounted for cluster-level characteristics. Statistically significant variability between health centers justifies the need to consider cluster-level factors.⁴² The PCV expresses the change in the cluster-level variance between the empty model and models with more terms and is calculated by PCV = $(V_A - V_B)/V_{A}$,

where V_A is the variance of the null model, and V_B is the variance of the model with more terms. It measures the total variation explained by individual and cluster-level factors.

The measures of association (fixed-effects) estimate the association between the PQoC score and various explanatory variables. The existence of a statistically significant association was determined at p-values of <0.05. The degree of the association was assessed using regression coefficients, and their statistical significance was determined at a 95% confidence interval. Models were compared using the Deviance Information Criteria (DIC) and Akaike Information Criteria (AIC). The best fit model was determined to have the lowest DIC and AIC values. The preliminary analysis confirmed no violation of the assumptions of normality, linearity, homoscedasticity, and multicollinearity. The presence of multicollinearity was determined using the Variance Inflation Factor with a cutoff point of 5.

Patient and Public Involvement

No patient involved

RESULTS

iezon, Background characteristics of the study participants

The household survey included 1081 respondents who had visited a health center at least once in the previous 12 months prior to the study. The average age of the study participants was 49.25 years (SD=12.07), with slightly more than half (51.34%) between the age ranges of 45 and 64, and 12.67% being 65 and older. Of the total study participants, 938 (86.77%) were men, and 1003

Page 16 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

(92.78%) were currently married. One-fifth of the study participants (20.91%) attended formal
education, and 62.72% had a household size of five or above.

277 Nearly ninety percent of the households (87.14%) were active members of the CBHI scheme at 278 the time of the study. A quarter of households (25.72%) had one or more individuals with a 279 known chronic illness informed by a healthcare provider. One-third of respondents (33.58%) 280 rated their household health status as very good, while 207 (19.15%) and 511 (47.27%) rated it 281 as fair and good, respectively. Nearly half of the households (46.16%) had visited a health center 282 within three months prior to the study, while 31.73% and 22.11% had their most recent visit to a 283 health center before 6-12 and 3-6 months, respectively (Table 1).

The median work experience of health care providers involved in this study ranges from three to ten years. The mean scores of affective commitment and job satisfaction were 29.00 and 30.95 (SD=2.08 and 3.17), respectively. The average patient volume was 32.17 per day per care provider, with a range of 19 to 43 (SD=7.83).

288 Factor analysis

Sampling was adequate as measured by the KMO (0.83), and Bartlett's test of sphericity was significant (*p*<0.001). Two items were removed from further analysis due to loadings below 0.40, and one item was removed due to low communality. The factor analysis extracted five dimensions that explained 59.25% of the total variation (online supplemental file 1). The itemtotal score correlations ranged from 0.268 to 0.622, four items had correlations less than 0.40. The dimension intercorrelations ranged from 0.031 to 0.434, all of which were less than the 0.80 criterion, indicating that each dimension was distinct enough to be considered an independent

296 measure. Dimension-total score correlation ranged from 0.417 to 0.772, all significant at a p-297 value of 0.001, and are higher than dimension intercorrelations. The scale was tested for 298 reliability and had an overall Cronbach's alpha coefficient of 0.804. The Cronbach's alpha 299 coefficients for the five dimensions exceeded 0.60, except for the access to care subscale, which 300 had an alpha coefficient of 0.531.

Table 1: Independent t-test and one-way ANOVA comparing mean scores of the PQoC (20-100 scale) across
 respondent characteristics in two districts of northeast Ethiopia, 2021

				PQoC score			
Variable	Categories	N=1081	%	М	SD	t/F-tes	
Age in years	25 – 44	389	35.99	69.97	7.78	1.08	
	45 – 64	555	51.34	70.26	8.52		
	65+	137	12.67	71.20	9.49		
Gender	Men	938	86.77	70.15	8.21	-1.31	
	Women	143	13.23	71.13	9.51		
Marital status	Divorced/widowed	78	7.22	71.61	10.95	1.46	
	Married	1003	92.78	70.17	8.16		
Attend formal education	No	855	79.09	70.29	8.48	0.07	
	Yes	226	20.91	70.24	8.05		
Household size	< Five	403	37.28	70.85	8.63	1.73	
	≥ Five	678	62.72	69.94	8.25		
Wealth tertile	Lowest	361	33.40	71.77	9.15	8.83#	
	Medium	360	33.30	69.36 ^b	8.16		
	Highest	360	33.30	69.70 ^b	7.62		
Current insurance status	Ex-member	139	12.86	67.66	9.65	-3.96#	
	Active-member	942	87.14	70.66	8.13		
Perceived health status	Fair	207	19.15	72.28	8.84	8.04#	
	Good	511	47.27	70.08 ^b	7.83		
	Very good	363	33.58	69.41 ^b	8.73		
Chronic illness	No	803	74.28	69.54	8.29	-4.96#	
	Yes	278	25.72	72.40	8.33		
Last health center visit	< 3 months	499	46.16	70.75 ^b	8.99	4.78 [§]	
	3-6 months	239	22.11	70.94 ^b	7.60		
	6-12 months	343	31.73	69.13	7.92		

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Total	1081	100	70.28	70.28	
303	Statistical significance for t-test/F-test is indicated by ${}^{\$}p$ <0.01, and ${}^{\#}p$ <0.001. Based on Tukey's post-hoc test, mean values					
304	sharing letter 'b' are not significantly different in the group at the	ne 5% le	vel.			
305	Perceptions of the quality of care					
306	The minimum and maximum PQoC scores were 37.65 and 97.65, respectively. The mean score					
307	was 70.28 (95% CI: 69.77, 70.78) with an SD of 8.39. The aggregated mean score at the health					
308	center level ranges from 64.94 to 74.06. Patient-provider communication had the highest mear					
309	score (M=77.84, SD=10.12) of the five quality dimensions, while information provision had the					
310	lowest score (M=64.67, SD=13.87). The mean score for each measurement item is summarized					
311	in the online supplemental file 2.					
312	An independent t-test and a one-way ANOVA were performed to compare the mean scores of					
313	PQoC and its dimensions between subgroups. As shown in Table 1, there was a significant					
314	difference in the PQoC mean score for wealth tertile at p <0.05 (F=8.83, p =0.001). Tukey's post-					
315	hoc test indicated that the mean score of PQoC for the lowest wealth tertile (M=71.77, SD=9.15)					
316	was significantly different from both the medium (M=69.36, SD=8.16) and highest (M=69.70,					
317	SD=7.62) wealth tertile. However, no significant difference was seen between medium and high					
318	wealth tertile. The ANOVA test also showed that the PQoC mean score showed significant					
319	differences based on the respondents' perceived health status and time to a recent visit to a					
320	health center, with (F=8.04, p<0.001) and (F=4.78, p<0.01), respectively. There was a significant					
321	difference in the mean score of PQoC between active insurance members (M=3.53, SD=0.41) and					
322	ex-members (M=3.38, SD=0.48); t=3.96, p<0.001. The mean PQoC score of households with					
323	chronic illness (M=3.62, SD=0.42) was also significantly higher compared to those who did not					
324	have a chronic illness (M=3.48, SD=0.42); t=4.95	-	001. The	results o	f an independent t	t-te
	17	7				
	For peer review only - http://bmjopen.l	bmj.coi	m/site/abou	ut/guidelir	nes.xhtml	

525 and a one way ANOVA that compare the americaes in mean scores of the five americanis	325	and a one-way ANOVA that compare the differences in mean scores of the five dimensions
--	-----	--

326 between subgroups are displayed in Table 2.

Table 2: Independent t-test and one-way ANOVA comparing mean scores of PQoC dimensions (20-100 scale) across
 respondent characteristics in two districts of northeast Ethiopia, 2021

Variables	Ν	Technica	l care	Commu	nication	Informatio	on provision	Access t	o care	Trust in	providers
		М	SD	М	SD	Μ	SD	М	SD	М	SD
Age in years											
25 – 44	389	68.33	15.61	77.60	9.89	62.75 ^b	13.73	69.99	11.64	73.59 ^b	10.11
45 – 64	555	68.14	15.19	77.71	10.01	64.60 ^b	14.03	69.41	12.04	73.61 ^b	10.96
65+	137	69.15	14.44	79.03	11.19	70.36#	12.09	68.25	10.97	70.46⁵	13.21
Gender											
Men	938	68.36	15.15	77.67	10.17	64.40	13.80	69.34	11.67	73.18	10.80
Women	143	68.48	16.00	78.93	9.81	66.40	14.27	70.31	12.42	73.38	12.37
Marital status											
Divorced/widowed	78	70.77	14.74	78.80	12.10	70.77#	13.58	67.18	13.03	72.31	14.01
Married	1003	68.15	15.27	77.76	9.96	64.19	13.79	69.65	11.65	73.27	10.75
Formal education											
No	855	68.37	15.41	77.78	10.29	64.43	13.98	69.63	11.64	73.39	11.13
Yes	226	68.20	14.62	78.05	9.54	65.55	13.46	68.89	12.24	72.51	10.56
Household size											
< Five	403	69.10	15.21	78.51	10.07	65.14	14.31	70.37	11.25	73.18	11.94
≥ Five	678	67.89	15.25	77.43	10.14	64.39	13.61	68.94	12.04	73.22	10.44
Wealth tertile											
Lowest	361	69.64	14.42	79.56#	9.94	70.21ª#	12.84	68.70	11.49	72.13ª	13.07
Medium	360	67.11	15.28	76.80 ^b	10.57	63.08ª	14.40	69.00	11.82	73.02*	10.45
Highest	360	68.26	15.93	77.13 ^b	9.65	60.69ª	12.54	70.63	11.94	74.46ª	9.04
Insurance status											
Ex-member	139	64.75 [§]	15.73	74.29§	12.91	63.13	14.46	67.05 [§]	13.56	70.79§	13.07
Active-member	942	68.87	15.10	78.36	9.54	64.89	13.78	69.83	11.44	73.56	10.64
Self-rated health											
Fair	207	71.76 ^b	13.73	80.35#	9.55	70.02#	12.87	68.62	11.51	72.59*	11.83
Good	511	68.85 ^b	14.73	76.73 [♭]	10.06	63.86 ^b	13.95	69.18	11.14	74.16ª	9.83
Very good	363	65.67#	16.31	77.96 ^b	10.29	62.74 ^b	13.59	70.37	12.71	72.21ª	11.99
Chronic illness											
No	803	67.39#	15.58	77.30 [§]	10.35	63.09#	13.74	69.13	11.90	73.07	10.94
Yes	278	71.08	13.90	79.38	9.29	69.21	13.26	70.47	11.33	73.60	11.25
Last health center visit											
< 3 months	499	68.08	15.10	78.46	10.25	68.07#	13.95	68.88 ^b	11.49	71.77#	12.20
3-6 months	239	69.71	14.79	77.68	9.97	62.97 ^b	12.90	71.67 [§]	11.28	75.06 ^b	9.31

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

ω	
ΒM	
ح	
BMJ Op	
Dpen: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downlo	
ž	
÷	
ŝ	
Ð	
Ĕ	
S.	
s	
ē	
0	
se	
-	
<u>10</u>	
10.1136/bmj	
ω	
6	
bmjopen-:	
<u> </u>	
В	
eŗ	
ぇ	
mjopen-2022-063098 on 17 O	
N	
Ë	
б	
Ж	
90	
œ	
g	
ر _	
1	
Ó	
ğ	
g	
e	
Ť.	
8	
2022	
io.	
D	
ş	
Ę.	
ade	
ade	
aded fr	
aded fr	
aded fr	
aded from htt	
aded from htt	
aded from http://	
aded from http://	
aded from htt	
aded from http://	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	
aded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.	

	6-12 months	343	67.76	15.74	77.03	10.02	60.90 ^b	13.26	68.80 ^b	12.34	73.99 ^b	10.0
	Total	1081	68.34	15.24	77.84	10.12	64.67	13.87	69.47	11.77	73.20	11.0
329 330 331	Statistical significanc values sharing letter at the 5% level.	'a' are signit	ficantly di	fferent; w	hile mean	i values sh	aring lette	r 'b' are not	: significant	ly differe	nt in the g	
32	The mean PQo	C score w	as sign	ificantly	/ differe	ent amo	ong heal	th cente	rs (F=11	.85 <i>, p</i> <0	0.001). ⁻	The
33	mean scores fo	or the five	e dimer	nsions v	vere als	so signi	ficantly	different	: among	health	centers	s at
34	<i>p<</i> 0.001 level:	technical	care (F=8.66)	, patier	nt-provi	der com	nmunicat	tion (F=6	5.65), ii	nformat	ion
35	provision (F=47	7.42), acc	ess to	care (F	=36.87)	and tr	ust in c	are prov	viders (F	=6.98).	The m	ean
86	scores of the P	QoC and	its dim	ensions	across	the 12	health	centers a	are depi	cted us	ing a ra	dar
37	chart (Figure 1).	The char	t shows	s a com	oarison	of mea	n scores	on a scal	e of 10 t	o 90. Fc	or exam	ple,
38	respondents fr	om 11	health	centers	had	a highe	er perce	eption s	core on	patie	nt-provi	der
39	communication than other dimensions with less variation, while the information provision											
40	dimension was	mostly ra	inked lo	west w	vith mo	re varia	bility.					
41												
42	Figure 1: Summ	ary of th	e mean	scores	of the	PQoC a	nd its di	mension	s across	12 hea	lth cent	ters
43	in two districts	of northe	ast Eth	iopia, 2	021							
44	Predictors of	perceiv	ed qu	ality o	f care:	Multi	level a	nalysis				
45	The fixed effect	ts (meası	ires of	associa	tion) ar	nd the r	andom	effects (measure	es of va	riation)	for
46	the multilevel li	near regr	ession i	model a	ire depi	icted in	Table 3.	In the nu	ull mode	l, 8.5%	of the to	otal
47	variance in PQc	oC was at	tribute	d to clu	ster-lev	vel varia	ables. Th	e variab	ility betv	ween cl	lusters v	was
48	statistically sign	nificant (τ=5.90,	<i>p<</i> 0.00	01). Fui	rthermo	ore, the	null mo	odel sho	wed a	signific	ant
	improvement i		ntivo to		ndard I	linoar r	nodel d	lemonst	rating th	ne imp	ortance	of
49	improvement	n fit rela		a sta	nuaru i	iniear i	nouci, c			ie inip	ortarioe	01

developing a multilevel model. The cluster-level variation in Model II remained significant (τ =6.33, p<0.001), with 9.31% of the total variability attributed to differences across clusters. The PCV was negative in this model, indicating that individual-level characteristics did not play a role in explaining the variation between clusters. In Model III, cluster-level variables accounted for just 1.33% of the variation in PQoC across clusters. The PCV showed that cluster-level variables explained 85.42% of the variation between health centers, indicating the importance of including cluster-level characteristics to build a more robust explanatory model. We interpreted the results of the regression analysis using Model IV, which has the lowest DIC and AIC. After adjusting for other individual and cluster-level factors, the mean PQoC score for households with higher wealth tertile increased by 1.79 points compared to those with lower wealth tertile (b=1.79; 95% CI: 0.37, 3.21). Households who were active members of CBHI at the time of the study had a 2.70-point higher PQoC score than ex-members (b=2.70; 95% CI: 1.25, 4.14). The PQoC score of households who rated their health status as very good was 1.80 points lower compared to those who rated it as fair (b=-1.80; 95% CI: -3.31, -0.29). Compared to households without a chronic illness, those with one or more family members with a chronic illness had a 1.42-point higher perception score (b=1.42; 95% CI: 0.22, 2.63). Time to a recent visit to a health center was also significantly associated with PQoC score. The mean score for households who had their most recent visit to a health center before 3-6 months was 1.89 points higher compared to those whose recent visit was within 3 months prior to the study (b=1.89; 95% CI: 0.61, 3.17).

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 22 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Regarding cluster-level variables, the average work experience of health care providers and patient volume had statistically significant associations with PQoC. A 1.07-point improvement in the average PQoC score of health centers was noted for every year's increase in the median work experience of health care providers (b=1.07; 95% CI: 0.74, 1.40). An interaction term between patient volume and job satisfaction was positively associated with PQoC, implying that improving staff job satisfaction would buffer or lessen the effect between patient volume and PQoC. At an average staff job satisfaction, a 0.42-point drop in the average PQoC score of health centers was observed for a unit increase in patient volume (b=-0.42; 95% Cl: -0.50, -0.33). A one-unit increase in patient volume would only result in a 26% fall in average PQoC if the average job satisfaction is set one SD above the mean. This prediction was substantiated by the fact that the margins graph for patient volume showed the flattest slope for higher job satisfaction. However, the buffering role is observed in health centers with an average patient volume of 30.75 or higher.

1		
2		
3 4	388	
4	500	
5		
6 7	280	
7	309	
8		
9	200	Table 2. Multilevel linear regression analysis of factors accesisted with DOoC among households over enrolled in a

390 Table 3: Multilevel linear regression analysis of factors associated with PQoC among households ever enrolled in a

391 CBHI scheme in two districts of northeast Ethiopia, 2021

Variables		Model I	Model II	Model III	Model IV
	Category		b (95% CI)	b (95% CI)	b (95% CI)
Fixed effects					
Age			-0.02 (-0.06, 0.03)		-0.03 (-0.07, 0.02
Gender	Women		0.64 (-1.06, 2.34)		0.80 (-0.88, 2.49
Marital status	Married		-0.14 (-2.42, 2.15)		0.18 (-2.09, 2.45
Modern education	Yes		-0.07 (-1.34, 1.19)		-0.25 (-1.49, 1.00
Wealth tertile	Medium		-0.57 (-1.89, 0.74)		-0.16 (-1.40, 1.09
	High		0.73 (-0.87, 2.34)		1.79 (0.37, 3.21)
Household size	Large (≥ 5)		-0.28 (-1.28, 0.72)		-0.31 (-1.31, 0.68
Insurance status	Active member		2.65 (1.20, 4.11)#		2.70 (1.25, 4.14)
Perceived health	Good		-0.75 (-2.16, 0.66)		-0.73 (-2.14, 0.67
status	Very good		-1.78 (-3.29, -0.26)*		-1.80 (-3.31, -0.29
Chronic illness	Yes		1.55 (0.34, 2.76)*		1.42 (0.22, 2.63)
Last health center	3-6 months		1.64 (0.35, 2.94) [*]		1.89 (0.61, 3.17)
visit	6-12 months		0.77 (-0.45, 1.99)		1.02 (-0.18, 2.21
Work experience				0.75 (0.33, 1.17)§	1.07 (0.74, 1.40)
Affective commitment				0.48 (0.04, 1.00)	0.27 (-0.10, 0.65
Patient volume				-0.33 (-0.45, -0.21)#	-0.42 (-0.50, -0.33
Job satisfaction				0.01 (-0.24, 0.27)	0.07 (-0.10, 0.24
Patient volume x Job sa	tisfaction			0.06 (0.02, 0.11) [§]	0.05 (0.02, 0.08)
Random effect					
τ (SE)		5.90 (2.78)#	6.33 (3.10)#	0.86 (0.94)	≈ 0.00
ICC (%)		8.50	9.31	1.33	≈ 0.00
PCV (%)		Reference	-7.29	85.42	≈ 100
Model fitness					
DIC		7578.01	7528.89	7572.79	7516.90
AIC		7584.01	7560.89	7588.79	7558.90

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

 $\begin{array}{l} 392 \\ p<0.05; \ {}^{\$}p<0.01; \ {}^{\#}p<0.001; \ {}^{\tau}- \ Cluster-level variance, \ ICC - \ Intraclass \ Correlation; \ PCV - \ Proportional \ Change \ in \ Variance; \ DIC - \ 393 \\ \hline Deviance \ Information \ Criterion; \ AIC - \ Akaike \ Information \ Criterion; \ SE - \ standard \ error; \ b - \ regression \ coefficient; \ CI - \ 394 \\ \hline Confidence \ Interval. \end{array}$

DISCUSSIONS

Individuals with health insurance will continue to be members if they believe they are receiving the highest possible quality of health care. ^{19 20} In this study, the mean PQoC score was 70.28 on a scale of 20-100 with an SD of 8.39. The patient-provider communication received the highest score (M=77.84, SD=10.12) among the five quality dimensions. In 2015, the Ethiopian government incorporated the development of caring, respectful, and compassionate health care providers as one of the main transformation agendas in its five-year health sector strategic plan, and movements were created around it.²⁷ Our finding may be attributed partly to the government's ongoing training initiatives aimed at producing health care providers who are competent in this aspect. The perception score for the information provision dimension, on the other hand, was the lowest (M=64.67, SD=13.87). This could be attributed to an increase in patient volume following the implementation of CBHI.²⁶ Items loaded under this dimension appear less practical in the presence of a larger patient load. If health care providers are required to treat a large number of patients, consultation times will be reduced. They are unlikely to provide the necessary information to their clients if they are under time constraints. Regarding item level observations, waiting time and medicine availability received the lowest perception scores (62.96 and 63.50, respectively), which could also be related to increased patient load. This is in line with earlier studies in Ethiopia, which revealed that clients with health insurance

413 frequently complain about a lack of medicine and long wait times at CBHI-affiliated health
414 facilities.^{43 44}

Results of the regression analysis revealed that households with higher wealth tertile had a higher PQoC score than those with lower wealth tertile. This is in contrast to other studies whereby the richest group had a lower perception score.^{16 45} This discrepancy could be partly attributed to the use of different metrics to assess the quality of care. People with higher economic status may be more aware of health issues and able to bargain with health care providers to obtain the best possible care. Furthermore, if prescribed medicines are not available in CBHI-affiliated health facilities, for instance, they can afford to buy from private pharmacies. On the contrary, it may be irritating for people with lower economic status to buy medicines with limited money or to forgo treatment due to lack of money. In this regard, they may develop a negative perception of the quality of care.

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Households who were active members of CBHI at the time of the study had a higher rating of PQoC compared to ex-members. Contrary to our finding, a study in Ghana showed that previously insured clients had a higher perception of quality of care compared to actively insured clients (statistical significance is not reported). The authors argue this was due to the more timeconsuming nature of the service delivery processes for insured clients.⁴⁶ At least three possible explanations exist for the relationship between CBHI status and PQoC. First, because they do not have to pay for health care, active members have better access to and enjoyment of its benefits, resulting in a favorable perception of its quality. Second, the relationship could be due to an

Page 26 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

> endogeneity issue created by omitted variables. It is plausible that higher quality score reported by active members is due to such variables, as the desire to continue their membership. Third, ex-members of CBHI may have had negative experiences with health services, which led to the decision to discontinue their membership. As a result, they would be critical in rating the quality of care provided. In support of the latter argument, it was evidenced that poor quality of care was a major reason for insurance members to leave the scheme.^{24 47} Elsewhere, a statistically significant association was also reported between dropout and low quality of care.^{48 49}

This study verified that the PQoC score of households who rated their health status as very good was significantly lower compared to those who rated it as fair. The households' chronic illness experiences also influence the PQoC rating. The PQoC score of households with a chronic illness was higher compared to those without a chronic illness. This may be true for people who perceive their health as fair or who live with chronic conditions to appreciate the gains or benefits of the health care they received. In this respect, they may be more likely to rate the quality of care higher than their counterparts.

The results also indicated that households who had their most recent visit to a health center before 3-6 months had higher PQoC scores compared to those whose recent visit was within 3months prior to the study. Patients may experience varying levels of emotional highs and lows, depending on the length of the most recent facility visit. Although patients' perceptions of quality may develop over time,⁵ patients who recently visited a health facility may be more critical of the

quality of care due to strong emotions attached to negative events or health services that fallshort of their expectations.

Our findings revealed that the average work experience of health care providers was positively associated with PQoC. Work experience is linked to task specialization, which can lead to a faster work pace, more output in less time, and higher quality. Providers with more experience take less time to make diagnoses and treatment decisions, while still providing recommended practical aspects of care, such as good communication, physical examination, and provision of relevant health information.⁵⁰ As a result, they can reduce waiting times, and their management outcomes may be more effective than inexperienced providers. This could be more pronounced in Ethiopia where there has been a sharp rise in outpatient visits to CBHI-affiliated health centers.26

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Conditional to the average staff job satisfaction, patient volume is negatively correlated with PQoC. A study in Ethiopia identified a non-linear significant association (an inverted U-shape) between patient volume and quality. Quality decreased with increasing patient volume in health facilities that treated 90.6 or more patients per day, while quality increased with increasing patient volume in health facilities that treated less than 90.6 patients per day in the outpatient departments.⁵¹ Our finding is consistent with a study at public hospitals in China where overcrowding was negatively associated with clients' perception of quality of care.³¹ The apparent correlation between patient volume and PQoC could be explained by factors such as increased demand for health care providers and longer wait times. An increased patient volume

Page 28 of 41

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

would put a great deal of pressure on health care providers to treat a large number of patients in a short time. This may result in shorter consultation time and the omission of important practical aspects of care. On top of that, an increase in patient volume would mean longer waiting times at various service delivery points. Both these factors could have contributed to a negative patient experience and influenced their perception of overall quality of care. Some studies reported a positive relationship between patient volume and quality of basic maternal care, and postoperative infections.^{52 53} The alternative direction of this relationship, in which quality drives patient volume, is based on the assumption that the provision of high-quality care will attract more patients. This may be true in areas where patients have access to competitive health facilities, and health care providers are incentivized for providing higher quality care. This is not the case in low-income countries, like Ethiopia, where health care facilities are hard to reach for most rural populations. Members of CBHI are further limited to using health services only in public health facilities affiliated with the scheme. This study found no significant association between staff job satisfaction and PQoC. This contrasts

485 This study found no significant association between staff job satisfaction and PQoC. This contrasts 486 with the findings of Kvist et al. 2014, which reported a positive relationship between job 487 satisfaction among the nursing staff and patients' perceptions of quality of care.⁵⁴ Despite this, it 488 moderates the relationship between patient volume and PQoC in a nonlinear fashion. Improved 489 job satisfaction buffers the negative relationship between patient volume and PQoC in health 490 centers with an average patient volume of 30.75 or higher. When the average patient volume is 491 less than 30.75, however, improving job satisfaction enhances the effect between patient volume 492 and PQoC. The buffering role of service providers' job satisfaction at higher patient volume may

493 indicate that job satisfaction is the result of intrinsic rewards for higher work performance. 494 Providers may also be fully available during working hours at the health facility due to the 495 increased number of clients. On the other hand, the moderating role in enhancing the 496 relationship at lower patient volume may suggest that a low workload is one source of job 497 satisfaction. Because clients are in small numbers, providers may not be fully engaged during 498 working hours. They may have the freedom to do other businesses outside the health facility, 499 leaving patients unattended and dissatisfied.

The findings of this study will be an essential input for quality improvement initiatives as well as addressing challenges in the country's efforts to establish higher-level insurance pools. This is the first study of its kind to consider cluster-level variables associated with PQoC in Ethiopia. It gives an important lesson to healthcare managers and other relevant stakeholders to consider cluster-level characteristics in healthcare quality improvement efforts. It also pointed out quality dimensions that require special consideration in managerial decisions. Despite the significant findings of the current study, some caution should be taken in interpreting the findings. One noteworthy limitation of this study is the use of relatively small cluster sample size. In this study, only 12 health centers (level-two units) were included to assess the role of cluster level variables on the outcome variable. Concerns have been raised about the accuracy of estimates in multilevel modelling when there is small number of clusters. However, we employed the Restricted Maximum Likelihood estimation method, which could substantially improve the accuracy of estimates.⁴⁰ Second, due to the cross-sectional nature of the data, the analysis was conducted to identify associations rather than prove causation. Third, the association between

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

> 514 current insurance status and PQoC could be due to the possibility of endogeneity. Fourth, patient 515 volume data based on secondary data may not reflect the true figure due to the possibility of 516 under or over-reporting.

517 CONCLUSIONS

Despite encouraging findings on patient-provider communication, much work remains to be done to improve information provision and access to care quality dimensions. According to the findings, people's perceptions of quality of care varied depending on a variety of individual and cluster-level factors. The household's wealth status, current insurance membership, perceived health status, presence of chronic illness in the household, and time to a recent visit to a health center were individual-level predictors of PQoC. At the cluster level, patient volume and work experience of health care providers were associated with PQoC. A lower patient volume allows the health care provider to devote more time and attention to each patient, address the individual patient's needs, and have more time to improve communication with and provide behavior change counseling, which has an impact on the quality of care.⁵⁵ Therefore, to ensure that patients have access to a better quality of care, it is critical to determine an appropriate patient volume per care provider. Staff job satisfaction was an important factor that buffers the effect between patient volume and PQoC. Hence, it is vital to devise mechanisms to improve staff job satisfaction, especially in health facilities with higher patient volumes. More importantly, health centers should go to great lengths to ensure that every patient has access to the necessary

BMJ Open

medications. This will boost clients' trust in health care providers, which will be critical for health insurance schemes to retain and attract members. Acknowledgments The authors would like to acknowledge the health offices of Tehulederie and Kallu districts, health extension workers, Kebele leaders, data collectors, supervisors, and study participants. I (MH) want to acknowledge Bahir Dar university for the opportunity it has given me to pursue my Ph.D. study. Contributors MH conceptualized the study, designed the study, collected the data, analyzed and interpreted the data, and drafted the manuscript. MA and NBB contributed to survey design, data collection, and statistical analysis and reviewed the manuscript. All authors read and approved the final manuscript. **Funding** The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. Competing interests None declared. Patient consent for publication Not required. Ethics approval Ethical approval was obtained from the Institutional Review Board (IRB) of the College of Medicine and Health Science, Bahir Dar University with protocol number 001/2021. A support letter was communicated to the district health offices to gain entry permission into the community where the research was conducted. Before the interview, verbal informed consent

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

1

59

2		
3 4	552	was secured from each of the study participants. Confidentiality was assured by collecting
5 6 7	553	anonymous information and informing the participants that personal identifiers would not be
, 8 9	554	revealed to a third party.
10 11	555	Provenance and peer review Not commissioned; externally peer-reviewed.
12 13 14	556	Data availability statement Extra data can be accessed via the Dryad data repository at
15 16	557	http://datadryad.org/ with the doi: 10.5061/dryad.ncjsxksw5
17 18 19	558	Open access This is an open access article distributed in accordance with the Creative Commons
20 21	559	Attribution Non-Commercial (CC BY- NC 4.0) license, which permits others to distribute, remix,
22 23 24	560	adapt, build upon this work non- commercially, and license their derivative works on different
24 25 26	561	terms, provided the original work is properly cited, appropriate credit is given, any changes made
27 28 20	562	indicated, and the use is non- commercial. See: <u>http://creativecommons.org/licenses/by-nc/4.0/</u>
29 30 31	563	
32 33 34 35	564	ORCID ID
36 37	565	Mohammed Hussien https://orcid.org/0000-0002-5747-8967
38 39	566	Muluken Azage https://orcid.org/0000-0003-3222-0158
40 41 42	567	Negalign Berhanu Bayou https://orcid.org/0000-0002-0975-8358
43 44 45	568	REFERENCES
46 47	569	1. Nash DB, Joshi MS, Ransom ER, et al. The healthcare quality book : vision, strategy, and tools. 4th ed.
48 49	570	Washington, DC: Health Administration Press 2019.
50 51 52		
53		
54		31
55 56		
50 57		
58		

Page 33 of 41

59

60

BMJ Open

1 2		
3	571	2. WHO, OECD, and, et al. Delivering quality health services: a global imperative for universal health
4 5	572	coverage. Geneva: World Health Organization, Organisation for Economic Co-operation and
6 7	573	Development, and The World Bank, 2018.
8 9	574	3. Larson E, Sharma J, Bohren MA, et al. When the patient is the expert: measuring patient experience
9 10	575	and satisfaction with care. Bull World Health Organ 2019;97(8):563-69. doi: 10.2471/BLT.18.225201
11 12	576	4. National Academies of Sciences Engineering and Medicine. Crossing the global quality chasm: Improving
13 14	577	health care worldwide. Washington (DC): The National Academies Press 2018.
15	578	5. Hanefeld J, Powell-Jacksona T, Balabanovaa D. Understanding and measuring quality of care: dealing
16 17	579	with complexity. Bull World Health Organ 2017 2017;95:368–74. doi: 10.2471/BLT.16.179309
18 19	580	6. Goodrich J, Fitzsimons B. Capturing patient experience to improve healthcare services. Nurs Stand
20	581	2019;34(8):24-28. doi: 10.7748/ns.2018.e11177
21 22	582	7. Golda N, Beeson S, Kohli N, et al. Analysis of the patient experience measure. JAM ACAD DERMATOL
23 24	583	2018;78(4) doi: 10.1016/j.jaad.2017.03.051
25	584	8. Fujisawa R, Klazinga NS. Measuring patient experiences (PREMS): Progress made by the OECD and its
26 27	585	member countries between 2006 and 2016. OECD Health Working Papers 102. Paris, 2017.
28 29	586	9. Doyle C, Lennox L, Bell D. A systematic review of evidence on the links between patient experience and
30 31	587	clinical safety and effectiveness. BMJ Open 2013;3(1) doi: 10.1136/bmjopen-2012-001570
32	588	10. Anhang Price R, Elliott MN, Zaslavsky AM, et al. Examining the role of patient experience surveys in
33 34	589	measuring health care quality. <i>Med Care Res Rev</i> 2014;71(5):522-54. doi:
35 36	590	10.1177/1077558714541480
37	591	11. Soors W, Devadasan N, Durairaj V, et al. Community Health Insurance and Universal Coverage:
38 39	592	Multiple paths, many rivers to cross. Geneva: World Health Organization, 2010.
40 41	593	12. Lagomarsino G, Garabrant A, Adyas A, et al. Moving towards universal health coverage: health
42	594	insurance reforms in nine developing countries in Africa and Asia. <i>The Lancet</i> 2012;380(9845):933-43.
43 44	595	doi: 10.1016/s0140-6736(12)61147-7
45 46	596	13. Primary Health Care on the Road to Universal Health Coverage: 2019 global monitoring report.
47	597	Geneva: WHO, UNICEF, UNFPA, OECD and World Bank., 2019.
48 49	598	14. Lagomarsino G, Kundra SS. Overcoming the Challenges of Scaling Voluntary Risk Pools in Low-Income
50 51	599	Settings. New York: The Rockefeller Foundation, 2008.
52		
53 54		32
55 56		
57 58		

3
460015. Boateng D, Awunyor-Vitor D. Health insurance in Ghana: evaluation of policy holders' perceptions and5601factors influencing policy renewal in the Volta region. Int J Equity Health 2013;12:50. doi:6
760210.1186/1475-9276-12-50

1 2

60

- 603
 603
 16. Alhassan RK, Duku SO, Janssens W, et al. Comparison of Perceived and Technical Healthcare Quality
 in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana.
 605
 PLoS One 2015;10(10):e0140109. doi: 10.1371/journal.pone.0140109
- 606 17. Aggrey M, Appiah SCY. The influence of clients' perceived quality on health care utilization.
 607 International Journal of Innovation and Applied Studies 2014;9(2):918-24.
- 16
 17
 608
 18. Akachi Y, Kruk ME. Quality of care: measuring a neglected driver of improved health. *Bull World Health* 609
 Organ 2017;95(6):465-72. doi: 10.2471/BLT.16.180190
- 610
 19. Dror DM, Hossain SAS, Majumdar A, et al. What Factors Affect Voluntary Uptake of Community-Based
 611
 Health Insurance Schemes in Low- and Middle-Income Countries? A Systematic Review and Meta 612
 613
 614
 Analysis. *PLoS One* 2016;11(8):e0160479. doi: 10.1371/journal.pone.0160479
- 613
 613
 614
 614
 615
 615
 20. Fadlallah R, El-Jardali F, Hemadi N, et al. Barriers and facilitators to implementation, uptake and sustainability of community-based health insurance schemes in low- and middle-income countries: a systematic review. *Int J Equity Health* 2018;17(1):13. doi: 10.1186/s12939-018-0721-4
- 3061621. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development31617Goals era: time for a revolution. The Lancet 2018;6(11):e1196-e252. doi: 10.1016/S2214-33618109X(18)30386-3
- 619
 620
 620
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
 621
- 40 622 43. Adebayo EF, Uthman OA, Wiysonge CS, et al. A systematic review of factors that affect uptake of community-based health insurance in low-income and middle-income countries. *BMC Health Serv Res* 43 624 2015;15(543):543. doi: 10.1186/s12913-015-1179-3
- 45 625 24. Hussien M, Azage M. Barriers and Facilitators of Community-Based Health Insurance Policy Renewal
 47 626 in Low- and Middle-Income Countries: A Systematic Review. *Clinicoecon Outcomes Res* 2021;13:359 48 627 75. doi: 10.2147/CEOR.S306855

Page 35 of 41

BMJ Open

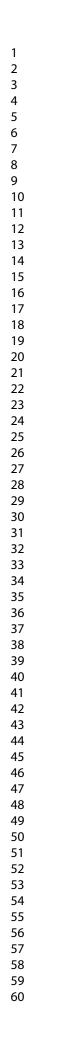
 Tefera BB, Kibret MA, Molla YB, et al. The interaction of healthcare service quality and commun based health insurance in Ethiopia. <i>PLoS One</i> 2021;16(8):e0256132. 	doi
10.1371/journal.pone.0256132	
6. Shigute Z, Mebratie AD, Sparrow R, et al. The Effect of Ethiopia's Community-Based Health Insura	ance
Scheme on Revenues and Quality of Care. Int J Environ Res Public Health 2020;17(22)	doi:
10.3390/ijerph17228558	
7. FMHO. Health Sector Transformation Plan 2016-2020. Addis Ababa: Federal Ministry of Healt	h of
Ethiopia, 2015.	
28. Zonal Health Department. Community-based health insurance performance report of South W	/ollo
Zone. Dessie, 2020.	
29. Robyn PJ, Bärnighausen T, Souares A, et al. Does enrollment status in community-based insurance	lead
to poorer quality of care? Evidence from Burkina Faso. Int J Equity Health 2013;12(31)	
30. Hussien M, Azage M, Bayou NB. Continued adherence to community-based health insurance sch	eme
in two districts of northeast Ethiopia: application of accelerated failure time shared frailty models	s. Int
J Equity Health 2022;21(1):16. doi: 10.1186/s12939-022-01620-9	
31. Bao Y, Fan G, Zou D, et al. Patient experience with outpatient encounters at public hospital	ls in
Shanghai: Examining different aspects of physician services and implications of overcrowding. I	PLoS
<i>One</i> 2017;12(2) doi: 10.1371/journal.pone.0171684	
2. Hu Y, Zhang Z, Xie J, et al. The Outpatient Experience Questionnaire of comprehensive public hos	pital
in China: development, validity and reliability. Int J Qual Health Care 2017;29(1):40-46.	doi:
10.1093/intqhc/mzw133	
33. Baltussen R, Ye Y. Quality of care of modern health services as perceived by users and non-user	rs in
Burkina Faso. Int J Qual Health Care 2006;18(1):30-34.	
34. Webster TR, Mantopoulos J, Jackson E, et al. A brief questionnaire for assessing patient health	care
experiences in low-income settings. Int J Qual Health Care 2011;23(3):258–68.	
5. Benson T, Potts HW. A short generic patient experience questionnaire: howRwe development	and
validation. BMC Health Serv Res 2014;14:499. doi: 10.1186/s12913-014-0499-z	
36. Shirom A, Nirel N, Vinokur AD. Overload, Autonomy, and Burnout as Predictors of Physicians' Qu	ality
of Care. J Occup Health Psychol 2006;11(4):328–42. doi: 10.1037/1076-8998.11.4.328	
34	
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
T OF PEET EVIEW ONLY - HTTP://DHIJOPEN.DHJ.COM/SITE/dDOUT/QUIDEIMES.XHTM	

ω

Page 36 of 41

BMJ Open

37. Altindis S. Job motivation and organizational commitment among the health professionals: A questionnaire survey Afr J Bus Manage 2011;5(21):8601-09. 38. Alpern R, Canavan ME, Thompson JT, et al. Development of a brief instrument for assessing healthcare employee satisfaction in a low-income setting. *PLoS One* 2013;8(11):e79053. doi: 10.1371/journal.pone.0079053 39. Hair JF, Black WC, Babin BJ, et al. Multivariate Data Analysis. 8th ed. UK: CENAGE 2019. 40. Elff M, Heisig JP, Schaeffer M, et al. Multilevel Analysis with Few Clusters: Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference. British Journal of Political Science 2020;51(1):412-26. doi: 10.1017/s0007123419000097 41. Hox JJ, Moerbeek M, Schoot Rvd. Multilevel Analysis: Techniques and Applications. 3rd ed. New York: Routledge 2018. 42. Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol *Community Health* 2005;59(6):443-9. doi: 10.1136/jech.2004.023473 43. Mebratie AD, Sparrow R, Yilma Z, et al. Enrollment in Ethiopia's Community-Based Health Insurance Scheme. World Development 2015;74:58-76. doi: 10.1016/j.worlddev.2015.04.011 44. Benjamin J, Haile M, Abebe Z. Community-Based Health Insurance Program in Ethiopia: Assessing Institutional and Financial Sustainability. Rockville, MD: Abt Associates Inc., 2018. 45. Amo-Adjei J, Anku PJ, Amo HF, et al. Perception of guality of health delivery and health insurance subscription in Ghana. BMC Health Serv Res 2016;16:317. doi: 10.1186/s12913-016-1602-4 46. Duku SKO, Nketiah-Amponsah E, Janssens W, et al. Perceptions of healthcare quality in Ghana: Does health insurance status matter? PLoS One 2018;13(1):e0190911. doi: 10.1371/journal.pone.0190911 47. Eseta WA, Lemma TD, Geta ET. Magnitude and Determinants of Dropout from Community-Based Health Insurance Among Households in Manna District, Jimma Zone, Southwest Ethiopia. Clinicoecon *Outcomes Res* 2020;12:747-60. doi: 10.2147/CEOR.S284702 48. Herberholz C, Fakihammed WA. Determinants of Voluntary National Health Insurance Drop-Out in Eastern Sudan. Appl Health Econ Health Policy 2016;15(2):215-26. doi: 10.1007/s40258-016-0281-y 49. Mladovsky P. Why do people drop out of community-based health insurance? Findings from an exploratory household Senegal. Sci Med 2014;107:78-88. survey in Soc doi: 10.1016/j.socscimed.2014.02.008


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

687
 50. Kraus TW, Buchler MW, Herfarth C. Relationships between volume, efficiency, and quality in surgery 688
 -a delicate balance from managerial perspectives. *World J Surg* 2005;29(10):1234-40. doi:
 689
 10.1007/s00268-005-7988-5

690
 691
 691
 691
 691
 691
 692
 692
 691
 692
 691
 691
 692
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 691
 692
 692
 692
 693
 694
 694
 695
 695
 694
 695
 695
 695
 696
 697
 697
 698
 691
 698
 698
 699
 699
 690
 691
 692
 692
 692
 693
 694
 694
 695
 695
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70</

- 693
 52. Kruk ME, Leslie HH, Verguet S, et al. Quality of basic maternal care functions in health facilities of five
 694
 African countries: an analysis of national health system surveys. *The Lancet Global Health* 2016;4(11):e845-e55. doi: 10.1016/s2214-109x(16)30180-2
- 696 53. Kruse FM, van Nieuw Amerongen MC, Borghans I, et al. Is there a volume-quality relationship within
 697 the independent treatment centre sector? A longitudinal analysis. *BMC Health Serv Res* 2019;19(1):853. doi: 10.1186/s12913-019-4467-5
- 699 54. Kvist T, Voutilainen A, Mäntynen R, et al. The relationship between patients' perceptions of care
 700 quality and three factors: nursing staff job satisfaction, organizational characteristics and patient age
 701 BMC Health Serv Res 2014;14(466)
 - 55. Raffoul M, Moore M, Kamerow D, et al. A Primary Care Panel Size of 2500 Is neither Accurate nor
 Reasonable. *J Am Board Fam Med* 2016;29(4):496-9. doi: 10.3122/jabfm.2016.04.150317

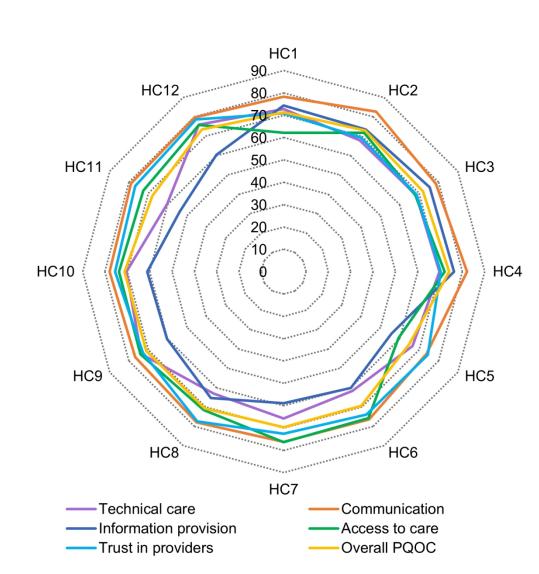


Figure 1: Summary of the mean scores of the PQoC and its dimensions across 12 health centers in two districts of northeast Ethiopia, 2021

130x135mm (300 x 300 DPI)

Supplementary file 1: Factor analysis of the measurement scale to assess the perceived quality of care among households ever enrolled in a CBHI in two districts of northeast Ethiopia, 2021

Dimensions and items	Loading	ıs under	each dir	nension	
	1	2	3	4	5
Technical care					
The necessary laboratory tests were performed	0.911				
Health care providers perform the necessary physical examinations	0.818				
Health care providers make a good diagnosis	0.740				
Patient-provider communication					
Health care providers actively ask questions to understand your situation		0.846			
Health care providers listened to you carefully what you had to say		0.845			
Health care providers treated you with courtesy and respect		0.542			
Information provision					
Health care providers clearly explained the use and side effects of medicines			0.787		
Health care providers clearly explained the results of tests and examination			0.760		
Health care providers explain things in a way you could understand			0.672		
Health care providers spent sufficient time examining patients			0.510		
Access to care					
Patients do not wait long in the health center to receive treatment				0.799	
All prescribed medicines are available on the spot				0.624	
Health center assistants are friendly and helpful to patients				0.559	
The health center serves all patients fairly				0.463	
Trust in care providers					
Treatment is effective for recovery and cure					0.754
Health care providers prescribe appropriate medicines for patients					0.672
You have confidence in the competence of health care providers					0.662

BMJ Open: first published as 10.1136/bmjopen-2022-063098 on 17 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Supplementary file 2: Mean score of each measurement item of the perceived quality of care (20-100 scale) among households ever enrolled in a CBHI in two districts of northeast Ethiopia, 2021

Factors and items			95	5% CI
	Mean	SD	LCI	UCI
Technical care	68.34	15.24	67.43	69.25
The necessary laboratory tests were performed	69.20	18.36	68.10	70.29
Health care providers perform the necessary physical examinations	68.23	18.89	67.11	69.36
Health care providers make good diagnoses	67.59	17.69	66.53	68.64
Patient-provider communication	77.84	10.12	77.23	78.44
Health care providers actively ask questions to understand your situation	80.39	11.68	79.69	81.09
Health care providers listened to you carefully what you had to say	79.61	10.93	78.96	80.26
Health care providers treated you with courtesy and respect	73.51	16.72	72.51	74.50
Information provision	64.67	13.87	63.84	65.49
Health care providers clearly explained the use and side effects of medicines	62.90	19.87	61.72	64.09
Health care providers clearly explained the results of tests and examination	62.50	19.48	61.34	63.66
Health care providers explain things in a way you could understand	69.36	17.42	68.32	70.40
Health care providers spent sufficient time examining patients	63.90	20.18	62.70	65.11
Access to care	69.47	11.77	68.77	70.17
Patients do not wait long in the health center to receive treatment	62.96	20.17	61.76	64.16
All prescribed medicines are available on the spot	63.50	20.37	62.28	64.71
Health center assistants are friendly and helpful to patients	73.38	16.07	72.42	74.34
The health center serves all patients fairly	78.06	15.90	77.11	79.01
Trust in care providers	73.20	11.02	72.55	73.86
Treatment is effective for recovery and cure	72.47	14.78	71.59	73.35
Health care providers prescribe appropriate medicines for patients	75.47	12.90	74.70	76.24
You have confidence in the competence of health care providers	71.67	14.36	70.82	72.53
Overall perceived quality of care (PQoC)	70.28	8.39	69.77	70.78

Page 41 of 41

 BMJ Open

Section/Topic	ltem #	Recommendation 09 17	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction		2022	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods		adec	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6, 7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11, 12
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7, 8
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9, 10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9, 10
		(b) Describe any methods used to examine subgroups and interactions 건	11
		(b) Describe any methods used to examine subgroups and interactions Pool (c) Explain how missing data were addressed Pool	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	10
		(e) Describe any sensitivity analyses	NA

bmjopen-2022-

 bmjopen-20

copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine for eligibility,	13
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	13, 15
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	15
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence	16, 17
		interval). Make clear which confounders were adjusted for and why they were included 🛛 💆	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time eriod	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	20
Discussion		ttp://	
Key results	18	Summarise key results with reference to study objectives	20, 21-26
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	26
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-26
Generalisability	21	Discuss the generalisability (external validity) of the study results	26
Other information		pril 1	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	27
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in case-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinebrg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strong.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml