Interventions to improve infant and young child feeding practices in Ethiopia: a systematic review

Kedir Y. Ahmed, Kingsley Emwinyore Agho, Andrew Page, Amit Arora, Felix Akpojene Ogbo on behalf the Global Maternal and Child Health Research collaboration (GloMACH)

ABSTRACT

Objective In Ethiopia, despite the implementation of several interventions to improve infant and young child feeding (IYCF) practices, no published studies have highlighted the most effective IYCF interventions in the country. This systematic review investigated the impacts of various interventions on IYCF in Ethiopia.

Source of information A systematic search was conducted on seven computerised bibliographic databases (Embase, ProQuest Central, Scopus, PsycINFO, Web of Science, MEDLINE/PubMed and CINAHL) to locate experimental or quasi-experimental studies published between the year 2000 and May 2021.

Study eligibility criteria Interventional studies that measured IYCF indicators (early initiation of breast feeding (IEBF), exclusive breast feeding (EBF), the introduction of complementary foods, minimum dietary diversity (MDD), minimum meal frequency (MMF) and minimum acceptable diet) as outcome variables were included.

Study appraisal and synthesis All included studies were examined for biases related to interventional studies (ie, selection bias, performance bias, attrition bias, detection bias and reporting bias). Author reports of effect size measures were used to narratively report the findings of each study.

Results Of the 23 eligible studies, 14 studies were quasi-experimental and 9 studies were cluster randomised trials (CRTs). Eight quasi-experimental studies had a serious risk of bias, while two CRTs had a high risk of bias. Four studies for EBF and six studies for EIBF showed significant impacts of policy advocacy, health service strengthening, interpersonal communication, community mobilisation and mass media campaigns. Six studies for MDD and three studies for MMF indicated significant effects of community-level and health facility complementary feeding promotions on infants and young children.

Interventions that delivered in combination increased the impacts of IYCF, MDD and MMF compared with a single intervention.

Conclusion Our review showed that 12 out of 21 eligible studies that implemented in the form of community-level and health facility interventions improved EIBF, EBF, and/or MDD in Ethiopia.

Protocol registration number PROSPERO, CRD42020155519.

Strengths and limitations of this study

- A meta-analysis was not conducted due to the wide heterogeneity of the study designs and outcome measures.
- This review was limited by the incompleteness of information from the individual studies (however, the study authors were contacted for information when necessary).
- Despite the limitations, the application of multiple search strategies in consultation with the medical librarian and registration of the systematic review protocol can be considered as strengths of this review.

INTRODUCTION

Appropriate infant and young child feeding (IYCF) improves childhood growth (through reduced risk of diarrhoea and respiratory infections as well as improved nutrition), increases the intellectual capacity of children and reduces the risk of mothers experiencing diabetes mellitus, overweight and obesity. Promoting appropriate IYCF using evidence-based interventions is essential to protect and support maternal knowledge, beliefs and confidence in IYCF practices. Community-based and facility-based interventions that range from direct support and education to mothers and families on appropriate IYCF behaviours to training of health professionals can significantly improve IYCF behaviours.

Global efforts to improve maternal IYCF behaviours have increased in the past three decades. These efforts included the International Code of Marketing of Breast-milk Substitutes; the Innocenti Declaration; the Baby-Friendly Hospital Initiative (BFHI); the Millennium Development Goals (MDGs) and, more recently, the Global Nutrition Targets and the Sustainable Development Goals (SDGs). The WHO
and United Nations Children’s Fund (WHO/UNICEF) have played major roles in driving these initiatives, which aimed to protect, promote, and support breastfeeding and child nutrition.29 For example, the WHO Global Nutrition Targets (WHO GNT, including Targets 1 and 5) aim to reduce the global number of under-5 children who are stunted by at least 40% and increase the exclusive breastfeeding (EBF) rate to at least 50% by the year 2025, respectively. However, most subnational areas of many African countries (including Ethiopia) are not on track to achieve WHO GNT goal-5.23

In Ethiopia, while both government and non-governmental organisations have implemented various maternal and child health-related policy interventions over the last two decades to increase infant feeding,24–26 a recent study has revealed that early initiation of breastfeeding (EIBF) prevalence was 75.5% and that for EBF was 59.9%,27 with a wide heterogeneity across subnational areas of the country.23 These rates are well below the Ethiopian Health Sector Transformation Plan (HSTP) target of 90% and 72%, respectively.25 Additionally, the proportion of children who met minimum dietary diversity (MDD) and minimum meal frequency (MMF) was 7.1% and 43.6%, respectively.28 In Ethiopia, more than five million children were stunted in 2016,29 and this is a major public health issue that is largely attributable to inappropriate IYCF.

To date, no previously published studies have examined the most effective IYCF interventions in the Ethiopian context. A detailed understanding of the specific types of interventions that can be implemented to improve IYCF in Ethiopia is essential, to specifically guide the allocation of scarce resources and the provision of targeted strategies to increase childhood feeding. This information will also be helpful in scaling-up and/or improve on current and future IYCF interventions in the country. Data from the assessment of relevant IYCF interventions would be crucial to stakeholders as Ethiopia implements national nutrition efforts (eg, HSTP)25 and global health programmes such as the Sustainable Development Goal, SDG-2.2, to end all forms of malnutrition.29 Accordingly, this systematic review investigated the impacts of community-based and facility-based interventions in improving IYCF practices of mothers/caregivers with children under 2 years of age in Ethiopia.

MATERIALS AND METHODS

Our review adhered to the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines30 (online supplemental file 1), and the protocol for the review was registered in PROSPERO (International Prospective Register of Systematic Reviews, CRD42020155519).31

Eligibility criteria

Studies were included if they meet the following criteria: (1) experimental or quasi-experimental study design (including randomised controlled trials (RCT), non-RCTs, before and after studies, and interrupted time-series studies) with or without comparison groups or cluster; (2) conducted among pregnant women and mothers living with alive children under 2 years to improve IYCF practices; (3) used any type of IYCF interventions delivered between the antenatal period and 24 months’ post-partum; (4) measured at least one core IYCF indicator such as EIBF, EBF, the introduction of solid, semi-solid and soft foods, continued breast feeding at 1 year, MDD, MMF and minimum acceptable diet (MAD); (5) were published in the English language and (6) conducted in Ethiopia from the year 2000 to date. We considered studies published over this period to demonstrate the impacts of the specific IYCF interventions in the context of Ethiopia to reflect the implementation of relevant global health programmes, including the MDGs and the current SDGs.53

The intervention strategies considered in this review focused on those performed at both facility and community levels. The interventions included nutritional education and counselling, interpersonal communication, mass media campaigns, nutrition-sensitive agricultural activities, group demonstration sessions and strengthening of health facilities.

Studies conducted among mothers with health problems such as HIV/AIDS and children with cleft palate were excluded.

The IYCF practices included EIBF, EBF, the introduction of solid, semi-solid and soft foods, continued breast feeding at 1 year, MDD, MMF and MAD, measured according to the WHO definitions for assessing IYCF indicators.32 These indicators were selected based on their effect on the health and development of infants and young children11 12 33 and the evidence from previously published systematic reviews.11 34

- EIBF was defined as the proportion of children aged 0–23 months who commenced breast feeding within the first hour of birth.
- EBF was defined as the proportion of infants 0–5 months of age who were fed no other food or drink, not even water, except breast milk (including milk expressed or from a wet nurse), but allows the infant to receive oral rehydration salt (ORS), drops and syrups (vitamins, minerals and medicines).
- Continued breastfeeding at 1 year was defined as the proportion of children 12–15 months of age who are fed breast milk.
- Introduction of complementary foods (solid, semi-solid and soft foods) was defined as the proportion of infants 6–8 months of age who received solid, semi-solid or soft foods in the previous 24 hours, during the day and at night.
- MDD was defined as the proportion of children 6–23 months of age who received foods from four or more of the seven food groups. The seven food groups included grains, roots and tubers; legumes and nuts; dairy products (milk, yoghurt, cheese); flesh foods

(meat, fish, poultry and liver/organ meats); eggs; vitamin-A rich fruits and vegetables; and other fruits and vegetables.

► MMF was defined as the proportion of breastfed and non-breastfed children 6–23 months of age, who received solid, semisolid or soft foods (including milk feeds for non-breastfed children) the minimum number of times or more (ie, two times for breastfed infants aged 6–8 months, three times for breastfed children aged 9–23 months and four times for non-breastfed children aged 6–23 months, on the previous day).

► MAD was defined as the proportion of children 6–23 months of age who received both MDD and MMF.

Information sources and search strategy
Consistent with previously published systematic reviews, a three-stage search strategy was applied to locate both published and unpublished studies. In stage 1, a manual search of previously published systematic reviews and the reference lists of all the eligible studies was performed to check for systematic reviews of interventions on IYCF in Ethiopia. In stage 2, index terms (eg, medical subject headings (MeSH) for Medline) and key terms were generated using the identified articles from the initial search for the full search strategy. In stage 3, a full search strategy was conducted on seven computerised bibliographic databases (Embase (OVID), ProQuest Central, Scopus, PsycINFO (EBSCO), Web of Science, MEDLINE (OVID)/PubMed and Cumulative Index to Nursing and Allied Health Literature (CINAHL) (EBSCO)) to locate published studies, and secondary searching of OpenGrey and Grey Literature Report was conducted to locate unpublished works. The Population Intervention Comparator Outcome (PICO) criteria were used to devise the review question and related search terms. A combination of specified MeSH terms and keywords was drafted with some assistance from our institution-based medical librarian. The search strategy, including all identified index and keywords terms, was slightly adapted for each of the information sources. All electronic searches were conducted for eligible studies published between the year 2000 and May 2021. A full electronic search strategy developed for the Embase (OVID) is provided as online supplemental files 2 and 3.

The overall list of search terms used included:

Term 1 (population)
child, infant, newborn, baby, neonate, perinatal, postnatal, kid, toddler, young child, paediatric, mother, female, women, and caregiver

Term 2 (interventions)
► Education and counselling: breastfeeding promotion, breastfeeding support, breastfeeding education, health education, health promotion, nutrition education, food education, parent education, mother education, counselling, and nutritional counselling

► Social behavioural change communication: health behaviour, health-related behaviour, behaviour change, communication, interpersonal communication, information education communication, behaviour change communication (BCC), social change, social movement, social mobilisation, social behaviour, social network, peer group, advocacy, advocacy group, mass communication, mass media, print media, mobile phone, mHealth, eHealth, internet, radio, social media, television, text message and social market

► Community-based approaches: baby-friendly community initiative, community programme, community project, home visit, community health action, community health service, community healthcare, community intervention, community engagement, community leader, community mobilisation, demonstration, cooking demonstration, community role-play, model breastfeeding community, community health worker and health extension worker

► Facility-based approaches: maternal care, child healthcare, child health service, paediatric healthcare, neonatal care, newborn care, rooming-in care, newborn nursery, essential nutrition action, caregiver contact, baby-friendly hospital initiative, BFHI, antenatal care, postnatal care, Kangaroo care and skin-to-skin contact

► Intervention designs: effectiveness, impact, evaluation study, programme evaluation, healthcare programme, project, health project, experimental study, intervention study, quasi-experimental study, randomised controlled trial, clinical trial, cluster-randomised trial, time-series study, control, placebo, comparison, and usual care

Term 3 (context)
Ethiopia

Term 4 (outcomes)
Infant and young child feeding, breast feeding, early initiation of breast feeding, timely initiation of breast feeding, exclusive breast feeding, breast milk substitute, complementary food, complementary feeding, weaning, introduction of complementary food, baby food, infant feeding, child feeding, meal, dietary diversity, meal frequency, child nutrition, infant nutrition, nutritional supplement, dietary supplement, lactation, and nursing

Study selection
Following the full search, all articles retrieved from the search databases were exported to EndNote X9 (Clarivate Analytics, USA) for removing duplicates, screening and selection. Titles and abstracts were screened by two reviewers (KYA and FAO) independently for assessment against the inclusion criteria. Potentially relevant articles that were selected in the first screening phase were retrieved in full and their citation details imported into the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI
SUMARI). Full texts of the included studies were read and checked by two independent reviewers (KYA and FAO) against the eligibility criteria. Studies that did not meet the eligibility criteria were excluded and reasons for the exclusion of studies were recorded and reported in the systematic review. Any disagreements between the two independent reviewers were resolved by consensus and arbitration by the third (KEA) author of the review. For studies with uncertainties regarding eligibility, the authors were contacted to seek additional information. A total of two contact attempts were made, and if no response was received, only the information available was used.

Risk of bias assessment

All included studies were examined for the five types of biases of interventional studies: (1) selection bias; (2) performance bias; (3) attrition bias; (4) detection bias and (5) reporting bias. KYA and KEA independently conducted the risk of bias assessment using the revised Cochrane risk of bias tool for clustered randomised trials (ROB 2.0) and the risk of bias in non-randomised studies—of interventions (ROBINS-I) tool for assessing the risk of bias in quasi-experimental studies. Cluster randomised trials were assessed for five domains (ie, randomisation and identification or recruitment bias, deviations from intended interventions, missing data, measurement of outcomes and selection of reported result), and quasi-experimental studies were assessed for seven domains (ie, confounding, selection of participants, classification of interventions, deviations from intended interventions, missing data, measurement of outcomes and selection of reported result). For cluster randomised trials, the overall risk of bias judgement included low risk, some concerns and high risk, and...
for the quasi-experimental studies, the overall risk of bias outcome included low, moderate, serious and critical risk of bias. There was no disagreement between reviewers in the risk of bias assessment, no third arbitrator was needed.

Data synthesis
Author reports of effect size measures were used in reporting the findings of each study. Effect size measures included a comparison between experimental and control groups (eg, OR), as well as the difference in proportion between preoutcome and postoutcome measures (eg, change in proportion). Where available, 95% CI and p value were obtained from the eligible studies. Based on published methodological studies, 95% CI and p value were calculated using the available information where the full text of the eligible studies did not report these estimates. Narrative methods including text, table and figure were also used as a tool for data presentation.

Patient and public involvement
There was no direct patient or public involvement in this review.

RESULTS
Characteristics of eligible studies
A total of 4017 articles were retrieved from the database and hand searching. Of these, 1924 were retained in the EndNote library after removing duplicates. Titles and abstracts of the articles were screened, and 1654 articles were removed. Full-text eligibility checks of the remaining 52 articles excluded 29 studies. The reasons for exclusion of studies included: 4 studies were duplicates, 1 study was cross-sectional, 2 studies used qualitative evaluation, 10 studies were abstracts, 4 studies were based on the design and implementation of interventions, 5 studies did not measure IYCF outcomes, and 3 studies were based on interventions designed for different target groups (figure 1).

Among the 23 included studies, 14 were quasi-experimental studies, while the remaining 9 were cluster randomised trials. At least one interventional study was conducted in Southern Nations Nationalities and Peoples’ Region (SNNPR), Oromia, Amhara, Tigray and Afar regions, but we did not find published interventional studies conducted in either Addis Ababa and Dire Dawa city administrations, Harari, Benishangul, Gambella, or Somali regions.

Risk of bias in included studies
Online supplemental files 4 and 5 present the risk of bias assessment of the included studies. Nine cluster randomised trials were assessed for risk of bias using the Cochrane RoB 2.0 tool. Overall, studies by Muluye et al, and Passarelli et al judged as high risk of bias, while studies by Abdulahi et al and Kim et al had a low risk of bias. Two cluster randomised studies had a high risk of bias in the domains for randomisation. Out of 14 quasi-experimental studies assessed using the ROBINS-1 tool, eight studies had a serious risk of bias, and four studies had a moderate risk of bias. The remaining two studies were judged as critical risk of bias.

Seven out of 14 studies had a serious or critical risk of bias in the confounder adjustment, while 8 out of 14 studies had a low risk of bias in outcome measurement.

Evidence from reviewed studies
In the eligible studies, n=23, the majority of the interventions were provided in the form of BCC using nutrition education, community mobilisation, health education materials, and mass media communication. Other interventions were also provided in the form of peer/group support and training of mothers, promotion of chicken husbandry and home gardening, productive safety net programme (in-cash/food rations) strengthening of healthcare system, training and supervision of healthcare providers, food preparation and practical demonstration sessions. Additionally, two studies used the health belief model (HBM) as a mode of intervention delivery for BCC.

Sixteen studies used control groups for comparison with experimental groups, while seven studies did not use control or comparison group. Two studies used two experimental arms as an intervention group.

Impact of interventions on IYCF practices in Ethiopia
Early initiation of breast feeding Tables 1 and 2 are presented to summarise evidence from eligible studies. Eight studies reported the effect of interventions to improve EIBF. A health facility level intervention in the Afar region that integrated nutrition information into health professional guidelines and also provided family education and counselling booklets resulted in a significant improvement in EIBF in the experimental group compared with the control group (OR=1.70; 95% CI: 1.08 to 3.27; p<0.05 for single intervention). Kim et al showed that interventions delivered through advocacy and policy dialogues, interpersonal communication and community mobilisation, and mass communication improved EIBF. This study also showed that the association between exposure to two or more types of interventions and improvement in EIBF was stronger compared with exposure to a single type of intervention (OR=2.07; 95% CI: 1.09 to 3.91; p<0.05 for multiple intervention vs OR=1.88; 95% CI: 1.08 to 3.27; p<0.05 for single intervention).

Karim et al indicated that supporting community health workers decision-making using community health data improved EIBF (OR=1.27; 95% CI: 1.10 to 1.46; p=0.001). However, Wereta et al reported no significant effect of community-based maternal and
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Participants</th>
<th>Region</th>
<th>Intervention components</th>
<th>Location of intervention delivery</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulahi et al</td>
<td>Cluster-randomised trial</td>
<td>Experimental group: ▶ Before intervention=249 ▶ After intervention=212</td>
<td>Oromia</td>
<td>Breastfeeding education and peer support ▶ Peer support to encourage mothers for health facility birthing ▶ Breastfeeding education including educational materials ▶ Practical demonstrations on proper positioning and latching</td>
<td>Community based</td>
<td>EIBF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group (routine care): ▶ Before intervention=219 ▶ After intervention=197</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abiyu and Belachew</td>
<td>Cluster-randomised trial</td>
<td>Experimental group: ▶ Before intervention=306 ▶ After intervention=272</td>
<td>Amhara</td>
<td>Complementary feeding BCC ▶ Complementary feeding messages ▶ Group training of mothers ▶ Home visits (for counselling and support) ▶ Participatory family level discussion</td>
<td>Community based</td>
<td>MDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group (routine care): ▶ Before intervention=306 ▶ After intervention=282</td>
<td></td>
<td></td>
<td></td>
<td>MMF</td>
</tr>
<tr>
<td>Abiyu and Belachew</td>
<td>Cluster-randomised trial</td>
<td>Experimental group: ▶ Before intervention=306 ▶ After intervention=272</td>
<td>Amhara</td>
<td>Complementary feeding BCC ▶ Complementary feeding messages ▶ Group training of mothers ▶ Home visits (for counselling and support) ▶ Participatory family level discussion</td>
<td>Community based</td>
<td>Timely initiation of complementary foods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group (routine care): ▶ Before intervention=306 ▶ After intervention=282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahru et al</td>
<td>Quasi-experimental</td>
<td>Experimental group: ▶ Before intervention=482 ▶ After intervention=275</td>
<td>Tigray</td>
<td>Productive safety net programme (PSNP) ▶ Offers employment opportunities for households with able-bodied members to work on community asset building projects and earn a wage either in cash or in-kind (food) ▶ Direct support to households whose breadwinners are the elderly or disabled and hence could not take part in labour-intensive activities</td>
<td>Health facility and community based</td>
<td>Dietary diversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group (routine care): ▶ Before intervention=740 ▶ After intervention=682</td>
<td>Oromia</td>
<td></td>
<td></td>
<td>Meal frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Before intervention=482 ▶ After intervention=275</td>
<td>Amhara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNNPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baxter et al</td>
<td>Quasi-experimental</td>
<td>Experimental group: ▶ Before intervention=173 ▶ After intervention=269</td>
<td>Oromia</td>
<td>EBF promotion strategies including ▶ Home visits, ▶ Educational materials, and ▶ Training of influential community and family members</td>
<td>Health facility and community based</td>
<td>EBF</td>
</tr>
<tr>
<td>Berti et al</td>
<td>Quasi-experimental</td>
<td>No information</td>
<td>No information</td>
<td>Breastfeeding communication through community-based interventions for behaviour change</td>
<td>Community based</td>
<td>EBF</td>
</tr>
<tr>
<td>Authors</td>
<td>Design</td>
<td>Participants</td>
<td>Region</td>
<td>Intervention components</td>
<td>Location of intervention delivery</td>
<td>Outcome measures</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Buchanan and Pose⁷⁶ | Quasi-experimental | No information | No information | ► Behavioural change communication
▶ Community mobilisation
► Capacity building | Health facility based and community based | EIBF, EBF, Introduction of complementary foods |
| Callaghan-Koru et al⁷⁷ | Quasi-experimental | Experimental group:
▶ Before intervention=218
▶ After intervention=215
Control group:
▶ Before intervention=1074
▶ After intervention=903 | Tigray
Oromia
Amhara
SNNPR | ► An integrated package of facility-based kangaroo mother care
▶ Community-based promotion of EBF | Health facility and community based | EIBF, EBF |
| Carnell et al⁷⁸ | Quasi-experimental | Experimental group:
▶ Before intervention=1016
▶ After intervention=911
Control group:
▶ Before intervention=1074
▶ After intervention=903 | Oromia
Amhara
SNNPR | ► Strengthen the health system
▶ Improve health workers’ performance
▶ Engage the community | Health facility and community based | EBF |
| Kang et al⁸⁸ | Cluster-randomised trial | Experimental group: 570
▶ Control group: 629 | Oromia | ► Community-based participatory nutrition promotion programme
▶ Daily group nutrition sessions
▶ Follow-up visits | Community based | Meal frequency, Dietary diversity, Dietary adequacy |
| Karim et al⁸⁵ | Quasi-experimental | Experimental group:
▶ Before intervention=1481
▶ After intervention=1494 | Tigray
Oromia
Amhara
SNNPR | Supporting Ethiopian health extension programme in:
▶ Health education and demonstration for families on hygiene and environmental sanitation
▶ Family health (maternal and child health, reproductive health, immunisation and nutrition) services | Community based | EIBF, EBF at 1 month |

Table 1 Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Participants</th>
<th>Region</th>
<th>Intervention components</th>
<th>Location of intervention delivery</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karim et al⁸⁶</td>
<td>Quasi-experimental</td>
<td>Experimental group:</td>
<td>Tigray, Oromia</td>
<td>Supporting Ethiopian health extension programme using community-based data for decision-making</td>
<td>Health facility and community based</td>
<td>EIBF within 30 min of childbirth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=2124</td>
<td>Amhara, SNNPR</td>
<td>► Family conversation, a forum conducted at the household of the pregnant women</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=2113</td>
<td></td>
<td>► Birth notification to ensure early postnatal care</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► Establish household level surveillance system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► Identify and address barriers to access maternal and newborn health services</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>using generated data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al⁷⁹</td>
<td>Quasi-experimental</td>
<td>Experimental group:</td>
<td>SNNPR, Tigray</td>
<td>BCC strategies including:</td>
<td>Community based</td>
<td>EIBF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=1404</td>
<td></td>
<td>► Advocacy and policy dialogues</td>
<td></td>
<td>EBF, Introduction of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=1404</td>
<td></td>
<td>► Interpersonal communication and community mobilisation</td>
<td></td>
<td>complementary foods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>► Mass communication</td>
<td></td>
<td>MDD, MMF, MAD</td>
</tr>
<tr>
<td>Kim et al⁸⁹</td>
<td>Cluster-randomised trial</td>
<td>Experimental group:</td>
<td>Amhara</td>
<td>BCC strategies including:</td>
<td>Community based</td>
<td>Introduction of complementary foods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=1328</td>
<td></td>
<td>► Interpersonal communication</td>
<td></td>
<td>MDD, MMF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=1360</td>
<td></td>
<td>► Nutrition-sensitive agricultural activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group:</td>
<td></td>
<td>► Community mobilisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=1318</td>
<td></td>
<td>► Mass communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=1360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kung’u et al⁸⁰</td>
<td>Quasi-experimental</td>
<td>Experimental group:</td>
<td>Afar</td>
<td>► Behaviour change interventions</td>
<td>Health facility</td>
<td>EIBF at 6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=2570</td>
<td></td>
<td>► Integrating nutrition to the frontline workers’ guideline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=2905</td>
<td></td>
<td>► Family education and counselling booklet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group:</td>
<td></td>
<td>► Health facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=1670</td>
<td></td>
<td>► EIBF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=1620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulualem et al⁸¹</td>
<td>Quasi-experimental</td>
<td>Experimental group:</td>
<td>SNNPR</td>
<td>Nutrition education based on the HBM model</td>
<td>Community based</td>
<td>Meal frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=80</td>
<td></td>
<td>► Individual and group sessions, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=80</td>
<td></td>
<td>► Recipe demonstration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control group:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► Before intervention=80</td>
<td></td>
<td>►</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>► After intervention=80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
Table 1: Continued

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Participants</th>
<th>Region</th>
<th>Intervention components</th>
<th>Location of intervention delivery</th>
<th>Outcome measures</th>
</tr>
</thead>
</table>
| Muluye et al | Cluster randomised control trial | **Experimental group:**
 - Before intervention=100
 - After intervention=100
 Control group:
 - Before intervention=100
 - After intervention=100 | SNNPR | Education and practical demonstration on:
 - Complementary food recipes and preparation
 - Amount and frequency of feeding
 - Personal hygiene and sanitation
 - Dietary diversification | Facility based | MDD |
| Negash et al | Quasi-experimental | **Experimental group:**
 - Before intervention=100
 - After intervention=81
 Control group:
 - Before intervention=92
 - After intervention=76 | SNNPR | Nutrition education using visual materials
 - Demonstration of food preparation | Community based | Dietary diversity Meal frequency |
| Passarelli et al | Cluster-randomised trial | **ACGG intervention group:**
 - Before intervention=255
 - After intervention=255
 ACGG/ATONU intervention group:
 - Before intervention=263
 - After intervention=265
 Control group:
 - Before intervention=311
 - After intervention=311 | Tigray Oromia Amhara SNNPR | ACGG
 - Each farmer received 25 vaccinated chicks that were ~6 weeks old
 - Farmers implemented chicken husbandry according to their individual preferences
 - ACGG/ATONU
 - Additional nutrition-sensitive intervention such as promotion of home gardening, provision of fruit and vegetable seeds for the gardens, and behavioural change communication | Community based | Dietary diversity (7 days) |
| Teshome et al | Cluster-randomised trial | **Experimental group:**
 - Before intervention=386
 - After intervention=307
 Control group:
 - Before intervention=386
 - After intervention=314 | SNNPR | Nutritional education and counselling on balanced diet, and food groups and benefits of pulse
 - Recipe demonstrations on preparation of porridge for complementary feeding | Community based | MDD |
| Tariku et al | Cluster-randomised trial | **HBM intervention group:**
 - Before intervention=60
 - After intervention=54
 Traditional nutrition education group:
 - Before intervention=60
 - After intervention=56
 Control group:
 - Before intervention=60
 - After intervention=60 | SNNPR | Complementary feeding messages using the HBM model | Community based | Continued breast feeding MDD MMF |

Continued
Table 1

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Region</th>
<th>Participants</th>
<th>Intervention components</th>
<th>Outcome of intervention delivery measures</th>
<th>Outcome</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villadsen et al</td>
<td>Quasi-experimental</td>
<td>Oromia</td>
<td>Experimental group: 775</td>
<td>Training of health professionals, Health education materials, Supervisions of ANC providers</td>
<td>EBF at 1 month</td>
<td>EBF</td>
<td></td>
</tr>
<tr>
<td>Control group: 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wereta et al</td>
<td>Quasi-experimental</td>
<td>Tigray</td>
<td>Experimental group: 408</td>
<td>Increase access and quality of ANC, Health facility and community based delivery and perinatal outcomes in planning (eg, joint action plan to address these barriers and gaps) and implementation of community mobilisation and mass communication</td>
<td>EBF</td>
<td>EIBF</td>
<td></td>
</tr>
<tr>
<td>Control group: 224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACGG, African Chicken Genetic Gains; ANC, Antenatal Care; ATONU, Agriculture to Nutrition; BCC, Behaviour change communication; EBF, Exclusive breast feeding; EIBF, Early initiation of breast feeding; IAT, Information, Attitude, and Practice; MMF, Minimum meal frequency; MDD, Minimum dietary diversity; SNNPR, Southern Nations Nationalities and Peoples Region.

child health service quality improvement project on EIBF (average treatment effect (ATE)=2.8; 95% CI: –4.7 to 10.6; p=0.468).

Buchanan and Pose, Callaghan-Koru et al and Karim et al found an increase in the proportions of EIBF (from 31.0% to 77.0%, 51.4% to 67.9%, and 46.0% to 54.2%, respectively), following the implementation of BCC and community-level health programmes including breastfeeding promotions and family health services.

Exclusive breast feeding

Ten studies reported the effect of interventions on EBF in Ethiopia. Of these, eight studies measured EBF for up to 6 months, while two studies measured EBF for up to 1 month. Villadsen et al found that antenatal care strengthening for pregnant women significantly improved EBF in health facilities under intervention compared with health facilities without intervention (OR=2.30; 95% CI: 1.40 to 3.60; p=0.005). Integrating nutrition into the health worker’s guidelines, and providing family education and counselling booklet (OR=2.62; 95% CI: 0.95 to 7.21; p=0.062), and exposure to BCC intervention (ie, advocacy and policy dialogues, interpersonal communication and community mobilisation and mass communication) (OR=1.51; 95% CI: 0.95 to 2.40; p=0.050) did not affect EBF behaviours.

Seven studies showed that there were increases in EBF during the intervention period, but out of these studies, two indicated that improvements in EBF were not statistically significant. Abdulahi et al reported a significant difference in the proportion of EBF between the intervention (68.3%) and control groups (54.8%) (p<0.001), following the interventions of peer support, breastfeeding education and practical demonstration sessions on positioning and attachment. Studies by Callaghan-Koru et al (p<0.010) and Karim et al (p<0.001) documented that implementing community-based and health facility interventions improved EBF, but the remaining two studies on EBF did not report the statistical test of significance.

Introduction of solid, semi-solid and soft foods

Four studies reported the effect of different types of BCC interventions on the introduction of complementary foods. BCC interventions using complementary feeding messages, training of mothers in groups, counselling and support at home level and facilitating participatory family discussion were effective in improving the timely initiation of complementary foods (RR=2.60; 95% CI: 1.78 to 5.86; p=0.002). Kim et al investigated the effect of exposure to BCC interventions (advocacy and policy dialogues, interpersonal communication and community mobilisation and mass communication) on the introduction of solid, semi-solid and soft foods in two separate arms. The first arm of the study found an increase in the proportion of infants who were introduced to solid, semi-solid and soft foods (from 37.4% to 59.7%, p<0.001). In contrast, the second arm of the study...
Table 2 Summary of evidence from reviewed studies

<table>
<thead>
<tr>
<th>IVCF outcomes</th>
<th>Studies by authors</th>
<th>Statistical analysis</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIBF</td>
<td>Abdulahi et al<sup>81</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF was 72.7% in intervention group and 40.6% in control group (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Buchanan and Pose<sup>76</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF increased from 31.0% to 77.0%</td>
</tr>
<tr>
<td></td>
<td>Callaghan-Koru et al<sup>77</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF significantly increased from 51.4% to 67.9% (p<0.010)</td>
</tr>
<tr>
<td></td>
<td>Karim et al<sup>85</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF increased from 46.0% to 54.2% (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Karim et al<sup>86</sup></td>
<td>Fixed-effect logistic regression</td>
<td>EIBF at 30 min (OR=1.27; 95% CI: 1.10 to 1.46; p=0.001)</td>
</tr>
<tr>
<td></td>
<td>Kim et al<sup>79</sup></td>
<td>Fixed-effect logistic regression</td>
<td>Single type of intervention: EIBF (OR=1.88; 95% CI: 1.08 to 3.27; p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Kung’u et al<sup>80</sup></td>
<td>Fixed-effect logistic regression</td>
<td>Two types of interventions: EIBF (OR=2.07; 95% CI: 1.09 to 3.91; p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Wereta et al<sup>87</sup></td>
<td>Propensity score matching</td>
<td>Four or more interventions: EIBF (OR=2.48; 95% CI: 1.09 to 5.64; p<0.050)</td>
</tr>
<tr>
<td>EBF</td>
<td>Abdulahi et al<sup>81</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF was 68.3% in intervention group and 54.8% in control group (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Baxter et al<sup>74</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF increased from 69.4% to 75.1%, but not statistically significant</td>
</tr>
<tr>
<td></td>
<td>Berti et al<sup>75</sup></td>
<td>Per cent change in proportion</td>
<td>Higher improvement in exclusive breast feeding</td>
</tr>
<tr>
<td></td>
<td>Buchanan and Pose<sup>76</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF increased from 73.0% to 95.0%</td>
</tr>
<tr>
<td></td>
<td>Callaghan-Koru et al<sup>77</sup></td>
<td>Per cent change in proportion</td>
<td>EIBF increased from 86.0% to 95.8% (p<0.010)</td>
</tr>
<tr>
<td></td>
<td>Carnell et al<sup>78</sup></td>
<td>Difference-in-difference</td>
<td>No significant difference in the improvement of EBF was observed</td>
</tr>
<tr>
<td></td>
<td>Karim et al<sup>85</sup></td>
<td>Per cent change in proportion</td>
<td>EBF at 1 month increased from 82.4% to 95.3% (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Kim et al<sup>79</sup></td>
<td>Fixed-effect logistic regression</td>
<td>Single type of intervention: EBF (OR=1.51; 95% CI: 0.95 to 2.40; p>0.050)</td>
</tr>
<tr>
<td></td>
<td>Kung’u et al<sup>80</sup></td>
<td>Fixed-effect logistic regression</td>
<td>Two types of interventions: EBF (OR=1.39; 95% CI: 0.96 to 2.01; p>0.050)</td>
</tr>
<tr>
<td></td>
<td>Villadsen et al<sup>83</sup></td>
<td>Fixed-effect logistic regression</td>
<td>Four or more interventions: EBF (OR=0.93; 95% CI: 0.86 to 1.01; p>0.050)</td>
</tr>
<tr>
<td>Introduction of complementary foods</td>
<td>Abiyu and Belachew<sup>83</sup></td>
<td>Generalised estimating equations (GEE) regression</td>
<td>Timely initiation of complementary foods (RR=2.60; 95% CI: 1.78 to 5.86; p=0.002)</td>
</tr>
<tr>
<td></td>
<td>Buchanan and Pose<sup>76</sup></td>
<td>Per cent change in proportion</td>
<td>Introduction of complementary foods increased from 38.0% to 98.0%</td>
</tr>
<tr>
<td></td>
<td>Kim et al<sup>79</sup></td>
<td>Per cent change in proportion</td>
<td>Introduction of complementary foods increased from 37.4% to 59.7% (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Kim et al<sup>89</sup></td>
<td>Per cent change in proportion</td>
<td>Introduction of complementary foods did not show any improvement</td>
</tr>
<tr>
<td>Continued breast feeding at 1 year</td>
<td>Tariku et al<sup>80</sup></td>
<td>ANOVA and Kruskal-Wallis test</td>
<td>No significant difference in the improvement of continued breast feeding</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>IYCF outcomes</th>
<th>Studies by authors</th>
<th>Statistical analysis</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary diversity</td>
<td>Abiyu and Belachew92</td>
<td>GEE regression</td>
<td>▶ MDD (RR=3.00; 95% CI: 1.34 to 7.39; p=0.012)</td>
</tr>
<tr>
<td></td>
<td>Bahru et al84</td>
<td>Marginal structural model</td>
<td>▶ No significant difference in dietary diversity score (β = −0.18; 95% CI: −0.41 to 0.05)</td>
</tr>
<tr>
<td></td>
<td>Kang et al88</td>
<td>Mixed-effect logistic regression</td>
<td>▶ No significant difference in mean score between intervention and control group (mean difference=0.38; 95% CI: −0.22 to 0.97; p=0.220)</td>
</tr>
<tr>
<td></td>
<td>Kim et al79</td>
<td>Fixed-effect logistic regression</td>
<td>▶ Single type of intervention: MDD (OR=6.15; 95% CI: 0.80 to 47.10; p>0.050)</td>
</tr>
<tr>
<td></td>
<td>Kang et al88</td>
<td>Mixed-effect logistic regression</td>
<td>▶ Two types of interventions: MDD (OR=6.87; 95% CI: 1.27 to 37.14; p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Kim et al99</td>
<td>Fixed-effect logistic regression</td>
<td>▶ Four or more interventions: MDD (OR=18.75; 95% CI: 2.32 to 151.52; p<0.010)</td>
</tr>
<tr>
<td></td>
<td>Muluye et al84</td>
<td>Independent Student’s t-test</td>
<td>▶ Baseline: no significant difference between intervention and control group (23.0% vs 26.0%; p=0.519)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ End line: there was significant difference between intervention and control group (67.0% vs 33.0%; p=0.034)</td>
</tr>
<tr>
<td></td>
<td>Negash et alR2</td>
<td>Independent sample t-test</td>
<td>▶ Dietary diversity increased over the intervention period (p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Passarelli et alR5</td>
<td>Ordinary least square regression</td>
<td>▶ There was no significant difference between intervention and control groups</td>
</tr>
<tr>
<td></td>
<td>Tariku et alR0</td>
<td>ANOVA and Kruskal-Wallis test</td>
<td>▶ Intervention group showed significant improvement in MDD (p<0.001)</td>
</tr>
<tr>
<td></td>
<td>Teshome et alR6</td>
<td>Per cent change in proportion</td>
<td>▶ Baseline: no significant difference between intervention and control group (7.5% vs 3.8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ End line: there was significant difference between intervention and control group (51.5% vs 43.3%; p<0.001)</td>
</tr>
<tr>
<td>Meal frequency</td>
<td>Abiyu and Belachew92</td>
<td>GEE regression</td>
<td>▶ MMF (RR=2.40; 95% CI: 1.37 to 4.29; p=0.003)</td>
</tr>
<tr>
<td></td>
<td>Bahru et al84</td>
<td>Marginal structural model</td>
<td>▶ No significant effect on meal frequency (β=0.31; 95% CI: −0.07 to 0.54)</td>
</tr>
<tr>
<td></td>
<td>Kang et al88</td>
<td>Mixed-effect logistic regression</td>
<td>▶ Significant difference in mean score between intervention and control group (mean difference=1.04; 95% CI: 0.35 to 1.73; p=0.003)</td>
</tr>
<tr>
<td></td>
<td>Kim et al79</td>
<td>Fixed-effect logistic regression</td>
<td>▶ Single type of intervention: MMF (OR=1.06; 95% CI: 0.99 to 1.13; p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Kang et al88</td>
<td>Mixed-effect logistic regression</td>
<td>▶ Two types of interventions: MMF (OR=1.31; 95% CI: 0.97 to 1.77; p<0.050)</td>
</tr>
<tr>
<td></td>
<td>Kim et al99</td>
<td>Fixed-effect logistic regression</td>
<td>▶ Four or more interventions: MMF (OR=2.04; 95% CI: 0.92 to 4.54; p<0.010)</td>
</tr>
<tr>
<td></td>
<td>Mulualem et alR1</td>
<td>ANOVA</td>
<td>▶ MMF frequency decreased in both experimental and control groups</td>
</tr>
<tr>
<td></td>
<td>Negash et alR2</td>
<td>Independent sample t-test</td>
<td>▶ Meal frequency increased over the intervention period (p>0.050)</td>
</tr>
<tr>
<td></td>
<td>Tariku et alR0</td>
<td>ANOVA and Kruskal-Wallis test</td>
<td>▶ No significance effect on MMF</td>
</tr>
</tbody>
</table>

Continued
Continued breast feeding at 1 year

Only one study measured the impact of interventions on continued breast feeding at 1 year. Tariku et al. showed that IYCF messages using the HBM did not impact the continued breastfeeding rate at 1 year.

Minimum dietary diversity

Ten studies reported the effect of interventions on MDD. Of these, six were measured according to the WHO definition for MDD, while three studies used any four food groups as a cut-off point to measure MDD. A study by Abiyu and Belachew using BCC interventions including complementary feeding messages, mothers group training, home-based counselling and support, and participatory family discussion improved MDD for infants and young children (RR=3.00; 95% CI: 1.34 to 7.39; p=0.012). Two studies by Kim et al. revealed the significant impacts of exposure to more than one type of BCC intervention (advocacy and policy dialogues, interpersonal communication and community mobilisation and mass communication) on MDD, but these studies showed that exposure to a single type of intervention did not have an impact on MDD. Tariku et al. showed interventions involving complementary feeding messages using the HBM model significantly increased the proportion of MDD (from 37.5% to 67.9%; p<0.05).

End line survey results following the intervention of nutritional education and counselling, and recipe demonstrations by Muluye et al. (67.0% vs 33.0%, p=0.034) and Teshome et al. (51.5% vs 43.3%; p=0.001) showed significant differences in the proportion of MDD between intervention and control groups. The remaining four studies indicated that the proportion of MDD increased over the intervention period, but the effect was not significant.

Minimum meal frequency

MMF was included as an outcome variable in eight interventional studies. Four studies used the WHO definition for assessing MMF. Complementary feeding BCC interventions using nutritional education and counselling, and recipe demonstration sessions improved MMF practice of mothers (RR=2.40; 95% CI: 1.37 to 4.29; p=0.005). Kim et al. indicated that exposure to two types of BCC interventions (advocacy and policy dialogues, interpersonal communication and community mobilisation, and mass communication) had a significant effect on MMF of infants and young children compared with those who did not expose to intervention (OR=1.69; 95% CI: 1.13 to 2.52; p=0.010). Kang et al. found that interventions using a community-based participatory nutrition programme had significant impact on
the mean score of MMF (mean difference=1.04; 95% CI: 0.35 to 1.73; p=0.005). Except for one study, which did not do a test for significance, the remaining four studies did not show significant improvements in MMF.

Minimum acceptable diet
Out of three studies that measured MAD as an outcome, two studies used the WHO definition for assessing MAD,79 92 while the remaining study calculated dietary adequacy indicator using a composite dietary diversity and meal frequency scores. Abiyu and Belachew92 implemented BCC interventions (including nutritional education and counselling, and recipe demonstration) to improve MAD. The result from this study showed the significant effect of interventions on MAD (RR=2.70; 95% CI: 1.13 to 7.23; p=0.036). Community-based participatory nutrition programme by Kang et al78 reported significant effect of interventions on the dietary adequacy score (mean difference=1.40; 95% CI: 0.49 to 2.32; p=0.003). However, a study by Kim et al79 documented that implementing four or more type BCC interventions (advocacy and policy dialogues, interpersonal communication and community mobilisation, and mass communication) improved MAD (OR=14.29; 95% CI: 2.23 to 90.28; p<0.010 for 4+interventions).

DISCUSSION
A total of 23 studies were included, and of these, 14 were quasi-experimental studies,74–87 and 9 were cluster randomised trials.88–96 Four studies for EBF77 83 85 91 and six studies for EIBF77 79 80 85 86 91 showed that community-based and facility-based interventions delivered in the form of BCC (such as policy advocacy, interpersonal communication, community mobilisation and mass media campaigns) and health service strengthening had an impact on infants. Two studies for the introduction of complementary foods,79 85 six studies for MDD79 89 86 92 94 96 and three studies for MMF79 88 92 indicated significant effects of BCC on infants and young children. Two eligible studies showed that combined interventions delivered in the form of interpersonal communication, nutrition-sensitive agricultural activities, community mobilisation and mass media campaigns had more impacts on EIBF, MDD and MMF.

Global evidence indicates that BCC interventions (including policy advocacy, interpersonal communication, community mobilisation and mass media campaigns) are essential in promoting IYCF practices. These initiatives also create a supportive environment that helps mothers to adopt and sustain positive child feeding behaviours. The main goals of BCC interventions include improving behaviours of facility-based inter-

Research has shown that exposure to more than one IYCF intervention, delivered through different platforms (eg, community or facility based), was more successful in improving IYCF outcomes compared with a single form of intervention delivered at a single setting.5 Our review indicated that exposure to more than two types of interventions was associated with improvement in EIBF, MDD and MMF.79 89 This result due to interventions delivered through multiple settings may have an increased intensity that can be translated to behavioural changes due to repeated contacts and adequate coverage of interventions.102 Our review suggests that interventions that aim to improve IYCF behaviours in Ethiopia should be delivered through different and specific types of contexts (including household, health facility and community) and should be provided along the continuum of care from conception until a child’s second birthday.

In the past two decades, the Ethiopian government’s commitment to improving IYCF has been consistent, and this started with the development of the National Strategy for IYCF in 2004 and followed by National Strategy for Nutrition in 2008,24 103 in line with the WHO/UNICEF IYCF strategy.104 In 2015, the Ethiopian government launched the Health Sector Transformation Plan to improve health outcomes, including IYCF practices.25 Based on this initiative, many facility-based and community-based interventions have been implemented to protect, promote and support appropriate IYCF behaviours.10 Nevertheless, our review found that there has been no formal IYCF intervention conducted in Addis Ababa and Dire Dawa city administrations, and Harari, Benishangul, Gambella and Somali regions. Our review suggests an expansion of additional experimental studies from successful subnational interventions
implemented in Amhara, Oromia and SNNP regions, to maximise the opportunities for the prevention of IYCF-related morbidity and mortality in those regions.

Additionally, our review did not find any studies which incorporated the use of mobile health (mHealth) as part of an intervention package for improving IYCF. Future experimental studies that consider the use of mHealth techniques are required, especially that previously published studies have shown the positive impacts of interventions (in the form of voice messages, SMS and phone calls) on IYCF practices. Finally, interventional studies that consider the role of fathers/partners as well as grandmothers in improving IYCF behaviours may be warranted in Ethiopia.

The present systematic review of IYCF outcomes from community-based and facility-based interventions (eg, BCC, health service strengthening, community mobilisations and nutrition-sensitive agricultural activities) has strengths and limitations. First, a meta-analysis was not conducted due to the wide heterogeneity of the design and outcome measures. Second, this review was limited by the incompleteness of information from the individual studies. Nevertheless, the study authors were contacted for information when it is necessary. Third, our search was limited to published studies in English, which exclude studies published with other languages. Fourth, lack of evidence and under-representation of some regions may limit the generalisability of our review. However, evidence from this review is potentially relevant for IYCF policy efforts in Ethiopia. Despite the above limitations, the application of multiple search strategies in consultation with the medical librarian and registration of the systematic review protocol can be considered as strengths of this review. Furthermore, future studies that consider the assessment of the full set of the updated IYCF indicators for all Ethiopian children would be warranted.

This approach would ensure that both subnational and national and IYCF estimates are accurate and reliable and ensure that interventions and policy decisions in resource allocation are targeted at the most at-risk population. It would also ensure that IYCF programme monitoring and evaluation are consistent across all levels of government.

CONCLUSION

Our systematic review showed that 12 out of 21 eligible studies that implemented interventions in the form of policy advocacy, health service strengthening, interpersonal communication, community mobilisation and mass media campaigns reported improved EIBF, EBF and/or MDD in Ethiopia. The impacts of current and/or future interventions on IYCF practices in Ethiopia will be greater when interventions are combined, introduced and implemented along the continuum of care from conception until a child’s second birthday.

Author affiliations
1 Department of Public Health, Samara University, Samara, Afar, Ethiopia
2 Translational Health Research Institute, Western Sydney University—Campbelltown Campus, Campbelltown, New South Wales, Australia
3 School of Health Sciences, Western Sydney University—Campbelltown Campus, Campbelltown, New South Wales, Australia
4 African Vision Research Institute (AVRI), University of KwaZulu-Natal, Durban, South Africa
5 Oral Health Services, Sydney Dental Hospital, Surry Hills, New South Wales, Australia
6 Health Equity Laboratory, Campbelltown, New South Wales, Australia
7 Discipline of Child and Adolescent Health, Faculty of Medicine and Health, and Sydney Medical School, The University of Sydney, Westmead, New South Wales, Australia
8 Barmera Medical Clinic (Lake Bonney Private Medical Clinic), Barmera, South Australia, Australia

Twitter Kedir Y. Ahmed @KedirYAhmed

Acknowledgements The authors are grateful to Lily Collison (Medical Librarian at Western Sydney University) for the time and help in designing the search strategy.

Collaborators GloMACH members are Kingsley E Agbo; Felix Akpojene Ogbo; Kedir Yimam Ahmed; Thiero Dia Dolo; Gota E Ezeh; Osaguyu L Uchechukwu; Pramesh R Gihmire; Blessing Jaka Akombi; Pascal Ogeleka; Tanvir Abir; Abukari I Issaka; Abdon Gregory Rwabimbimbo; Dlayerin Subramanne; Nilu Nagdev; Mansi Dhani.

Contributors KY conceptualised the study idea, performed the literature searching, selected the paper of interests, performed data extraction and critically revised the manuscript. AP and AA critically revised the manuscript for intellectual content. KEA performed the risk of bias assessment and critically revised the manuscript. FAO contributed to the conception of the research idea, selected the paper of interests, performed data extraction and critically revised the manuscript. All authors read and approved the final manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data sharing not applicable as no datasets generated and/or analysed for this study.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Kedir Y. Ahmed http://orcid.org/0000-0003-3797-5234

REFERENCES

Baye K, Retta N, Abuye C. Comparison of the effects of conditional food and cash transfers of the Ethiopian productive safety net program on household food security and dietary diversity in the face of rising food prices: ways forward for a more nutrition-sensitive program. *Food Nutr Bull* 2014;35:289–95.

Reider K, Mekonnen Y. Effect of timed and targeted counseling (tC) by peer mothers in changing infant and young child feeding practices among mothers of children 0 to 18 months in four districts in southern Ethiopia. *FASEB Journal Conference: Experimental Biology 2013*;27.

Han YE, Park S, Kim JE, et al. Father engagement in improving infant and young child feeding (IYCF) practices: evidence from a

52 Beyero M, Reider K, Mekonnen Y. Effect of timed and targeted counselling (ttc) by peer mothers in changing infant and young child feeding practices among mothers of children 0 to 18 months in four districts in Southern Ethiopia. Faseb J 2013;27.

60 Piwoz E, Baker J, Frongillo EA. Documenting large-scale programs to improve infant and young child feeding is key to facilitating progress in infant and young child feeding. Food Nutr Bull 2013;34:143–5.

92 Proctor C, Belachew T, Argaw A. Improving complementary behavior change communication delivered through community-level actors on dietary adequacy of infants in rural communities of West Gojjam.

