Use of the kidney failure risk equation to inform clinical care of patients with chronic kidney disease: a mixed-methods systematic review

Harjeet Kaur Bhachu, Anthony Fenton, Paul Cockwell, Olalekan Aiyegbuisi, Derek Kyte, Melanie Calvert

ABSTRACT

Rationale and objective The Kidney Failure Risk Equation (KFRE) predicts the risk of end-stage kidney disease in patients with chronic kidney disease (CKD). This study aimed to evaluate the impact of the utility of KFRE in clinical practice.

Study design Systematic review.

Setting and study populations Adult patients with CKD but not receiving renal replacement therapy enrolled in studies where KFRE was used in clinical care pathways.

Selection criteria for studies All studies published from April 2011 to October 2021 identified from Medline, Cumulative Index to Nursing and Allied Health Literature, Embase and reference and citation searches of included studies.

Data extraction Relevant data were extracted, and two reviewers independently assessed study quality using appropriate appraisal tools.

Analytical approach Findings reported as a narrative synthesis due to heterogeneity of the included studies.

Results Of 1635 studies identified, 440 duplicates were removed. The remaining 1195 titles and abstracts were screened. All five studies for full-text review were included in the analysis. Three uses of KFRE were assessed: (1) primary to specialty care interface; (2) general nephrology to multidisciplinary care transition; and (3) treatment planning. Evidence of impact on number of patient referrals into nephrology care was conflicting. However, wait times improved in one study. Although KFRE identified high-risk patients for increased multidisciplinary support, there was concern patients stepped down, no longer meeting eligibility criteria, may lack access to services.

Conclusions This is the first systematic review of studies that have assessed the actual impact of KFRE in clinical practice with five studies of varying quality reported to date. Trials are in progress assessing the impact on clinical outcomes of using KFRE in clinical practice, and KFRE is being incorporated into guidelines for CKD management. Further studies are needed to assess the impact of KFRE on clinical care.

Trial registration number Protocol registered on PROSPERO before initiation of the study (Ref: CRD42020219926).

Strengths and limitations of this study

- To the best of our knowledge, this is the first systematic review to examine the evidence for the impact of the use of the Kidney Failure Risk Equation in clinical practice.
- A mixed-methods approach was used to allow the inclusion of both quantitative and qualitative evidence.
- Study quality ranged widely, and some studies did not provide adequate detail of their population characteristics, such that generalisability was difficult to assess.
- Furthermore, the statistical analysis was limited in several studies.

BACKGROUND

The global prevalence of chronic kidney disease (CKD) is estimated to be 9.1%, and CKD was the 12th leading cause of death in 2017. CKD is also associated with an increased risk of progression to end-stage kidney disease (ESKD). Risk stratification in CKD can enable more efficient care, with specialty care targeted to patients at higher risk of ESKD, while sparing those with low risk unnecessary intervention and undue anxiety associated with this.

Most guideline criteria for referral of patients to specialist nephrology care use estimated glomerular filtration rate (eGFR), eGFR decline and urine albumin:creatinine ratio (ACR) thresholds rather than a quantified ESKD risk. Such criteria often result in the referral of patients at low risk of ESKD and the non-referral of patients at high risk. Therefore, recent CKD guidelines endorse risk-based thresholds for specialty referral and renal replacement therapy (RRT) planning.

The best validated risk prediction model is the Kidney Failure Risk Equation (KFRE),
which predicts the 2-year and 5-year risk of ESKD in patients with stages 3–5 CKD and has undergone extensive validation. The equation can easily be embedded into electronic medical records and is also readily available online.

It is uncertain whether the use of the KFRE in clinical practice has a meaningful impact on clinical pathways and health outcomes and how patients and healthcare professionals view the KFRE. We carried out a systematic review of the available evidence of the impact of the use of the KFRE in clinical practice.

METHODS

The study protocol was registered on PROSPERO (Ref: CRD42020219926), and the study is reported as per the ‘Preferred Reporting Items for Systematic Review and Meta-Analysis’ (PRISMA) checklist.

Data sources and searches

Two reviewers (HKB and AF) independently searched MEDLINE (Ovid), Cumulative Index to Nursing and Allied Health Literature (EBSCO) and Embase (Ovid) for studies between April 2011 to October 2021 that examined the impact of utilising the KFRE in patients with CKD.

The search strategies (online supplemental table S1) were developed with the support of an information specialist and used keywords, index terms and Medical Subject Headings terms tailored and applied to each individual database. No language restrictions were applied. We also hand searched the reference lists of included studies and performed a forward citation review of these studies and the original KFRE development study. All results obtained at each stage of the process were entered into EndNote X9.3.3 (Clarivate Analytics, Pennsylvania, USA), and duplicates were removed. Any disagreements regarding study inclusion were resolved by discussion or decided by a third reviewer (PC) where necessary.

Study selection and eligibility criteria

Studies were included if they:
1. Were published from April 2011 (the date of the initial KFRE paper publication) to October 2021.
2. Studied adults with CKD but not receiving renal replacement therapy (dialysis or kidney transplantation).
3. Used the KFRE to estimate the risk of ESKD.
4. Evaluated the actual rather than potential impact of using the KFRE in clinical practice.

Studies were excluded if they were development or validation studies only, narrative reviews, editorials, commentaries or opinions, or letters.

The two reviewers (HKB and AF) independently screened the titles and abstracts against the eligibility criteria. Potentially relevant studies were identified, and final inclusion was based on full-text examination. Reasons for exclusion following full-text review were documented.

Data extraction and quality assessment

The following key data were extracted: (1) study details (author, year of publication, title and location of study), (2) study type, (3) aim, (4) study population characteristics, (5) method, (6) results, (7) key findings, (8) strengths and limitations and (9) author conclusions.

Methodological validity was assessed independently by the two reviewers (HKB and AF) using the Critical Appraisal Skills Programme appraisal tools. Joanna Briggs Institute Critical Appraisal Tools and Centre for Evidence-Based Management Critical Appraisal of a Survey.

Data synthesis and analysis

Due to different study methods and the heterogeneity of study characteristics, individual analysis for quantitative studies and qualitative studies was not conducted. Findings were reported as a narrative synthesis adopting the methods presented by Popay et al: (1) theoretical reason for basis of evaluated intervention, that is, using the KFRE, (2) descriptive summary of study characteristics and critical appraisal, (3) exploration of associations within and between studies and (4) assessing the strength of evidence and limitations of the synthesis process.

Patient and public involvement

There was no patient and public involvement in the conduct of this systematic review.

RESULTS

The database search identified 1099 studies, and a further 536 studies were identified from the forward citation search of the KFRE development study. Four hundred and forty duplicates were removed, resulting in 1195 studies taken forward for the title and abstract screening. Five studies fulfilled the criteria for full-text review. No additional studies were identified from reference review and forward citation review of the selected studies. Results of the search are presented in the (PRISMA) flow diagram (figure 1).

Study characteristics

Table 1 presents the details of the included studies. Three studies took place in Canada, one in Australia and one in the USA. Four studies were quantitative, and one study used a mixed-methods approach, whereby the strengths of both qualitative (interviews) and quantitative (surveys) research elements were combined to gain a broader view of their experience applying the KFRE. The KFRE was used at three transition points: (1) the primary to specialty care interface, (2) general nephrology to multidisciplinary care or advanced care kidney clinics and (3) to guide treatment planning in a private healthcare setting, including referrals to primary or nephrology care, medication changes and laboratory recommendations. No study stated the baseline risk used (North American or non-North American). Only two
criteria, all patients from the CKD multidisciplinary and general nephrology clinics were invited to complete a paper-based experience survey, and all multidisciplinary CKD healthcare providers were asked to complete an online job satisfaction survey.

Che et al16 retrospectively compared the outcomes of 643 patients from the Multi-Care-Kidney-Clinic, for patients with advanced CKD, before and after the revision of the clinic eligibility criteria, in Ontario, Canada. The new criteria applied included eGFR <15 mL/min/1.73 m² and KFRE 2-year risk >10%. If eligibility criteria were not met, patients were discharged from the clinic.

Lastly, Sendek et al21 applied the 4-variable KFRE (2-year risk >15%) to the population in Duke Connected Care, a Medicare Shared Savings Program that manages the healthcare of over 46,000 Medicare patients. Patients alive and with no evidence of ESKD, a prior nephrology visit or acute kidney injury without chronic dysfunction were referred for ‘population health rounding’ where their electronic health record was reviewed weekly with a multidisciplinary team to decide on changes in management. Number of patients rounded each month, time per case and any actions taken were recorded.

Results are shown in table 2, along with key findings from the critical appraisal. The three themes identified are described further.

Primary care to specialty care interface
Two studies18 20 reported outcomes following the introduction of a new referral process incorporating a 5-year ESKD risk threshold of >3% to triage patients from primary care to specialty care, although they also incorporated additional referral criteria for eligibility for specialty care review. Both studies measured the number of consultations preimplementation and postimplementation of the KFRE: Hingwala et al found monthly referrals increased by 43%,18 whereas Hong et al found referrals decreased by 25%–30%.20

Hingwala et al also showed a significant reduction in the wait-time from referral to review (median 58 vs 230 days) following implementation of the new triage system.18

General nephrology to multidisciplinary/advanced kidney care clinic
Patients under nephrology care may be managed in a general nephrology clinic or, for patients with more advanced CKD, a multidisciplinary clinic focused on managing CKD complications and RRT preparation. Two studies examined the use of the KFRE at this interface and introduced similar eligibility criteria for entry into and management in the multidisciplinary clinic: a 2-year ESKD risk >10% or eGFR <15 mL/min/1.73 m² (formula used for calculating eGFR not specified in the studies).

Che et al16 found that by applying these criteria to all prevalent patients in the multidisciplinary clinic, 73% remained in the clinic, 5% were stepped down to general nephrology care and 22% were discharged to primary care. Of the latter, 11% required rereferral to nephrology,
<table>
<thead>
<tr>
<th>Study</th>
<th>Healthcare setting, country</th>
<th>Study design</th>
<th>Population, N</th>
<th>KFRE details</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>End-points</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hingwala et al.</td>
<td>Primary to nephrology care, Manitoba, Canada</td>
<td>Quasiexperimental</td>
<td>Patients referred to three renal centres in the Manitoba Renal Program, n/a</td>
<td>4-variable KFRE for 5-year risk</td>
<td>12-month period immediately following implementation of triage was observed as a transition period to the new triage system and was excluded from the final analysis.</td>
<td>Referral if significant criteria OR KFRE 5-year risk >3%. If no criteria met, then back to referrer with ‘low risk letter’. If risk 3%–10% book as non-urgent (<6 months). If risk >10% book as urgent (<4 weeks).</td>
<td>No triage unless all four variables available or other indication provided.</td>
<td>Compared between pretriage and post-triage periods: 1. Wait time between referral and nephrology visit (days). 2. Number of consults.</td>
<td>Pretriage 1 January 2011 to 31 December 2011. Post-triage 1 January 2013 to 31 December 2013</td>
</tr>
<tr>
<td>Hong et al.</td>
<td>Primary to nephrology care, New South Wales, Australia</td>
<td>Pre-post</td>
<td>Patients referred to St George Hospital Renal Department, n/a</td>
<td>KFRE for 5-year risk, unclear on number of variables</td>
<td>n/a</td>
<td>In January 2019 triage consultant and risk-based triage introduced.</td>
<td>Referral if KFRE 5-year risk >3%. If <3% risk, referral on consultant discretion.</td>
<td>Pretriage periods in 2018 and 2017.</td>
<td>Number of consults between pretriage and post-triage periods.</td>
</tr>
<tr>
<td>Smekal et al. *</td>
<td>Multidisciplinary to general nephrology care, Alberta, Canada</td>
<td>Mixed-methods</td>
<td>Interviews, 27: Southern Alberta Renal Program, nine patients and one family member; multidisciplinary CKD healthcare providers in Calgary, Alberta: 17. Survey in Calgary, Alberta: patients from CKD clinic: 413; CKD healthcare providers: 73.</td>
<td>KFRE for 2-year risk, unclear on number of variables</td>
<td>Interviews: patients age >18 years with non-dialysis CKD, discharged from multidisciplinary to general nephrology care and multidisciplinary CKD healthcare providers (nephrologists, nurses and allied health professionals). Survey: all patients from CKD multidisciplinary and general nephrology clinics and all multidisciplinary CKD healthcare providers.</td>
<td>Transition to CKD multidisciplinary clinic when KFRE 2-year risk ≤10% or eGFR ≤15 mL/min/1.73 m² implemented in 2017.</td>
<td>Surveys preimplementation: patient: paper-based care experience survey and provider: online job satisfaction survey. Interview data collection stopped once data saturation reached.</td>
<td>Survey distributed to patients November 2016–January 2017 (preimplementation) and January 2018–March 2018 (postimplementation). Survey responses returned within time period.</td>
<td></td>
</tr>
<tr>
<td>Che et al. †</td>
<td>Discharges from multidisciplinary care, Ontario, Canada</td>
<td>Retrospective cohort</td>
<td>Prevalent CKD patients in MCKC in 2013 with available data: 643.</td>
<td>4-variable KFRE for 2-year and 5-year risk</td>
<td>Included CKD patients from MCKC with available data.</td>
<td>Revised eligibility criteria between 2016 and 2018 from eGFR <30 mL/min/1.73 m² to eGFR <15 mL/min/1.73 m² and KFRE 2-year risk >10%.</td>
<td>Number discharged from MCKC, referred, commenced RRT and died.</td>
<td>2013–January 2020</td>
<td></td>
</tr>
</tbody>
</table>

Continued
and 6% ultimately required RRT, although the majority in the context of an unforeseen acute illness. Smekal et al.3 evaluated patient and healthcare providers’ views and experiences following the implementation of the new KFRE-based criteria for multidisciplinary clinic management. Providers felt using KFRE to target high-risk patients was a key strength, limiting inappropriate referrals and improving the clinic’s focus. The caseload was felt to be more acute but overall workload not significantly changed, and there was no significant difference in patients discharged from the multidisciplinary clinic, such as education and monitoring. Although there was some improvement in patients’ experience of access to care, caring staff and safety of care, most patients were satisfied with their care both preimplementation and postimplementation, and there was no difference in patients’ overall care experience.

Treatment Planning

The study by Sendak et al.21 took place in an ‘Accountable Care Organisation’ within the Medicare Shared Savings Programme. Medicare is a health insurance programme mainly for people aged ≥65 years in the USA. A 2-year ESKD risk threshold of >15% was applied to the cohort electronic healthcare record (EHR). The reviews were able to be performed relatively rapidly (average 2 min 12 s) and led to changes in management in 21.8% of cases, most often a referral for nephrology review.

Critical appraisal

All 5 studies were limited to a single centre or region. No randomised control trials were identified. Two were cohort studies, one was a mixed-method study, and two were quasi-experimental studies. All studies stated a clear aim or issue to be addressed. Sample size varied depending on the study method, and two studies did not state it.18 20 Participant baseline characteristics data were not available in two studies19 20 and lacking in one study where preintervention information was not available. For the qualitative aspect of the mixed-method study,3 the patients selected were English-speaking only. Although this may have allowed for simpler data analysis as there was no requirement for language translation, this selection bias may limit the perspectives obtained of those experiencing the intervention. In this same study, the survey response rate for patients was unclear and for providers, no data were provided to establish any difference in demographics to non-responders. Although the survey response rate for patients was unclear and for providers, no data were provided to establish any difference in demographics to non-responders.

Study

<table>
<thead>
<tr>
<th>Healthcare setting, country</th>
<th>Study design</th>
<th>Population, N</th>
<th>KFRE details</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>End-points</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sendak et al.21†</td>
<td>Prospective cohort</td>
<td>Duke Connected Care a MSSP, 413</td>
<td>KFRE for 2-year risk, unclear on number of variables</td>
<td>Patients alive and without evidence of ESKD, Excluded if had past nephrology visit and those with AKI without chronic dysfunction.</td>
<td>Patients with a KFRE 2-year risk >15% referred for ‘population health rounding’ – in-depth EHR weekly review with MDT to decide on changes in management</td>
<td>n/a</td>
<td>Number of patients rounded per month, time per case during rounds, % of patient at rounds that have action taken, incidence of ESKD, RRT modality, number of dialysis crash-starts.</td>
<td>June 2015 for 5 months</td>
</tr>
</tbody>
</table>

Table 1 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Healthcare setting, country</th>
<th>Study design</th>
<th>Population, N</th>
<th>KFRE details</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>End-points</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sendak et al.21†</td>
<td>Private care, North Carolina, USA</td>
<td>Prospective cohort</td>
<td>Duke Connected Care a MSSP, 413</td>
<td>KFRE for 2-year risk, unclear on number of variables</td>
<td>Patients alive and without evidence of ESKD, Excluded if had past nephrology visit and those with AKI without chronic dysfunction.</td>
<td>Patients with a KFRE 2-year risk >15% referred for ‘population health rounding’ – in-depth EHR weekly review with MDT to decide on changes in management</td>
<td>n/a</td>
<td>Number of patients rounded per month, time per case during rounds, % of patient at rounds that have action taken, incidence of ESKD, RRT modality, number of dialysis crash-starts.</td>
<td>June 2015 for 5 months</td>
</tr>
</tbody>
</table>

Footnotes:

†Conference abstract. AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; EHR, electronic health record; ESKD, end-stage kidney disease; KFRE, Kidney Failure Risk Equation; MCKC, Multi-Care Kidney-Clinic; MDT, multidisciplinary team; MSSP, Medicare Shared Savings Programme; N, number; n/a, not available; RRT, renal replacement therapy.
<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years)</th>
<th>Sex (male (%))</th>
<th>eGFR (mL/min/1.73 m²)</th>
<th>Urine ACR</th>
<th>Results</th>
<th>Key findings</th>
<th>Strengths</th>
<th>Limitations</th>
<th>Additional points from critical appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong et al (2020)*</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Compared with 2018 when KFRE-based triage implemented: ▶ 25% fewer consults in 2019 (30% less than in 2017). ▶ Fewer patients had a low-risk KFRE at triage (46% vs 48%). ▶ Fewer low-risk patients had clinic follow-up (50% vs 52%). More low-risk patients remaining in clinic (86% vs 60%) had alternative reasons for follow-up (ie, eGFR <30 mL/min, moderate proteinuria, or uncontrolled hypertension).</td>
<td>Implementing the KFRE-based triage system reduced overall and low-risk patient numbers in outpatient clinics. Triage system allowed for consultant discretion for low-risk patients to be followed up.</td>
<td>Triage system for low-risk patients to be followed up No baseline characteristics presented for patients either preimplementation or postimplementation of the KFRE-based triage process.</td>
<td>No baseline characteristics presented for patients either pretriage versus posttriage groups were similar. Single centre. Low-risk patients with eGFR <30 or moderate proteinuria still followed up. Unclear if results are ‘significant’. No comment on what was done for patients with missing ACR. Inability to calculate KFRE score for referrals at triage (28% in 2018, 36% in 2019) due to missing urine ACR.</td>
<td></td>
</tr>
</tbody>
</table>
Baseline characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years)</th>
<th>Sex (male (%))</th>
<th>eGFR (mL/min/1.73 m²)</th>
<th>Urine ACR</th>
<th>Results</th>
<th>Key findings</th>
<th>Strengths</th>
<th>Limitations</th>
<th>Additional points from critical appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smekal et al (2019)†‡</td>
<td>Pre-KFRE</td>
<td>10%<50; 28%</td>
<td>50–64; 22% 65–74; 39% ≥75.</td>
<td>Not presented</td>
<td>Interviews: 9/23 (39%) patients and 17/75 (23%) providers interviewed.</td>
<td>Patients and healthcare providers reported</td>
<td>Includes both patient and provider perspectives.</td>
<td>More healthcare providers than patients in qualitative component; data saturation was achieved in both groups.</td>
<td>Limited to English-speaking participants.</td>
</tr>
<tr>
<td></td>
<td>implementation:</td>
<td>Pre-KFRE</td>
<td></td>
<td></td>
<td>Patients (survey): 60.</td>
<td>Improved the focus of MDT clinics by targeting high-risk patients.</td>
<td>Presents both qualitative and quantitative data.</td>
<td>Low response rate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-KFRE</td>
<td>10%<50; 30%</td>
<td>66–74; 60%≥75.</td>
<td>Not presented</td>
<td>Interviews: 50.</td>
<td>Using KFRE to target care to high-risk patients was a key strength.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>implementation:</td>
<td>Patients:</td>
<td></td>
<td></td>
<td>Interviews: 29.</td>
<td>Enhanced the sustainability of the clinics.</td>
<td></td>
<td>Most patients interviewed had ~5 years in MDT care prior to discharge so may not be representative of general nephrology patients.</td>
<td>Detailed information on data collection and analysis, questions provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%<50; 19%</td>
<td>50–64; 27% 65–74; 38%≥75.</td>
<td></td>
<td>Survey: 27.</td>
<td></td>
<td></td>
<td>Mostly female providers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%<50; 30%</td>
<td>66–74; 60%≥75.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patients discharged from MDT clinics within previous 12 months so limited time period following implementation of risk approach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-KFRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Funder had no role in the project. Authors declared no competing interests.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>implementation:</td>
<td>Patients:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unable to pair presurvey and post-survey responses or establish response rate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single centre.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Continued

Continued
Baseline characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years)</th>
<th>Sex (male (%))</th>
<th>eGFR (mL/min/1.73 m²)</th>
<th>Urine ACR</th>
<th>Results</th>
<th>Key findings</th>
<th>Strengths</th>
<th>Limitations</th>
<th>Additional points from critical appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Che et al (2020)§</td>
<td>Not presented</td>
<td>Not presented</td>
<td><30</td>
<td>Not presented</td>
<td>470 (73%) continued follow-up in MCKC.</td>
<td>Discharge of a significant number of patients when moving to new criteria, few of whom ultimately required RRT that could have been prevented.</td>
<td>'Low loss to follow-up'.</td>
<td>Completeness of data and follow-up unclear.</td>
<td>Unclear reason for chosen threshold or if this is the ideal level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Of 142 (22%) discharged to primary care:</td>
<td></td>
<td></td>
<td>May not be generalisable as based on one regional renal programme.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 52 (37%) died.</td>
<td></td>
<td></td>
<td>Limited data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 15 (11%) referred to nephrology (at median 982 (IQR 560) days).</td>
<td></td>
<td></td>
<td>No comparison or control group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 8 (6%) initiated RRT (at median 850 (1411) days); 5 (63%) for unforeseen acute illness).</td>
<td></td>
<td></td>
<td>No detail on missing data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31 (5%) discharged to general nephrology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years)</th>
<th>Sex (male (%))</th>
<th>eGFR (mL/min/1.73 m²)</th>
<th>Urine ACR</th>
<th>Results</th>
<th>Key findings</th>
<th>Strengths</th>
<th>Limitations</th>
<th>Additional points from critical appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sendak et al (2016)§</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Of 335 patients of 413 eligible: 73 (21.8 %) management changes:</td>
<td>Patients with CKD at high risk of progression to ESKD can be identified using validated algorithms applied to structured data that is readily available.</td>
<td>KFRE easily applicable.</td>
<td>No data on long-term outcomes.</td>
<td>Elderly patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 53 (72.6%) to nephrology.</td>
<td></td>
<td></td>
<td>Data from one renal programme, therefore, may not be generalisable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 8 (11.0%) to primary care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 7 (9.6%) lab recommendations.</td>
<td></td>
<td></td>
<td>Later months more efficient as workflow optimised – not taken into consideration for time per case.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 4 (5.5%) medication recommendations.</td>
<td></td>
<td></td>
<td>Private healthcare setting so not generalisable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average time-per-case per health round 2 min 12 s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Of the remaining 262 (78.2%) patient screening did, however, identify:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 110 (42.0%) seeing a nephrologist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 35 (13.3%) recently deceased.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► 25 (9.5%) on dialysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Health rounds can be performed relatively rapidly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional points from critical appraisal:

- *Joanna Briggs Institute Quasi-experimental study checklist.*
- †CASP Cohort Study Checklist.
- ‡CASP Qualitative Studies Checklist (interviews).
- §Centre for evidence-based management critical appraisal of a survey.

ACR, albumin:creatinine ratio; CASP, Critical Appraisal Skills Programme; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; KFRE, Kidney Failure Risk Equation; MCKC, Multi-Care-Kidney-Clinic; MDT, multidisciplinary team; RRT, renal replacement therapy.

Table 2 Continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Healthcare setting, country</th>
<th>Study design</th>
<th>Population, N</th>
<th>KFRE details</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>End-points</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jhamb et al (2019) – The Kidney CHAMP Study<sup>54</sup></td>
<td>Primary care, Pittsburgh, USA</td>
<td>Cluster RCT</td>
<td>1650 high-risk CKD patients</td>
<td>Not presented</td>
<td>Patients with high-risk CKD (as defined by validated risk prediction models or by current eGFR value or recent decline in eGFR values). Inclusion: age 18–85 years, eGFR <60 mL/min/1.73 m<sup>2</sup>. Exclusion: history of renal transplant, on maintenance dialysis, recent (within 12 months) outpatient nephrology visit, baseline eGFR less than 15 mL/min/1.73 m<sup>2</sup>, expected survival <6 months, active substance dependence or severe/uncontrolled psychiatric condition.</td>
<td>EHR-based PHM intervention: nephrologist-led E-consults, pharmacist-led medication reviews and nurse-led CKD education.</td>
<td>Usual care</td>
<td>Primary outcome is a composite of 40% reduction in eGFR or ESKD. Secondary outcomes: improved hypertension control, use of RAASi and avoidance of renally contraindicated medications.</td>
<td>42 months</td>
</tr>
<tr>
<td>Harasmiw et al (2019)<sup>55</sup></td>
<td>32 primary care clinics, Manitoba and Alberta, Canada</td>
<td>Multicentre cluster RCT</td>
<td>Estimate each clinic to have 185 patients with CKD attending the participating clinics</td>
<td>Not presented</td>
<td>Inclusion: aged 18 years and older with CKD G3-G5 attending the participating clinics</td>
<td>Active knowledge translation intervention: addition of KFRE and decision aids to clinics’ Data Presentation Tool, patient-facing visual aids, a medical detailing visit and sentinel feedback reports. Usual care: exposed to current guidelines for CKD management, without active dissemination.</td>
<td>Primary outcomes: proportion of patients with measured urine ACR, and proportion of patients appropriately treated with ACEi or ARB. Secondary outcomes: the optimal management of diabetes, hypertension and cardiovascular risk; prescriptions of NSAIDs; and decline in eGFR.</td>
<td>Primary and secondary outcomes reviewed at 1 year after the intervention implementation. Exception for decline in eGFR, which will be measured 2 years postintervention.</td>
<td>42 months</td>
</tr>
</tbody>
</table>

Continued on April 21, 2024 by guest. Protected by copyright. http://bmjopen.bmj.com/ BMJ Open: first published as 10.1136/bmjopen-2021-055572 on 18 January 2022. Downloaded from https://bmjopen.bmj.com/ on April 21, 2024 by guest. Protected by copyright.
<table>
<thead>
<tr>
<th>Study</th>
<th>Healthcare setting, country</th>
<th>Study design</th>
<th>Population, N</th>
<th>KFRE details</th>
<th>Inclusion/exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>End-points</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green et al (2018) – PREPARE NOW Study</td>
<td>Nephrology care, Geisinger Health System kidney specialty clinics, Pennsylvania, USA</td>
<td>Cluster RCT</td>
<td>1572 participants</td>
<td>8-variable KFRE 2-year risk score</td>
<td>Inclusion: patients currently receiving care at Geisinger nephrology practices, aged 18 years and older with advanced kidney disease determined by eGFR or presence of albuminuria.</td>
<td>Implement new electronic health information tools (disease registry and risk prediction tools) to help providers recognise patients in need of Kidney Transitions Care.</td>
<td>Usual care</td>
<td>Primary outcomes: change in % patients feeling in control of their decision making, change in number of hospitalisations and change in % patients with advance directives for kidney care.</td>
<td>36 months</td>
</tr>
<tr>
<td>Hemmelgarn et al (2018)</td>
<td>Nephrology multidisciplinary CKD clinics, Alberta, Canada</td>
<td>Pre/post cohort</td>
<td>Not presented</td>
<td>Not presented</td>
<td>Inclusion: adults aged 18 years and older with sustained eGFR <30 mL/min/1.73 m², who are followed by a nephrologist. Exclusion: patients receiving dialysis or with a kidney transplant prior to the study period.</td>
<td>Transition to CKD multidisciplinary clinic when KFRE 2-year risk ≥10% or eGFR ≤15 mL/min/1.73 m².</td>
<td>Pretriage period</td>
<td>Clinical outcomes (hospitalisation and emergency department visits and death), use of modalities that improve patient experience and outcomes (home dialysis and kidney transplantation), resource use (physician visits and laboratory tests), process-based quality indicators for appropriate CKD care (assessment of albuminuria, use of ACE-VRBs in those with albuminuria, and statins), costs and proportion of patients risk stratified and appropriately managed.</td>
<td>36 months</td>
</tr>
</tbody>
</table>

ACEi, ACE inhibitor; ACR, albumin:creatinine ratio; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; EHR, electronic health record; ESKD, end-stage kidney disease; KFRE, Kidney Failure Risk Equation; NSAID, non-steroidal anti-inflammatory drugs; PHM, population health management; RAASi, renin-angiotensin-aldosterone system inhibitors; RCT, randomised control trial.
of precision in most. Three studies reported only proportions when applying the intervention. These three studies had not commented on the number of patients, if any, who could not be assessed for risk due to missing data or whether there were any confounding factors.

DISCUSSION
In this systematic review, we identified five studies of varying methodologies evaluating the actual impact of utilising the KFRE in clinical practice for patients with CKD. The equation was used in three main areas: (1) triaging patients between primary and specialty nephrology care, (2) directing patients between general nephrology and multidisciplinary advanced CKD care clinics; and (3) treatment planning where high-risk patients within a healthcare programme were identified for a multidisciplinary EHR review.

Interpretation of the results in the context of other evidence
The findings of previous studies exploring the potential impact of applying the KFRE at the primary care specialty care interface suggest referral numbers could potentially increase depending on the threshold criteria set. This is consistent with the findings of Hingwala et al., who reported an increase in referrals. However, wait times improved, possibly related to additional capacity to see referrals and a ‘Hawthorne effect’ (better performance as a result of healthcare professionals’ awareness of being observed in a study). In contrast, Hong et al., who implemented the same risk threshold, reported a fall in referrals. These contrasting findings likely reflect differences in local practice and case-mix, whereby a higher proportion of low-risk patients (i.e., older, higher eGFRs, lower urine ACRs) were managed by nephrology rather than by primary care before implementation of the KFRE criteria, compared with the centre reported by Hingwala et al. We were unable to review any population differences pre-triage and post-triage or between studies due to a lack of reported data.

In specialist nephrology care, many centres have advanced kidney care clinics for those patients who require increased multidisciplinary support to manage CKD complications and prepare for RRT. The KFRE has the potential to identify patients at higher risk of ESKD to more efficiently direct increased support and resources for this group. Those identified as low risk can be stepped down, reducing clinic burden and unnecessary interventions. Two studies evaluated this part of the CKD pathway and applied similar eligibility criteria for multidisciplinary clinic management. Che et al. found many patients could be discharged from the multidisciplinary clinic, the majority back to primary care, with only a small number referred back to nephrology care or ultimately requiring RRT.

The findings of Smeak et al. suggest some anxiety regarding reduced access to services, education and monitoring when patients are discharged from the multidisciplinary clinic to general nephrology care based on their KFRE-calculated risk. Maintaining patient and provider satisfaction with CKD care when using the KFRE to discharge patients is an important issue that will require the considered configuration of local renal service delivery to ensure accessibility and patient safety. It remains unknown if the application of the KFRE to identify higher risk patients for multidisciplinary care impacts key outcomes such as progression of CKD, commencing RRT, cardiovascular events or mortality.

Sendak et al. reviewed the impact of using KFRE in a private healthcare setting in a primarily elderly population to identify patients who required input from medical teams (in primary or specialist care), treatment changes or additional lab testing. The results of this study may not be easily generalisable as this is not a widely used provider model in some countries.

Other suggested areas of use have been for planning RRT in an elderly population where competing risk of death is of concern and for creation of vascular access, but no studies have implemented and evaluated this.

Limitations of the evidence included in the review and the review process
The studies varied widely in methodologies used. The benefit of this mixed-methods review is a greater breadth of understanding and evidence around the application of the risk-based KFRE in clinical practice. This can provide a more rounded body of evidence to inform changes in clinical practice and policy decision making. No randomised control trials were identified.

Study quality also ranged widely. Some studies did not provide adequate detail of their population characteristics. As a result, it was difficult to assess if the population was representative or findings could be generalised. Recognising differences between study populations was also limited by the lack of data. Few studies adequately completed statistical analysis and so it was challenging to decipher significant findings. Authors of the identified studies were not approached for additional information, and we recognise this as a limitation.

Implication of the results for practice, policy and future research
While this study has identified the ease of use of the KFRE to triage patients and highlight those who would benefit from changes in management, plus the potential effect on the number of referrals and patients’ and providers’ experience and perspectives, the impact on health outcomes and economic benefit are still unknown.

More high-quality studies are needed to confidently support the widespread use of KFRE, particularly randomised control trials with a focus on health outcomes and economic impact. Four trials that are in currently progress will assess the outcomes of applying the KFRE (table 3). The Kidney CHAMP study, a cluster randomised controlled trial in Pittsburgh, USA, will review the effectiveness of integrating the KFRE.
into EHR to identify patients at high risk of progression who require intervention such as nephrology guidance, medication reviews and targeted CKD education. Outcomes assessed will be a composite of a 40% reduction in eGFR and ESKD. A multicentre randomised control trial in Canada aims to review the risk-based approach in the primary care setting. The intervention, providing patients and providers in primary care with a patient’s KFRE score and the risk-based referral criteria, will be reviewed to assess if it improves appropriate patient management, improves a patient’s CKD-specific health literacy and affects the cost of care compared with usual care. The PREPARE NOW study, a cluster randomised control trial within a nephrology specialty care setting in Pennsylvania, USA, is applying the KFRE among a suite of digital tools integrated with EHRs to alert the healthcare team of patients at risk of progressing need for intervention. This will be in addition to multiple other components, and patient-reported, biomedical and health system outcomes will be collected. Early findings support the ‘ease of use’ and ‘helpfulness’ of the tools. The fourth trial, with details described in the protocol by Hemmelgarn et al., is a multiphase mixed-methods study. Following the completion of phase 2, findings have been published by Smekal et al., a study that met the criteria for inclusion in this systematic review. The whole trial took on a pre–post design and applied the KFRE to patients in nephrology multidisciplinary CKD clinics in Alberta, Canada. The final phase will aim to evaluate the costs of care and outcomes before and after the introduction of risk-based triage, such as healthcare resource use, frequency of testing, modality choice and death.

Despite the lack of sufficient impact studies, strong evidence to date from validation studies and studies investigating potential impact in clinical practice have been encouraging. As a result, several CKD guidelines have or are in the process of incorporating KFRE risk-based criteria in their pathways.

CONCLUSION

The KFRE has been extensively validated, but there has been relatively little evaluation of its clinical and economic impact. This is the first study to systematically review studies exploring at the actual impact of using the KFRE in clinical practice. Additional high-quality studies are required, and trials assessing the impact of using KFRE at various stages across the CKD pathway are in progress.

Author affiliations
1Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
2Institute of Applied Health Research, University of Birmingham, Birmingham, UK
3Centre for Patient-Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
4Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
5NIHR Birmingham Biomedical Research Centre, NIHR Surgical Reconstruction and Microbiology Research Centre and NIHR ARC, Birmingham, UK
6Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
7School of Allied Health and Community, University of Worcester, Worcester, UK

Contributors HKB, PC, MC and DK conceived the study. HKB developed the methodology with guidance from PC, MC, DK, OA and AF. The database, reference and citation searches were completed by HKB and AF. Screening and selection of the included studies was conducted by HKB and AF. PC as the third reviewer was consulted for any disagreements. HKB and AF critically appraised the included studies. HKB drafted the initial manuscript and all authors contributed to revision and approval of the final manuscript. HKB, as guarantor, accepts full overall responsibility for the conduct of this study.

Funding This project received funding from University Hospitals Birmingham Charity (charity register number: 1165716) - Renal Research Fund (no award/grant number).

Competing interests PC reports grants from Kidney Research UK, National Institute for Health Research (NIHR), MRC and EU Horizon 2020 programme, and personal fees from NAPP Pharmaceuticals outside the submitted work. OA receives funding from the NIHR Birmingham Biomedical Research Centre, NIHR Applied Research Centre (ARC), West Midlands at the University of Birmingham and University Hospitals Birmingham NHS Foundation, Innovate UK (part of UK Research and Innovation), Gilead Sciences Ltd and Janssen Pharmaceuticals, Inc. OLA declares personal fees from Gilead Sciences Ltd, GlaxoSmithKline (GSK) and Merck outside the submitted work. DK reports grants from Macmillan Cancer Support, Innovate UK, the NIHR, NIHR Birmingham Biomedical Research Centre and NIHR SRMRC at the University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, and personal fees from Merck and GSK outside the submitted work. MC is an NIHR Senior Investigator and receives funding from the NIHR Birmingham Biomedical Research Centre, the NIHR Surgical Reconstruction and Microbiology Research Centre and NIHR ARC West Midlands at the University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Health Data Research UK, Innovate UK (part of UK Research and Innovation), Macmillan Cancer Support, UCB Pharma and GSK. MC has received personal fees from Astellas, Takeda, Merck, Daiichi Sankyo, Glaukos, GSK and the Patient-Centered Outcomes Research Institute outside the submitted work.

Patient consent for publication Not applicable.

Ethics approval This study does not involve human participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data sharing not applicable as no datasets generated and/or analysed for this study. Data sharing not applicable for this systematic review.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

ORCID iDs
Anthony Fenton http://orcid.org/0000-0003-2665-6924
Derek Kyte http://orcid.org/0000-0002-7679-6741
Melanie Calvert http://orcid.org/0000-0002-1856-837X

REFERENCES

7 Farrington K, Covic A, Aucella F. Clinical practice guideline on management of older patients with chronic kidney disease stage 3B or higher (eGFR <45 ml/min/1.73 m^2^). *Nephrol Dialysis Transplantation* 2016;31:i1–66.

11 The kidney failure risk equation.

17 Popay J, Roberts H, Sowden A. Guidance on the conduct of narrative synthesis in systematic reviews: a product from the ESRC methods programme 2006.

