

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Hospital variation in intrapartum-related perinatal mortality among women giving birth by caesarean section: secondary analysis of a cluster randomised trial in 21 hospitals in Burkina Faso

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055241
Article Type:	Original research
Date Submitted by the Author:	06-Jul-2021
Complete List of Authors:	Cavallaro, Francesca; University College London Institute of Child Health Kabore, CP; Institut de Recherche en Sciences et de la Santé; Institut de Recherche pour le Développement Pearson, Rachel; University College London, UCL Institute of Child Health Blackburn, Ruth; University College London, UCL Institute of Health Informatics Sobhy, Soha ; Queen Mary University of London, Centre for Primary Care and Public Health Betran, Ana Pilar; World Health Organization, UNDP/UNFPA/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction, Department of Sexual and Reproductive Health and Research Ronsmans, Carine ; London School of Hygiene & Tropical Medicine, Department of Infectious Disease Epidemiology Dumont, Alexandre; Institut de Recherche pour le Développement, CEPED
Keywords:	OBSTETRICS, PERINATOLOGY, NEONATOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Hospital variation in intrapartum-related perinatal mortality among women giving birth by caesarean section: secondary analysis of a cluster randomised trial in 21 hospitals in Burkina Faso Francesca L Cavallaro,1* Charles Kaboré,2,3 Rachel Pearson,1 Ruth Blackburn,4 Soha Sobhy,5 Ana Pilar Betrán,⁶ Carine Ronsmans,⁷ Alexandre Dumont³ ¹UCL Institute of Child Health, University College London, London, UK ²Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso ³Centre Population et Développement, Institut de Recherche pour le Développement, Paris, France ⁴Institute of Health Informatics, University College London, London, UK ⁵Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK ⁶UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction, Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland ⁷Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK Correspondence: Dr Francesca Cavallaro, 222 Euston Road, London NW1 2DA, UK, f.cavallaro@ucl.ac.uk. Word count: 4,000

Abstract

Objectives. To examine hospital variation in crude and risk-adjusted rates of intrapartum-related perinatal mortality among caesarean births

Design. Secondary analysis of data from the DECIDE cluster randomised trial post-intervention phase

Setting. 21 district and regional hospitals in Burkina Faso

Participants. All 5,134 women giving birth by caesarean section in a 6-month period in 2016

Primary outcome measure. Intrapartum-related perinatal mortality (fresh stillbirth or neonatal death within 24 hours of birth)

Results. Nine percent of 5,134 women giving birth by caesarean experienced an intrapartum-related perinatal death. Crude mortality rates varied substantially from 2-19% between hospitals. Variation was markedly reduced after adjusting for case mix differences, however higher and more variable adjusted mortality persisted among hospitals performing fewer caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation.

Conclusions. There is a high burden of intrapartum-related perinatal deaths among caesarean births in Burkina Faso, and sub-Saharan Africa more widely. Variation in adjusted mortality rates indicates likely differences in quality of caesarean care between hospitals, particularly lower-volume hospitals. Improving access to and quality of emergency obstetric and newborn care is an important priority for improving survival of babies at birth.

Keywords: obstetrics, perinatology, neonatology

Strengths and limitations of this study

- This is the first study to examine hospital variation in intrapartum-related perinatal mortality among women giving birth by caesarean section in a sub-Saharan African country.
- Our study benefited from inclusion of all caesarean sections performed in a six-month period in 21 regional and district hospitals in Burkina Faso.
- We used high-quality clinical data from the DECIDE cluster-randomised trial, including standardised definitions for diagnoses and indications for caesarean, although some misclassification of obstetric complication severity was likely.
- More than 20% of data were missing for three risk factors (decision-to-incision interval, timing of antibiotics, and referral distance); we used multiple imputation to avoid a loss of power.
- Our hospital sample size and limited available information prevented us from examining hospital characteristics as risk factors for perinatal mortality.

Introduction

 While facility births have increased over the past few decades in sub-Saharan Africa,¹ improvements in maternal and perinatal health have not been as extensive as hoped, raising questions about the quality of care in health facilities.¹⁻³ In particular, increases in population-based caesarean section rates have been small despite substantial increases in facility births, indicating limited improvements in access to emergency obstetric care in the region.^{4 5} Globally, the slowest rise was observed in West and Central Africa, from 3.0% caesarean births in 2000 to 4.1% in 2015.⁵ Due to a rise in total number of births, the absolute number of caesareans performed has nonetheless increased more rapidly – 3- to 5-fold in Senegal, Tanzania and Uganda over the past few decades.^{4 6 7}

Increases in caesarean births are concerning in the context of often under-resourced health systems with limited capacity to provide high-quality caesarean care. Caesarean sections account for one third of all surgeries in Africa, with higher post-operative morbidity and mortality than in other regions.⁸ A recent meta-analysis found over 1% mortality among women who deliver by caesarean in sub-Saharan Africa, 100 times higher than in the UK.⁹ Perinatal mortality is also very high in sub-Saharan Africa, with one in 10 mothers delivering by caesarean experiencing a stillbirth or early neonatal death.⁹ Severe complications before reaching health facilities and low capacity within facilities to provide high-quality care contribute to these adverse outcomes. Indeed, low capacity to provide caesarean section care has been reported in Burkina Faso^{10 11} and elsewhere in the region.⁶

In the context of rising caesareans, there is a need to better understand drivers of high perinatal mortality among women giving birth by caesarean in sub-Saharan Africa. Limited evidence is available on inter-hospital variation in outcomes among caesarean births. Although there is mixed evidence regarding whether hospital type (district, regional, or national) is independently associated with perinatal mortality,^{9 14} there are stark differences in material and human resources across hospital types in sub-Saharan Africa, restricting capacity to provide high-quality care in lower-level and rural facilities.^{4 6} Examining variation in crude and risk-adjusted rates of events between hospitals is a commonly used approach to determine whether differences between hospitals can be explained by heterogeneity in case mix, with any remaining variation in risk-adjusted rates suggesting differences in quality of patient care.¹⁵⁻¹⁷ In this study, we examined variation in crude and adjusted rates of intrapartum-related perinatal mortality among women giving birth by caesarean in 21 district and regional hospitals in Burkina Faso for a six month period in 2016. We used high-quality data from the DECIDE trial to assess the evidence that differences in intrapartum-related mortality between individual hospitals and hospital types were driven in part by variation in quality of care.

Methods

 BMJ Open

This study is a secondary analysis of the DECIDE cluster-randomised controlled trial, which assessed the effectiveness of a multicomponent intervention including provider training, caesarean audits, and SMS reminders to reduce non-medically indicated caesarean sections. The trial included three phases (six-month pre-intervention, one-year intervention, and six-month post-intervention). It was conducted in all 22 regional and district hospitals in Burkina Faso performing more than 200 caesareans per year in 2012; university hospitals in Ouagadougou and Bobo-Dioulasso were excluded. Detailed trial methods are described elsewhere.¹⁸

Health system context

Similar to other West African countries, the caesarean rate in Burkina Faso is below 5% (3.7% in 2010-15),¹⁹ with large urban-rural, wealth and educational differentials.^{20 21} Although 85% of births take place in health facilities, 70% occur in primary care facilities without surgical capacity.²² Women who develop complications requiring a caesarean are referred to medical centres with surgical capacity (*centres médicaux avec antenne chirurgicale*, referred to as district hospitals hereafter) or regional hospitals. Women with severe complications may be referred onwards to tertiary university hospitals in the capital (Ouagadougou) and second largest city (Bobo-Dioulasso). Most – but not all – district and regional hospitals have at least one obstetrician or generalist doctor trained in emergency obstetric care. Task-shifting of caesarean care has been supported in Burkina Faso through the additional three-year training of nurses and midwives as non-physician providers with surgical skills (*attachés en chirurgie*) and obstetrics skills (*attachés en gynéco-obstétrique*). Most anaesthesia care is provided by nurses with additional training in anaesthesia.

Participants

We included all 5,134 women giving birth by caesarean section in the 21 study hospitals with caesarean capacity in the post-intervention phase (2nd May-2nd November 2016; one study hospital's operating theatre was no longer functional in the post-intervention phase). These 21 hospitals accounted for 45% of all caesarean sections performed nationally in 2016.²³ Women delivering by caesarean were included regardless of gestational age, whether they were referred to the study hospital before the caesarean, or referred to another hospital after birth.

Data source

Patient medical records were used in the DECIDE trial, with prospective data collection in the postintervention phase using data extraction forms and standardised clinical definitions (including for labour dystocia, acute fetal distress, and other indications for caesarean).¹⁸ We used postintervention data to provide the most recent description for a larger sample.

Outcome

Intrapartum-related perinatal mortality includes fresh stillbirths and very early neonatal deaths (within 24 hours of birth),^{24 25} and is recommended by the WHO as an indicator of the quality of emergency obstetric and newborn care.²⁶

Risk factors and conceptual approach

We examined two groups of risk factors for intrapartum-related mortality: individual-level clinical risk factors, and caesarean care components and hospital characteristics.

We conceptualised case mix as the hospital prevalence of clinical risk factors for intrapartum-related mortality (maternal age, parity, education, previous caesarean, multiple pregnancy, number of antenatal visits, birthweight, congenital malformation, referral status and distance, labour phase, diagnosis of acute fetal distress, transverse lie/brow presentation in active labour, other severe obstetric complication or maternal death, and primary indication for caesarean). "Other severe obstetric complications" included severe pre-eclampsia or eclampsia, retro-placental haematoma, uterine (pre-)rupture, and placenta praevia in active labour. We conceptualised components of caesarean care (provider cadre deciding and performing the caesarean, decision-to-incision interval, anaesthesia type, skin/uterine incision type, and antibiotic prophylaxis administration) and hospital characteristics (hospital type and monthly caesarean volume) as potential indicators of quality of patient care.

We used these risk factors to derive two sets of risk-adjusted mortality rates per hospital: adjusting for case mix only, and additionally adjusting for components of care and hospital characteristics, because some of these variables might capture remaining unmeasured differences in case mix (for example, women receiving general anaesthesia are more likely to have complications requiring urgent surgery), and to identify whether any care components (e.g. decision-to-incision interval) were strongly associated with mortality. We included care components prior to delivery as risk factors even when they were not hypothesised to causally affect perinatal mortality, since they may be proxies for quality of care.

Multiple imputation of missing data among risk factors

Data were complete for the outcome and nine risk factors (including multiple gestation, indication for caesarean, and referral status) (Supplementary Table 1). 11 risk factors had <5% missing values; six risk factors had >5% missing data, including decision-incision interval (24%) and timing of antibiotic administration (23%). Overall, 68% of women had at least one risk factor missing, and 4% had at least four risk factors missing (Supplementary Table 2). Missing information on previous caesarean was assumed to indicate no previous caesarean (n=40), and missing deciding provider cadre was imputed as the hospital mode for seven women (>90% of caesareans were decided by one cadre in all relevant hospitals).

BMJ Open

Multiple imputation by chained equations was used for other variables to avoid a loss in efficiency, because missing values were likely to be missing at random given known risk factors (including referral status and severe obstetric complication).²⁷ Five imputed datasets were created using the mi package in Stata v14.2, including all risk factors and intrapartum-related mortality in the imputation model. The same model was used for all hospitals, with hospital type included as a risk factor. Missing values for continuous risk factors (age, parity, number of antenatal care visits, referral distance, birthweight, and decision-to-incision interval) were imputed from linear regression models, missing values for binary risk factors (acute fetal distress, antibiotic prophylaxis, incision type, anaesthesia type, congenital malformation, and neonatal resuscitation) were imputed from logistic regression models, and categorical risk factors (education, provider cadre performing the caesarean, and timing of antibiotic administration) were imputed from multinomial regression models. Gestational age at birth had >50% missing data; it was not considered as a risk factor in the analysis model, since it is highly correlated with low birthweight, which was more complete and likely to be more accurate in a setting without routine ultrasound in the first trimester. However, we included gestational age at birth in the imputation model to improve the prediction of birthweight. Distributions of imputed values were compared with observed values for variables with >5% missing data.

Hospital variation in intrapartum-related mortality rates

First, we calculated crude hospital intrapartum-related mortality rates with 95% confidence intervals, and described perinatal outcomes according to hospital type. Differences in hospital case mix were assessed by describing the prevalence of clinical risk factor for intrapartum-related mortality among women giving birth by caesarean, stratified by hospital and hospital type. We similarly described differences in components of care received. Chi-square tests accounted for clustering of women by hospital using the svyset package in Stata.

Next, we built two multivariable models for intrapartum-related death among caesarean births using multi-level logistic regression models of women, nested in hospitals to account for clustering. The first model (model 1) adjusted for case mix only, and included all individual-level clinical risk factors for intrapartum-related mortality with Wald test p-value≤0.25 in bivariate associations, using manual backward selection to retain only variables with p-values<0.1. The second model (model 2) built upon model 1 by additionally including all care components and hospital characteristics with bivariate Wald test p-value≤0.25, and similarly using backward selection to retain only p-values<0.1. Multicollinearity was examined by reviewing Spearman correlations and model standard errors. In building model 2, provider cadre deciding the caesarean met the criteria for inclusion, however its inclusion reduced the hospital-level estimate almost to zero, indicating that this variable acted as a proxy for broader differences between hospitals. Further inspection showed that deciding providing cadre was highly clustered within hospitals (one category accounted for >90% of women in 13 of 21 hospitals). We therefore removed it from risk factors considered for model 2.

We calculated the median odds ratio (OR) for model 1 and 2 as a measure of inter-hospital variation in mortality that is not explained by the model covariates, expressed on the OR scale (formula in Supplementary Figure 1).²⁸ For a multi-level model, the median OR is defined as the median of the ORs that could be calculated by comparing two patients with identical individual-level characteristics from two, randomly chosen, different hospitals.^{29 30}

Risk-adjusted mortality enables comparisons in hospital outcomes taking into account differences in case mix.¹⁵⁻¹⁷ Risk-adjusted intrapartum-related mortality rates were calculated for each hospital by multiplying the intrapartum-related mortality rate across the study sample by the ratio of the number of observed deaths to predicted deaths based on model 1 and 2 in each hospital. Bootstrapping with 1,000 iterations was used to calculate 95% confidence intervals around both sets of risk-adjusted hospital mortality rates and found to produce stable estimates. We used the Boot MI percentile method to produce confidence intervals with nominal coverage.³¹

The DECIDE trial found a reduction in avoidable caesareans,³² suggesting changes in caesarean decision-making which may affect intrapartum-related mortality. As a secondary analysis, we added trial group as a risk factor to model 2 to determine whether it was associated with mortality after adjusting for other covariates.

Ethics

The DECIDE trial received ethical approval from the National Ethics Committee in Burkina Faso (#2014-02-016) and the Ethics Committee of the University of Montreal Hospital Research Centre (CRCHUM) in Canada (#13.356).³² As a secondary analysis of de-identified data, this study did not require ethical approval from the UCL Ethics Committee.

Results

Our analysis included 5,134 women giving birth by caesarean in the 21 study hospitals. Women with multiple pregnancies, congenital malformation, transverse lie/brow presentation in active labour, whose caesarean was decided by a non-physician provider with surgical skills, and delivering in a rural district hospital were more likely to have missing data for four or more risk factors (Supplementary Table 2).

Hospital variation in intrapartum-related perinatal mortality among caesarean births

Intrapartum-related perinatal mortality was high among caesarean births at 8.8% [95% CI: 8.1%-9.6%], including 6.5% fresh stillbirths and 2.3% deaths within 24 hours of birth (Table 1). Crude mortality rates varied substantially across hospitals, from 2.1% to 18.9%; intrapartum-related mortality tended to be higher in hospitals performing fewer caesarean sections (List of figures

Figure 1A). Intrapartum-related mortality was higher in regional and rural district hospitals than in urban district hospitals (12% vs 5%, p=0.001). Other perinatal outcomes showed similar patterns (Supplementary Table 3).

Table 1. Perinatal mortality among women giving birth by caesarean according to hospital type – Burkina Faso, 2016

		Fresh stillbirths (%)	Neonatal death within 24 hrs of births (live babies, %)	Intrapartum- related perinatal death (%) ^a	Intrapartum- related perinatal death – range across hospitals
Total	5,134	6.5	2.3	8.8	2.1-18.9
Hospital type					
Regional hospital	2,693	7.8	3.0	12.1	6.3-18.9
Urban district hospital	1,659	3.6	1.0	5.1	2.1-7.1
Rural district hospital	782	8.1	2.9	11.9	5.4-18.5
P-value		<0.001	0.016	0.001	-

^aFresh stillbirth or neonatal death within 24 hours of birth

Note: confidence intervals and additional outcomes are reported in Supplementary Table 3

Hospital variation in clinical risk factors among women giving birth by caesarean section

Case mix varied substantially across hospitals, with a range of 5%-37% for parity of four or more, 2%-29% for birthweight <2500g, and 1%-11% for transverse lie or brow presentation in active labour (Table 2). Regional hospitals and rural district hospitals had higher-risk populations of women giving birth by caesarean than urban district hospitals, with higher proportions of intrapartum caesareans, women with high parity, and referred to the study hospital immediately prior to the caesarean (p<0.01 for all).

Table 2. Characteristics of women giving birth by caesarean section, across hospitals and hospital types (N=5,134)

	Range across hospitals	Regional hospitalª	Urban district hospital	Rural district hospital	Tota
N facilities		9	5	7	21
Caesarean volume per month (median, range)	9-103	37	45	17	
N women giving birth by caesarean	54-619	2,693	1,659	782	5,13
Age (%)					
13-19	6-31	20.2	10.1	22	17.2
20-29	37-53	44.8	49.8	43.9	46.3
30-39	22-38	30.1	35.2	27.9	31.4
40-49	0-6	3.2	3.3	2.7	3.1
Missing	0-8	1.7	1.6	3.6	2.0
Educational level (%)					
None	33-88	73.6	41.8	74.0	63.4
Primary	1-38	7.7	24.1	15.0	14.1
Secondary or higher	3-45	17.9	31.2	10.2	21.0
Missing	0-9	0.7	3.0	0.8	1.4
Parity (%)					
0	30-43	34.4	35.2	35.0	34.7
1-3	31-64	42.9	53.8	39.5	45.9
4 or more	5-37	22.5	10.9	25.1	19.
Missing	0-2	0.2	0.1	0.4	0.2
Number of previous caesarean sections (%)		0.2	0.1	0.4	0.2
	60-89	76.3	66.9	78.3	73.5
1	6-31	17.9	22.4	14.8	18.9
2-4	2-13	4.9	9.8	5.8	6.6
Missing	0-4	0.9	1.0	1.2	1.0
Number of antenatal visits (%)	0-4	0.0	1.0	1.2	1.0
	0-6	0.9	0.4	1.3	0.8
1-3	19-74	36.5	36.4	40.0	37.0
4 or more	21-71	53.5	58.1	52.0	
Missing	1-24	9.1	5.1	6.6	7.4
Multiple pregnancy (%)	1-24	J.1	5.1	0.0	1.4
Yes	2-10	5.8	6.1	5.8	5.9
Congenital malformation (%)	2-10	0.0	0.1	5.0	5.8
No	30-100	91.3	92.7	89.1	91.4
Yes	0-4	1.2	0.4	0.6	0.9
Missing	0-4	7.5	6.9	10.2	7.7
Birthweight (%)		1.5	0.3	10.2	1.1
Birthweight>=2,500g	65-95	77.8	80.6	81.8	79.3
Birthweight<2,500g	2-29	17.0	13.2	11.9	
	1-16	5.1	6.2	6.3	5.6
Missing Referral for antepartum complications or during	1-10	5.1	0.2	0.3	5.0
labour (%)					
Yes	26-89	74.7	50.7	73.7	66.8
Distance from referring facility (%)	20-00	17.1	00.1	10.1	00.0
<pre><20km</pre>	0-85	18.7	47.4	23.4	26.6
20-450km	0-86	48.7	11.8	69.6	43.

	Distance unknown	0-99	32.6	40.8	6.9	30.3
2 3	Caesarean during labour (%)					
4	No	2-49	15	34.1	8.1	20.1
5	Yes	51-98	85	65.9	91.9	79.9
6	Recorded indication for caesarean (%)					
7	Fetal distress	7-36	24.5	17.0	23.3	21.9
8	Prolonged labour	23-67	33.1	28.6	42.1	33.0
9	Previous caesarean	7-33	12.1	24.3	12.8	16.2
10	Pre-eclampsia	0-8	4.2	4.1	1.7	3.8
11	Other	15-37	26.1	26	20.2	25.1
12	Diagnosis of acute fetal distress (%)	12-43	32.3	22.8	28.5	28.6
13 14	Transverse lie/brow presentation in active labour (%)	1-11	4.8	2.6	5.0	4.1
15 16	Other severe obstetric complication or maternal death (%)	6-38	22.6	14.3	19.6	19.5
17	Severe pre-eclampsia/eclampsia	2-13	6.4	6.1	3.2	5.8
18	Retro-placental haematoma	0- 5	2.8	1.5	1.4	2.2
19 20	Placenta praevia in active labour	0- 5	2	0.7	0.9	1.4
20	Uterine (pre)-rupture	2-24	12.3	6.4	15.0	10.8
21	Maternal mortality (per 100,000)	0-637	297	241	255	0.3

^aIn two largest cities (Ouagadougou and Bobo-Dioulasso)

Hospital variation in caesarean care received

Caesarean care differed between hospitals (Table 3). Differences in provider cadre were notable, with obstetricians deciding and performing 100% of caesareans in some hospitals, and non-physician providers deciding and performing over 90% of caesareans in others. Rural district hospitals relied primarily on generalist doctors and non-physician providers, while urban district hospitals relied primarily on obstetricians.

Hospitals reported up to 54% of caesareans performed more than one hour after decision. Almost 90% of all caesareans were performed under spinal anaesthesia, however in some hospitals 70% of caesareans were performed under general anaesthesia (with higher percentages of general anaesthesia in regional hospitals). Incision technique also showed important variation between hospitals (less so between hospital type). Antibiotic use was almost universal, recorded in 96% of women, but administered after skin incision in at least 41% of caesareans (62% estimated with imputed data, and up to 94% in individual hospitals).

	Range across hospitals	Regional hospital	Urban district hospital	Rural district hospital	Total
N women	54-619	2,693	1,659	782	5,134
Cadre of provider deciding to perform caesarean					
Obstetrician	0-100	69.6	75.5	0.4	60.9
Generalist doctor with emergency surgical training	0-96	5.0	23.5	52.7	18.2
Generalist doctor	0-68	9.0	0.4	26.0	8.7

Table 3. Caesarean care received by women, across hospitals and hospital types (N=5,134)

Midwife	0-100	16.1	0.4	7.5	9.7
Non-physician provider with surgical skills ^a	0-94	0.3	0.1	13.0	2.3
Missing	0-2	0.1	-	0.4	0.1
Cadre of provider who performed caesarean					
Obstetrician	0-100	28.3	68.9	0.1	37.1
Generalist doctor	0-88	13.0	11.8	44.6	17.4
Non-physician provider with obstetrics skills ^b	0-65	8.0	0.2	0.6	4.4
Non-physician provider with surgical skills ^a	0-94	48.3	18.9	54.2	39.
Missing	0-8	2.4	0.2	0.4	1.4
Woman informed of decision to perform caesarean					
No	0-7	1.9	1.7	1.2	1.7
Yes	4-100	96.1	89.9	81.3	91.9
Missing	0-96	1.9	8.4	17.5	6.4
Decision-to-incision interval					
<60 minutes	3-84	64.1	61.2	31.6	60.
≥60 minutes	1-54	18.7	11.4	17.0	16.
Missing	3-97	13.2	27.4	51.4	23.
Type of anaesthesia					
Spinal	30-100	83.8	91	94.5	87.
General/other	0-70	16.0	7.7	4.2	11.
Missing	0-4	0.3	1.3	1.3	0.8
Type of skin incision					
Joel-Cohen	9-100	79.6	83.1	77.5	80.
Pfannenstiel	0-84	16.8	12.1	9.7	14.
Midline/other	0-11	2.8	1.1	0.9	1.9
Missing	0-39	0.8	3.7	11.9	3.4
Type of uterine incision					
Lower segment	45-100	94.7	98.3	94.8	95.
Other	0-55	5.2	0.6	1.3	3.1
Missing	0-12	0.1	1.1	4.0	1.0
Antibiotic administration					
Antibiotics before incision	0-87	32.5	26.6	15.0	27.
Antibiotics after incision	0-94	49.1	39.0	45.7	45.
Antibiotics, timing unclear	2-95	12.6	32.9	35.2	22.
No recorded antibiotics	0-10	2.0	0.5	0.4	1.3
Missing	0-22	3.9	0.9	3.8	2.9

^aNurses or midwives with additional 3-year training in surgery; ^bMidwives with additional 3-year training in

obstetrics and gynaecology, including performing caesareans

Risk factors for intrapartum-related mortality and risk-adjusted hospital mortality rates

The median OR for crude intrapartum-related mortality was 1.9 [95% CI: 1.5-2.5], indicating that if a woman moved to another, randomly selected, hospital with higher mortality, the median increase in her odds of intrapartum-related mortality would be almost two-fold.

In model 1, congenital malformation, diagnosis of acute fetal distress, transverse lie or brow presentation in active labour, and other severe obstetric complication or maternal death were strongly associated with intrapartum-related mortality (Supplementary Table 4). Other risk factors retained in the model were parity, education, number of antenatal visits, primary caesarean indication, referral immediately prior to caesarean, and birthweight. The median OR was 1.3 [1.2-1.7], indicating that a

BMJ Open

woman moving to a different hospital with higher mortality would experience a 1.3-fold increase in odds of intrapartum-related mortality on average, a modest effect compared with individual-level clinical risk factors. Inter-hospital variation in mortality rates was reduced, but not eliminated, after adjusting for individual-level risk factors, with larger variation among hospitals performing fewer caesareans per month (below 50 caesareans per month; List of figures

Figure 1B).

In model 2, all clinical risk factors except for number of antenatal visits were retained in the model with similar effect sizes, and two care component risk factors were identified – general anaesthesia, and not receiving antibiotic prophylaxis (Figure 2, Supplementary Table 4). Decision-to-incision interval was not associated with intrapartum-related mortality. There was no meaningful change in inter-hospital variation after adding care components, compared with model 1 (median OR=1.4 [1.2-1.8], List of figures

Figure 1C).

There was no evidence that adding trial arm improved the fit of model 2 (p=0.78).

Discussion

Our study fills an important gap in the evidence by examining hospital variation in intrapartum-related perinatal mortality among caesarean births in sub-Saharan Africa, a region with a high burden of perinatal deaths. Almost one in ten women giving birth by caesarean in regional and district hospitals in Burkina Faso experienced an intrapartum-related perinatal death. The substantial hospital variation in crude mortality rates (range: 2-19%) was markedly reduced after adjusting for individual-level differences in case mix between hospitals. However, important variation remained, with lower-volume hospitals tending to have higher and more variable adjusted mortality than hospitals performing more caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation. Remaining variation in adjusted rates indicate likely differences in quality of caesarean care between hospitals, particularly those with low or moderate monthly caesarean volumes.

R.

Indeed, while some of the remaining differences in risk-adjusted mortality rates between hospitals may be due to unmeasured confounding by case mix (since the accuracy of obstetric complication measurement using hospital records was likely limited), this is unlikely to explain all the variation in adjusted mortality between lower-volume hospitals. Caesarean volume and hospital type were not independently associated with intrapartum-related mortality in our study, although the number of

BMJ Open

hospitals in our analysis (n=21) was too small to detect such effects. Hospitals performing more caesareans likely differ from lower-volume hospitals in multiple ways affecting quality of perinatal care, including presence of obstetricians or paediatricians, resources available for care of small and sick newborns, as well as differences in access to care for the population they serve.

 We identified two care components associated with intrapartum-related mortality: general anaesthesia and not receiving antibiotic prophylaxis, both associated with a doubling of mortality (compared with spinal anaesthesia and receiving antibiotics before incision). These odds ratios may reflect unmeasured confounding by complication severity in the association with intrapartum-related mortality, or differences in quality of care: although general anaesthesia is independently associated with perinatal mortality,³³ women undergoing general anaesthesia are also likely to be in poorer clinical condition at the time of the caesarean, with independently higher risk of perinatal death. Antibiotics may indicate very urgent caesareans without sufficient time to administer antibiotics, or poor organisation of care, with up to 10% of women not receiving antibiotics in some hospitals. It is not possible to disentangle the relative contributions of unmeasured confounding and quality of care for these two care components with our data, and therefore spinal anaesthesia and antibiotic prophylaxis should not be recommended for the reduction of perinatal mortality on the basis of our study.

High rates of fresh stillbirths among caesarean births – 6.5% in our study, 6% total stillbirths in a previous systematic review⁹ – indicate that many caesareans are performed too late in Burkina Faso. Limited access to caesarean section contributes to these poor outcomes: a higher proportion of women in sub-Saharan Africa arrive at the surgical hospital with severe complications and more caesareans are performed in the second stage of labour, with higher associated complications.⁹ Some babies may die before arrival at the hospital, but nonetheless are delivered by caesarean; our data indicate poor identification of stillbirths using the Pinard stethoscope in this setting (one third of babies with no audible fetal heart rate were born alive, while one quarter of macerated stillbirths had a recorded audible fetal heart rate). Other babies die *in utero* after arrival at the hospital, due to delayed diagnosis of fetal distress or long waiting times between decision and caesarean – we estimated a median decision-to-incision interval of 81 minutes for caesareans for fetal distress, based on imputed data.

To our knowledge, this is the first study to examine hospital variation in crude and risk-adjusted perinatal mortality in sub-Saharan Africa. A major strength of our study was the use of a novel dataset with high-quality, detailed clinical information on all women delivering by caesarean section in a 6-month period in all Burkinabe regional and district hospitals with >200 caesareans per year. Our 21 study hospitals accounted for 45% of all caesareans performed in Burkina Faso in 2016 (university hospitals and lower-volume district hospitals accounted for 26% each, with only 3% in the private sector).²³ However, some data limitations are worth noting. Missing data were common for several risk factors. We used multiple imputation to preserve statistical power, and the distribution of

BMJ Open

imputed variables was similar to non-missing data. Moreover, like other studies using hospital records, some misclassification in obstetric complication severity was likely, leading to remaining unmeasured confounding in case mix between hospitals. Indeed, limited granularity was available for severity (within pre-eclampsia, for example), and previous studies indicate obstetric complications may be incompletely recorded or overestimated in caesarean indications.³⁴⁻³⁶ As a result, reported odds ratios for risk factors should be interpreted as measures of association within our study population, rather than causal effect estimates. The number of hospitals in our sample was too small to enable us to examine hospital characteristics as risk factors, and we were unable to examine hospital variation in maternal outcomes since post-caesarean morbidity was not collected. Nonetheless, these prospectively collected trial data likely represent the best available clinical data for caesarean sections in sub-Saharan Africa, and it would have been difficult to further reduce complication.

Several recommendations for improving the quality of caesarean care stem from our findings. Twothirds of women were referred immediately prior to the caesarean, and those referred from further away had higher rates of perinatal mortality: there is a need to strengthen emergency referral systems by minimising delays in women reaching surgical facilities (through shared ambulances and maternity waiting homes, for example), and reducing the delay in receiving treatment after arrival, including through pre-referral notification and patient referral notes.³⁷ Improved antenatal care would help identify women needing an elective caesarean before labour. Monitoring of labour should be improved for all women, including those with risk factors for intrapartum-related mortality, to enable early intervention and prevent perinatal deaths among vaginal and caesarean births. Provider training in fetal monitoring, supportive supervision, and making low-cost Doppler ultrasounds widely available in hospitals would help improve identification of fetal distress and stillbirths.³⁸ Many stillbirths can be delivered vaginally at lower risk of maternal complications;⁹ however, suspected stillbirths should be confirmed with ultrasound scans, where available, to avoid misdiagnosis. Although the decision-toincision interval was not associated with intrapartum-related mortality in our study (likely because of successful prioritisation of higher-risk women and delayed decision to perform some caesareans), the estimated median 81 minute interval for caesareans for fetal distress should be reduced closer to the 30 minutes recommended in the UK and USA,^{39 40} wherever possible. Lastly, improving care for small and sick newborns – including newborn resuscitation and care throughout the continuum through the Helping babies breathe⁴¹ programme and Every Newborn Action Plan⁴² – is essential to increase survival among babies born alive.

Our data also suggest sub-optimal surgical technique which may affect maternal outcomes: although the Joel-Cohen incision has advantages over the Pfannenstiel technique,⁴³ the latter was used in at least 14% of caesareans. An estimated 62% of women received antibiotics after incision based on imputed data, contrary to WHO recommendations.⁴⁴ Universal administration of antibiotic prophylaxis before incision could help reduce the incidence of surgical site infection and sepsis, which accounts

for 10% of maternal deaths in sub-Saharan Africa.⁴⁵ The Lancet Global Surgery commission recommendations for improving access to and the safety of essential surgical services in low-resource settings should be followed,⁴⁶ first and foremost the creation of a national surgical plan including provisions for healthcare delivery, human resources, financing, and information management.

Conclusions

Women giving birth by caesarean section in sub-Saharan Africa face a high risk of perinatal death. Our study found variation in intrapartum-related perinatal mortality between hospitals remained after adjustment for case mix, indicating that differences in quality of care contribute to variation in perinatal mortality in Burkina Faso. Improving access to caesareans and the quality of caesarean care in the region is a considerable challenge for Ministries of Health and reproductive health partners; improving training and resources for fetal distress monitoring, reducing decision-to-incision intervals, and improving resuscitation and care of newborns seem important priorities to enable more babies to survive at birth.

Footnotes

Author contributions: FC conceptualised the study, with help from CR. CK and AD designed the DECIDE trial and oversaw data collection. FC designed the analyses and analysed the data, with support from RP, RB and AD. All authors contributed to the interpretation of results and writing of the final manuscript.

Acknowledgments: We are grateful to Angela Wood at the University of Cambridge for her help with designing the imputation model.

Funding: The DECIDE trial was funded by the French Muskoka Fund (UNICEF) and the Canadian Institutes of Health Research. The research presented in this article received no specific grant from any agency in the public, commercial or not-for-profit sectors.

Competing interests: none declared.

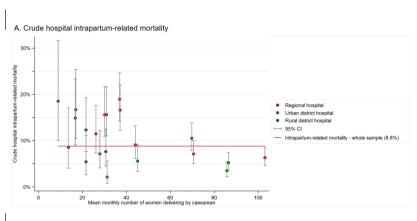
Data sharing statement: No data are available. Reasonable requests may be directed to Dr Charles Kaboré (<u>kaborewendyam@yahoo.fr</u>).

List of figures

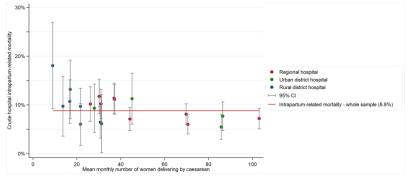
Figure 1. Crude and rsaisk-adjusted hospital intrapartum-related mortality rates among women giving birth by caesarean section in 21 hospitals, according to mean monthly number of caesareans – Burkina Faso, 2016

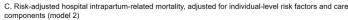
Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016

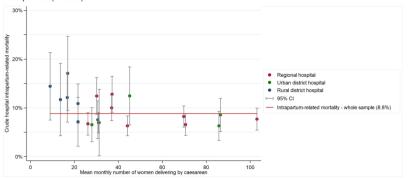
to beer teries only

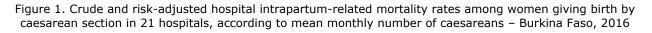

References

- 1. Montagu D, Sudhinaraset M, Diamond-Smith N, et al. Where women go to deliver: understanding the changing landscape of childbirth in Africa and Asia. *Health Policy and Planning* 2017;32(8):1146-52. doi: 10.1093/heapol/czx060
- Gabrysch S, Nesbitt RC, Schoeps A, et al. Does facility birth reduce maternal and perinatal mortality in Brong Ahafo, Ghana? A secondary analysis using data on 119 244 pregnancies from two clusterrandomised controlled trials. *The Lancet Global Health* 2019;7(8):e1074-e87. doi: <u>https://doi.org/10.1016/S2214-109X(19)30165-2</u>
- 3. Kunkel M, Marete I, Cheng ER, et al. Place of delivery and perinatal mortality in Kenya. *Seminars in Perinatology* 2019;43(5):252-59. doi: <u>https://doi.org/10.1053/j.semperi.2019.03.014</u>
- Cavallaro FL, Benova L, Dioukhane EH, et al. What the percentage of births in facilities does not measure: readiness for emergency obstetric care and referral in Senegal. *BMJ Global Health* 2020;5(3):e001915. doi: 10.1136/bmjgh-2019-001915
- 5. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean sections. *The Lancet* 2018;392(10155):1341-48. doi: 10.1016/S0140-6736(18)31928-7
- 6. Cavallaro FL, Pembe AB, Campbell O, et al. Caesarean section provision and readiness in Tanzania: analysis of cross-sectional surveys of women and health facilities over time. *BMJ Open* 2018;8(9):e024216. doi: 10.1136/bmjopen-2018-024216
- Benova L, Dennis ML, Lange IL, et al. Two decades of antenatal and delivery care in Uganda: a crosssectional study using Demographic and Health Surveys. *BMC Health Services Research* 2018;18(1):758. doi: 10.1186/s12913-018-3546-3
- Biccard BM, Madiba TE, Kluyts HL, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. *Lancet* 2018 doi: 10.1016/s0140-6736(18)30001-1
- 9. Sobhy S, Arroyo-Manzano D, Murugesu N, et al. Maternal and perinatal mortality and complications associated with caesarean section in low-income and middle-income countries: a systematic review and meta-analysis. *The Lancet* 2019;393(10184):1973-82. doi: <u>https://doi.org/10.1016/S0140-6736(18)32386-9</u>
- 10. Compaoré GD, Sombié I, Ganaba R, et al. Readiness of district and regional hospitals in Burkina Faso to provide caesarean section and blood transfusion services: a cross-sectional study. *BMC Pregnancy and Childbirth* 2014;14(1):158. doi: 10.1186/1471-2393-14-158
- 11. Richard F, Ouédraogo C, De Brouwere V. Quality cesarean delivery in Ouagadougou, Burkina Faso: A comprehensive approach. *Int J Gynecol Obstet* 2008;103(3):283-90. doi: http://dx.doi.org/10.1016/j.ijgo.2008.08.008
- 12. Nyamtema A, Mwakatundu N, Dominico S, et al. Increasing the availability and quality of caesarean section in Tanzania. *Bjog* 2016;123(10):1676-82. doi: 10.1111/1471-0528.14223
- 13. Kasongo S, Mukuku O, Kinenkinda X, et al. Kakoma JB. Quality of Caesarean Delivery and its Determinants in Lubumbashi, Democratic Republic of Congo. *Ann Obstet Gynecol* 2020;1:1014.
- 14. Bishop D, Dyer RA, Maswime S, et al. Maternal and neonatal outcomes after caesarean delivery in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. *The Lancet Global Health* 2019;7(4):e513-e22. doi: 10.1016/S2214-109X(19)30036-1
- 15. Bragg F, Cromwell DA, Edozien LC, et al. Variation in rates of caesarean section among English NHS trusts after accounting for maternal and clinical risk: cross sectional study. *BMJ* 2010;341:c5065. doi: 10.1136/bmj.c5065
- 16. Schemann K, Patterson JA, Nippita TA, et al. Variation in hospital caesarean section rates for women with at least one previous caesarean section: a population based cohort study. BMC Pregnancy and Childbirth 2015;15(1):179. doi: 10.1186/s12884-015-0609-x
- 17. Bailit JL, Love TE, Dawson NV. Quality of obstetric care and risk-adjusted primary cesarean delivery rates. *Am J Obstet Gynecol* 2006;194(2):402-7. doi: 10.1016/j.ajog.2005.07.045
- Kabore C, Ridde V, Kouanda S, et al. DECIDE: a cluster randomized controlled trial to reduce nonmedically indicated caesareans in Burkina Faso. *BMC Pregnancy Childbirth* 2016;16(1):322. doi: 10.1186/s12884-016-1112-8
- 19. Global Health Observatory. Births by caesarean section Data by country. 2018 [Available: http://apps.who.int/gho/data/view.main.BIRTHSBYCAESAREANv accessed December 2019]
- 20. Institut National de la Statistique et de la Démographie (INSD) and ICF International. Enquête Démographique et de Santé et à Indicateurs Multiples du Burkina Faso 2010. Calverton, Maryland, USA: ISND and ICF International; 2012 [Available: <u>https://dhsprogram.com/pubs/pdf/FR256/FR256.pdf</u> accessed December 2019]
- 21. Boatin AA, Schlotheuber A, Betran AP, et al. Within country inequalities in caesarean section rates: observational study of 72 low and middle income countries. *BMJ* 2018;360:k55. doi: 10.1136/bmj.k55
- 22. INSD. Enquête multisectorielle continue (EMC) 2014 Santé générale et santé de la reproduction. Institut national de la statistique et de la démographie [Burkina Faso]; 2015 [Available:


1		http://www.insd.bf/n/contenu/enquetes recensements/Eng EMC/Sante generale et Sante de la r%
2		e9production.pdf accessed October 2019]
3	23	Ministère de la Santé du Burkina Faso. Annuaire Statistique 2016, 2017.
4		Goldenberg RL, McClure EM, Kamath BD. Intrapartum perinatal mortality. <i>Indian pediatrics</i> 2012;49(3):187-
5	27.	88. doi: 10.1007/s13312-012-0050-4
6	25	MEASURE Evaluation. Intrapartum and very early neonatal death rate. [Available:
7	20.	https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/intrapartum-and-very-early-
8		neonatal-death-rate accessed March 2020]
9	26	WHO, UNFPA, UNICEF, et al. Monitoring emergency obstetric care: a handbook. Geneva, Switzerland:
10	20.	World Health Organisation. 2009 [Available:
11		https://www.who.int/reproductivehealth/publications/monitoring/9789241547734/en/ accessed
12		November 2019]
13	27	Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical
14	21.	research: potential and pitfalls. <i>BMJ</i> 2009;338:b2393. doi: 10.1136/bmj.b2393
15	28	Sanagou M, Wolfe R, Forbes A, et al. Hospital-level associations with 30-day patient mortality after cardiac
15	20.	surgery: a tutorial on the application and interpretation of marginal and multilevel logistic regression.
10		BMC Medical Research Methodology 2012;12(1):28. doi: 10.1186/1471-2288-12-28
	29	Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: integrating random
18	20.	and fixed effects in multilevel logistic regression. <i>Am J Epidemiol</i> 2005;161(1):81-8. doi:
19		10.1093/aje/kwi017
20	30	Larsen K, Petersen JH, Budtz-Jørgensen E, et al. Interpreting parameters in the logistic regression model
21	00.	with random effects. <i>Biometrics</i> 2000;56(3):909-14. doi: 10.1111/j.0006-341x.2000.00909.x
22	31.	Bartlett JW, Hughes RA. Bootstrap inference for multiple imputation under uncongeniality and
23		misspecification. Statistical Methods in Medical Research 2020;29(12):3533-46. doi:
24		10.1177/0962280220932189
25	32.	Kaboré C, Ridde V, Chaillet N, et al. DECIDE: a cluster-randomized controlled trial to reduce unnecessary
26	•=-	caesarean deliveries in Burkina Faso. <i>BMC Medicine</i> 2019;17(1):87. doi: 10.1186/s12916-019-1320-y
27	33.	Fenton PM, Whitty CJM, Reynolds F. Caesarean section in Malawi: prospective study of early maternal and
28		perinatal mortality. <i>BMJ</i> 2003;327(7415):587. doi: 10.1136/bmj.327.7415.587
29	34.	Kabore C, Ridde V, Kouanda S, et al. Determinants of non-medically indicated cesarean deliveries in
30		Burkina Faso. Int J Gynaecol Obstet 2016;135 Suppl 1:S58-s63. doi: 10.1016/j.ijgo.2016.08.019
31	35.	Landry E, Pett C, Fiorentino R, et al. Assessing the quality of record keeping for cesarean deliveries: results
32		from a multicenter retrospective record review in five low-income countries. BMC Pregnancy and
33		Childbirth 2014;14(1):139.
34	36.	Cavallaro FL, Hurt LS, Cresswell JA, et al. Testing the assumptions of an indicator of unmet need for
35		obstetric surgery in Ghana: A cross-sectional study of linked hospital and population-based delivery
36		data. Birth 2019;46(4):638-47. doi: https://doi.org/10.1111/birt.12452
37	37.	Pittalis C, Brugha R, Gajewski J. Surgical referral systems in low- and middle-income countries: A review of
38		the evidence. PLOS ONE 2019;14(9):e0223328. doi: 10.1371/journal.pone.0223328
39	38.	Byaruhanga R, Bassani DG, Jagau A, et al. Use of wind-up fetal Doppler versus Pinard for fetal heart rate
40		intermittent monitoring in labour: a randomised clinical trial. BMJ Open 2015;5(1):e006867. doi:
41		10.1136/bmjopen-2014-006867
42	39.	RCOG. Classification of urgency of caesarean section - a continuum of risk. Royal College of Obstetricians
43		and Gynaecologists, Royal College of Anaesthetists; 2010 [Available:
44		https://www.rcog.org.uk/globalassets/documents/guidelines/goodpractice11classificationofurgency.pdf
45		accessed November 2019]
46	40.	ACOG. Standards for Obstetric Services. Sixth ed. In: The College, ed. Washington, DC, 1988.
40	41.	Versantvoort JMD, Kleinhout MY, Ockhuijsen HDL, et al. Helping Babies Breathe and its effects on
		intrapartum-related stillbirths and neonatal mortality in low-resource settings: a systematic review.
48		Archives of Disease in Childhood 2020;105(2):127-33. doi: 10.1136/archdischild-2018-316319
49	42.	WHO, UNICEF. Every Newborn: an action plan to end preventable deaths. Geneva: World Health
50		Organization; 2014 [Available: https://www.healthynewbornnetwork.org/hnn-
51		<pre>content/uploads/Every_Newborn_Action_Plan-ENGLISH_updated_July2014.pdf accessed May 2021]</pre>
52	43.	Mathai M, Hofmeyr GJ, Mathai NE. Abdominal surgical incisions for caesarean section. Cochrane Database
53		Syst Rev 2013(5):Cd004453. doi: 10.1002/14651858.CD004453.pub3
54	44.	WHO. WHO recommendations for prevention and treatment of maternal peripartum infections. Geneva:
55		World Health Organization; 2015 [Available:
56		https://apps.who.int/iris/bitstream/handle/10665/186171/9789241549363_eng.pdf?sequence=1
57		accessed June 2019]
58	45.	Seale AC, Mwaniki M, Newton CRJC, et al. Maternal and early onset neonatal bacterial sepsis: burden and
59		strategies for prevention in sub-Saharan Africa. <i>The Lancet Infectious Diseases</i> 2009;9(7):428-38. doi:
60		https://doi.org/10.1016/S1473-3099(09)70172-0


46. Meara JG, Leather AJM, Hagander L, et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. *The Lancet* 2015;386(9993):569-624. doi: 10.1016/S0140-6736(15)60160-X


for beer terien only



Note: no hospital characteristics were independently associated with intrapartum-related perinatal mortality

346x505mm (150 x 150 DPI)

BMJ Open

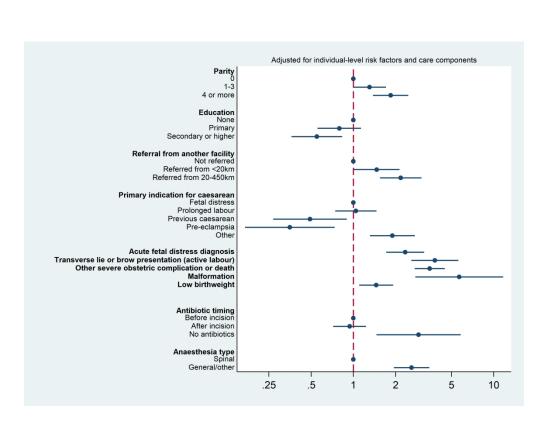


Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016

1058x769mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary materials

Supplementary Figure 1. Odds ratios and 95% confidence intervals for individual-level predictors of intrapartum-related mortality (model 1)

median
$$OR = exp[\sqrt{2 \times \tau^2 \times 0.6745}]$$

where τ^2 is the hospital-level variance.

Supplementary Table 1. Missing data for risk factors for intrapartum-related perinatal mortality among 5,134 women in sample

5,134 women in sample		1	1	
			%	%
	N total	N	missing	missi
	expected	missing	(whole	(sub
Variable			sample)	samp
Risk factors for which all women are ex	pected to h	ave data		
Maternal age	5,134	102	2.0	-
Parity	5,134	10	0.2	-
Education	5,134	74	1.4	-
Previous caesarean	5,134	0	0	-
Number of antenatal visits	5,134	382	7.4	-
Multiple pregnancy	5,134	0	0	-
Malformation	5,134	396	7.7	-
Birthweight	5,134	253	4.9	-
Acute fetal distress diagnosis	5,134	496	9.7	-
Transverse lie or brow presentation	5,134	0	0	-
Other severe obstetric complication or maternal death	5,134	0	0	-
Neonatal resuscitation	5,134	242	4.7	-
Labour phase	5,134	0	0	-
Referral status	5,134	0	0	-
Primary indication for caesarean	5,134	0	0	-
Provider deciding to perform caesarean	5,134	7 🥌	0.1	-
Provider performing caesarean	5,134	71	1.4	-
Decision-incision interval	5,134	1212	23.6	-
Anaesthesia type	5,134	39	0.8	-
Skin incision type	5,134	176	3.4	
Antibiotic prophylaxis administration	5,134	149	2.9	-
Hospital type	5,134	0	0	-
Monthly caesarean volume	5,134	0	0	-
Risk factors for which a subset of wome	en are expe	cted to ha	ve data	
Birthweight for second baby among	204	01	10	20
multiple pregnancies	301	91	1.8	30.
Referral distance among referred women	3,429	1039	20.2	30.
Timing of antibiotic administration among women receiving antibiotic prophylaxis	4,918	1159	22.6	23.
Variable used in the imputation model b	out not in th	e risk fact	or analysis	3
Gestational age at birth	5,134	2808	54.7	-

Supplementary Table 2. Characteristics of women with missing data on predictors among 5,134 women in sample

Predictor	N	Missing data for 0 predictors (row %)	Missing data for 1-3 predictors (row %)	Missing data for 4 or more predictors (row %)
Maternal age			(1011) 0)	(1011)0)
13-19	883	31	65	4
20-29	2,376	33	63	4
30-39	1,612	33	63	4
40-49	161	26	70	4
Missing	102	0	90	10
Parity				
0	1,784	33	64	4
1-3	2,358	32	64	4
4 or more	982	29	67	4
Missing	10	0	70	30
Education	10	0	, 0	
None	3,256	31	65	4
Primary	724	29	66	4
Secondary or higher	1,080	38	60	2
Missing	74	0	88	12
Previous caesarean	/4	0	00	12
No	3,776	31	65	4
Yes	1,308	33	64	3
	50	24	54	22
Missing Number of antenatal care visits	- 30	24	54	22
	42	19	76	5
	1,899	32	65	3
1-3		32	61	3
4 or more	2,811			
Missing	382	0	87	13
Multiple pregnancy	4 0 2 2	22	64	4
No	4,833	32 20	<u> </u>	
Yes	301	20	71	9
Congenital malformation	4.004	25	CA	2
No	4,694	35	64	2
Yes	44	14	77	9
Missing	396	0	73	27
Gestational age at birth	200		60	
Preterm	286	26	69	6
Term	2,040	36	61	3
Missing	2,715	30	66	4
Birthweight				
Birthweight>=2,500g	4,071	35	63	2
Birthweight<2,500g	775	28	68	3
Missing	288	0	72	28
Acute fetal distress				
No	3,168	34	64	2
Yes	1,470	37	61	2
Missing Transverse lie or brow presentation in active	496	0	81	19
labour				
No	4,922	32	65	4

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Yes	212	29	63	8
Other severe obstetric complication or maternal death				
No	4,125	32	64	3
Yes	1,009	29	66	5
Neonatal resuscitation				
No	4,273	34	63	2
Yes	619	27	70	3
Missing	242	0	70	30
Labour phase				
Pre-labour	1,031	29	67	4
Latent phase	1,577	36	61	3
Active phase	2,526	30	66	4
Referral status				
Not referred before caesarean	1,705	39	58	3
Referred before caesarean	3,429	28	68	4
Referral distance				
<20km	911	43	55	3
20-450km	1,479	39	58	4
Distance unknown	1,039	0	94	6
Primary indication for caesarean				
Fetal distress	1,125	36	61	3
Prolonged labour	1,695	31	66	4
Previous caesarean	830	30	66	3
Pre-eclampsia	193	28	67	5
Other	1,291	31	64	5
Provider cadre deciding to perform caesarean	1)231			
Obstetrician	3,129	37	60	3
Generalist doctor with emergency surgical	3,123			
training	936	27	68	4
Generalist doctor	446	21	74	5
Midwife	500	24	73	3
Non-physician provider with surgical skills	116	7	86	7
Missing	7	0	71	29
Provider cadre performing caesarean				
Obstetrician	1,905	32	63	5
Generalist doctor	895	28	67	5
Non-physician provider with obstetrics skills	224	18	81	0
Non-physician provider with surgical skills	2,039	36	62	3
Missing	71	0	92	8
Decision-to-incision interval		-		
<60min	878	36	61	2
≥60min	3,044	43	56	1
Missing	1,212	0	89	11
Anaesthesia type	_,	~		**
Spinal	4,505	32	64	3
General/other	590	29	66	5
Missing	39	0	46	54
Skin incision type		0	40	54
Joel-Cohen	4,128	34	63	3
	730	27	70	4
Pfannenstiel	1			4
Midline/other	100 176	25 0	72 78	<u> </u>
Missing				

1	Lower segment	4,921	33	64	3
2 3	Other	161	11	86	2
4	Missing	52	0	60	40
5	Antibiotic prophylaxis administration				
6	Antibiotics before incision	1,434	43	56	1
7	Antibiotics after incision	2,325	43	56	1
8	Antibiotics, timing unclear	1,159	0	90	10
9	No recorded antibiotics	67	24	75	1
10 11	Missing	149	0	74	26
12	Hospital type				
13	Regional hospital	2,693	39	58	2
14	Urban district hospital	1,659	26	70	4
15	Rural district hospital	782	18	75	7
16	Mean monthly caesarean volume	, 02	10	75	,
17	<30	923	25	70	4
18					5
19 20	60-105	2 494	42	56	2
20	00-100	2,131	12	50	
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	30-60 60-105				
45 46 47					

Page 27 of 32

BMJ Open

	N women		Perinatal outcomes						
		Macerated stillbirths (%)	Fresh stillbirths (%)	Apgar score <3, live birth (%)	Neonatal death within 24 hrs of birth (%)	Neonatal death after 24 hrs, before discharge (%)	Intrapartum- related perinat death (%)	Total perinatal death before discharge (%)	
Total	5,134	0.7 [0.5-0.9]	6.5 [5.8-7.2]	2.4 [2.0-2.9]	2.3 [2.0-2.8]	0.3 [0.2-0.5]	8.8 ⊡ [8.1-9.6	9.8 [9.0-10.7]	
Range across hospitals	5,134	0-2.25	1.6-13.5	0-9.0	0-9.0	0-3.2	2.1-18.8	3.2-24.3	
Facility type							ed fr		
Regional hospital	2,693	0.9 [0.6-1.4]	7.8 [6.8-8.9]	3.2 [2.6-3.9]	3.0 [2.4-3.7]	0.4 [0.2-0.7]	10.8 ∃ [9.7-12. 0]	12.1 [10.9-13.4]	
Urban district hospital	1,659	0.3 [0.1-0.7]	3.6 [2.8-4.6]	0.9 [0.5-1.5]	1.0 [0.6-1.6]	0.2 [0.1-0.6]	4.6 [3.7-5.7	5.1 [4.2-6.3]	
Rural district hospital	782	0.5 [0.2-1.4]	8.1 [6.3-10.2]	3.1 [2.1-4.5]	2.9 [2.0-4.4]	0.4 [0.1-1.2]	11.0 <mark>6</mark> [9.0-13. 4]	11.9 [9.8-14.4]	
P-value	-	0.08	<0.001	0.029	0.016	0.793	0.001,=	0.001	
							om/ on April 19, 2024 by guest. Protected by copyright		

/bmjopen-20; Supplementary table 4. Predictors of intrapartum-related deaths among 5,134 women giving birth by caesarean section in 21 hospitals – Burkina Faso, 2016

Predictor	Unadjusted OR (95% CI)	Model 1ª (95% Cl)	Model 2 ^b (95% Cl)
Individual-level predictors			
Maternal age			
13-19	1 [ref]	-	-
20-29	1.31 (0.98-1.76)	-	-
30-39	1.56 (1.15-2.10)	-	-
40-54	2.09 (1.21-3.58)	-	-
Parity			
0	1 [ref]	1 [ref]	1 [ref]
1-3	1.15 (0.90-1.47)	0.80 (0.56-1.13)	1.30 (0.99-1.7
4 or more	2.46 (1.91-3.18)	0.52 (0.34-0.78)	1.84 (1.38-2.46
Education			
None	1 [ref]	1 [ref]	1 [ref]
Primary	0.64 (0.46-0.89)	0.89 (0.61-1.31)	0.79 (0.56-1.13
Secondary or higher	0.31 (0.21-0.46)	0.53 (0.34-0.85)	0.55 (0.36-0.83
Number of previous caesareans			
0	1 [ref]	-	_
1 or more	0.39 (0.29-0.52)	-	_
Number of ANC visits	,		
0	1 [ref]	1 [ref]	_
1-3	0.58 (0.24-1.36)	0.54 (0.19-1.48)	_
4 or more	0.35 (0.15-0.81)	0.43 (0.16-1.18)	_
Multiple pregnancy			
No	1 [ref]	-	_
Yes	1.43 (0.99-2.07)	-	-
Malformation		7	
No	1 [ref]	1 [ref]	1 [ref]
Yes	7.15 (3.75-13.64)	6.01 (2.95-12.23)	5.67 (2.79-11.5
Birthweight			
Birthweight ≥2,500g	1 [ref]	1 [ref]	1 [ref]
Birthweight <2,500g	1.77 (1.39-2.25)	1.50 (1.14-1.97)	1.45 (1.10-1.92
Diagnosis of acute fetal distress	. ,		
No	1 [ref]	1 [ref]	1 [ref]
Yes	2.26 (1.79-2.86)	2.42 (1.80-3.26)	2.34 (1.72-3.17
Transverse lie or brow presentation in active labour			
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.69 (2.65-5.13)	3.56 (2.43-5.22)	3.81 (2.59-5.59
Other severe obstetric complication or maternal death			
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.49 (2.84-4.29)	3.88 (3.04-4.95)	3.50 (2.73-4.49
Labour phase			
Pre-labour	1 [ref]	-	-
Latent phase	1.20 (0.84-1.71)	-	-
Active phase	2.12 (1.53-2.92)	-	-

<u>)</u>	Referral status			
	Not referred	1 [ref]	1 [ref]	1 [ref]
	Referred from <20km	2.17 (1.51-3.11)	1.52 (1.04-2.21)	1.46 (1.01-2.13)
	Referred from 20-450km	4.24 (3.10-5.80)	2.17 (1.55-3.04)	2.18 (1.55-3.06)
	Decision-to-delivery interval			
	<60 minutes	1 [ref]	_	
	<00 minutes ≥60 minutes	0.85 (0.65-1.11)	-	
)		0.05 (0.05-1.11)	-	-
1	Primary indication for caesarean	4 [nof]	4 [maf]	4 [===
2	Fetal distress	1 [ref]	1 [ref]	1 [ref]
3 1	Prolonged labour	1.10 (0.85-1.43)	1.14 (0.81-1.59)	1.04 (0.74-1.46)
r 5	Previous caesarean	0.23 (0.13-0.39)	0.51 (0.28-0.92)	0.49 (0.27-0.90)
	Pre-eclampsia	0.59 (0.31-1.13)	0.38 (0.19-0.80)	0.35 (0.17-0.74)
,	Other	1.37 (1.04-1.80)	2.08 (1.44-3.00)	1.90 (1.31-2.74)
3	Provider cadre deciding the caesarean			
))	Obstetrician	1 [ref]		-
<u>)</u>	Generalist doctor with emergency surgical training	1.20 (0.84-1.73)		-
- 	Generalist doctor	1.20 (0.73-1.96)		-
ļ	Midwife	1.78 (1.07-2.96)		-
; ;	Non-physician provider with surgical skills ^c	1.87 (0.82-4.28)		-
7	Provider cadre performing the caesarean	$\mathbf{O}_{\mathbf{A}}$		
3	Obstetrician	1 [ref]		-
))	Generalist doctor	0.94 (0.62-1.44)		-
	Non-physician provider with obstetrics skills ^d	1.47 (0.81-2.68)		-
<u>2</u> 3 4	Non-physician provider with surgical skills ^c	1.01 (0.68-1.49)		-
г 5	Type of anaesthesia	6		
, ,	Spinal	1 [ref]		1 [ref]
,	General/other	4.46 (3.41-5.84)	1	2.60 (1.94-3.47)
	Type of skin incision			
	Joel-Cohen	1 [ref]		-
	Other	0.89 (0.62-1.28)		-
	Type of uterine incision			
	Lower segment	1 [ref]		-
•	Other	1.23 (0.69-2.19)		_
	Antibiotics administration	()		
	Antibiotics before incision	1 [ref]		1 [ref]
	Antibiotics before incision Antibiotics after incision	0.99 (0.74-1.31)		0.94 (0.72-1.23)
		2.31 (1.25-4.25)		2.91 (1.46-5.81)
)	No recorded antibiotics	2.01 (1.20-4.20)		2.31 (1.40-0.01)
<u>)</u>	Neonatal resuscitation	1 [raf]		
- 	No	1 [ref]		-
ļ	Yes	1.71 (1.31-2.24)		-
5	Facility type			
5	Regional hospital	1 [ref]		-
7	Urban district hospital	0.36 (0.23-0.58)		-
3	Rural district hospital	0.96 (0.62-1.47)		-
5	Facility caesarean volume (per month)			
	<30	1 [ref]		-

30-60	0.93 (0.55-1.57)		-
60-105	0.53 (0.30-0.94)		-
^a Model 1 was built by manual backward all variables with p<0.25 in the unadjust unadjusted model but was removed due	ed model, with the excep	otion of maternal age v	vhich had p<0.25 in the
^b Model 2 was built by adding all care co by manual backward selection until all r).25 to model 1, follow
°Nurses or midwives with additional 3-ye	ear training in surgery		
dMidwives with additional 3-year training	g in obstetrics and gynae	cology, including perfo	orming caesareans

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	3
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	4
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2021-055241 on 6 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	4
		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	4-5
16 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-6
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	4
21 22 23 24 25 26 27 28 29 30 31	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5-7
	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	5-7
	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	N/A
32 33 34 35	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5-6
36 37 38 39	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	6-7
40 41 42 43	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	N/A
44 45	Results			
46 47 48 49 50 51 52 53 54	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	7
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	N/A
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	N/A
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 33 of 32

BMJ Open

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	9-10
6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	7, 9-10
10 11 12	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	7-8
13 14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 11-12
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	7-12
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	12
29 30	Discussion			
31 32	Key results	<u>#18</u>	Summarise key results with reference to study objectives	12
33 34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	13-14
39 40 41 42 43	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12-13
44 45	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14-15
46 47	Other			
48 49	Information			
50 51 52 53 54	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15
55 56	The STROBE chec	klist is o	distributed under the terms of the Creative Commons Attribution License CC	C-BY.
57 58		-	ed on 05. July 2021 using https://www.goodreports.org/, a tool made by the	
59 60	EQUATOR Netwo	rk in co	llaboration with <u>Penelope.ai</u> peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Does hospital variation in intrapartum-related perinatal mortality among caesarean births reflect differences in quality of care? Cross-sectional study in 21 hospitals in Burkina Faso

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055241.R1
Article Type:	Original research
Date Submitted by the Author:	26-May-2022
Complete List of Authors:	Cavallaro, Francesca; University College London Institute of Child Health; The Health Foundation Kabore, CP; Institut de Recherche en Sciences et de la Santé; Institut de Recherche pour le Développement Pearson, Rachel; University College London, UCL Institute of Child Health Blackburn, Ruth; University College London, UCL Institute of Health Informatics Sobhy, Soha ; Queen Mary University of London, Centre for Primary Care and Public Health Betran, Ana Pilar; World Health Organization, UNDP/UNFPA/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction, Department of Sexual and Reproductive Health and Research Ronsmans, Carine ; London School of Hygiene & Tropical Medicine, Department of Infectious Disease Epidemiology Dumont, Alexandre; Institut de Recherche pour le Développement, CEPED
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Epidemiology
Keywords:	OBSTETRICS, PERINATOLOGY, NEONATOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1 2	1	Does hospital variation in intrapartum-related perinatal mortality among caesarean births
- 3 4	2	reflect differences in quality of care? Cross-sectional study in 21 hospitals in Burkina Faso
5 6	3	Francesca L Cavallaro, ^{1,2*} Charles Kaboré, ^{3,4} Rachel Pearson, ¹ Ruth Blackburn, ⁵ Soha Sobhy, ⁶ Ana
7 8	4	Pilar Betrán, ⁷ Carine Ronsmans, ⁸ Alexandre Dumont ⁴
9 10	5	¹ UCL Institute of Child Health, University College London, London, UK
11 12	6	² The Health Foundation, London, UK
13 14 15	7	³ Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
	8	⁴ Centre Population et Développement, Institut de Recherche pour le Développement, Paris, France
18 19	-	⁵ Institute of Health Informatics, University College London, London, UK
20 21	10	⁶ Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University
22 1 23		of London, London, UK
24 1 25	12	⁷ UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and
25 26 1	13	Research Training in Human Reproduction, Department of Sexual and Reproductive Health and
27 28		Research, World Health Organization, Geneva, Switzerland
29 30 ¹	15	⁸ Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine,
31 -		London, UK
32 33 34	17	
35 36 ¹	18	Correspondence: Dr Francesca Cavallaro, 8 Salisbury Square, London EC4Y 8AP, UK,
37 38	19	francesca.cavallaro@health.org.uk .
39 40 ²	20	
41 42 2	21	Word count: 4,342
43 44		
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
55		
56		
57 58		
59		
60		

BMJ Open

23 Abstract

Objectives. To examine hospital variation in crude and risk-adjusted rates of intrapartum-related
 perinatal mortality among caesarean births

Design. Secondary analysis of data from the DECIDE cluster randomised trial post-interventionphase

28 **Setting**. 21 district and regional hospitals in Burkina Faso

29 Participants. All 5,134 women giving birth by caesarean section in a 6-month period in 2016

Primary outcome measure. Intrapartum-related perinatal mortality (fresh stillbirth or neonatal death within 24 hours of birth) $\sqrt{\frac{7}{8}}$ 31

Results. Almost one in ten of 5,134 women giving birth by caesarean experienced an intrapartumrelated perinatal death. Crude mortality rates varied substantially from 21-189 per 1,000 between hospitals. Variation was markedly reduced after adjusting for case mix differences (the median odds ratio, representing the median increase in odds of intrapartum-related mortality if a woman moved to another hospital with higher mortality, decreased from 1.9 [95% CI: 1.5-2.5] to 1.3 [1.2-1.7]). However, higher and more variable adjusted mortality persisted among hospitals performing fewer caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation (median odds ratio = 1.4 [1.2-1.8]).

Conclusions. There is a high burden of intrapartum-related perinatal deaths among caesarean births
in Burkina Faso, and sub-Saharan Africa more widely. Variation in adjusted mortality rates indicates
likely differences in quality of caesarean care between hospitals, particularly lower-volume hospitals.
Improving access to and quality of emergency obstetric and newborn care is an important priority for
improving survival of babies at birth.

Keywords: caesarean section, stillbirth, perinatal mortality, hospital variation, Burkina Faso

47 Strengths and limitations of this study

- This is the first study to examine hospital variation in intrapartum-related perinatal mortality among women giving birth by caesarean section in a sub-Saharan African country.
- Our study benefited from inclusion of all caesarean sections performed in a six-month period in 21 regional and district hospitals in Burkina Faso.
- We used high-quality clinical data from the DECIDE cluster-randomised trial, including
 standardised definitions for diagnoses and indications for caesarean, although some
 misclassification of obstetric complication severity was likely.

- More than 20% of data were missing for three risk factors (decision-to-incision interval, timing of antibiotics, and referral distance); we used multiple imputation to avoid a loss of power.
 - Our hospital sample size and limited available information prevented us from examining • hospital characteristics as risk factors for perinatal mortality.

Introduction 10 59

1 55

2 3 56

4 57

5 6 58

7 8 9

11

13

16

21

12 60 While facility births have increased over the past few decades in sub-Saharan Africa,¹ improvements 14 61 in maternal and perinatal health have been limited, raising questions about the quality of care in ¹⁵ 62 health facilities.¹⁻³ In particular, although facility births have increased substantially, increases in 17 63 population-based caesarean section rates have been small. Persisting low caesarean rates indicate ¹⁸ 19 64 that improvements in access to emergency obstetric care have been limited.⁴⁵ Globally, the slowest 20 65 rise was observed in West and Central Africa, from 3.0% caesarean births in 2000 to 4.1% in 2015.5 The absolute number of caesareans performed has increased more rapidly due to a rise in total ²³ 67 number of births – 3- to 5-fold in Senegal, Tanzania and Uganda over the past few decades.467 24

²⁵ 68 26 Increases in caesarean births raise concerns in health systems with limited resources and capacity to 27 69 provide high-quality caesarean care. Caesarean sections account for one third of all surgeries in 28 29 70 Africa, where post-operative morbidity and mortality is higher than in other regions.⁸ A recent meta-³⁰71 analysis found over 1% mortality among women who deliver by caesarean in sub-Saharan Africa, 31 32 72 100 times higher than in the UK.⁹ Perinatal mortality is also very high in sub-Saharan Africa, with one ³³ 34 73 in 10 mothers delivering by caesarean experiencing a stillbirth or early neonatal death.⁹ This high 35 74 mortality is driven both by severe complications before reaching health facilities and low capacity ³⁶ 37 75 within facilities to provide high-quality care. Indeed, low capacity to provide caesarean section care 38 76 has been reported in Burkina Faso^{10 11} and elsewhere in the region.^{6 12 13} 39

40 77 41 77 In the context of rising caesareans, there is a need to better understand why perinatal mortality is so 42 78 high among women giving birth by caesarean in sub-Saharan Africa. Limited evidence is available on ⁴³ 79 inter-hospital variation in outcomes among caesarean births. Hospital type (district, regional, or 45 80 national) is independently associated with perinatal mortality in some studies but not others,914 46 47 81 however severe restrictions in material and human resources restrict capacity to provide high-quality ⁴⁸ 82 care in lower-level and rural facilities.⁴⁶ Comparing variation in crude and risk-adjusted outcome 49 50 83 rates between hospitals is a commonly used approach to determine whether differences between ⁵¹ 52 84 hospitals are entirely explained by heterogeneity in case mix. Any remaining variation in risk-adjusted 53 85 rates suggest differences in quality of patient care.¹⁵⁻¹⁷ In this study, we examined variation in crude ⁵⁴ 55 86 and adjusted rates of intrapartum-related perinatal mortality among women giving birth by caesarean ⁵⁶ 87 in 21 district and regional hospitals in Burkina Faso for a six month period in 2016. We used high-57 58 88 guality data from the DECIDE trial to assess the evidence that differences in intrapartum-related ⁵⁹ 89 mortality between individual hospitals and hospital types were driven in part by variation in quality of 60 90 care.

2 3

4 5

6

7 8

9

BMJ Open

91 Methods

92 This study is a secondary analysis of the DECIDE cluster-randomised controlled trial, which 93 assessed the effectiveness of a multicomponent intervention including provider training, caesarean 94 audits, and SMS reminders to reduce non-medically indicated caesarean sections. The trial included 95 three phases: six-month pre-intervention, one-year intervention, and six-month post-intervention. It 10 96 was conducted in all 22 regional and district hospitals in Burkina Faso performing more than 200 11 12 97 caesareans per year in 2012; university hospitals in Ouagadougou and Bobo-Dioulasso were 13 98 excluded. Detailed trial methods are described elsewhere.¹⁸ 14

15 16 **9**9 Health system context

17 18<mark>100</mark> Similar to other West African countries, the caesarean rate in Burkina Faso is below 5% (3.7% in ¹⁹101 20 2010-15),¹⁹ with large urban-rural, wealth and educational differentials.^{20 21} Although 85% of births 21102 take place in health facilities, 70% occur in primary care facilities without surgical capacity.²² Women ²²103 23 who develop complications requiring a caesarean are referred to medical centres with surgical 24104 capacity (centres médicaux avec antenne chirurgicale, referred to as district hospitals hereafter) or ²⁵ 26</sub>105 regional hospitals. Women with severe complications may be referred onwards to tertiary university 27106 hospitals in the capital Ouagadougou and second largest city Bobo-Dioulasso. Most - but not all -28 29107 district and regional hospitals have at least one obstetrician or generalist doctor trained in emergency ³⁰108 31 obstetric care. Task-shifting of caesarean care has been supported in Burkina Faso through 32109 additional three-year training of nurses and midwives as non-physician providers with surgical skills ³³ 34110 (attachés en chirurgie) and obstetrics skills (attachés en gynéco-obstétrique). Most anaesthesia care 35111 is provided by nurses with additional training in anaesthesia. More than three quarters of study ³⁶ 37112 hospitals did not have Doppler ultrasounds, CTG monitors or ultrasound capacity, relying on Pinard ³⁸13 39 stethoscopes for assessment of fetal wellbeing. Fetal scalp pH was only available in one hospital.¹⁸

40 41 114 Emergency obstetric care has been subsidised to improve access since 2006, initially with an 80% 42115 subsidy of the cost of caesareans, which were made free to women from 2016 onwards. Hospitals ⁴³ 44116 get reimbursed according to the number of caesareans and vaginal births; this policy absorbed 45117 around 3.5% of total health expenditure in 2011.23 However, some costs (formal or informal) not 46 4**7**118 included in the "free" package continue to be borne by households, and remain unaffordable for ⁴⁸119 49 some.^{24 25} Women express fears around caesarean birth related primarily to poor quality of care and 50120 economic burden.26

⁵² 53</sub>121 Participants

51

⁵⁴122 55 56123 We included all 5,134 women giving birth by caesarean section in the 21 study hospitals with caesarean capacity in the post-intervention phase (2nd May-2nd November 2016). One study ⁵⁷ 58 124 hospital's operating theatre was no longer functional in the post-intervention phase. These 21 hospitals accounted for 45% of all caesarean sections performed nationally in 2016.27 Women 5925 60

 $\frac{1}{2}$ 126 delivering by caesarean were included regardless of gestational age, whether they were referred to 3 127 the study hospital before the caesarean, or referred to another hospital after birth.

6128 Data source

4 5

14

21

27

Patient medical records were used in the DECIDE trial, with prospective data collection in the post intervention phase using data extraction forms and standardised clinical definitions (including for
 labour dystocia, acute fetal distress, and indications for caesarean).¹⁸ We used post-intervention data
 to provide the most recent description for a larger sample.

15133 Outcome

We defined intrapartum-related perinatal mortality as the rate of fresh stillbirths and very early neonatal deaths (within 24 hours of birth) per 1,000 caesareans.^{28 29} Intrapatum-related mortality is recommended by the WHO as an indicator of the quality of emergency obstetric and newborn care.³⁰

²²₂₃37 Risk factors and conceptual approach

We examined two groups of risk factors for intrapartum-related mortality: individual-level clinical risk factors, and caesarean care components and hospital characteristics.

28|40 We conceptualised case mix as the hospital prevalence of clinical risk factors for intrapartum-related 29 30<mark>1</mark>41 mortality (maternal age, parity, highest educational level achieved, previous caesarean, multiple 3 142 32 33 43 pregnancy, number of antenatal visits, birthweight, congenital malformation, referral status and distance, labour phase, diagnosis of acute fetal distress, transverse lie/brow presentation in active ³⁴144 35 labour, other severe obstetric complication or maternal death, and primary indication for caesarean). 36145 "Other severe obstetric complications" included severe pre-eclampsia or eclampsia, retro-placental ³⁷ 38</sub>146 haematoma, uterine (pre-)rupture, and placenta praevia in active labour. Uterine pre-rupture was 39|47 defined as women with severe dystocia and signs of pre-rupture, such as Bandl's ring. Acute fetal 40 41<mark>148</mark> distress was defined as fetal heart rate <120 or >160 bpm, either persistent after oxygen 42|49 43 44|50 administration and lateral decubitus position, or with IUGR, placental abruption, prolonged labour, maternal fever, or tinted amniotic fluid. Some women diagnosed with acute fetal distress had a ⁴⁵ 46 primary indication for caesarean other than "fetal distress" (e.g. pre-eclampsia), while some women 47152 had a caesarean with "fetal distress" recorded as the primary indication despite not having met the 48 49</sub>153 diagnostic criteria for acute fetal distress.

We conceptualised components of caesarean care (provider cadre deciding and performing the
 caesarean, decision-to-incision interval, anaesthesia type, skin/uterine incision type, and antibiotic
 prophylaxis administration) and hospital characteristics (hospital type and monthly caesarean
 volume) as potential indicators of quality of patient care. Monthly caesarean volume was calculated
 as the mean number of caesareans performed per month in the study period, per hospital.

We used these risk factors to derive two sets of risk-adjusted mortality rates per hospital: adjusting for case mix only, and additionally adjusting for components of care and hospital characteristics,

BMJ Open

 $\frac{1}{2}$ 161 because some of these variables might capture unmeasured differences in case mix. For example,

women receiving general anaesthesia are more likely to have complications requiring urgent surgery.

Including these additional variables also allowed us to identify whether any care components (e.g.
 decision-to-incision interval) were strongly associated with mortality. We included care components

prior to delivery as risk factors even when they were not hypothesised to causally affect perinatal
 mortality, since they may be proxies for quality of care.

12167 Multiple imputation of missing data among risk factors

Data were complete for the outcome and nine risk factors, including multiple gestation, indication for caesarean, and referral status (Supplementary Table 1). 11 risk factors had <5% missing values; six risk factors had >5% missing data, including decision-incision interval (24%) and timing of antibiotic administration (23%). Overall, 68% of women had at least one risk factor missing, and 4% had at least four risk factors missing (Supplementary Table 2). Missing information on previous caesarean was assumed to indicate no previous caesarean (n=40), and missing deciding provider cadre was imputed as the hospital mode for seven women.

²⁵ 26</sub>175 Multiple imputation by chained equations was used for other variables to avoid a loss in efficiency, 27176 because missing values were likely to be missing at random given known risk factors, including 28 29177 referral status and severe obstetric complication.³¹ Five imputed datasets were created using the mi 30<mark>178</mark> 31 package in Stata v14.2, including all risk factors and intrapartum-related mortality in the imputation 32179 model. The same model was used for all hospitals, with hospital type included as a risk factor. ³³ 34</sub>180 Missing values for continuous risk factors (age, parity, number of antenatal care visits, referral 35181 distance, birthweight, and decision-to-incision interval) were imputed from linear regression models, ³⁶ 37</sub>182 missing values for binary risk factors (acute fetal distress, antibiotic prophylaxis, incision type, ³⁸83 39 4084 anaesthesia type, congenital malformation, and neonatal resuscitation) were imputed from logistic regression models, and categorical risk factors (education, provider cadre performing the caesarean, 4185 42 43186 and timing of antibiotic administration) were imputed from multinomial regression models. Gestational age at birth had >50% missing data; it was not considered as a risk factor in the analysis model, 44 45</sub>187 since it is highly correlated with low birthweight, which was more complete and likely to be more 46188 accurate in a setting without routine ultrasound in the first trimester. However, we included 47 48<mark>189</mark> gestational age at birth in the imputation model to improve the prediction of birthweight. Distributions 49<mark>190</mark> 50 of imputed values were compared with observed values for variables with >5% missing data.

51 52191 Hospital variation in intrapartum-related mortality rates

First, we calculated crude hospital intrapartum-related mortality rates with 95% confidence intervals, and described perinatal outcomes according to hospital type. Differences in hospital case mix were assessed by describing the prevalence of clinical risk factor for intrapartum-related mortality among women giving birth by caesarean, stratified by hospital and hospital type. We similarly described

differences in components of care received. Chi-square tests accounted for clustering of women by
 hospital using the svyset package in Stata.

⁵198 Next, we built two multivariable models for intrapartum-related death among caesarean births using 6 7 1 9 9 multi-level logistic regression models of women, nested in hospitals to account for clustering. The first ⁸₉200 model (model 1) adjusted for case mix only, and included all individual-level clinical risk factors for 10201 intrapartum-related mortality with Wald test p-value≤0.25 in bivariate associations, using manual 11 1<u>2</u>02 backward selection to retain only variables with p-values<0.1. The second model (model 2) built upon 13203 14 1*5*204 model 1 by additionally including all care components and hospital characteristics with bivariate Wald test p-value<0.25, and similarly using backward selection to retain only p-values<0.1. Multicollinearity 16 17 17 was examined by reviewing Spearman correlations and model standard errors. In building model 2, 1**220**6 provider cadre deciding the caesarean met the criteria for inclusion, however its inclusion reduced 19 20**7** the hospital-level estimate almost to zero, indicating that this variable acted as a proxy for broader ²208 ²² 2²209 differences between hospitals. Further inspection showed that deciding providing cadre was highly clustered within hospitals, with one category accounting for >90% of women in 13 of 21 hospitals. We ²⁴210 25 ²⁶211 therefore removed it from risk factors considered for model 2.

We calculated the median odds ratio (OR) for model 1 and 2 as a measure of inter-hospital variation in mortality that is not explained by the model covariates, expressed on the OR scale (see formula in Supplementary Figure 1).³² For a multi-level model, the median OR is defined as the median of the ORs that could be calculated by comparing two patients with identical individual-level characteristics from two, randomly chosen, different hospitals.^{33 34}

Risk-adjusted mortality enables comparisons in hospital outcomes taking into account differences in case mix.¹⁵⁻¹⁷ Risk-adjusted intrapartum-related mortality rates were calculated for each hospital by multiplying the intrapartum-related mortality rate across the study sample by the ratio of the number of observed deaths to predicted deaths based on model 1 and 2 in each hospital. Bootstrapping with 1,000 iterations was used to calculate 95% confidence intervals around both sets of risk-adjusted hospital mortality rates and found to produce stable estimates. We used the Boot MI percentile method to produce confidence intervals with nominal coverage.³⁵

⁴⁶ ⁴²23 The DECIDE trial found a reduction in avoidable caesareans,³⁶ suggesting changes in caesarean ⁴⁸/₄₉24 decision-making which may affect intrapartum-related mortality. As a secondary analysis, we added ⁵⁰/₂₅ trial group as a risk factor to model 2 to determine whether it was associated with mortality after ⁵¹/₅₂26 adjusting for other covariates.

Ethics

53 5**⁄227**

55

4

34

The DECIDE trial received ethical approval from the National Ethics Committee in Burkina Faso
 (#2014-02-016) and the Ethics Committee of the University of Montreal Hospital Research Centre in
 Canada (#13.356).³⁶ As a secondary analysis of de-identified data, this study did not require ethical approval from the UCL Ethics Committee.

BMJ Open

¹₂232 Patient and public involvement

³233 No patients were involved in the design, conducting, reporting or dissemination of this study.

Results

⁹235 Our analysis included 5,134 women giving birth by caesarean in the 21 study hospitals. Women with 1**2**36 multiple pregnancies, congenital malformation, transverse lie/brow presentation in active labour, ¹²237 13 whose caesarean was decided by a non-physician provider with surgical skills, and delivering in a rural district hospital were more likely to have missing data for four or more risk factors 16¹⁵39 (Supplementary Table 2).

Hospital variation in intrapartum-related perinatal mortality among caesarean births

Intrapartum-related perinatal mortality was high among caesarean births at 88 per 1,000 [95% CI: 81-²¹ 2242 96], including 65 per 1,000 fresh stillbirths and 23 per 1,000 deaths within 24 hours of birth (Table 1). **3**243 Crude mortality rates varied substantially across hospitals, from 21 to 189 per 1,000. Intrapartum-2**5**244 related mortality tended to be higher in hospitals performing fewer caesarean sections (Figure 1A). ²245 27 28246 Intrapartum-related mortality was higher in regional and rural district hospitals than in urban district hospitals (110 vs 46 per 1,000, p=0.001). Other perinatal outcomes showed similar patterns ²⁹247 30 (Supplementary Table 3).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

¹₂249 4250 Table 1. Perinatal mortality among women giving birth by caesarean according to hospital type – Burkina Faso, 2016 Neonatal death Intrapartum-Intrapartum-Fresh within 24 related related stillbirths hrs of births perinatal perinatal death (per 1,000) (live death (per range across babies, per 1,000)^a hospitals 1,000) 5,134 21-189 65 23 88 Total Hospital type 2,693 78 30 108 63-189 Regional hospital 1,659 36 10 46 21-71 Urban district hospital 29 110 54-185 782 81 Rural district hospital _ < 0.001 0.016 < 0.001 -P-value ^aFresh stillbirth or neonatal death within 24 hours of birth Note: confidence intervals and additional outcomes are reported in Supplementary Table 3 Hospital variation in clinical risk factors among women giving birth by caesarean section Case mix varied substantially across hospitals, with a range of 5%-37% for parity of four or more, 2%-29% for birthweight <2500g, and 1%-11% for transverse lie or brow presentation in active labour (Table 2). Regional hospitals and rural district hospitals had higher-risk populations of women giving birth by caesarean than urban district hospitals, with higher proportions of intrapartum caesareans, women with high parity, and referred to the study hospital immediately prior to the caesarean (p<0.01 for all).

3

¹ 263 ² 264 3 Table 2. Characteristics of women giving birth by caesarean section, across hospitals and hospital types (N=5,134)

	Range across hospitals	Regional hospital	Urban district hospitalª	Rural district hospital	Тс
N facilities		9	5	7	2
Monthly caesarean volume (median)	9-103	37	45	17	3
N women giving birth by caesarean	54-619	2,693	1,659	782	5,
Age (%)					
13-19	6-31	20.2	10.1	22	1
20-29	37-53	44.8	49.8	43.9	40
30-39	22-38	30.1	35.2	27.9	3
40-49	0-6	3.2	3.3	2.7	3
Missing	0-8	1.7	1.6	3.6	2
Educational level (%)					
None	33-88	73.6	41.8	74.0	63
Primary	1-38	7.7	24.1	15.0	14
Secondary or higher	3-45	17.9	31.2	10.2	2
Missing	0-9	0.7	3.0	0.8	1
Parity (%)					
0	30-43	34.4	35.2	35.0	34
1-3	31-64	42.9	53.8	39.5	4
4 or more	5-37	22.5	10.9	25.1	19
Missing	0- 2	0.2	0.1	0.4	0
Number of previous caesarean sections (%)	N.				
0	60-89	76.3	66.9	78.3	7:
1	6-31	17.9	22.4	14.8	18
2-4	2-13	4.9	9.8	5.8	6
Missing	0-4	0.9	1.0	1.2	1
Number of antenatal visits (%)					
0	0-6	0.9	0.4	1.3	0
1-3	19-74	36.5	36.4	40.0	3
4 or more	21-71	53.5	58.1	52.0	54
Missing	1-24	9.1	5.1	6.6	7
Multiple pregnancy (%)					
Yes	2-10	5.8	6.1	5.8	5
Congenital malformation (%)					
No	30-100	91.3	92.7	89.1	9
Yes	0-4	1.2	0.4	0.6	0
Missing	0-69	7.5	6.9	10.2	7
Birthweight (%)					
Birthweight>=2,500g	65-95	77.8	80.6	81.8	79
Birthweight<2,500g	2-29	17.2	13.2	11.9	1:
Missing	1-16	5.1	6.2	6.3	5
Referral for antepartum complications or during labour (%)					
Yes	26-89	74.7	50.7	73.7	66
Distance from referring facility (%)					
<20km	0-85	18.7	47.4	23.4	26
20-450km	0-86	48.7	11.8	69.6	43
Distance unknown	0-99	32.6	40.8	6.9	30

No	2-49	15	34.1	8.1	20.1
Yes	51-98	85	65.9	91.9	79.9
Primary indication for caesarean (%)					
Fetal distress	7-36	24.5	17.0	23.3	21.9
Prolonged labour	23-67	33.1	28.6	42.1	33.0
Previous caesarean	7-33	12.1	24.3	12.8	16.
Pre-eclampsia	0-8	4.2	4.1	1.7	3.8
Other	15-37	26.1	26	20.2	25.
Diagnosis of acute fetal distress (%)	12-43	32.3	22.8	28.5	28.
Transverse lie/brow presentation in active labour (%)	1-11	4.8	2.6	5.0	4.1
Other severe obstetric complication or maternal death (%)	6-38	22.6	14.3	19.6	19.
Severe pre-eclampsia/eclampsia	2-13	6.4	6.1	3.2	5.8
Retro-placental haematoma	0-5	2.8	1.5	1.4	2.2
Placenta praevia in active labour	0- 5	2	0.7	0.9	1.4
Uterine (pre)-rupture	2-24	12.3	6.4	15.0	10.
Maternal mortality (per 100,000)	0-637	297	241	256	273

Hospital variation in caesarean care received

Caesarean care differed between hospitals (Table 3). We found large differences in the type of **2**68 29 269 provider (cadre) deciding for or conducting the caesarean between hospitals, with obstetricians deciding and performing 100% of caesareans in some hospitals, and non-physician providers 3271 deciding and performing over 90% of caesareans in others. Rural district hospitals relied primarily on ³³272 34 generalist doctors and non-physician providers, while urban district hospitals relied primarily on obstetricians.

Hospitals reported up to 54% of caesareans performed more than one hour after decision. Almost 39**2**75 90% of all caesareans were performed under spinal anaesthesia, however in some hospitals 70% of 41 42277 caesareans were performed under general anaesthesia. General anaesthesia was more common in regional hospitals. Incision technique also showed important variation between hospitals, less so 278 44 between hospital type. Antibiotic use was almost universal, recorded in 96% of women, but administered after skin incision in at least 41% of caesareans (62% estimated with imputed data, and 4**7**80 up to 94% in individual hospitals).

~	
3	
4	
5	
6	
7	

¹₂282 Table 3. Caesarean care received by women, across hospitals and hospital types (N=5,134)

3 4 5		Range across hospitals	Regional hospital	Urban district hospital	Rural district hospital	Total
6	N women	54-619	2,693	1,659	782	5,134
7 8	Cadre of provider deciding to perform caesarean					
o 9	Obstetrician	0-100	69.6	75.5	0.4	60.9
10	Generalist doctor with emergency surgical training	0-96	5.0	23.5	52.7	18.2
11	Generalist doctor	0-68	9.0	0.4	26.0	8.7
12	Midwife	0-100	16.1	0.4	7.5	9.7
13	Non-physician provider with surgical skills ^a	0-94	0.3	0.1	13.0	2.3
14	Missing	0-2	0.1	-	0.4	0.1
15	Cadre of provider who performed caesarean					
16 17	Obstetrician	0-100	28.3	68.9	0.1	37.1
17 18	Generalist doctor	0-88	13.0	11.8	44.6	17.4
18 19	Non-physician provider with obstetrics skills ^b	0-65	8.0	0.2	0.6	4.4
20	Non-physician provider with surgical skills ^a	0-94	48.3	18.9	54.2	39.7
21	Missing	0-8	2.4	0.2	0.4	1.4
22	Decision-to-incision interval					
23	<60 minutes	3-84	64.1	61.2	31.6	60.3
24	≥60 minutes	1-54	18.7	11.4	17.0	16.1
25	Missing	3-97	13.2	27.4	51.4	23.6
26 27	Type of anaesthesia					
27	Spinal	30-100	83.8	91	94.5	87.7
29	General/other	0-70	16.0	7.7	4.2	11.5
30	Missing	0-4	0.3	1.3	1.3	0.8
31	Type of skin incision					
32	Joel-Cohen	9-100	79.6	83.1	77.5	80.4
33	Pfannenstiel	0-84	16.8	12.1	9.7	14.2
34	Midline/other	0-11	2.8	1.1	0.9	1.9
35	Missing	0-39	0.8	3.7	11.9	3.4
36	Type of uterine incision					
37	Lower segment	45-100	94.7	98.3	94.8	95.9
38 39	Other	0-55	5.2	0.6	1.3	3.1
39 40	Missing	0-12	0.1	1.1	4.0	1.0
40	Antibiotic administration					
42	Antibiotics before incision	0-87	32.5	26.6	15.0	27.9
43	Antibiotics after incision	0-94	49.1	39.0	45.7	45.3
44	Antibiotics, timing unclear	2-95	12.6	32.9	35.2	22.6
45	No recorded antibiotics	0-10	2.0	0.5	0.4	1.3
46	Missing	0-22	3.9	0.9	3.8	2.9
47283	^a Nurses or midwives with additional 3-year training in s	urgery ^{, b} Mid	wives with	additional 3	R-vear traini	na in

^aNurses or midwives with additional 3-year training in surgery; ^bMidwives with additional 3-year training in 47283 48 49 284 obstetrics and gynaecology, including performing caesareans

50 5**285**

52 Risk factors for intrapartum-related mortality and risk-adjusted hospital mortality rates

52 53 54 55287 56 57288 The median OR for crude intrapartum-related mortality was 1.9 [95% CI: 1.5-2.5], indicating that if a woman moved to another, randomly selected, hospital with higher mortality, the median increase in 58**289** 59 her odds of intrapartum-related mortality would be almost two-fold.

 $^{1}_{2}290$ In model 1, congenital malformation, diagnosis of acute fetal distress, transverse lie or brow 3291 presentation in active labour, and other severe obstetric complication or maternal death were strongly 4 5292 associated with intrapartum-related mortality (Supplementary Table 4). Other risk factors retained in ⁶293 the model were parity, education, number of antenatal visits, primary caesarean indication, referral 8294 immediately prior to caesarean, and birthweight. The median OR was 1.3 [1.2-1.7], indicating that a ⁹295 woman moving to a different hospital with higher mortality would experience a 1.3-fold increase in 1296 odds of intrapartum-related mortality on average, a modest effect compared with individual-level $^{12}_{13}$ 297 clinical risk factors. Inter-hospital variation in mortality rates was reduced, but not eliminated, after 1298 adjusting for individual-level risk factors, with larger variation among hospitals performing less than 15 1¢299 50 caesareans per month (Figure 1B).

In model 2, all clinical risk factors except for number of antenatal visits were retained in the model
 with similar effect sizes, and two care component risk factors were identified – general anaesthesia,
 and not receiving antibiotic prophylaxis (Figure 2, Supplementary Table 4). Decision-to-incision
 interval, hospital type and monthly caesarean volume were not independently associated with
 intrapartum-related mortality. There was no meaningful change in inter-hospital variation after adding
 care components, compared with model 1 (median OR=1.4 [1.2-1.8], Figure 1C).

²806 There was no evidence that adding trial arm improved the fit of model 2 (p=0.78).

34808 Discussion

17

35

³წ09 Our study fills an important gap in the evidence by examining hospital variation in intrapartum-related 37 38310 perinatal mortality among caesarean births in sub-Saharan Africa, a region with a high burden of ³⁹311 40 4B12 perinatal deaths. Almost one in ten women giving birth by caesarean in regional and district hospitals in Burkina Faso experienced an intrapartum-related perinatal death. The substantial hospital variation ⁴² 43</sub>313 in crude mortality rates, ranging between 21-189 per 1,000, was markedly reduced after adjusting for 4314 45 46315 individual-level differences in case mix between hospitals. However, important variation remained, with lower-volume hospitals tending to have higher and more variable adjusted mortality than ⁴316 48 49317 hospitals performing more caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation. Remaining variation in adjusted rates indicate likely ⁵⁰318 differences in quality of caesarean care between hospitals, particularly those with low or moderate 52819 monthly caesarean volumes. 53

Some of the remaining differences in risk-adjusted mortality rates between hospitals may be due to unmeasured confounding by case mix, since the accuracy of obstetric complication measurement using hospital records was likely limited. However, this is unlikely to explain all the variation in adjusted mortality between lower-volume hospitals. Caesarean volume and hospital type were not independently associated with intrapartum-related mortality in our study, although the number of

hospitals in our analysis (n=21) was too small to detect such effects. Hospitals performing more caesareans likely differ from lower-volume hospitals in multiple ways affecting quality of perinatal care, including presence of obstetricians or paediatricians, resources available for care of small and sick newborns, as well as differences in access to care for the population they serve.

⁸₉329 We identified two care components associated with intrapartum-related mortality: general 10330 anaesthesia and not receiving antibiotic prophylaxis, each associated with a doubling of mortality, 11 12</sub>331 compared with spinal anaesthesia and receiving antibiotics before incision. These odds ratios may 1332 14 15333 reflect unmeasured confounding by complication severity in the association with intrapartum-related mortality, or differences in guality of care. Indeed, although general anaesthesia is independently 16 334 17 associated with perinatal mortality,³⁷ women undergoing general anaesthesia are also likely to be in 1**\$35** poorer clinical condition at the time of the caesarean, with independently higher risk of perinatal 19 20³36 death. Antibiotics may indicate very urgent caesareans without sufficient time to administer 2337 antibiotics, or poor organisation of care, with up to 10% of women not receiving antibiotics in some 22 2338 hospitals. Maternal antibiotic prophylaxis is unlikely to affect intrapartum-related survival.^{38 39} It is not 24339 25 2&40 possible to disentangle the relative contributions of unmeasured confounding and quality of care for these two care components with our data. 27

2841 29 30342 High rates of fresh stillbirths among caesarean births – 65 per 1,000 in our study, 60 per 1,000 total stillbirths in a previous systematic review⁹ – indicate that many caesareans are performed too late in ³343 32 Burkina Faso. Limited access to caesarean section contributes to these poor outcomes: a higher 33344 proportion of women in sub-Saharan Africa arrive at the surgical hospital with severe complications ³⁴ 35 and more caesareans are performed in the second stage of labour, with higher associated 36846 complications.⁹ Some babies may die before arrival at the hospital, but nonetheless are delivered by ³⁷ 38<mark>347</mark> caesarean. Indeed, our data indicate poor identification of stillbirths using the Pinard stethoscope in 3%348 40 4³49 this setting: one third of babies with no audible fetal heart rate were born alive, while one guarter of macerated stillbirths had a recorded audible fetal heart rate. Other babies die in utero after arrival at 42350 43 44851 the hospital, due to delayed diagnosis of fetal distress or long waiting times between decision and caesarean. We estimated a median decision-to-incision interval of 81 minutes for caesareans for fetal 45 46³52 distress, based on imputed data.

47 48353 To our knowledge, this is the first study to examine hospital variation in crude and risk-adjusted ⁴⁹354 ₅₀ 5855 perinatal mortality in sub-Saharan Africa. A major strength of our study was the use of a novel dataset with high-quality, detailed clinical information on all women delivering by caesarean section in ⁵² 53356 a six-month period in all Burkinabe regional and district hospitals with >200 caesareans per year. Our 54357 21 study hospitals accounted for 45% of all caesareans performed in Burkina Faso in 2016. 55 56³58 University hospitals and lower-volume district hospitals accounted for 26% each, with only 3% in the 57359 58 59360 private sector.²⁷ While our results cannot be generalised to tertiary or private hospitals in Burkina Faso, higher and more variable perinatal mortality is also likely to occur in lower-caesarean volume ⁶⁰361 hospitals in other West African countries.

 $^{1}_{2}362$ Some data limitations are worth noting. Missing data were common for several risk factors. We used 3363 multiple imputation to preserve statistical power, and the distribution of imputed variables was similar 4 5 364 to non-missing data. Moreover, like other studies using hospital records, some misclassification in ⁶365 obstetric complication severity was likely, leading to residual unmeasured confounding in case mix ₈366 between hospitals. Indeed, limited granularity was available for severity (within pre-eclampsia, for ⁹367 example), and previous studies indicate obstetric complications may be incompletely recorded or 1868 overestimated in caesarean indications.⁴⁰⁻⁴² As a result, reported odds ratios for risk factors should be 12 13369 interpreted as measures of association within our study population, rather than causal effects. The 1⁄370 15 1⁄371 number of hospitals in our sample was too small to enable us to examine hospital characteristics as risk factors. We were also unable to examine hospital variation in maternal outcomes since post-¹372 18 1973 caesarean morbidity was not collected. Nonetheless, these prospectively collected trial data likely represent the best available clinical data for caesarean sections in sub-Saharan Africa, and it would 20 21 374 have been difficult to further reduce complication misclassification.

22 2375 Several recommendations for improving the quality of caesarean care stem from our findings. Two-24376 25 26377 thirds of women were referred immediately prior to the caesarean, and those referred from further away had higher rates of perinatal mortality. There is an urgent need to strengthen emergency ²⁷ 28 29379 referral systems by minimising delays in women reaching surgical facilities, through shared ambulances and maternity waiting homes, for example.⁴³ Delays in receiving treatment after arrival 30 31380 should also be reduced, including through pre-referral notification and patient referral notes.⁴³ 32381 33 34282 Improved antenatal care would help identify women needing an elective caesarean before labour. Monitoring of labour should be improved for all women, including those with risk factors for ³⁵383 36 intrapartum-related mortality, to enable early intervention and prevent perinatal deaths among vaginal 3**7**884 and caesarean births. Provider training in fetal monitoring, supportive supervision, and making low-³⁸385 cost Doppler ultrasounds widely available in hospitals would help improve identification of fetal 4386 distress and stillbirths.⁴⁴ Many stillbirths can be delivered vaginally at lower risk of maternal 41 42³87 complications;⁹ however, suspected stillbirths should be confirmed with ultrasound scans, where ⁴³388 44 4\$389 available, to avoid misdiagnosis. The decision-to-incision interval was not associated with intrapartum-related mortality in our study, likely because of successful prioritisation of higher-risk 46 390 47 women and delayed decision to perform some caesareans. This mirrors the mixed results reported in 4**8**91 the literature, which is based on limited observational data only.⁴⁵ Nonetheless, the estimated median ⁴⁹ 50³92 81 minute interval for caesareans for fetal distress should be reduced closer to the 30 minutes 5393 recommended in the UK and USA,^{46 47} wherever possible. Lastly, improving care for small and sick 52 53€94 newborns – including neonatal resuscitation and intensive care through the Helping babies breathe48 ⁵⁴395 55 5&96 programme and Every Newborn Action Plan⁴⁹ – is essential to increase survival after birth. Provider training in newborn care has been shown to be cost-effective in other African countries.^{50 51} 57

⁵897 Our data also suggest sub-optimal surgical technique which may affect maternal outcomes: although ⁵⁹ the Joel-Cohen incision has advantages over the Pfannenstiel technique,⁵² the latter was used in at

 $\frac{1}{2}$ 399 least 14% of caesareans. An estimated 62% of women received antibiotics only after incision based

3400 on imputed data, contrary to WHO recommendations.⁵³ Universal administration of antibiotic

 $\frac{1}{5}$ 401 prophylaxis before incision could help reduce the incidence of surgical site infection and sepsis,

⁶402 which accounts for 10% of maternal deaths in sub-Saharan Africa.⁵⁴ The Lancet Global Surgery

commission recommendations for improving access to and the safety of essential surgical services in
 low-resource settings should be followed,⁵⁵ first and foremost the creation of a national surgical plan
 including provisions for healthcare delivery, human resources, financing, and information

 $^{12}_{13}$ management.

15407 Conclusions

14

35

42

46

51

16 17408 Women giving birth by caesarean section in Burkina Faso face a high risk of perinatal death. Our 18 19</sub>409 study found variation in intrapartum-related perinatal mortality between hospitals remained after 20410 adjustment for case mix, indicating that differences in quality of care contribute to variation in 21 2211 perinatal mortality. Improving access to caesareans and the quality of caesarean care in the region is ²³412 24 a considerable challenge for Ministries of Health and reproductive health partners in West Africa; ∠4 2**≴**13 improving training and resources for fetal distress monitoring, reducing decision-to-incision intervals, ²⁶ 414 27 and improving resuscitation and care of newborns seem important priorities to enable more babies to 28415 survive at birth. 29

3417 Footnotes

Author contributions: FC conceptualised the study, with help from CR. CK and AD designed the DECIDE trial and oversaw data collection. FC designed the analyses and analysed the data, with
 support from RP, RB and AD. All authors, including SS and APB, contributed to the interpretation of results and writing of the final manuscript.

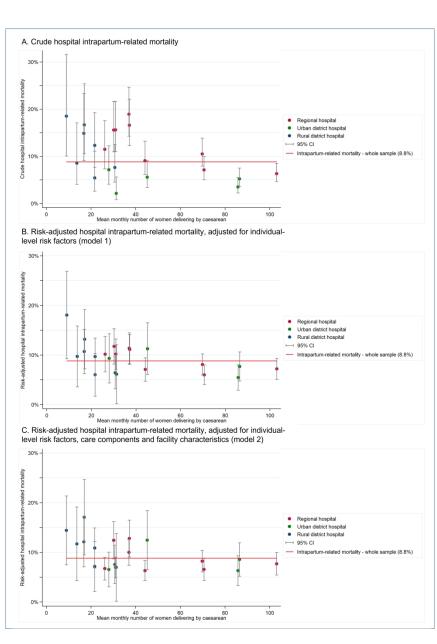
43422
44
45423**Acknowledgments:** We are grateful to Angela Wood at the University of Cambridge for her help with
designing the imputation model.

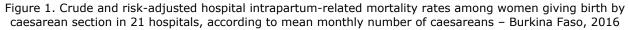
Funding: The DECIDE trial was funded by the French Muskoka Fund (UNICEF) and the Canadian
 Institutes of Health Research. The research presented in this article received no specific grant from
 any agency in the public, commercial or not-for-profit sectors.

⁵²427 **Competing interests:** none declared.

 ⁵⁴ ₅₅428 **Data sharing statement:** No data are available. Reasonable requests may be directed to Dr Charles
 ⁵⁶429 Kaboré (<u>kaborewendyam@yahoo.fr</u>).

¹ ₂ 431	List of figures
3 4432	
5 6433 7434 8435	Figure 1. Crude and risk-adjusted hospital intrapartum-related mortality rates among women giving birth by caesarean section in 21 hospitals, according to mean monthly number of caesareans – Burkina Faso, 2016
9 1 0 436	
11 1 <u>2</u> 437 1 <u>3</u> 438	Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016
14 15439	
¹⁶ 440 17	
18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29	
30 31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53	
54 55	
56 57	
58	
59 60	


¹ ₂ 442	References
3	1 Mantany D. Cudhingraset M. Diamond Smith N. et al. Where weren as to delivery understanding the
443 5444	1. Montagu D, Sudhinaraset M, Diamond-Smith N, et al. Where women go to deliver: understanding the changing landscape of childbirth in Africa and Asia. <i>Health Policy and Planning</i> 2017;32(8):1146-52.
$^{5}_{445}$	doi: 10.1093/heapol/czx060
6445 7446 7447 8447 9449 10450	2. Gabrysch S, Nesbitt RC, Schoeps A, et al. Does facility birth reduce maternal and perinatal mortality in
[′] 8447	Brong Ahafo, Ghana? A secondary analysis using data on 119 244 pregnancies from two cluster-
[°] 448	randomised controlled trials. The Lancet Global Health 2019;7(8):e1074-e87. doi:
10 ₁₅₀	https://doi.org/10.1016/S2214-109X(19)30165-2 3. Kunkel M, Marete I, Cheng ER, et al. Place of delivery and perinatal mortality in Kenya. <i>Seminars in</i>
¹ 450	Perinatology 2019;43(5):252-59. doi: https://doi.org/10.1053/j.semperi.2019.03.014
¹² 452	4. Cavallaro FL, Benova L, Dioukhane EH, et al. What the percentage of births in facilities does not measure:
¹³ 453	readiness for emergency obstetric care and referral in Senegal. <i>BMJ Global Health</i> 2020;5(3):e001915.
¹ 454	doi: 10.1136/bmjgh-2019-001915
15455	5. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean
16456	sections. <i>The Lancet</i> 2018;392(10155):1341-48. doi: 10.1016/S0140-6736(18)31928-7
17457 18458	6. Cavallaro FL, Pembe AB, Campbell O, et al. Caesarean section provision and readiness in Tanzania: analysis of cross-sectional surveys of women and health facilities over time. <i>BMJ Open</i>
19459	2018;8(9):e024216. doi: 10.1136/bmjopen-2018-024216
20460	7. Benova L, Dennis ML, Lange IL, et al. Two decades of antenatal and delivery care in Uganda: a cross-
2 1461	sectional study using Demographic and Health Surveys. BMC Health Services Research
22462	2018;18(1):758. doi: 10.1186/s12913-018-3546-3
2 3 463	8. Biccard BM, Madiba TE, Kluyts HL, et al. Perioperative patient outcomes in the African Surgical Outcomes
2 4 64 2 3 65	Study: a 7-day prospective observational cohort study. <i>Lancet</i> 2018 doi: 10.1016/s0140- 6736(18)30001-1
26 ⁴ 66	9. Sobhy S, Arroyo-Manzano D, Murugesu N, et al. Maternal and perinatal mortality and complications
- 4 67	associated with caesarean section in low-income and middle-income countries: a systematic review
28468	and meta-analysis. The Lancet 2019;393(10184):1973-82. doi: https://doi.org/10.1016/S0140-
29469	6736(18)32386-9
30/171	10. Compaoré GD, Sombié I, Ganaba R, et al. Readiness of district and regional hospitals in Burkina Faso to provide caesarean section and blood transfusion services: a cross-sectional study. <i>BMC Pregnancy</i>
³¹⁷⁷ 472	and Childbirth 2014;14(1):158. doi: 10.1186/1471-2393-14-158
2/468 2/469 2/469 3/470 3/471 3/472 3/473 3/472 3/473 3/472	11. Richard F, Ouédraogo C, De Brouwere V. Quality cesarean delivery in Ouagadougou, Burkina Faso: A
³³ 474	comprehensive approach. Int J Gynecol Obstet 2008;103(3):283-90. doi:
~ 4/5	http://dx.doi.org/10.1016/j.ijgo.2008.08.008
³⁵ 476 ³⁶ 477	12. Nyamtema A, Mwakatundu N, Dominico S, et al. Increasing the availability and quality of caesarean section in Tanzania. <i>Bjog</i> 2016;123(10):1676-82. doi: 10.1111/1471-0528.14223
³⁷ 478	13. Kasongo S, Mukuku O, Kinenkinda X, et al. Kakoma JB. Quality of Caesarean Delivery and its Deter-
38479	minants in Lubumbashi, Democratic Republic of Congo. Ann Obstet Gynecol 2020;1:1014.
39480	14. Bishop D, Dyer RA, Maswime S, et al. Maternal and neonatal outcomes after caesarean delivery in the
40481	African Surgical Outcomes Study: a 7-day prospective observational cohort study. The Lancet Global
41482 4 2 483	Health 2019;7(4):e513-e22. doi: 10.1016/S2214-109X(19)30036-1
4 4 63 4 3 484	15. Bragg F, Cromwell DA, Edozien LC, et al. Variation in rates of caesarean section among English NHS trusts after accounting for maternal and clinical risk: cross sectional study. <i>BMJ</i> 2010;341:c5065. doi:
4 4 85	10.1136/bmj.c5065
4 5186	16. Schemann K, Patterson JA, Nippita TA, et al. Variation in hospital caesarean section rates for women with
46487	at least one previous caesarean section: a population based cohort study. BMC Pregnancy and
47488	Childbirth 2015;15(1):179. doi: 10.1186/s12884-015-0609-x
4 8 489	17. Bailit JL, Love TE, Dawson NV. Quality of obstetric care and risk-adjusted primary cesarean delivery rates. <i>Am J Obstet Gynecol</i> 2006;194(2):402-7. doi: 10.1016/j.ajog.2005.07.045
4 9 90 5 6 91	18. Kabore C, Ridde V, Kouanda S, et al. DECIDE: a cluster randomized controlled trial to reduce non-
50.01 ⊊492	medically indicated caesareans in Burkina Faso. <i>BMC Pregnancy Childbirth</i> 2016;16(1):322. doi:
5 <mark>4</mark> 93	10.1186/s12884-016-1112-8
² 494	19. Global Health Observatory. Births by caesarean section - Data by country. 2018 [Available:
5492 5493 52494 53495 5495 5496 5497 5497	<u>http://apps.who.int/gho/data/view.main.BIRTHSBYCAESAREANv</u> accessed December 2019] 20. Institut National de la Statistique et de la Démographie (INSD) and ICF International. Enquête
⁵⁵ 197	Démographique et de Santé et à Indicateurs Multiples du Burkina Faso 2010. Calverton, Maryland,
-498	USA: ISND and ICF International; 2012 [Available: https://dhsprogram.com/pubs/pdf/FR256/FR256.pdf
⁵ 499	accessed December 2019]
⁵ 500	21. Boatin AA, Schlotheuber A, Betran AP, et al. Within country inequalities in caesarean section rates:
⁵ 501 60502	observational study of 72 low and middle income countries. <i>BMJ</i> 2018;360:k55. doi: 10.1136/bmj.k55
503	22. INSD. Enquête multisectorielle continue (EMC) 2014 - Santé générale et santé de la reproduction. Institut national de la statistique et de la démographie [Burkina Faso]; 2015 [Available:


c

¹ 504	http://www.insd.bf/n/contenu/enquetes recensements/Eng EMC/Sante generale et Sante de la r%
$^{2}_{2}505$	e9production.pdf accessed October 2019]
³ 506	23. Witter S, Boukhalfa C, Cresswell JA, et al. Cost and impact of policies to remove and reduce fees for
⁴ 507	obstetric care in Benin, Burkina Faso, Mali and Morocco. International Journal for Equity in Health
⁵ 508	2016;15(1):123. doi: 10.1186/s12939-016-0412-y
⁶ 509	24. Ganaba R, Ilboudo PGC, Cresswell JA, et al. The obstetric care subsidy policy in Burkina Faso: what are
⁷ 510	the effects after five years of implementation? Findings of a complex evaluation. BMC Pregnancy and
⁸ 511	Childbirth 2016;16(1):84. doi: 10.1186/s12884-016-0875-2
⁹ 512	25. Ridde V, Richard F, Bicaba A, et al. The national subsidy for deliveries and emergency obstetric care in
1 5 13	Burkina Faso. Health Policy Plan 2011;26 Suppl 2:ii30-40. doi: 10.1093/heapol/czr060
1514	26. Richard F, Zongo S, Ouattara F. Fear, guilt, and debt: an exploration of women's experience and
12515	perception of cesarean birth in Burkina Faso, West Africa. Int J Womens Health 2014;6:469-78. doi:
13516	10.2147/ijwh.S54742
14517	27. Ministère de la Santé du Burkina Faso. Annuaire Statistique 2016, 2017.
1 5 18	28. Goldenberg RL, McClure EM, Kamath BD. Intrapartum perinatal mortality. <i>Indian pediatrics</i> 2012;49(3):187-
1 5 19	88. doi: 10.1007/s13312-012-0050-4 29. MEASURE Evaluation. Intrapartum and very early neonatal death rate. [Available:
1520	<u>https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/intrapartum-and-very-early-</u>
1521 1522	neonatal-death-rate accessed March 2020]
¹⁹ 22 2523	30. WHO, UNFPA, UNICEF, et al. Monitoring emergency obstetric care: a handbook. Geneva, Switzerland:
2020	World Health Organisation. 2009 [Available:
$^{2}525$	https://www.who.int/reproductivehealth/publications/monitoring/9789241547734/en/ accessed
$^{22}_{-526}$	November 2019]
$^{23}_{527}$	31. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical
2524 2525 2526 2527 2527 2528 2529 2530 2530 2531	research: potential and pitfalls. BMJ 2009;338:b2393. doi: 10.1136/bmj.b2393
² 529	32. Sanagou M, Wolfe R, Forbes A, et al. Hospital-level associations with 30-day patient mortality after cardiac
2 <u></u> 530	surgery: a tutorial on the application and interpretation of marginal and multilevel logistic regression.
² /531	BMC Medical Research Methodology 2012;12(1):28. doi: 10.1186/1471-2288-12-28
²⁸ 532	33. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: integrating random
²⁹ 533	and fixed effects in multilevel logistic regression. Am J Epidemiol 2005;161(1):81-8. doi:
³ 6 34	10.1093/aje/kwi017
³ Ђ35	34. Larsen K, Petersen JH, Budtz-Jørgensen E, et al. Interpreting parameters in the logistic regression model
32536	with random effects. <i>Biometrics</i> 2000;56(3):909-14. doi: 10.1111/j.0006-341x.2000.00909.x
33537 34538	35. Bartlett JW, Hughes RA. Bootstrap inference for multiple imputation under uncongeniality and
35539	misspecification. Statistical Methods in Medical Research 2020;29(12):3533-46. doi: 10.1177/0962280220932189
35540	36. Kaboré C, Ridde V, Chaillet N, et al. DECIDE: a cluster-randomized controlled trial to reduce unnecessary
35541	caesarean deliveries in Burkina Faso. <i>BMC Medicine</i> 2019;17(1):87. doi: 10.1186/s12916-019-1320-y
35542	37. Fenton PM, Whitty CJM, Reynolds F. Caesarean section in Malawi: prospective study of early maternal and
₃ 5 43	perinatal mortality. BMJ 2003;327(7415):587. doi: 10.1136/bmj.327.7415.587
4 5 44	38. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean
40 40 40 45	section. Cochrane Database Syst Rev 2014;2014(10):Cd007482. doi:
⁴ 1 √546	10.1002/14651858.CD007482.pub3
⁷ ∕ ₄ 547	39. Bollig C, Nothacker M, Lehane C, et al. Prophylactic antibiotics before cord clamping in cesarean delivery: a
⁷ 548	systematic review. Acta Obstet Gyn Scan 2018;97(5):521-35. doi: https://doi.org/10.1111/aogs.13276
4546 45489 4555555555555555555555555555555555555	40. Kabore C, Ridde V, Kouanda S, et al. Determinants of non-medically indicated cesarean deliveries in
4550	Burkina Faso. Int J Gynaecol Obstet 2016;135 Suppl 1:S58-s63. doi: 10.1016/j.ijgo.2016.08.019
4 ,551	41. Landry E, Pett C, Fiorentino R, et al. Assessing the quality of record keeping for cesarean deliveries: results
4552	from a multicenter retrospective record review in five low-income countries. BMC Pregnancy and
4953	Childbirth 2014;14(1):139.
50-54	42. Cavallaro FL, Hurt LS, Cresswell JA, et al. Testing the assumptions of an indicator of unmet need for
5155	obstetric surgery in Ghana: A cross-sectional study of linked hospital and population-based delivery
⁵ 556 5 2 557	data. <i>Birth</i> 2019;46(4):638-47. doi: <u>https://doi.org/10.1111/birt.12452</u> 43. Pittalis C. Brucha P. Gajewski, J. Surgical referral systems in low, and middle income countries: A review of
53558	43. Pittalis C, Brugha R, Gajewski J. Surgical referral systems in low- and middle-income countries: A review of the evidence. PLOS ONE 2019;14(9):e0223328. doi: 10.1371/journal.pone.0223328
54559	44. Byaruhanga R, Bassani DG, Jagau A, et al. Use of wind-up fetal Doppler versus Pinard for fetal heart rate
55560	intermittent monitoring in labour: a randomised clinical trial. <i>BMJ Open</i> 2015;5(1):e006867. doi:
5 5 61	10.1136/bmjopen-2014-006867
57562	45. Cavallaro FL, Marchant TJ. Responsiveness of emergency obstetric care systems in low- and middle-
5\$563	income countries: a critical review of the "third delay". Acta Obstet Gyn Scan 2013;92(5):496-507. doi:
5 9564	10.1111/aogs.12071
6065	46. RCOG. Classification of urgency of caesarean section - a continuum of risk. Royal College of Obstetricians
566	and Gynaecologists, Royal College of Anaesthetists; 2010 [Available:

¹ 567 ² 568 ³ 569	https://www.rcog.org.uk/globalassets/documents/guidelines/goodpractice11classificationofurgency.pdf
2568	accessed November 2019]
³ 569	47. ACOG. Standards for Obstetric Services. Sixth ed. In: The College, ed. Washington, DC, 1988.
⁴ 570	48. Versantvoort JMD, Kleinhout MY, Ockhuijsen HDL, et al. Helping Babies Breathe and its effects on
⁵ 571	intrapartum-related stillbirths and neonatal mortality in low-resource settings: a systematic review.
⁶ 572	Archives of Disease in Childhood 2020;105(2):127-33. doi: 10.1136/archdischild-2018-316319
7573	49. WHO, UNICEF. Every Newborn: an action plan to end preventable deaths. Geneva: World Health
⁸ 574	Organization; 2014 [Available: https://www.healthynewbornnetwork.org/hnn-
⁹ 575	content/uploads/Every Newborn Action Plan-ENGLISH updated July2014.pdf accessed May 2021]
10576	50. Bogdewic S, Ramaswamy R, Goodman DM, et al. The cost-effectiveness of a program to reduce
1577	intrapartum and neonatal mortality in a referral hospital in Ghana. PLOS ONE 2020;15(11):e0242170.
12578	doi: 10.1371/journal.pone.0242170
13579	51. Manasyan A, Chomba E, McClure EM, et al. Cost-effectiveness of essential newborn care training in urban
14580	first-level facilities. <i>Pediatrics</i> 2011;127(5):e1176-e81. doi: 10.1542/peds.2010-2158
1581	52. Mathai M, Hofmeyr GJ, Mathai NE. Abdominal surgical incisions for caesarean section. Cochrane Database
1 5 82	Syst Rev 2013(5):Cd004453. doi: 10.1002/14651858.CD004453.pub3
1 5 83	53. WHO. WHO recommendations for prevention and treatment of maternal peripartum infections. Geneva:
1,584	World Health Organization; 2015 [Available:
1804	https://apps.who.int/iris/bitstream/handle/10665/186171/9789241549363_eng.pdf?sequence=1
1900	accessed June 2019]
2000	54. Seale AC, Mwaniki M, Newton CRJC, et al. Maternal and early onset neonatal bacterial sepsis: burden and
2588	strategies for prevention in sub-Saharan Africa. <i>The Lancet Infectious Diseases</i> 2009;9(7):428-38. doi:
22580	https://doi.org/10.1016/S1473-3099(09)70172-0
1884 1985 2086 2587 2588 2589 2590 2591 2592 2692	55. Meara JG, Leather AJM, Hagander L, et al. Global Surgery 2030: evidence and solutions for achieving
² 461	health, welfare, and economic development. <i>The Lancet</i> 2015;386(9993):569-624. doi: 10.1016/S0140-
2502	6736(15)60160-X
26	0/50(15)00100-X
27593	6736(15)6016ó-X
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

355x496mm (330 x 330 DPI)

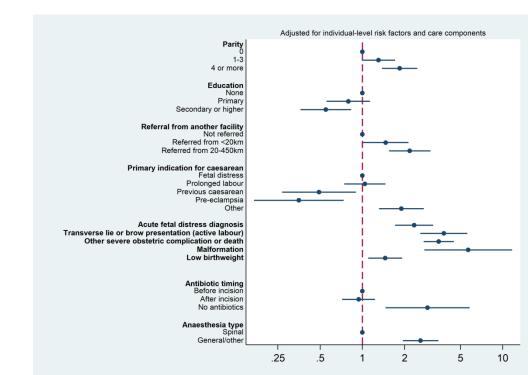


Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016

1058x769mm (72 x 72 DPI)

Supplementary materials

Supplementary Figure 1. Odds ratios and 95% confidence intervals for individual-level risk factors for intrapartum-related mortality (model 1)

median
$$OR = exp[\sqrt{2 \times \tau^2 \times 0.6745}]$$

where τ^2 is the hospital-level variance.

Supplementary Table 1. Missing data for risk factors for intrapartum-related perinatal mortality among 5,134 women in sample

Variable	N total expected	N missing	% missing (whole sample)	% missin (sub- sample
Risk factors for which all women are exp	ected to h	ave data	oumpic)	Jampi
Maternal age	5,134	102	2.0	_
Parity	5,134	10	0.2	_
Education	5,134	74	1.4	_
Previous caesarean	5,134	0	0	-
Number of antenatal visits	5,134	382	7.4	-
Multiple pregnancy	5,134	0	0	-
Malformation	5,134	396	7.7	-
Birthweight	5,134	253	4.9	-
Acute fetal distress diagnosis	5,134	496	9.7	-
Transverse lie or brow presentation	5,134	0	0	-
Other severe obstetric complication or maternal death	5,134	0	0	-
Neonatal resuscitation	5,134	242	4.7	-
Labour phase	5,134	0	0	-
Referral status	5,134	0	0	-
Primary indication for caesarean	5,134	0	0	-
Provider deciding to perform caesarean	5,134	7	0.1	-
Provider performing caesarean	5,134	71	1.4	-
Decision-incision interval	5,134	1212	23.6	-
Anaesthesia type	5,134	39	0.8	-
Skin incision type	5,134	176	3.4	
Antibiotic prophylaxis administration	5,134	149	2.9	-
Hospital type	5,134	0	0	-
Monthly caesarean volume	5,134	0	0	-
Risk factors for which a subset of wome	en are expe	cted to have	ve data	
Birthweight for second baby among multiple pregnancies	301	91	1.8	30.2
Referral distance among referred women	3,429	1039	20.2	30.3
Timing of antibiotic administration among women receiving antibiotic prophylaxis	4,918	1159	22.6	23.6
Variable used in the imputation model b	ut not in th	e risk fact	or analysis	5
Gestational age at birth	5,134	2808	54.7	-

1 Supplementary Table 2. Characteristics of women with missing data on risk factors among 5,134 2 women in sample 3 4 Missing Missing Missing 5 data for 4 data for 0 data for 6 or more Dick fr ы 1 1 2 rial

0	Risk factor	Ν	risk	1-3 risk	or more
7			factors	factors	risk
8			(row %)	(row %)	factors
9			(/	()	(row %)
10	Maternal age				
11 12	13-19	883	31	65	4
12	20-29	2,376	33	63	4
15 14	30-39	1,612	33	63	4
14 15	40-49	161	26	70	4
15	Missing	102	0	90	10
10	Parity				
18	0	1,784	33	64	4
10	1-3	2,358	32	64	4
20	4 or more	982	29	67	4
21	Missing	10	0	70	30
22	Education	10	0	70	
23		3,256	31	65	4
24	None				4
25	Primary	724	29	66	
26	Secondary or higher	1,080	38	60	2
27	Missing	74	0	88	12
28	Previous caesarean				
29	No	3,776	31	65	4
30	Yes	1,308	33	64	3
31	Missing	50	24	54	22
32	Number of antenatal care visits				
33	0	42	19	76	5
34	1-3	1,899	32	65	3
35	4 or more	2,811	36	61	3
36	Missing	382	0	87	13
37	Multiple pregnancy	002		01	10
38	No	4,833	32	64	4
39		301	20	71	9
40	Yes	301	20	/ 1	9
41	Congenital malformation	4 00 4	05	0.4	0
42	No	4,694	35	64	2
43	Yes	44	14	77	9
44	Missing	396	0	73	27
45	Gestational age at birth				
46	Preterm	286	26	69	6
47	Term	2,040	36	61	3
48	Missing	2,715	30	66	4
49	Birthweight				
50	Birthweight>=2,500g	4,071	35	63	2
51	Birthweight<2,500g	775	28	68	3
52 53	Missing	288	0	72	28
53 54	Acute fetal distress			· -	
54 55	No	3,168	34	64	2
55 56	Yes	1,470	37	61	2
50 57		-	0	81	19
58	Missing Transverse lie or brow presentation in active	496	0	01	19
59	labour				
60	No	4,922	32	65	1
	Yes	4,922	29	63	4 8
	100	212	29	03	U

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

death	4 1 2 5	32	64	
No	4,125	29	66	
Yes Neonatal resuscitation	1,009	29	00	
	4,273	34	63	
No Yes	619	27	70	
Missing	242	0	70	
Labour phase	242	0	10	
Pre-labour	1,031	29	67	
Latent phase	1,577	36	61	
Active phase	2,526	30	66	
Referral status	2,020	00	00	
Not referred before caesarean	1,705	39	58	
Referred before caesarean	3,429	28	68	
Referral distance	0,420	20	00	
<20km	911	43	55	
20-450km	1,479	39	58	
Distance unknown	1,039	0	94	
Primary indication for caesarean	1,000	0		
Fetal distress	1,125	36	61	-
Prolonged labour	1,695	31	66	-
Previous caesarean	830	30	66	
Pre-eclampsia	193	28	67	
Other	1,291	31	64	
Provider cadre deciding to perform caesarean	1,201	01	01	
Obstetrician	3,129	37	60	
Generalist doctor with emergency surgical	0,1=0	•		İ –
training	936	27	68	
Generalist doctor	446	21	74	
Midwife	500	24	73	
Non-physician provider with surgical skills	116	7	86	
Missing	7	0	71	
Provider cadre performing caesarean		4		
Obstetrician	1,905	32	63	
Generalist doctor	895	28	67	
Non-physician provider with obstetrics skills	224	18	81	
Non-physician provider with surgical skills	2,039	36	62	
Missing	71	0	92	
Decision-to-incision interval				
<60min	878	36	61	
≥60min	3,044	43	56	
Missing	1,212	0	89	
Anaesthesia type				
Spinal	4,505	32	64	
General/other	590	29	66	
Missing	39	0	46	
Skin incision type				
Joel-Cohen	4,128	34	63	
Pfannenstiel	730	27	70	
Midline/other	100	25	72	
Missing	176	0	78	
Uterine incision type				
Lower segment	4,921	33	64	
Other	161	11	86	
Missing	52	0	60	

1	Antibiotic prophylaxis administration				
2 3	Antibiotics before incision	1,434	43	56	1
5 4	Antibiotics after incision	2,325	43	56	1
5	Antibiotics, timing unclear	1,159	0	90	10
6	No recorded antibiotics	67	24	75	1
7	Missing	149	0	74	26
8	Hospital type				
9	Regional hospital	2,693	39	58	2
10	Urban district hospital	1,659	26	70	4
11	Rural district hospital	782	18	75	7
12	Mean monthly caesarean volume	102	10	10	
13	<30	923	25	70	4
14	30-60	1,717	20	74	5
15					2
16	00-103	2,434	72	50	Z
17 18					
18 19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32 33					
33 34					
34 35					
36					
37					
38					
39					
40	60-105				
41					
42					
43					
44					
45					
46					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

							Ġ.	
				F	Perinatal outcom	es	-055241	
	N women	Macerated stillbirths (per 1,000)	Fresh stillbirths (per 1,000)	Apgar score <3, live birth (per 1,000)	Neonatal death within 24 hrs of birth (per 1,000)	Neonatal death after 24 hrs, before discharge (per 1,000)	Intrapartum- related perinata death (per 1,000)	Total perinatal death before discharge (per 1,000)
Total	5,134	7 [5-9]	65 [58-72]	24 [20-29]	23 [20-28]	3 [2-5]	88 ⊡ [81-96]≨	98 [90-107]
Range across hospitals	5,134	0-23	16-135	0-90	0-90	0-32	21-189	32-243
Facility type								
Regional hospital	2,693	9 [6-14]	78 [68-89]	32 [26-39]	30 [24-37]	4 [2-7]	108	121 [109-134]
Urban district hospital	1,659	3 [1-7]	36 [28-46]	9 [5-15]	10 [06-16]	2 [1-6]	46 [37-57]	51 [42-63]
Rural district hospital	782	5 [2-14]	81 [63-102]	31 [21-45]	29 [20-44]	4 [1-12]	110 🔓 [90-134	119 [98-144]
P-value	-	0.08	<0.001	0.029	0.016	0.793	0.001	0.001
							com/ on April 19, 2024 by guest. Protected by copyright	
		F	or peer review	only - http://bmj	open.bmj.com/sit	e/about/guidelir	-	

1

Supplementary table 4. Risk factors for intrapartum-related deaths among 5,134 women giving birth by caesarean section in 21 hospitals – Burkina Faso, 2016

Risk factor	Unadjusted OR (95% CI)	Model 1ª (95% CI)	Model 2 ^b (95% Cl)
Individual-level clinical risk factors			
Maternal age			
13-19	1 [ref]	-	-
20-29	1.31 (0.98-1.76)	-	-
30-39	1.56 (1.15-2.10)	-	-
40-54	2.09 (1.21-3.58)	-	-
Parity			
0	1 [ref]	1 [ref]	1 [ref]
1-3	1.15 (0.90-1.47)	0.80 (0.56-1.13)	1.30 (0.99-1.7
4 or more	2.46 (1.91-3.18)	0.52 (0.34-0.78)	1.84 (1.38-2.46
Education			
None	1 [ref]	1 [ref]	1 [ref]
Primary	0.64 (0.46-0.89)	0.89 (0.61-1.31)	0.79 (0.56-1.13
Secondary or higher	0.31 (0.21-0.46)	0.53 (0.34-0.85)	0.55 (0.36-0.83
Number of previous caesareans			
0	1 [ref]	-	-
1 or more	0.39 (0.29-0.52)	-	-
Number of ANC visits			
0	1 [ref]	1 [ref]	-
1-3	0.58 (0.24-1.36)	0.54 (0.19-1.48)	-
4 or more	0.35 (0.15-0.81)	0.43 (0.16-1.18)	-
Multiple pregnancy			
No	1 [ref]	-	-
Yes	1.43 (0.99-2.07)	-	-
Malformation		7	
No	1 [ref]	1 [ref]	1 [ref]
Yes	7.15 (3.75-13.64)	6.01 (2.95-12.23)	5.67 (2.79-11.5
Birthweight			
Birthweight ≥2,500g	1 [ref]	1 [ref]	1 [ref]
Birthweight <2,500g	1.77 (1.39-2.25)	1.50 (1.14-1.97)	1.45 (1.10-1.92
Diagnosis of acute fetal distress	(
No	1 [ref]	1 [ref]	1 [ref]
Yes	2.26 (1.79-2.86)	2.42 (1.80-3.26)	2.34 (1.72-3.1)
Transverse lie or brow presentation in active labour		(
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.69 (2.65-5.13)	3.56 (2.43-5.22)	3.81 (2.59-5.59
Other severe obstetric complication or maternal death			
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.49 (2.84-4.29)	3.88 (3.04-4.95)	3.50 (2.73-4.49
Labour phase			
Pre-labour	1 [ref]	-	-
Latent phase	1.20 (0.84-1.71)	-	-
Active phase	2.12 (1.53-2.92)	-	-

¢

Referral status			
Not referred	1 [ref]	1 [ref]	1 [ref]
Referred from <20km	2.17 (1.51-3.11)	1.52 (1.04-2.21)	1.46 (1.01-2
Referred from 20-450km	4.24 (3.10-5.80)	2.17 (1.55-3.04)	2.18 (1.55-3
Decision-to-delivery interval			
<60 minutes	1 [ref]	-	-
≥60 minutes	0.85 (0.65-1.11)	-	-
Primary indication for caesarean			
Fetal distress	1 [ref]	1 [ref]	1 [ref]
Prolonged labour	1.10 (0.85-1.43)	1.14 (0.81-1.59)	1.04 (0.74-1
Previous caesarean	0.23 (0.13-0.39)	0.51 (0.28-0.92)	0.49 (0.27-0
Pre-eclampsia	0.59 (0.31-1.13)	0.38 (0.19-0.80)	0.35 (0.17-0
Other	1.37 (1.04-1.80)	2.08 (1.44-3.00)	1.90 (1.31-2
Caesarean care components and hospita	I characteristics		
Provider cadre deciding the caesarean			
Obstetrician	1 [ref]		-
Generalist doctor with emergency surgical training	1.20 (0.84-1.73)		-
Generalist doctor	1.20 (0.73-1.96)		-
Midwife	1.78 (1.07-2.96)		-
Non-physician provider with surgical skills ^c	1.87 (0.82-4.28)		-
Provider cadre performing the caesarean			
Obstetrician	1 [ref]		-
Generalist doctor	0.94 (0.62-1.44)		-
Non-physician provider with obstetrics skills ^d	1.47 (0.81-2.68)		-
Non-physician provider with surgical skills ^c	1.01 (0.68-1.49)		-
Type of anaesthesia		4	
Spinal	1 [ref]		1 [ref]
General/other	4.46 (3.41-5.84)		2.60 (1.94-3
Type of skin incision			
Joel-Cohen	1 [ref]		-
Other	0.89 (0.62-1.28)		-
Type of uterine incision			
Lower segment	1 [ref]		-
Other	1.23 (0.69-2.19)		-
Antibiotics administration			
Antibiotics before incision	1 [ref]		1 [ref]
Antibiotics after incision	0.99 (0.74-1.31)		0.94 (0.72-1
No recorded antibiotics	2.31 (1.25-4.25)		2.91 (1.46-5
Neonatal resuscitation			
No	1 [ref]		-
Yes	1.71 (1.31-2.24)		-
Hospital type			
Regional hospital	1 [ref]		-
Urban district hospital	0.36 (0.23-0.58)		-

<30	1 [ref]		
30-60	0.93 (0.55-1.57)		-
60-105	0.53 (0.30-0.94)		-
^a Model 1 was built by manual backward including all variables with p<0.25 in the p<0.25 in the unadjusted model but was ^b Model 2 was built by adding all care co	e unadjusted model, with s removed due to collinea omponents and hospital cl	the exception of ma arity with parity haracteristics with p	ternal age which ha
by manual backward selection until all r		<0.1	
^c Nurses or midwives with additional 3-y			
^d Midwives with additional 3-year training	g in obstetrics and gynaed	cology, including pe	rforming caesareans

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	3
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	4
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

Page 33 of 33

BMJ Open

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	4
6 7 8 9 10 11 12 13 14 15 16		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	4-5
16 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-6
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	4
21 22 23 24	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5-7
25 26 27 28	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	5-7
29 30 31	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	N/A
32 33 34 35	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5-6
36 37 38 39	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	6-7
40 41 42 43	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	N/A
44 45	Results			
46 47 48 49 50 51 52 53 54	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	7
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	N/A
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	N/A
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 34 of 33

BMJ Open: first published as 10.1136/bmjopen-2021-055241 on 6 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	9-10		
4 5 6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	7, 9-10		
10 11 12 13	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	7-8		
14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 11-12		
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	7-12		
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A		
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	12		
29 30	Discussion					
31 32	Key results	<u>#18</u>	Summarise key results with reference to study objectives	12		
33 34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	13-14		
39 40 41 42 43	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12-13		
44 45 46	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14-15		
47 48	Other					
49	Information					
50 51 52 53 54	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15		
55 56	The STROBE che	cklist is	distributed under the terms of the Creative Commons Attribution License C	C-BY.		
57 58		-	ted on 05. July 2021 using https://www.goodreports.org/, a tool made by the	2		
59 60	EQUATOR Network in collaboration with Penelope.ai For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Does hospital variation in intrapartum-related perinatal mortality among caesarean births reflect differences in quality of care? Cross-sectional study in 21 hospitals in Burkina Faso

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055241.R2
Article Type:	Original research
Date Submitted by the Author:	09-Sep-2022
Complete List of Authors:	Cavallaro, Francesca; University College London Institute of Child Health; The Health Foundation Kabore, CP; Institut de Recherche en Sciences de la Santé; Institut de Recherche pour le Développement Pearson, Rachel; University College London, UCL Institute of Child Health Blackburn, Ruth; University College London, UCL Institute of Health Informatics Sobhy, Soha ; Queen Mary University of London, Centre for Primary Care and Public Health Betran, Ana Pilar; World Health Organization, UNDP/UNFPA/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction, Department of Sexual and Reproductive Health and Research Ronsmans, Carine ; London School of Hygiene & Tropical Medicine, Department of Infectious Disease Epidemiology Dumont, Alexandre; Université Paris Cité, IRD, Inserm, Ceped
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Epidemiology
Keywords:	OBSTETRICS, PERINATOLOGY, NEONATOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

BMJ Open

1 2	1	Does hospital variation in intrapartum-related perinatal mortality among caesarean births
3 4	2	reflect differences in quality of care? Cross-sectional study in 21 hospitals in Burkina Faso
5 6	3	Francesca L Cavallaro, ^{1*} Charles Paulin Kaboré, ^{2,3} Rachel Pearson, ¹ Ruth Blackburn, ⁴ Soha Sobhy, ⁵
7 8	4	Ana Pilar Betrán, ⁶ Carine Ronsmans, ⁷ Alexandre Dumont ³
9 10	5	¹ UCL Institute of Child Health, University College London, London, UK
11 12	6	² Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
13 14 15	7	³ Université Paris Cité, IRD, Inserm, Ceped, Paris, France
15 16 17	8	⁴ Institute of Health Informatics, University College London, London, UK
18 19	9	⁵ Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University
20	10	of London, London, UK
21 22 1		⁶ UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and
23 24	12	Research Training in Human Reproduction, Department of Sexual and Reproductive Health and
25 1 26		Research, World Health Organization, Geneva, Switzerland
27 28	14	⁷ Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine,
29 1 30 31 1	15	London, UK
32		
33 34	17	Correspondence: Dr Francesca Cavallaro, 8 Salisbury Square, London EC4Y 8AP,
35 1 36		francesca.cavallaro@health.org.uk
37 38	19	
39 40 2	20	Word count: 4,342
41 42		
43		
44 45		
45 46		
47		
48 49		
50		
51		
52 53		
55 54		
55		
56		
57 58		
58 59		
60		

BMJ Open

22 Abstract

Objectives. To examine hospital variation in crude and risk-adjusted rates of intrapartum-related
 perinatal mortality among caesarean births

Design. Secondary analysis of data from the DECIDE cluster randomised trial post-interventionphase

27 Setting. 21 district and regional hospitals in Burkina Faso

28 **Participants**. All 5,134 women giving birth by caesarean section in a 6-month period in 2016

Primary outcome measure. Intrapartum-related perinatal mortality (fresh stillbirth or neonatal death
 within 24 hours of birth)

Results. Almost one in ten of 5,134 women giving birth by caesarean experienced an intrapartumrelated perinatal death. Crude mortality rates varied substantially from 21-189 per 1,000 between hospitals. Variation was markedly reduced after adjusting for case mix differences (the median odds ratio decreased from 1.9 [95% CI: 1.5-2.5] to 1.3 [1.2-1.7]). However, higher and more variable adjusted mortality persisted among hospitals performing fewer caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation (median odds ratio = 1.4 [1.2-1.8]).

38 Conclusions. There is a high burden of intrapartum-related perinatal deaths among caesarean births 39 in Burkina Faso, and sub-Saharan Africa more widely. Variation in adjusted mortality rates indicates 40 likely differences in quality of caesarean care between hospitals, particularly lower-volume hospitals. 41 Improving access to and quality of emergency obstetric and newborn care is an important priority for 42 improving survival of babies at birth.

Keywords: caesarean section, stillbirth, perinatal mortality, hospital variation, Burkina Faso

5 Strengths and limitations of this study

- This is the first study to examine hospital variation in intrapartum-related perinatal mortality among women giving birth by caesarean section in a sub-Saharan African country.
- Our study benefited from inclusion of all caesarean sections performed in a six-month period in 21 regional and district hospitals in Burkina Faso.
- We used high-quality clinical data from the DECIDE cluster-randomised trial, including standardised definitions for diagnoses and indications for caesarean, although some misclassification of obstetric complication severity was likely.
- More than 20% of data were missing for three risk factors (decision-to-incision interval, timing of antibiotics, and referral distance); we used multiple imputation to avoid a loss of power.

1

2 3

4 5 6

7 8 9

10

21

36

Our hospital sample size and limited available information prevented us from examining hospital characteristics as risk factors for perinatal mortality.

57 Introduction

58 While facility births have increased over the past few decades in sub-Saharan Africa,¹ improvements 10 11 59 in maternal and perinatal health have been limited, raising questions about the quality of care in 12 60 health facilities.¹⁻³ In particular, although facility births have increased substantially, increases in 13 14 61 population-based caesarean section rates have been small. Persisting low caesarean rates indicate ¹⁵ 62 that improvements in access to emergency obstetric care have been limited.⁴⁵ Globally, the slowest 16 17 63 rise was observed in West and Central Africa, from 3.0% caesarean births in 2000 to 4.1% in 2015.5 ¹⁸ 19 64 The absolute number of caesareans performed has increased more rapidly due to a rise in total 20 65 number of births – 3- to 5-fold in Senegal. Tanzania and Uganda over the past few decades.467

²² 66 Increases in caesarean births raise concerns in health systems with limited resources and capacity to 23 provide high-quality caesarean care. Caesarean sections account for one third of all surgeries in 24 67 ²⁵ 68 26 Africa, where post-operative morbidity and mortality is higher than in other regions.⁸ A recent meta-27 69 analysis found over 1% mortality among women who deliver by caesarean in sub-Saharan Africa, ²⁸ 29 70 100 times higher than in the UK.⁹ Perinatal mortality is also very high in sub-Saharan Africa, with one 30 7 1 in 10 mothers delivering by caesarean experiencing a stillbirth or early neonatal death.⁹ This high 31 32 **72** mortality is driven both by severe complications before reaching health facilities and low capacity ³³ 73 34 within facilities to provide high-quality care. Indeed, low capacity to provide caesarean section care 35 74 has been reported in Burkina Faso^{10 11} and elsewhere in the region.^{6 12 13}

37 75 In the context of rising caesareans, there is a need to better understand why perinatal mortality is so ³⁸ 39 76 high among women giving birth by caesarean in sub-Saharan Africa. Limited evidence is available on 40 77 inter-hospital variation in outcomes among caesarean births. Hospital type (district, regional, or 41 42 78 national) is independently associated with perinatal mortality in some studies but not others,⁹¹⁴ ⁴³ 79 however severe restrictions in material and human resources restrict capacity to provide high-quality 45 80 care in lower-level and rural facilities.⁴⁶ Comparing variation in crude and risk-adjusted outcome ⁴⁶ 47 81 rates between hospitals is a commonly used approach to determine whether differences between ⁴⁸ 82 hospitals are entirely explained by heterogeneity in case mix. Any remaining variation in risk-adjusted 49 50 83 rates suggest differences in quality of patient care.¹⁵⁻¹⁷ In this study, we examined variation in crude ⁵¹ 84 and adjusted rates of intrapartum-related perinatal mortality among women giving birth by caesarean 53 **85** in 21 district and regional hospitals in Burkina Faso for a six month period in 2016. We used high-⁵⁴ 55 86 quality data from the DECIDE trial to assess the evidence that differences in intrapartum-related 56 87 mortality between individual hospitals and hospital types were driven in part by variation in quality of 57 ₅₈ 88 care.

2 3

4 5

6

7 8

9

BMJ Open

89 Methods

90 This study is a secondary analysis of the DECIDE cluster-randomised controlled trial, which 91 assessed the effectiveness of a multicomponent intervention including provider training, caesarean 92 audits, and SMS reminders to reduce non-medically indicated caesarean sections. The trial included 93 three phases: six-month pre-intervention, one-year intervention, and six-month post-intervention. It 10 94 was conducted in all 22 regional and district hospitals in Burkina Faso performing more than 200 11 12 95 caesareans per year in 2012; university hospitals in Ouagadougou and Bobo-Dioulasso were 13 96 excluded. Detailed trial methods are described elsewhere.¹⁸ 14

15 16 **97** Health system context

¹⁷ 18 98 Similar to other West African countries, the caesarean rate in Burkina Faso is below 5% (3.7% in 19 99 2010-15),¹⁹ with large urban-rural, wealth and educational differentials.^{20 21} Although 85% of births 20 21100 take place in health facilities, 70% occur in primary care facilities without surgical capacity.²² Women ²²101 23 who develop complications requiring a caesarean are referred to medical centres with surgical 24102 capacity (centres médicaux avec antenne chirurgicale, referred to as district hospitals hereafter) or ²⁵ 26</sub>103 regional hospitals. Women with severe complications may be referred onwards to tertiary university 27104 hospitals in the capital Ouagadougou and second largest city Bobo-Dioulasso. Most - but not all -28 29105 district and regional hospitals have at least one obstetrician or generalist doctor trained in emergency ³⁰106 31 obstetric care. Task-shifting of caesarean care has been supported in Burkina Faso through 32107 additional three-year training of nurses and midwives as non-physician providers with surgical skills ³³ 34</sub>108 (attachés en chirurgie) and obstetrics skills (attachés en gynéco-obstétrique). Most anaesthesia care 35109 is provided by nurses with additional training in anaesthesia. More than three quarters of study ³⁶ 37110 hospitals did not have Doppler ultrasounds, CTG monitors or ultrasound capacity, relying on Pinard ³⁸111 39 stethoscopes for assessment of fetal wellbeing. Fetal scalp pH was only available in one hospital.¹⁸

40 41 112 Emergency obstetric care has been subsidised to improve access since 2006, initially with an 80% 42113 subsidy of the cost of caesareans, which were made free to women from 2016 onwards. Hospitals 43 44114 are reimbursed according to the number of caesareans and vaginal births. This policy absorbed 45115 around 3.5% of total health expenditure in 2011.23 However, some costs (formal or informal) not 46 47116 included in the "free" package continue to be borne by households, and remain unaffordable for ⁴⁸117 49 some.^{24 25} Women express fears around caesarean birth related primarily to poor quality of care and 50118 economic burden.26

⁵² 53</sub>119 Participants

51

⁵⁴120 55 56121 We included all 5,134 women giving birth by caesarean section in the 21 study hospitals with caesarean capacity in the post-intervention phase (2nd May-2nd November 2016). One study ⁵⁷ 58 122 hospital's operating theatre was no longer functional in the post-intervention phase. These 21 hospitals accounted for 45% of all caesarean sections performed nationally in 2016.27 Women 5923 60

 $\frac{1}{2}$ delivering by caesarean were included regardless of gestational age, whether they were referred to 3125 the study hospital before the caesarean, or referred to another hospital after birth.

6126 Data source

4 5

14

21

27

50

Patient medical records were used in the DECIDE trial, with prospective data collection in the post intervention phase using data extraction forms and standardised clinical definitions (including for
 labour dystocia, acute fetal distress, and indications for caesarean).¹⁸ We used post-intervention data
 to provide the most recent description for a larger sample.

15131 Outcome

We defined intrapartum-related perinatal mortality as the rate of fresh stillbirths and very early neonatal deaths (within 24 hours of birth) per 1,000 caesareans.^{28 29} Intrapatum-related mortality is recommended by the WHO as an indicator of the quality of emergency obstetric and newborn care.³⁰

²²₂₃35 Risk factors and conceptual approach

We examined two groups of risk factors for intrapartum-related mortality: individual-level clinical risk factors, and caesarean care components and hospital characteristics.

28|38 We conceptualised case mix as the hospital prevalence of clinical risk factors for intrapartum-related 29 30<mark>139</mark> mortality (maternal age, parity, highest educational level achieved, previous caesarean, multiple 3140 32 33141 pregnancy, number of antenatal visits, birthweight, congenital malformation, referral status and distance, labour phase, diagnosis of acute fetal distress, transverse lie/brow presentation in active ³⁴142 35 labour, other severe obstetric complication or maternal death, and primary indication for caesarean). 36143 "Other severe obstetric complications" included severe pre-eclampsia or eclampsia, retro-placental ³⁷ 38 haematoma, uterine (pre-)rupture, and placenta praevia in active labour. Uterine pre-rupture was 39|45 defined as women with severe dystocia and signs of pre-rupture, such as Bandl's ring. Acute fetal 40 41146 distress was defined as fetal heart rate <120 or >160 bpm, either persistent after oxygen ⁴²47 43 4448 administration and lateral decubitus position, or with IUGR, placental abruption, prolonged labour, maternal fever, or meconium-stained amniotic fluid. Some women diagnosed with acute fetal distress ⁴⁵149 46 had a primary indication for caesarean other than "fetal distress" (e.g. pre-eclampsia), while some 47150 women had a caesarean with "fetal distress" recorded as the primary indication despite not having 48 49</sub>151 met the diagnostic criteria for acute fetal distress.

We conceptualised components of caesarean care (provider cadre deciding and performing the caesarean, decision-to-incision interval, anaesthesia type, skin/uterine incision type, and antibiotic prophylaxis administration) and hospital characteristics (hospital type and monthly caesarean volume) as potential indicators of quality of patient care. Monthly caesarean volume was calculated as the mean number of caesareans performed per month in the study period, per hospital.

⁵⁹157 We used these risk factors to derive two sets of risk-adjusted mortality rates per hospital: adjusting 158 for case mix only, and additionally adjusting for components of care and hospital characteristics,

BMJ Open

 $\frac{1}{2}$ because some of these variables might capture unmeasured differences in case mix. For example,

³160 women receiving general anaesthesia are more likely to have complications requiring urgent surgery.

Including these additional variables also allowed us to identify whether any care components (e.g.
 decision-to-incision interval) were strongly associated with mortality. We included care components

 r_8^{9} 163 prior to delivery as risk factors even when they were not hypothesised to causally affect perinatal mortality, since they may be proxies for quality of care.

12165 Multiple imputation of missing data among risk factors

¹³ ¹⁴66 Data were complete for the outcome and nine risk factors, including multiple gestation, indication for ¹⁵ ¹⁶caesarean, and referral status (Supplementary Table 1). 11 risk factors had <5% missing values; six ¹⁷risk factors had >5% missing data, including decision-incision interval (24%) and timing of antibiotic ¹⁸administration (23%). Overall, 68% of women had at least one risk factor missing, and 4% had at ²⁰ro ²¹least four risk factors missing (Supplementary Table 2). Missing information on previous caesarean ²¹was assumed to indicate no previous caesarean (n=40), and missing deciding provider cadre was ²³iro ²⁴ro ²⁴imputed as the hospital mode for seven women.

²³172 24 ²⁵26 26 Multiple imputation by chained equations was used for other variables to avoid a loss in efficiency, 27174 because missing values were likely to be missing at random given known risk factors, including 28 29175 referral status and severe obstetric complication.³¹ Five imputed datasets were created using the mi ³⁰176 31 package in Stata v14.2, including all risk factors and intrapartum-related mortality in the imputation 32177 model. The same model was used for all hospitals, with hospital type included as a risk factor. ³³ 34 78 Missing values for continuous risk factors (age, parity, number of antenatal care visits, referral 35179 distance, birthweight, and decision-to-incision interval) were imputed from linear regression models, ³⁶ 37180 missing values for binary risk factors (acute fetal distress, antibiotic prophylaxis, incision type, ³⁸81 39 4082 anaesthesia type, congenital malformation, and neonatal resuscitation) were imputed from logistic regression models, and categorical risk factors (education, provider cadre performing the caesarean, 41 42 43184 and timing of antibiotic administration) were imputed from multinomial regression models. Gestational age at birth had >50% missing data; it was not considered as a risk factor in the analysis model, ⁴⁴ 45</sub>185 since it is highly correlated with low birthweight, which was more complete and likely to be more 46186 accurate in a setting without routine ultrasound in the first trimester. However, we included 47 48<mark>187</mark> gestational age at birth in the imputation model to improve the prediction of birthweight. Distributions 49<mark>188</mark> 50 of imputed values were compared with observed values for variables with >5% missing data.

51 52189 Hospital variation in intrapartum-related mortality rates

First, we calculated crude hospital intrapartum-related mortality rates with 95% confidence intervals, and described perinatal outcomes according to hospital type. Differences in hospital case mix were assessed by describing the prevalence of clinical risk factor for intrapartum-related mortality among women giving birth by caesarean, stratified by hospital and hospital type. We similarly described ¹/₂194 differences in components of care received. Chi-square tests accounted for clustering of women by
 ³195 hospital using the svyset package in Stata.

⁵ 196 Next, we built two multivariable models for intrapartum-related death among caesarean births using 6 7197 multi-level logistic regression models of women, nested in hospitals to account for clustering. The first ⁸ 198 model (model 1) adjusted for case mix only, and included all individual-level clinical risk factors for 10|99 intrapartum-related mortality with Wald test p-value≤0.25 in bivariate associations, using manual 11 1<u>2</u>00 backward selection to retain only variables with p-values<0.1. The second model (model 2) built upon 13201 14 1*2*202 model 1 by additionally including all care components and hospital characteristics with bivariate Wald test p-value<0.25, and similarly using backward selection to retain only p-values<0.1. Multicollinearity 16 17 17 was examined by reviewing Spearman correlations and model standard errors. In building model 2, 1**2204** provider cadre deciding the caesarean met the criteria for inclusion, however its inclusion reduced 19 20**2**05 the hospital-level estimate almost to zero, indicating that this variable acted as a proxy for broader ²206 ²² 2²207 differences between hospitals. Further inspection showed that deciding providing cadre was highly clustered within hospitals, with one category accounting for >90% of women in 13 of 21 hospitals. We ²⁴208 25 ²⁶27 therefore removed it from risk factors considered for model 2.

We calculated the median odds ratio (OR) for model 1 and 2 as a measure of inter-hospital variation in mortality that is not explained by the model covariates, expressed on the OR scale (see formula in Supplementary Figure 1).³² For a multi-level model, the median OR is defined as the median of the ORs that could be calculated by comparing two patients with identical individual-level characteristics from two, randomly chosen, different hospitals.^{33 34}

35214 Risk-adjusted mortality enables comparisons in hospital outcomes taking into account differences in ³⁶ 3**;**215 case mix.¹⁵⁻¹⁷ Risk-adjusted intrapartum-related mortality rates were calculated for each hospital by ³⁸216 ³⁹ 42217 multiplying the intrapartum-related mortality rate across the study sample by the ratio of the number of observed deaths to predicted deaths based on model 1 and 2 in each hospital. Bootstrapping with 41 42 18 1,000 iterations was used to calculate 95% confidence intervals around both sets of risk-adjusted 42219 hospital mortality rates and found to produce stable estimates. We used the Boot MI percentile 44 4<u>5</u>220 method to produce confidence intervals with nominal coverage.³⁵ We constructed graphs showing 4221 47 48222 risk-adjusted mortality and confidence intervals for each hospital, according to the mean monthly number of caesareans in each hospital, to visually assess any associations between risk-adjusted 4**9** 223 mortality and caesarean volume (Figure 1a-c).

The DECIDE trial found a reduction in avoidable caesareans,³⁶ suggesting changes in caesarean decision-making which may affect intrapartum-related mortality. As a secondary analysis, we added trial group as a risk factor to model 2 to determine whether it was associated with mortality after adjusting for other covariates.

5228 Patient and public involvement

4

34

58

No patients were involved in the design, conducting, reporting or dissemination of this study.

BMJ Open

¹ ₂ 230	Results
3 4231 5232 6 7233 8 9234 10235 11	Our analysis included 5,134 women giving birth by caesarean in the 21 study hospitals. Women with multiple pregnancies, congenital malformation, transverse lie/brow presentation in active labour, whose caesarean was decided by a non-physician provider with surgical skills, and delivering in a rural district hospital were more likely to have missing data for four or more risk factors (Supplementary Table 2).
12 13 ² 36	Hospital variation in intrapartum-related perinatal mortality among caesarean births
$^{14}_{1237}$	Intrapartum-related perinatal mortality was high among caesarean births at 88 per 1,000 [95% CI: 81-
10238	96], including 65 per 1,000 fresh stillbirths and 23 per 1,000 deaths within 24 hours of birth (Table 1).
17 18239 19240 20 21241	Crude mortality rates varied substantially across hospitals, from 21 to 189 per 1,000. Intrapartum- related mortality tended to be higher in hospitals performing fewer caesarean sections (Figure 1A). Intrapartum-related mortality was higher in regional and rural district hospitals than in urban district
²² 242 23	hospitals (110 vs 46 per 1,000, p=0.001). Other perinatal outcomes showed similar patterns
2 4243 25	(Supplementary Table 3).
26 27	(Supplementary Table 3).
28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	
	o

c

Burkina Faso, 2016					spital type
		Fresh stillbirths (per 1,000)	Neonatal death within 24 hrs of births (live babies, per 1,000)	Intrapartum- related perinatal death (per 1,000)ª	Intrapa relat perinata – range a hospi
Total	5,134	65	23	88	21-1
Hospital type					
Regional hospital	2,693	78	30	108	63-1
Urban district hospital	1,659	36	10	46	21-7
Rural district hospital	782	81	29	110	54-1
P-value Fresh stillbirth or neonatal death withi	-	<0.001	0.016	<0.001	-
(Table 2). Regional hospitals ar birth by caesarean than urban o	district hos	pitals, with hig	gher proportio	ns of intrapartu	um caesai
women with high parity, and ref	ierred to th	ie study hospi	tal immediate	ly prior to the c	aesarean
for all).					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

¹ 259 ² 260 3 Table 2. Characteristics of women giving birth by caesarean section, across hospitals and hospital types (N=5,134)

	Range across hospitals	Regional hospital	Urban district hospitalª	Rural district hospital	То
N facilities		9	5	7	2
Monthly caesarean volume (median)	9-103	37	45	17	3′
N women giving birth by caesarean	54-619	2,693	1,659	782	5,13
Age (%)					
13-19	6-31	20.2	10.1	22	17.
20-29	37-53	44.8	49.8	43.9	46.
30-39	22-38	30.1	35.2	27.9	31.
40-49	0-6	3.2	3.3	2.7	3.
Missing	0-8	1.7	1.6	3.6	2.0
Educational level (%)					
None	33-88	73.6	41.8	74.0	63.
Primary 🔨	1-38	7.7	24.1	15.0	14.
Secondary or higher	3-45	17.9	31.2	10.2	21
Missing	0-9	0.7	3.0	0.8	1.4
Parity (%)					
0	30-43	34.4	35.2	35.0	34.
1-3	31-64	42.9	53.8	39.5	45.
4 or more	5-37	22.5	10.9	25.1	19.
Missing	0-2	0.2	0.1	0.4	0.2
Number of previous caesarean sections (%)					
0	60-89	76.3	66.9	78.3	73.
1	6-31	17.9	22.4	14.8	18.
2-4	2-13	4.9	9.8	5.8	6.6
Missing	0-4	0.9	1.0	1.2	1.
Number of antenatal visits (%)					
0	0-6	0.9	0.4	1.3	0.
1-3	19-74	36.5	36.4	40.0	37.
4 or more	21-71	53.5	58.1	52.0	54.
Missing	1-24	9.1	5.1	6.6	7.4
Multiple pregnancy (%)					
Yes	2-10	5.8	6.1	5.8	5.9
Congenital malformation (%)					
No	30-100	91.3	92.7	89.1	91.
Yes	0-4	1.2	0.4	0.6	0.9
Missing	0-69	7.5	6.9	10.2	7.
Birthweight (%)					
Birthweight>=2,500g	65-95	77.8	80.6	81.8	79.
Birthweight<2,500g	2-29	17.2	13.2	11.9	15
Missing	1-16	5.1	6.2	6.3	5.6
Referral for antepartum complications or during labour (%)					
Yes	26-89	74.7	50.7	73.7	66
Distance from referring facility (%)					
<20km	0-85	18.7	47.4	23.4	26
20-450km	0-86	48.7	11.8	69.6	43.
Distance unknown	0-99	32.6	40.8	6.9	30.

No	2-49	15	34.1	8.1	20.1
Yes	51-98	85	65.9	91.9	79.9
Primary indication for caesarean (%)					
Fetal distress	7-36	24.5	17.0	23.3	21.9
Prolonged labour	23-67	33.1	28.6	42.1	33.
Previous caesarean	7-33	12.1	24.3	12.8	16.
Pre-eclampsia	0-8	4.2	4.1	1.7	3.8
Other	15-37	26.1	26	20.2	25.
Diagnosis of acute fetal distress (%)	12-43	32.3	22.8	28.5	28.
Transverse lie/brow presentation in active labour (%)	1-11	4.8	2.6	5.0	4.1
Other severe obstetric complication or maternal death (%)	6-38	22.6	14.3	19.6	19.
Severe pre-eclampsia/eclampsia	2-13	6.4	6.1	3.2	5.8
Retro-placental haematoma	0-5	2.8	1.5	1.4	2.2
Placenta praevia in active labour	0- 5	2	0.7	0.9	1.4
Uterine (pre)-rupture	2-24	12.3	6.4	15.0	10.
Maternal mortality (per 100,000)	0-637	297	241	256	27

Hospital variation in caesarean care received

Caesarean care differed between hospitals (Table 3). We found large differences in the type of 29 265 provider (cadre) deciding for or conducting the caesarean between hospitals, with obstetricians deciding and performing 100% of caesareans in some hospitals, and non-physician providers 3**2**67 deciding and performing over 90% of caesareans in others. Rural district hospitals relied primarily on ³³268 34 generalist doctors and non-physician providers, while urban district hospitals relied primarily on obstetricians.

Hospitals reported up to 54% of caesareans performed more than one hour after decision. Almost 39271 90% of all caesareans were performed under spinal anaesthesia, however in some hospitals 70% of 41 42273 caesareans were performed under general anaesthesia. General anaesthesia was more common in regional hospitals. Incision technique also showed important variation between hospitals, less so 274 44 between hospital type. Antibiotic use was almost universal, recorded in 96% of women, but administered after skin incision in at least 41% of caesareans (62% estimated with imputed data, and 4776 up to 94% in individual hospitals).

2	
3	
4	
5	
~	

¹₂278 Table 3. Caesarean care received by women, across hospitals and hospital types (N=5,134)

	Range across hospitals	Regional hospital	Urban district hospital	Rural district hospital	Total
N women	54-619	2,693	1,659	782	5,134
Cadre of provider deciding to perform caesarean	54-019	2,095	1,009	102	5,154
Obstetrician	0-100	69.6	75.5	0.4	60.9
Generalist doctor with emergency surgical training	0-96	5.0	23.5	52.7	18.2
Generalist doctor	0-90	9.0	0.4	26.0	8.7
Midwife	0-00	16.1	0.4	7.5	9.7
Non-physician provider with surgical skills ^a	0-94	0.3	0.1	13.0	2.3
Missing	0-2	0.1	-	0.4	0.1
Cadre of provider who performed caesarean					
Obstetrician	0-100	28.3	68.9	0.1	37.1
Generalist doctor	0-88	13.0	11.8	44.6	17.4
Non-physician provider with obstetrics skills ^b	0-65	8.0	0.2	0.6	4.4
Non-physician provider with surgical skills ^a	0-94	48.3	18.9	54.2	39.7
Missing	0-8	2.4	0.2	0.4	1.4
Decision-to-incision interval					
<60 minutes	3-84	64.1	61.2	31.6	60.3
≥60 minutes	1-54	18.7	11.4	17.0	16.1
Missing	3-97	13.2	27.4	51.4	23.6
Type of anaesthesia					
Spinal	30-100	83.8	91	94.5	87.7
General/other	0-70	16.0	7.7	4.2	11.5
Missing	0-4	0.3	1.3	1.3	0.8
Type of skin incision					
Joel-Cohen	9-100	79.6	83.1	77.5	80.4
Pfannenstiel	0-84	16.8	12.1	9.7	14.2
Midline/other	0-11	2.8	1.1	0.9	1.9
Missing	0-39	0.8	3.7	11.9	3.4
Type of uterine incision			-		-
Lower segment	45-100	94.7	98.3	94.8	95.9
Other	0-55	5.2	0.6	1.3	3.1
Missing	0-12	0.1	1.1	4.0	1.0
Antibiotic administration					
Antibiotics before incision	0-87	32.5	26.6	15.0	27.9
Antibiotics after incision	0-07	49.1	39.0	45.7	45.3
Antibiotics, timing unclear	2-95	12.6	32.9	35.2	22.6
No recorded antibiotics	0-10	2.0	0.5	0.4	1.3
Missing	0-10	3.9	0.9	3.8	2.9
9 ^a Nurses or midwives with additional 3-year training in si					

4279 ^aNurses or midwives with additional 3-year training in surgery; ^bMidwives with additional 3-year training in 48 49 280 obstetrics and gynaecology, including performing caesareans

50 5²81

Risk factors for intrapartum-related mortality and risk-adjusted hospital mortality rates

52 53282 54 55283 56 57284 The median OR for crude intrapartum-related mortality was 1.9 [95% CI: 1.5-2.5], indicating that if a woman moved to another, randomly selected, hospital with higher mortality, the median increase in 58**285** 59 her odds of intrapartum-related mortality would be almost two-fold.

 $^{1}_{2}286$ In model 1, congenital malformation, diagnosis of acute fetal distress, transverse lie or brow 3287 presentation in active labour, and other severe obstetric complication or maternal death were strongly 4 5²⁸⁸ associated with intrapartum-related mortality (Supplementary Table 4). Other risk factors retained in ⁶289 the model were parity, education, number of antenatal visits, primary caesarean indication, referral 8290 immediately prior to caesarean, and birthweight. The median OR was 1.3 [1.2-1.7], indicating that a ⁹291 10 woman moving to a different hospital with higher mortality would experience a 1.3-fold increase in 1292 odds of intrapartum-related mortality on average, a modest effect compared with individual-level 12 13293 clinical risk factors. Inter-hospital variation in mortality rates was reduced, but not eliminated, after ¹294 adjusting for individual-level risk factors, with larger variation among hospitals performing less than 15 1¢295 50 caesareans per month (Figure 1B).

In model 2, all clinical risk factors except for number of antenatal visits were retained in the model
 with similar effect sizes, and two care component risk factors were identified – general anaesthesia,
 and not receiving antibiotic prophylaxis (Figure 2, Supplementary Table 4). Decision-to-incision
 interval, hospital type and monthly caesarean volume were not independently associated with
 intrapartum-related mortality. There was no meaningful change in inter-hospital variation after adding
 care components, compared with model 1 (median OR=1.4 [1.2-1.8], Figure 1C).

²802 There was no evidence that adding trial arm improved the fit of model 2 (p=0.78).

34804 Discussion

17

35

³%05 Our study fills an important gap in the evidence by examining hospital variation in intrapartum-related 37 ා 3ුදි06 perinatal mortality among caesarean births in sub-Saharan Africa, a region with a high burden of ³⁹307 40 4808 perinatal deaths. Almost one in ten women giving birth by caesarean in regional and district hospitals in Burkina Faso experienced an intrapartum-related perinatal death. The substantial hospital variation 42 43</sub>309 in crude mortality rates, ranging between 21-189 per 1,000, was markedly reduced after adjusting for 4**⁄**810 individual-level differences in case mix between hospitals. However, important variation remained, 45 46³11 with lower-volume hospitals tending to have higher and more variable adjusted mortality than 47312 48 49313 hospitals performing more caesareans per month. Additionally adjusting for caesarean care components did not further reduce variation. Remaining variation in adjusted rates indicate likely ⁵⁰314 differences in quality of caesarean care between hospitals, particularly those with low or moderate 52815 monthly caesarean volumes. 53

Some of the remaining differences in risk-adjusted mortality rates between hospitals may be due to unmeasured confounding by case mix, since the accuracy of obstetric complication measurement using hospital records was likely limited. However, this is unlikely to explain all the variation in adjusted mortality between lower-volume hospitals. Caesarean volume and hospital type were not independently associated with intrapartum-related mortality in our study, although the number of

BMJ Open

hospitals in our analysis (n=21) was too small to detect such effects. Hospitals performing more caesareans likely differ from lower-volume hospitals in multiple ways affecting quality of perinatal care, including presence of obstetricians or paediatricians, resources available for care of small and sick newborns, as well as differences in access to care for the population they serve.

⁸₉325 We identified two care components associated with intrapartum-related mortality: general 1326 anaesthesia and not receiving antibiotic prophylaxis, each associated with a doubling of mortality, 11 12³27 compared with spinal anaesthesia and receiving antibiotics before incision. These odds ratios may ¹3328 14 1*5*329 reflect unmeasured confounding by complication severity in the association with intrapartum-related mortality, or differences in guality of care. Indeed, although general anaesthesia is independently 16 330 17 associated with perinatal mortality,³⁷ women undergoing general anaesthesia are also likely to be in 1**\$31** poorer clinical condition at the time of the caesarean, with independently higher risk of perinatal ¹⁹ 20³32 death. Antibiotics may indicate very urgent caesareans without sufficient time to administer 2333 antibiotics, or poor organisation of care, with up to 10% of women not receiving antibiotics in some 22 23334 hospitals. Maternal antibiotic prophylaxis is unlikely to affect intrapartum-related survival.^{38 39} It is not 24**335** 25 possible to disentangle the relative contributions of unmeasured confounding and quality of care for 2@36 these two care components with our data. 27

2837 29 3038 High rates of fresh stillbirths among caesarean births – 65 per 1,000 in our study, 60 per 1,000 total stillbirths in a previous systematic review⁹ – indicate that many caesareans are performed too late in ³339 32 Burkina Faso. Limited access to caesarean section contributes to these poor outcomes: a higher 33340 proportion of women in sub-Saharan Africa arrive at the surgical hospital with severe complications ³⁴ 35 and more caesareans are performed in the second stage of labour, with higher associated 3**6**42 complications.⁹ Some babies may die before arrival at the hospital, but nonetheless are delivered by ³⁷ 38</sub>343 caesarean. Indeed, our data indicate poor identification of stillbirths using the Pinard stethoscope in 3**%**44 40 4345 this setting: one third of babies with no audible fetal heart rate were born alive, while one guarter of macerated stillbirths had a recorded audible fetal heart rate. Other babies die in utero after arrival at ⁴²346 43 4**8**47 the hospital, due to delayed diagnosis of fetal distress or long waiting times between decision and caesarean. We estimated a median decision-to-incision interval of 81 minutes for caesareans for fetal 45 46³48 distress, based on imputed data.

47 4**8**49 To our knowledge, this is the first study to examine hospital variation in crude and risk-adjusted 4**350** 50 51851 perinatal mortality in sub-Saharan Africa. A major strength of our study was the use of a novel dataset with high-quality, detailed clinical information on all women delivering by caesarean section in ⁵² 53352 a six-month period in all Burkinabe regional and district hospitals with >200 caesareans per year. Our 5**8**53 21 study hospitals accounted for 45% of all caesareans performed in Burkina Faso in 2016. 55 5**3**54 University hospitals and lower-volume district hospitals accounted for 26% each, with only 3% in the ⁵⁷355 58 5**9**56 private sector.²⁷ While our results cannot be generalised to tertiary or private hospitals in Burkina Faso, higher and more variable perinatal mortality is also likely to occur in lower-caesarean volume ⁶⁰357 hospitals in other West African countries.

 $^{1}_{2}358$ Some data limitations are worth noting. Missing data were common for several risk factors. We used 3359 multiple imputation to preserve statistical power, and the distribution of imputed variables was similar 4 5 360 to non-missing data. Moreover, like other studies using hospital records, some misclassification in ⁶361 obstetric complication severity was likely, leading to residual unmeasured confounding in case mix , 8362 between hospitals. Indeed, limited granularity was available for severity (within pre-eclampsia, for ⁹363 example), and previous studies indicate obstetric complications may be incompletely recorded or 1864 overestimated in caesarean indications.⁴⁰⁻⁴² As a result, reported odds ratios for risk factors should be 12 13</sub>365 interpreted as measures of association within our study population, rather than causal effects. The 14366 15 16367 number of hospitals in our sample was too small to enable us to examine hospital characteristics as risk factors. We were also unable to examine hospital variation in maternal outcomes since post-¹⁷368 18 1969 caesarean morbidity was not collected. Nonetheless, these prospectively collected trial data likely represent the best available clinical data for caesarean sections in sub-Saharan Africa, and it would 20 21 370 have been difficult to further reduce complication misclassification.

22 2371 Several recommendations for improving the quality of caesarean care stem from our findings. Two-24372 25 2&73 thirds of women were referred immediately prior to the caesarean, and those referred from further away had higher rates of perinatal mortality. There is an urgent need to strengthen emergency ²⁷374 28 29375 referral systems by minimising delays in women reaching surgical facilities, through shared ambulances and maternity waiting homes, for example.⁴³ Delays in receiving treatment after arrival 30 31<mark>376</mark> should also be reduced, including through pre-referral notification and patient referral notes.⁴³ 32377 33 34278 Improved antenatal care would help identify women needing an elective caesarean before labour. Monitoring of labour should be improved for all women, including those with risk factors for ³⁵379 intrapartum-related mortality, to enable early intervention and prevent perinatal deaths among vaginal 3**7**80 and caesarean births. Provider training in fetal monitoring, supportive supervision, and making low-³⁸381 39³81 40882 cost Doppler ultrasounds widely available in hospitals would help improve identification of fetal distress and stillbirths.⁴⁴ Many stillbirths can be delivered vaginally at lower risk of maternal 41 42³⁸³ complications;⁹ however, suspected stillbirths should be confirmed with ultrasound scans, where 4<u>3</u>84 44 4\$85 available, to avoid misdiagnosis. The decision-to-incision interval was not associated with intrapartum-related mortality in our study, likely because of successful prioritisation of higher-risk 46 386 47 women and delayed decision to perform some caesareans. This mirrors the mixed results reported in 4**8**87 the literature, which is based on limited observational data only.⁴⁵ Nonetheless, the estimated median 49 50³88 81 minute interval for caesareans for fetal distress should be reduced closer to the 30 minutes 5389 recommended in the UK and USA,^{46 47} wherever possible. Lastly, improving care for small and sick 52 5390 newborns – including neonatal resuscitation and intensive care through the Helping babies breathe48 ⁵⁴391 55 5**6**92 programme and Every Newborn Action Plan⁴⁹ – is essential to increase survival after birth. Provider training in newborn care has been shown to be cost-effective in other African countries.^{50 51} 57

⁵893 Our data also suggest sub-optimal surgical technique which may affect maternal outcomes: although ⁵⁹ the Joel-Cohen incision has advantages over the Pfannenstiel technique,⁵² the latter was used in at

BMJ Open

¹₂395 least 14% of caesareans. An estimated 62% of women received antibiotics only after incision based

on imputed data, contrary to WHO recommendations.⁵³ Universal administration of antibiotic 3396

4 5 397 prophylaxis before incision could help reduce the incidence of surgical site infection and sepsis,

⁶398 which accounts for 10% of maternal deaths in sub-Saharan Africa.54 The Lancet Global Surgery

₈399 commission recommendations for improving access to and the safety of essential surgical services in

⁹400 10 low-resource settings should be followed,⁵⁵ first and foremost the creation of a national surgical plan

- 1401 including provisions for healthcare delivery, human resources, financing, and information management.
- 12 13 102 14

35

42

46

15403 Conclusions 16

17404 Women giving birth by caesarean section in Burkina Faso face a high risk of perinatal death. Our 18 19405 study found variation in intrapartum-related perinatal mortality between hospitals remained after 20406 adjustment for case mix, indicating that differences in quality of care contribute to variation in 21 2<u>4</u>07 perinatal mortality. Improving access to caesareans and the quality of caesarean care in the region is ²³408 24 a considerable challenge for Ministries of Health and reproductive health partners in West Africa; 2**5**409 improving training and resources for fetal distress monitoring, reducing decision-to-incision intervals, ²⁶ 410 and improving resuscitation and care of newborns seem important priorities to enable more babies to 28411 survive at birth. 29

3413 **Footnotes**

36414 Author contributions: FC conceptualised the study, with help from CR. CK and AD designed the 37 3815 DECIDE trial and oversaw data collection. FC designed the analyses and analysed the data, with ³⁹416 support from RP, RB and AD. All authors, including SS and APB, contributed to the interpretation of 40 4**4**17 results and writing of the final manuscript.

43418 Acknowledgments: We are grateful to Angela Wood at the University of Cambridge for her help with 44 45419 designing the imputation model.

47420 Funding: The DECIDE trial was funded by the French Muskoka Fund (UNICEF) and the Canadian 48 49 49 Institutes of Health Research. The research presented in this article received no specific grant from 50422 any agency in the public, commercial or not-for-profit sectors. 51

⁵²423 53 Competing interests: none declared.

54 5**424** Data sharing statement: No data are available. Reasonable requests may be directed to Dr Charles 56425 Kaboré (kaborewendyam@yahoo.fr). 57

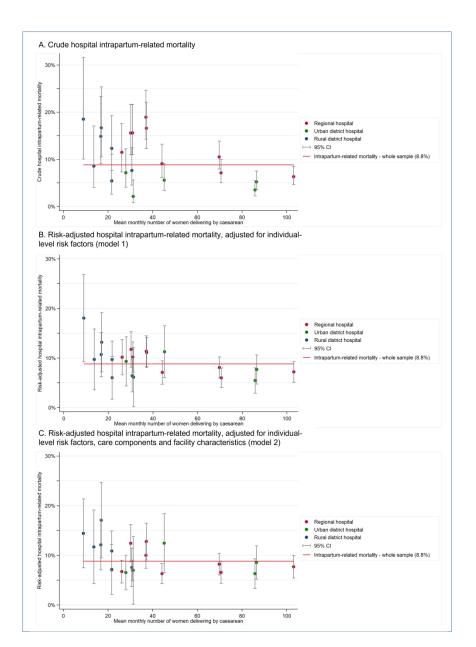
58 5**∳**26 Ethics Approval Statement: The DECIDE trial received ethical approval from the National Ethics ⁶⁰427 Committee in Burkina Faso (#2014-02-016) and the Ethics Committee of the University of Montreal

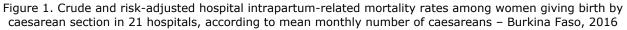
¹ ₂ 428	Hospital Research Centre in Canada (#13.356). ³⁶ As a secondary analysis of de-identified data, this
3429	study did not require ethical approval from the UCL Ethics Committee.
4 5 4 3 0	
6	
⁷ 431 8	
9	
10 11	
12	
13 14	
14	
16 17	
17	
19 20	
20	
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

c

¹ ₂ 433	List of figures
3 4434	
4-0- 5	
6435 7436 8437	Figure 1. Crude and risk-adjusted hospital intrapartum-related mortality rates among women giving birth by caesarean section in 21 hospitals, according to mean monthly number of caesareans – Burkina Faso, 2016
9 10 <mark>4</mark> 38	
11 1 <u>2</u> 439 1 <u>3</u> 440	Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016
14 1 <i>5</i> 441	
¹⁶ 442 17	
17 18 19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
40	
42 43	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 50	
59 60	

c


References


3 445 445 1. Montagu D, Sudhinaraset M, Diamond-Smith N, et al. Where women go to deliver: understanding the ₅446 changing landscape of childbirth in Africa and Asia. Health Policy and Planning 2017:32(8):1146-52. ₆447 doi: 10.1093/heapol/czx060 448 2. Gabrysch S, Nesbitt RC, Schoeps A, et al. Does facility birth reduce maternal and perinatal mortality in 449 Brong Ahafo, Ghana? A secondary analysis using data on 119 244 pregnancies from two cluster-8 450 randomised controlled trials. The Lancet Global Health 2019;7(8):e1074-e87. doi: 9 451 https://doi.org/10.1016/S2214-109X(19)30165-2 ¹⁰452 3. Kunkel M, Marete I, Cheng ER, et al. Place of delivery and perinatal mortality in Kenya. Seminars in ¹453 Perinatology 2019;43(5):252-59. doi: https://doi.org/10.1053/j.semperi.2019.03.014 ¹²454 4. Cavallaro FL, Benova L, Dioukhane EH, et al. What the percentage of births in facilities does not measure: ¹³455 readiness for emergency obstetric care and referral in Senegal. BMJ Global Health 2020;5(3):e001915. ¹456 doi: 10.1136/bmjqh-2019-001915 15457 5. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean 16458 sections. The Lancet 2018;392(10155):1341-48. doi: 10.1016/S0140-6736(18)31928-7 17459 6. Cavallaro FL, Pembe AB, Campbell O, et al. Caesarean section provision and readiness in Tanzania: 18460 analysis of cross-sectional surveys of women and health facilities over time. BMJ Open 19461 2018;8(9):e024216. doi: 10.1136/bmjopen-2018-024216 7. Benova L, Dennis ML, Lange IL, et al. Two decades of antenatal and delivery care in Uganda: a cross-20462 2463 sectional study using Demographic and Health Surveys. BMC Health Services Research 27464 2018;18(1):758. doi: 10.1186/s12913-018-3546-3 23465 8. Biccard BM, Madiba TE, Kluvts HL, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet 2018 doi: 10.1016/s0140-2**4**66 2**5**467 6736(18)30001-1 2**6**468 9. Sobhy S, Arroyo-Manzano D, Murugesu N, et al. Maternal and perinatal mortality and complications 2/469 associated with caesarean section in low-income and middle-income countries: a systematic review 28470 and meta-analysis. The Lancet 2019;393(10184):1973-82. doi: https://doi.org/10.1016/S0140-2**4**71 6736(18)32386-9 472 30, 10. Compaoré GD, Sombié I, Ganaba R, et al. Readiness of district and regional hospitals in Burkina Faso to 30^{+}_{-} provide caesarean section and blood transfusion services: a cross-sectional study. BMC Pregnancy and Childbirth 2014;14(1):158. doi: 10.1186/1471-2393-14-158 ³²475 ³²476 11. Richard F, Ouédraogo C, De Brouwere V. Quality cesarean delivery in Ouagadougou, Burkina Faso: A comprehensive approach. Int J Gynecol Obstet 2008;103(3):283-90. doi: ³⁴477 http://dx.doi.org/10.1016/j.ijgo.2008.08.008 ³⁵478 12. Nyamtema A, Mwakatundu N, Dominico S, et al. Increasing the availability and guality of caesarean section ³⁶479 in Tanzania. Bjog 2016;123(10):1676-82. doi: 10.1111/1471-0528.14223 37480 13. Kasongo S, Mukuku O, Kinenkinda X, et al. Kakoma JB. Quality of Caesarean Delivery and its Deter-38481 minants in Lubumbashi, Democratic Republic of Congo. Ann Obstet Gynecol 2020;1:1014. 39482 14. Bishop D, Dyer RA, Maswime S, et al. Maternal and neonatal outcomes after caesarean delivery in the 40483 African Surgical Outcomes Study: a 7-day prospective observational cohort study. The Lancet Global 4484 Health 2019;7(4):e513-e22. doi: 10.1016/S2214-109X(19)30036-1 42485 15. Bragg F, Cromwell DA, Edozien LC, et al. Variation in rates of caesarean section among English NHS 43486 trusts after accounting for maternal and clinical risk: cross sectional study. BMJ 2010;341:c5065. doi: 44487 10.1136/bmi.c5065 4488 16. Schemann K, Patterson JA, Nippita TA, et al. Variation in hospital caesarean section rates for women with 46489 at least one previous caesarean section: a population based cohort study. BMC Pregnancy and 4**#**90 Childbirth 2015;15(1):179. doi: 10.1186/s12884-015-0609-x ₄₈491 17. Bailit JL, Love TE, Dawson NV. Quality of obstetric care and risk-adjusted primary cesarean delivery rates. ₄492 Am J Obstet Gynecol 2006;194(2):402-7. doi: 10.1016/j.ajog.2005.07.045 ₅493 18. Kabore C, Ridde V, Kouanda S, et al. DECIDE: a cluster randomized controlled trial to reduce non-5⁴⁹⁴ medically indicated caesareans in Burkina Faso. BMC Pregnancy Childbirth 2016;16(1):322. doi: 5495 52 10.1186/s12884-016-1112-8 52.00 53496 53497 5497 5498 19. Global Health Observatory. Births by caesarean section - Data by country. 2018 [Available: http://apps.who.int/gho/data/view.main.BIRTHSBYCAESAREANv accessed December 2019] 20. Institut National de la Statistique et de la Démographie (INSD) and ICF International. Enquête ⁵⁵499 Démographique et de Santé et à Indicateurs Multiples du Burkina Faso 2010. Calverton, Maryland, ⁵⁶500 USA: ISND and ICF International; 2012 [Available: https://dhsprogram.com/pubs/pdf/FR256/FR256.pdf ⁵⁷501 accessed December 2019] ⁵⁸502 21. Boatin AA, Schlotheuber A, Betran AP, et al. Within country inequalities in caesarean section rates: ⁵503 observational study of 72 low and middle income countries. BMJ 2018;360:k55. doi: 10.1136/bmj.k55

6%04
 22. INSD. Enquête multisectorielle continue (EMC) 2014 - Santé générale et santé de la reproduction. Institut
 505
 national de la statistique et de la démographie [Burkina Faso]; 2015 [Available:

$\frac{1}{2}506$	http://www.insd.bf/n/contenu/enquetes_recensements/Enq_EMC/Sante_generale_et_Sante_de_la_r%
² 507	e9production.pdf accessed October 2019]
3508 4509	23. Witter S, Boukhalfa C, Cresswell JA, et al. Cost and impact of policies to remove and reduce fees for obstetric care in Benin, Burkina Faso, Mali and Morocco. <i>International Journal for Equity in Health</i>
⁵ 510	2016;15(1):123. doi: 10.1186/s12939-016-0412-y
⁶ 511	24. Ganaba R, Ilboudo PGC, Cresswell JA, et al. The obstetric care subsidy policy in Burkina Faso: what are
⁷ 512	the effects after five years of implementation? Findings of a complex evaluation. BMC Pregnancy and
⁸ 513	Childbirth 2016;16(1):84. doi: 10.1186/s12884-016-0875-2
9514	25. Ridde V, Richard F, Bicaba A, et al. The national subsidy for deliveries and emergency obstetric care in
10515	Burkina Faso. Health Policy Plan 2011;26 Suppl 2:ii30-40. doi: 10.1093/heapol/czr060
1516 15517	26. Richard F, Zongo S, Ouattara F. Fear, guilt, and debt: an exploration of women's experience and perception of cesarean birth in Burkina Faso, West Africa. <i>Int J Womens Health</i> 2014;6:469-78. doi:
13518	10.2147/ijwh.S54742
14519	27. Ministère de la Santé du Burkina Faso. Annuaire Statistique 2016, 2017.
1520	28. Goldenberg RL, McClure EM, Kamath BD. Intrapartum perinatal mortality. Indian pediatrics 2012;49(3):187-
1 5 21	88. doi: 10.1007/s13312-012-0050-4
1,522	29. MEASURE Evaluation. Intrapartum and very early neonatal death rate. [Available:
₁ န္မွာ23	https://www.measureevaluation.org/prh/rh_indicators/womens-health/nb/intrapartum-and-very-early-
1524 525	neonatal-death-rate accessed March 2020]
2525	30. WHO, UNFPA, UNICEF, et al. Monitoring emergency obstetric care: a handbook. Geneva, Switzerland: World Health Organisation. 2009 [Available:
$^{2}_{-527}$	https://www.who.int/reproductivehealth/publications/monitoring/9789241547734/en/ accessed
2526 2527 2528 2529 2530 2531 2532 2532 2532 2533	November 2019]
2 5 29	31. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical
2530	research: potential and pitfalls. BMJ 2009;338:b2393. doi: 10.1136/bmj.b2393
² 531	32. Sanagou M, Wolfe R, Forbes A, et al. Hospital-level associations with 30-day patient mortality after cardiac
-532 27533	surgery: a tutorial on the application and interpretation of marginal and multilevel logistic regression. BMC Medical Research Methodology 2012;12(1):28. doi: 10.1186/1471-2288-12-28
²⁸ 534	33. Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: integrating random
²⁹ 535	and fixed effects in multilevel logistic regression. <i>Am J Epidemiol</i> 2005;161(1):81-8. doi:
³ 6 36	10.1093/aje/kwi017
3ЪЗ7	34. Larsen K, Petersen JH, Budtz-Jørgensen E, et al. Interpreting parameters in the logistic regression model
32538	with random effects. <i>Biometrics</i> 2000;56(3):909-14. doi: 10.1111/j.0006-341x.2000.00909.x
3 3539 3 4540	35. Bartlett JW, Hughes RA. Bootstrap inference for multiple imputation under uncongeniality and
35541	misspecification. <i>Statistical Methods in Medical Research</i> 2020;29(12):3533-46. doi: 10.1177/0962280220932189
36542	36. Kaboré C, Ridde V, Chaillet N, et al. DECIDE: a cluster-randomized controlled trial to reduce unnecessary
35543	caesarean deliveries in Burkina Faso. <i>BMC Medicine</i> 2019;17(1):87. doi: 10.1186/s12916-019-1320-y
3\$544	37. Fenton PM, Whitty CJM, Reynolds F. Caesarean section in Malawi: prospective study of early maternal and
3545	perinatal mortality. BMJ 2003;327(7415):587. doi: 10.1136/bmj.327.7415.587
4546	38. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean
4647	section. Cochrane Database Syst Rev 2014;2014(10):Cd007482. doi: 10.1002/14651858.CD007482.pub3
4240	39. Bollig C, Nothacker M, Lehane C, et al. Prophylactic antibiotics before cord clamping in cesarean delivery: a
45 550	systematic review. Acta Obstet Gyn Scan 2018;97(5):521-35. doi: https://doi.org/10.1111/aogs.13276
⁴⁴ 551	40. Kabore C, Ridde V, Kouanda S, et al. Determinants of non-medically indicated cesarean deliveries in
4548 4550 45551 45552 45552 45553 45555 45555 45556	Burkina Faso. Int J Gynaecol Obstet 2016;135 Suppl 1:S58-s63. doi: 10.1016/j.ijgo.2016.08.019
4253	41. Landry E, Pett C, Fiorentino R, et al. Assessing the quality of record keeping for cesarean deliveries: results
- 554 48 5 5	from a multicenter retrospective record review in five low-income countries. BMC Pregnancy and
4556	<i>Childbirth</i> 2014;14(1):139. 42. Cavallaro FL, Hurt LS, Cresswell JA, et al. Testing the assumptions of an indicator of unmet need for
⁵⁰ 557	obstetric surgery in Ghana: A cross-sectional study of linked hospital and population-based delivery
⁵ 558	data. <i>Birth</i> 2019;46(4):638-47. doi: <u>https://doi.org/10.1111/birt.12452</u>
⁵ 3 59	43. Pittalis C, Brugha R, Gajewski J. Surgical referral systems in low- and middle-income countries: A review of
53560	the evidence. PLOS ONE 2019;14(9):e0223328. doi: 10.1371/journal.pone.0223328
5 5 61	44. Byaruhanga R, Bassani DG, Jagau A, et al. Use of wind-up fetal Doppler versus Pinard for fetal heart rate
5 5 62 5 5 63	intermittent monitoring in labour: a randomised clinical trial. <i>BMJ Open</i> 2015;5(1):e006867. doi: 10.1136/bmienen.2014.006867
5564	10.1136/bmjopen-2014-006867 45. Cavallaro FL, Marchant TJ. Responsiveness of emergency obstetric care systems in low- and middle-
5\$565	income countries: a critical review of the "third delay". Acta Obstet Gyn Scan 2013;92(5):496-507. doi:
5 \$ 66	10.1111/aogs.12071
6 5 67	46. RCOG. Classification of urgency of caesarean section - a continuum of risk. Royal College of Obstetricians
568	and Gynaecologists, Royal College of Anaesthetists; 2010 [Available:
	20

¹ 569 2570 ³ 571 ⁴ 572 ⁵ 573	https://www.rcog.org.uk/globalassets/documents/guidelines/goodpractice11classificationofurgency.pdf
² 570	accessed November 2019]
³ 571	47. ACOG. Standards for Obstetric Services. Sixth ed. In: The College, ed. Washington, DC, 1988.
⁴ 572	48. Versantvoort JMD, Kleinhout MY, Ockhuijsen HDL, et al. Helping Babies Breathe and its effects on
5 573	intrapartum-related stillbirths and neonatal mortality in low-resource settings: a systematic review.
⁶ 574	Archives of Disease in Childhood 2020;105(2):127-33. doi: 10.1136/archdischild-2018-316319
7575	49. WHO, UNICEF. Every Newborn: an action plan to end preventable deaths. Geneva: World Health
⁸ 576	Organization; 2014 [Available: https://www.healthynewbornnetwork.org/hnn-
⁹ 577	content/uploads/Every Newborn Action Plan-ENGLISH updated July2014.pdf accessed May 2021]
10578	50. Bogdewic S, Ramaswamy R, Goodman DM, et al. The cost-effectiveness of a program to reduce
1579	intrapartum and neonatal mortality in a referral hospital in Ghana. <i>PLOS ONE</i> 2020;15(11):e0242170.
12580	doi: 10.1371/journal.pone.0242170
1\$581	51. Manasyan A, Chomba E, McClure EM, et al. Cost-effectiveness of essential newborn care training in urban
14582	first-level facilities. <i>Pediatrics</i> 2011;127(5):e1176-e81. doi: 10.1542/peds.2010-2158
1583	52. Mathai M, Hofmeyr GJ, Mathai NE. Abdominal surgical incisions for caesarean section. Cochrane Database
1584	Syst Rev 2013(5):Cd004453. doi: 10.1002/14651858.CD004453.pub3
1585	53. WHO. WHO recommendations for prevention and treatment of maternal peripartum infections. Geneva:
1586	World Health Organization; 2015 [Available:
1,587	https://apps.who.int/iris/bitstream/handle/10665/186171/9789241549363_eng.pdf?sequence=1
588	accessed June 2019]
5 589	54. Seale AC, Mwaniki M, Newton CRJC, et al. Maternal and early onset neonatal bacterial sepsis: burden and
2590	strategies for prevention in sub-Saharan Africa. <i>The Lancet Infectious Diseases</i> 2009;9(7):428-38. doi:
5 591	https://doi.org/10.1016/S1473-3099(09)70172-0
18586 19588 2588 2590 2591 2592 2593 2593 2594 2594 2594 2594	55. Meara JG, Leather AJM, Hagander L, et al. Global Surgery 2030: evidence and solutions for achieving
_ 593	health, welfare, and economic development. The Lancet 2015;386(9993):569-624. doi: 10.1016/S0140-
² 594	
	6736(15)60160-X
27595	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
<u> </u>	

355x496mm (330 x 330 DPI)

BMJ Open

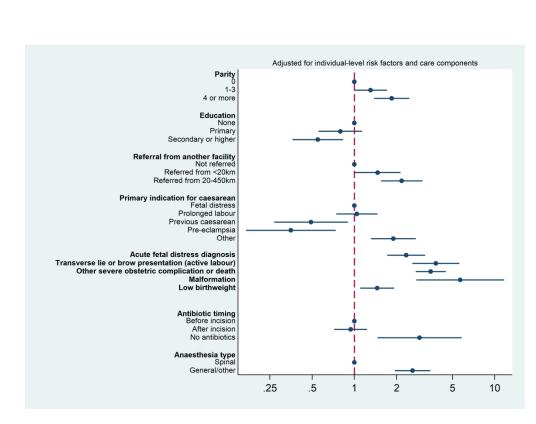


Figure 2. Odds ratios and 95% confidence intervals for risk factors for intrapartum-related mortality among women giving birth by caesarean section in 21 hospitals (model 2) – Burkina Faso, 2016

1058x769mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary materials

Supplementary Figure 1. Odds ratios and 95% confidence intervals for individual-level risk factors for intrapartum-related mortality (model 1)

median
$$OR = exp[\sqrt{2 \times \tau^2 \times 0.6745}]$$

where τ^2 is the hospital-level variance.

Supplementary Table 1. Missing data for risk factors for intrapartum-related perinatal mortality among 5,134 women in sample

Variable	N total expected	N missing	% missing (whole sample)	% missing (sub- sample
Risk factors for which all women are ex	pected to h	ave data		
Maternal age	5,134	102	2.0	-
Parity	5,134	10	0.2	-
Education	5,134	74	1.4	-
Previous caesarean	5,134	0	0	-
Number of antenatal visits	5,134	382	7.4	-
Multiple pregnancy	5,134	0	0	-
Malformation	5,134	396	7.7	-
Birthweight	5,134	253	4.9	-
Acute fetal distress diagnosis	5,134	496	9.7	-
Transverse lie or brow presentation	5,134	0	0	-
Other severe obstetric complication or maternal death	5,134	0	0	-
Neonatal resuscitation	5,134	242	4.7	-
Labour phase	5,134	0	0	-
Referral status	5,134	0	0	-
Primary indication for caesarean	5,134	0	0	-
Provider deciding to perform caesarean	5,134	7	0.1	-
Provider performing caesarean	5,134	71	1.4	-
Decision-incision interval	5,134	1212	23.6	-
Anaesthesia type	5,134	39	0.8	-
Skin incision type	5,134	176	3.4	
Antibiotic prophylaxis administration	5,134	149	2.9	-
Hospital type	5,134	0	0	-
Monthly caesarean volume	5,134	0	0	-
Risk factors for which a subset of wome	en are expe	cted to ha	ve data	
Birthweight for second baby among multiple pregnancies	301	91	1.8	30.2
Referral distance among referred women	3,429	1039	20.2	30.3
Timing of antibiotic administration among women receiving antibiotic prophylaxis	4,918	1159	22.6	23.6
Variable used in the imputation model b	out not in th	e risk facte	or analysis	6
Gestational age at birth	5,134	2808	54.7	_

Missing Missing Missing data for 4 data for 0 data for or more **Risk factor** Ν 1-3 risk risk risk factors factors factors (row %) (row %) (row %) Maternal age 13-19 2,376 20-29 1,612 30-39 40-49 Missing Parity 1,784 2,358 1-3 4 or more Missing Education 3,256 None Primary 1,080 Secondary or higher Missing Previous caesarean 3,776 No 1,308 Yes Missing Number of antenatal care visits 1,899 1-3 4 or more 2,811 Missing Multiple pregnancy 4,833 No Yes Congenital malformation 4,694 No Yes **Missing** Gestational age at birth Preterm 2,040 Term 2,715 Missing Birthweight 4,071 Birthweight>=2,500g Birthweight<2,500g Missing Acute fetal distress 3,168 No 1,470 Yes Missing Transverse lie or brow presentation in active labour

Supplementary Table 2. Characteristics of women with missing data on risk factors among 5,134 women in sample

No

Yes

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4,922

No	4,125	32	64	
Yes	1,009	29	66	
Neonatal resuscitation	1,000	20	00	<u> </u>
No	4,273	34	63	
Yes	619	27	70	
Missing	242	0	70	
Labour phase				
Pre-labour	1,031	29	67	
Latent phase	1,577	36	61	
Active phase	2,526	30	66	
Referral status	2,020			
Not referred before caesarean	1,705	39	58	<u> </u>
Referred before caesarean	3,429	28	68	
Referral distance	0,120	20	00	
<20km	911	43	55	
20-450km	1,479	39	58	
Distance unknown	1,479	0	94	
	1,059	U	34	
Primary indication for caesarean	1,125	36	61	<u> </u>
	1,125	30	66	
Prolonged labour	,			
Previous caesarean	830	30	66	
Pre-eclampsia	193	28	67	
Other	1,291	31	64	
Provider cadre deciding to perform caesarean	0.400			
Obstetrician	3,129	37	60	
Generalist doctor with emergency surgical	026	27	69	
training Generalist doctor	936 446	21	68 74	
		24	74	
Midwife	500			
Non-physician provider with surgical skills	116 7	7	86	
Missing	1	0	71	
Provider cadre performing caesarean	4 005	00		
Obstetrician	1,905	32	63	
Generalist doctor	895	28	67	
Non-physician provider with obstetrics skills	224	18	81	
Non-physician provider with surgical skills	2,039	36	62	
Missing	71	0	92	──
Decision-to-incision interval	070			
<60min	878	36	61	
≥60min	3,044	43	56	
Missing	1,212	0	89	<u> </u>
Anaesthesia type				
Spinal	4,505	32	64	<u> </u>
General/other	590	29	66	<u> </u>
Missing	39	0	46	
Skin incision type				
Joel-Cohen	4,128	34	63	
Pfannenstiel	730	27	70	
Midline/other	100	25	72	
Missing	176	0	78	[
Uterine incision type				
Lower segment	4,921	33	64	
Other	161	11	86	<u> </u>
Missing	52	0	60	

434 325 159 67 49 693 659 7 717 494	43 43 0 24 0 	56 90 75 74 58 70 75 70 75 70 75 56	1 10 10 20 20 4 7 4 5 2 2
159 67 49 693 659 782 717 494	0 24 0 39 26 18 25 20 42	90 75 74 58 70 75 70 75 70 74 56	10 11 20 20 4 7 7 4 5
159 67 49 693 659 782 717 494	24 0 39 26 18 25 20 42	75 74 58 70 75 70 74 56	1 20 2 4 7 7 4 5
67 49 693 659 782 023 717 494	24 0 39 26 18 25 20 42	75 74 58 70 75 70 74 56	1 20 2 4 7 7 4 5
693 659 782 923 717 494	0 39 26 18 25 20 42	74 58 70 75 70 70 74 56	2 4 7 4 4 5
693 659 782 923 717 494	26 18 25 20 42	70 75 70 74 56	2 4 7 4 4 5
659 782 23 717 494	26 18 25 20 42	70 75 70 74 56	4 7 4 5
659 782 23 717 494	26 18 25 20 42	70 75 70 74 56	4 7 4 5
782 023 717 494	18 25 20 42	70 74 56	7 4 5
23 717 494	25 20 42	70 74 56	5
717 494	20 42	74 56	5
717 494	20 42	74 56	5
494	42	56	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 34

BMJ Open

	N women			F	Perinatal outcom	es	5241	
		Macerated stillbirths (per 1,000)	Fresh stillbirths (per 1,000)	Apgar score <3, live birth (per 1,000)	Neonatal death within 24 hrs of birth (per 1,000)	Neonatal death after 24 hrs, before discharge (per 1,000)	Intrapartum- related perinata death (per 1,000)	Total perinatal death before discharge (per 1,000)
Total	5,134	7 [5-9]	65 [58-72]	24 [20-29]	23 [20-28]	3 [2-5]	88 ^{¦°} [81-96]≨	98 [90-107]
Range across hospitals	5,134	0-23	16-135	0-90	0-90	0-32	21-189g	32-243
Facility type							ed fi	
Regional hospital	2,693	9 [6-14]	78 [68-89]	32 [26-39]	30 [24-37]	4 [2-7]	108 [∰] [97-120]	121 [109-134]
Urban district hospital	1,659	3 [1-7]	36 [28-46]	9 [5-15]	10 [06-16]	2 [1-6]	46 <u>/</u> [37-57 <u>]</u>	51 [42-63]
Rural district hospital	782	5 [2-14]	81 [63-102]	31 [21-45]	29 [20-44]	4 [1-12]	110 [90-134]	119 [98-144]
P-value	-	0.08	<0.001	0.029	0.016	0.793	0.001	0.001
							om/ on April 19, 2024 by guest. Protected by copyright	

/bmjopen-202 Supplementary table 4. Risk factors for intrapartum-related deaths among 5,134 women giving birth by caesarean section in 21 hospitals – Burkina Faso, 2016

Risk factor	Unadjusted OR (95% CI)	Model 1 ^a (95% Cl)	Model 2 ^b (95% Cl)
Individual-level clinical risk factors			
Maternal age			
13-19	1 [ref]	-	-
20-29	1.31 (0.98-1.76)	-	-
30-39	1.56 (1.15-2.10)	-	-
40-54	2.09 (1.21-3.58)	-	-
Parity			
0	1 [ref]	1 [ref]	1 [ref]
1-3	1.15 (0.90-1.47)	0.80 (0.56-1.13)	1.30 (0.99-1.7
4 or more	2.46 (1.91-3.18)	0.52 (0.34-0.78)	1.84 (1.38-2.40
Education			
None	1 [ref]	1 [ref]	1 [ref]
Primary	0.64 (0.46-0.89)	0.89 (0.61-1.31)	0.79 (0.56-1.13
Secondary or higher	0.31 (0.21-0.46)	0.53 (0.34-0.85)	0.55 (0.36-0.83
Number of previous caesareans			
0	1 [ref]	-	-
1 or more	0.39 (0.29-0.52)	-	-
Number of ANC visits			
0	1 [ref]	1 [ref]	-
1-3	0.58 (0.24-1.36)	0.54 (0.19-1.48)	-
4 or more	0.35 (0.15-0.81)	0.43 (0.16-1.18)	-
Multiple pregnancy		,	
No	1 [ref]	-	-
Yes	1.43 (0.99-2.07)	-	-
Malformation		7	
No	1 [ref]	1 [ref]	1 [ref]
Yes	7.15 (3.75-13.64)	6.01 (2.95-12.23)	5.67 (2.79-11.5
Birthweight			
Birthweight ≥2,500g	1 [ref]	1 [ref]	1 [ref]
Birthweight <2,500g	1.77 (1.39-2.25)	1.50 (1.14-1.97)	1.45 (1.10-1.92
Diagnosis of acute fetal distress	,		
No	1 [ref]	1 [ref]	1 [ref]
Yes	2.26 (1.79-2.86)	2.42 (1.80-3.26)	2.34 (1.72-3.17
Transverse lie or brow presentation in active labour		(
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.69 (2.65-5.13)	3.56 (2.43-5.22)	3.81 (2.59-5.59
Other severe obstetric complication or maternal death			
No	1 [ref]	1 [ref]	1 [ref]
Yes	3.49 (2.84-4.29)	3.88 (3.04-4.95)	3.50 (2.73-4.49
Labour phase			
Pre-labour	1 [ref]	-	-
Latent phase	1.20 (0.84-1.71)	-	-
Active phase	2.12 (1.53-2.92)	-	-

Referral status			
Not referred	1 [ref]	1 [ref]	1 [ref]
Referred from <20km	2.17 (1.51-3.11)	1.52 (1.04-2.21)	1.46 (1.01-2.
Referred from 20-450km	4.24 (3.10-5.80)	2.17 (1.55-3.04)	2.18 (1.55-3.
Decision-to-delivery interval			
<60 minutes	1 [ref]	-	-
≥60 minutes	0.85 (0.65-1.11)	-	-
Primary indication for caesarean			
Fetal distress	1 [ref]	1 [ref]	1 [ref]
Prolonged labour	1.10 (0.85-1.43)	1.14 (0.81-1.59)	1.04 (0.74-1
Previous caesarean	0.23 (0.13-0.39)	0.51 (0.28-0.92)	0.49 (0.27-0
Pre-eclampsia	0.59 (0.31-1.13)	0.38 (0.19-0.80)	0.35 (0.17-0
Other	1.37 (1.04-1.80)	2.08 (1.44-3.00)	1.90 (1.31-2
Caesarean care components and hospita	I characteristics		
Provider cadre deciding the caesarean			
Obstetrician	1 [ref]		-
Generalist doctor with emergency surgical training	1.20 (0.84-1.73)		-
Generalist doctor	1.20 (0.73-1.96)		-
Midwife	1.78 (1.07-2.96)		-
Non-physician provider with surgical skills ^c	1.87 (0.82-4.28)		-
Provider cadre performing the caesarean			
Obstetrician	1 [ref]		-
Generalist doctor	0.94 (0.62-1.44)		-
Non-physician provider with obstetrics skills ^d	1.47 (0.81-2.68)		-
Non-physician provider with surgical skills ^c	1.01 (0.68-1.49)		-
Type of anaesthesia			
Spinal	1 [ref]		1 [ref]
General/other	4.46 (3.41-5.84)		2.60 (1.94-3
Type of skin incision			
Joel-Cohen	1 [ref]		-
Other	0.89 (0.62-1.28)		-
Type of uterine incision		1	
Lower segment	1 [ref]		-
Other	1.23 (0.69-2.19)		-
Antibiotics administration			
Antibiotics before incision	1 [ref]		1 [ref]
Antibiotics after incision	0.99 (0.74-1.31)		0.94 (0.72-1
No recorded antibiotics	2.31 (1.25-4.25)		2.91 (1.46-5
Neonatal resuscitation			
No	1 [ref]		-
Yes	1.71 (1.31-2.24)		-
Hospital type			
Regional hospital	1 [ref]		-
Urban district hospital	0.36 (0.23-0.58)		-
Rural district hospital	0.96 (0.62-1.47)		-
Hospital caesarean volume (per month)	, ,		

<30	1 [ref]	-
30-60	0.93 (0.55-1.57)	-
60-105	0.53 (0.30-0.94)	-

^aModel 1 was built by manual backward elimination of individual-level risk factors with p>0.1 in a model including all variables with p<0.25 in the unadjusted model, with the exception of maternal age which had p<0.25 in the unadjusted model but was removed due to collinearity with parity

^bModel 2 was built by adding all care components and hospital characteristics with p<0.25 to model 1, followed by manual backward selection until all remaining variables had p<0.1

°Nurses or midwives with additional 3-year training in surgery

^dMidwives with additional 3-year training in obstetrics and gynaecology, including performing caesareans

for occr review only

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	3
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	Z
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2021-055241 on 6 October 2022. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	4
6 7 8 9 10 11 12 13 14 15		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	4-5
16 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-6
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	4
21 22 23 24	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5-7
25 26 27 28	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	5-7
29 30 31	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	N/A
32 33 34 35	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5-6
36 37 38 39	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	6-7
40 41 42 43	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	N/A
44 45	Results			
46 47 48 49 50 51 52 53 54	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	7
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	N/A
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	N/A
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 35 of 34

BMJ Open

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	9-10
6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	7, 9-10
10 11 12	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	7-8
13 14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7, 11-12
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	7-12
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	12
29 30	Discussion			
31 32	Key results	<u>#18</u>	Summarise key results with reference to study objectives	12
33 34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	13-14
39 40 41 42 43	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	12-13
44 45 46	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14-15
47 48	Other Information			
49 50				
51 52 53 54	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15
55 56	The STROBE chec	klist is o	distributed under the terms of the Creative Commons Attribution License CO	C-BY.
57 58	This checklist was	complet	ted on 05. July 2021 using https://www.goodreports.org/, a tool made by the	
59 60	EQUATOR Netwo	rk in co For	llaboration with <u>Penelope.ai</u> peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	