Association between contact with a general practitioner and depressive symptoms during the COVID-19 pandemic and lockdown: a large community-based study in Hangzhou, China

Fei Yang,1,2 Wenhui Lin,1,3 Eleanor Frost,4 Yan Min,4,5 Xiaochen Xu,1,2 Xiaoyan Wang,1,2 Wei Li,1,6 Yue Leng,7 Xueyin Zhao,1,2 Wei He,1,2 Ann W Hsing,4,5,8 Shankuan Zhu1,2

ABSTRACT

Objectives To determine the association of general practitioner (GP) contact with depressive symptoms during the COVID-19 pandemic and lockdown in China.

Design In April 2020, a follow-up survey was conducted on the basis of a baseline survey conducted between October 2018 and May 2019.

Setting The survey was embedded in the Stanford Wellness Living Laboratory-China (WELL China) study, an ongoing prospective community-based cohort study during 2018–2019.

Participants The survey was conducted by telephone interview among 4144 adult urban residents participating in the WELL China study at baseline. We collected information on sociodemographic characteristics, depressive symptoms and GP contact during the lockdown period (February to March 2020).

Primary and secondary outcome measures Depressive symptoms were measured using the WHO-Five Well-being Index, comprising five questionnaire items that briefly indicate psychological well-being. Logistic regression models were applied to assess the association between GP contact and depressive symptoms.

Results In total, 3356 participants responded to the survey; 203 were excluded owing to missing data on depressive symptoms, leaving 3153 participants in the present study. During lockdown, 449 participants had GP contact. GP contact was significantly negatively associated with prevalent depressive symptoms (OR, 0.67; 95% CI 0.51 to 0.93; p<0.05). Stratified analysis showed a significant negative association between depressive symptoms and GP contact in individuals who were 45–64 years old (p<0.01), had a middle or high education (p<0.01) and had self-reported non-communicable diseases (p<0.05).

Conclusions Contact with GPs during the COVID-19 pandemic and lockdowns may have a negative association with depressive symptoms in community-dwelling populations. Given the possibility of further surges in COVID-19 infections, GPs’ contact in the community should be enhanced.

INTRODUCTION

The outbreak of COVID-19 has had negative health impacts around the world. According to the WHO, there were 134 508 532 confirmed cases of COVID-19, causing 2 914 774 deaths by 9 April 2021.1 COVID-19 is not only threatening to physical health but also has impacts on short-term and long-term mental health. According to reports, the rate of depressive symptoms in the general population was 14.6%–48.3% during the COVID-19 epidemics in China, Spain, Italy, Iran, the USA, Turkey, Nepal and Denmark, using different measurement tools.2 Furthermore, physical symptoms similar to COVID-19 infection can increase people’s perceived risk and lead to adverse mental health outcomes, including depressive symptoms.3

Strengths and limitations of this study

- This was a longitudinal study using the WHO-Five Well-being Index, health assessment and sociodemographic characteristics at both baseline and during the lockdown period.
- The sample size of our study was large, which provided sufficient statistical power.
- Most respondents to the baseline survey responded to the follow-up survey.
- Selection bias may exist owing to the use of telephone interviews.
- Causation cannot be established owing to the cross-sectional study design.
The COVID-19 pandemic has changed people’s lifestyles owing to restricted movements; temporary unemployment; new realities of working from home; lack of physical contact with family members, friends and colleagues; and homeschooling of children, among other factors. Added to these changes is fear of contracting the disease. Psychological impacts during lockdowns have been reported. Stressful life events, pessimism, home quarantine, social distancing, wearing face masks and increased exposure to social media have been reported to influence mental health during lockdown, exacerbating various mental health conditions, including depression, anxiety and grief-related symptoms. Good mental health is fundamental to overall health and well-being. Thus, it is important to properly manage mental health problems both in the short and long term during the COVID-19 pandemic.

In China, mental health during the COVID-19 pandemic has attracted attention. Wang et al found that during the initial stages of the outbreak in China, 16.5% of respondents to an online survey reported moderate to severe depressive symptoms. A longitudinal study in a Chinese community-dwelling population showed that 4 weeks after the pandemic peak, depressive symptoms were similar to those at the initial stage, using the Depression, Anxiety and Stress Scale (DASS) depression subscale. Additionally, some surveys have focused on depression in a specific population, such as patients with COVID-19, psychiatric patients and workers returning to the workplace after lockdown. Results from these studies suggest that patients with COVID-19 and psychiatric patients are more vulnerable to and have relatively high levels of depression. Studies have shown that personal precautionary measures, confidence in doctors and satisfaction with health education may relieve depression and anxiety. Chinese general practitioners (GPs) may play an essential role during the pandemic by giving professional support to people at risk of impaired mental health.

Community-based prevention and control of mental diseases (or mental health) are important for controlling the COVID-19 pandemic. In response to the outbreak of COVID-19 in China during late January 2020, GPs acted as front-line health workers in the community healthcare response to the epidemic, undertaking responsibilities including the dissemination of up-to-date information regarding prevention methods, monitoring of patients’ health status, guidance for appropriate responses and provision of prompt treatment for diseases among local residents. Normally, GPs are involved in health improvement and the control of non-communicable diseases (NCDs). During the COVID-19 epidemic in China, GPs have contacted residents with or without NCDs via telephone. However, there is no evidence regarding the impact of such contact with a GP on mental health.

Given the possibility of further surges in COVID-19 infections, it is important to understand the role of GPs in community-based prevention and control of COVID-19 epidemics, including the impact of contact with a GP on mental health. Therefore, in the present study, we investigated the association between having contact with a GP by telephone (GP contact) and depressive symptoms among community residents before and during the COVID-19 lockdown period in Hangzhou, China. These findings may inform new healthcare initiatives to meet future challenges.

METHODS

Study design and participants

Telephone interviews were conducted in April 2020 among 4144 urban residents who participated in the baseline survey of the Stanford Wellness Living Laboratory-China (WELL China) study between October 2018 and May 2019 in Gongshu District, Hangzhou City in Zhejiang, China, which is an urban area. Of the 4144 baseline participants, 3356 responded to the survey, with a response rate of 81%. We excluded 203 participants owing to missing data regarding educational attainment (n=29), WHO-Five Well-being Index (WHO-5) values at baseline (n=3), WHO-5 values during lockdown in response to the COVID-19 outbreak (n=45), or GP contact (n=126). In total, 3153 participants were included in the final analysis.

Data collection and variable definitions

At the baseline survey between October 2018 and May 2019, face-to-face interviews were performed to collect demographic characteristics, WHO-5 data and history of clinical diagnoses. In the follow-up survey in April 2020, we collected WHO-5 data and information about GP contact with residents via telephone during lockdown in response to the COVID-19 outbreak between February and March in 2020.

In the present study, we used the WHO-5 to indirectly assess depressive symptoms. The WHO-5 is a short questionnaire comprising five simple, non-invasive questions reflecting well-being, which includes the following five items: (1) ‘I have felt cheerful and in good spirits’, (2) ‘I have felt calm and relaxed’, (3) ‘I have felt active and vigorous’, (4) ‘I woke up feeling fresh and rested’ and (5) ‘My daily life has been filled with things that interest me’. Participants reported their feelings (WHO-5 index) during lockdown on a 6-point scale ranging from ‘all of the time’ (5 points) to ‘at no time’ (0 points). A summed score less than 13 or scores of 0 or 1 for any item are considered to indicate depressive symptoms. Although the WHO-5 is not considered the gold standard for defining depression, it has relatively good psychometric performance in terms of reliability and validity, and it has a strong correlation with depressive symptoms. The WHO-5 can be used as a sensitive and specific screening tool for depression in epidemiological studies. Considering the time limit of telephone interviews, we chose to use the WHO-5 as an indicator of depressive symptoms in this large population health survey.
GP contact was defined as a GP providing health guidance, including advice regarding health improvement, the management of NCDs and prevention of infectious diseases, to residents with or without NCDs via telephone during the COVID-19 pandemic and lockdown.

NCDs included a history of hypertension, diabetes, clinically diagnosed cardiovascular disease, cancer, endocrine and metabolic diseases, osteoarthritis, respiratory system diseases, digestive system diseases, mental diseases, nervous system diseases, urinary system diseases, immune diseases and allergies at baseline.

Statistical analysis

We used t-tests and χ^2 tests to analyse participants’ characteristics according to GP contact status. Logistic regression analysis was performed to test the association between GP contact (yes/no) and prevalent and incident depressive symptoms; baseline depressive symptoms were excluded to test for incident symptoms. Results are presented as ORs and 95% CIs. Model 1 was adjusted for age, sex, educational attainment and marital status. Model 2 was additionally adjusted for NCDs. Model 3 was additionally adjusted for depressive symptoms at baseline.

We conducted stratified analysis according to: (1) age group (young, 18–44 years old; middle aged, 45–64 years old and older ≥65 years old), (2) educational attainment groups (illiterate or primary school, middle school or high school and college or above) and (3) groups with or without NCDs.

Data analysis was performed using R software V.4.0.2 (The R Project for Statistical Computing, Vienna, Austria). The threshold for statistical significance was set at p<0.05 (two sided).

Patient and public involvement

No patients or the public were involved in the study design, setting the research questions, interpretation or writing up of the results or reporting of the research.

RESULTS

Of 3153 participants, 449 participants had contact with a GP and 2704 had no contact with a GP during the COVID-19 lockdown. Sociodemographic characteristics and NCDs at baseline among participants with and without GP contact via telephone (GP contact) during lockdown are shown in **Table 1**. The results revealed significant differences in age, educational attainment, marital status and NCDs between participants with and without GP contact (p<0.05). Participants with and without GP contact did not differ according to sex (p>0.05).

Table 2 shows the ORs and 95% CIs of depressive symptoms at baseline and during lockdown for participants who had GP contact during the COVID-19 lockdown. In our telephone interview study of 3153 individuals, depressive symptoms among residents at baseline were analysed according to GP contact during lockdown, revealing no differences in prevalent depressive symptoms at baseline.
between those who were or were not contacted by a GP (p>0.05) (table 2, top panel). In the analysis of prevalent depressive symptoms during lockdown, GP contact was associated with a lower risk of depressive symptoms among respondents (OR=0.67, p=0.005), after adjusting for age, sex, educational attainment, marital status and NCDs and depressive symptoms at baseline (table 2, middle panel). In the analysis of new cases of depressive symptoms occurring after baseline (incident depressive symptoms) assessed using WHO-5 scores, we further excluded 431 individuals with depressive symptoms at baseline (prevalent cases of depressive symptoms) assessed using WHO-5 scores, leaving 2722 individuals in the analysis. The associations between incident depressive symptoms among residents and GP contact during the COVID-19 lockdown are shown in table 2 (bottom panel). After adjusting for age, sex, educational attainment, marital status, individuals who had contact with a GP were less likely to develop incident depressive symptoms (OR=0.68, p=0.02)

Table 2: Association of GP contact with depressive symptoms among residents

<table>
<thead>
<tr>
<th>Variables</th>
<th>Depressive symptom prevalent</th>
<th>Total n (%)</th>
<th>GP contact</th>
<th>No n (%)</th>
<th>Yes n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (before lockdown)</td>
<td>n=3153</td>
<td>n=2704</td>
<td>n=449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2722 (86.3)</td>
<td>2329 (86.1)</td>
<td>393 (87.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>431 (13.7)</td>
<td>375 (13.9)</td>
<td>56 (12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 OR (95% CI), P</td>
<td>Ref</td>
<td>0.96 (0.70 to 1.29), 0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2 OR (95% CI), P</td>
<td>Ref</td>
<td>0.94 (0.70 to 1.28), 0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalent lockdown</td>
<td>n=3153</td>
<td>n=2704</td>
<td>n=449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2517 (79.8)</td>
<td>2135 (79.0)</td>
<td>382 (85.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>636 (20.2)</td>
<td>569 (21.0)</td>
<td>67 (14.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 OR (95% CI), P</td>
<td>Ref</td>
<td>0.68 (0.52 to 0.90), 0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2 OR (95% CI), P</td>
<td>Ref</td>
<td>0.67 (0.51 to 0.88), 0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3 OR (95% CI), P</td>
<td>Ref</td>
<td>0.67 (0.51 to 0.89), 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident*</td>
<td>n=2722</td>
<td>n=2329</td>
<td>n=393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2210 (81.2)</td>
<td>1873 (80.4)</td>
<td>337 (85.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>512 (18.8)</td>
<td>456 (19.6)</td>
<td>56 (14.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 OR (95% CI), P</td>
<td>Ref</td>
<td>0.70 (0.52 to 0.95), 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2 OR (95% CI), P</td>
<td>Ref</td>
<td>0.68 (0.51 to 0.93), 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model 1: Adjusted for age, sex, educational attainment, marital status.
Model 2: Further adjusted for NCDs.
Model 3: Further adjusted for depressive symptoms at baseline.
Data of sociodemographic characteristics and NCDs among residents are from the baseline survey.
Data of GP contact with residents are from the follow-up survey during COVID-19 lockdown.
Data of depressive symptoms from baseline and follow-up surveys.
*Individuals who reported no depressive symptoms at baseline but reported depressive symptoms at the follow-up interview in April 2020.
GP, general practitioner; NCD, non-communicable disease.

Table 3: Association between GP contact and prevalent depressive symptoms among residents stratified by NCD groups

<table>
<thead>
<tr>
<th>Without NCDs n=1168</th>
<th>With NCDs n=1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without contact</td>
<td>With contact OR (95% CI) P</td>
</tr>
<tr>
<td>Model 1</td>
<td>Ref</td>
</tr>
<tr>
<td>Model 3</td>
<td>Ref</td>
</tr>
</tbody>
</table>

Model 1: Adjusted for age, sex, educational attainment, marital status.
Model 2: Further adjusted for depressive symptoms at baseline.
Model 3: Further adjusted for depressive symptoms at baseline.
Data of sociodemographic characteristics and NCDs among residents are from the baseline survey.
Data of GP contact with residents are from the follow-up survey during COVID-19 lockdown.
Data of depressive symptoms are from baseline and follow-up surveys.
GP, general practitioner; NCD, non-communicable disease.
In the present study, GP contact was negatively associated with prevalent depressive symptoms among residents of Gongshu District, Hangzhou, China during the COVID-19 pandemic and lockdown. Although patients with or survivors of COVID-19, patients with severe mental illness during the COVID-19 period, or those in need of mental healthcare, the general public also requires mental healthcare during the COVID-19 period. Online-based cognitive behavioural therapy may be one effective solution.

Table 4 shows the associations between prevalent depressive symptoms and GP contact during lockdown according to educational attainment. After adjusting for baseline depressive symptoms at educational attainment, NCDs, and depressive symptoms at baseline, GP contact was associated with a lower risk of depressive symptoms during the COVID-19 lockdown among individuals in the middle school or high school educational attainment group (OR=0.62, p=0.01). In the illiterate or primary school group and the college or above group, no significant associations were found between depressive symptoms and GP contact during lockdown (p>0.05).

Table 5 shows the associations between prevalent depressive symptoms and GP contact during lockdown according to age group. After adjusting for depressive symptoms at baseline, GP contact was associated with a lower risk of depressive symptoms during lockdown in the middle-aged group (OR=0.53, p=0.005). In the young and older groups, no significant differences were found between depressive symptoms and GP contact during lockdown.

Table 4 Association between GP contact and prevalent depressive symptoms among residents stratified by age group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>With contact</th>
<th>Without contact</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-44 years</td>
<td>With contact</td>
<td>Ref</td>
<td>0.78 (0.40 to 1.53)</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Without contact</td>
<td>Ref</td>
<td>0.76 (0.38 to 1.48)</td>
<td>0.42</td>
</tr>
<tr>
<td>45-64 years</td>
<td>With contact</td>
<td>Ref</td>
<td>0.55 (0.35 to 0.85)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Without contact</td>
<td>Ref</td>
<td>0.53 (0.34 to 0.82)</td>
<td>0.004</td>
</tr>
<tr>
<td>≥65 years</td>
<td>With contact</td>
<td>Ref</td>
<td>0.81 (0.52 to 1.25)</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Without contact</td>
<td>Ref</td>
<td>0.81 (0.52 to 1.25)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Model 1: Adjusted for sex, educational attainment, marital status.
Model 2: Further adjusted for NCDs.
Model 3: Further adjusted for depressive symptoms at baseline.
Data of sociodemographic characteristics and NCDs among residents are from the baseline survey.
Data of GP contact with residents are from the follow-up survey during COVID-19 lockdown.
Data of depressive symptoms are from baseline and follow-up surveys.
GP, general practitioner; NCD, non-communicable disease.
depressive symptoms among local residents via health education and organisational interventions.

To the best of our knowledge, this is the first study to report the association of GP contact with the mental health of individuals during COVID-19 lockdown periods. Previous studies have reported the negative psychological impacts of quarantine related to overwhelming stress levels owing to unemployment, deaths and isolation caused by the COVID-19 pandemic.

In our study, we found that young (age 18–44 years old) and older (>65 years old) residents had a higher proportion of depressive symptoms. Although in our study, the rates of depression among local residents with middle or high school educational attainment were an advantage in the association between depressive symptoms and GP contact, we additionally analysed the age distribution in these groups (n=755). We found that individuals in the middle-aged (≥45 years old) were more strongly influenced by GPs.

Table 5 Association between GP contact and prevalent depressive symptoms among residents stratified by educational attainment

<table>
<thead>
<tr>
<th>Educational Attainment</th>
<th>Without Contact</th>
<th>With Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illiterate or primary school</td>
<td>OR (95% CI) P</td>
<td>OR (95% CI) P</td>
</tr>
<tr>
<td>Model 1 Ref</td>
<td>0.79 (0.46 to 1.39) 0.41</td>
<td>Ref</td>
</tr>
<tr>
<td>Model 2 Ref</td>
<td>0.78 (0.45 to 1.37) 0.39</td>
<td>Ref</td>
</tr>
<tr>
<td>Model 3 Ref</td>
<td>0.78 (0.44 to 1.37) 0.39</td>
<td>Ref</td>
</tr>
</tbody>
</table>

Model 1: Adjusted for age, sex, marital status.
Model 2: Further adjusted for NCDs.
Model 3: Further adjusted for political and economic characteristics and NCDs among residents are from the baseline survey.

GP, general practitioner; NCD, non-communicable disease.
group (n=1134) constituted 63.2% of the total residents with middle or high school educational attainment, those in the young group (n=189) constituted 10.5% of the total and those in the older group (n=472) constituted 26.3%. We speculated that the negative association between depressive symptoms and GP contact among people with middle or high school educational attainment was likely owing to most of these individuals being middle aged.

The study has several strengths. First, the present study consisted of surveys of residents at baseline and during lockdown; which enabled comparisons of such points as mental health, health assessment, socioeconomic status, lifestyle and disease condition among the residents between the baseline and lockdown periods. Additionally, the seasonal characteristics of the baseline and lockdown periods were similar because the baseline survey was conducted approximately 1 year ahead of lockdown. Second, the response rate in our follow-up survey was 81%, and we have built strong relationships with communities and residents. These relationships enabled us to conduct follow-up surveys to examine the situations of the residents during lockdown in this extremely difficult time. Third, we performed the stratified analysis of the relationship between depressive symptoms from different characteristics of the population and GP contact. The results would be helpful for proposing targeted strategy.

The study had several limitations that should be addressed. First, causation could not be established owing to the cross-sectional design of this study. Second, selection bias may exist. During the COVID-19 epidemic, telephone interviewing was used, which may have introduced volunteer bias. To identify the potential influence of selection bias, we conducted a non-response analysis by comparing the general characteristics between the study population (n=3153) and the population excluded from the study (n=991). The results showed that the study population had higher educational levels (p<0.05) and had more NCDs (p<0.05) than individuals who were excluded from the study (see online supplemental table 1). A potential explanation is that people with higher education levels and more health conditions may pay greater attention to their own health and would, thus, be more likely to participate in health-related research projects. Third, we defined depressive symptoms using the WHO-5, whose psychometric performance is not the same as that of traditional measures of depression, such as the WHO-5, whose psychometric performance is not the same as that of traditional measures of depression, such as Zung’s Self-Rating Depression Scale\(^{46}\) and the 21-item DASS.\(^{18}\) We recommend that future studies apply multiple approaches to precisely measure depression, including short-version screening tools, gold standard instruments and clinical diagnosis, such as structured clinical interviews and functional neuroimaging.\(^{46-48}\) Additionally, we did not record the reasons for contact with a GP.

In response to the high prevalence of common mental disorders, including depression and anxiety disorders, the WHO has proposed that primary care includes mental health services.\(^{49}\) As the foundation of primary care in community health services and frontline workers in the prevention and control of infectious diseases in the community,\(^{37}\) GPs play an important role in mental healthcare in the community.\(^{50}\) The present study further supports the notion that GPs have an important role in improving mental health, including depressive symptoms, particularly during public health emergencies. Although the system of health provision by GPs is continually developing, when overwhelming numbers of patients require care, the quality and quantity of GP care are often insufficient.\(^{37,51}\) Thus, systems of healthcare provision by GPs in the community should be enhanced, particularly given the risk of further epidemic waves of COVID-19. Additionally, with the advancement of COVID-19 vaccine development together with the existing problem of vaccine hesitancy,\(^{52}\) it is necessary to explore the impact of GPs on COVID-19 vaccine uptake in future studies.

Acknowledgements We thank WELL-China participants in Gongshu District, Hangzhou, China for their time and valuable contributions to this study.

Contributors FY, WL, XZ and SZ designed the study. FY and WL analysed the data and drafted the manuscript. FY, WL, XZ, XX and XW and collected data. FY, WL, EF, YM, XX, XW, WL, YL, XZ, WH, AWH and SZ provided comments and revised the manuscript. All authors approved the final version of the manuscript.

Funding This work was supported by Nutrilite Health Institute Wellness Fund (519000-X11501), the Cyrus Tang Foundation (419600-11102), Zhejiang University Education Foundation (100000-11320) and Hauk K. Chou Fund of Zhejiang University Education Foundation (4196000-11107).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study was approved by the Institutional Review Boards of Stanford University, California, USA (IRB-35020) and Zhejiang University, Hangzhou, China (Number. ZGL201507-3). Informed consent was obtained from all participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data sharing and collaboration requests should be directed to the corresponding authors (Shankuan Zhu, zkz@sjtu.edu.cn; Ann Hsing, annhsing@stanford.edu).

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines,
REFERENCES

cid=CDA-CoV

42. Li DKT, Zhu S. Contributions and challenges of general practitioners in China fighting against the novel coronavirus crisis. Fam Med Community Health 2020;8:e000361.

46. Husain SF, Tang T-B, Yu R, et al. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal...

