

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

SYSTEMATIC REVIEW: THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047770
Article Type:	Original research
Date Submitted by the Author:	08-Dec-2020
Complete List of Authors:	Sangla, Ananya; Monash University Faculty of Medicine Nursing and Health Sciences, Kandasamy, Yogavijayan; Townsville Hospital and Health Service, Department of Neonatology; The University of Newcastle, Department of Neonatology
Keywords:	Paediatric nephrology < PAEDIATRICS, Paediatric nephrology < NEPHROLOGY, NEPHROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

SYSTEMATIC REVIEW: THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH

Ananya Sangla (1), Yogavijayan Kandasamy (2,3,4)

- 1. Monash University, Melbourne Australia
- 2. Department of Neonatology, The Townsville University Hospital
- 3. University of Newcastle, NSW, Australia
- 4. College of Medicine and Dentistry, James Cook University

Corresponding author:

- Dr. Yogavijayan Kandasamy
- **Conjoint Research Fellow**
- The University of Newcastle
- University Dr, Callaghan NSW 2308, Australia

Tel: 617 44331111

Fax: 617 44332981 Email: <u>Yogavijayan.Kandasamy@newcastle.edu.au</u>

Word Count: 3644

Word Count Abstract: 181

ABSTRACT:

Objective: To investigate the literature and determine if prematurity has an impact on long-term adverse renal outcomes

Setting: OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE databases were searched for studies relating to the adverse outcomes of prematurity from 1990 – Nov 2020.

Outcome Measures: Prescence and impact of nephrocalcinosis, blood pressure, renal function (glomerular filtration rate) and development of chronic kidney disease

Results: The literature search yielded 25 human studies which investigated the short- and long-term renal outcomes of prematurity. These studies were conducted in 17 different countries. The most common outcomes measured were blood pressure, nephrocalcinosis and renal function. Other common outcomes measured included renal size and mass, urine analysis, chronic kidney disease and physical parameters like height, weight and body mass index.

Conclusion: Prematurity is unlikely to be associated with adverse renal outcomes in childhood but is likely to be associated with impaired renal function from adolescence into adulthood. Preterm birth conferred a twofold increased risk of CKD and extremely preterm birth conferred a threefold increased risk of CKD. Prematurity likely does not affect blood pressure in the ex-preterm population up to 20 years of age.

Keywords: Premature, preterm, renal, kidney, impairment

STRENGTHS AND LIMITATIONS

- This systematic review yielded 25 relevant human studies
- The long-term adverse outcomes of renal function can only be evaluated up to 20 •

years of age as research into the aging population is lacking

.nes of

INTRODUCTION:

Prematurity is the leading cause of mortality in children under the age of five.^[1] However, with advances in technology and modern medicine, both the incidence of prematurity and the number of ex-preterm babies living into adulthood are increasing, especially in population-dense countries.^[1] Approximately 15 million, or just over 1 in 10 babies, are born prematurely every year.^[2] The highest number of preterm births are seen in India, China and Nigeria; while the highest rates of preterm births are seen in Malawi, Comoros and Congo.^[3] In Australia, 8.6% of babies born in 2014 were born prematurely. Higher rates of prematurity were observed in babies born in remote and regional Australia, babies born to indigenous mothers, babies born in multiple births and babies born to younger (<20 years) or older (<40 years) mothers.^[4]

Though preterm birth is becoming more commonplace, it is not without its own challenges. The Barker hypothesis proposes that diseases of adulthood are due to factors pertaining to fetal life.^[5-7] This proposition is also commonly known as the Developmental Origins of Health and Disease (DOHaD) hypothesis. This conclusion was first drawn when Barker et al. found that early death secondary to coronary artery disease was inversely related to weight at birth.^[8] Thus the DOHaD paradigm was created. It proposed that developmental factors, including nutrition, stressors, and environmental exposures such as drugs and infections, could lead to functional changes in tissues which may predispose to disease in later life.^[9]

Despite advancements in neonatal medicine, including the use of continuous positive airway pressure, mechanical ventilation, antenatal steroids and exogenous surfactant, 20-50% of preterm infants will still experience morbidity as a result of their prematurity.^[10] In the shorter

term, preterm infants have higher rates of neonatal intensive care admission, severe morbidity in the first weeks of life, prolonged hospital stay and readmission to the hospital within the first year of life.^[1] In 2014, 72% of preterm babies required special care or intensive care admission in Australia, compared to only 10% of term babies.^[4] Prematurity is associated with both physical and neurological disability.^[1, 11-12] Hearing impairment is seen in 5-10% of extremely premature infants.^[11] Visual impairment, in the form of blindness, myopia and hypermetropia, affects around 25% of extremely preterm children.^[12] Chronic lung disease associated with prematurity, which ranges from reduced exercise tolerance all the way through to requiring home oxygen, is seen in 40% of children born extremely premature.^[13] Reduced lung function, greater rates of asthma, high blood pressure (BP) and growth failure have also been associated with prematurity.^[1] In the aging population, studies have shown that prematurity confers an increased risk of chronic disease; particularly coronary artery disease, heart failure, obstructive lung disease, glucose intolerance, diabetes, obesity and osteopenia.^[5-6, 14] From a neurological perspective, higher rates of learning and cognitive impairment, dyslexia, attention deficit hyperactivity disorder, motor impairment and cerebral palsy have all been noted as prematurity associated morbidities.^[1] Higher rates of anxiety and depression are also common in the ex-preterm population.^[1]

The impact of prematurity on long-term renal dysfunction or chronic kidney diseases (CKD) is still not fully understood. Impaired nephrogenesis due to poor fetal growth, prematurity, antenatal and post-natal medication and other factors most likely lead to reduced nephron endowment and CKD. ^[15-16] Nephrogenesis is completed by 37 weeks gestation, and the majority of nephrogenesis occurs in late gestation.^[17] Therefore, in preterm neonates, nephrogenesis is terminated early conferring reduced nephron numbers. Nephrons do not

BMJ Open

regenerate. The number of functional nephrons over time decreases as part of normal aging.^[6] As preterm children are born with reduced nephron numbers, an increased risk of renal dysfunction is postulated. Brenner et al. also proposed that as a compensatory measure for low nephron numbers, nephron surface area increases. This maladaptive response causes systemic hypertension and increased sodium retention, which in turn causes disrupted autoregulation.^[19] The resulting nephron sclerosis leads to increased functional nephron decline creating a vicious cycle. ^[18-19]

As the ex-preterm population is living longer and becoming part of the aging population, understanding the effects of prematurity become imperative in anticipating the likely chronic health outcomes the premature population will face. This review is intended to investigate the literature to determine if a link is present between prematurity and adverse long-term renal health. Identifying a link will be the first step in deciding how best to follow-up and manage ex-preterm children and adults to prevent renal morbidity and premature mortality in the long term.

METHODS

This systematic review was completed in accordance with the PRISMA guidelines. ^[20] The systematic search was conducted using OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE. The search criteria were developed and refined from January to November 2020. Relevant keywords were identified, and all relevant Medical Subject Headings (MeSH) and non-MeSH synonyms were included. Relevant keywords included prematurity, chronic renal failure, chronic kidney disease, kidney volume and long-term adverse outcomes. An example of the database search can be seen in Appendix A. Only articles published in English between January 1990 and November 2020 have been included. Animal studies were excluded. Finally, articles shortlisted for inclusion were screened for bias and re-evaluated for inclusion if there was significant bias.

Once the literature search was completed, article selection was performed independently and in a non-blinded manner by two reviewers. The articles were initially screened by title and then by the abstract. All remaining articles were reviewed and determined for inclusion based on examination of the full text. Articles which were unclear were re-reviewed by both reviewers, and a unanimous decision was taken as to whether they should be included.

Articles were included if they studied premature and low birth weight infants to determine if they developed adverse renal outcomes as a result of being premature or having a low birth weight. Outcomes that were evaluated included glomerular filtration rate (GFR), nephrocalcinosis, BP, tubular function, kidney length and volume, and urinary protein and electrolytes. It was decided that case series with less than 20 participants, and case studies

 would be excluded from this review as they would not provide the level of evidence or relevant information required.

Patient and Public Involvement

Patients were not involved in the development or design of this systematic review.

for beet teries only

<u>RESULTS</u>

The collective search from the five databases revealed 967 studies. A total of 927 articles remained after duplicates were omitted. All 927 articles were screened, and 775 were excluded based on title and abstract. For the remaining 152 articles, full texts were assessed for eligibility. 61 articles were excluded due to long term adverse renal outcomes not being investigated. Nine articles were excluded as prematurity or low birth weight were not investigated. Seven were excluded for being animal studies, and 50 were excluded for being case reports or case series with less than 20 participants. Thus, the literature search yielded 25 human studies which investigated the long-term renal outcomes of prematurity. ^[21-45] These studies were conducted in 17 different countries: Australia, Israel, Japan, Italy, Greece, Poland, France, Egypt, Sweden, Belgium, Mexico, the Netherlands, Scotland, Spain, the USA, Finland and Norway. ^[21-45] A flow diagram demonstrating the selection process can be seen in Figure 1. The lead author surname, year of publication, sample size, birth weight, gestation, outcome measures, age at which outcome measured and conclusions of the selected studies can be seen in Appendix A Table 1.

Of the included studies, the smallest cohort size was 19, and the largest cohort size was 4186615. ^[23, 40] The youngest gestational age from the preterm cohorts was 22 weeks, and the most mature gestational age for the preterm cohorts was 36 weeks.^[40] The youngest age at which outcomes were measured was at birth, and the oldest age at which outcomes were measured was at birth, and the oldest age at which outcomes were BP, nephrocalcinosis and renal function. Other outcomes measured included renal size and mass, urine analysis, chronic kidney disease and physical parameters (height, weight and BMI). Some studies also commented on insulin resistance and serum lipid profile.

Nephrocalcinosis

Seven studies investigated for nephrocalcinosis. ^[22-23,25, 35, 27-28, 42] Out of the eleven children born preterm and found to have renal calcifications, Jones et al. found that 5 of them still had renal calcifications at age 4-5 years. However, nephrocalcinosis in isolation was not found to be a major predisposing factor to long term renal dysfunction.^[22] Porter et al. concluded that nephrocalcinosis is not associated with long-term renal dysfunction.^[27] They also found that 75% of nephrocalcinosis cases resolve by 6.75 years of age.^[27] Kist-van Holthe et al. concluded that premature infants with nephrocalcinosis had a significantly higher risk of developing chronic renal insufficiency when compared to controls and premature children without nephrocalcinosis.^[28] Abitbol et al. found 4 out of their 20 participants had nephrocalcinosis and noted that all these cases resolved with age and discontinuation of diuretic use.^[25] Rakow et al. found no significant difference in renal function in extremely premature infants with and without nephrocalcinosis.^[42] Giapros et al. concluded that nephrocalcinosis in preterm infants was associated with renal tubular dysfunction and shorter kidney length in the first year of life.^[35] Of the seven studies, Giapros et al. had the largest cohort size with 107 participants.^[35] Toffolo et al. looked specifically at premature children with bronchopulmonary dysplasia.^[23] Their study group consisted of 12 children with nephrocalcinosis.^[23] Three of these children passed away. Nephrocalcinosis was found to have resolved in all cases by 12 months of age. ^[23]

GFR

22 out of the 25 studies investigated GFR as an outcome measure.^[22, 24-36, 38-39, 41-43, 44-45] Four studies, comparing premature children and term children, found no significant difference in GFR between groups.^[27, 43] Rakow et al. measured their outcomes at 9 years, Kandasmay et

al. measured their outcomes at 0.5, 1 and 2 years, Porter et al. measured outcomes at approximately 5-7 years, and Staub et al. measured GFR at 12 years.^[27, 31, 43, 45] Four further studies found no statistically significant difference in GFR between study and control groups.^[24, 33, 35, 38] Ojala et al. compared premature infants with and without indomethacin exposure in the neonatal period and measured outcomes at 2-4 years.^[24] Raaijmakers et al. compared premature infants with and without ibuprofen exposure in the neonatal period and assessed outcomes at 11 years.^[38] Zaffanello compared very low birth weight and extremely low birth weight children at 5-6 years.^[33] Finally, Giapros compared preterm infants with and without nephrocalcinosis for the first 2 years of life.^[35]

Chan et al. found nil difference in GFR prior to giving participants a protein load. ^[34] However, they found a significant reduction in renal reserve in the small for gestational age children after protein loading at 13-14 years of age. ^[34] There was no difference in preterm compared to term children after protein load. ^[34] Keijer Veen et al. found that GFR was significantly lower in the preterm small for gestational age group compared to term controls at 20 years. ^[29] This was not the case for the preterm appropriate for gestational age group. ^[29] When the small for gestational age group had their GFR adjusted for body surface area, there was no significant difference between groups. ^[29] Yael et al. found that all their 103 study participants that were very low birth weight and preterm all had normal values of GFR. ^[44]

Eight found significantly diminished GFR between the study groups and controls. ^[25-26, 28, 30, 32, 37, 39, 42] Four out of these eight found significantly diminished GFR between premature babies and term babies. Outcomes were measured at approximately 7.5 years, eight years, 8.5 years, and 11.5 years for these four studies. ^[26, 28, 32, 39] Finken et al. noted significantly decreased

BMJ Open

GFR in premature infants who received betamethasone in the neonatal period when compared to premature infants who did not.^[30] This outcome was measured at 19 years of age.^[30] Rakow et al. also found significantly diminished GFR between preterm infants and term infants when reviewed at approximately eight years of age. However, they also noted that this GFR was still within normal limits.^[42] Abitolol et al. found ex-preterm children had normal GFRs when aged 5.7 years but children assessed at 9.9 years were found to have diminished GFR.^[25] Starzec et al. concluded that GFR was significantly lower in the extremely low birth weight group compared to term controls when assessed at 11 years.^[37] Jones et al found that four out of their 11 preterm babies with nephrocalcinosis had an abnormal GFR at 4-5 years of age. Jones et al did not however have a term control group to compare these results too.^[22]

Only one study (Carballo-Magdaleno et al.) found an increased GFR in premature infants when compared to term infants. Outcomes were measured at two years of age.^[36]

Horie et al. compared two groups of preterm children.^[41] Children were separated into control or study groups based on GFR. Of the 168 people followed up 10.7% had low GFR (18 out of 168). GFR at 2 years was found to be significantly and positively correlated with birthweight and gestational age. ^[41] However, this relationship was no longer significant at 3-4 years of age. ^[41]

CKD

Crump et al. was the only study that exclusively investigated for CKD. From their large cohort size of 4 186 615, they concluded that preterm birth conferred a twofold increased risk of

CKD and extremely preterm birth conferred a threefold increased risk of CKD.^[40] This risk was found to be highest between ages 0-9 years and slightly weakened but still increased from ages 10-19 years.^[40]

Blood Pressure

16 out of the 25 studies investigated BP as one of their outcome measures.^[24-26, 28-34, 36, 39, 42-45] 12 out of the 25 studies found no significant difference in BP between study and control groups.^[24-26, 28, 30-34, 39, 42-43] Seven of these studies found no significant difference in BP between term babies and preterm babies at differing ages.^[25-26, 31, 34, 39, 42-43] Four studies compared premature babies with and without different variables including exposure to betamethasone, exposure to indomethacin, presence or absence of nephrocalcinosis, and having extrauterine growth restriction, intrauterine growth restriction or being appropriate for gestational age.^[25, 28, 30, 32] All concluded no significant difference in BP between these groups of premature babies at differing ages. Zaffanello et al. found no significant difference in BP between very low birth weight and extremely low birth weight infants at 5-6 years of age. ^[33] It should be noted that Zaffanello did not compared these blood pressures with normal birth weight or term infants.^[33]

Carballo-Magdaleno et al., Keijzer-Veen et al., Yael et al. and Staub et al. found increased BP in premature children compared to controls. ^[29, 36, 44-45] Carballo-Magdaleno et al. found that 2-year-old infants born prematurely had significantly higher blood pressures than 2-year-old infants born at term.^[36] Keijzer-Veen et al. found significantly increased systolic BP in premature children compared to term children when BP was assessed at 20 years.^[29] Yael et al. reported a 15.8% prevalence rate of systolic hypertension in their study group of preterm

BMJ Open

children with very low birth weight when assessed at 10-13 years. ^[44] This is compared to the general United States paediatric population which has a 1.6% prevalence rate of systolic hypertension. ^[44] Finally, Staub et al. found that systolic BP was significantly higher in preterm boys compared to term boys, however they did not find a significant difference in preterm and term girls. ^[45] They also noted that low birth weight was associated with higher BP in boys. ^[45]

Bias

In all studies included in this review, bias was minimal. Some bias may be present in single centre studies as these may only provide results from a particular population demographic. ^[21-26, 29, 31-35,37-38, 41-45] However, as this review correlates the results of numerous single centre studies, this bias is minimised. Randomisation of study subjects was not done in any of the 25 included studies as birth weight and gestational age are not variables that could be influenced. ^[21-45] Furthermore, 11 studies did not have term born controls. ^[21-25, 28, 30, 33, 35, 38, 42]] Abitolol et al. did however match their study participants to age-, gender- and height-matched population norms when reviewing outcomes.^[25] Yael et al. also did not have a term control group; however, they did compare their results to known population prevalence's.^[44]

DISCUSSION

25 studies that assessed long term renal outcomes of premature infants were identified in this review. ^[21-45] There was a relatively even split between the studies that investigated GFR as to whether there was or was not a significant difference between study and control groups. ^[22, 24-36, 38-39, 41-43, 44-45] It should be noted that the studies which favoured no significant difference between preterm and term participants investigated GFR in children from 0.5-11 years, while the studies that favoured a significant difference between the two populations measured outcomes at 7.5-20 years. ^[21-45] Thus, it is likely that in the short term, GFR is not significantly affected by prematurity. However, as the ex-preterm population ages, their renal function becomes diminished considerably compared to the term population. This is likely the case as premature infants start out with reduced nephron numbers. Furthermore, they are at a known increased risk of coronary artery disease, obesity and metabolic disease. ^[5-6, 14] These chronic conditions will impact and damage kidney functioning, leading to reduced GFR.

From the 16 studies that investigated BP, 12 found that prematurity did not affect BP in the ex-preterm population. ^[24-26, 28-34, 36, 39, 42-45] This conclusion is only relevant in the ex-preterm population up to 20 years of age as none of the studies investigated BP in ex-preterm adults above the age of 20. It is likely that there is no significant impact on BP before the age of 20 as the decreased nephron number in preterm infants compared to term infants is not large enough for compensatory BP effects at this age. However, as the ex-preterm population ages into late adulthood and their already reduced nephron numbers decline, this deficit is likely to cause a clinically significant increase in BP.

Page 17 of 36

BMJ Open

From the seven studies that investigated for nephrocalcinosis, it is difficult to draw a conclusion as to its effect. ^[22-23, 25, 35, 27-28, 42] The study with the largest cohort size concluded that nephrocalcinosis in preterm infants was associated with renal tubular dysfunction and shorter kidney length in the first year of life.^[35] The study with the second largest cohort found that premature children with nephrocalcinosis had an increased risk of developing chronic renal insufficiency when compared to controls and premature children without nephrocalcinosis. ^[28] Four studies with smaller cohort sizes found no difference between preterm babies with and without nephrocalcinosis, as well as term babies without nephrocalcinosis. ^[22-23, 27, 42,] Porter et al. Toffolo et al. and Abitolol et al. found the resolution of nephrocalcinosis in 75%, 100% and 100% of their participants respectively. ^[23, 25, 27] It is thought that the presence of nephrocalcinosis may further impair renal function and in turn, compensatory measures such as blood pressure. Therefore, it would be expected that a greater risk of adverse renal outcomes would be associated with persistent nephrocalcinosis in the preterm neonate. However, further investigation on the effects of nephrocalcinosis are needed before a solid conclusion can be drawn.

The risk of CKD is twofold and threefold greater in preterm and extremely preterm children respectively compared to those born at term as per Crump et al.^[40] The risk of CKD over the age of 19 years cannot be commented on as it was not investigated in any of the included articles. The conclusion drawn by Crump et al. is reliable by itself, given their methodology and massive cohort size. The conclusion is logical, given the decreased nephron endowment associated with prematurity. It should be noted that renal function must be significantly impaired (GFR <15) before evidence of renal failure will be present clinically.

There are some limitations to our systematic review. The majority of the included studies were conducted in Caucasian predominant countries. Therefore, they do not reflect the true impact of prematurity of long-term renal dysfunction as they do not encompass population rich countries including India, China and Nigeria where the highest number of preterm births occur each year. This means the conclusions from this review do not apply to all ethnicities and cannot be generalised for non-Caucasian ethnic groups. Additionally, all the studies included in this review analysed renal function through quantifiable measures such as blood tests. Clinically significant renal outcomes, symptomatology, quality of life and renal dysfunction associated mortality were not commented on or investigated in these studies. Finally, the majority of studies did not investigate outcomes over the age of 20 years. One study had participants up to the age of 43; however, the proportion of their study cohort over the age of 20 was minimal. Thus, this systematic review can only draw conclusions on the long-term renal outcomes of premature infants up to the age of 20 years. Finally, only studies conducted after 1990 and written in English were considered for inclusion.

CONCLUSION

Prematurity is likely to be linked to increased risk of renal dysfunction from ages 7.5-20 years. Prematurity likely does not affect BP in the ex-preterm population up to 20 years of age. The risk of CKD is twofold and threefold higher in preterm and extremely preterm children compared to those born at term. Sufficient evidence was not available for a conclusion to be drawn on the long-term renal effects of nephrocalcinosis in prematurity.

Further studies need to be conducted to investigate the effects of prematurity on long term renal health in the aging population; reliable information at this time is only available up until

BMJ Open

the age of 20 years. Thus, renal outcomes in the ex-preterm population over the age of 20 years cannot be concluded from the current research. Furthermore, more high-quality studies should be conducted on nephrocalcinosis in prematurity in order to determine if it affects long-term renal outcomes. However, enough evidence is present to warrant ongoing monitoring of premature infants as they age in order to optimise and prevent other chronic health conditions associated with prematurity and reduce the risk of developing adverse renal outcomes in the future.

REFERENCES

- World Health Organization. March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children. Born to son: The global action report on preterm birth.
- Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Garcia CV, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The lancet. 2012 Jun 9;379(9832):2162-72.
- Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016 Dec 17;388(10063):3027-35.
- Hilder L, Zhichao Z, Parker M, Jahan SC, Chambers GM. Australia's Mothers and Babies:
 2012. Canberra: Australian Institute of Health and Welfare; 2014 Dec 17.
- 5. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal. 1989 Mar 4;298(6673):564-7.

6.	Starr MC, Hingorani SR. Prematurity and future kidney health: the growing risk of chronic
	kidney disease. Current opinion in paediatrics. 2018 Apr;30(2):228.
7.	Dover GJ. The Barker hypothesis: how paediatricians will diagnose and prevent common
	adult-onset diseases. Transactions of the American Clinical and Climatological
	Association. 2009;120:199.
8.	Barker DJ, Osmond C, Winter PD, Margetts B, Simmonds SJ. Weight in infancy and death
	from ischaemic heart disease. The Lancet. 1989 Sep 9;334(8663):577-80.
9.	Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for
	understanding disease etiology and prevention. Current opinion in pediatrics. 2015
	Apr;27(2):248.
10	. Glass HC, Costarino AT, Stayer SA, Brett C, Cladis F, Davis PJ. Outcomes for extremely
	premature infants. Anesthesia and analgesia. 2015 Jun;120(6):1337.
11.	. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability
	at six years of age after extremely preterm birth. New England journal of medicine. 2005
	Jan 6;352(1):9-19.
12.	. O'Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with
	preterm birth. Eye. 2007 Oct;21(10):1254-60.
13.	. Greenough A. Long term respiratory outcomes of very premature birth (< 32 weeks).
	Seminars in Fetal and Neonatal Medicine 2012 Apr 1 (Vol. 17, No. 2, pp. 73-76). WB
	Saunders.
14.	. Luu TM, Katz SL, Leeson P, Thébaud B, Nuyt AM. Preterm birth: risk factor for early-onset
	chronic diseases. CMAJ. 2016 Jul 12;188(10):736-46.
15.	. Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney
	International. 2005 Aug 1;68:S68-77.

3 4	16. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure: less of one, more the
5 6 7	other?. American journal of hypertension. 1988 Oct 1;1(4_Pt_1):335-47.
8 9	17. Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, Bertram JF,
10 11 12	McMahon AP, Little MH, Moore L, Black MJ. Development of the human fetal kidney from
13 14	mid to late gestation in male and female infants. EBioMedicine. 2018 Jan 1;27:275-83.
15 16	18. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult
17 18 19	hypertension and progressive renal injury.
20 21	19. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE. Effect of fetal
22 23 24	and child health on kidney development and long-term risk of hypertension and kidney
25 26	disease. The Lancet. 2013 Jul 20;382(9888):273-83.
27 28 29	20. Moher D, Liberati A, Tetzlaff J, Altman DG. RESEARCH METHODS & REPORTING-Preferred
30 31	reporting items for systematic reviews and meta-analyses: the PRISMA statement-David
32 33 34	Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for
35 36	reporting systematic reviews and meta-analyses. BMJ (CR)-print. 2009;339(7716):332.
37 38 39	21. Downing GJ, Egelhoff JC, Daily DK, Thomas MK, Alon U. Kidney function in very low birth
40 41	weight infants with furosemide-related renal calcifications at ages 1 to 2 years. The
42 43	Journal of pediatrics. 1992 Apr 1;120(4):599-604.
44 45 46	22. Jones CA, King S, Shaw NJ, Judd BA. Renal calcification in preterm infants: follow up at
47 48	4-5 years. Archives of Disease in Childhood-Fetal and Neonatal Edition. 1997 May
49 50 51	1;76(3):F185-9.
52 53	23. Toffolo A, Trevisanuto D, Meneghetti S, Talenti E, Zacchello G, Zanardo V.
54 55 56	Non-furosemide-related renal calcifications in premature infants with
57	bronchopulmonary dysplasia. Pediatrics International. 1997 Aug;39(4):433-6.

> 24. Ojala R, Ala-Houhala M, Ahonen S, Harmoinen A, Turjanmaa V, Ikonen S, Tammela O. Renal follow up of premature infants with and without perinatal indomethacin exposure. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2001 Jan 1;84(1):F28-33.

- 25. Abitbol CL, Bauer CR, Montané B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatric Nephrology.
 2003 Sep 1;18(9):887-93.
- 26. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A. Long-term renal follow-up of extremely low birth weight infants. Pediatric Nephrology. 2005 May 1;20(5):579-84.
- 27. Porter E, McKie A, Beattie TJ, McColl JH, Aladangady N, Watt A, White MP. Neonatal nephrocalcinosis: long term follow up. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2006 Sep 1;91(5):F333-6.
- 28. Kist-van Holthe JE, van Zwieten PH, Schell-Feith EA, Zonderland HM, Holscher HC, Wolterbeek R, Veen S, Frolich M, van der Heijden BJ. Is nephrocalcinosis in preterm neonates harmful for long-term blood pressure and renal function?. Pediatrics. 2007 Mar 1;119(3):468-75.
- 29. Keijzer-Veen MG, Kleinveld HA, Lequin MH, Dekker FW, Nauta J, de Rijke YB, van der Heijden BJ. Renal function and size at young adult age after intrauterine growth restriction and very premature birth. American Journal of Kidney Diseases. 2007 Oct 1;50(4):542-51.
- 30. Finken, M.J., Keijzer-Veen, M.G., Dekker, F.W., Frölich, M., Walther, F.J., Romijn, J.A., van der Heijden, B.J. and Wit, J.M., 2008. Antenatal glucocorticoid treatment is not associated with long-term metabolic risks in individuals born before 32 weeks of gestation. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93(6), pp.F442-F447.

BMJ Open

31.
32.
33.
34.
35.
36.
37.
38.

31. Rakow A, Johansson S, Legnevall L, Sevastik R, Celsi G, Norman M, Vanpée M. Renal volume and function in school-age children born preterm or small for gestational age. Pediatric Nephrology. 2008 Aug 1;23(8):1309.

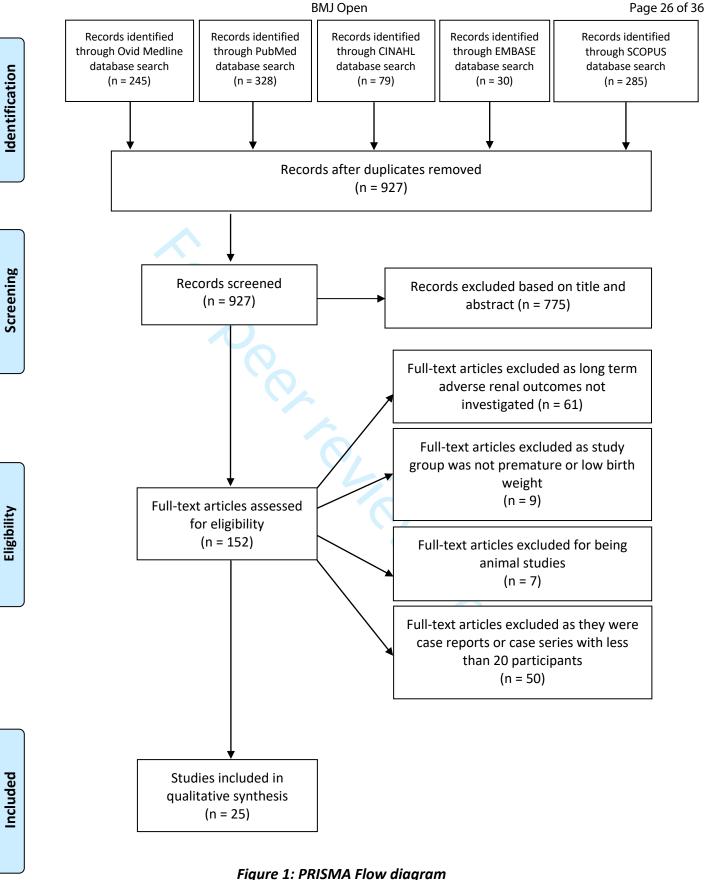
- 32. Bacchetta J, Harambat J, Dubourg L, Guy B, Liutkus A, Canterino I, Kassaï B, Putet G, Cochat P. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney international. 2009 Aug 2;76(4):445-52.
- 33. Zaffanello M, Brugnara M, Bruno C, Franchi B, Talamini G, Guidi G, Cataldi L, Biban P, Mella R, Fanos V. Renal function and volume of infants born with a very low birth-weight: a preliminary cross-sectional study. Acta Paediatrica. 2010 Aug;99(8):1192-8.
- 34. Chan PY, Morris JM, Leslie GI, Kelly PJ, Gallery ED. The long-term effects of prematurity and intrauterine growth restriction on cardiovascular, renal, and metabolic function. International journal of pediatrics. 2009;2010.
- 35. Giapros V, Tsoni C, Challa A, Cholevas V, Argyropoulou M, Papadopoulou F, Siomou E, Drougia A, Andronikou S. Renal function and kidney length in preterm infants with nephrocalcinosis: a longitudinal study. Pediatric Nephrology. 2011 Oct 1;26(10):1873-80.
- 36. Carballo-Magdaleno D, Guízar-Mendoza JM, Amador-Licona N, Domínguez-Domínguez V. Renal function, renal volume, and blood pressure in infants with antecedent of antenatal steroids. Pediatric Nephrology. 2011 Oct 1;26(10):1851-6.
- 37. Starzec K, Klimek M, Grudzień A, Jagła M, Kwinta P. Longitudinal assessment of renal size and function in extremely low birth weight children at 7 and 11 years of age. Pediatric Nephrology. 2016 Nov 1;31(11):2119-26.
- 38. Raaijmakers A, Zhang ZY, Levtchenko E, Simons SH, Cauwenberghs N, Van den Heuvel LP, Jacobs L, Staessen JA, Allegaert K. Ibuprofen exposure in early neonatal life does not

affect renal function in young adolescence. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2018 Mar 1;103(2):F107-11.

- 39. Vollsæter M, Halvorsen T, Markestad T, Øymar K, Ueland PM, Meyer K, Midttun Ø, Bjørke-Monsen AL. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS One. 2018 Oct 12;13(10):e0205558.
- 40. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. bmj. 2019 May 1;365.
- 41. Horie A, Abe Y, Koike D, Hirade T, Nariai A, Ito T, Katou F. Long-term renal follow up of preterm neonates born before 35 weeks of gestation. Pediatrics International. 2019 Dec;61(12):1244-9.
- 42. Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatric Nephrology. 2019 Oct 1;34(10):1765-76.
- 43. Kandasamy Y, Rudd D, Lumbers ER, Smith R. An evaluation of preterm kidney size and function over the first two years of life. Pediatric Nephrology. 2020 Apr 15:1-6.
- 44. Yael B, Roi T, Nir S, Esti D, Miriam D. Early Detection of Renal Dysfunction in Adolescents Aged 10-13 Years Born with very Low Birth Weight. Archives of Clinical and Biomedical Research. 2020;4(3):184-94.
- 45. Staub E, Urfer-Maurer N, Lemola S, Risch L, Evers KS, Welzel T, Pfister M. Comparison of Blood Pressure and Kidney Markers between Adolescent Former Preterm Infants and Term Controls. Children. 2020 Sep;7(9):141.

CONTRIBUTIONS: YK conceived the idea. AS performed the literature search. AS and YK evaluated the search results and AS extracted the data. AS and YK wrote the manuscript and edited subsequent and final drafts.

COMPETING INTERESTS: None declared


PROVENANCE AND PEER REVIEW: Not commissioned; externally peer reviewed

FUNDING: This research received no specific grant from any funding agency in the public,

Y.e. ony

commercial or not-for-profit sectors

DATA SHARING STATEMENT: No additional data are available

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7 of 30	5					BMJ Open	25 (<i>n</i> = 25)
				Tab	le 1 – Charac	cteristics of included studio	vs (n = 25) 1770
	Source (Y)	Sample Size	Birth weight (g) (study group)	Gestation (wks.) (study group)	Age at which outcomes measured (years)	Outcome measure (for example eGFR or BP or KV)	6 August 202
1	Downing et al (1992) ^[21]	Control N=7 (no frusemide therapy and no renal calcifications) Group 2 N=10 (frusemide therapy but no renal calcifications) Group 3 N=10 (frusemide therapy and renal calcifications)	Control (743(84)) Group 2 (806(103)) Group 3 (678(95))	Control (25.3(0.6) Group 2 (26.1(0.5)) Group 3 (26.2(0.4))	Control (1.2(0.01)) Group 2 (1.3 (0.1)) Group 3 (1.2 (0.1))	Creatinine clearance Urinary calcium:creatinine ratio Fractional excretion of sodium Lower tubular reabsorption of phosphate Urine-blood difference in carbon dioxide tension after oral acetazolamide load	 No significant difference in renal function between the control group and group 2 Creatinine clearance in group 3 was significantly lower than in the control group and group 2 Urinary calcium:creatinine ratios, fractional excretion of sodium and lower tubular re-absorption of phosphate was significantly higher in Group 3 compared to the group 2 and control group Group 3 had lower unne-blood differences in carbon dioxide tension after oral acetazolamide load when compared to the controls and group 2 Concluded that frusteride related renal calcifications may be associated with long-term renal unction impairment
2	Jones et al (1997) ^[22]	Control Group (preterm without renal calcifications) N=17 Study Group (preterm with renal calcifications) N=11	Control (982 (710– 1760)) Study (850 (580– 1856))	Control (28 (25–31)) Study (27 (24–31))	4-5	eGFR Renal calcifications/ nephrocalcinosis	 In the study group the median GFR was 61 ml/min/1.73m2 (range 46-79 ml/min/1.73m2) Five of the 11 childred born preterm and found to have renal calcifications, still had renal calcifications at age 4-5 years. Nephrocalcinosis in isolation was not found to be a major predisposing factor to long term real dysfunction Four out of the 11 preterm babies with nephrocalcinosis had an abnormal GFR at 4-5 years of age
							tected by copyright.

. Pag	omjopt		BMJ Open						
	i/bmjopen-2020-C								
	Toffolo et al. found the participants 00 August 2021. Downloaded from http://	•	Renal calcifications/ nephrocalcinosis	0.083, 0.167, 0.25, 0.5, 0.75, 1	Control (27.7(0.8) Study (28(0.5))	Control (875 (70)) Study (916 (50))	Control Group (Premature with bronchopulmonary dysplasia and without renal calcifications (NRC)) N=7 Study Group (Premature with bronchopulmonary dysplasia and with renal calcifications (RC)) N=12	Toffolo et al (1997) ^[23]	
ter use, frusemide treatment and assisted ventilation g term renal structural and functional abnormalities	the study group No difference was four plasma creatinine and urine protein:creatin No statistical difference between the two group Umbilical artery cather	•	Serum cystatin C and protein Plasma creatinine, sodium and potassium Urine protein, calcium: creatinine ratios and alpha-1 microglobulin GFR BP Renal sonography examination	2-4	Control Group (31 (24-32)) Study Group (28 (24-32))	Control Group (1360 (680– 2680)) Study Group (1150 (670– 2060))	Control Group N=35 (nil perinatal indomethacin) Study Group N=31 (perinatal indomethacin exposure)	Ojala et al (2001) ^[24]	
ce was found between the normal GFR and low GFR come measure was 5.7+/-2.2 and 9.9+/-5.6 years present in 4/20 patients All nephrocalcinosis resolver and discontinuation of diuretic therapy gth of initial hospitalisation, degree of peak elevatio mass were unreliable in predicting disease	groups, the age of our respectively.	•	Proteinuria Kidney function/kidney failure (GFR, sCr) Renal size and mass BP Growth (height, weight and BMI) Nephrocalcinosis	3.1-18.3	25 (2)	686 (133)	N=20	Abitbol et al (2003) ^[25]	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

) of 36						BMJ Open		b mjop
								s/bmjopen-2020-0
							•	BP was not significantly different between study participants and populatio norms 2 9 0 0
6	Rodriguez- Soriano et al (2005) ^[26]	Control Group N=43 Study Group N=40 (premature and weighing <1000g at birth)	845 (540- 1000)	27.6 (23- 35)	Control Group (8.5 (1.8)) Study Group (8.6(1.8))	BP Renal length and volume Plasma creatinine Estimated creatinine clearance TmP/GFR TRP Urinary phosphate excretion Urinary calcium excretion GFR	•	No significant difference in BP, microalbuminuria, and renal length and volume was found between the study and control groups Plasma creatinine, urinary calcium excretion and urinary phosphate excretion were significantly higher in the study group than the control group The study group had ignificantly lower estimated creatinine clearance and TmP/GFR compared controls Concluded that school aged children who were born extremely premature had significantly diminished GFR and tubular phosphate transport
7	Porter et al (2006) ^[27]	Control Group N=14 Study Group N=14 (very low birth weight, premature and with nephrocalcinosis)	Control Group (1210 (670- 1870) Study Group (1180 (565- 1880)	Control Group (28.5 (25-31)) Study Group (27.5 (25- 31)	Control Group (7.21 (6.38-7.68)) Study Group (6.69 (5.81- 7.09))	Early morning urine osmolality Creatinine:albumin ratio Creatinine:phosphate ratio Creatinine:calcium ratio Beta microglobulin UEC GFR TmP/GFR Renal length Nephrocalcinosis	•	No significant differences in GFR or urinary concentrating capacity between the groups 75% of patients whounderwent renal ultrasound were found to have resolved nephrocalciposis by a median age of 6.75 years There was evidence of hypercalciuria in both the control and study groups suggesting prematurity may be a risk factor No evidence suggested that nephrocalcinosis is associated with long term renal dysfunction
8	Kist-van Holthe et al (2007) ^[28]	Control N=32 (ex-preterm infants without Nephrocalcinosis) Study Group N=42 (ex-preterm infants with neonatal Nephrocalcinosis)	Control Group (1353 (337)) Study Group (1148 (394))	Control Group (29.8 (1.6)) Study Group (28.9 (2.3))	Control Group (7.5 (1.0)) Study Group (7.4 (1.0))	BP GFR Tubular function Nephrocalcinosis Kidney length	•	There was no difference in the BP between the two groups Blood pressure in both groups was found to be higher than expected for otherwise healthy chedren The study group was found to have significantly more chronic renal insufficiency when compared to healthy children. This was not the case for the control group.

Page 30 of 36

						BMJ Open			Page 30
							•	Tubular phosphate re urine osmolality were	b bsorption, plasma bicarbonate, and early-morning bsignificantly lower in both control and study groups herwise healthy children
9	Keijzer- Veen et al (2007) ^[29]	Control (Term) N=30 Group 1 (Premature SGA) N=23 Group 2 (Premature AGA) N=29	Control (3632 (40.2)) Group 1 (859 (126)) Group 2 ((1489 (257))	Control (40.2 (1.3)) Group 1 (30.6 (1.0)) Group 2 (29.5 (1.4))	20	eGFR Serum urea sCr Serum electrolytes ERPF BP Urine albumin Kidney length and volume	•	Height, weight, kidne lower in the SGA groe area, GFR did not dif There was increased	y length and volume, GFR, and ERPF were significantly than in controls. After adjustment for body surface r significantly among groups. P in premature compared to controls
10	Finken et al (2008) ^[30]	Control N=328 (premature and did not receive betamethasone) Study Group N=84 (premature and received betamethasone)	Control (1319 (337)) Study Group (1348 (275))	Control (29.7 (1.5)) Study Group (29.8 (1.5))	19	Body composition Insulin resistance Serum lipid profile BP eGFR	•	antenatal betametha This difference was d	nically irrelevant at age 19, however the decreased risk of chronic kidney disease long term
11	Rakow et al (2008) ^[31]	Control (term AGA) N=37 Group 1 (preterm) N=39 Group 2 (term SGA) N=29	Control (3485 (502)) Group 1 (954 (203)) Group 2 (2436 (331))	Control (39.6 (1.0)) Group 1 (26.6 (2.0)) Group 2 (39.3 (1.4))	Control (9.8 (0.2)) Group 1 (9.6 (0.3)) Group 2 (9.8 (0.3))	eGFR Kidney volume sCr Serum Cystatin C Blood pressure Urinary albumin, Immunoglobulin G, alpha-1 microglobulin, N- acetylglucosamine	•	were similar betweed Kidney volume was se the difference was no gender and age No significant differed blood pressure betweed	Baller in the preterm group than in the controls, but t significant when adjusted for body surface area, ces were found in renal function, renal volume or the three groups at school age.

Page 31 of 36

BMJ	Open
-----	------

31 of 36						BMJ Open		ò/bmjopen-2020
12	Bacchetta et al (2009) ^[32]	Control N=11 Group 1 (EUGR) N=16 Group 2 (IUGR) N=23	Control (1039 (278)) Group 1 (845(146)) Group 2 (773 (155))	Control (27.1 (1.8)) Group 1 (26.2(1.8)) Group 2 (28.2 (1.8))	Control (6.8 (0.9)) Group 1 (7.9 (1.3)) Group 2 (7.8 (1.3))	BP GFR Microalbuminuria Urine calcium-creatinine ratio Kidney size	•	Children in groups 1 and 2 had decreased GFR compared to controls Nil significant difference in blood pressure was found between the three groups EUGR was concluded as a risk factor for long term renal impairment in premature children of st 2021
13	Zaffanello et al (2010) ^[33]	Group 1 (Very Low Birth Weight) N=43 Group 2 (Extremely Low Birth Weight) N=26	Group 1 (1315 (1248– 1352)) Group 2 (850 (775– 883))	Group 1 (30.1 (29.9– 31.3)) Group 2 (27.0 (26.3– 27.7))	Group 1 (5.4 (5.2–6.1)) Group 2 (5.3 (5.2–6.3))	Plasma creatinine concentration Plasma Cystatin C eGFR Plasma renin Urinary alpha 1-microglobulin Total kidney volume BP	•	Renal function parameters (i.e. estimated glomerular filtration rate and albuminuria) did not differ between the two groups of children. Systolic and diastolic blood pressures and did not differ between the two birth- weight categories.
14	Chan et al (2010) ^[34]	Control (Term AGA) N=25 Group 1 (Premature SGA) N=14 Group 2 (Premature AGA) N=25 Group 3 (Term SGA) N=7	Control (3302 (3105- 3690)) Group 1 (980(768- 1038)) Group 2 (1635 (991- 1850)) Group 3 (2750 (2430- 2870))	Control (40 (38.5-41.0)) Group 1 (31(28.8- 31.0)) Group 2 (30 (27.5-31.0)) Group 3 (39 (38.0-40.0)	Control (13.6 (12.54- 14.78)) Group 1 (13.5 (12.48- 13.97)) Group 2 (14.1 (13.66- 15.03)) Group 3 (13.6 (12.35- 14.83))	BP Augmentation index GFR following protein load Plasma glucose Serum insulin levels	•	Nil difference in GFR prior to giving participants a protein load. SGA had higher SBP and lower GFR following protein load than AGA. There was no effect of prematurity on SBP or GFR
								copyright.

Page	32	of	36
------	----	----	----

					BMJ Open		i/bmjopen-2020	Page
Giapros et al (2011) ^[35]	Control Group (Preterm without nephrocalcinosis) N=44 Study Group (preterm with nephrocalcinosis)	Control (1651 (430)) Study (1615 (480))	Control (31.9 (2.2)) Study (31.8 (3))	0.25, 0.5, 1, 2	sCr eGFR Fractional excretion of sodium, potassium, phosphate, magnesium and uric acid Kidney length	•	Serum creatinine and eGFR di point 7 The NC group had a shorter K months (right kidney Nephrocalcinosis in peterm i	id not differ between the groups at any time (L up to 12 months of life (left kidney) or 24 infants was associated with renal tubular ey length in the first year of life
Carballo- Magdaleno et al (2011) ^[36]	N=63 Control N=30 Group 1 N=30 (premature and no steroids) Group 2 N=30 (premature with steroids)	Control (3088 (177)) Group 1 (1669 (426)) Group 2 (1501 (410))	Control (38.6 (1.0)) Group 1 (31.9 (2.3)) Group 2 (31.3 (1.7))	Control (2.0 (0.4)) Group 1 (1.8 (0.5)) Group 2 (1.8 (0.4))	Renal volume eGFR Cystatin C BP	•	levels and GFR No significant difference in th and 2 Concluded that prematurity (i	ared to the controls had higher BP, cystatin C nese parameters was found between groups 1 (independent of antenatal steroids) was pressure levels, cystatin C levels and infants aged 12-36 months
Starzec et al (2016) ^[37]	Control (term) N=36 Study Group (extremely low birth weight) N=64	Control (3570 (3395– 3880)) Study (875 (750– 960))	Control (40 (39–40)) Study (27 (25–28))	7, 11	Serum cystatin C levels sCr BUN eGFR Kidney length and width	•	in the 7- and 11-yeared LEB Serum cystatin C levels were s the controls at 7 years of age, significant at 11 years of age	n revealed a significantly smaller renal volume W children compared to the term controls significantly higher in ELBW children than in e, and this difference remained statistically in the extremely low birth weight group when assessed at 11 years
Raaijmakers et al (2018) ^[38]	Control = 45 (premature and exposed to ibuprofen) Study Group = 48 (premature and not	815 (430- 1000)	27 (24-33)	0.75, 2, 11	eGFR-Cystatin C Renal length	•		erences in renal length or eGFR-Cystatin C in erienced neonatal ibuprofen exposure

Page 3	3 of 36
--------	---------

BMJ Open

33 of 36			BMJ Open		
	osed to profen)				
et al (2018) AGA ^[39] Grou born Grou	trol (Term Born Control (3701 (3582, up 1 (Preterm- n AGA) N=37 up 2 (Preterm- n SGA) N=20 Group 2 (724 (657, 791))	Control = Control Term born (11.7 (11.2- 12.0)) 12.0) Group 1 (11.4 (11.1- (26.5) (11.4 (11.1- 11.8)) 11.8) Group 2 Group 2 28.7) (11.3 (11.0- 11.8)) 11.8)	Height Weight Abdominal circumference Triceps and subscapular skin fold thickness BP Plasma creatinine Cystatin C GFR SDMA	 SDMA levels were sign controls GFR was significantly No significant differed Systolic BP had a sign function Systolic BP did not sign concluded that child impaired renal function 	aificantly higher Group 1 and 2 when compared to the lower in Groups 1 and 2 compared to the controls cess in creatinine or cystatin C between the groups ficant relationship with fat mass indices but not renal fificantly differ between the groups en from Groups 1 and 2 (especially Group 2) had on by 11 years of age (as shown by GFR and SDMA) g born preterm or SGA increases risk of developing
(2019) ^[40] N=81 Very N=43 Late N=15 Early N=73 Full t	remely Preterm NA 129 y preterm 3516 e preterm 55626 y term '37412 term 895746	Extremely 0-43 Preterm (22-27) Very preterm (28-33) Late preterm (34-36) Early term (37-38)	СКД	 threefold risks of CK Preterm birth and CK 0-9 years (hazard rate 	were found to have the strongest association at ages 5.09) and weakened but remained increased at ages 1.97 for 10-19 years and 1.34 for 20-43 years)
				עיטי עיטיין פון וע	

Pag	bmjope		BMJ Open						
	i/bmjopen-2020-0								
-	4				Full term		Post-term		
	770				(39-41)		N=346186		
	on				(
	6 /				Post-term				
	Pug				(≥42)				
was significantly correlated with birthweight and	eGFR at 2 years of $ae^{\frac{C}{6}}$	•	sCr	2-15	<28+0 N=63	<1000g	Control Group	Horie et al	1
elationship was no longer significant at 3-4 years of			eGFR	-		N=73	(Preterm and	(2019) [41]	
	age.		Gestational age		≥28+0		normal eGFR)	· · /	
of the children had low eGFR without clinical		•	Body weight and leng		N=105	1000-	N=150		
al urine examination. These children had high sCr on			birth		105	1500g			
lelayed recovery of these levels during the first month	after birth.		Sex			N=76	Study Group		
- -			Apgar score	5			(Preterm and low		
	fro	s,	Use of antimicrobial			>1500g	eGFR) N=18		
	с 		steroids or indometh			N=19			
gnificantly smaller kidneys compared to the controls	Groups 1 and 2 had sig	•	Kidney volume	Control (8.1	Control	Control	Control N=19	Rakow et al	2
was significantly lower (however still normal) in	Cystatin C based GFR	•	24-hour ambulatory l	(2.2))	(39.7 (1.6))	(3586		(2019) [42]	
compared to the control group	groups 1 and 2 wher		Cystatin C calculated			(477))	Group 1 (Extremely		
ce between kidney volume and function between	Nil significant differe	•	Plasma creatinine	Group 1 (7.8	Group 1		preterm and		
	Groups 1 and 2		Urinary protein and	(1.0))	(25.5 (1.2))	Group 1	nephrocalcinosis)		
d significantly higher plasma creatinine compared to	The control groups had	•	electrolytes			(755	N=20		
	groups 1 and 2			Group 2 (7.4	Group 2	(124))			
ectrolytes were not significantly different between a	Urinary protein and ge	•		(1.1))	(25.9 (1.3))		Group 2 (extremely		
	groups A					Group 2	preterm and non		
y different between all groups	BP was not significant	•				(841	nephrocalcinosis)		
dren from group 1 had a negative evolution of kidney		•				(202))	N=21		
natal period to school age	function from the negr								
extremely premature affects kidney growth and	Concluded that being	•							
lcinosis is a potential aggravating factor	<u>~</u>								
significantly reduced TKV compared to the controls	,	•	ТКV	0.5, 1, 2	Control =	NA	Control group	Kandasamy	З
	Both groups had a simi	•	eGFR		Born at		(term) N=31	et al (2020)	
ce was found in BP and urine ACR between the	No significant differe	•	Urine ACR		term			[43]	
	groups CC ed		BP				Study Group		
					Study = <28		(preterm) N=53		
	by copyright.								
	ору								
	righ								

36					BMJ Open	/bmjopen-2020
24 Yael et al (2020) ^[44]	Control group = known paediatric population prevalence rates Study group (very low birth weight and preterm) N = 103	Study Group (1086 (243))	Study Group (29.4 (24- 35))	Study Group (11.6 (10- 13.3))	BP PCR ACR eGFR	 The prevalence of systolic hypertension was 15.8% and of systolic prehypertension was 6.9%. This is compared to the general United States paediatric population which has a 1.6% prevalence rate of systolic hypertension. Hypertension was associated with a significantly diminished mean birth weight compared to the remainder of the cohort (939.3 grams vs 1111 grams P=0.024) 103 study participan that were very low birth weight and preterm all had normal values of GFR
25 Staub et al (2020) ^[45]	Control Group (term) N=82 Study Group (preterm) N=51	Control (3250 (555)) Study (1360 (532))	Control (39 + 6 (2 + 5)) Study (31 + 0 (2 + 6))	Control (12.1 (1.20)) Study (12.3 (1.87))	BP sCr Cystatin C eGFR Beta-2 Microglobulin Uromodulin Neutrophil gelatinase- associated lipocalin	 Systolic BP was significantly higher in preterm boys compared with term boys, however there was not significant difference in girls Low birth weight was associated with higher BP in preterm boys In the preterm group maternal hypertension/preeclampsia and adolescent height were associated with higher systolic BP Serum creatinine and neutrophil gelatinase-associated lipocalin were significantly higher in the preterm group There was no significant difference in GFR between groups

(tubular maximum reabsorption of phosphate), sCr (serum creatinine), CKD (chronic kidney disease), ACR (abumin creatinine ratio), PCR

(protein creatinine ratio), SDMA (Symmetric dimethylarginine), TKV (total kidney volume), IUGR (intrautering growth restriction), EUGR

(extrauterine growth restriction), SGA (small for gestational age), AGA (appropriate for gestational age), BU (blood urea nitrogen), ERPF

(effective renal plasma flow)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Protected by copyright.

46 47

PRISMA 2009 Checklist

			BMJ Open 86	Page 36 of 36
1 2 3	PRISMA 2	009	BMJ Open 60 PP-720 PP-7	
4 5	Section/topic	#	Checklist item 417	Reported on page #
6 7	TITLE	-	on on on	
8	Title	1	Identify the report as a systematic review, meta-analysis, or both.	1/Title page
9 10	ABSTRACT		gust	
11 12 13	Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data source study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
14 15	INTRODUCTION	<u> </u>		
16	Rationale	3	Describe the rationale for the review in the context of what is already known.	2-6
17 18 19	Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
20	METHODS	-	tp://t	
21 22 23	Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.	NA
24 25	Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
26 27	Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
29 30	Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7 and Appendix A Figure 1
31 32	Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
32 34 35	Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplied te) and any processes for obtaining and confirming data from investigators.	7
36 37		11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
39 39 40	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
41	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
42 43 44	Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including near assures of consistency (e.g., I ²) for each meta-analysis.	NA
45	5	. I	For peer review only - http://bmjapen.bmj ₂ com/site/about/guidelines.xhtml	

PRISMA 2009 Checklist

Page 37 of 36		BMJ Open 66	
PRISMA 2	009	BMJ Open 36/bmjopen 222	
4 5 Section/topic	#	Checklist item	Reported on page #
6 7 Risk of bias across studies 8	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publicagion bias, selective reporting within studies).	7
9 Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NA
RESULTS		021	
13 Study selection 14	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
15 16 17 18	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9 and Appendix A Table 1
¹⁹ Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	14
21 Results of individual studies 22	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	9-14
²³ Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
25 Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	14
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA
²⁸ DISCUSSION	<u> </u>	;	
29 30 Summary of evidence 31	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15-16
32 Limitations 33	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., in complete retrieval of identified research, reporting bias).	16-17
34 35 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17-18
³⁶ FUNDING			
38 Funding 39	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	NA
40		an DC. The DRISMA Crown (2000). Breferred Benerting Items for Systematic Beviews and Mate Analyses: The PRISMA Statement, BLoS Med	

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097.
 42 doi:10.1371/journal.pmed1000097
 43 For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH: A SYSTEMATIC REVIEW

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047770.R1
Article Type:	Original research
Date Submitted by the Author:	20-May-2021
Complete List of Authors:	Sangla, Ananya; Monash University Faculty of Medicine Nursing and Health Sciences, Kandasamy, Yogavijayan; Townsville Hospital and Health Service, Department of Neonatology; The University of Newcastle, Department of Neonatology
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Renal medicine
Keywords:	Paediatric nephrology < PAEDIATRICS, Paediatric nephrology < NEPHROLOGY, NEPHROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH: A SYSTEMATIC REVIEW

Ananya Sangla (1), Yogavijayan Kandasamy (2,3,4)

- 1. Monash University, Melbourne Australia
- 2. Department of Neonatology, The Townsville University Hospital
- 3. University of Newcastle, NSW, Australia
- 4. College of Medicine and Dentistry, James Cook University

Corresponding author:

Dr. Yogavijayan Kandasamy

Conjoint Research Fellow

The University of Newcastle

University Dr, Callaghan NSW 2308, Australia

Tel: 617 44331111

Fax: 617 44332981 Email: <u>Yogavijayan.Kandasamy@newcastle.edu.au</u>

Word Count: 3854

Word Count Abstract: 276

ABSTRACT:

Objective: To investigate the literature and determine if prematurity has an impact on long-term adverse kidney outcomes

Design: Systematic review

Data sources: OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE databases were searched for studies relating to the adverse outcomes of prematurity from 1990 – April 2021.

Eligibility criteria for selecting studies: All articles published between January 1990 and April 2021 that investigated whether premature infants developed long term adverse renal outcomes were included in this review. Articles must have been human studies and written in English. Case series with less than 20 participants and case studies were excluded.

Data extraction and synthesis: One reviewer completed the database searches. Article selection was performed independently and in a non-blinded manner by both reviewers. Initial screening was by title and abstract. Full texts of remaining articles were reviewed. Articles for which inclusion was unclear were re-reviewed by both reviewers, and a unanimous decision was taken as to whether they should be included. The Newcastle-Ottawa Scale was used for guality assessment of the included articles.

Results: The literature search yielded 31 human studies which investigated the short- and long-term kidney outcomes of prematurity. These studies were conducted in 17 different countries. The most common outcomes measured were blood pressure, and glomerular

filtration rate. Other common outcomes measured included kidney size and mass, proteinuria, albuminuria, chronic kidney disease and physical parameters like height, weight and body mass index.

Conclusion: Prematurity is likely linked to increased risk of kidney dysfunction and high blood pressure in childhood and into early adulthood. Premature birth conferred a twofold increased risk of CKD and extremely premature birth conferred a threefold increased risk of CKD. However, further larger multi-centre studies are needed to draw definitive conclusions on the long-term kidney outcomes of prematurity.

Keywords: Premature, preterm, renal, kidney, impairment proteinuria, albuminuria, hypertension, high blood pressure, reduced estimated glomerular filtration rate, decreased kidney function

STRENGTHS AND LIMITATIONS

- This systematic review yielded 31 relevant human studies from a wide search of five reputable databases
- We used the Newcastle Ottawa Scale to assess the quality of included studies
- The long-term adverse outcomes of prematurity on kidney function can only be evaluated up to approximately 40 years of age as research into the aging population is still needed
- As current research into the long-term kidney outcomes of prematurity is lacking, the available research is not sufficient to draw definitive conclusions as to the long-term

1 2 3 4 5 6 7 8 9 10 11 12	kidney outcomes of premature children and further larger multicentre studies are still needed.
13 14 15 16 17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31 32 33 34 35 36 37 38	
30 39 40 41 42 43 44 45 46 47 48 49 50	
50 51 52 53 54 55 56 57 58 59 60	

¢

INTRODUCTION:

Prematurity is the leading cause of mortality in children under the age of five.^[1] However, with advances in technology and modern medicine, both the incidence of prematurity and the number of ex-premature babies living into adulthood are increasing, especially in population-dense countries.^[1] Approximately 15 million, or just over 1 in 10 babies, are born prematurely every year.^[2] The highest number of premature births are seen in India, China and Nigeria; while the highest rates of premature births are seen in Malawi, Comoros and Congo.^[3]

Though premature birth is becoming more commonplace, it is not without its own challenges. The Barker hypothesis proposes that diseases of adulthood are due to factors pertaining to fetal life.^[4-6] This proposition is also commonly known as the Developmental Origins of Health and Disease (DOHaD) hypothesis. This conclusion was first drawn when Barker et al. found that early death secondary to coronary artery disease was inversely related to weight at birth.^[7] Thus the DOHaD paradigm was created. It proposed that developmental factors, including nutrition, stressors, and environmental exposures such as drugs and infections, could lead to functional changes in tissues which may predispose to disease in later life.^[8]

The impact of prematurity on long-term kidney dysfunction or chronic kidney diseases (CKD) is still not fully understood. Impaired nephrogenesis due to poor fetal growth, prematurity, antenatal and post-natal medication and other factors most likely lead to reduced nephron endowment and CKD. ^[9-10] Nephrogenesis is completed by 37 weeks gestation, and the majority of nephrogenesis occurs in late gestation.^[11] Therefore, in premature neonates, nephrogenesis is terminated early conferring reduced nephron numbers. Nephrons do not

BMJ Open

regenerate. The number of functional nephrons over time decreases as part of normal aging.^[5] As premature children are born with reduced nephron numbers, an increased risk of kidney dysfunction is postulated. Brenner et al. also proposed that as a compensatory measure for low nephron numbers, nephron surface area increases. This maladaptive response causes systemic hypertension and increased sodium retention, which in turn causes disrupted autoregulation.^[12] The resulting nephron sclerosis leads to increased functional nephron decline creating a vicious cycle.^[12-13]

As the ex-premature population is living longer and becoming part of the aging population, understanding the effects of prematurity is imperative in anticipating the likely chronic health outcomes the premature population will face. This review is intended to investigate the literature to determine if a link is present between prematurity and adverse long-term kidney health. Identifying a link will be the first step in deciding how best to follow-up and manage ex-premature children and adults to prevent morbidity and premature mortality in the long term.

METHODS

This systematic review was completed in accordance with the PRISMA guidelines. ^[14] The systematic search was conducted using OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE. The search criteria were developed and refined from January 2020 to April 2021. Relevant keywords were identified, and all relevant Medical Subject Headings (MeSH) and non-MeSH synonyms were included. Relevant keywords included prematurity, chronic kidney failure, chronic kidney disease, kidney volume, proteinuria, albuminuria, hypertension, high blood pressure, reduced GFR, decreased kidney function and long-term adverse outcomes. The final search was conducted on April 1st, 2021. An example of the database search for OVID Medline can be seen in the supplementary files. Only articles published in English between January 1990 and April 2021 have been included. Animal studies were excluded. Finally, articles shortlisted for inclusion were screened for bias and re-evaluated for inclusion if there was significant bias.

Once the literature search was completed, article selection was performed independently and in a non-blinded manner by two reviewers. The articles were initially screened by title and then by the abstract. All remaining articles were reviewed and determined for inclusion based on examination of the full text. Articles which were unclear were re-reviewed by both reviewers, and a unanimous decision was taken as to whether they should be included.

Articles were included if they studied premature and/or low birth weight infants to determine if they developed adverse kidney outcomes as a result of being premature. Studies that investigated low birth weight infants were only included if their low-birth-weight cohort were also premature. Outcomes that were evaluated included glomerular filtration rate (GFR),

BMJ Open

 blood pressure (BP), tubular function, kidney length and volume, and urinary protein/albuminuria and electrolytes. It was decided that case series with less than 20 participants, and case studies would be excluded from this review as they would not provide the level of evidence or relevant information required. Included articles and their characteristics can be found in Supplementary Table 1. ^[15-45] Articles underwent quality assessment using the Newcastle-Ottawa scale. ^[46] This can be seen in Table 1.

Patient and Public Involvement

Patients were not involved in the development or design of this systematic review.

ว
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
54 55
56
57
58
59
60

1

	Cohort Studie	S	
Study	Selection*	Comparability**	Outcome***
Downing et al (1992)	***	*	***
Jones et al (1997)	***	**	***
Ojala et al (2001)	****	*	***
Rodriguez-Soriano et al (2005)	***	*	**
Porter et al (2006)	***	**	***
Kist-van Holthe et al (2007)	***	*	**
Keijzer-Veen et al (2007)	**		**
Finken et al (2008	***	*	***
Rakow et al (2008)	****	*	**
Bacchetta et al (2009)	****	**	**
Zaffanello et al (2010)	****	*	***
Chan et al (2010)	**	*	**
Giapros et al (2011)	****	**	***
Carballo-Magdaleno et al	***	*	***
(2011)			
Starzec et al (2016)	**		**
Bruel et al (2016)	****	*	**
Harer et al (2017)	***		**
Raaijmakers et al (2017)	***	*	**
Vollsaeter et al (2018)	***		**
South et al (2019)	**		**
Crump et al (2019)	****	**	***
Rakow et al (2019)	****	*	***
Horie et al (2019)	****	*	***
Crump et al (2019)	****	**	***
Kandasamy et al (2020)	***	*	***
Sanderson et al (2020)	**	*	**
Yael et al (2020)	***		**
Staub et al (2020)	**	**	**
	Case Series		
Abitolol et al (2003)	*	NA	**
	Case Control		
Study	Selection*	Comparability**	Exposure***
Masqood et al (2017)	***	*	***

Table 1: Quality assessment of included observation studies using the Newcastle-OttawaScale

* Maximum 4 stars

** Maximum 2 stars

*** Maximum 3 stars

to peer terier only

RESULTS

The collective search from the five databases revealed 1311 studies. A total of 1263 articles remained after duplicates were omitted. All 1263 articles were screened, and 1101 were excluded based on title and abstract. For the remaining 162 articles, full texts were assessed for eligibility. Sixty-four articles were excluded due to long term adverse kidney outcomes not being investigated. Nine articles were excluded as prematurity or low birth weight were not investigated. Eight were excluded for being animal studies, and 50 were excluded for being case reports or case series with less than 20 participants. Thus, the literature search yielded 31 human studies which investigated the long-term kidney outcomes of prematurity. ^[15-45] These studies were conducted in 17 different countries: Australia, Israel, Japan, Italy, Greece, Poland, France, Egypt, Sweden, Belgium, Mexico, the Netherlands, Scotland, Spain, the USA, Finland and Norway. ^[15-45] A flow diagram demonstrating the selection process can be seen in Figure 1. The lead author surname, year of publication, sample size, birth weight, gestation, outcome measures, age at which outcome measured and conclusions of the selected studies can be seen in Supplementary Table 1. A quality assessment of included studies was conducted using the Newcastle Ottawa Scale and can be seen in Table 1.

Of the included studies, the smallest cohort size was 20, and the largest cohort size was 4193069. ^[18, 40] The youngest gestational age from the premature cohorts was 22 weeks, and the most mature gestational age for the premature cohorts was 36 weeks. ^[37, 40] The youngest age at which outcomes were measured was at birth, and the oldest age at which outcomes were measured was at birth, and the oldest age at which outcomes were BP and kidney function (GFR and proteinuria/microalbuminuria). Other outcomes measured included

BMJ Open

kidney size and mass, urine analysis, chronic kidney disease and physical parameters (height, weight and BMI). Some studies also commented on insulin resistance and serum lipid profile.

Glomerular filtration rate

Twenty-seven out of the 31 studies investigated GFR as an outcome measure. [16-36, 38-39, 41, 43-^{45]} Ten of these 27 studies compared premature children and term children. ^{[19, 21-22, 24, 27, 35-36,} ^{38, 41, 44]} Four found no significant difference in GFR while 6 did. Of the 4 studies that found no significant difference, Rakow et al. measured their outcomes at 9 years, Kandasmay et al. measured their outcomes at 0.5, 1 and 2 years, Staub et al. measured GFR at 12 years and Chan et al. measured outcomes at approximately 13.5 years. ^[24, 27, 41, 44] Of the 7 studies that found a significantly decreased GFR in premature children, outcomes were measured at approximately 7.5 years, 8 years, 8.5 years, 11.5, 14 and 20 years respectively for Kist-Van Holthe et al., Rakow et al., Rodriguz-Soriano et al., Vollsaeter et al., South et al. and Keijer Veen et al. [19, 21-22, 35-36, 38] It should be noted that Keijer Veen et al. found that GFR was significantly lower in the premature small for gestational age group compared to term controls at 20 years.^[22] This was not the case for the premature appropriate for gestational age group.^[22] When the small for gestational age group had their GFR adjusted for body surface area, there was no significant difference between groups. ^[22] One additional study conducted by Harer et al. investigated cystatin C and found significantly higher levels of cystatin C in premature children at 5 years compared to term children.^[33]

Twelve studies investigated GFR in study and control groups with differing characteristics including no term birth comparison. ^[16-18, 20, 23, 25-26, 28, 30-32, 34] Seven of these studies found no statistically significant difference in GFR between study and control groups. ^[17, 20, 26, 28, 31-32, 34]

Ojala et al. compared premature infants with and without indomethacin exposure in the neonatal period and measured outcomes at 2-4 years.^[17] Raaijmakers et al. compared premature infants with and without ibuprofen exposure in the neonatal period and assessed outcomes at 11 years.^[34] Porter et al. compared two groups of very low birth weight children with and without nephrocalcinosis at 5-7 years of age. ^[20] Zaffanello compared very low birth weight and extremely low birth weight children at 5-6 years.^[26] Giapros compared premature infants with and without nephrocalcinosis for the first 2 years of life.^[28] Masqood et al. compared three groups of extremely low birth weight children with no AKI, Stage 1 AKI and stage 2 AKI, and found no significant difference in the prevalence of diminished GFR values. ^[32] Finally, Bruel et al. found nil significant difference between premature children with and without neonatal AKI when assessed at 7 years of age. ^[31] Bruel et al. did however note that GFR was significantly lower in children with a birth weight less than 1000 grams. ^[31]

On the other hand, 5 of these studies did find significantly differences in GFR between study and control groups. ^[16, 18, 23, 25, 30] Finken et al. noted significantly decreased GFR in premature infants who received betamethasone in the neonatal period when compared to premature infants who did not.^[23] This outcome was measured at 19 years of age.^[23] Abitbol et al. found ex-premature children had normal GFRs when aged 5.7 years but children assessed at 9.9 years were found to have diminished GFR.^[18] Starzec et al. concluded that GFR was significantly lower in the extremely low birth weight group compared to term controls when assessed at 11 years.^[30] Bacchetta et al. found significantly decreased GFR in premature extrauterine growth retardation and intrauterine growth retardation when compared to premature normotrophic children at 7-8 years of age.^[25] Jones et al found that four out of

BMJ Open

their 11 premature babies with nephrocalcinosis had an abnormal GFR at 4-5 years of age. Jones et al did not however have a term control group to compare these results too.^[16]

Only one study (Carballo-Magdaleno et al.) found an increased GFR in premature infants when compared to term infants. Outcomes were measured at two years of age.^[29]

Three studies looked at the prevalence of low GFR in their premature cohorts. ^[39, 43, 45] Horie et al. found that of their 168 premature children, 10.7% had persistently low GFR at >2 years of age. ^[39] Yael et al. found that 100% of their 103 study participants with a history of very low birth weight and premature birth had normal GFR values at 10-13 years of age. ^[43] Ashkenazi et al found that of their 923 extremely premature study participants 16% had a GFR <90mL/min/1.73m2 at 22-26 months of age. ^[45]

Chronic kidney disease

Crump et al. was the only study that exclusively investigated for CKD. ^[37] From their large cohort size of 4 186 615, they concluded that premature birth conferred a twofold increased risk of CKD and extremely premature birth conferred a threefold increased risk of CKD.^[37] This risk was found to be highest between ages 0-9 years and slightly weakened but still increased from ages 10-19 years.^[37]

Blood Pressure

Twenty-three out of the 31 studies investigated BP as one of their outcome measures.^[17-19, 21-27, 29, 31-33, 35-36, 38, 40-45] Fifteen found no significant difference in BP between study and control groups.^[17-19, 21, 23-27, 31-33, 35, 38, 41] Seven of these studies found no significant difference in BP

between term babies and premature babies at differing ages ranging from 1.5-27.6 years.^[19, 24-25, 27, 35, 38, 41] Six studies compared premature babies with and without different variables including exposure to betamethasone, exposure to indomethacin, presence or absence of nephrocalcinosis, having neonatal acute kidney injury, and having extrauterine growth restriction, intrauterine growth restriction or being appropriate for gestational age.^[17, 21, 23, 25, 31, 33] All six concluded no significant difference in BP between these groups of premature babies at differing ages ranging from 2-19 years.^[17, 21, 23, 25, 31, 33] Zaffanello et al. found no significant difference in BP between very low birth weight and extremely low birth weight infants at 5-6 years of age. ^[26] Masqood et al. also compared groups of extremely low birth weight children with no or varying severities of neonatal acute kidney injury and found no significant difference in BP at approximately 6-8 years.^[32] It should be noted that both Zaffanello and Maqsood did not compared these blood pressures with term infants. ^[26, 32]

Carballo-Magdaleno et al., Keijzer-Veen et al., Yael et al., South et al., Staub et al. and Crump et al. found increased BP in premature children compared to controls. ^[22, 29, 36, 40, 43-44] Carballo-Magdaleno et al. found that 2-year-old infants born prematurely had significantly higher blood pressures than 2-year-old infants born at term.^[29] Keijzer-Veen et al. found significantly increased systolic BP in premature children compared to term children when BP was assessed at 20 years.^[22] Yael et al. reported a 15.8% prevalence rate of systolic hypertension in their study group of premature children with very low birth weight when assessed at 10-13 years. ^[43] This is compared to the general United States paediatric population which has a 1.6% prevalence rate of systolic hypertension. ^[43] South et al. found significantly higher BP in premature children compared to term children at 14 years of age. ^[36] Staub et al. found that systolic BP was significantly higher in premature boys compared to term boys, however they

BMJ Open

did not find a significant difference in premature and term girls. ^[44] They also noted that low birth weight was associated with higher BP in boys. ^[44] Crump et al. found that prematurity was associated with an increased risk of hypertension in early adulthood.^[40] They found that at 18-29 years of age adjusted hazards ratios were 1.28 and 2.45 respectively for premature and extremely premature birth compared to term birth.^[40] Furthermore at 30-43 years of age hazards ratios were calculated as 1.25 and 1.68 for premature and extremely premature birth respectively when compared to full term birth. ^[40]

Sanderson et al found that of their 42 premature participants, 33.3% had elevated blood pressures at 15 years of age. ^[42] Ashkenazi et al. found that of their 923 extremely low gestational age participants at 22-26 months of age, 23% have a systolic blood pressure >95th percentile for their age and 40% had a diastolic blood pressure >95th percentile. ^[45]

Proteinuria/Albuminuria

Nineteen studies commented on proteinuria or albuminuria. ^[15-22, 24-26, 31, 33, 36, 38, 41-43, 45] Of these, 11 studies found no significant difference between study and control groups. ^[17, 20, 21, 24, 26, 29, 31, 33, 36, 38, 41] Six out of these 11 studies compared term and premature infants at ages ranging from approximately 0.5-14 years. ^[19, 24, 33, 36, 38, 41] The other 5 studies compared groups of premature children with varying characteristics including neonatal AKI, low or extremely low birth weight, the presence of nephrocalcinosis and indomethacin exposure. For these studies outcomes were measured at 2-7.5 years. ^[17, 20, 21, 26, 31]

Seven studies commented on prevalence of proteinuria or albuminuria. ^[15-16, 22, 25, 42-43, 45] Askenazi et al. found that at 22-26 months 35.8% of their 923 participants had a urine

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

albumin/creatinine ratio greater than 30mg/g. ^[45] Bacchetta et al. found that 2 out of their 50 participants had moderate microalbuminuria approximately 7 years of age. ^[25] Jones et al. found that 2 out of their cohort of 28 premature had microalbuminuria at 4-5 years of age. ^{16]} Sanderson et al. found 11.9% of their 42 premature children had microalbuminuria at 15 years of age.^[42] Keijer Veen et al. reported microalbuminuria in 2 patients of their premature small for gestational age group. ^[22] However, none of their participants in the premature appropriate for gestational age group or term group was found to have microalbuminuria. ^[22] Yael et al. found that the prevalence of microalbuminuria was 14.3% while the prevalence of proteinuria was 7.9% in their low-birth-weight premature cohort of 103 at 11.6 years. ^[43] Finally, Downing et al. found that 4 out of the 10 participants in their premature cohort with renal calcifications who received frusemide therapy, had trace proteinuria. ^[15] The other 17 participants from their other 2 study groups did not have any proteinuria. ^[15]

Abitbol et al. only had data for urine protein/creatinine ratios available for 10 out of 20 of their premature extremely low birth weight participants.^[18] Out of these 10, those with low GFR (n=3) had significantly higher urine protein/creatinine ratios compared to the participants with normal GFR (n=7) at follow up. ^[18] Follow up ranged from 3.1-18.3 years. ^[18]

Bias

In all studies included in this review, bias was minimal. Some bias may be present in single centre studies as these may only provide results from a particular population demographic. ^[15-19, 22, 24-28, 30-34, 36, 38-39, 41, 43, 44] However, as this review correlates the results of numerous single centre studies, this bias is minimised. Randomisation of study subjects was only done in one of the 31 included studies with was a randomised control trial where all study

BMJ Open

 participants were premature.^[45] All other studies were observational, and randomisation was not possible as birth weight and gestational age are not variables that can be ethically influenced. [15-44] Furthermore, 17 studies did not have term born controls. [15-18, 20-21, 23, 25-26, ^{28, 31-32, 34, 39, 42-43, 45}] Abitbol et al. did however match their study participants to age-, gender-.ion norms .g; however, they and height- matched population norms when reviewing outcomes.^[18] Yael et al. also did not have a term control group; however, they did compare their results to known population

prevalence's.^[43]

DISCUSSION

Thirty-one studies that assessed long term kidney outcomes of premature infants were identified in this review. ^[15-45] There was a relatively even split between the studies that investigated GFR as to whether there was or was not a significant difference between study and control groups. ^[16-36, 38-39, 41, 43-45] It should be noted that the studies which favoured no significant difference between premature and term participants investigated GFR in children from 0.5-13.5 years, while the studies that favoured a significant difference between the two populations measured outcomes at 7.5-20 years. ^[19, 21-22, 24, 27, 35-36, 38, 41, 44] Thus, it is possible that in the short term, GFR is not significantly affected by prematurity. However, as the expremature population ages, their kidney function may become considerably diminished compared to the term population. This could possibly be due to the fact that premature infants start out with reduced nephron numbers.

From the 23 studies that investigated BP, 12 compared term and premature children. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] Seven found no significant difference between premature children and term children while five did find a significant difference. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] The studies which found no significant difference measured outcomes from approximately 0.5-27.6 years of age while those that did find a significant difference, measured outcomes at 2-43 years of age. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] Crump et al. was the largest included study and also had one of the highest rating on the quality assessment. ^[40] It demonstrates that from 30-43 years of age premature and extremely premature children are at a 25% and 68% greater risk of developing hypertension compared to controls. ^[40] As with GFR, this may be because in early childhood the effects of prematurity on blood pressure are not as obvious as the kidneys are able to compensate, or the reduced nephron number is may not yet be significant.

BMJ Open

However, it is possible that as the ex-premature population ages, their initially reduced nephron number may no longer be able to compensate for BP.

From the 19 studies that investigated for microalbuminuria or proteinuria, most commented on prevalence as opposed to comparing groups. ^[15-22, 24-26, 31, 33, 36, 38, 41-43, 45] Only 6 studies, that commented on proteinuria or albuminuria, compared term children and premature children but all 6 of these studies found no significant difference between groups when assessed at 0.5-14 years of age. ^[19, 24, 33, 36, 38, 41] Albuminuria or proteinuria are signs of kidney damage and progression of kidney disease. As with GFR and BP, it is possible that in childhood the kidneys are able to compensate for the shortened nephrogenesis. However, in the aging population ex-premature adults may be more likely to demonstrate markers of kidney disease or poor kidney function like microalbuminuria or proteinuria sooner than their ex-term counterparts due to further reduction in an already deplete nephron reserve. Further larger studies with longer follow-up are required to assess for microalbuminuria and proteinuria.

The risk of CKD is twofold and threefold greater in premature and extremely premature children respectively compared to those born at term as per Crump et al. ^[37] The risk of CKD over the age of 43 years cannot be commented on as it was not investigated in any of the included articles. The conclusion drawn by Crump et al. is reliable, given their methodology and massive cohort size despite other included articles not specifically commenting on CKD but GFR instead. The conclusion could be explained due to the decreased nephron endowment associated with prematurity. It should be noted that kidney function must be significantly impaired (GFR <15) before evidence of kidney failure will be present clinically.

There are some limitations to our systematic review. The majority of the included studies were conducted in Caucasian predominant countries. Therefore, they do not reflect the true impact of prematurity of long-term kidney dysfunction as they do not encompass population rich countries including India, China and Nigeria where the highest number of premature births occur each year. This means the conclusions from this review do not apply to all ethnicities and cannot be generalised for non-Caucasian ethnic groups. Additionally, all the studies included in this review analysed kidney function through quantifiable measures such as blood tests. Clinically significant kidney outcomes, symptomatology, quality of life and kidney dysfunction associated mortality were not commented on or investigated in these studies. Finally, the majority of studies did not investigate outcomes over the age of 20 years. Two study had participants up to the age of 43; however, the proportion of their study cohort over the age of 20 was minimal. Thus, this systematic review could only investigate long-term kidney outcomes of prematurity up until adolescence and early adulthood. Finally, only studies conducted after 1990 and written in English were considered for inclusion.

CONCLUSION

Prematurity is likely linked to increased risk of kidney dysfunction and high blood pressure in childhood and into early adulthood. The risk of CKD is twofold and threefold higher in premature and extremely premature children compared to those born at term. Further studies need to be conducted to investigate the effects of prematurity on long term kidney health in the aging population; reliable information at this time is only available up until the age of 43 years. Thus, kidney outcomes in the ex-premature population over the age of 43 years cannot be concluded from the current research. However, enough evidence is present

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

to warrant ongoing monitoring of kidney function and blood pressure in premature infants as they age in order to optimise and prevent earlier morbidity and mortality.

<u>CONTRIBUTIONS</u>: YK conceived the idea. AS performed the literature search. AS and YK evaluated the search results and AS extracted the data. AS and YK wrote the manuscript and edited subsequent and final drafts.

COMPETING INTERESTS: None declared

ACKNOWLEDGEMENTS: The authors would like to thank Ms Chloe Sobieralski for her assistance in proof-reading.

PROVENANCE AND PEER REVIEW: Not commissioned; externally peer reviewed

FUNDING: This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors

DATA SHARING STATEMENT: No original data were generated for this study.

ETHICS APPROVAL STATEMENT: Ethics approval was not required for our systematic review as there was no human participation.

REFERENCES

- 1. World Health Organization. March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children. Born to son: The global action report on preterm birth.
- Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Garcia CV, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The lancet. 2012 Jun 9;379(9832):2162-72.
- Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016 Dec 17;388(10063):3027-35.
- 4. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal. 1989 Mar 4;298(6673):564-7.
- 5. Starr MC, Hingorani SR. Prematurity and future kidney health: the growing risk of chronic kidney disease. Current opinion in paediatrics. 2018 Apr;30(2):228.
- Dover GJ. The Barker hypothesis: how paediatricians will diagnose and prevent common adult-onset diseases. Transactions of the American Clinical and Climatological Association. 2009;120:199.
- 7. Barker DJ, Osmond C, Winter PD, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. The Lancet. 1989 Sep 9;334(8663):577-80.
- Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease etiology and prevention. Current opinion in pediatrics. 2015 Apr;27(2):248.

BMJ Open

2		
3		
4		
-		
5		
6		
7		
,		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
54		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
~ ~ ~		

- 9. Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney International. 2005 Aug 1;68:S68-77.
 - 10. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure: less of one, more the other?. American journal of hypertension. 1988 Oct 1;1(4_Pt_1):335-47.
 - 11. Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, Bertram JF, McMahon AP, Little MH, Moore L, Black MJ. Development of the human fetal kidney from mid to late gestation in male and female infants. EBioMedicine. 2018 Jan 1;27:275-83.
 - 12. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. The Lancet. 2013 Jul 20;382(9888):273-83.
- 13. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury.
- 14. Moher D, Liberati A, Tetzlaff J, Altman DG. RESEARCH METHODS & REPORTING-Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement-David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses. BMJ (CR)-print. 2009;339(7716):332.
- 15. Downing GJ, Egelhoff JC, Daily DK, Thomas MK, Alon U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. The Journal of pediatrics. 1992 Apr 1;120(4):599-604.
- 16. Jones CA, King S, Shaw NJ, Judd BA. Renal calcification in preterm infants: follow up at 4-5 years. Archives of Disease in Childhood-Fetal and Neonatal Edition. 1997 May 1;76(3):F185-9.

17. Ojala R, Ala-Houhala M, Ahonen S, Harmoinen A, Turjanmaa V, Ikonen S, Tammela O. Renal follow up of premature infants with and without perinatal indomethacin exposure. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2001 Jan 1;84(1):F28-33.

BMJ Open

- Abitbol CL, Bauer CR, Montané B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatric Nephrology. 2003 Sep 1;18(9):887-93.
- 19. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A. Long-term renal follow-up of extremely low birth weight infants. Pediatric Nephrology. 2005 May 1;20(5):579-84.
- 20. Porter E, McKie A, Beattie TJ, McColl JH, Aladangady N, Watt A, White MP. Neonatal nephrocalcinosis: long term follow up. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2006 Sep 1;91(5):F333-6.
- 21. Kist-van Holthe JE, van Zwieten PH, Schell-Feith EA, Zonderland HM, Holscher HC, Wolterbeek R, Veen S, Frolich M, van der Heijden BJ. Is nephrocalcinosis in preterm neonates harmful for long-term blood pressure and renal function?. Pediatrics. 2007 Mar 1;119(3):468-75.
- 22. Keijzer-Veen MG, Kleinveld HA, Lequin MH, Dekker FW, Nauta J, de Rijke YB, van der Heijden BJ. Renal function and size at young adult age after intrauterine growth restriction and very premature birth. American Journal of Kidney Diseases. 2007 Oct 1;50(4):542-51.
- 23. Finken, M.J., Keijzer-Veen, M.G., Dekker, F.W., Frölich, M., Walther, F.J., Romijn, J.A., van der Heijden, B.J. and Wit, J.M., 2008. Antenatal glucocorticoid treatment is not associated with long-term metabolic risks in individuals born before 32 weeks of gestation. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93(6), pp.F442-F447.

BMJ Open

2	
3	24. Rakow A, Johansson S, Legnevall L, Sevastik R, Celsi G, Norman M, Vanpée M. Renal
4	, , , , , , , ,
5 6	volume and function in school-age children born preterm or small for gestational age.
7	
8	Pediatric Nephrology. 2008 Aug 1;23(8):1309.
9	
10	25 Pacchetta I Harambat I Dubourg I Guy P Liutkus A Cantorino I Kassaï P Dutot G
11	25. Bacchetta J, Harambat J, Dubourg L, Guy B, Liutkus A, Canterino I, Kassaï B, Putet G,
12 13	
14	Cochat P. Both extrauterine and intrauterine growth restriction impair renal function in
15	
16	children born very preterm. Kidney international. 2009 Aug 2;76(4):445-52.
17	
18	26. Zaffanello M, Brugnara M, Bruno C, Franchi B, Talamini G, Guidi G, Cataldi L, Biban P,
19	
20 21	Mella R, Fanos V. Renal function and volume of infants born with a very low birth-weight:
22	
23	a preliminary cross-sectional study. Acta Paediatrica. 2010 Aug;99(8):1192-8.
24	
25	27. Chan PY, Morris JM, Leslie GI, Kelly PJ, Gallery ED. The long-term effects of prematurity
26 27	
28	and intrauterine growth restriction on cardiovascular, renal, and metabolic function.
29	
30	International journal of pediatrics. 2009;2010.
31	
32	28. Giapros V, Tsoni C, Challa A, Cholevas V, Argyropoulou M, Papadopoulou F, Siomou E,
33 34	
35	Drougia A, Andronikou S. Renal function and kidney length in preterm infants with
36	brought ry ritheronikou of Renal runedon and Runey length in preterm infants with
37	nephrocalcinosis: a longitudinal study. Pediatric Nephrology. 2011 Oct 1;26(10):1873-80.
38	
39 40	29. Carballo-Magdaleno D, Guízar-Mendoza JM, Amador-Licona N, Domínguez-Domínguez
40	29. Carbano-Magdaleno D, Guizar-Mendoza JW, Amador-Licona N, Dominguez-Dominguez
42	V Renal function renal volume, and blood processing in infants with antecedent of
43	V. Renal function, renal volume, and blood pressure in infants with antecedent of
44	entenetal starsida, Dadiatria Narshralagu, 2011 Oct 1,26(10),1951 C
45	antenatal steroids. Pediatric Nephrology. 2011 Oct 1;26(10):1851-6.
46 47	
48	30. Starzec K, Klimek M, Grudzień A, Jagła M, Kwinta P. Longitudinal assessment of renal size
49	
50	and function in extremely low birth weight children at 7 and 11 years of age. Pediatric
51	
52 53	Nephrology. 2016 Nov 1;31(11):2119-26.
55	
55	31. Bruel A, Rozé JC, Quere MP, Flamant C, Boivin M, Roussey-Kesler G, Allain-Launay E. Renal
56	
57	outcome in children born preterm with neonatal acute renal failure: IRENEO—a
58	
59 60	prospective controlled study. Pediatric Nephrology. 2016 Dec;31(12):2365-73.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 32. Maqsood S, Fung N, Chowdhary V, Raina R, Mhanna MJ. Outcome of extremely low birth weight infants with a history of neonatal acute kidney injury. Pediatric Nephrology. 2017 Jun 1;32(6):1035-43.
- 33. Harer MW, Pope CF, Conaway MR, Charlton JR. Follow-up of Acute kidney injury in Neonates during Childhood Years (FANCY): a prospective cohort study. Pediatric Nephrology. 2017 Jun 1;32(6):1067-76.
- 34. Raaijmakers A, Zhang ZY, Levtchenko E, Simons SH, Cauwenberghs N, Van den Heuvel LP, Jacobs L, Staessen JA, Allegaert K. Ibuprofen exposure in early neonatal life does not affect renal function in young adolescence. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2018 Mar 1;103(2):F107-11.
- 35. Vollsæter M, Halvorsen T, Markestad T, Øymar K, Ueland PM, Meyer K, Midttun Ø, Bjørke-Monsen AL. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS One. 2018 Oct 12;13(10):e0205558.
- 36. South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Jensen ET, Shaltout HA, O'Shea TM, Washburn LK. Renal function and blood pressure are altered in adolescents born preterm. Pediatric Nephrology. 2019 Jan;34(1):137-44.
- 37. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. bmj. 2019 May 1;365.
- 38. Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatric Nephrology. 2019 Oct 1;34(10):1765-76.

3
4
5
6
5 6 7 8
, 8
9
10
11
12
12
13 14
14
15
16 17 18
1/
18
19
20
21
22
23
24
25
26
26 27
28
29
30
31
32
33
34
35
36
36 37
38
39
40 41
42 42
43
44 45
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

39	. Horie A, Abe Y, Koike D, Hirade T, Nariai A, Ito T, Katou F. Long-term renal follow up of
	preterm neonates born before 35 weeks of gestation. Pediatrics International. 2019
	Dec;61(12):1244-9.

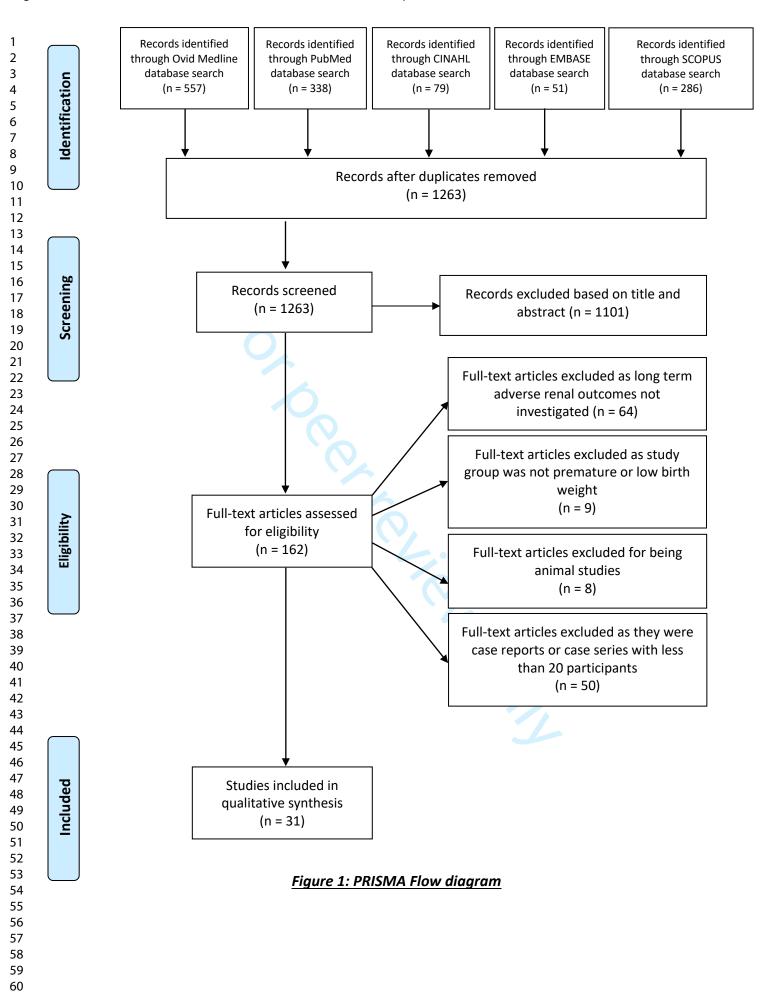

- 40. Crump C, Sundquist J, Sundquist K. Risk of hypertension into adulthood in persons born prematurely: a national cohort study. European heart journal. 2020 Apr 21;41(16):1542-50.
- 41. Kandasamy Y, Rudd D, Lumbers ER, Smith R. An evaluation of preterm kidney size and function over the first two years of life. Pediatric Nephrology. 2020 Apr 15:1-6.
- 42. Sanderson KR, Chang E, Bjornstad E, Hogan SL, Hu Y, Askenazi D, Fry RC, O'shea TM. Albuminuria, Hypertension, and Reduced Kidney Volumes in Adolescents Born Extremely Premature. Frontiers in Pediatrics. 2020;8.
- 43. Yael B, Roi T, Nir S, Esti D, Miriam D. Early Detection of Renal Dysfunction in Adolescents Aged 10-13 Years Born with very Low Birth Weight. Archives of Clinical and Biomedical Research. 2020;4(3):184-94.
- 44. Staub E, Urfer-Maurer N, Lemola S, Risch L, Evers KS, Welzel T, Pfister M. Comparison of Blood Pressure and Kidney Markers between Adolescent Former Preterm Infants and Term Controls. Children. 2020 Sep;7(9):141.
- 45. Askenazi DJ, Heagerty PJ, Schmicker RH, Brophy P, Juul SE, Goldstein SL, Hingorani S. The Impact of Erythropoietin on Short and Long-term Kidney-Related Outcomes in Extremely Low Gestational Age Neonates. Results of a Multi-center Double-Blind Placebo-Controlled Randomized Clinical Trial. The Journal of Pediatrics. 2021 Jan 20.
- 46. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013 http://www.ohri.ca/programs/clinical epidemiology/ oxford.asp.

Figure 1: PRISMA Flow diagram

tor peer terier ont

Page 31 of 44

BMJ Open

Supplementary	Table 1 –	Characteristics	of included	l studies (n = 31))
Supprementary	I doit I	chui acter istics	oj memuca	<i>simmes</i> (<i>n</i> 31)	

					BMJ Open		studies (n = 31)	Page 32
			Supplement	tary Table 1	– Characteristics of includ	ded s		
Source (Y)	Sample Size	Birth weight (g) (study group)	Gestation (wks.) (study group)	Age at which outcomes measured (years)	Outcome measure (for example eGFR or BP or KV)		00 Conclusion (briefly) 6 August 202	
1 Downing et al (1992) ^[15]	Control N=7 (Premature no frusemide therapy and no renal calcifications) Group 2 N=10 (Premature frusemide therapy but no renal calcifications) Group 3 N=10 (Premature frusemide therapy and renal calcifications)	Control (743(84)) Group 2 (806(103)) Group 3 (678(95))	Control (25.3(0.6) Group 2 (26.1(0.5)) Group 3 (26.2(0.4))	Control (1.2(0.01)) Group 2 (1.3 (0.1)) Group 3 (1.2 (0.1))	Creatinine clearance Urinary calcium:creatinine ratio Fractional excretion of sodium Lower tubular reabsorption of phosphate Urine-blood difference in carbon dioxide tension after oral acetazolamide load Proteinuria	•	No significant difference in renal function between the control group 2 In group 3, trace proveinuria was present in 4/10 participants Creatinine clearance m group 3 was significantly lower than in group and group 2 Urinary calcium:creation of phosphate was significantly higher in compared to the group 2 and control group Group 3 had lower unne-blood differences in carbon dioxide to oral acetazolamide load when compared to the controls and group in the control group in the controls and group in the control group in the controls and group in the control group in the control group in the controls and group in the control group in the control group in the control group in the controls and group in the control group i	the control m and lower Group 3 ension after
2 Jones et al (1997) ^[16]	Control Group (premature without renal calcifications) N=17 Study Group (premature with renal calcifications) N=11	Control (982 (710– 1760)) Study (850 (580– 1856))	Control (28 (25–31)) Study (27 (24–31))	4-5	eGFR Renal calcifications/ nephrocalcinosis	• • • •	In the study group the median GFR was 61 ml/min/1.73m2 (rat ml/min/1.73m2) Five of the 11 childred born premature and found to have rena calcifications, still have renal calcifications at age 4-5 years. Nephrocalcinosis in Polation was not found to be a major pred factor to long term renal dysfunction Four out of the 11 premature babies with nephrocalcinosis have abnormal GFR at 4-5 pears of age Two children from the collective premature cohort had microa 4-5 years of age	ll lisposing d an

Page 33 of 44

44						BMJ Open	omjop
							/bmjopen-2020-
3	Ojala et al (2001) ^[17]	Control Group N=35 (premature without perinatal indomethacin) Study Group N=31 (premature with perinatal indomethacin exposure)	Control Group (1360 (680– 2680)) Study Group (1150 (670– 2060))	Control Group (31 (24-32)) Study Group (28 (24-32))	2-4	Serum cystatin C and protein Plasma creatinine, sodium and potassium Urine PCR Urine alpha-1 microglobulin eGFR BP Renal sonography examination	 The control group showed higher mean serum cystatin concentrations to the study group No difference was found between the groups for mean serum protein, plasma creatinine and sodium, median plasma potassium concentration urine protein:creating e ratio and urine calcium:creatinine ratio. No statistical difference was found in GFR or renal structural abnormalit between the two groups Nil significant difference in urine PCR between groups Umbilical artery catherer use, frusemide treatment and assisted ventilat may correlate with long term renal structural and functional abnormalit
4	Abitbol et al (2003) ^[18]	N=20	686 (133)	25 (2)	3.1-18.3	Proteinuria Kidney function/kidney failure (eGFR, sCr) Renal size and mass BP Growth (height, weight and BMI) Nephrocalcinosis	 Significant age difference was found between the normal GFR and low G groups, the age of our come measure was 5.7+/-2.2 and 9.9+/-5.6 years respectively. BP was not significantly different between study participants and population norms Urine PCR was available for 10 out of 20 of the participants. Participants v low GFR (n=3) had significantly higher urine protein/creatinine ra compared to the participants with normal GFR (n=7) at follow up.
5	Rodriguez- Soriano et al (2005) ^[19]	Control Group N=43 Study Group N=40 (premature and weighing <1000g at birth)	845 (540- 1000)	27.6 (23- 35)	Control Group (8.5 (1.8)) Study Group (8.6(1.8))	BP Renal length and volume Plasma creatinine Estimated creatinine clearance TmP/GFR TRP Urinary phosphate excretion Urinary calcium excretion eGFR	 No significant difference in BP, microalbuminuria, and renal length and volume was found between the study and control groups Plasma creatinine, utimary calcium excretion and urinary phosphate excretion were significantly higher in the study group than the control group The study group had significantly lower estimated creatinine clearance a TmP/GFR compared by controls No significant differences were observed in microalbuminuria values, bu five study subjects (12.5%) presented values above the upper limit of normal.
6	Porter et al (2006) ^[20]	Control Group N=14 (without nephrocalcinosis – matched for birth weight, gestational age and sex)	Control Group (1210 (670- 1870)	Control Group (28.5 (25-31)) Study Group (27.5 (25- 31)	Control Group (7.21 (6.38-7.68)) Study Group (6.69 (5.81- 7.09))	Early morning urine osmolality Urine ACR and PCR Creatinine:phosphate ratio Creatinine:calcium ratio Beta microglobulin	 No significant differences in GFR or urinary concentrating capacity betw the groups 75% of patients who inderwent renal ultrasound were found to have resolved nephrocalce of significant age of 6.75 years There was evidence of hypercalciuria in both the control and study grou suggesting premature y may be a risk factor

ol Control Control Group (29.8 Group (7.5 (1.6)) Study Group (28.9 (2.3)) (7.4 (1.0))	UEC eGFR TmP/GFR Renal length Nephrocalcinosis BP eGFR Tubular function Nephrocalcinosis Kidney length	 No evidence suggested that nephrocalcinosis is associated with long term renal dysfunction Nil significant difference in urine ACR and PCR in controls and patients There was no difference in the BP between the two groups Blood pressure in both groups was found to be higher than expected for otherwise healthy children The study group was found to have significantly more chronic renal insufficiency when compared to healthy children. This was not the case for the control group. Tubular function, urine albumin, kidney length and GFR was not significantly difference between the study and control groups Tubular phosphate reabsorption, plasma bicarbonate, and early-morning
Group (29.8 Group (7.5 (1.6)) (1.0)) Study Group Study Group (28.9 (2.3)) (7.4 (1.0))	eGFR Tubular function Nephrocalcinosis	 Blood pressure in both groups was found to be higher than expected for otherwise healthy choice of the study group was found to have significantly more chronic renal insufficiency when compared to healthy children. This was not the case for the control group. Tubular function, urise albumin, kidney length and GFR was not significantly different between the study and control groups
		urine osmolality werg significantly lower in both control and study groups when compared to otherwise healthy children
Ol Control 20 (40.2 (1.3)) Group 1 1 (30.6 (1.0)) Group 2 (29.5 (1.4)) 2 2	eGFR Serum urea sCr Serum electrolytes ERPF BP Albuminuria Kidney length and volume	 Height, weight, kidney length and volume, GFR, and ERPF were significantly lower in the SGA group than in controls. After adjustment for body surface area, GFR did not differ significantly among groups. There was increased BP in premature compared to controls Two participants from group 1 had microalbuminuria
ol Control 19 (29.7 (1.5)) Study Group (29.8 (1.5))	Body composition Insulin resistance Serum lipid profile BP eGFR	 eGFR was found to be lower in 19-year-old born premature who received antenatal betamethasone This difference was conically irrelevant at age 19, however the decreased eGFR may increase the risk of chronic kidney disease long term
	Group 1 (30.6 (1.0)) Group 2 (29.5 (1.4)) 2 I Control (29.7 (1.5)) Study Group	Group 1 (30.6 (1.0)) Group 2 (29.5 (1.4))SCr Serum electrolytes ERPF BP Albuminuria Kidney length and volumeIControl (29.7 (1.5)) Study Group (29.8 (1.5))19Body composition Insulin resistance Serum lipid profile BP

Page 35 of 44

5 of 44						BMJ Open			
		(premature and received betamethasone)							
10	Rakow et al (2008) ^[24]	Control (term AGA) N=37 Group 1 (premature) N=39 Group 2 (term SGA) N=29	Control (3485 (502)) Group 1 (954 (203)) Group 2 (2436 (331))	Control (39.6 (1.0)) Group 1 (26.6 (2.0)) Group 2 (39.3 (1.4))	Control (9.8 (0.2)) Group 1 (9.6 (0.3)) Group 2 (9.8 (0.3))	eGFR Kidney volume sCr Serum Cystatin C BP Urinary ACR, Immunoglobulin G, alpha-1 microglobulin, N- acetylglucosamine	w • Ki th ge • No vc	vere similar betweed idney volume was se ne difference was no ender and age o significant differe olume or blood pres	Aaller in the premature group than in the controls, but a significant when adjusted for body surface area, ces were found in renal function, urine ACR, renal ure between the three groups at school age.
11	Bacchetta et al (2009) ^[25]	Control (Premature normotrophic children) N=11 Group 1 (Premature EUGR) N=16 Group 2 (Premature IUGR) N=23	Control (1039 (278)) Group 1 (845(146)) Group 2 (773 (155))	Control (27.1 (1.8)) Group 1 (26.2(1.8)) Group 2 (28.2 (1.8))	Control (6.8 (0.9)) Group 1 (7.9 (1.3)) Group 2 (7.8 (1.3))	BP eGFR Microalbuminuria Urine calcium-creatinine ratio Kidney size	 Ni gr El pr 	il significant differe roups UGR was concluded remature children	nd 2 had decreased GFR compared to controls ce in blood pressure was found between the three as a risk factor for long term renal impairment in be entire cohort had moderate microalbuminuria
12	Zaffanello et al (2010) ^[26]	Group 1 (VLBW) N=43 Group 2 (ELBW) N=26	Group 1 (1315 (1248– 1352)) Group 2 (850 (775– 883))	Group 1 (30.1 (29.9– 31.3)) Group 2 (27.0 (26.3– 27.7))	Group 1 (5.4 (5.2–6.1)) Group 2 (5.3 (5.2–6.3))	Plasma creatinine concentration Plasma Cystatin C eGFR Plasma renin Urinary alpha 1-microglobulin Albuminuria Total kidney volume BP	al • Sy	lbuminuria) did not	
	1		1	1	1	1	1		

 3/bmjopen-20

Page 3	36 of 44
--------	----------

.3	Chan et al	Control (Term AGA)	Control	Control (40	Control	BP	•	Nil difference in GFR $\mathbf{\hat{p}}$ rior to giving participants a protein load.
	(2010) [27]	N=25	(3302	(38.5-41.0))	(13.6	Augmentation index	•	SGA had higher SBP and lower GFR following protein load than AGA. There
	、 ,		(3105-	Group 1	(12.54-	eGFR following protein load		was no effect of prematurity on SBP or GFR
		Group 1 (Premature	3690))	(31(28.8-	14.78))	Plasma glucose		o l
		SGA) N=14	Group 1	31.0))	Group 1	Serum insulin levels		lug
			(980(768-	Group 2 (30	(13.5			ust
		Group 2 (Premature	1038))	(27.5-31.0))	(12.48-			August 2021. Downloaded from http:
		AGA) N=25	Group 2	Group 3 (39	13.97))			
			(1635	(38.0-40.0)	Group 2			
		Group 3 (Term SGA)	(991-		(14.1			Ř
		N=7	1850))		(13.66-			loa
			Group 3		15.03))			
			(2750		Group 3			fro
			(2430-		(13.6			3
			2870))		(12.35-	4		ŧ
					14.83))			://b
1	Giapros et	Control Group	Control	Control	0.25, 0.5, 1,	sCr	•	sCr and eGFR did not lifter between the groups at any time point
	al (2011) [28]	(Premature without	(1651	(31.9 (2.2))	2	eGFR	•	The NC group had a 💑 orter KL up to 12 months of life (left kidney) or 24
		nephrocalcinosis)	(430))			Fractional excretion of		months (right kidney)
		N=44		Study (31.8		sodium, potassium,	•	Nephrocalcinosis in 🛱 emature infants was associated with renal tubular
			Study	(3))		phosphate, magnesium and		dysfunction and shor $ec{\mathbf{g}}$ r kidney length in the first year of life
		Study Group	(1615			uric acid		Q
		(premature with	(480))			Kidney length		
		nephrocalcinosis)						April 20
		N=63						20
5	Carballo-	Control N=30	Control	Control	Control (2.0	Renal volume	•	Groups 1 and 2, whe compared to the controls had higher BP, cystatin C
	Magdaleno		(3088	(38.6 (1.0))	(0.4))	eGFR		levels and GFR A
	et al (2011)	Group 1 N=30	(177))	Group 1	Group 1 (1.8	Cystatin C	•	No significant difference in these parameters was found between groups 1
	[29]	(premature and no	Group 1	(31.9 (2.3))	(0.5))	BP		and 2 G
		steroids)	(1669	Group 2	Group 2 (1.8		•	Concluded that prem $rak{H}$ turity (independent of antenatal steroids) was
			(426))	(31.3 (1.7))	(0.4))			associated with higher blood pressure levels, cystatin C levels and
		Group 2 N=30	Group 2					glomerular filtration detes in infants aged 12-36 months
		(premature with	(1501					te d
		steroids)	(410))					by
								copyright.
								УYГ

Page 37 of 44

44						BMJ Open	i/bmjopen-2020
16	Starzec et al (2016) ^[30]	Control (term) N=36 Study Group (ELBW) N=64	Control (3570 (3395– 3880)) Study (875 (750– 960))	Control (40 (39–40)) Study (27 (25–28))	7, 11	Serum cystatin C levels sCr BUN eGFR Kidney length and width	 Renal ultrasound examination revealed a significantly smaller renal very in the 7- and 11-year old ELBW children compared to the term control. Serum cystatin C leves were significantly higher in ELBW children that the controls at 7 years of age, and this difference remained statistical significant at 11 years of age GFR was significantly dower in the extremely low birth weight group compared to term controls when assessed at 11 years
17	Bruel et al (2016) ^[31]	Control (premature without AKI) N=25 Study Group (premature with AKI) N=49	Control (1034 (853- 1348)) Study (815(708- 1110))	Control (28(27-30)) Study (28 (26-29.2))	Control (7 (5-8)) Study (7 (5- 8))	eGFR BP ACR Albuminuria Microalbuminuria Renal volume	 There was no difference in microalbuminuria or eGFR at the time of fup No significant difference in eGFR between groups. Renal volume was significantly lower in the study group In the collective premature cohort, 10.8% had microalbuminuria and had diminished eGFR eGFR was noted to be significantly lower in children with VLBW <1000 Blood pressure was more significantly difference between both groups
18	Masqood et al (2017) ^[32]	Control (ELBW with no AKI) N=112 Group 1 (ELBW with AKI stage 1) N=87 Group 2 (ELBW with AKI Stages 2 and 3) N=23	Control (813 (127)) Group 1 (725(140)) Group 2 (664(172))	Control (26.8(2.3)) Group 1 (25.5(2.0)) Group 2 (25.3(1.9))	Control (6.6(2.5)) Group 1 (6.9(2.9)) Group 2 (8.3(3.3))	BP BMI Creatinine BUN eGFR	 No significant difference in the prevalence of CKD between groups, however ELBW was noted to increase the risk of CKD independent of neonatal AKI There was no difference in growth parameters or prevalence of hypertension or prehypertension among the three groups at their late follow up (age of out 2000 me measure)
19	Harer et al (2017) ^[33]	Control (term) Group 1 (premature VLBW with AKI) N=20	Control Group 1 (790(730- 1018)) Group 2 (1040(855 -1443))	Control Group 1 (25(24-26)) Group 2 (29(27-29))	Control Group 1 (5(4-5)) Group 2 (5(4-6))	eGFR Urine PCR BP Cystatin C Kidney size	 There was a significant difference in the cystatin C values when the premature infants were compared with the term infants. The premat groups combined had higher mean cystatin C values that the term cole 65% of premature children with AKI had kidney dysfunction at a medi years of age and 14% for premature children with no history of AKI has kidney dysfunction aged 5 years. Nil significant difference in Urine PCR between groups

3 4

Page	omjope		BMJ Open						
	orano								
							Group 2 (premature VLBW without AKI) N=14		
nt differences in renal length or eGFR-Cystatin C in o experienced neonatal ibuprofen exposure		•	eGFR-Cystatin C Renal length	0.75, 2, 11	27 (24-33)	815 (430- 1000)	Control = 45 (premature and exposed to ibuprofen) Study Group = 48 (premature and not exposed to ibuprofen)	Raaijmakers et al (2017) ^[34]	20
ificantly higher Group 1 and 2 when compared to the ower in Groups 1 and 2 compared to the controls ces in creatinine or cystatin C between the groups ficant relationship with fat mass indices but not renal nificantly differ between the groups en from Groups 1 and 2 (especially Group 2) had m by 11 years of age (as shown by GFR and SDMA) born premature or SGA increases risk of developing tuture	controls GFR was significantly No significant differen Systolic BP had a sign function Systolic BP did not sign Concluded that child impaired renal funct	in •	Height Weight Abdominal circumference Triceps and subscapular skin fold thickness BP Plasma creatinine Cystatin C eGFR SDMA	Control (11.7 (11.2- 12.0)) Group 1 (11.4 (11.1- 11.8)) Group 2 (11.3 (11.0- 11.8))	Control = Term born Group 1 (26.1 (25.7, 26.5) Group 2 (28.0 (27.2, 28.7)	Control (3701 (3582, 3581)) Group 1 (918 (867, 968)) Group 2 (724 (657, 791))	Control (Term Born AGA) N=54 Group 1 (Premature-born AGA) N=37 Group 2 (Premature-born SGA) N=20	Vollsaeter et al (2018) ^[35]	21
d significantly higher BP and significantly lower eGFR children at 14 years of age atinine and BUN were not significantly different	compared to the tering	•	BP ACR eGFR BMI BUN	Control (14) Study (14)	Control (39.7 (1.1)) Study (27.8 (2.6))	Control (3458 (451)) Study (1048 (276))	Control (term) N=43 Study group (premature with VLBW) N=96	South et al (2019) ^[36]	22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

copyright.

23	Crump et al	Extremely	NA	Extremely	0-43	СКД	Premature and extremelely premature birth were associated with twofold
23	(2019) ^[37]	Premature N=8129 Very premature N=43516 Late premature N=155626 Early term N=737412 Full term N=2895746 Post-term N=346186		Extremely Premature (22-27) Very premature (28-33) Late premature (34-36) Early term (37-38) Full term (39-41) Post-term			 Premature and extremely premature birth were associated with tworoid and threefold risks of KD respectively Premature birth and KD were found to have the strongest association a ages 0-9 years (hazaro ratio 5.09) and weakened but remained increased ages >9 years (hazaro ratio 1.97 for 10-19 years and 1.34 for 20-43 years
24	Rakow et al (2019) ^[38]	Control N=19 Group 1 (Extremely premature and nephrocalcinosis) N=20 Group 2 (extremely premature and no nephrocalcinosis) N=21	Control (3586 (477)) Group 1 (755 (124)) Group 2 (841 (202))	(≥42) Control (39.7 (1.6)) Group 1 (25.5 (1.2)) Group 2 (25.9 (1.3))	Control (8.1 (2.2)) Group 1 (7.8 (1.0)) Group 2 (7.4 (1.1))	Kidney volume 24-hour ambulatory BP Cystatin C calculated eGFR Plasma creatinine Urinary PCR Urine electrolytes	 Groups 1 and 2 had significantly smaller kidneys compared to the control Cystatin C based GFR was significantly lower (however still normal) in groups 1 and 2 when compared to the control group Nil significant difference between kidney volume and function between Groups 1 and 2 The control groups had significantly higher plasma creatinine compared groups 1 and 2 Urinary PCR and electrolytes were not significantly different between al groups BP was not significantly different between all groups Significantly more chedren from group 1 had a negative evolution of kid function from the negnatal period to school age

Page 40 o	f 44
-----------	------

						BMJ Open		pi mjopen-2020	age 4
25	Horie et al (2019) ^[39]	Control Group (Premature and normal eGFR) N=150 Study Group (Premature and low eGFR) N=18	<1000g N=73 1000- 1500g N=76 >1500g N=19	<28+0 N=63 ≥28+0 N=105	2-15	sCr eGFR Gestational age Body weight and length at birth Sex Apgar score Use of antimicrobial agents, steroids or indomethacin	•	eGFR at 2 years of age was significantly correlated with birthweight and gestational age. This elationship was no longer significant at 3-4 years o age. 9 Approximately 10.7% of the children had low eGFR without clinical symptoms or abnorned urine examination. These children had high sCr o day 7 after birth and gelayed recovery of these levels during the first mo after birth.	n
26	Crump et al (2019) ^[40]	Extremely Premature N=8324 Very premature N=44373 Late premature N=157342 Early term N=740391 Full term N=2896444 Post-term N=346195	NA	Extremely Premature (22-27) Very premature (28-33) Late premature (34-36) Early term (37-38) Full term (39-41) Post-term (\geq 42)	0-43	BP	•	In this study, premative birth was associated with increased risk of hypertension in early adulthood Adjusted hazards rates for new-onset hypertension at 18-29 years of age associated with premature (<37 weeks) and extremely premature (22-27 weeks) were 1.28 and 2.45 respectively when compared to full term birth At ages 30-43 years the adjusted hazards ratios were 1.25 and 1.68 respectfully for premature and extremely premature birth when compare to full term birth.	۱.
27	Kandasamy et al (2020) ^[41]	Control group (term) N=31 Study Group (premature) N=53	NA	Control = Born at term Study = <28	0.5, 1, 2	TKV eGFR Urine ACR BP	•	The study group had a significantly reduced TKV compared to the control Both groups had a significant GFR No significant difference was found in BP and urine ACR between the groups	S

Page 41 of 44

44			s/bmjopen-2020				
							1-2020-0
28	Sanderson et al (2020) [42]	N=42 (premature)	770 (173.1)	25.7 (1.1)	15 (15, 15.3).	Albuminuria BP Kidney volume	 33.3% of participants had an elevated BP at 15 years of age 11.9% of the cohort had microalbuminuria 14% had a kidney voteme below the 10th percentile of normative data 50% of the sample had at least one kidney abnormality (microalbuminuria, elevate BP and/or kidney hypoplasia
29	Yael et al (2020) ^[43]	Control group = known paediatric population prevalence rates Study group (VLBW and premature) N = 103	Study Group (1086 (243))	Study Group (29.4 (24- 35))	Study Group (11.6 (10- 13.3))	BP Urine PCR Urine ACR eGFR	 The prevalence of systolic hypertension was 15.8% and of systolic pre-hypertension was 6.9%. This is compared to the general United States paediatric population, which has a 1.6% prevalence rate of systolic hypertension. Hypertension was as ociated with a significantly diminished mean birth weight compared to the remainder of the cohort (939.3 grams vs 1111 grams P=0.024) 103 study participant that were very low birth weight and premature all had normal values of GFR Prevalence of microadiuminuria was 14.3% while the prevalence of proteinuria was 7.9% at 11.6 years.
30	Staub et al (2020) ^[44]	Control Group (term) N=82 Study Group (premature) N=51	Control (3250 (555)) Study (1360 (532))	Control (39 + 6 (2 + 5)) Study (31 + 0 (2 + 6))	Control (12.1 (1.20)) Study (12.3 (1.87))	BP sCr Cystatin C eGFR Beta-2 Microglobulin Uromodulin Neutrophil gelatinase- associated lipocalin	 Systolic BP was significantly higher in premature boys compared with term boys, however there was not significant difference in girls Low birth weight was associated with higher BP in premature boys In the premature group, maternal hypertension/preeclampsia and adolescent height were associated with higher systolic BP sCr and neutrophil geatinase-associated lipocalin were significantly higher in the premature group There was no significant difference in GFR between groups
31	Askenazi et al (2021) ^[45]	N=923 (extremely low gestational age)	801.1 (187.9)	24-27	1.83-2.17	eGFR Urine ACR BP	 The prevalence of Stage 2 or 3 AKI was 18.2% At 22-26 months 16⁹/₂⁴ had an eGFR <90mL/min/1.73m², 35.8% had elevate urine ACR, 23% had at BP > 95th percentile for their age and 40% had a DB >95th percentile for age
							by copyright.

Page 42 of 44

BMJ Open Abbreviations: BP (blood pressure), SBP (systolic blood pressure), DBP (diastolic blood pressure) eGFR (estimated glomerular filtration rate), BMI (body mass index), TmP (tubular maximum reabsorption of phosphate), sCr (serum creatinine), CKD (chor disease), ACR (albumin creatinine ratio), PCR (protein creatinine ratio), SDMA (Symmetric dimethylarginine), TKV (total kidiney volume), IUGR (intrauterine growth retardation), EUGR (extrauterine growth retardation), SGA (small for gestational age), AGA (appropriate for gestational age), BUN (blood urea nitrogen), ERPF (effective renal plasma flow), AKI (acute kidney injury), VLBW (very low birth w sight), ELBW (extremely low birth ron http://onpoper.... ed from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright weight)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 10	
19	
20	1 renal insufficiency.mp. or exp Renal Insufficiency/ (188865)
21	2 chronic kidney disease.mp. or exp Renal Insufficiency, Chronic/ (136800)
22	
23	
24	function.mp. or exp Glomerular Filtration Rate/ (221756)
25	4 kidney failure.mp. (100456)
26	5 blood pressure.mp. or exp Blood Pressure/ (438835)
27	6 proteinuria.mp. or exp Proteinuria/ (60170)
28	7 albuminuria.mp. or exp Albuminuria/ (19579)
29	8 exp Hypertension/ (293215)
30	9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 (867063)
31	10 exp Premature Birth/ or exp Infant, Premature/ or exp Infant, Extremely
32	Premature/ or premature.mp. or exp Infant, Premature, Diseases/ (198355)
33	11 preterm birth.mp. (15605)
34	12 10 or 11 (202175)
35	13 term.mp. or exp Term Birth/ (1043152)
36	14 long term.mp. (735729)
37	15 long term adverse outcomes.mp. (286)
38	16 long term outcome.mp. (24999)
39	17 14 or 15 or 16 (735729)
40	18 9 and 12 and 13 and 17 (685)
41	19 limit 18 to (yr="1990 -Current" and english) (553)
42	
43	************
44 45	
45	
46 47	
47 48	
48 49	
49 50	
50 51	
52 52	
53 54	
54 55	
55 56	
56 57	
57	
58 50	
59 60	
60	

PRISMA 2009 Checklist

		BMJ Open 136	Page 44 of 4
PRISMA 2	009	Checklist 2020	
Section/topic	#	Checklist item 77770	Reported on page #
TITLE		ວ ວ ຽ	
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1/Title page
ABSTRACT		st N	
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data source $\hat{\mathbf{s}}_{1}$ study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	5-6
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, ingrventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and if available, provide registration information including registration number.	NA
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplementary File
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and and simplifications made.	7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7-8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including near a summer of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	NA

PRISMA 2009 Checklist

Page 1 of 2

Page 45 of 44		BMJ Open			
PRISMA 20)09				
3		Page 1 of 2			
Section/topic	#	Checklist item	Reported on page #		
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7-8		
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NA		
RESULTS	•	Dc			
4 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10		
7 Study characteristics 8 9	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10 and Appendix A Table 1		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	16		
22 Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA		
A Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	16		
8 Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	18-19		
³³ Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	20		
35 36 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implication of the research.	18-20		
39 Funding 10	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	21		
1 ¹ 12 <i>From:</i> Moher D. Liberati A. Tetzlaff		an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The BRISMA Statement. PLoS Med	6(6): e1000097		

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The BRISMA Statement. PLoS Med 6(6): e1000097. 44

For more information, visit: <u>www.prisma-statement.org</u>. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 2 of 2

- 45 46
- 47

BMJ Open

THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH: A SYSTEMATIC REVIEW

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047770.R2
Article Type:	Original research
Date Submitted by the Author:	20-Jun-2021
Complete List of Authors:	Sangla, Ananya; Monash University Faculty of Medicine Nursing and Health Sciences, Kandasamy, Yogavijayan; Townsville Hospital and Health Service, Department of Neonatology; The University of Newcastle, Department of Neonatology
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Renal medicine
Keywords:	Paediatric nephrology < PAEDIATRICS, Paediatric nephrology < NEPHROLOGY, NEPHROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

THE EFFECTS OF PREMATURITY ON LONG-TERM RENAL HEALTH: A SYSTEMATIC REVIEW

Ananya Sangla (1), Yogavijayan Kandasamy (2,3,4)

- 1. Monash University, Melbourne Australia
- 2. Department of Neonatology, The Townsville University Hospital
- 3. University of Newcastle, NSW, Australia
- 4. College of Medicine and Dentistry, James Cook University

Corresponding author:

Dr. Yogavijayan Kandasamy

Conjoint Research Fellow

The University of Newcastle

University Dr, Callaghan NSW 2308, Australia

Tel: 617 44331111

Fax: 617 44332981 Email: <u>Yogavijayan.Kandasamy@newcastle.edu.au</u>

Word Count: 3894

Word Count Abstract: 276

ABSTRACT:

Objective: To investigate the literature and determine if prematurity has an impact on long-term adverse kidney outcomes

Design: Systematic review

Data sources: OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE databases were searched for studies relating to the adverse outcomes of prematurity from 1990 – April 2021.

Eligibility criteria for selecting studies: All articles published between January 1990 and April 2021 that investigated whether premature infants developed long term adverse renal outcomes were included in this review. Articles must have been human studies and written in English. Case series with less than 20 participants and case studies were excluded.

Data extraction and synthesis: One reviewer completed the database searches. Article selection was performed independently and in a non-blinded manner by both reviewers. Initial screening was by title and abstract. Full texts of remaining articles were reviewed. Articles for which inclusion was unclear were re-reviewed by both reviewers, and a unanimous decision was taken as to whether they should be included. The Newcastle-Ottawa Scale was used for guality assessment of the included articles.

Results: The literature search yielded 31 human studies which investigated the short- and long-term kidney outcomes of prematurity. These studies were conducted in 17 different countries. The most common outcomes measured were blood pressure, and glomerular

filtration rate. Other common outcomes measured included kidney size and mass, proteinuria, albuminuria, chronic kidney disease and physical parameters like height, weight and body mass index.

Conclusion: Prematurity is likely linked to increased risk of kidney dysfunction and high blood pressure in childhood and into early adulthood. Premature birth conferred a twofold increased risk of CKD and extremely premature birth conferred a threefold increased risk of CKD. However, further larger multi-centre studies are needed to draw definitive conclusions on the long-term kidney outcomes of prematurity.

Keywords: Premature, preterm, renal, kidney, impairment proteinuria, albuminuria, hypertension, high blood pressure, reduced estimated glomerular filtration rate, decreased kidney function

STRENGTHS AND LIMITATIONS

- This systematic review yielded 31 relevant human studies from a wide search of five reputable databases
- We used the Newcastle Ottawa Scale to assess the quality of included studies
- The long-term adverse outcomes of prematurity on kidney function can only be evaluated up to approximately 40 years of age as research into the aging population is still needed
- As current research into the long-term kidney outcomes of prematurity is lacking, the available research is not sufficient to draw definitive conclusions as to the long-term

1 2 3 4 5 6 7 8 9 10 11	kidney outcomes of premature children and further larger multicentre studies are still needed.
12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25	
26 27 28 29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47 48 49	
50 51 52 53 54 55 56 57 58 59 60	

¢

INTRODUCTION:

Prematurity is the leading cause of mortality in children under the age of five.^[1] However, with advances in technology and modern medicine, both the incidence of prematurity and the number of ex-premature babies living into adulthood are increasing, especially in population-dense countries.^[1] Approximately 15 million, or just over 1 in 10 babies, are born prematurely every year.^[2] The highest number of premature births are seen in India, China and Nigeria; while the highest rates of premature births are seen in Malawi, Comoros and Congo.^[3]

Though premature birth is becoming more commonplace, it is not without its own challenges. The Barker hypothesis proposes that diseases of adulthood are due to factors pertaining to fetal life.^[4-6] This proposition is also commonly known as the Developmental Origins of Health and Disease (DOHaD) hypothesis. This conclusion was first drawn when Barker et al. found that early death secondary to coronary artery disease was inversely related to weight at birth.^[7] Thus the DOHaD paradigm was created. It proposed that developmental factors, including nutrition, stressors, and environmental exposures such as drugs and infections, could lead to functional changes in tissues which may predispose to disease in later life.^[8]

The impact of prematurity on long-term kidney dysfunction or chronic kidney diseases (CKD) is still not fully understood. Impaired nephrogenesis due to poor fetal growth, prematurity, antenatal and post-natal medication and other factors most likely lead to reduced nephron endowment and CKD. ^[9-10] Nephrogenesis is completed by 37 weeks gestation, and the majority of nephrogenesis occurs in late gestation.^[11] Therefore, in premature neonates, nephrogenesis is terminated early conferring reduced nephron numbers. Nephrons do not

BMJ Open

regenerate. The number of functional nephrons over time decreases as part of normal aging.^[5] As premature children are born with reduced nephron numbers, an increased risk of kidney dysfunction is postulated. Brenner et al. also proposed that as a compensatory measure for low nephron numbers, nephron surface area increases. This maladaptive response causes systemic hypertension and increased sodium retention, which in turn causes disrupted autoregulation.^[12] The resulting nephron sclerosis leads to increased functional nephron decline creating a vicious cycle.^[12-13]

As the ex-premature population is living longer and becoming part of the aging population, understanding the effects of prematurity is imperative in anticipating the likely chronic health outcomes the premature population will face. This review is intended to investigate the literature to determine if a link is present between prematurity and adverse long-term kidney health. Identifying a link will be the first step in deciding how best to follow-up and manage ex-premature children and adults to prevent morbidity and premature mortality in the long term.

METHODS

This systematic review was completed in accordance with the PRISMA guidelines. ^[14] The systematic search was conducted using OVID Medline, PubMed, SCOPUS, CINAHL and EMBASE. The search criteria were developed and refined from January 2020 to April 2021. Relevant keywords were identified, and all relevant Medical Subject Headings (MeSH) and non-MeSH synonyms were included. Relevant keywords included prematurity, chronic kidney failure, chronic kidney disease, kidney volume, proteinuria, albuminuria, hypertension, high blood pressure, reduced GFR, decreased kidney function and long-term adverse outcomes. The final search was conducted on April 1st, 2021. An example of the database search for OVID Medline can be seen in the supplementary files. Only articles published in English between January 1990 and April 2021 have been included. Animal studies were excluded. Finally, articles shortlisted for inclusion were screened for bias and re-evaluated for inclusion if there was significant bias.

Once the literature search was completed, article selection was performed independently and in a non-blinded manner by two reviewers. The articles were initially screened by title and then by the abstract. All remaining articles were reviewed and determined for inclusion based on examination of the full text. Articles which were unclear were re-reviewed by both reviewers, and a unanimous decision was taken as to whether they should be included.

Articles were included if they studied premature and/or low birth weight infants to determine if they developed adverse kidney outcomes as a result of being premature. Studies that investigated low birth weight infants were only included if their low-birth-weight cohort were also premature. Outcomes that were evaluated included glomerular filtration rate (GFR),

BMJ Open

 blood pressure (BP), tubular function, kidney length and volume, and urinary protein/albuminuria and electrolytes. It was decided that case series with less than 20 participants, and case studies would be excluded from this review as they would not provide the level of evidence or relevant information required. Included articles and their characteristics can be found in Supplementary Table 1. ^[15-45] Articles underwent quality assessment using the Newcastle-Ottawa scale. ^[46] This can be seen in Table 1.

Patient and Public Involvement

Patients were not involved in the development or design of this systematic review.

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

Cohort Studies							
Study	Selection*	Comparability**	Outcome***				
Downing et al (1992)	***	*	***				
Jones et al (1997)	***	**	***				
Ojala et al (2001)	****	*	***				
Rodriguez-Soriano et al (2005)	***	*	**				
Porter et al (2006)	***	**	***				
Kist-van Holthe et al (2007)	***	*	**				
Keijzer-Veen et al (2007)	**		**				
Finken et al (2008	***	*	***				
Rakow et al (2008)	****	*	**				
Bacchetta et al (2009)	****	**	**				
Zaffanello et al (2010)	****	*	***				
Chan et al (2010)	**	*	**				
Giapros et al (2011)	****	**	***				
Carballo-Magdaleno et al (2011)	***	*	***				
Starzec et al (2016)	**		**				
Bruel et al (2016)	****	*	**				
Harer et al (2017)	***		**				
Raaijmakers et al (2017)	***	*	**				
Vollsaeter et al (2018)	***		**				
South et al (2019)	**	4	**				
Crump et al (2019)	****	✓ ★★	***				
Rakow et al (2019)	****	*	***				
Horie et al (2019)	****	*	***				
Crump et al (2019)	****	**	***				
Kandasamy et al (2020)	***	*	***				
Sanderson et al (2020)	**	*	**				
Yael et al (2020)	***		**				
Staub et al (2020)	**	**	**				
	Case Series						
Abitolol et al (2003)	*	NA	**				
	Case Control						
Study	Selection*	Comparability**	Exposure***				
Masqood et al (2017)	***	*	***				

Table 1: Quality assessment of included observation studies using the Newcastle-OttawaScale

* Maximum 4 stars

** Maximum 2 stars

*** Maximum 3 stars

 to beet terien only

RESULTS

The collective search from the five databases revealed 1311 studies. A total of 1263 articles remained after duplicates were omitted. All 1263 articles were screened, and 1101 were excluded based on title and abstract. For the remaining 162 articles, full texts were assessed for eligibility. Sixty-four articles were excluded due to long term adverse kidney outcomes not being investigated. Nine articles were excluded as prematurity or low birth weight were not investigated. Eight were excluded for being animal studies, and 50 were excluded for being case reports or case series with less than 20 participants. Thus, the literature search yielded 31 human studies which investigated the long-term kidney outcomes of prematurity. ^[15-45] These studies were conducted in 17 different countries: Australia, Israel, Japan, Italy, Greece, Poland, France, Egypt, Sweden, Belgium, Mexico, the Netherlands, Scotland, Spain, the USA, Finland and Norway. ^[15-45] A flow diagram demonstrating the selection process can be seen in Figure 1. The lead author surname, year of publication, sample size, birth weight, gestation, outcome measures, age at which outcome measured and conclusions of the selected studies can be seen in Supplementary Table 1. A quality assessment of included studies was conducted using the Newcastle Ottawa Scale and can be seen in Table 1.

Of the included studies, the smallest cohort size was 20, and the largest cohort size was 4193069. ^[18, 40] The youngest gestational age from the premature cohorts was 22 weeks, and the most mature gestational age for the premature cohorts was 36 weeks. ^[37, 40] The youngest age at which outcomes were measured was at birth, and the oldest age at which outcomes were measured was at birth, and the oldest age at which outcomes kere BP and kidney function (GFR and proteinuria/microalbuminuria). Other outcomes measured included

BMJ Open

kidney size and mass, urine analysis, chronic kidney disease and physical parameters (height, weight and BMI). Some studies also commented on insulin resistance and serum lipid profile.

Glomerular filtration rate

Twenty-seven out of the 31 studies investigated GFR as an outcome measure. ^[16-36, 38-39, 41, 43-45] Ten of these 27 studies compared premature children and term children. ^[19, 21-22, 24, 27, 35-36, 38, 41, 44] Four found no significant difference in GFR while 6 did. Of the 4 studies that found no significant difference, Rakow et al. measured their outcomes at 9 years, Kandasamy et al. measured their outcomes at 0.5, 1 and 2 years, Staub et al. measured GFR at 12 years and Chan et al. measured outcomes at approximately 13.5 years. ^[24, 27, 41, 44] Of the 6 studies that found a significantly decreased GFR in premature children, outcomes were measured at approximately 7.5 years, 8 years, 8.5 years, 11.5, 14 and 20 years respectively for Kist-Van Holthe et al., Rakow et al., Rodriguz-Soriano et al., Vollsaeter et al., South et al. and Keijer Veen et al. ^[19, 21-22, 35-36, 38] It should be noted that Keijer Veen et al. found that GFR was significantly lower in the premature small for gestational age group compared to term controls at 20 years. ^[22] This was not the case for the premature appropriate for gestational age group. ^[22]

Twelve studies investigated GFR in study and control groups with differing characteristics including no term birth comparison. ^[16-18, 20, 23, 25-26, 28, 30-32, 34] Seven of these studies found no statistically significant difference in GFR between study and control groups. ^[17, 20, 26, 28, 31-32, 34] Ojala et al. compared premature infants with and without indomethacin exposure in the neonatal period and measured outcomes at 2-4 years. ^[17] Raaijmakers et al. compared

> premature infants with and without ibuprofen exposure in the neonatal period and assessed outcomes at 11 years.^[34] Porter et al. compared two groups of very low birth weight children with and without nephrocalcinosis at 5-7 years of age. ^[20] Zaffanello compared very low birth weight and extremely low birth weight children at 5-6 years.^[26] Giapros compared premature infants with and without nephrocalcinosis for the first 2 years of life.^[28] Masqood et al. compared three groups of extremely low birth weight children with no AKI, Stage 1 AKI and stage 2 AKI, and found no significant difference in the prevalence of diminished GFR values. ^[32] Finally, Bruel et al. found nil significant difference between premature children with and without neonatal AKI when assessed at 7 years of age. ^[31] Bruel et al. did however note that GFR was significantly lower in children with a birth weight less than 1000 grams. ^[31]

> On the other hand, 5 of these studies did find significantly differences in GFR between study and control groups. ^[16, 18, 23, 25, 30] Finken et al. noted significantly decreased GFR in premature infants who received betamethasone in the neonatal period when compared to premature infants who did not.^[23] This outcome was measured at 19 years of age.^[23] Abitbol et al. found ex-premature children had normal GFRs when aged 5.7 years but children assessed at 9.9 years were found to have diminished GFR.^[18] Starzec et al. concluded that GFR was significantly lower in the extremely low birth weight group compared to term controls when assessed at 11 years.^[30] Bacchetta et al. found significantly decreased GFR in premature extrauterine growth retardation and intrauterine growth retardation when compared to premature normotrophic children at 7-8 years of age.^[25] Jones et al found that four out of their 11 premature babies with nephrocalcinosis had an abnormal GFR at 4-5 years of age. Jones et al did not however have a term control group to compare these results too.^[16]

Only one study (Carballo-Magdaleno et al.) found an increased GFR in premature infants when compared to term infants. Outcomes were measured at two years of age.^[29] Table 2 shows all the studies that investigated GFR and whether or not they found a significant difference between groups.

Table 2: A comparison of the studies that did and did not report a significant difference inGFR (listed in descending order of cohort size).

Studies that found a significant difference in GFR between groups	Studies that did not find a significant difference in GFR between groups
Askenazi et al (2021)	Masqood et al (2017)
Finken et al (2008)	Staub et al (2020)
Horie et al (2019)	Giapros et al (2011)
South et al (2019)	Rakow et al (2008)
Vollsaeter et al (2018)	Yael et al (2020)
Starzec et al (2016)	Raajimakers et al (2017)
Carballo-Magdaleno et al (2011)	Kandasamy et al (2020)
Rodriguz-Soriano et al (2005)	Bruel et al (2016)
Keijer Veen et al (2007)	Chan et al (2020)
Kist-Van Holthe et al (2007)	Zaffanello et al (2010)
Rakow et al (2019)	Ojala et al (2001)
Bacchetta et al (2009)	Porter et al (2006)
Harer et al (2017)	4
Jones et al (1997)	
Abitbol et al (2003)	

Four studies looked at the prevalence of low GFR in their premature cohorts. ^[33, 39, 43, 45] Harer et al. found that 26% of their 34 premature very low birth weight participants had an abnormally low eGFR using cystatin C at 5 years of age. ^[33] Horie et al. found that of their 168 premature children, 10.7% had persistently low GFR at >2 years of age. ^[39] Yael et al. found that 100% of their 103 study participants with a history of very low birth weight and premature birth had normal GFR values at 10-13 years of age. ^[43] Askenazi et al found that of their 923 extremely premature study participants 16% had a GFR <90mL/min/1.73m2 at 22-26 months of age. ^[45]

Chronic kidney disease

Crump et al. was the only study that exclusively investigated for CKD. ^[37] From their large cohort size of 4 186 615, they concluded that premature birth conferred a twofold increased risk of CKD and extremely premature birth conferred a threefold increased risk of CKD.^[37] This risk was found to be highest between ages 0-9 years and slightly weakened but still increased from ages 10-19 years.^[37]

Blood Pressure

Twenty-three out of the 31 studies investigated BP as one of their outcome measures.^[17-19, 21-27, 29, 31-33, 35-36, 38, 40-45] Fifteen found no significant difference in BP between study and control groups.^[17-19, 21, 23-27, 31-33, 35, 38, 41] Seven of these studies found no significant difference in BP between term babies and premature babies at differing ages ranging from 1.5-27.6 years.^[19, 24-25, 27, 35, 38, 41] Six studies compared premature babies with and without different variables including exposure to betamethasone, exposure to indomethacin, presence or absence of nephrocalcinosis, having neonatal acute kidney injury, and having extrauterine growth restriction, intrauterine growth restriction or being appropriate for gestational age.^[17, 21, 23, 25, 31, 33] All six concluded no significant difference in BP between these groups of premature babies at differing ages ranging from 2-19 years.^[17, 21, 23, 25, 31, 33] Zaffanello et al. found no significant difference in BP between very low birth weight and extremely low birth weight infants at 5-6 years of age. ^[26] Masqood et al. also compared groups of extremely low birth weight children with no or varying severities of neonatal acute kidney injury and found no

BMJ Open

significant difference in BP at approximately 6-8 years.^[32] It should be noted that both Zaffanello and Maqsood did not compared these blood pressures with term infants. ^[26, 32]

Carballo-Magdaleno et al., Keijzer-Veen et al., Yael et al., South et al., Staub et al. and Crump et al. found increased BP in premature children compared to controls. ^[22, 29, 36, 40, 43-44] Carballo-Magdaleno et al. found that 2-year-old infants born prematurely had significantly higher blood pressures than 2-year-old infants born at term.^[29] Keijzer-Veen et al. found significantly increased systolic BP in premature children compared to term children when BP was assessed at 20 years.^[22] Yael et al. reported a 15.8% prevalence rate of systolic hypertension in their study group of premature children with very low birth weight when assessed at 10-13 years. ^[43] This is compared to the general United States paediatric population which has a 1.6% prevalence rate of systolic hypertension. ^[43] South et al. found significantly higher BP in premature children compared to term children at 14 years of age. ^[36] Staub et al. found that systolic BP was significantly higher in premature boys compared to term boys, however they did not find a significant difference in premature and term girls.^[44] They also noted that low birth weight was associated with higher BP in boys. ^[44] Crump et al. found that prematurity was associated with an increased risk of hypertension in early adulthood.^[40] They found that at 18-29 years of age adjusted hazards ratios were 1.28 and 2.45 respectively for premature and extremely premature birth compared to term birth.^[40] Furthermore at 30-43 years of age hazards ratios were calculated as 1.25 and 1.68 for premature and extremely premature birth respectively when compared to full term birth. ^[40] Table 3 shows all the studies that investigated BP and whether or not they found a significant difference between groups.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
39 40
41
42
43
44
45
46
47
48
49
50
50
52
53
54
55
56
57
58
59
<u> </u>

1 2

Di (listeu in descending of der of conort size).						
Studies that found a significant difference	Studies that did not find a significant					
in BP between groups	difference in BP between groups					
Crump et al (2019)	Finken et al (2008)					
Askenazi et al (2021)	Masqood et al (2017)					
South et al (2019)	Vollsaeter et al (2018)					
Staub et al (2020)	Rakow et al (2008)					
Yael et al (2020)	Kandasamy et al (2020)					
Carballo-Magdaleno et al (2011)	Rodriguz-Soriano et al (2005)					
Keijer Veen et al (2007)	Kist-Van Holthe et al (2007)					
Sanderson et al (2020)	Bruel et al (2016)					
	Chan et al (2020)					
	Zaffanello et al (2010)					
	Ojala et al (2001)					
	Rakow et al (2019)					
	Bacchetta et al (2009)					
	Harer et al (2017)					
	Abitbol et al (2003)					

Table 3: A comparison of the studies that did and did not report a significant difference inBP (listed in descending order of cohort size).

Sanderson et al found that of their 42 premature participants, 33.3% had elevated blood pressures at 15 years of age. ^[42] Askenazi et al. found that of their 923 extremely low gestational age participants at 22-26 months of age, 23% have a systolic blood pressure >95th percentile for their age and 40% had a diastolic blood pressure >95th percentile. ^[45]

Proteinuria/Albuminuria

Nineteen studies commented on proteinuria or albuminuria. ^[15-22, 24-26, 31, 33, 36, 38, 41-43, 45] Of these, 11 studies found no significant difference between study and control groups. ^[17, 20, 21, 24, 26, 29, 31, 33, 36, 38, 41] Six out of these 11 studies compared term and premature infants at ages ranging from approximately 0.5-14 years. ^[19, 24, 33, 36, 38, 41] The other 5 studies compared groups of premature children with varying characteristics including neonatal AKI, low or extremely low birth weight, the presence of nephrocalcinosis and indomethacin exposure. For these studies outcomes were measured at 2-7.5 years. ^[17, 20, 21, 26, 31]

BMJ Open

Seven studies commented on prevalence of proteinuria or albuminuria. ^[15-16, 22, 25, 42-43, 45] Askenazi et al. found that at 22-26 months 35.8% of their 923 participants had a urine albumin/creatinine ratio greater than 30mg/g. ^[45] Bacchetta et al. found that 2 out of their 50 participants had moderate microalbuminuria approximately 7 years of age. ^[25] Jones et al. found that 2 out of their cohort of 28 premature had microalbuminuria at 4-5 years of age. ^{16]} Sanderson et al. found 11.9% of their 42 premature children had microalbuminuria at 15 years of age.^[42] Keijer Veen et al. reported microalbuminuria in 2 patients of their premature small for gestational age group. ^[22] However, none of their participants in the premature appropriate for gestational age group or term group was found to have microalbuminuria. ^[22] Yael et al. found that the prevalence of microalbuminuria was 14.3% while the prevalence of proteinuria was 7.9% in their low-birth-weight premature cohort of 103 at 11.6 years. ^[43] Finally, Downing et al. found that 4 out of the 10 participants in their premature cohort with renal calcifications who received frusemide therapy, had trace proteinuria. ^[15]

Abitbol et al. only had data for urine protein/creatinine ratios available for 10 out of 20 of their premature extremely low birth weight participants.^[18] Out of these 10, those with low GFR (n=3) had significantly higher urine protein/creatinine ratios compared to the participants with normal GFR (n=7) at follow up. ^[18] Follow up ranged from 3.1-18.3 years. ^[18]

Bias

In all studies included in this review, bias was minimal. Some bias may be present in single centre studies as these may only provide results from a particular population demographic.

^[15-19, 22, 24-28, 30-34, 36, 38-39, 41, 43, 44] However, as this review correlates the results of numerous single centre studies, this bias is minimised. Randomisation of study subjects was only done in one of the 31 included studies with was a randomised control trial where all study participants were premature.^[45] All other studies were observational, and randomisation was not possible as birth weight and gestational age are not variables that can be ethically influenced. [15-44] Furthermore, 17 studies did not have term born controls. [15-18, 20-21, 23, 25-26, ^{28, 31-32, 34, 39, 42-43, 45}] Abitbol et al. did however match their study participants to age-, genderand height- matched population norms when reviewing outcomes.^[18] Yael et al. also did not have a term control group; however, they did compare their results to known population prevalence's.^[43]

DISCUSSION

Thirty-one studies that assessed long term kidney outcomes of premature infants were identified in this review. ^[15-45] There was a relatively even split between the studies that investigated GFR as to whether there was or was not a significant difference between study and control groups. ^[16-36, 38-39, 41, 43-45] It should be noted that the studies which favoured no significant difference between premature and term participants investigated GFR in children from 0.5-13.5 years, while the studies that favoured a significant difference between the two populations measured outcomes at 7.5-20 years. ^[19, 21-22, 24, 27, 35-36, 38, 41, 44] Thus, it is possible that in the short term, GFR is not significantly affected by prematurity. However, as the expremature population ages, their kidney function may become considerably diminished compared to the term population. This could possibly be due to the fact that premature infants start out with reduced nephron numbers.

From the 23 studies that investigated BP, 12 compared term and premature children. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] Seven found no significant difference between premature children and term children while five did find a significant difference. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] The studies which found no significant difference measured outcomes from approximately 0.5-27.6 years of age while those that did find a significant difference, measured outcomes at 2-43 years of age. ^[18-19, 22, 24, 27, 29, 35, 36, 38, 40, 41, 44] Crump et al. was the largest included study and also had one of the highest rating on the quality assessment. ^[40] It demonstrates that from 30-43 years of age premature and extremely premature children are at a 25% and 68% greater risk of developing hypertension compared to controls. ^[40] As with GFR, this may be because in early childhood the effects of prematurity on blood pressure are not as obvious as the kidneys are able to compensate, or the reduced nephron number is may not yet be significant.

However, it is possible that as the ex-premature population ages, their initially reduced nephron number may no longer be able to compensate for BP.

From the 19 studies that investigated for microalbuminuria or proteinuria, most commented on prevalence as opposed to comparing groups. ^[15-22, 24-26, 31, 33, 36, 38, 41-43, 45] Only 6 studies, that commented on proteinuria or albuminuria, compared term children and premature children but all 6 of these studies found no significant difference between groups when assessed at 0.5-14 years of age. ^[19, 24, 33, 36, 38, 41] Albuminuria or proteinuria are signs of kidney damage and progression of kidney disease. As with GFR and BP, it is possible that in childhood the kidneys are able to compensate for the shortened nephrogenesis. However, in the aging population ex-premature adults may be more likely to demonstrate markers of kidney disease or poor kidney function like microalbuminuria or proteinuria sooner than their ex-term counterparts due to further reduction in an already deplete nephron reserve. Further larger studies with longer follow-up are required to assess for microalbuminuria and proteinuria.

The risk of CKD is twofold and threefold greater in premature and extremely premature children respectively compared to those born at term as per Crump et al. ^[37] The risk of CKD over the age of 43 years cannot be commented on as it was not investigated in any of the included articles. The conclusion drawn by Crump et al. is reliable, given their methodology and massive cohort size despite other included articles not specifically commenting on CKD but GFR instead. The conclusion could be explained due to the decreased nephron endowment associated with prematurity. It should be noted that kidney function must be significantly impaired (GFR <15) before evidence of kidney failure will be present clinically.

Page 23 of 45

BMJ Open

There are some limitations to our systematic review. The majority of the included studies were conducted in Caucasian predominant countries. Therefore, they do not reflect the true impact of prematurity of long-term kidney dysfunction as they do not encompass population rich countries including India, China and Nigeria where the highest number of premature births occur each year. This means the conclusions from this review do not apply to all ethnicities and cannot be generalised for non-Caucasian ethnic groups. Additionally, all the studies included in this review analysed kidney function through quantifiable measures such as blood tests. Clinically significant kidney outcomes, symptomatology, quality of life and kidney dysfunction associated mortality were not commented on or investigated in these studies. Finally, the majority of studies did not investigate outcomes over the age of 20 years. Two study had participants up to the age of 43; however, the proportion of their study cohort over the age of 20 was minimal. Thus, this systematic review could only investigate long-term kidney outcomes of prematurity up until adolescence and early adulthood. Finally, only studies conducted after 1990 and written in English were considered for inclusion.

CONCLUSION

Prematurity is likely linked to increased risk of kidney dysfunction and high blood pressure in childhood and into early adulthood. The risk of CKD is twofold and threefold higher in premature and extremely premature children compared to those born at term. Further studies need to be conducted to investigate the effects of prematurity on long term kidney health in the aging population; reliable information at this time is only available up until the age of 43 years. Thus, kidney outcomes in the ex-premature population over the age of 43 years cannot be concluded from the current research. However, enough evidence is present

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to warrant ongoing monitoring of kidney function and blood pressure in premature infants as they age in order to optimise and prevent earlier morbidity and mortality.

<u>CONTRIBUTIONS</u>: YK conceived the idea. AS performed the literature search. AS and YK evaluated the search results and AS extracted the data. AS and YK wrote the manuscript and edited subsequent and final drafts.

COMPETING INTERESTS: None declared

ACKNOWLEDGEMENTS: The authors would like to thank Ms Chloe Sobieralski for her assistance in proof-reading.

PROVENANCE AND PEER REVIEW: Not commissioned; externally peer reviewed

FUNDING: This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors

DATA SHARING STATEMENT: No original data were generated for this study.

ETHICS APPROVAL STATEMENT: Ethics approval was not required for our systematic review as there was no human participation.

REFERENCES

- World Health Organization. March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children. Born to son: The global action report on preterm birth.
- Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Garcia CV, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The lancet. 2012 Jun 9;379(9832):2162-72.
- Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016 Dec 17;388(10063):3027-35.
- 4. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal. 1989 Mar 4;298(6673):564-7.
- 5. Starr MC, Hingorani SR. Prematurity and future kidney health: the growing risk of chronic kidney disease. Current opinion in paediatrics. 2018 Apr;30(2):228.
- Dover GJ. The Barker hypothesis: how paediatricians will diagnose and prevent common adult-onset diseases. Transactions of the American Clinical and Climatological Association. 2009;120:199.
- 7. Barker DJ, Osmond C, Winter PD, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. The Lancet. 1989 Sep 9;334(8663):577-80.
- Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease etiology and prevention. Current opinion in pediatrics. 2015 Apr;27(2):248.

9. Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney International. 2005 Aug 1;68:S68-77.

- 10. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure: less of one, more the other?. American journal of hypertension. 1988 Oct 1;1(4_Pt_1):335-47.
- 11. Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, Bertram JF, McMahon AP, Little MH, Moore L, Black MJ. Development of the human fetal kidney from mid to late gestation in male and female infants. EBioMedicine. 2018 Jan 1;27:275-83.
- 12. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. The Lancet. 2013 Jul 20;382(9888):273-83.
- 13. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury.
- 14. Moher D, Liberati A, Tetzlaff J, Altman DG. RESEARCH METHODS & REPORTING-Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement-David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses. BMJ (CR)-print. 2009;339(7716):332.
- 15. Downing GJ, Egelhoff JC, Daily DK, Thomas MK, Alon U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. The Journal of pediatrics. 1992 Apr 1;120(4):599-604.
- 16. Jones CA, King S, Shaw NJ, Judd BA. Renal calcification in preterm infants: follow up at 4-5 years. Archives of Disease in Childhood-Fetal and Neonatal Edition. 1997 May 1;76(3):F185-9.

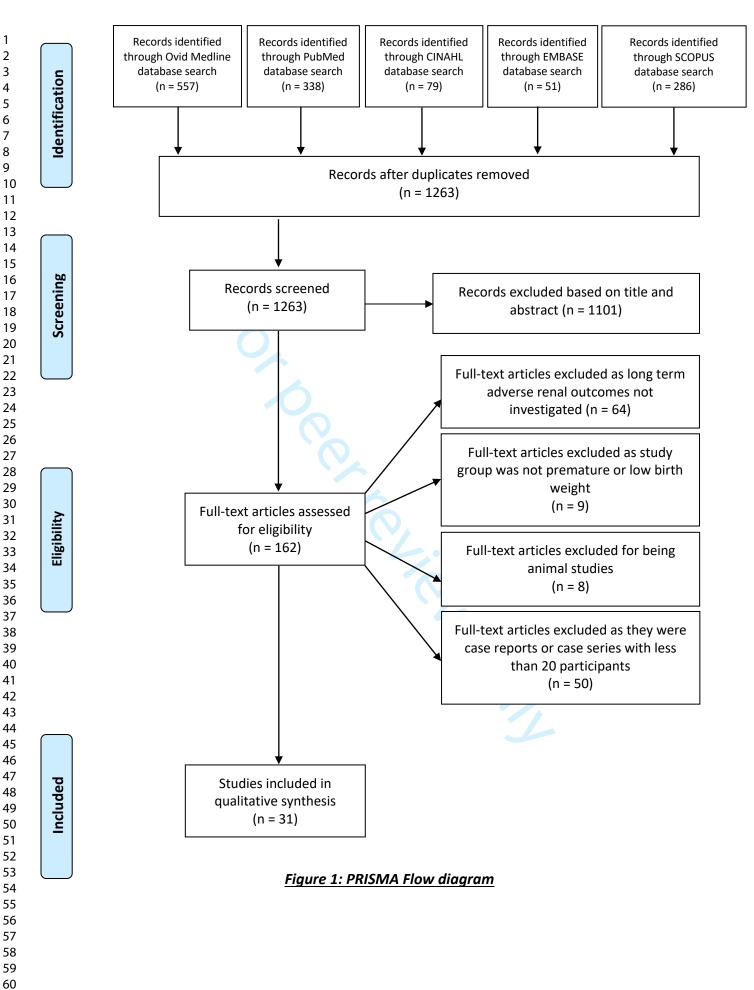
1	
2 3	17 Oisle D. Ale Hawkels M. Akanan C. Hamasinan A. Turiannas M. Hamas C. Tammala O.
4	17. Ojala R, Ala-Houhala M, Ahonen S, Harmoinen A, Turjanmaa V, Ikonen S, Tammela O.
5 6 7	Renal follow up of premature infants with and without perinatal indomethacin exposure.
8 9	Archives of Disease in Childhood-Fetal and Neonatal Edition. 2001 Jan 1;84(1):F28-33.
10 11 12	18. Abitbol CL, Bauer CR, Montané B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up
12 13 14	of extremely low birth weight infants with neonatal renal failure. Pediatric Nephrology.
15 16	2003 Sep 1;18(9):887-93.
17 18 19	19. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A. Long-term renal follow-up of
20 21	extremely low birth weight infants. Pediatric Nephrology. 2005 May 1;20(5):579-84.
22 23 24	20. Porter E, McKie A, Beattie TJ, McColl JH, Aladangady N, Watt A, White MP. Neonatal
25 26	nephrocalcinosis: long term follow up. Archives of Disease in Childhood-Fetal and
27 28 29	Neonatal Edition. 2006 Sep 1;91(5):F333-6.
30 31	21. Kist-van Holthe JE, van Zwieten PH, Schell-Feith EA, Zonderland HM, Holscher HC,
32 33 34	Wolterbeek R, Veen S, Frolich M, van der Heijden BJ. Is nephrocalcinosis in preterm
35 36	neonates harmful for long-term blood pressure and renal function?. Pediatrics. 2007 Mar
37 38 39	1;119(3):468-75.
40 41	22. Keijzer-Veen MG, Kleinveld HA, Lequin MH, Dekker FW, Nauta J, de Rijke YB, van der
42 43 44	Heijden BJ. Renal function and size at young adult age after intrauterine growth
45 46	restriction and very premature birth. American Journal of Kidney Diseases. 2007 Oct
47 48 49	1;50(4):542-51.
49 50 51	23. Finken, M.J., Keijzer-Veen, M.G., Dekker, F.W., Frölich, M., Walther, F.J., Romijn, J.A., van
52 53	der Heijden, B.J. and Wit, J.M., 2008. Antenatal glucocorticoid treatment is not associated
54 55 56	with long-term metabolic risks in individuals born before 32 weeks of gestation. Archives
57 58 59	of Disease in Childhood-Fetal and Neonatal Edition, 93(6), pp.F442-F447.
60	

- 24. Rakow A, Johansson S, Legnevall L, Sevastik R, Celsi G, Norman M, Vanpée M. Renal volume and function in school-age children born preterm or small for gestational age. Pediatric Nephrology. 2008 Aug 1;23(8):1309.
- 25. Bacchetta J, Harambat J, Dubourg L, Guy B, Liutkus A, Canterino I, Kassaï B, Putet G, Cochat P. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney international. 2009 Aug 2;76(4):445-52.
- 26. Zaffanello M, Brugnara M, Bruno C, Franchi B, Talamini G, Guidi G, Cataldi L, Biban P, Mella R, Fanos V. Renal function and volume of infants born with a very low birth-weight: a preliminary cross-sectional study. Acta Paediatrica. 2010 Aug;99(8):1192-8.
- 27. Chan PY, Morris JM, Leslie GI, Kelly PJ, Gallery ED. The long-term effects of prematurity and intrauterine growth restriction on cardiovascular, renal, and metabolic function. International journal of pediatrics. 2009;2010.
- 28. Giapros V, Tsoni C, Challa A, Cholevas V, Argyropoulou M, Papadopoulou F, Siomou E, Drougia A, Andronikou S. Renal function and kidney length in preterm infants with nephrocalcinosis: a longitudinal study. Pediatric Nephrology. 2011 Oct 1;26(10):1873-80.
- 29. Carballo-Magdaleno D, Guízar-Mendoza JM, Amador-Licona N, Domínguez-Domínguez V. Renal function, renal volume, and blood pressure in infants with antecedent of antenatal steroids. Pediatric Nephrology. 2011 Oct 1;26(10):1851-6.
- 30. Starzec K, Klimek M, Grudzień A, Jagła M, Kwinta P. Longitudinal assessment of renal size and function in extremely low birth weight children at 7 and 11 years of age. Pediatric Nephrology. 2016 Nov 1;31(11):2119-26.
- 31. Bruel A, Rozé JC, Quere MP, Flamant C, Boivin M, Roussey-Kesler G, Allain-Launay E. Renal outcome in children born preterm with neonatal acute renal failure: IRENEO—a prospective controlled study. Pediatric Nephrology. 2016 Dec;31(12):2365-73.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

32	2. Maqsood S, Fung N, Chowdhary V, Raina R, Mhanna MJ. Outcome of extremely low birth
	weight infants with a history of neonatal acute kidney injury. Pediatric Nephrology. 2017
	Jun 1;32(6):1035-43.


- 33. Harer MW, Pope CF, Conaway MR, Charlton JR. Follow-up of Acute kidney injury in Neonates during Childhood Years (FANCY): a prospective cohort study. Pediatric Nephrology. 2017 Jun 1;32(6):1067-76.
- 34. Raaijmakers A, Zhang ZY, Levtchenko E, Simons SH, Cauwenberghs N, Van den Heuvel LP, Jacobs L, Staessen JA, Allegaert K. Ibuprofen exposure in early neonatal life does not affect renal function in young adolescence. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2018 Mar 1;103(2):F107-11.
- 35. Vollsæter M, Halvorsen T, Markestad T, Øymar K, Ueland PM, Meyer K, Midttun Ø, Bjørke-Monsen AL. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS One. 2018 Oct 12;13(10):e0205558.
- 36. South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Jensen ET, Shaltout HA, O'Shea TM, Washburn LK. Renal function and blood pressure are altered in adolescents born preterm. Pediatric Nephrology. 2019 Jan;34(1):137-44.
- 37. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. bmj. 2019 May 1;365.
- 38. Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatric Nephrology. 2019 Oct 1;34(10):1765-76.

- 39. Horie A, Abe Y, Koike D, Hirade T, Nariai A, Ito T, Katou F. Long-term renal follow up of preterm neonates born before 35 weeks of gestation. Pediatrics International. 2019 Dec;61(12):1244-9.
- 40. Crump C, Sundquist J, Sundquist K. Risk of hypertension into adulthood in persons born prematurely: a national cohort study. European heart journal. 2020 Apr 21;41(16):1542-50.
- 41. Kandasamy Y, Rudd D, Lumbers ER, Smith R. An evaluation of preterm kidney size and function over the first two years of life. Pediatric Nephrology. 2020 Apr 15:1-6.
- 42. Sanderson KR, Chang E, Bjornstad E, Hogan SL, Hu Y, Askenazi D, Fry RC, O'shea TM. Albuminuria, Hypertension, and Reduced Kidney Volumes in Adolescents Born Extremely Premature. Frontiers in Pediatrics. 2020;8.
- 43. Yael B, Roi T, Nir S, Esti D, Miriam D. Early Detection of Renal Dysfunction in Adolescents Aged 10-13 Years Born with very Low Birth Weight. Archives of Clinical and Biomedical Research. 2020;4(3):184-94.
- 44. Staub E, Urfer-Maurer N, Lemola S, Risch L, Evers KS, Welzel T, Pfister M. Comparison of Blood Pressure and Kidney Markers between Adolescent Former Preterm Infants and Term Controls. Children. 2020 Sep;7(9):141.
- 45. Askenazi DJ, Heagerty PJ, Schmicker RH, Brophy P, Juul SE, Goldstein SL, Hingorani S. The Impact of Erythropoietin on Short and Long-term Kidney-Related Outcomes in Extremely Low Gestational Age Neonates. Results of a Multi-center Double-Blind Placebo-Controlled Randomized Clinical Trial. The Journal of Pediatrics. 2021 Jan 20.
- 46. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013 http://www.ohri.ca/programs/clinical epidemiology/ oxford.asp.

BMJ Open

tor peer terier only

Figure 1: PRISMA Flow diagram

of 45						BMJ Open	ted studies ($n = 31$)
				Supplement	tary Table 1	– Characteristics of includ	ted studies $(n = 31)$
	Source (Y)	Sample Size	Birth weight (g) (study group)	Gestation (wks.) (study group)	Age at which outcomes measured (years)	Outcome measure (for example eGFR or BP or KV)	6 August 202
1	Downing et al (1992) ^[15]	Control N=7 (Premature no frusemide therapy and no renal calcifications) Group 2 N=10 (Premature frusemide therapy but no renal calcifications) Group 3 N=10 (Premature frusemide therapy and renal calcifications)	Control (743(84)) Group 2 (806(103)) Group 3 (678(95))	Control (25.3(0.6) Group 2 (26.1(0.5)) Group 3 (26.2(0.4))	Control (1.2(0.01)) Group 2 (1.3 (0.1)) Group 3 (1.2 (0.1))	Creatinine clearance Urinary calcium:creatinine ratio Fractional excretion of sodium Lower tubular reabsorption of phosphate Urine-blood difference in carbon dioxide tension after oral acetazolamide load Proteinuria	 No significant difference in renal function between the control group and group 2 In group 3, trace proprietinuria was present in 4/10 participants Creatinine clearance in group 3 was significantly lower than in the control group and group 2 Urinary calcium:creatinine ratios, fractional excretion of sodium and lower tubular re-absorption of phosphate was significantly higher in Group 3 compared to the group 2 and control group Group 3 had lower up ne-blood differences in carbon dioxide tension after oral acetazolamide load when compared to the controls and group 2
2	Jones et al (1997) ^[16]	Control Group (premature without renal calcifications) N=17 Study Group (premature with renal calcifications) N=11	Control (982 (710– 1760)) Study (850 (580– 1856))	Control (28 (25–31)) Study (27 (24–31))	4-5	eGFR Renal calcifications/ nephrocalcinosis	 In the study group the median GFR was 61 ml/min/1.73m2 (range 46-79 ml/min/1.73m2) Five of the 11 childred born premature and found to have renal calcifications, still had renal calcifications at age 4-5 years. Nephrocalcinosis in Eplation was not found to be a major predisposing factor to long term renal dysfunction Four out of the 11 premature babies with nephrocalcinosis had an abnormal GFR at 4-5 pears of age Two children from the collective premature cohort had microalbuminuria at 4-5 years of age

Page			BMJ Open						
wed higher mean serum cystatin concentrations than nd between the groups for mean serum protein, sodium, median plasma potassium concentrations, ne ratio and urine calcium:creatinine ratio.	The control group shows the study group No difference was for plasma creatinine and urine protein:creatine No statistical different between the two group Nil significant different Umbilical artery catho	•	Serum cystatin C and protein Plasma creatinine, sodium and potassium Urine PCR Urine alpha-1 microglobulin eGFR BP Renal sonography examination	2-4	Control Group (31 (24-32)) Study Group (28 (24-32))	Control Group (1360 (680– 2680)) Study Group (1150 (670– 2060))	Control Group N=35 (premature without perinatal indomethacin) Study Group N=31 (premature with perinatal indomethacin exposure)	Ojala et al (2001) ^[17]	3
ce was found between the normal GFR and low GFR come measure was 5.7+/-2.2 and 9.9+/-5.6 years y different between study participants and for 10 out of 20 of the participants. Participants with significantly higher urine protein/creatinine ratios cipants with normal GFR (n=7) at follow up.	groups, the age of our respectively. BP was not significant population norms Urine PCR was availab low GFR (n=3) had	•	Proteinuria Kidney function/kidney failure (eGFR, sCr) Renal size and mass BP Growth (height, weight and BMI) Nephrocalcinosis	3.1-18.3	25 (2)	686 (133)	N=20	Abitbol et al (2003) ^[18]	4
ce in BP, microalbuminuria, and renal length and tween the study and control groups nary calcium excretion and urinary phosphate santly higher in the study group than the control santly higher in the study group than the control controls controls ces were observed in microalbuminuria values, but 2.5%) presented values above the upper limit of	volume was found be Plasma creatinine, un excretion were signify group The study group had TmP/GFR compared No significant differen		BP Renal length and volume Plasma creatinine Estimated creatinine clearance TmP/GFR TRP Urinary phosphate excretion Urinary calcium excretion eGFR	Control Group (8.5 (1.8)) Study Group (8.6(1.8))	27.6 (23- 35)	845 (540- 1000)	Control Group N=43 Study Group N=40 (premature and weighing <1000g at birth)	Rodriguez- Soriano et al (2005) ^[19]	5
tces in GFR or urinary concentrating capacity between inderwent renal ultrasound were found to have osis by a median age of 6.75 years f hypercalciuria in both the control and study groups y may be a risk factor	No significant different the groups 75% of patients who resolved nephrocalc	•	Early morning urine osmolality Urine ACR and PCR Creatinine:phosphate ratio Creatinine:calcium ratio Beta microglobulin	Control Group (7.21 (6.38-7.68)) Study Group (6.69 (5.81- 7.09))	Control Group (28.5 (25-31)) Study Group (27.5 (25- 31)	Control Group (1210 (670- 1870)	Control Group N=14 (without nephrocalcinosis – matched for birth weight, gestational age and sex)	Porter et al (2006) ^[20]	6

Page 35 of 45

 3/bmjopen-20

	Study Group N=14 (very low birth weight, premature and with nephrocalcinosis)	Study Group (1180 (565- 1880)			UEC eGFR TmP/GFR Renal length Nephrocalcinosis	•	No evidence suggested that nephrocalcinosis is associated with long term renal dysfunction Nil significant difference in urine ACR and PCR in controls and patients
Kist-van Holthe et al (2007) ^[21]	Control N=32 (Premature without Nephrocalcinosis) Study Group N=42 (Premature with neonatal Nephrocalcinosis)	Control Group (1353 (337)) Study Group (1148 (394))	Control Group (29.8 (1.6)) Study Group (28.9 (2.3))	Control Group (7.5 (1.0)) Study Group (7.4 (1.0))	BP eGFR Tubular function Nephrocalcinosis Kidney length	•	There was no difference in the BP between the two groups Blood pressure in both groups was found to be higher than expected for otherwise healthy chedren The study group was found to have significantly more chronic renal insufficiency when compared to healthy children. This was not the case for the control group. Tubular function, unice albumin, kidney length and GFR was not significantly difference between the study and control groups Tubular phosphate reabsorption, plasma bicarbonate, and early-morning urine osmolality were significantly lower in both control and study groups
Keijzer- Veen et al (2007) ^[22]	Control (Term) N=30 Group 1 (Premature SGA) N=23 Group 2 (Premature AGA) N=29	Control (3632 (40.2)) Group 1 (859 (126)) Group 2 ((1489 (257))	Control (40.2 (1.3)) Group 1 (30.6 (1.0)) Group 2 (29.5 (1.4))	20	eGFR Serum urea sCr Serum electrolytes ERPF BP Albuminuria Kidney length and volume	·	when compared to otherwise healthy children Height, weight, kidney length and volume, GFR, and ERPF were significanth lower in the SGA group than in controls. After adjustment for body surface area, GFR did not differ significantly among groups. There was increased P in premature compared to controls Two participants from group 1 had microalbuminuria
Finken et al (2008) ^[23]	Control N=328 (premature and did not receive betamethasone) Study Group N=84	Control (1319 (337)) Study Group (1348 (275))	Control (29.7 (1.5)) Study Group (29.8 (1.5))	19	Body composition Insulin resistance Serum lipid profile BP eGFR	•	eGFR was found to be lower in 19-year-old born premature who received antenatal betamethatione This difference was conically irrelevant at age 19, however the decreased eGFR may increase the risk of chronic kidney disease long term

3 4

						BMJ Open		s/bmjopen-2020-0	Page 36 c
								7-2020-0	
		(premature and received betamethasone)						47770 on 6 Aug	
10	Rakow et al (2008) ^[24]	Control (term AGA) N=37 Group 1 (premature) N=39 Group 2 (term SGA) N=29	Control (3485 (502)) Group 1 (954 (203)) Group 2 (2436 (331))	Control (39.6 (1.0)) Group 1 (26.6 (2.0)) Group 2 (39.3 (1.4))	Control (9.8 (0.2)) Group 1 (9.6 (0.3)) Group 2 (9.8 (0.3))	eGFR Kidney volume sCr Serum Cystatin C BP Urinary ACR, Immunoglobulin G, alpha-1 microglobulin, N- acetylglucosamine	•	Estimated glomerula were similar betwee Kidney volume was sim the difference was no gender and age No significant differe volume or blood pre	filtration rate (eGFR) and urinary protein patterns the groups. aller in the premature group than in the controls, but significant when adjusted for body surface area, ces were found in renal function, urine ACR, renal ure between the three groups at school age.
11	Bacchetta et al (2009) ^[25]	Control (Premature normotrophic children) N=11 Group 1 (Premature EUGR) N=16 Group 2 (Premature IUGR) N=23	Control (1039 (278)) Group 1 (845(146)) Group 2 (773 (155))	Control (27.1 (1.8)) Group 1 (26.2(1.8)) Group 2 (28.2 (1.8))	Control (6.8 (0.9)) Group 1 (7.9 (1.3)) Group 2 (7.8 (1.3))	BP eGFR Microalbuminuria Urine calcium-creatinine ratio Kidney size	•	Nil significant differen groups EUGR was concluded premature children	nd 2 had decreased GFR compared to controls ce in blood pressure was found between the three as a risk factor for long term renal impairment in e entire cohort had moderate microalbuminuria
12	Zaffanello et al (2010) ^[26]	Group 1 (VLBW) N=43 Group 2 (ELBW) N=26	Group 1 (1315 (1248– 1352)) Group 2 (850 (775– 883))	Group 1 (30.1 (29.9– 31.3)) Group 2 (27.0 (26.3– 27.7))	Group 1 (5.4 (5.2–6.1)) Group 2 (5.3 (5.2–6.3))	Plasma creatinine concentration Plasma Cystatin C eGFR Plasma renin Urinary alpha 1-microglobulin Albuminuria Total kidney volume BP	•	albuminuria) did not	
								by copyright.	

Page 37 of 45

45						BMJ Open		°b mjop
								s/bmjopen-2020-
13	Chan et al	Control (Term AGA)	Control	Control (40	Control	ВР	•	Nil difference in GFR prior to giving participants a protein load.
	(2010) [27]	N=25	(3302	(38.5-41.0))	(13.6	Augmentation index	•	SGA had higher SBP and lower GFR following protein load than AGA. There
		Crown 1 (Dromoturo	(3105-	Group 1	(12.54-	eGFR following protein load		was no effect of prematurity on SBP or GFR
		Group 1 (Premature SGA) N=14	3690)) Group 1	(31(28.8- 31.0))	14.78)) Group 1	Plasma glucose Serum insulin levels		A
		3GA) N=14	(980(768-	Group 2 (30	(13.5	Serum insulin levels		suð
		Group 2 (Premature	1038))	(27.5-31.0))	(13.3			11 20
		AGA) N=25	Group 2	Group 3 (39	(12.48-			021
		//d//j //-25	(1635	(38.0-40.0)	Group 2			
		Group 3 (Term SGA)	(991-	(,	(14.1			
		N=7	1850))	U h	(13.66-			lloa
			Group 3		15.03))			August 2021. Downloaded from http:/
			(2750		Group 3			- fro
			(2430-		(13.6			ă -
			2870))		(12.35-	6		të shara
					14.83))			://b
14	Giapros et	Control Group	Control	Control	0.25, 0.5, 1,	sCr	٠	sCr and eGFR did not lifter between the groups at any time point
	al (2011) [28]	(Premature without	(1651	(31.9 (2.2))	2	eGFR	•	The NC group had a sourcer KL up to 12 months of life (left kidney) or 24
		nephrocalcinosis)	(430))			Fractional excretion of		months (right kidney)
		N=44		Study (31.8		sodium, potassium,	•	Nephrocalcinosis in premature infants was associated with renal tubular
			Study	(3))		phosphate, magnesium and		dysfunction and shorger kidney length in the first year of life
		Study Group	(1615			uric acid		on on
		(premature with	(480))			Kidney length		Ap
		nephrocalcinosis) N=63						April 20
15	Carballo-	Control N=30	Control	Control	Control (2.0	Renal volume	•	Groups 1 and 2, whe compared to the controls had higher BP, cystatin C
	Magdaleno		(3088	(38.6 (1.0))	(0.4))	eGFR		levels and GFR 24
	et al (2011)	Group 1 N=30	(177))	Group 1	Group 1 (1.8	Cystatin C	٠	No significant difference in these parameters was found between groups 1
	[29]	(premature and no	Group 1	(31.9 (2.3))	(0.5))	BP		and 2 C
		steroids)	(1669	Group 2	Group 2 (1.8		•	Concluded that prematurity (independent of antenatal steroids) was
		Crown 2 N=20	(426))	(31.3 (1.7))	(0.4))			associated with higher blood pressure levels, cystatin C levels and
		Group 2 N=30 (premature with	Group 2 (1501					glomerular filtration ក្តីtes in infants aged 12-36 months
		(premature with steroids)	(410))					ed by
			(++0))				1	
								copyright
								ý l

Page 3	i/bmjopen-2020-	BMJ Open						
ination revealed a significantly smaller renal volume ld ELBW children compared to the term controls were significantly higher in ELBW children than in of age, and this difference remained statistically of age ower in the extremely low birth weight group crols when assessed at 11 years	in the 7- and 11-year Serum cystatin C leves the controls at 7 year significant at 11 year GFR was significantly	Serum cystatin C levels sCr BUN eGFR Kidney length and width	7, 11	Control (40 (39–40)) Study (27 (25–28))	Control (3570 (3395– 3880)) Study (875 (750– 960))	Control (term) N=36 Study Group (ELBW) N=64	Starzec et al (2016) ^[30]	16
e in microalbuminuria or eGFR at the time of follow e in eGFR between groups. ificantly lower in the study group ture cohort, 10.8% had microalbuminuria and 23% significantly lower in children with VLBW <1000g t significantly difference between both groups	up No significant differe Renal volume was sign In the collective prema had diminished eGFR eGFR was noted to ba	eGFR BP ACR Albuminuria Microalbuminuria Renal volume	Control (7 (5-8)) Study (7 (5- 8))	Control (28(27-30)) Study (28 (26-29.2))	Control (1034 (853- 1348)) Study (815(708- 1110))	Control (premature without AKI) N=25 Study Group (premature with AKI) N=49	Bruel et al (2016) ^[31]	17
	however ELBW was no neonatal AKI	BP BMI Creatinine BUN eGFR	Control (6.6(2.5)) Group 1 (6.9(2.9)) Group 2 (8.3(3.3))	Control (26.8(2.3)) Group 1 (25.5(2.0)) Group 2 (25.3(1.9))	Control (813 (127)) Group 1 (725(140)) Group 2 (664(172))	Control (ELBW with no AKI) N=112 Group 1 (ELBW with AKI stage 1) N=87 Group 2 (ELBW with AKI Stages 2 and 3) N=23	Masqood et al (2017) ^[32]	18
difference in the cystatin C values when the e compared with the term infants. The premature higher mean cystatin C values that the term cohort fren with AKI had kidney dysfunction at a median 5 f premature children with no history of AKI has d 5 years. e in Urine PCR between groups	premature infants way groups combined had 65% of premature chir years of age and 14% kidney dysfunction age	eGFR Urine PCR BP Cystatin C Kidney size	Control Group 1 (5(4-5)) Group 2 (5(4-6))	Control Group 1 (25(24-26)) Group 2 (29(27-29))	Control Group 1 (790(730- 1018)) Group 2 (1040(855 -1443))	Control (term) Group 1 (premature VLBW with AKI) N=20	Harer et al (2017) ^[33]	19

Page 39 of	45						BMJ Open
1 2							
3 4 5 6 7 8			Group 2 (premature VLBW without AKI) N=14				
9 10 11 12	20	Raaijmakers et al (2017) ^[34]	Control = 45 (premature and exposed to ibuprofen)	815 (430- 1000)	27 (24-33)	0.75, 2, 11	eGFR-Cystatin C Renal length

f 45						BMJ Open		i/bmjope
								s/bmjopen-2020-0
		Group 2 (premature VLBW without AKI) N=14						47770 on 6 Aug
20	Raaijmakers et al (2017) ^[34]	Control = 45 (premature and exposed to ibuprofen) Study Group = 48 (premature and not exposed to ibuprofen)	815 (430- 1000)	27 (24-33)	0.75, 2, 11	eGFR-Cystatin C Renal length	•	There with no significant differences in renal length or eGFR-Cystatin C in young adolescence vero experienced neonatal ibuprofen exposure
21	Vollsaeter et al (2018) ^[35]	Control (Term Born AGA) N=54 Group 1 (Premature-born AGA) N=37 Group 2 (Premature-born SGA) N=20	Control (3701 (3582, 3581)) Group 1 (918 (867, 968)) Group 2 (724 (657, 791))	Control = Term born Group 1 (26.1 (25.7, 26.5) Group 2 (28.0 (27.2, 28.7)	Control (11.7 (11.2- 12.0)) Group 1 (11.4 (11.1- 11.8)) Group 2 (11.3 (11.0- 11.8))	Height Weight Abdominal circumference Triceps and subscapular skin fold thickness BP Plasma creatinine Cystatin C eGFR SDMA	•	SDMA levels were significantly higher Group 1 and 2 when compared to the controls GFR was significantly ower in Groups 1 and 2 compared to the controls No significant differences in creatinine or cystatin C between the groups Systolic BP had a significant relationship with fat mass indices but not renal function Systolic BP did not significantly differ between the groups Concluded that childen from Groups 1 and 2 (especially Group 2) had impaired renal function by 11 years of age (as shown by GFR and SDMA) Findings suggest being born premature or SGA increases risk of developing kidney disease in the uture
22	South et al (2019) ^[36]	Control (term) N=43 Study group (premature with VLBW) N=96	Control (3458 (451)) Study (1048 (276))	Control (39.7 (1.1)) Study (27.8 (2.6))	Control (14) Study (14)	BP ACR eGFR BMI BUN	•	Premature children Had significantly higher BP and significantly lower eGFR compared to the ter children at 14 years of age Albuminuria, ACR, creatinine and BUN were not significantly different
					·	·	•	d by copyright.

				BMJ Open		Page
3Crump et al (2019) [37]Extremely Premature N=8129Very premature N=43516Very premature N=43516Late premature N=155626Early term N=737412Full term N=2895746Full term N=346186	NA	Extremely Premature (22-27) Very premature (28-33) Late premature (34-36) Early term (37-38) Full term (39-41) Post-term	0-43	СКД	•	Premature and extremely premature birth were associated with twofold and threefold risks of KD respectively Premature birth and KD were found to have the strongest association at ages 0-9 years (hazaro ratio 5.09) and weakened but remained increased at ages >9 years (hazaro ratio 1.97 for 10-19 years and 1.34 for 20-43 years)
4 Rakow et al (2019) [38] Control N=19 4 Group 1 (Extremely premature and nephrocalcinosis) N=20 Group 2 (extremely premature and no nephrocalcinosis) N=21	Control (3586 (477)) Group 1 (755 (124)) Group 2 (841 (202))	(≥42) Control (39.7 (1.6)) Group 1 (25.5 (1.2)) Group 2 (25.9 (1.3))	Control (8.1 (2.2)) Group 1 (7.8 (1.0)) Group 2 (7.4 (1.1))	Kidney volume 24-hour ambulatory BP Cystatin C calculated eGFR Plasma creatinine Urinary PCR Urine electrolytes	•	Groups 1 and 2 had significantly smaller kidneys compared to the controls Cystatin C based GFR was significantly lower (however still normal) in groups 1 and 2 when compared to the control group Nil significant difference between kidney volume and function between Groups 1 and 2 The control groups had significantly higher plasma creatinine compared to groups 1 and 2 Urinary PCR and electrolytes were not significantly different between all groups BP was not significantly different between all groups Significantly more chedren from group 1 had a negative evolution of kidney function from the negnatal period to school age

Page 41 of 45

45						BMJ Open		s/bmjopen-2020
25	Horie et al (2019) ^[39]	Control Group (Premature and normal eGFR) N=150 Study Group (Premature and low eGFR) N=18	<1000g N=73 1000- 1500g N=76 >1500g N=19	<28+0 N=63 ≥28+0 N=105	2-15	sCr eGFR Gestational age Body weight and length at birth Sex Apgar score Use of antimicrobial agents, steroids or indomethacin	•	eGFR at 2 years of age was significantly correlated with birthweight and gestational age. This elationship was no longer significant at 3-4 years of age. 9 Approximately 10.7% of the children had low eGFR without clinical symptoms or abnormal urine examination. These children had high sCr on day 7 after birth and elayed recovery of these levels during the first mon after birth.
26	Crump et al (2019) ^[40]	Extremely Premature N=8324 Very premature N=44373 Late premature N=157342 Early term N=740391 Full term N=2896444 Post-term N=346195	NA	Extremely Premature (22-27) Very premature (28-33) Late premature (34-36) Early term (37-38) Full term (39-41) Post-term (≥ 42)	0-43	BP	•	In this study, prematore birth was associated with increased risk of hypertension in early adulthood Adjusted hazards rates for new-onset hypertension at 18-29 years of age associated with premature (<37 weeks) and extremely premature (22-27 weeks) were 1.28 and 2.45 respectively when compared to full term birth. At ages 30-43 years the adjusted hazards ratios were 1.25 and 1.68 respectfully for premature and extremely premature birth when compare to full term birth.
27	Kandasamy et al (2020) [41]	Control group (term) N=31 Study Group (premature) N=53	NA	Control = Born at term Study = <28	0.5, 1, 2	TKV eGFR Urine ACR BP	• •	The study group had a significantly reduced TKV compared to the controls Both groups had a significant eGFR No significant difference was found in BP and urine ACR between the groups

3 4

						BMJ Open		s/bmjopen-2020	. Page 42
28	Sanderson et al (2020) ^[42]	N=42 (premature)	770 (173.1)	25.7 (1.1)	15 (15, 15.3).	Albuminuria BP Kidney volume	• • •	11.9% of the cohort ka	me below the 10 th percentile of normative data at least one kidney abnormality (microalbuminuria,
29	Yael et al (2020) ^[43]	Control group = known paediatric population prevalence rates Study group (VLBW and premature) N = 103	Study Group (1086 (243))	Study Group (29.4 (24- 35))	Study Group (11.6 (10- 13.3))	BP Urine PCR Urine ACR eGFR	•	hypertension was 6.9% paediatric population hypertension. Hypertension was as weight compared to grams P=0.024) 103 study participan had normal values of	buminuria was 14.3% while the prevalence of
30	Staub et al (2020) ^[44]	Control Group (term) N=82 Study Group (premature) N=51	Control (3250 (555)) Study (1360 (532))	Control (39 + 6 (2 + 5)) Study (31 + 0 (2 + 6))	Control (12.1 (1.20)) Study (12.3 (1.87))	BP sCr Cystatin C eGFR Beta-2 Microglobulin Uromodulin Neutrophil gelatinase- associated lipocalin	•	boys, however there Low birth weight was In the premature group adolescent height we sCr and neutrophil ges in the premature group There was no significant 2024	nt difference in GFR between groups
31	Askenazi et al (2021) ^[45]	N=923 (extremely low gestational age)	801.1 (187.9)	24-27	1.83-2.17	eGFR Urine ACR BP	•	At 22-26 months 16%	ge 2 or 3 AKI was 18.2% had an eGFR <90mL/min/1.73m ² , 35.8% had elevated &BP > 95 th percentile for their age and 40% had a DBP e
								l by copyright.	

BMJ Open BMJ Open Abbreviations: BP (blood pressure), SBP (systolic blood pressure), DBP (diastolic blood pressure) eGFR (estimated glomerular filtration rate), BMI (body mass index), TmP (tubular maximum reabsorption of phosphate), sCr (serum creatinine), CKD (chor disease), ACR (albumin creatinine ratio), PCR (protein creatinine ratio), SDMA (Symmetric dimethylarginine), TKV (total kidney volume), IUGR (intrauterine growth retardation), EUGR (extrauterine growth retardation), SGA (small for gestational age), AGA (appropriate for gestational age), BUN (blood urea nitrogen), ERPF (effective renal plasma flow), AKI (acute kidney injury), VLBW (very low birth w sight), ELBW (extremely low birth ed from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright weight)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	1 renal insufficiency.mp. or exp Renal Insufficiency/ (188865)
22	2 chronic kidney disease.mp. or exp Renal Insufficiency, Chronic/ (136800)
23	3 exp Acute Kidney Injury/ or exp Renal Insufficiency, Chronic/ or kidney
24	function.mp. or exp Glomerular Filtration Rate/ (221756)
25	4 kidney failure.mp. (100456)
26	5 blood pressure.mp. or exp Blood Pressure/ (438835)
27	6 proteinuria.mp. or exp Proteinuria/ (60170)
28	7 albuminuria.mp. or exp Albuminuria/ (19579)
29	8 exp Hypertension/ (293215)
30	9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 (867063)
31	10 exp Premature Birth/ or exp Infant, Premature/ or exp Infant, Extremely
32	Premature/ or premature.mp. or exp Infant, Premature, Diseases/ (198355)
33	11 preterm birth.mp. (15605)
34	12 10 or 11 (202175)
35	13 term.mp. or exp Term Birth/ (1043152)
36	14 long term.mp. (735729)
37	15 long term adverse outcomes.mp. (286)
38	16 long term outcome.mp. (24999)
39	17 14 or 15 or 16 (735729)
40	18 9 and 12 and 13 and 17 (685)
41	19 limit 18 to (yr="1990 -Current" and english) (553)
42	
43	*******
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
55	
55	
56	
57	
58	
59	
60	

PRISMA 2009 Checklist

tudy eligibility ns; conclusions	Reported on page # 1/Title page 2
tudy eligibility ns; conclusions	page # 1/Title page
ns; conclusions	
ns; conclusions	
ns; conclusions	2
ns; conclusions	2
	5-6
entions,	2
available,	NA
years	7
hors to identify	7
that it could be	Supplementary File
and, if	7
) and any	7
assumptions	7
f whether this thesis.	7-8
	7
sures of	NA
av ye th ar ar ar f v	vailable, ears ors to identify hat it could be nd, if and any issumptions whether this lesis.

PRISMA 2009 Checklist

Page	1	of	2
i age		U.	~

		BMJ Open 36	Page 46 of
PRISMA 20	09		
		Page 1 of 2	
Section/topic	#	Checklist item 77	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7-8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NA
RESULTS	·	Dec	
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with $reasons$ for exclusions at each stage, ideally with a flow diagram.	10
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10 and Appendix A Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	16
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	18-19
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	20
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implication of the research.	18-20
FUNDING	I		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	21

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The BRISMA Statement. PLoS Med 6(6): e1000097.

For more information, visit: <u>www.prisma-statement.org</u>. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 2 of 2