Interventions designed to increase the uptake of lung cancer screening and implications for priority populations: a scoping review protocol

Ambreen Sayani,1,2 Muhanad Ahmed Ali,3 Ann Marie Corrado1,3 Carolyn Ziegler,4 Alex Sadler,1 Christina Williams,1 Aisha Lofters1,2,3,5,6,7,8

ABSTRACT

Background When designing any health intervention, it is important to respond to the unequal determinants of health by prioritising the allocation of resources and tailoring interventions based on the disproportionate burden of illness. This approach, called the targeting of priority populations, can prevent a widening of health inequities, particularly those inequities which can be further widened by differences in the uptake of an intervention. The objective of this scoping review is to describe intervention(s) designed to increase the uptake of lung cancer screening, including the health impact on priority populations and to describe knowledge and implementation gaps to inform the design of equitable lung cancer screening.

Methods We will conduct a scoping review following the methodological framework developed by Arksey and O’Malley. We will conduct comprehensive searches for lung cancer screening promotion interventions in Ovid Medline, Embase, the Cochrane Library, Cumulative Index to Nursing & Allied Health (CINAHL) and Scopus. We will include published English language peer-reviewed and grey literature published between January 2000 and 2020 that describe an intervention designed to increase the uptake of low-dose CT (LDCT) lung cancer screening in the Organization for Economic Cooperation and Development countries. Articles not in English or not describing LDCT will be excluded. Three authors will review retrieved literature in three steps: title, abstract and then full text. Three additional authors will review discrepancies. Authors will extract data from full-text papers into a chart adapted from the Template for Intervention Description and Replication checklist, the Consolidated Standards of Reporting Trials and a Health Equity Impact Assessment tool. Findings will be presented using a narrative synthesis.

Ethics and dissemination The knowledge synthesised will be used to inform the equitable design of lung cancer screening and disseminated through conferences, publications and shared with relevant partners. The study does not require research ethics approval as literature is available online.

BACKGROUND

Lung cancer is the most commonly diagnosed cancer in Canada and is responsible for a quarter of all cancer-related deaths in the country.1 Lung cancer associated mortality is typically linked to advanced stage tumours and therefore screening for early-stage and curable lung cancer with the use of low-dose CT (LDCT) is an important way to potentially reduce mortality.2 3 Organised lung cancer screening through public health programmes is currently a health system priority in Canada4 and is being initiated in the provinces of Ontario and British Columbia.5 6

Lung cancer screening is offered to individuals who are considered high risk based on age (between 55 and 74 years) and pack-year smoking history (30 pack years, with pack year defined as the (average number of cigarette packs smoked daily) × (number of years smoking)).7 Significantly, the unequal distribution of the social determinants of health which underpin smoking behaviour are clustered together with differences in the ability to access healthcare8 leading to inequities.
in lung cancer risk and mortality. Conditions of social disadvantage lead to economic, structural and geographical barriers to healthcare for certain population groups. As a result, individuals living with greater degrees of social disadvantage such as low income are more likely to be smoking, face a higher risk of developing lung cancer, are less likely to participate in lung cancer screening and have a higher rate of mortality due to lung cancer.

In Canada, historical injustice and discrimination against Indigenous populations, a shortage of specialised services in rural and remote geographical areas and stigma associated with smoking and poverty create specific barriers to lung cancer screening participation. These populations, described as priority populations, require action at the policy and systems level to reduce lung cancer risk, as well as specific interventions designed to increase access to and uptake of lung cancer screening to promote early detection of lung cancer. The proactive design of interventions to increase the uptake of lung cancer screening among populations experiencing the greatest health inequities is described as a priority populations approach (see box 1). Such an approach, places an emphasis on the reallocation of resources and services based on expected need, higher burden of illness, and barriers to care in order to prevent a widening of health inequities which are rooted in social inequities.

Interventions designed to improve the uptake of lung cancer screening are more likely to promote equitable health outcomes if a priority population approach is applied. However, little is currently known about the range and nature of interventions which have been designed to enhance the uptake of lung cancer screening and what impact they have on priority populations (intended/unintended and positive/negative). This knowledge is important to illuminate potential gaps in health service design and prevent a further widening of health inequities as a result of lung cancer screening interventions.

METHODS

We are following the research approach that conforms with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews. Methodologically, scoping reviews can be used to assess literature for the breadth and depth of knowledge in a given field. Specifically, scoping reviews can be used to develop new understandings by searching, selecting and synthesising key concepts, ideologies and gaps in an area without emphasis on the quality of published literature.

Publishing this protocol is a critical step in documenting our scoping review plan. Specifically, this paper will use the methodological framework developed by Arksey and O’Malley to guide the six stages of our scoping study design as outlined below:

Stage 1: identification of the research question

The objective of this scoping study is to provide an overview of existing interventions designed to increase the uptake of lung cancer screening and the potential impact on priority populations. This will illuminate implementation gaps for priority populations in order to inform the design and delivery of equitable lung cancer screening.

Our scoping review will address the following research questions:

1. What interventions have been implemented to increase the uptake of lung cancer screening in the Organization for Economic Cooperation and Development (OECD) countries (including study design, population, nature of intervention and outcome measures), and were these interventions effective?
2. What are the health impacts of the intervention (intended/unintended and positive/negative) on priority populations?
3. What knowledge and implementation gaps can we identify to inform the equitable design of lung cancer screening?

Stage 2: identifying relevant studies

All named authors have participated in an iterative process to develop the initial search strategy beginning in July 2020. This includes identifying key terms, inclusion and exclusion criteria and relevant databases. The following databases will be used to conduct the peer-reviewed literature search: Ovid Medline, Embase, the Cochrane Library, CINAHL and Scopus. The search strategies, adapted for each database, will use a comprehensive combination of subject headings and keywords for the concepts lung cancer screening and health promotion interventions. The detailed Medline search strategy can be found in (online supplemental file 1). Additionally, grey literature documents related to lung cancer screening interventions and pilot programmes (ie, policy documents and reports) will be identified using government and institutional websites. The search strategy has been peer reviewed by another librarian external to the study team using the Canadian Agency for Drugs and Technologies in Health Peer Review of Electronic Search Strategies Checklist.

Stage 3: study selection

We will select articles published between January 2000 and 2020. Clinical trials evaluating LDCT for lung cancer screening to detect early-stage tumours began in the early 2000s and therefore we do not expect...
Table 1 Data extraction chart

<table>
<thead>
<tr>
<th>Domain name</th>
<th>Domain description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template for intervention description and replication checklist</td>
<td></td>
</tr>
<tr>
<td>Author's name</td>
<td>Name of study authors. If there are more than three authors, only list the first author's last name followed by 'et al'.</td>
</tr>
<tr>
<td>Year of publication</td>
<td>The year the study was published</td>
</tr>
<tr>
<td>Study location</td>
<td>The location geographical location where the study was conducted (ie, Canada, UK, USA, etc).</td>
</tr>
<tr>
<td>Intervention location</td>
<td>The study location where the intervention was implemented (i.e community health centre, healthcare clinic, hospital, etc).</td>
</tr>
<tr>
<td>Proposed aim of the study</td>
<td>Describe any rationale, theory, or goal of the elements essential to the intervention.</td>
</tr>
<tr>
<td>Intervention materials</td>
<td>Describe any physical or informational materials used in the intervention, including those provided to participants or used in intervention delivery or in training of intervention providers. Provide information on where the materials can be accessed (such as online appendix, URL).</td>
</tr>
<tr>
<td>Intervention procedure</td>
<td>Describe each of the procedures, activities and/or processes used in the intervention, including control/comparison groups any enabling or supporting activities. Also describe the number of times the intervention was delivered and over what period of time (ie, the number of sessions, their schedule, and their duration, intensity or dose).</td>
</tr>
<tr>
<td>Intervention delivery</td>
<td>Describe the modes of delivery (such as face to face or by some other mechanism, such as internet or telephone) of the intervention and whether it was provided individually or in a group.</td>
</tr>
<tr>
<td>Characteristic of intervention provider</td>
<td>For each category of intervention provider (such as psychologist, nursing assistant), describe their expertise, background and any specific training given.</td>
</tr>
<tr>
<td>Tailoring</td>
<td>If the intervention was planned to be personalized, titrated or adapted, then describe what, why, when and how.</td>
</tr>
<tr>
<td>Consolidated standards of reporting trials</td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td>Completely defined prespecified primary and secondary outcome measures, including how and when they were defined, monitored and assessed.</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Identify whether the intervention was successful in increasing uptake of lung cancer screening or other related outcome measures such as program drop-out and retention.</td>
</tr>
<tr>
<td>Limitation</td>
<td>Identify limitations of the intervention, including potential bias, imprecision, and so on.</td>
</tr>
<tr>
<td>Generalisability</td>
<td>External validity, applicability of the trial findings.</td>
</tr>
<tr>
<td>Interpretation</td>
<td>Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence.</td>
</tr>
<tr>
<td>Health equity impact assessment</td>
<td></td>
</tr>
<tr>
<td>Target population of intervention</td>
<td>Describe the population(s) that are the focus of the intervention including any characteristics related to age, gender, ethnicity, and so on.</td>
</tr>
<tr>
<td>Determinants of health</td>
<td>Identify determinants and health inequities to be considered alongside the populations targeted for the intervention.</td>
</tr>
<tr>
<td>Priority population*</td>
<td>Identify the priority population(s) that may experience significant, intended and unintended health impacts (negative or positive) as a result of the planned intervention.</td>
</tr>
<tr>
<td>Positive impacts</td>
<td>Identify both intended and unintended positive impacts of the intervention on priority populations (ie. attitude change, quality of life, smoking cessation, etc).</td>
</tr>
<tr>
<td>Negative impacts</td>
<td>Identify both intended and unintended negative impacts of the intervention on priority populations (ie. out-of-pocket expenses, time off work to get to appointments, travel distance to screening site).</td>
</tr>
<tr>
<td>Analysis</td>
<td>Describe the health equity implications of the intervention.</td>
</tr>
</tbody>
</table>
to find any relevant literature prior to the year 2000. We will include all published literature in the English language that focuses on lung cancer screening with LDCT that describes an intervention designed to increase the uptake of lung cancer screening. We will include interventions that occurred in jurisdictions similar to the Canadian context that is, jurisdictions that are members, or that are in countries that are members, of the OECD. We will include peer-reviewed publications, abstracts, dissertations; or grey literature, such as government documents, conference proceedings and institutional repositories. Three researchers (MA, ALS, CW) will independently screen the titles and abstracts for each citation to identify articles eligible for full-text review. Discrepancies will be discussed and resolved through consultation with the larger team (AS, AMC, AL). All eligible publications will proceed to full-text review and data extraction.

Stage 4: charting the data

Data from included publications will be extracted and charted in a template (table 1) adapted from the Template for Intervention Description and Repub-

lication checklist, the Consolidated Standards of Reporting Trials, and the Ontario Ministry of Health’s Health Equity Impact Assessment (HEIA) tool. As a first step, data will be descriptively charted from the literature, including the target population of the intervention, characteristics of the intervention (including the integration of smoking cessation programmes if any) and reported effectiveness measures. Subsequently, the study team will use the HEIA tool to chart intended/unintended and positive/negative impacts of each intervention on priority populations. Team members will independently chart the first three articles and review as a larger team for discrepancies. The remaining articles will be distributed for data charting and the full team will meet for regular scheduled review to guide the process. Any remaining discrepancies will be resolved by team members (AS and AL).

Stage 5: collating, summarising and reporting the results

The findings from the scoping review will be presented using a narrative synthesis. Specifically, we will summarise and synthesise the data extracted from the studies and illuminate any knowledge and implementation gaps for priority populations. This knowledge can promote the equitable design of future lung cancer screening interventions given the disproportionate burden of lung cancer in populations experiencing varying degrees of social disadvantage. We anticipate concluding our study by December 2021.

Patient and public involvement

Our study design and research questions have been informed through formal and informal consultations with patients, community partners and decision-makers at the federal and provincial level. We will consult stakeholders involved in the implementation of lung cancer screening in Canada in the analysis of our findings. We will involve patients in the identification of appropriate knowledge dissemination tools.

Ethics and dissemination

No ethics approval was needed for this study as data will be collected from publicly available literature. Once published, the data will be shared with relevant stakeholders and community members at large, including dissemination through peer-reviewed journals and conference presentations.

Author affiliations

1Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario, Canada
2MAP—Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Ontario, Canada
3Peter Gilgan Centre for Women’s Cancers, Women’s College Hospital, Toronto, Ontario, Canada
4Library Services, Unity Health Toronto, Toronto, Ontario, Canada
5ICES, Toronto, Ontario, Canada
6Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
7Department of Family Medicine, Women’s College Hospital, Toronto, Ontario, Canada
8Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada

Twitter Ambreen Sayani @SayaniAmbreen

Acknowledgements AS is supported by a Postdoctoral Award in patient-oriented research from the Canadian Institutes of Health Research. AL and AMC are supported by the Peter Gilgan Centre for Women’s Cancers at Women’s College Hospital, in partnership with the Canadian Cancer Society.

Contributors AS, AMC, CZ and AL contributed to the study conception and design. The first draft of the manuscript was written by AS and MAA, ALS, AMC, CZ and AL commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This study is supported by grant #705592 from the Canadian Institutes of Health Research and Canadian Cancer Society.

Disclaimer The funding body had no role in the design of the study and writing of the manuscript.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Ambreen Sayani http://orcid.org/0000-0001-5391-7769

REFERENCES

Database: Ovid MEDLINE: Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE® <1946-Present>

Search Strategy:

1 exp Lung Neoplasms/ (243663)
2 ((lung or pulmonary or bronch*) adj2 (cancer* or neoplasm* or carcino*)).tw,kf. (215245)
3 1 or 2 (312518)
4 mass screening/ (107814)
5 "Early Detection of Cancer"/ (28568)
6 mass chest x-ray/ (1933)
7 low dose computed tomography.tw,kf. (1491)
8 low-dose chest CT.tw,kf. (253)
9 low-dose CT.tw,kf. (2181)
10 LDCT.tw,kf. (987)
11 sputum cytology.tw,kf. (725)
12 screen*.tw,kf. (817195)
13 or/4-12 (858187)
14 3 and 13 (15986)
15 Health Promotion/ (76510)
16 Mass Media/ (11416)
17 Patient Education as Topic/ (86878)
18 Reminder Systems/ (3624)
19 "Appointments and Schedules"/ (9316)
20 "patient acceptance of health care"/ or patient compliance/ or patient participation/ or Decision Making, Shared/ (134088)
21 health communication/ or persuasive communication/ (6425)
22 health education/ or exp consumer health information/ or health fairs/ (72238)
23 "marketing of health services"/ or social marketing/ (17178)
24 Social Media/ (10230)
25 exp Correspondence as Topic/ (8353)
26 Community Health Workers/ (5652)
27 Patient Navigation/ (841)
28 (reminder* or incentive* or participation or uptake or outreach or campaign* or media or invit* or letter* or mail* or phone or telephon* or text messag* or recall or email* or e-mail* or appointment* or compliance or adherence or attend* or health education or health fair or health fairs or health promotion or marketing or decision aid* or patient education or consumer health or (screen* adj4 intervention*)).tw,kf. (1718647)
29 (community health navigat* or patient navigat* or community health worker* or Lay health advisor* or lay health worker* or Community Health Advisor* or community based or behavioral intervention* or behavioural intervention* or shared decision*).tw,kf. (91519)
30 or/15-29 (2008885)
31 14 and 30 (1531)
32 31 not (Animals/ not (Animals/ and Humans/)) (1525)
33 limit 32 to english language (1445)
34 limit 33 to (case reports or comment or editorial or letter) (76)
35 33 not 34 (1369)
Ten-year assessment of a cancer fast-track programme to connect primary care with oncology: reducing time from initial symptoms to diagnosis and treatment initiation.

Source
Esmo Open. 6(3):100148, 2021 May 11.

Abbreviated Source
ESMO open. 6(3):100148, 2021 May 11.

Status
From MEDLINE, a database of the U.S. National Library of Medicine.

Authors
Martinez MT; Monton-Bueno J; Simon S; Ortega B; Moragon S; Rosello S; Insa A; Navarro J; Sanmartin A; Julve A; Buch E; Pena A; Franco J; Martinez-Jabaloyas J; Marco J; Forner MJ; Cano A; Silvestre A; Teruel A; Lluch A; Cervantes A; Chirivella Gonzalez I.

Institution
Martinez, M T. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Monton-Bueno, J. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Simon, S. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Ortega, B. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Moragon, S. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Rosello, S. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
Insa, A. Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
Navarro, J. Management Department, Hospital Clinico Universitario de Valencia, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERESP (CIBER de Epidemiologia y Salud Publica), Centro Nacional de
primary care

Abstract

BACKGROUND: Cancer is the second leading cause of mortality worldwide. Integrating different levels of care by implementing screening programmes, extending diagnostic tools and applying therapeutic advances may increase survival. We implemented a cancer fast-track programme (CFP) to shorten the time between suspected cancer symptoms, diagnosis and therapy initiation.

PATIENTS AND METHODS: Descriptive data were collected from the 10 years since the CFP was implemented (2009-2019) at the Clinico-Malvarrosa Health Department in Valencia, Spain. General practitioners (GPs), an oncology coordinator and 11 specialists designed guidelines for GP patient referral to the CFP, including criteria for breast, digestive, gynaecological, lung, urological, dermatological, head and neck, and soft tissue cancers. Patients with enlarged lymph nodes and constitutional symptoms were also considered. On identifying patients with suspected cancer, GPs sent a case proposal to the oncology coordinator. If criteria were met, an appointment was quickly made with the patient. We analysed the timeline of each stage of the process.

RESULTS: A total of 4493 suspected cancer cases were submitted to the CFP, of whom 4019 were seen by the corresponding specialist. Cancer was confirmed in 1098 (27.3%) patients: breast cancer in 33%, urological cancers in 22%, gastrointestinal cancer in 19% and lung cancer in 15%. The median time from submission to cancer testing was 11 days, and diagnosis was reached in a median of 19 days. Treatment was started at a median of 34 days from diagnosis.

CONCLUSIONS: The findings of this study show that the interval from GP patient referral to specialist testing, cancer diagnosis and start of therapy can be reduced. Implementation of the CFP enabled most patients to begin curative intended treatment, and required only minimal resources in our setting. Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Conflict of Interest
Disclosure AC declares institutional research funding from Genentech, Merck Serono, BMS, MSD, Roche, BeiGene, Bayer, Servier, Natera, Lilly, Novartis, Takeda, Astellas, Takeda and FibroGen and serves on the advisory board or receives speaker fees from Amgen, Merck Serono and Roche in the last 5 years. Remaining authors have no conflicts of interest to declare.

ISSN Electronic
2059-7029

ISSN Linking
2059-7029

Publisher Item Identifier
S2059-7029(21)00108-3

Digital Object Identifier
https://dx.doi.org/10.1016/j.esmoop.2021.100148

Publication Type
Journal Article.

Article Identifier
S2059-7029(21)00108-3 [pii]