Critical care nursing role in low and lower middle-income settings: a scoping review

Andy Macey,1,2 Gerard O'Reilly,1,3 Ged Williams,4 Peter Cameron1

ABSTRACT

Objectives A scoping review was conducted to answer the question: How is critical care nursing (CCN) performed in low-income countries and lower middle-income countries (LICs/LMICs)?

Design Scoping review guided by the JBI Manual for Evidence Synthesis.

Data sources Six electronic databases and five web-based resources were systematically searched to identify relevant literature published between 2010 and April 2021.

Review methods The search results received two-stage screening: (1) title and abstract (2) full-text screening. For sources of evidence to progress, agreement needed to be reached by two reviewers. Data were extracted and cross-checked. Data were analysed, sorted by themes and mapped to region and country.

Results Literature was reported across five georegions. Nurses with a range formal and informal training were identified as providing critical care. Availability of staff was frequently reported as a problem. No reports provided a comprehensive description of CCN in LICs/LMICs. However, a variety of nursing practices and non-clinical responsibilities were highlighted. Availability of equipment to fulfill the nursing role was widely discussed. Perceptions of inadequate resourcing were common. Undergraduate and postgraduate-level preparation was poorly described but frequently reported. The delivery of short format critical care courses was more fully described. There were reports of educational evaluation, especially regarding internationally supported initiatives.

Conclusions Despite commonalities, CCN is unique to regional and socioeconomic contexts. Nurses work within a complex team, yet the structure and skill levels of such teams will vary according to patient population, resources and treatments available. Therefore, a universal definition of the CCN role in LIC/LMIC health systems is likely unhelpful. Research to elucidate current assets, capacity and needs of nurses providing critical care in specific LIC/LMIC contexts is needed. Outputs from such research would be invaluable in supporting contextually appropriate capacity development programmes.

INTRODUCTION

The development of critical care services in low-income countries and lower middle-income countries (LICs/LMICs) is increasing.1 However, little is known regarding capacity and resourcing of these services.2 Nurses are key in the successful delivery of critical care in any health system,3 yet it is unclear what is currently known regarding their role in LIC/LMIC health systems.

Background

The burden of critical illness is substantial in LICs/LMICs and outcomes are often reported as poorer than in high-resource contexts.5 The availability of resources to manage critically ill patients in LICs/LMICs is commonly restricted when compared with high-income countries (HICs).6 Access to high-cost technologies and highly trained, specialised teams of healthcare staff available in high-resource health systems are not always available in a resource-limited setting.7 Therefore, the organisation of critical care services needs to be context specific and will vary across socioeconomic and geo-regional situations.

Nurses are the largest occupational group of healthcare workers globally and are central to meeting the sustainable development goals (SDGs) and universal health coverage (UHC).9 Positive associations between the numbers of nurses employed to provide patient care, their level of education and improved patient outcomes are well documented in several HICs10 and may be amplified in critical care settings.11

Strengths and limitations of this study

► This is the first review to explore and map the evidence related to how critical care nursing is performed in low-income countries and lower middle-income countries (LICs/LMICs).
► Literature from all georegions where LICs/LMICs are situated was considered for inclusion.
► The inability to translate non-English language documents, mean it is possible that some literature was not captured.
► A lack of literature from Latin American LICs/LMICs in English prevents an accurate picture of critical care nursing in these contexts to be drawn.
response, standards recognising the need for nursing models specific to critical care, extended organisational supports and specialised training to fulfil the critical care nursing (CCN) role are common in HICs. Furthermore, the roles and responsibilities of critical care nurses are well described in many HICs. For example, in Australia, nurses routinely undertake all technical and non-technical care of the critically ill patient. They operate and manage therapies such as mechanical ventilation, extracorporeal therapy and intra-aortic balloon pumps. Additionally, they might measure cardiac output from highly technical haemodynamic devices and titrate vasoactive drugs in a semiautonomous fashion. To date, little work comprehensively reporting the roles, practices and training of critical care nurses in LICs/LMICs appears to be available. Therefore, a scoping review was conducted to map the available evidence, identify the main concepts, sources of data and knowledge gaps and answer the question: How is the CCN role performed in LICs/LMICs?

Objectives

To elucidate the role of nurses working in critical care contexts in LICs/LMICs, the review aimed to address four subquestions:

1. Who is involved in providing CCN in LICs/LMICs?
2. What are the day-to-day roles and responsibilities of nurses providing critical care in LICs/LMICs?
3. What professional scope of practice is reported for nurses providing critical care in LICs/LMICs?
4. What training and ongoing education are available to nurses providing critical care in LICs/LMICs?

METHODS

The scoping review was guided by the JBI Manual for Evidence Synthesis and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR). A protocol was developed *a priori*, published prospectively and can be viewed on the Monash University repository for research data.

Search methods

A Population Concept Context framework was used to define the evidence to be included in this review (table 1).

Preliminary searches of Ovid Medline, Embase and Emcare were performed to test and refine the search strategy. Final searches were completed on 30 July 2020 and updated on 7 April 2021. Six databases were included: Medline, Embase, Emcare, Global Health, SCOPUS and Web of Science. Limits set in all database searches were publications in the last 10 years (2010 current) and publications in English language. Full details of the search strings employed, additional limits in individual databases and database versions are found in online supplemental file 1. Results from all searches were exported to Endnote citation management software and then imported into Covidence review management software.

Web-based searches were completed on 30 July 2020. Five resources were accessed: Google Scholar, Google, The WHO website, The World Federation of Critical Care Nurses (WFCCN) website and websites of CCN organisations listed as members of the WFCCN. The search in Google scholar was limited to results published in the last 10 years. Consistent with the approach suggested by Pham *et al.*, the first 100 search results were submitted to an initial two-stage screening process: all titles considered relevant to the research questions were exported to Endnote. Individual titles were resubmitted to Google Scholar, accessed and categorised by type. Evidence that was unrelated to the research questions was removed at this stage. The remaining sources of evidence were imported into Covidence for title and abstract screening.

Searching within the WHO website was undertaken using Google. The WFCCN website was accessed and an additional 11 regional CCN society websites were identified for exploration and data extraction as tier-3 sources. The first 100 search results in google were screened for apparent relevance to the research questions. Duplicate website links and results already discovered through searches were ignored.

<table>
<thead>
<tr>
<th>Inclusions</th>
<th>Exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Nurses providing critical care or their proxies*</td>
</tr>
<tr>
<td>Concepts</td>
<td>Critical care nursing roles, responsibilities, scope of practices, training and education.</td>
</tr>
<tr>
<td>Contexts</td>
<td>Low-income countries and lower middle-income countries as defined by the World Bank Country and Lending Groups,†</td>
</tr>
</tbody>
</table>

*Proxies for nurses providing critical care include healthcare workers and lay persons who are not nurses but provide care that might be associated with the nursing role. Examples might include respiratory therapists or healthcare assistants.

Search outcome
A total of 361 papers were retrieved from database and web-based searching. Two additional papers were added by hand searching the reference lists of included papers. 31 duplicates were removed. Seventeen web-based sources of evidence were identified.

Quality appraisal
Guided by Kepes’ taxonomy of sources of samples,18 two tiers of evidence were considered for inclusion in the screening process: tier-1, the peer-reviewed literature. Tier-2, grey literature produced by a range of bodies such as governments or non-commercial organisations, including conference papers, dissertations and reports. Additionally, tier-3 sources were considered for separate analysis. Tier-3 samples included commercial and personal websites, blogs, and social media. As is conventional in such a broad scoping review, no critical appraisal of the included literature was undertaken.14

Data abstraction
The search results received two-stage screening: (1) title and abstract and (2) full-text screening. For sources of evidence to progress, agreement was needed to be reached by two reviewers. A PRISMA flow diagram demonstrating the screening and selection of literature for inclusion is presented in figure 1.

Synthesis
Initial extraction was undertaken using a data-charting instrument mapped to the research subquestions. An iterative approach was taken. As new items or themes that provided useful data became apparent, this was discussed by the team and added to the instrument if appropriate. Finally, three extractions were cross checked by another member of the team to determine agreement that all relevant data had been charted.

RESULTS
Data were predominantly found within peer-reviewed journal articles (85%). Other sources of data included conference papers (9%), books (3%), thesis (2%) and reports (1%). Half of the included literature reported quantitative research data. Descriptive or descriptive/correlational methods were the most reported methodologies. Sixteen per cent of included papers reported qualitative results and a further 6% reported the results of mixed-methods research. The remaining literature encompassed reviews (13%) or expert opinion/editorial papers (15%). One book crossed several categories as it included aspects of narrative review, expert opinion and case studies.

The literature focused on countries within five of the seven georegions defined by the World Bank.19 The literature distributed across the five georegions were: Sub-Saharan Africa (SSA) (45%), South Asia (SA) (24%), Middle East and North Africa (MENA) (13%), East Asia and the Pacific (EAP) (10%) and Latin America and the Caribbean (LAC) (2%). The remaining 6% of the literature spoke more broadly to CCN in resource-limited settings, not specifically within a region.

Several clinical settings were reported as sites where CCN was practised. The distribution is visualised in figure 2.

A large amount of the evidence discussed more than one unit within a health service, for example, multiple intensive care units (ICUs) or a combination of ICUs, paediatric ICUs, neonatal ICUs and non-traditional critical care settings. The remaining literature provided evidence of practice within individual dedicated adult, paediatric, neonatal or mixed units where several patient categories were admitted. A small amount of the literature discussed CCN in emergency departments. Finally, some papers spoke only to critical care undertaken in non-specialist environments such as wards or community health centres.

Tier-3 sources of data included three broad categories of website: (1) CCN society websites or social media pages (n=11), (2) Blogs (n=3), and (3) miscellaneous webpages (n=3). The websites of CCN societies and federations included local in-country (n=8), regional (n=2) and global (n=1) level groups.

Three regional CCN groups used Facebook groups as their online medium. The remaining critical care societies and federations used hosted websites. The blog
entries proved to all be by one author, a CCN educator providing trainings in Nepal. A link was discovered in one of the blog entries to a Non-governmental Organisation providing respiratory care education in LICs/LMICs. All three miscellaneous websites provided evidence of a not-for-profit education company providing free CCN online educational content to LIC’s/LMICs.

Literature providing answers to the research questions is displayed in tables 2–5. The corresponding references are found in online supplemental file 2. Both positive and negative results were extracted meaning that discussion of a concept being present or not being present were both captured.

Table 2 identifies sources of data related to who provides nursing care to critically ill patients in LICs/LMICs and maps them to region and countries.

Most documents indicated that nurses identified as registered or qualified were engaged in the care of critically ill patients within each region. Many also referred to basic or postbasic qualifications. In several cases, these were limited to identifying basic or postbasic trained nurses as being present, whereas others provided the title of the qualifications (figure 3).

A variety of other cadres of healthcare workers and lay persons were also identified as providing aspects or the totality of what might be considered CCN, for example, midwives and respiratory therapists (figure 4).

Several specific activities and roles performed by nurses providing critical care in LICs/LMICs were able to be extracted. Some examples included management of airways and mechanical ventilation, care of the septic patient and physiological monitoring. A full overview of the distribution of activities is presented in figure 5.

Details relating to CCN systems, staffing and capacity were able to be extracted from the literature. Thematically these grouped into four categories: (1) identification of nurse–patient ratios n=17, (2) national critical care workforce n=7, (3) structure and staffing of unit-based workforce n=18, (4) perceptions of insufficient nursing workforce or poor working conditions n=5.

Data regarding the availability and utilisation of physical resources to fulfil the CCN role were also extracted and mapped to nine themes: (1) comprehensive lists of available or recommended equipment n=10, (2) mechanical ventilators n=6, (3) monitoring technologies n=2, (4) oxygen or electricity supply n=1, (5) neonatal equipment n=2, (6) personal protective equipment n=1, (7) other therapeutic devices n=1, (8) documentation of care n=5, (9) a perceived inadequacy of physical resources n=9.

Finally, data discussing the availability of policies or guidelines were extracted and mapped to themes of locally developed practice guidelines n=14, national standards or recommendations for policy n=4, the utilisation of international practice guidelines n=4, or perceived unavailability or inadequacy of guidelines n=11.

Little data were able to be extracted to answer the question: ‘What professional scope of practice is reported for nurses providing critical care in LICs/LMICs?’ (table 4).

Table 5 identifies sources of data related to the training and continuing education and development of nurses providing critical care in LICs/LMICs and maps them to regions and countries.

Data extracted that identified training could be mapped thematically to (1) education targeting specific practices n=26, (2) formal postgraduate study n=10, (3) short format courses n=19, (4) training courses without a description n=4 and (5) critical care training within the undergraduate curriculum n=3. Figure 6 maps these themes to region.

Finally, data were extracted identifying access to educational resources, including the use of information technologies (ITs). Themes included: (1) the availability of peer-reviewed literature n=4, (2) access to locally generated learning materials or education teams n=3, (3) access to IT-based education n=2, (4) perceived inadequacy of access to educational resources n=3.

DISCUSSION

This is the first review to explore and map the evidence related to how the CCN role is performed in LICs/LMICs. Despite the large number of papers meeting inclusion criteria, few provided a comprehensive description of how CCN is performed in any individual LIC/LMIC or
region. However, some themes were able to be synthesised from numerous sources and are discussed below.

Who is involved in providing CCN in LICs/LMICs?

Qualified nurses

Documents indicating that registered or qualified nurses were engaged in the care of critically ill patients were found in all regions except LAC. Where details of basic qualifications of CCNs were provided, they included certificate, diploma and bachelor’s degrees with diploma and bachelor’s being the most common in many settings. In a large observational study in European hospitals, it was found that for every 10% increase in nurses holding bachelor’s degrees rather than a diploma, a 7% reduction in 30-day inpatient mortality was measured. To our knowledge, no similar study has been undertaken in resource-limited health systems offering an opportunity for future research.

Nurses with postbasic qualification in critical care

The presence of nurses with postbasic training in critical care was reported in all regions but not all countries. In general, postbasic preparation was reported in LMICs but absent in LICs. Most included literature did not identify the numbers or ratios of critical care trained nurses within each country or region. However, in a Kenyan paper, 50% of nurses working in ICUs were reported as holding postbasic qualification. Such a ratio achieves the minimum standards recommended in some HICs, for example, Australia. Guidelines from India recommend that all nurses working in critical care areas hold formal postbasic qualifications yet even within India, this level of preparation is inconsistent.

Table 2 Literature providing evidence of who is involved in providing nursing care of critical care patients in low income and lower middle-income countries grouped thematically and mapped to region and country

<table>
<thead>
<tr>
<th>Data</th>
<th>Region</th>
<th>Citations by country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified nurses with basic training or level of qualification identified</td>
<td>SSA</td>
<td>Ethiopia,1–3 Kenya,2,3 Malawi,4–5 Rwanda,6 Tanzania,7 Uganda,8 Zambia9</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,10–12 Nepal13</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines,14–16 Solomon Islands,17 Vietnam18</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt,19–28 Palestine29</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>Qualified nurses with post-basic training or level of qualification identified</td>
<td>SSA</td>
<td>Ghana30–32 Kenya,2,3,31–33 Malawi,4 Mozambique,34 Rwanda,6,35 Tanzania,7 Uganda,8,36 Zambia38</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,10–12 Sri Lanka32–44</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Cambodia,45 Philippines,14–16</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt28,51</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>Haiti16</td>
</tr>
<tr>
<td>Other nursing cadres*</td>
<td>SSA</td>
<td>Kenya,37 Malawi,4–5 Mozambique,30–39 Zimbabwe40</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Cambodia, Malaysia,45 Philippines,14–15</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt28,51</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>Non-nursing healthcare workers†</td>
<td>SSA</td>
<td>Kenya,32,52 Tanzania,7,36,53,54 Uganda38</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,41,55 Pakistan,56 Sri Lanka42</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines14,15,50 Solomon Islands17</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt57</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>Non-healthcare trained persons‡</td>
<td>SSA</td>
<td>Malawi,48 Rwanda,33 Tanzania,58 Zambia39</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India31</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
</tbody>
</table>

The corresponding references for this table are included in online supplemental file 2.

*Other nursing cadres may include but are not limited to student nurses or midwives.
†Non-nursing healthcare workers may include but are not limited to clinical officers, respiratory therapists, or ancillary staff.
‡Non-healthcare trained persons may include but are not limited to families and lay persons.

EAP, East Asia and the Pacific; LAC, Latin America and the Caribbean; MENA, Middle East and North Africa; SA, South Asia; SSA, Sub-Saharan Africa.
Literature from Sri Lanka and Zambia described situations where the overall percentage of nurses with postbasic qualification was low. However, it was more common that the nurse in charge held a postbasic qualification.22 23 Another situation reported from Zambia suggested that postbasic trained nurses have responsibilities to provide care to deteriorating patients in the wider hospital, reducing the access to trained nurses within the units.24

Other cadres of nurses were identified as providing some or all of the care commonly associated with the CCN role. In common, these included enrolled nurses,25 26 nurse-midwives or midwife technicians.27 28 It was also noted that preregistration student nurses were engaged in clinical placements within several ICUs and other critical care settings.27–29

Non-nursing cadres

Papers from SSA, EAP and MENA provided evidence of non-nursing staff providing what might be considered aspects of CCN. Roles included technicians20 and personnel described as clinical officers or non-physician clinicians. However, it was not clear in the included papers what constituted a non-physician clinician.30 31 Additionally, nurse anaesthetists32 and respiratory therapists33 were involved in the care of mechanically ventilated patients. Less clearly defined roles such as healthcare assistants,23 ancillary staff and caregivers34–36 were also noted.

Non-healthcare trained carers

A small number of documents suggested that lay persons provided nursing care. Some of these discussed the parents’ roles in neonatal care and were similar to practices in HIC neonatal ICUs such as kangaroo care.39 Others highlighted the role of lay persons when shortages of nursing staff existed.22 A global shortage of healthcare workers, predominately in LMIC contexts, is well recognised.9 Urgent work to address this is required if

Table 3 Literature providing evidence of the day-to-day roles and responsibilities providing nursing care of critical care patients in low income and lower middle-income countries grouped thematically and mapped to region and country

<table>
<thead>
<tr>
<th>Data</th>
<th>Region</th>
<th>Citations by country</th>
</tr>
</thead>
<tbody>
<tr>
<td>The critical care nursing role, practices or tasks</td>
<td>SSA</td>
<td>Ethiopia,1 Kenya,2 Malawi,3 Mozambique,5 Nigeria,6 7 Rwanda,8 Tanzania,9–12 Uganda,13–16 Zambia 17–19</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,20 Nepal,21 Pakistan,23 24 Sri Lanka 25</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Cambodia,16 26 Myanmar,28 Philippines,29 30 Vietnam,30 31 Unnamed EAP country 32</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt,33 39 Palestine 40</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>Critical care nursing systems/staffing/capacity</td>
<td>SSA</td>
<td>Kenya 4 21–43 Malawi,3 44 Rwanda,45 Tanzania,46 Uganda,44 46 Zambia,17 18 47 Zimbabwe 48</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,29 30 Nepal,52 Pakistan,24 54 Sri Lanka 55–57</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Myanmar,28 Philippines,29 30 Solomon Islands,33 Vietnam 29</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt,34 36 39 58 59 Palestine 40</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>The availability and utilisation of physical resources or technologies to fulfil the critical care nursing role</td>
<td>SSA</td>
<td>Kenya 4 21–43 Malawi,3 44 Nigeria,6 Rwanda,45 46 Tanzania,9 10 46 Uganda,14 46 Zambia,18 47 Zimbabwe 48</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,50 51 63 64 Nepal,52 Pakistan,24 Sri Lanka 54 55</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines,30 Solomon Islands 33</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt,34 36 39 Multiple MENA countries 59</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
<tr>
<td>The availability of policies or guidelines to support evidence-based practice</td>
<td>SSA</td>
<td>Ethiopia,1 Kenya,42 Malawi,3 Nigeria,6 7 Rwanda,45 Tanzania,9 10 62 Uganda,14–16 Zambia,17–19 47 Zimbabwe 48</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India,53 65–67 Nepal,21 52 Pakistan,24 Sri Lanka 55</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines,29 Vietnam 31</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt,34 35 39 Multiple MENA countries 59</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
</tbody>
</table>

The corresponding references for this table are included in online supplemental file 2.

EAP, East Asia and the Pacific; LAC, Latin America and the Caribbean; Mena, Middle East and North Africa; SA, South Asia; SSA, Sub Saharan Africa.
UHC and the attainment of the SDGs are to be met. Although driven by necessity in these examples, multidirectional benefits are reported when families are directly involved in patient care. However, research in critical care environments is sparse, especially in LIC/LMIC settings.

The day-to-day roles and responsibilities of those providing nursing care of critical care patients in LICs/LMICs

CCN role, practices or tasks

Although specific tasks and roles such as care of the ventilated patient, medication management and clinical education were common, comprehensive description of the role of those providing CCN within the targeted health systems was not well described. However, three papers presented information on required competencies for critical care nurses, thus identifying their broad roles, tasks and responsibilities. Further documents described the roles of subspeciality nurses in cardiac-surgical and cardiac-medical units.

Table 4 Literature providing evidence information on registration and professional scope of nurses providing nursing care of critical care patients in low income and lower middle-income countries grouped thematically and mapped to region and country

<table>
<thead>
<tr>
<th>Data</th>
<th>Region</th>
<th>Citations by country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration or professional standards</td>
<td>SSA</td>
<td>Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, Multi SSA countries</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>None</td>
</tr>
</tbody>
</table>

The corresponding references for this table are included in online supplemental file 2.

Table 5 Literature providing evidence of training and continuing education available to nurses providing critical care in low income and lower middle-income countries grouped thematically and mapped to region and country

<table>
<thead>
<tr>
<th>Data</th>
<th>Region</th>
<th>Citations by country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical care training courses</td>
<td>SSA</td>
<td>Kenya, Liberia, Malawi, Mozambique, Rwanda, Tanzania, Zambia, Multi countries</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India, Nepal, Pakistan, Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Myanmar, Philippines, Vietnam</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt, Palestine, Multiple MENA countries</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>Haiti</td>
</tr>
<tr>
<td>Education activities targeting specific critical care nursing practices</td>
<td>SSA</td>
<td>Malawi, Rwanda, Zambia</td>
</tr>
<tr>
<td>Access to educational resources</td>
<td>SSA</td>
<td>Mozambique, Nigeria, Tanzania, Uganda</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Philippines</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>Haiti</td>
</tr>
<tr>
<td>Research reporting on before and after testing of educational interventions</td>
<td>SSA</td>
<td>Kenya, Malawi, Tanzania, Uganda</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>India, Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>EAP</td>
<td>Cambodia, Vietnam, Unnamed EAP country</td>
</tr>
<tr>
<td></td>
<td>MENA</td>
<td>Egypt</td>
</tr>
<tr>
<td></td>
<td>LAC</td>
<td>Haiti</td>
</tr>
</tbody>
</table>

The corresponding references for this table are included in online supplemental file 2.

EAP, East Asia and the Pacific; LAC, Latin America and the Caribbean; MENA, Middle East and North Africa; SA, South Asia; SSA, Sub Saharan Africa.
CCN systems/staffing/capacity

Details including the numbers of CCNs in the workforce and nursing models of care were common. Two themes in particular stand out: (1) the heterogeneity in the nurse-to-patient ratios reported across regions, countries and within countries and (2) the perceptions of nurses regarding the conditions they work within.

Reported nurse-to-patient ratios were inconsistent within the included literature. Many reported ratios were equivalent to those recommended in many HIC standards for ICUs at 1:1 or 1:2.11 However, evidence of ratios as low as 1:15 was noted 27 and a perceived inadequacy in the nurse-to-patient ratios to achieve patient care was common. It has been suggested that lower nurse-to-patient ratios are associated with higher mortality rates in ICU45 although this is not without controversy. 46 Associations between lower ratios and quality of care47 and a negative impact on nurse well-being48 have also been reported in HIC contexts.

It remains unclear what would constitute an appropriate nurse-to-patient ratio in resource-limited ICUs and warrants further research. The heterogeneity of critical care in these contexts suggests that bespoke recommendations would be required. The use of validated instruments such as the Therapeutic Intervention Scoring System or Nursing Activities Score to assess workload on a unit-based scale may be useful in determining needs.

However, even validated instruments, such as these, have limitations and do not capture non-clinical tasks or the role of the broader team in providing patient care.49

There is evidence that some nurses perceived themselves to be working in poor conditions.50–52 In the Solomon Islands, it was noted that no ICU existed, and nurses undertook all critical care of patients in wards or in non-hospital healthcare settings.53 Data from a large international survey conducted by the WFCCN found the most common theme, across all regions, was insufficient workforce numbers.54 This has been highlighted as a priority area of development by the WHO.9

In addition to the workforce constraints already discussed, basic commodities including electricity, oxygen and water may not be guaranteed.55 Work to identify appropriate technologies to build critical care capacity in resource limited contexts is, therefore, important.56

Availability and utilisation of physical resources or technologies to fulfil CCN role

In the literature from SSA, SA and MENA, advanced critical care technologies like those found in high-resource health systems were reported, examples included mechanical ventilators,33 51 57–59 invasive haemodynamic monitoring60 61 and renal replacement therapy.36 62 However, it was noted in an Indian paper that the available mechanical ventilation devices, modalities and adjunctive therapies...
remained underutilised due to a lack of training on their use. Similarly, where equipment was available, it may be old or poorly functioning in some contexts including Nepal and Sri Lanka.

It should be noted that although critical care is synonymous with high technology resources in HICs, the associated high costs and need for highly trained staff may not be achievable in resource-limited settings. Research into what constitutes appropriate critical care technologies in resource-limited settings is important. However, critically ill patients exist in all hospitals, regardless of the availability of equipment and resources. Therefore, delivering critical care should not be predicated on the availability of technology or the ability to achieve all aspects of care in all settings. Instead, critical care should be based on what is appropriate and feasible in each setting.

Availability of policies or guidelines to support evidence-based practice

Limited data spoke to policies, documentation or practice guidelines in each region. However, a common theme was a perceived absence or inadequacy of these resources; for example, in Nigeria, this absence was reported as leading to inadequate knowledge of evidence-based practices. In a Zambian context, it was highlighted that even when protocols existed, they were not able to be successfully implemented. However, the reasons for this were not described. In a review by the same author literature from SSA contexts suggested that guidelines were often inappropriate having been developed in HIC’s, where different presentations and challenges are experienced.

Conversely, some documents demonstrated the presence of effective policies and practice guidelines, including the generation of locally developed documents. Examples included a comprehensive identification of key documents related to sepsis management in Uganda and a combination of international and locally developed guidelines for care in Nepal.

Registration and professional scope of nurses providing nursing care of critical care patients in LICs/LMICs

Nursing registration and professional standards

Little data were found relating to CCN scope of practice, standards or registration requirements. Available data from SSA, SA, EAP and MENA mostly identified the nursing boards that nurses registered under. A small number of papers from SSA offered extended details, such as the continuing professional development requirements for maintaining registration. Research exploring CCN standards, requirements for registration; including CPD requirements and current scope of practices, is needed to guide capacity and health service development in LICs/LMICs.
Training and continuing education available to nurses providing critical care in LICs/LMICs

Formal postgraduate courses

Specialty education in CCN is well documented in many HICs. For example, in the Australian context, a Master’s degree programme exists in many nursing faculties, with exit points at graduate certificate, post-graduate diploma and master’s degree, where post-basic training was reported in resource-limited settings, only one paper from Zambia provided an overview of course structure or content and provided evidence that the available courses were validated to meet international standards.24 68 This lack of detail makes comparison between countries and assessment of the quality of post-basic qualifications difficult. Therefore, presenting an opportunity for research, benchmarking and curriculum development.

A smaller subset of critical care courses were reported where nurses from low-income health systems travelled to other countries to undertake training; one example is found in Rwanda where nurses train in Kenya or South Africa.69 Caution is required to ensure training attained in this way is contextually appropriate. It was noted by Bruce70 that CCNs returning to Mozambique following clinical internship in South Africa felt disempowered. Technologies and practices they had experienced were not achievable in their home contexts. It is also evident that healthcare workers from resource-limited countries who are able to train in HIC’s frequently stay in those countries once graduated.71

It is widely noted that low wages are both a cause of dissatisfaction and a barrier to nurses pursuing post-basic qualifications in LIC/LMICs.72 Furthermore, a recent global survey of CCN organisations highlights that credentialling is of great importance to critical care nurses in low-income settings.34 Strategies to make post-basic training accessible and attractive to nurses providing critical care in LICs/LMICs are, therefore, important and an area that deserves attention in research and capacity development agendas.

Short format critical care courses

Many short format courses were developed in-country or developed with support from international collaborators. Some were delivered by local faculty and others by visiting international educators. Among others, the Fundamental Critical Care Support/Paediatric Fundamental Critical Care Support courses in Haiti, Kenya and Nepal, the Sugar, Temperature, Airway, Blood pressure, Lab work and Emotional support programme,73 and the Paediatric Assessment of Illness, Recognition and Resuscitation courses,75 were identified in SSA. In SA courses included: The Facility Based Integrated Management of Neonatal and Childhood Illnesses programme,76 the Network for Improving Critical care Skills Training (NICST) programme,77–79 and the Basic Assessment and Support in Intensive Care course.80 81

Educational activities promoted by CCN societies

Tier-3 evidence demonstrated that nursing organisations in SSA, SA and EAP promoted locally delivered educational workshops or critical care short courses.82–87 One course in Ghana was promoted as accredited and in partnership with a university nursing faculty.83 Local and regional conferences were promoted or organised by most of the organisations.82–89

Educational activities targeting specific CCN practices

A broad range of educational activities targeting specific CCN practices were noted. Some evidenced informal in-service type of education. However, some nurses in Tanzania and Egypt perceived there to be a gap in this type of job facility-based training.90 91 Literature from EAP and SA focused on task or practice-specific training in areas as diverse as crisis resource management,92 infection control practices,93 or the use of physical restraints.94

Access to educational resources/use of IT

Data regarding access to learning materials were extracted. A small number of documents from SSA suggested that access to open-source journals existed,25 or that learning guides and reading materials were supplied as part of CCN courses.35 95 However, papers from Nigeria and Uganda highlighted that a lack of access to relevant evidence and materials was experienced by nurses.65 96 Where short-format CCN courses were discussed, it was suggested that the use of low-fidelity simulation97 and using a train-the-trainer model to upskill clinical nurses in effective clinical teaching were useful strategies.35 In Tanzania, it was suggested that in-service trainings were not a usually practiced,90 whereas, in other SSA settings IT capabilities, including limited access to computers90 92 were perceived as constraints on the delivery of clinical education.

Educational research

Educational activities targeting specific CCN practices and broader critical care courses were both the subject of educational research in LICs/LMICs. Before and after testing of knowledge,21 measures of satisfaction and acceptability of training,76 practice change and the impact of education on clinical outcomes97 98 were all noted. The broader literature suggests that continuing education for nurses in LICs/LMICs remains poorly researched. A recent narrative synthesis identified a range of strategies employed in general nurse education, not specifically CCN.99 These included train-the-trainer models, low-dose/high-frequency models and the use of multiple media; including web-based delivery for training that have been studied in LIC/LMIC contexts. However, they noted that the quality of the evidence produced was low.

Great opportunity exists to undertake focused research investigating the roles, capacity and continuing education requirements of nurses providing critical care in LICs/LMICs. Research regarding the optimal strategies for delivery of continuing education in these contexts...
is also needed. Such work is vital in the ongoing development of critical care services in resource-constrained health systems.

Addressing capacity development in LICs/LMICs is challenging. Perceived needs may be high but current assets and capacity variable. It is recommended by some that a hybrid approach should be taken where assets, capacity and needs, are assessed simultaneously, driven by the local stakeholders. The outcomes of such an assessment should inform contextually appropriate initiatives, that value and leverage current assets and capacity, understand the enablers and barriers to engaging in capacity development work and clearly identify where needs exist and can be addressed.

Limitations

Although the search strategy was developed to be as comprehensive as possible. Resource constraints, not least the inability to translate non-English language documents, mean it is possible that some literature was not captured. Efforts to access the websites of national health departments and nursing councils or directly contact these organisations may elucidate registration requirements, scopes and standards of practice. However, it remains unclear whether this would provide data specific to CCN. Finally, the lack of literature found in English from LICs/LMICs in LAC prevents an accurate picture of CCN in these contexts to be drawn.

CONCLUSION

Provision of critical care is a complex undertaking and despite comonalities and is unique to regional and socioeconomic contexts. Multidisciplinary teamwork is paramount. Yet the structure and skill levels of such teams will vary according to patient population, resources and treatments available. The findings of this study documented care of critically ill patients in specialist and non-specialist environments. Human and physical resourcing was highly variable across regions but often reported as inadequate to meet demand within LIC/LMIC health systems. The descriptions of CCN training and skill levels were equally variable but often perceived as requiring development. Therefore, a universal definition of the CCN role in LIC/LMIC health systems is likely unhelpful. Research opportunities abound to elucidate current assets, capacity and needs of CCNs in specific LIC/LMIC contexts. Outputs from such research would be invaluable in supporting contextually appropriate capacity development programmes.

Contributors

Made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; AM, GO’R, GW, PC. Involved in drafting the manuscript or revising it critically for important intellectual content; AM, GO’R, GW, PC. Given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content; AM, GO’R, GW, PC. Agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. AM, GO’R, GW, PC. The guarantor accepts full responsibility for the work and/or the conduct of the study, had access to the data, and controlled the decision to publish. AM acts as a guarantor.

Funding

This research is supported by an Australian Government Research Training Program (RTP) Scholarship. Award/Grant number is not applicable.

Competing interests

None declared.

Patient and public involvement statement

No patient was involved.

Patient consent for publication

Not applicable.

Ethics approval

This study does not involve human participants; no ethics approval was required for this research.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information. A full search strategy is included to allow replication.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Andy Macey http://orcid.org/0000-0001-5144-104X

REFERENCES

16 Macey A. The critical care nursing role in low and lower-middle income settings: a scoping review protocol 2020.

62 Marzoula JM. *Teaching strategies to reduce VAP at Mulago Hospital*: a Capstone project, 2016.

63 Atreyar MA, Lorenz JM, Narendran V. Provider perceptions of bubble continuous positive airway pressure and barriers to implementation in a level III neonatal unit in South India. *Adv Neonatal Care* 2018;18:500–6.

71 OECD. Recent trends in international migration of doctors, nurses and medical students, 2019.

75 MacDonell R, Koe S, Okafor I. Building resuscitation capability in low resource settings; development of the pairs course (outlining the development of a tailored paediatric resuscitation programme for low resource healthcare settings). Arch Dis Childhood 2019;104:A259.

83 CCNGG. Critical Care Nurses Group Ghana - CCNGG Facebook site 2020.

