BMJ Open Consistency of causal claims in observational studies: a review of papers published in a general medical journal

Camila Olarte Parra © © , ${ }^{1,2}$ Lorenzo Bertizzolo © (${ }^{2,3}$ Sara Schroter (©), ${ }^{4}$ Agnès Dechartres, ${ }^{5}$ Els Goetghebeur ${ }^{1}$

To cite: Olarte Parra C, Bertizzolo L, Schroter S, et al. Consistency of causal claims in observational studies: a review of papers published in a general medical journal. BMJ Open 2021;11:0043339. doi:10.1136/ bmjopen-2020-043339

- Prepublication history and additional supplemental material for this paper are available online. To view these files, please visit the journal online (http://dx.doi.org/10.1136/ bmjopen-2020-043339).

Received 02 August 2020
Revised 13 April 2021
Accepted 15 April 2021
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.
${ }^{1}$ Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
${ }^{2}$ Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
${ }^{3} \mathrm{U}$ 1153, Equipe Methods, INSERM, Paris, France ${ }^{4}$ Editorial, BMJ, London, UK
${ }^{5}$ Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP. Sorbonne Université, Hôpital Pitié Salpêtrière, Département de Santé Publique, F75013, Paris, France

Correspondence to

Dr Camila Olarte Parra; Camila.OlarteParra@UGent.be

Abstract

Objective To evaluate the consistency of causal statements in observational studies published in The BMJ. Design Review of observational studies published in a general medical journal. Data source Cohort and other longitudinal studies describing an exposure-outcome relationship published in The BMJ in 2018. We also had access to the submitted papers and reviewer reports. Main outcome measures Proportion of published research papers with 'inconsistent' use of causal language. Papers where language was consistently causal or non-causal were classified as 'consistently causal' or 'consistently not causal', respectively. For the 'inconsistent' papers, we then compared the published and submitted version. Results Of 151 published research papers, 60 described eligible studies. Of these 60 , we classified the causal language used as 'consistently causal' (48\%), 'inconsistent' (20\%) and 'consistently not causal'(32\%). Eleven out of 12 (92\%) of the 'inconsistent' papers were already inconsistent on submission. The inconsistencies found in both submitted and published versions were mainly due to mismatches between objectives and conclusions. One section might be carefully phrased in terms of association while the other presented causal language. When identifying only an association, some authors jumped to recommending acting on the findings as if motivated by the evidence presented. Conclusion Further guidance is necessary for authors on what constitutes a causal statement and how to justify or discuss assumptions involved. Based on screening these papers, we provide a list of expressions beyond the obvious 'cause' word which may inspire a useful more comprehensive compendium on causal language.

INTRODUCTION

Many researchers remain tempted to draw causal conclusions from observational data despite acknowledging that mere association is not causation because causal inference is the ultimate goal of most clinical and public health research. ${ }^{1}{ }^{2}$ Gold-standard answers are typically sought through randomised controlled trials (RCTs). The unique ability of RCTs to avoid confounding bias ${ }^{3}$ has led to demands that empirical research must

Strengths and limitations of this study

- By evaluating published observational studies in a general medical journal, we provided relevant examples of (ambiguous) causal statements.
- We focused on the abstract where clear messages are especially important, as many readers start by screening the abstract of the study.
- Comparing the submitted and published versions of the abstract allowed us to identify whether any causal claims were made or not as a result of the peer-review process.
- The focus on the use of causal language rather than the specific methods avoided discussion on the validity of underlying assumptions justifying causal inference in the setting studied.
- Assessing observational studies from a single journal allowed us to flag the inconsistent use of causal claims in this context, but not to estimate its prevalence more generally.
be drawn from randomised studies to justify causal statements. ${ }^{4-6}$ RCTs are mainly used to assess the effect of a treatment or intervention but are not easily adapted to evaluate prognostic or risk factors rather than interventions.

There are however good reasons to look beyond RCTs for evidence on treatment effects. In many settings, RCTs are not feasible, ethical or timely and thus observational data are all that is available for some time, as in the recent COVID-19 crisis. Furthermore, observational studies typically involve broader realworld contexts than RCTs, where the costs and risks of experimentation suggest studying high-risk patients without major comorbidities. ${ }^{7}$ This selection challenges generalisation to the target population. Highly selected populations with a usually short follow-up, render RCTs inappropriate to evaluate (longterm) unintended side effects. Trials further suffer from treatment non-compliance which complicates analysis, as treatment-specific populations lose the benefit of randomisation.

Recent International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) E9 guidelines therefore emphasise the importance of causal estimands beyond intention-to-treat, such as perprotocol and as-treated analysis. ${ }^{89}$

Deliberately avoiding causal statements on a hoped-for causal answer brings ambiguity and contrived reporting. ${ }^{1011}$ Instead, authors should openly discuss the likely distance in meaning and magnitude between the data-based measure they are able to estimate and the desired targeted causal effect. Arguments would consider study design with additional assumptions in context. ${ }^{12}$ Owing to decades of progress in statistical science (involving potential outcomes, directed acyclic graphs, propensity scores and more), ${ }^{13}$ this allows for results, often unreachable by randomised trials, with a justified causal interpretation. ${ }^{14}$

In 2010, Cofield et at ${ }^{5}$ assessed the use of causal language in observational studies in nutrition but deemed causal language inappropriate for all observational studies. In 2017, Adams et al ${ }^{15}$ also considered that only RCTs allowed for causal inference, in their study assessing how people understand causal expressions in the news. From a different angle, Haber et al ${ }^{16}$ examined whether the tone and strength of causal claims made in a given paper matched the language describing the findings in social media. Not surprisingly, they found stronger causal statements in the media in half of the cases, emphasising the importance of clear scientific messages.

To promote this, Lederer et $a l^{17}$ recently published a guide for authors and editors on how to report causal studies in respiratory, sleep and critical care journals. Rather than circumventing the problem by asking to avoid causal language, they provide key elements that ensure valid causal claims. ${ }^{18}$ Besides briefly explaining causal inference, they provide a definition of a confounder, outline how to identify confounding through so-called directed acyclic graphs and discuss how p values are often misinterpreted and how their value does not reflect the magnitude, direction or clinical importance of a given association. All these elements empower their target audience to critically assess observational studies.

To find out whether and how statements in study reports present confusing use of causal language (or lack thereof), we examined research papers concerned with exposures and outcomes published in The BMJin 2018. Our focus was on the causal message The $B M J$ readers receive from these papers, particularly from the abstract. We evaluate the consistency of causal statements in the published abstracts of observational studies, whether this consistency was a reflection of the full text and if any a priori changes had been made as a result of the peer-review process.

METHODS

Sampling and inclusion criteria
COP identified all original research articles published in The BMJin 2018 described as either cohort or longitudinal
studies in the study design section of the abstract. The eligible studies were identified by statements in this section of the abstract such as 'cohort', 'longitudinal' or 'registry-based'. Those identified as 'observational' were included if they suggested a period of follow-up rather than being cross-sectional. Articles described as case cohorts were excluded as their interpretation and analysis differs from other studies with follow-up assessing the exposure-outcome relationship.

Assessment of published abstracts

Two reviewers (COP, LB) independently screened the published abstracts of the eligible papers. For the text included under each of the subheadings in the abstract (objective, design, setting, participants, outcome, results, conclusion), the reviewers assessed whether there was an (implicit) causal (cl)aim using a yes/no/unclear response. After assessing each separate subheading, each reviewer then gave an overall assessment of the main claims in the paper's abstract as either 'consistently causal', 'inconsistent' or 'consistently not causal'. After the independent assessments, the overall rating of the abstract was compared between both reviewers; where there was disagreement, a third reviewer (EG) was consulted and a consensus reached.

Assessment of published full text

We further evaluated the full published text of all eligible papers to identify the statistical methods applied and any further causal claims. In particular, we looked for statements that would support or undermine a causal aim, including confounding adjustment, discussing residual confounding, exchangeability and issues of transportability. We randomly divided the papers between the two reviewers (COP, LB) for this assessment. For each paper, we extracted statements where authors described the statistical method and method for confounding adjustment, if any. We then extracted the sentences summarising the results and conclusions to highlight any causal claims.

Assessment of initially submitted abstract version

As the focus of this paper is to highlight ambiguous use of causal language, we further assessed those articles judged as 'inconsistent' to see if there were changes introduced to the manuscript between submission and publication, leading to this inconsistent use of causal language. For this subset, we obtained the submitted version of the manuscripts and the associated peer reviewers' comments from The BMJs manuscript tracking system. We then compared the published version with the first submitted version of the abstract to identify whether the same wording related to causal claims appeared in the submitted version and whether changes occurred as a result of comments from peer reviewers and editors, as indicated in the corresponding peer-review reports.

The same reviewers (COP, LB) independently evaluated the submitted versions of the abstracts. The reviewers assessed whether the content under each subheading of
the submitted abstract differed from the published version. Where there were discrepancies between versions, each reviewer indicated the presence of a causal claim as yes/ no/unclear for each abstract subheading (title, objective, design, setting, participants, outcome, results, conclusion) and made an overall assessment of the submitted abstract as either 'consistently causal', 'inconsistent' or 'consistently not causal'. As before, the assessments were compared and, in cases of disagreement, a third reviewer (EG) was consulted and consensus reached.

Patient and public involvement

Patients were not involved in the design, analysis or interpretation of the study. Patients were not participants in this study; it was a methodological study (research on research). Patients' opinions of causal statements and the use of ambiguous language in research papers is important and further work in this area partnered by patients is important.

RESULTS

Assessment of published abstracts

In 2018, 151 research papers were published in The BMJ, of which 60 (40%) were eligible for inclusion in our study. We identified 29 studies (48%) reporting causal language consistently. A further 12 (20\%) studies were considered inconsistent mainly because the objective stated the evaluation of an association while the conclusion presented a causal finding $(9 / 12)$ or the opposite $(3 / 12)$. Finally, there were papers that described studies aiming for prediction or reporting associations without (implicitly) suggesting that they had a causal nature that were considered consistently not causal ($\mathrm{n}=19,32 \%$). Table 1 shows sample excerpts from the published abstracts that were evaluated. Each row corresponds to statements from the same study. The first column indicates the assigned category, based on the type of association it describes. The last column explains why a given abstract was considered to belong to the assigned category. As the assessment pertains to causal claims in general, the words referring to the particular topic of the corresponding study were removed from the statements. The examples shown are not an exhaustive list, but were chosen to illustrate the different phrasing of statements belonging to the different categories. It is worth noting that the statements presented correspond to the objective and conclusion subheadings of the abstract. When assessing the abstracts, we identified that these were the subheadings under which the information to classify the abstract was mainly found. Other subheadings like design, setting and participants were not as relevant for this purpose, but were also assessed.

To further illustrate how statements in these two sections can be misleading, we tabulated a few examples in a 2 by 2 table showing mismatches between what was reported in the objectives and conclusion resulting in
the paper being categorised as either 'consistently (not) causal' or 'inconsistent' (table 2).

Assessment of published full text

Table A in online supplemental material presents statements found in both the published abstract and published full text of each of these papers ($\mathrm{n}=60$) regarding the statistical method used and considerations suggesting a causal aim or otherwise. Each row corresponds to a different study. The papers are grouped according to the category to which the corresponding abstract was assigned to. The particular causal or non-causal wording is highlighted in bold. A brief description on the consistency of causal language is provided in the last column of table, labelled 'Comment'.

We found that all papers classified as 'consistently causal' based on the abstract, also used causal language and contained causal statements in the full text. This was additionally the case with more than half $(11 / 19)$ of the abstracts classified as 'consistently not causal', where even though the abstract was carefully phrased in terms of association, the authors applied causal methods, discussed residual confounding, biological plausibility or a doseresponse relationship suggesting a causal aim.

In the previous section, we referred to three abstracts that had a clear causal objective but a non-causal conclusion. In the full text of these papers, the authors discussed concerns of residual confounding which explains why they decided to play down the conclusion.

Looking at the 'Methods' section in the full text of the abstracts classified as 'inconsistent', we found that 11 of the 12 provided adjusted estimates. Most of the studies ($8 / 12,67 \%$) used outcome regression models, mainly Cox proportional hazard models, or (propensity score) matching (3/12, 25\%).

Assessment of submitted abstract version

Of the 12 published abstracts classified as 'inconsistent', we further classified $11 / 12(92 \%)$ as also inconsistent on submission. There was only one study where the submitted version of the abstract described a different type of association. In this case, the conclusion of both the submitted and published versions was rather conservative by stating that the intervention was 'independently associated' with the outcome. The submitted version expressed a causal objective, stating the aim of evaluating the 'impact' of a particular intervention with corresponding methods: providing adjusted estimated effects and including sensitivity analysis using propensity score matching. However, in the published version the term 'impact' was replaced by 'association' making the abstract less clear about a causal aim because both the abstract's objectives and the conclusion described an association but the authors still provided adjusted HRs and resorted to propensity score matching.

DISCUSSION

Statement of principal findings

We found that the majority (80%) of the published research abstracts reporting on observational studies had

Assigned category	Abstract objectives	Abstract conclusions	Comment
Consistently causal	'...assess the effectiveness of...' 'To determine the effect of ... in ...'	'Little evidence was found of a direct impact of...' '...has led to risk...'	When discussing associations, words like effect, contribution or role are similar to cause and then (direct) impact and effect will be their consequence.
	'To describe the contributions of...'	'... an important role in ...'	
	'To evaluate the impact of ...'	'...impacts are...'	
	'To investigate whether improving adherence to ...'	'...the beneficial effect of improved...'	Evaluates taking an action 'improving adherence' and concludes that the effect is beneficial.
	'...benefit of ... in reducing ... risk'	'... is an overlooked risk factor for ...'	Evaluates how a given intervention can reduce the risk of an outcome and then labels it as an 'overlooked risk factor'.
	'To determine outcomes and safety of...'	'... is at least as effective and safe as ...'	Evaluates and determines that a certain intervention is as safe as the comparator.
	'to quantitatively decompose this joint association to ... only, to ... only, and to their interaction'.	-...excess risk of...These findings suggest that most cases of ... could be prevented by ...'	Suggests interest in direct and indirect effect, that is, mediation analysis, and concludes consequently.
Consistently not causal (associations)	'...is associated with ...compared with...'	'...is associated with ...compared with...'	Describes associations without labelling them as causal or prediction.
	'To describe trends in...'	'...rates were high during the study period of ... with the highest rates in ... vs ...'	Limits to describe frequency.
	'To assess how often ...'	'One in ... adults ... were ...'	
	'To examine the association between...'	'...could increase ... confirmation of these findings are warranted, preferably in an intervention setting'.	Suggests further research to determine the nature of the association.
	'...compared with...is associated with...'	'Additional studies, with long term follow-up, are needed to investigate the effects of...'	
Consistently not causal (prediction)	'To develop and validate a set of practical prediction tools that reliably estimate the outcome of...'	'...prediction models reliably estimate the outcome...'	Describes developing and validating prediction models.
	'To prospectively validate the ... algorithm to ...'	'...accurately classified....'	
Inconsistent	'...evaluate safety of...' '...analyse the effect of...' '...critical determinant...'	'...associated with...'	Phrasing the objective as causal and limiting to describing an association in the conclusion.
	'...association with...'	'...is safe...' '... had no substantial effect on long term survival...' '... was determined by... may be largely explained by...' '... was found to be the safest drug, with reduced risks of...' 'These results emphasise the benefit of...'	Phrasing the objective as just to explore an association and presenting a causal claim in the conclusion.
	'...association with...'	'...tackling all these risk factors might substantially...' '...Targeting ... prevention strategies among these patients should be considered'.	Phrasing the objective and conclusion as if just to assess an association but then suggesting to take action given the findings.
		'Systematically addressing ... may be an important public health strategy to reduce the incidence of' '...present findings encourage the downward revision of such guidelines ...'	

a consistent use of causal language in the abstract. Still 20% of abstracts contained inconsistent messages on the causal nature of the key 'effect'. Inconsistencies showed up in two directions: an intentional quest for causality ending in uncriticised non-causal conclusions or carefully phrased mere associations ending with recommendations to act and intervene based on the exposure outcome association.

Beyond the wording, readers can learn much about the sought, after interpretation from described statistical methods, and assumptions made explicit in the paper. On a case-by-case basis, one could then assess whether additional assumptions, for example, involving 'no-unmeasured confounders', would justify the causal assessment derived from these approaches. Identifying key elements like the ones presented in the online supplemental

Table 2 Examples of (mis)matching causal and non-casual statements found in the objectives and conclusions sections of abstracts of observational studies published in The BMJ in 2018

		Abstract conclusions	
		Causal	Not causal
Abstract objectives	Causal	Consistent '...assess the effectiveness of...'and 'Little evidence was found of a direct impact of...' '...benefit of ... in reducing ... risk' and '... is an overlooked risk factor for ...'	Inconsistent '...evaluate safety of...' and '...associated with...' '....analyse the effect of...' and '...associated with...' '...critical determinant...' and '...associated with...'
	Not causal	Inconsistent '...association with...' and '...is safe...' '...association with...' and '... had no substantial effect on long term survival...' '...association with...' and '...tackling all these risk factors might substantially... ' '...association with...' and 'Systematically addressing ... may be an important public health strategy to reduce the incidence of'	Consistent 'To describe trends in...' and '...rates were high during the study period of ... with the highest rates in ... vs ...' 'To assess how often ...' and 'One in ... adults ... were ...' 'To develop and validate a set of practical prediction tools that reliably estimate the outcome of...' and '... prediction models reliably estimate the outcome...'

material would help to assess if causal inference is possible. If in doubt, a sensitivity analysis may be in order. It seems better to be transparent about the ultimate aim to draw a causal conclusion and to acknowledge to fall short of that, than to generate confusion.

When assessing the full text of the 'consistently causal' papers, we identified that authors often discussed these assumptions and resorted to conducting a sensitivity analysis. This was also the case for those papers that were classified as 'inconsistent' or 'consistently not causal'. In these papers, there was a concern for residual confounding because of the observational nature of the study or due to specific missed confounders. Therefore, the abstract's objective avoided suggesting a causal aim instead of being explicit of such concern or limitations in the abstract.

Comparison with other studies

This is not the first study to evaluate the use of causal language in the medical literature. Cofield et atً assessed the use of causal language in observational studies in nutrition. However, they focus only on assessing whether authors included causal language or not, as it was deemed inappropriate due to the observational nature of the study. We have made the case that merely avoiding explicit causal terms is not a real solution. Even without them, a causal conclusion is implicit when the take home message encourages interventions based on the presented findings. Avoiding inconsistency is important but equally one
should be able to trust that the use of consistent causal language is not in vain. This requires a more in-depth look at methods and assumptions validating the causal claims.

Strengths and weaknesses of the study

Accurate abstracts are important. In just a few brief paragraphs, the authors summarise key elements of design, methods and results, and come to a conclusion. Many readers only read the abstract. However, a powerful abstract opens the door to readers and sets the scene for any study. It serves the different roles of informing the audience about its main findings while motivating the reader to further explore the full text, all within the constraints of brevity. This demands authors to give special attention to ensure that every word in the abstract is required. All of the above makes the assessment of the abstract relevant but also challenging.

Further research is needed to explore how causal claims presented in the abstract and full text are supported by the design and methods applied, which entails assessing the methods used and evaluating whether the underlying assumptions were met. ${ }^{19}$ The optimal conclusion should not simply label a study as black or white in causal terms. In the present study, we used a convenient limited number of classifications for short statements. In practice, a continuous degree of confidence in a potential causal relationship is likely to emerge based on the observed association.

Table 3 Impact of the errors of causal effect assignment
True nature of the main exposure effect

		Causal	Not causal
Reported nature of	Causal	A true causal effect has been discovered.	Type I error: there is no causal effect, but it is claimed.
the studied		Recommendation to act on this should be considered. Language in the context of a study intended for causal inference.	Causal language used or suggestion to take action made exposure
effect			

Table 4 Examples of words and study elements that could point to causality or otherwise

Words expressing a causal relationship	- Affect - Attributable - Benefit - Cause/Causal pathway - Contribute - Determinant - Effect - Efficacy - Impact - Improve - Leads to - Mediates - Responsible for - Results in - Safety
Words that could suggest causality in a given context	- Independently associated - Induce - Higher (lower) probability - Modify - Risk (factor) - Trajectory (quantitatively) decompose
Specific expressions avoiding suggestions of causal effects	- Association - Correlation - Less (more) likely link - Predict - Pattern
Key aspects suggesting causal aim	- Adjusting for confounders - Discussing biological plausibility, doseresponse and/or temporal relationship Discussing 'unmeasured confounders' assumption - Mediation analysis - Propensity score adjustment (propensity score) matching - Providing estimates of (population) attributable risks - Suggesting/Recommending intervention - Target trial emulation design - Using directed acyclic graphs to identify confounders and mediators - Using negative controls - Using instrumental variables

We are aware that by limiting our assessment to the consistency of causal language, we may have missed the discussion of the extent to which the underlying assumptions that enable causal inference were met. This requires subject-matter knowledge in each particular case. ${ }^{13}$ Indeed, when there was a clear causal aim but the authors considered that these assumptions were not fulfilled, they may have decided that a causal claim was inappropriate and phrased their conclusion in terms of association rather than causation. If this is the case, the apparent inconsistency would no longer hold. On the contrary, any undue causal claims can be viewed as a form of spin. ${ }^{20} 21$

Policy implications

As observational data resources abound, methods for causal inference from observational data have surged in tandem with the call for real-world evidence. The new
opportunities bring new challenges and the responsibility for clear and well-supported statements on the evidence. In this spirit and motivated by novel guidelines as proposed by International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) E9 and Food and Drug Administration, Hernán et al have embarked on a project entitled 'Developing Guidelines for the Analysis of Randomised Controlled Trials in Real-World Settings, ${ }^{22}$ The importance of such initiatives supports a shift towards being explicit and discussing assumptions underlying causal methods that allow for causal interpretations in context, with or without an RCT. ${ }^{13}$ In the meantime, uncritical ambiguous phrasing in observational studies remains prevalent. ${ }^{14}$ Those searching for the best possible evidence supporting future treatment decisions are best served by transparent reports of observational studies.

Faced with uncertainty when concluding on the nature of the observed exposure outcome relationship, a justifiable balance between the type I and II error rate is a natural guide for action. The cost of errors must be weighed in context, for instance, as in clinical trials emphasising control of the type I error to avoid introducing new unhelpful drugs at a potentially large cost. Alternative weights are typical in screening programmes where false positives will be caught in follow-up examinations, but false negatives are lost forever. In a crisis, such as the current COVID-19 pandemic, we must act before long-term randomised trials have materialised. It becomes undeniably important to learn as much as we can from observational data, be aware of the types of risk when acting or not, as displayed in table 3.

A prerequisite for good causal language practice includes awareness of which language implies a causal statement and which does not. To support correct phrasing and raise awareness, we have compiled a short list of words and expressions with dedicated (non) causal meaning (table 4). The list draws on phrases found in our study and in the references cited, particularly Hernán ${ }^{10}$ and Thapa et al. ${ }^{6}$ This list is a suggestion as a starting point and further studies can test and validate it. We consider that a definition of causal language that is generally recognised by the research community is needed. ${ }^{2324}$

Words like 'effect', 'impact', 'determinant of'..., inevitably point in the causal direction and their use should come with the requirement of at least stating and ideally critically evaluating the necessary assumptions. ${ }^{6}$ Uncertainty on the causal nature of the conclusion should tone down any suggestion for intervening on the studied exposure. Specifying the corresponding level of evidence rather than hiding the ultimate causal aim of a study is what we recommend, ${ }^{19}$ while acknowledging a margin of error in any empirical study. ${ }^{20}$

Conclusion

In summary, we have found that causal messages are embedded in studies otherwise carefully phrased in terms of association. Further guidance for authors is needed on
what constitutes a causal statement, similar to the one published by Lederer et al ${ }^{17}$ for respiratory, sleep and critical care journals. We look forward to similar guidance for other disease groups. From the screened BMJ abstracts, we provided a list of expressions with clear interpretation which may inspire a useful more comprehensive compendium that can be derived from a consensus meeting, for instance. We argue that such awareness and special attention among authors and reviewers would serve our communication on the best available evidence for conceived interventions.

Correction notice The affiliation for Agnès Dechartres has been corrected to Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP. Sorbonne Université, Hôpital Pitié Salpêtrière, Département de Santé Publique, F75013, Paris, France
Twitter Camila Olarte Parra @colartep and Lorenzo Bertizzolo @l_bertiz
Contributors Conceptualisation: COP, LB, AD, SS, EG. Methodology: COP, EG. Data curation: COP, LB. Formal analysis: COP, LB, EG. Writing original draft: COP. Writing—review and editing: LB, SS, AD, EG. Approved final version: COP, LB, AD, SS, EG.
Funding This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 676207.

Competing interests SS is a full-time employee of the BMJ Publishing Group. No other competing risks to declare.
Patient consent for publication Not required.
Ethics approval We did not seek ethical approval or consent from authors and reviewers for this descriptive quality improvement study. However, when authors and reviewers submit manuscripts and reviews to The BMJ, they are notified that their paper or review may be entered into research projects for quality improvement purposes. COP was given access to The $B M S$ s data under a confidentiality agreement. We do not report any identifying information. The statements presented in this study belong to published papers available in the public domain.

Provenance and peer review Not commissioned; externally peer reviewed.
Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. The reviews and published versions of the papers included in the study are publicly available at BMJ.com. No further data will be made available as it is confidential submission data.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/ licenses/by/4.0/.

ORCID iDs

Camila Olarte Parra http://orcid.org/0000-0003-0263-4392
Lorenzo Bertizzolo http://orcid.org/0000-0002-1666-2450

Sara Schroter http://orcid.org/0000-0002-8791-8564

REFERENCES

1 Begg MD, March D. Cause and association: missing the forest for the trees. Am J Public Health 2018;108:620.
2 Hernán MA. A definition of causal effect for epidemiological research. J Epidemiol Community Health 2004;58:265-71.
3 Kunz R, Oxman AD. The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. BMJ 1998;317:1185-90.
4 Ruich P. The use of cause-and-effect language in the JAMA network journals 2017.
5 Cofield SS, Corona RV, Allison DB. Use of causal language in observational studies of obesity and nutrition. Obes Facts 2010;3:353-6.
6 Thapa DK, Visentin DC, Hunt GE, et al. Being honest with causal language in writing for publication. J Adv Nurs 2020;76:1285-8.
7 Pinsky PF, Miller A, Kramer BS, et al. Evidence of a healthy volunteer effect in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Epidemiol 2007;165:874-81.
8 Permutt T, Scott J, Food Drug Administration (FDA). E9(R1) statistical principles for clinical trials: addendum: estimands and sensitivity analysis in clinical trials 2017;9.
9 European Medicine Agency (EMA). ICH E9 (R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials 202017 February 2020.
10 Hernán MA. The C-Word: scientific euphemisms do not improve causal inference from observational data. Am J Public Health 2018;108:616-9.
11 Glymour MM, Hamad R. Causal thinking as a critical tool for eliminating social inequalities in health. Am J Public Health 2018;108:623.
12 Green MJ. Calculating versus estimating causal effects. Am J Public Health 2018;108:e4-5.
13 Hernán M, Robins J. Causal inference: what if. Boca Raton: Chapman \& Hall/CRC, 2020.
14 Goetghebeur E, le Cessie S, De Stavola B, et al. Formulating causal questions and principled statistical answers. Stat Med 2020;39:4922-48 https://onlinelibrary.wiley.com/doi/full/10.1002/sim. 8741 doi:10.1002/sim. 8741
15 Adams RC, Sumner P, Vivian-Griffiths S, et al. How readers understand causal and correlational expressions used in news headlines. J Exp Psychol Appl 2017;23:1-14.
16 Haber N, Smith ER, Moscoe E, et al. Causal language and strength of inference in academic and media articles shared in social media (claims): a systematic review. PLoS One 2018;13:e0196346.
17 Lederer DJ, Bell SC, Branson RD, et al. Control of confounding and reporting of results in causal inference studies. guidance for authors from editors of respiratory, sleep, and critical care journals. Ann Am Thorac Soc 2019;16:22-8.
18 Harhay MO, Au DH, Dell SD, et al. Methodologic guidance and expectations for the development and reporting of prediction models and causal inference studies. Ann Am Thorac Soc 2020;17:679-82.
19 Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health 2006;60:578-86.
20 Boutron I, Dutton S, Ravaud P, et al. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. JAMA 2010;303:2058.
21 Ghannad M, Olsen M, Boutron I, et al. A systematic review finds that spin or interpretation bias is abundant in evaluations of ovarian cancer biomarkers. J Clin Epidemiol 2019;116:9-17.
22 Developing guidelines for the analysis of randomized controlled trials in real-world settings. Available: https://www.pcori.org/sites/default/ files/PCORI-Hernan270-English-Abstract.pdf
23 Doan S, Yang EW, Tilak SS, et al. Extracting health-related causality from Twitter messages using natural language processing. BMC Med Inform Decis Mak 2019;19:79.
24 Chiolero A. Causality in public health: one word is not enough. Am J Public Health 2019;109:1319-20.

Supplementary Material

Table A. Statements in each of the included observational studies published in the BMJ in 2018

Published Abstract		Published Full text				Comment
Objective	Conclusion	Method	Confounder adjustment	Estimates provided	Authors Considerations	
CONSISTENTLY CAUSAL						
"To evaluate the impact of [...] on [...] in [...]"	"[...] is associated with negative effects on [...]. Given the relatively low prevalence of [...], population level impacts are currently modest. Nevertheless, as [...] has doubled in the US over the past generation, further investigation is warranted of the impact on	"To estimate the adjusted odds ratio for each [...] outcome by [...] group, we created logistic regression models with [...] as the reference group. [...] The population attributable risk was calculated using the standard formula"	"Other subgroup analyses were done to ensure that [...] association was not confounded by [...]"	"[...] had 14\% higher odds of [...] compared with [...] (adjusted odds ratio 1.14, 99\% confidence interval 1.13 to 1.15). [...] 14.5\% (13.6\% to 15.4\%) of [...] (under the assumption of a causal relation) can be attributed to [...]"	"The pooling of all [...] during this period minimizes the risk of confounding from yearly fluctuations in [...] outcomes. Finally, despite attempts to adjust [...] using regression analysis and stratification, some residual confounding effects from [...] could remain. [...] As more than 12% of [...] might have been	Both abstract and main text use causal language: they state that their aim is to assess the impact of the exposure on the outcome, adjust for confounders, provide population attributable risks and discuss residual confounding.

	[...] and public health.				prevented were [...], the importance of these data are most relevant to [...]. The cumulative risk over [...] is also likely to be important in terms of both economic burden and overall public health"	
"To examine the [...] risks of [...] initiation compared with initiation of other traditional [...] drugs, initiation of [...], and no initiation."	" $[. .$.$] poses a$ [...] risk compared with non-use, [...] use, and use of other traditional [...] drugs."	"[W]e conducted a series of cohort studies, each mimicking the strict design criteria of a clinical trial (a so-called emulated trial design), to compare rates of [...] among [...] with rates among [...]. [...] We estimated an observational analogue of the intention to treat hazard ratio, as a measure of the incidence rate ratio,	"We calculated the propensity score for all eligible individuals initiating [...] at enrolment by fitting a logistic regression model including covariates on sex, age, year, comorbidity, and	"[...] initiators had a 50\% increased rate of [...] events compared with [...] non-initiators (incidence rate ratio 1.5, 95\% confidence interval 1.4 to 1.7)."	"We performed the following sensitivity analyses, [...] to estimate how strongly a single unmeasured binary confounder would need to be associated with [...] to fully explain our	The use of causal language appears in both abstract and main text. They apply causal methods including target trial emulation and propensity

"To explore associations between [...] and later[...], overall and by [...] subtype and timing of onset."	"[...] was associated with an increased risk of [...], particularly [subtype]. [...] were unlikely to mediate the associations substantially, suggesting that [...] and [...] may share underlying mechanisms or susceptibility pathways. Asking about a history of [...] could help physicians to identify women who might benefit from screening for early signs of disease, allowing for	"We used Cox regression with age as the underlying time to estimate hazard ratios for [...] comparing women with and without a history of [...] We used competing risk methods when analysing associations with [...] subtypes. [...] We evaluated potential mediation by [...]"	"We considered [...] as a priori confounders."	"Women with a history of [...] had a 53% increase in risk of [...] overall, compared with women with no history of [...] (incidence rate for women with a history of [...]: 11.6 per 100000 person years; incidence rate for women with no history of [...]: 8.33 per 100000 person years; hazard ratio 1.53, 95\% confidence interval 1.26 to 1.85)."	"We did sensitivity analyses [...] using the array approach for testing the effect of an unmeasured or incompletely measured confounder. [...] Sensitivity analyses suggested that confounding by [...] was unlikely to explain the observed associations for [...]; in contrast, [...] could conceivably explain a considerable part of the association between [...] and [...]. [...] we also cannot rule out the possibility of	Causal language is present in abstract and main text. They apply mediation analysis, adjust for confounders, and discuss the unmeasured confounding assumption and residual confounding.

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { early clinical } \\ \text { intervention." }\end{array} & & & & \begin{array}{l}\text { residual } \\ \text { confounding by } \\ \text { other } \\ \text { unmeasured }\end{array} \\ \text { covariates" }\end{array}\right]$

		and assuming the prevalence of [...] to be 10%."	of covariates and mediators and to avoid collider bias"	greatest population attributable risks were estimated for [...] (2.4\%, 1.1\% to 3.9\%) and [...] (1.9\%, 1.0% to $2.9 \%)$."	adjusting for potential mediators, including conventional risk factors for [...] outcomes. Consideration should be given to developing prevention strategies to reduce the risk of [...] among patients with severe or predominantly [...]"	and provides population attributable risks.
"To determine the effect of [...] outcome reporting in [...] on risk averse clinical practice, "gaming" of clinical data, and 90 day	"This study did not find evidence that the introduction of [...] in [...] has led to risk averse clinical practice behaviour or	"We used a change point analysis to study the change over time in adjusted 90 day mortality after [...] and after [...]. We used a multivariable logistic regression model for 90 day mortality, with a slope for calendar time and an interaction	"The risk factors included in this logistic regression model are [...]. An adjusted outcome was then produced by indirect standardisation"	"The 90 day mortality in patients undergoing an [...] fell during the study period from 952/33 638 (2.8\%) before the introduction of [...] to 552/25	"If we assume that the decrease in mortality can be causally linked to [...], the process of [...] This team response could have been	Causal language is present in abstract and main text as they state that their aim is to determine the effect of the exposure on

postoperative mortality."	"gaming" of data. However, its introduction coincided with a significant reduction in 90 day mortality."	between time preintroduction versus postintroduction of [...], in addition to all of the risk adjustment variables. This modelled a change in the slope of mortality at the point that [...] was introduced but no immediate change in mortality."		905 (2.1\%) after (fig 4). Therefore, we carried out change point analysis which showed a steeper decline in 90 day mortality after the introduction of [...] ($\mathrm{P}=0.03$). The change point analysis also found a significant effect of [...] when it was modelled as an immediate shift in 90 day mortality ($\mathrm{P}=0.01$) and when it was modelled as both an immediate shift and a change in slope ($\mathrm{P}=0.04$)."	mediated through [...]"	the outcome and conclude that the exposure has not led to the outcome. The main text explains that confounder adjustment was made through standardisatio n and discuss possible mediators for this relationship.
"To assess the effectiveness of	"Little evidence was found of a	"We estimated one year net survival for each [...]	"Survival estimates for all	"One year survival	"The lack of consistent results	Causal language is

the [...] policy initiatives in improving [...] and reducing [...] in survival in England."	direct impact of [...] on one year survival, and no evidence for a reduction in [...] in cancer survival. These findings emphasise that [...] in survival remain a major public health problem for a healthcare system founded on equity."	by sex, year of diagnosis (1996 to 2013), and deprivation category. Patients with a diagnosis between 1996 and 2013 had the potential to be followed up for at least one year, so we used the classic cohort approach. [...] We estimated net survival using the consistent nonparametric estimator defined by Pohar-Perme."	ages combined were age standardised with the International Cancer Survival Standard weights. [...] We used multivariable linear regression to investigate the survival patterns for each [...] and by sex"	improved for 20 of the 21 [...] examined in women and 16 of the 20 [...] examined in men. [...] For these [...], the average annual absolute increase in one year age standardised net survival was often greater than 1% over the whole study period"	between men and women, as well as the lack of general patterns across [...] types, provide little evidence for any strong impact of the [...] policies on short term [...] survival. The evidence is even weaker for their impact on the [...] in [...] survival. [...] These findings should be taken into consideration by [...] policy makers and inform future initiatives."	present in both abstract and main text. The aim is to evaluate the effectiveness of a policy on a given outcome, they provide standardised net survival and suggest to take action given the findings.

To investigate whether improving adherence to [...] interacts with the genetic predisposition to [...] in relation to long term changes in [...] and [...]."	"These data indicate that improving adherence to [...] could attenuate the genetic association with [...]. Moreover, the beneficial effect of improved [...] on [...] was particularly pronounced in people at high genetic risk for [...].	"We used multivariable generalized linear models with repeated measures analyses to assess the main associations of the [...] and changes in the [...] with change in [...]"	"We used multivariable models to adjust for [...]"	"In general, the [...] was associated with increases in [...] every four years: in the two cohorts combined, each additional [...] was associated with 0.02 (SE 0.01) increase in [...] and 0.05 (SE 0.03) kg increase in [...]"	"[...] unmeasured or unknown confounders may also exist. Secondly, because adherence to [...] was not randomized, the association between [...] and [...] may not imply a causal relation. Thirdly, the results could be underestimated by potential reverse causality. [...] Our study provides reproducible evidence from two prospective cohorts of US men and women that improving [...] could attenuate the [...]	Assessing if improving adherence has an effect translates to an intervention that is being assessed. They conclude that there is a beneficial effect and suggest to take action. The main text discusses unmeasured confounding assumption and reverse causality. All of the above is consistent with a causal aim.

	for incident [...] and more than one third of the risk for [...] death. [...] is associated with a nearly 40% reduction in the [...] risk associated with [...]."	hazard ratios and 95\% confidence intervals"		[...] in a doseresponse manner"	follow-up, and further adjustment for [...] minimize the likelihood of reverse causation and lend support for causality. [...] Our study uncovered a substantial impact of [...] jointly on [...] risk, which were equally as important as five lifestyle factors combined."	for covariates. They discuss dose-response relationship and reverse causality.
"To examine the association between [...] and [...] in later life, and determine whether the maintenance of [...] will offset age related [...]"	"These results show that [...] is not associated with the trajectory of [...] in late life, but is associated with the acquisition of ability during	"The raw scores from the [...] tests were standardised to a mean of 100 and a standard deviation of 15 to produce an [...] scale. Age at testing was the number of years after participants' 60th birthdays. We modelled age in this form so that	"Because our sample were all born in the same year and tested at a similar age, a confounder for age at entry was not used. We modelled cognitive	"The typical intellectual engagement models for each domain are shown in table 2 and indicated an expected significant decline in [...]	"In our statistical models, we introduced possible confounders available from early life and life course, including [...]. We also controlled for [...]	The causal aim is suggested when the goal is to establish temporal relationship between exposure and outcome, describing the

	the life course. Overall, findings suggest that high performing adults engage and those that engage more being protected from relative decline."	the intercept occurred at age 60 years rather than zero years, such that the calculation for the intercept would represent a realistic adult value rather than one extrapolated 64 years earlier. [...] For each model, a probability value of $\mathrm{P}<0.05$ was considered significant."	performance with a linear mixed model, as a combination of [...]."	with age, ranging from -1.09 to -1.31 standard points per year for the [...] test and -0.77 to -1.69 for the [...] test. [...] None of the age \times TIE interaction terms were significant, indicating that [...] did not influence the trajectories of age decline."	associated with repeated testing. [...] significant associations remained after adjustment for age, sex, and test practice effects. [...] is an independent contributor to late life [...] and has a unique effect over and above the effect of other life course variables. [...] It is, however, impossible for a causal effect to be inferred [...]"	exposure as a trajectory, providing standardised and adjusted estimates and considering whether it is possible to infer a causal link.
"To evaluate the associations of a [...] and [...] with incident [...]."	"In this cohort study, [...] were independently associated with incident [...]. These results	"To test the association of [...] and [...] with [...] we used Cox proportional hazards models. The duration of follow-up was calculated as time	"Cox proportional hazards models included adjustment for age and sex for	"In Cox proportional hazards analysis, the risk of [...] was higher for those with [...]	"The present study provides further support that common [...] are implicated in the development	The abstract describes that the goal is to establish a temporal relationship

	emphasise the benefit of entire populations adhering to [...], independent of [...] risk."	between the baseline assessment and the first event of either [...] or 1 March 2016, which was the end of follow-up for the current data release. Participants who had a [...] before a [...] occurred were censored at the time of the respective event."	the lifestyle score models. For the models including the genetic score we additionally adjusted for the first 10 principal components of ancestry and genotyping batch."	(hazard ratio 1.20, 95\% confidence interval 1.08 to 1.34) and [...] (1.35, 1.21 to 1.50) compared with those with a low genetic risk score"	of [...]. [...] The [...] was also associated with [...], which suggest that the effect of the [...] on risk of incident [...] might at least in part be mediated by [...]. The effects of [...] might differ according to the cause of [...], although some [...] factors are shared between two or more causal factors"	between the exposure and the outcome and suggest to take action given the findings. The main text describes adjusting for covariates and discusses mediation.
"To determine the longitudinal association between [...] and [...]."	"In older adults, a higher cumulative level of [...] was associated with a higher likelihood of [...]. These	"We used a Cox proportional hazards model to evaluate the association between time-varying [...], adjusting for time-varying covariates (updated at [...] measurement), and the	"We selected covariates and potential mediators based on biological interest, current or previously observed	"Figure 1 shows that after multivariable adjustment for demographic, lifestyle, cardiovascular risks, dietary	"[...] we excluded participants [...] who reported baseline [...] (to avoid reverse causality; n=195). [...] The community	The abstract describes that the goal is to establish a temporal relationship between the exposure and

	findings support guidelines for increased dietary consumption of [...] in older adults."	likelihood [...]. Time at risk was from the first [...] measurement until the first [...] event or censoring [...] or the latest date of adjudicated follow-up in June 2015."	associations with [...], and meaningful changes in the exposure risk estimate ($\pm 5 \%$). Minimal adjustments included age and sex. Multivariable adjustments additionally included [...]. We used the potential mediators to explore what additional associations could exist to these potential pathways."	habits, and other [...], higher [...] levels were associated with a lower likelihood of unhealthy ageing. Overall, participants in the highest group of [...] had an 18\% (95\% confidence interval 3\% to 30%; $P=0.001$) lower risk of [...].Findings were not appreciably altered after adjustment for potential mediators (not shown)."	based design improves generalizability, and regular physical examinations ensured that demographics and other risk factors were well measured, which may help to minimize confounding. [...]The possibility of residual confounding by imprecisely measured or unknown factors also cannot be excluded for an observational study. [...] Any unmeasured confounders would have to be strongly associated with	the outcome and suggest to take action given the findings. The main text describes adjusting for covariates and discusses mediation, residual confounding and reverse causality. The statement in italic is a clear causal statement.

					both the exposure and the outcome, conditional on all the variables already in the model. Thus, it seems unlikely that either poorly measured or unmeasured confounders could fully account for our findings."	
"To prospectively evaluate the joint association of [...] and [...] with risk of type 2 diabetes risk, and to quantitatively decompose this joint association to [...]"	"Among female nurses, both [...] were associated with a higher risk of [...]. The excess risk of [...] was higher than the addition of risk associated with each individual factor. These findings	"Participants contributed person time from the return of the baseline questionnaire [...] until the date of diagnosis of [...], death, loss to follow-up, or the end of the followup period (30 June 2012 for the NHS and 30 June 2013 for NHS II), whichever came first. We used multivariable time dependent Cox	"Information on potential confounders was assessed and updated every other year via the questionnaires throughout follow-up. This information included [...] In multivariable analysis, we	"We observed a positive association between duration of [...] and risk of [...] in both cohorts. Compared with women without rotating night shift work, the pooled multivariable	"From a public health standpoint, because 71% of the joint effect could be attributed to an [...], our findings underscore the importance of maintaining [...].Our findings suggest that	Their aim is to establish a temporal relationship exposureoutcome, they discuss adjusting for confounders, provide excess risk and suggest to take action

	suggest that most cases of [...] could be prevented by [...], and the benefits could be greater in [...]."	proportional hazards models to estimate hazard ratios and 95\% confidence intervals for the associations between [...] alone and in combination with [...]."	adjusted for several confounding factors including [...] We also examined the decomposition of the joint effect: the proportion attributable to [...]"	adjusted hazard ratios for women with 1-5, 5-9, and 10 or more years of [...] were 1.11 (95\% confidence interval 1.00 to 1.22), 1.28 (1.10 to 1.49$)$, and 1.46 (1.33 to 1.62) (P for trend <0.001) [...](table 3). [...] The attributable proportions of the joint effect were 17.1\% (95\% confidence interval 14.0\% to 20.8\%) for [...] alone, 71.2% (66.9\% to 75.8\%) for [...] alone, and 11.3\% (7.3\% to 17.3\%) for their interaction."	most cases of [...] could be prevented by [...], and the benefits would be larger in [...] "	given the findings to prevent the outcome.
"To assess the association between [...] and	"In this analysis of nationwide registers from	"Patients were followed from cohort entry to treatment cessation,	"We used an active comparator new-	"Use of [...], as compared with [...], was	"The findings should be interpreted in the	The goal is to evaluate the association

seven serious adverse events of current concern."	two countries, use of [...], as compared with [...], was associated with an increased risk of [...], but not with other serious adverse events of current concern."	crossover to the other study drug [...], the outcome event, death, emigration, or the end of the study period (31 December 2016). We used Cox proportional hazards regression to calculate hazard ratios, analysing each outcome independently. The absolute risk difference was calculated as hazard ratio-1 multiplied by the rate in the comparator group."	user study design and controlled for a wide range of potential confounders (patient characteristics that might be associated with both the outcome and the decision to initiate a drug) through a non- parsimonious propensity score model to minimise the risk of bias, including confounding by indication [...]. We estimated propensity scores by using logistic regression for the probability of [...] conditional on the status of 66	associated with an increased risk of [...] (hazard ratio 2.32, 95\% confidence interval 1.37 to 3.91) and [...] (2.14, 1.01 to 4.52) but not with [...] (1.11, 0.93 to 1.33), [...] (0.69, 0.45 to 1.05), [...] (0.89, 0.67 to 1.19), [...] (0.99, 0.71to 1.38), or [...] (1.16, 0.64 to 2.12)."	context of limitations of observational studies and the uncertainty of the effect estimates. [...] Therefore, the studies could suffer from compromised confounding control, as indicated by the imbalance in [...] at baseline between users of [...] versus comparators, even after propensity score matching [...] Finally, residual and unmeasured confounding affecting the findings in our study cannot be ruled out."	with the exposure to adverse events which translates into assessing safety. They discuss adjusting for confounding, resort to propensity score matching and consider residual confounding.

"To determine whether patients [...] have fewer [...] and higher rates of [...] than patients [...].	**In results: "Per 100000 patients, there were 2999 fewer follow- up appointments within 14 days, 26 excess deaths, [...] attributable to [...]." "Patients [...] are less likely to have [...] and are at higher risk of [...]."	"For all outcome comparisons we report unadjusted and adjusted odds ratios (with 95\% confidence intervals). Adjusted odds ratios were obtained with logistic regression models estimated using generalised estimating equations methods and including all measured patient and hospital characteristics."	"We examined hospital type and several characteristics of patients and admissions: year of Charlson comorbidity index score, socioeconomic status (measured using median neighbourhood income), length of hospital stay, arrival by ambulance, diagnosis, discharged with home support or against medical advice, and previous healthcare usage (emergency department visits, hospital stays, outpatient visits, home care	"Patients [...] were less likely to have follow-up with a physician within seven days (36.3\% v 47.8%, adjusted odds ratio $0.61,95 \%$ confidence interval 0.60 to 0.62) and 14 days (59.5\% v 68.7%, $0.65,0.64$ to $0.66) .[\ldots]$ Patients discharged during the holiday period were at increased risk of death or readmission within 30 days (25.9\% v 24.7%, $1.09,1.07$ to $1.10)$. This was explained by an increased risk of return to the	$\begin{aligned} & \text { "A confirmatory } \\ & \text { time-to-event } \\ & \text { analysis in a } \\ & \text { propensity score } \\ & \text { matched cohort } \\ & \text { (see } \\ & \text { supplementary } \\ & \text { appendix table 5) } \\ & \text { showed } \\ & \text { consistent results } \\ & \text { (death or } \\ & \text { readmission } \\ & \text { hazard ratio 1.08, } \\ & 95 \% \text { confidence } \\ & \text { interval 1.07 to } \\ & \text { 1.09). [...] The } \\ & \text { differences in } \\ & \text { outcomes could } \\ & \text { not be explained } \\ & \text { by observed } \\ & \text { hospital or } \\ & \text { patient } \\ & \text { characteristics, } \\ & \text { including } \\ & \text { admission } \\ & \text { diagnosis. [...] the } \\ & \text { possibility of } \\ & \text { confounding due } \\ & \text { to unmeasured } \end{aligned}$	The abstract and main text use causal language: they discuss risk attributed to the exposure, provide adjusted estimates using propensity score matching and discuss residual confounding.

			visits). hospital discharge, age, sex, rural residence,"	emergency department (24.3\% v 23.0\%, 1.09, 1.07 to 1.10), rehospitalisation (11.8\% v 11.4\%, 1.06, 1.04 to 1.08), and death (1.5\% v 1.5\%, 1.06, 1.02 to 1.10) within 30 days"	differences remains"	
"To investigate the association between [...] and overall and specific types of [...]."	"Use of [...] is associated with a reduction in [...] risk in women of reproductive age-an effect related to duration of use, which diminishes after stopping use. These data suggest no protective	"We calculated age standardised incidence rates of [...] per 100000 person years, using the age distribution of the cohort as standard. Risk of [...] among users of the different product groups was analysed by a Poisson regression model in SAS version 9.3 (SAS Institute). [...] We calculated the population prevented fraction (population prevented fraction =	"Adjusted incidence rate ratios (referred to here as relative risks) and their surrounding 95\% confidence intervals were calculated for each model, with never users as the reference group. The adjusted models included the	"The age adjusted incidence of [...] was highest in women who were never users of [...] (7.5 per 100000 person years; table 2). Among ever users of [...], reduction in the age standardised absolute rate of [...] was 3.2 per	"The data linkage study design also enabled us to adjust for several important confounding variables. We were not able to adjust for some factors, such as [...] Our findings, therefore, could be subject to residual confounding."	When assessing the exposureoutcome relationship, they provide standardised estimates, discuss residual confounding, dose-response and provide attributable fraction.

	effect from [...]."	prevalence exposure (1-relativ e risk)) associated with ever use of [...] by using the relative risk of never use versus ever use of [...]. The population prevented fraction is the proportion (expressed as a percentage) of the [...] in the cohort that has been prevented by ever use of [...]."	following time varying covariates [...]"	100000 person years. Overall, ever users of [...] had a reduced risk of [...] compared with never users (relative risk 0.66 (95\% confidence interval 0.58 to $0.76)$). [...] use of [...] prevented 21% of [...] in the study population"		
"To assess whether [...] is associated with a reduction in [...] and mortality in old and very old adults with and without [...]."	"In participants older than 74 years without [...], [...] was not associated with a reduction in [...] or in allcause mortality, even when the incidence of [...] was	"To prevent survivor bias and covariate measurement bias, we selected a "new users design" over "all [...] users. [...] Using Cox proportional hazard regression models adjusted by propensity score, we calculated the hazard ratios of statin use for the outcome events. Participants were censored at the date of	"We explored the variables associated with [...] to determine candidate variables for the propensity score of [...]. From SIDIAPQ we obtained data on age, sex, [...] Because of nonrandom	"In participants without [...], the hazard ratios for [...] were 0.94 (95\% confidence interval 0.86 to 1.04) for [...] and 0.98 (0.91 to 1.05) for all cause mortality in 7584 year olds. [...] The one year number needed	"To prevent residual confounding we performed additional regression adjustments after adjustment of propensity score. Variables that remained imbalanced after propensity score	They use causal language and causal methods. To estimate the effect of the exposure on the outcome. They use propensity score methods to adjust for

"To examine the association between [...] and risk of [...]."	"The risk of [...] was increased in people who [...]. In several countries, guidelines define thresholds for [...]. The present findings encourage the downward revision of such guidelines to promote [...] at older ages."	"Cox regression was used in all analyses, with age as the timescale to model the associations with hazard of incident [...]. Participants were censored at date of record of [...], death, or 31 March 2017, whichever came first."	"Models were first adjusted for sociodemographi c factors, then additionally for health behaviours, and finally for health status."	"[...] was associated with a higher risk of [...] when the reference was [...]; in these analyses [...] was associated with an increased risk of [...] in a linear fashion (among those [...], P for non- linearity=0.97 using spline regressions). In a model adjusted for sociodemographi c factors [...] was associated with a greater risk of [...] (hazard ratio 1.47, 1.15 to 1.89) compared with [...]"	"[...] multistate models showed that part of the excess risk of [...] in [...] was attributable to the greater risk of [...] in this group. [...] We accounted for several sociodemographi c and health related characteristics in the analysis, but residual confounding cannot be excluded as an explanation for the higher risk of [...] among [...]. Our multistate models lent partial support for a mediating role of [...] in the association	The abstract and main text use causal language, they provide adjusted, discuss residual confounding and suggest to take action given the findings.

					between [...] and increased [...]"	
"To assess whether adding or switching to [...] is associated with an increased risk of [...], compared with remaining on [...] in patients with [...]."	"[...] as second line drugs are associated with an increased risk of [...] compared with remaining on [...]. Continuing [...] when introducing [...] appears to be safer than switching."	"The study cohort was formed by identifying all subjects from the base cohort of [...] initiators who subsequently added or switched to a [...] as second line treatment. Patients who added or switched to other [...] were censored. For each patient adding or switching to a [...], we identified a matched reference patient who also was a [...] initiator but remained on metformin, using a prevalent newuser design. [...] we constructed a Cox proportional hazards regression model for each outcome that estimated the hazard ratio and the 95\% confidence intervals for [...] versus [...]."	"[...] exposed and reference subjects were matched on high-dimensional propensity score. The high- dimensional propensity score method empirically selects covariates based on their prevalence and potential for confounding. For each member of each matched set, we identified all available information from seven data dimensions (five dimensions from the CPRD: drug prescriptions,	"Compared with the use of [...], adding or switching to [...] was associated with an increased risk of [...] (7.8 v 6.2 per 1000 person years, hazard ratio 1.26, 95\% confidence interval 1.01 to 1.56), all cause mortality (27.3 v $21.5,1.28,1.15$ to 1.44$)$, and [...] (5.5 v 0.7, 7.60, 4.64 to 12.44). There was also a trend towards increased risks of [...] (6.7 v 5.5, $1.24,0.99$ to 1.56) and [...] (9.4 v 8.1, 1.18, 0.98 to 1.43)."	"Based on a posthoc analysis, the findings of the primary analysis on [...] unlikely to be the result of an unmeasured confounder under most plausible exposureconfounder and confounderoutcome associations. [...] For our study, we used the recently developed prevalent newuser design. To emulate the randomised controlled trial, this design identifies (at the doctor visit that	The aim is to assess the effect of the intervention strategy of adding or switching to a particular drug, they emulate a target trial, use propensity score matching, discuss residual confounding and conclude that the strategy is safe.

			procedures, diagnoses, disease history, and administrative information; two dimensions form the HES: diagnoses and procedures) in the one year period before the date of the matched set. We then applied conditional logistic regression to estimate the propensity of receiving a [...] drug, thereby considering the 500 most likely confounders."		led to the patient on [...] adding or being switched to [...]) a comparable patient with the same history of [...] use and of other characteristics, but who on that visit continued on [...]. [...] owing to its observational nature there is the potential for residual confounding."	
"To investigate the associations between [...] and	"Overall, [...] was found to be the safest	"We used a new-user design to capture all events occurring after	"Confounding factors. It is possible that	"In patients with [...], [...] was associated with a	"Although many adjustments have been done using	The aim is to assess the safety of a

risks of [...] compared [...]."	drug, with reduced risks [...] compared with [...]. [...] and low dose [...] were, however, associated with increased risks of all cause mortality compared with [...]."	starting treatment and to reduce the impact of confounding. [...] Incidence rates for each outcome were calculated based on the numbers with the outcome and the person years of follow-up, and were age and sex standardised for each drug. To estimate the risks associated with each [...], an outcome specific Cox model containing all confounding factors was used, with [...] as a primary reference."	patients at higher risk of [...] may preferentially be prescribed [...] rather than [...], so all analyses were adjusted for demographic and clinical variables, either because they may have been used as indicators for prescribing a specific [...] or because they have possible associations with increased risk of [...]. We similarly adjusted for comorbidities, previous events, and drugs also used as indicators or associated with increased risks."	lower risk of [...] than [...] (adjusted hazard ratio 0.66, 95\% confidence interval 0.54 to 0.79). [...]Table 5 shows the number needed to treat or number needed to harm to measure the relative benefits or risks of [...] in comparison with [...]."	the data available on the existing databases, there is a possibility of unmeasured confounding or confounding by indication. [...] Although we used a proportional hazard model adjusting for all available confounding factors, we also undertook a sensitivity analysis using the propensity score method and obtained very similar results."	drug and they use different strategies to adjust for confounding, including propensity scores, provide NNT and discuss the unmeasured confounding assumption.

"To examine the association between [...] and the risk of developing [...]."	"Our study indicates that adherence to a [...] is associated with a substantially reduced risk of [...]. These findings highlight the potential benefits of implementing [...] interventions to curb the risk of [...]."	"To evaluate the association between [...] and [...], we calculated relative risks and 95% confidence intervals using multivariable log-binomial regression models with generalized estimating equations and specified an exchangeable correlation structure."	"We first evaluated associations with [...] by categories of each low risk factor, adjusting for [...]."	"In multivariable analyses (model 2), [...] had a relative risk of 3.10 (95\% confidence interval 2.69 to 3.57) of [...], compared with [...]."	"Several factors could contribute to the weak mediation effect of [...] in the association between [...] and [...] risk. [...] Another limitation, as in any observational study, is that we cannot exclude the possibility of uncontrolled confounding by [...] or residual confounding. [...] Our findings highlight the potentially critical role of [...] in the etiology of [...] and lend support to [...] based intervention strategies for reducing [...]."	They provide adjusted estimates, discuss mediation and residual confounding and suggest to take action given the findings.

"To determine rates of [...] and all cause mortality in patients with [...] compared to patients with [...] and without [...]."	"Patients with [...] remain at higher risk of [...] than patients without [...]. The risk is increased even in those in whom [...] is not documented. Guidelines should be updated to advocate continued use of [...] in patients with [...]"	"We carried out two retrospective cohort studies to determine incidence rates of [...] (primary outcome) and all cause mortality (secondary outcome) in patients with [...] versus randomly selected matched controls with [...]. We calculated crude and adjusted incidence rate ratios comparing the incidence of [...]"	"Poisson regression was used to calculate adjusted incidence rate ratios, adjusting for the baseline covariates [...]"	$\begin{aligned} & \text { "The crude } \\ & \text { incidence rate } \\ & \text { ratio was } 0.73 \\ & \text { (95\% confidence } \\ & \text { interval } 0.65 \text { to } \\ & 0.81, \mathrm{P}<0.001 \text {). } \\ & \text { Adjusting for } \\ & \text { potential } \\ & \text { confounders [...] } \\ & \text { made little } \\ & \text { difference to the } \\ & \text { incidence rate } \\ & \text { ratio: } 0.76 \text { (95\% } \\ & \text { confidence } \\ & \text { interval } 0.67 \text { to } \\ & 0.85, \mathrm{P}<0.001 \text {)" } \end{aligned}$	"In light of the evidence produced by this study, it is recommended that clinical guidelines and schemes designed to incentivise appropriate management [...] are updated"	Even though the use of causal language is not explicit, they compare rates of the condition in the different groups that have been matched, provide adjusted estimates and suggest to update guidelines to reflect the findings.
"To examine the association between [...] at [...] and [...]."	"[...] during the period [...] is safe with respect to the risk of [...]."	"We estimated odds ratios of [...] and [...] and associated Wald type two sided 95\% confidence intervals by logistic regression. For [...] and [...], we calculated hazard ratios and associated	"[...] to adjust for potential confounding due to temporal trends, we included [...]. [...] are well established risk	"In analyses without covariate adjustment (model 1), [...] was associated with an increased risk of [...] (hazard ratio 1.69	"[...] is not causally related to increased risks (...). Instead, our results suggest other factors underlying and confounding the	The abstract suggests a causal aim when describing the intention to establish a temporal

		Wald type two sided 95\% confidence intervals from Cox regression models, which allow for detailed adjustment for censoring affecting the length of follow-up of each child. Days since birth was used as the underlying time scale. Each child was followed from birth until a diagnosis of the outcome, death, or end of follow-up at 31 December 2014, whichever event occurred first. "	factors for [...]. [...] All estimates were calculated by models with increasing complexity, beginning with models without adjustment for covariates (model 1), followed by models adjusting for all included potentially confounding covariates (model 2)."	(95\% confidence interval 1.18 to 2.41)) and [...] (2.14 (1.39 to 3.30); fig 2). After covariate adjustment (model 2), [...] was only associated with an increased risk of [...] (adjusted hazard ratio 1.66 (1.06 to 2.59); fig 2)."	associations between [...]. Furthermore, although our results suggest that [...] are not causally associated [...] could be a causal factor for other outcomes. [...] although the present study did not find a causal link [...], replication of the results is imperative."	relationship between the exposure and the outcome and concluding that the exposure is safe. The main text uses causal language explicitly when describing the strategies to control for confounding and concluding that a causal relationship was discarded.
"To assess the association of [...] and risk factors for [...] with [...] at [...]."	"The independent association between [...] and [...] in [...] is comparable	"We used a generalised additive mixed model (GAMM) to estimate [...], with [...] as fixed effect predictors and [...] as random effect at the	"We considered [...] as potential confounders."		"As our analyses relied on cross sectional data, these findings should be interpreted	The abstract suggests a causal aim when describing the intention to

	in strength and consistency with those for [...]. The results of this study suggest that tackling all these risk factors might substantially increase life years spent in good physical functioning."	intercept and [...] slope. [...] We computed 95\% confidence intervals from the uncertainty of the estimated smoothing function. We computed the number of years of functioning lost from the mixed model predictions"			cautiously and should not be considered as causal estimates of the impact of [...] on [...]. [...] Given that the present study is based on observational data, our study informs about associations but cannot provide evidence of causality."	establish a temporal relationship between the exposure and the outcome and concluding that the link is comparable to those for other established risk factors. It is important to note that In the abstract the design of the study is described as "Multi-cohort population based study". However the method and discussion refer to a "cross sectional" design that

	with an increased risk of [...]. This association appeared to be largely driven by [...]."	for [...], comparing episodes of [...] and [...] use."	potential confounding by indication [...], we used an active comparator design, [...] To control for potential confounding from differences in baseline health status, we used a propensity score matched design, taking into account demographic characteristics, medical history, [..]."	confidence interval 1.12 to 2.46). This increase corresponded to an absolute difference of 82 (95\% confidence interval 15 to 181) cases of [...] per 1 million treatment episodes in the 60 day risk period."	confounding. We used an active comparator to limit confounding by factors associated with [...], including confounding by indication, and propensity score matching derived from a range of covariates. Despite this, the possibility of residual confounding (for example, due to [...]) cannot completely be ruled out."	causal methods including propensity score matching. They discuss the possibility of residual confounding mainly because of the observational nature of the study but also suggest possible confounders missed.
"To examine the risks of [...] in patients with [...] and in a general population comparison cohort."	"[...] was associated with increased risks of [...]. [...] may be an important risk factor for [...]."	"We did a population based matched cohort study based on routinely and prospectively collected data. [...] We calculated the 0-1 year, $>1-5$ years, and $>5-19$	"Using the full hospital history (inpatient and outpatient diagnoses) recorded in the DNPR before the	"After adjustment for the covariables, [...] was associated with [...] (adjusted hazard ratio 1.49,	"Although we and adjusted the analyses for a wide range of potential confounders identified a priori	Both the abstract and main text describe the exposureoutcome relation in a

		years cumulative incidence per 1000 people for each outcome, accounting for the competing risk of death. Correspondingly, we used matching factors stratified (conditional) Cox proportional hazards regression to estimate hazard ratios, adjusting for the categorical comorbidities listed above as covariables."	index date, we obtained information on the following [...] risk factors: [...]"	95\% confidence interval 1.36 to 1.64), [...] (2.26, 2.11 to 2.41), and [...] (1.94, 1.68 to 2.23), as well as [...] (1.59, 1.45 to 1.74) and [...] (1.25, 1.16 to 1.36) (fig 2). We found no association with [...] (adjusted hazard ratio 1.12, 0.96 to 1.30) or [...] (1.04, 0.93 to 1.16).	on the basis of excisting literature, we cannot exclude influence of unknown or residual confounding, for example, by [...]" ** Typos copied as in the published version	matched cohort. They discuss the possibility of residual confounding and suggest possible confounders missed. All of these elements point to a causal aim.
"To determine if [...] a critical determinant of [...] is and [...]."	"[...] does not have a clinically important association with [...] or [...]."	"We assessed the effect of [...] compared with [...], using multivariable regression. Modified Park's tests were used to determine the appropriate regression models (gamma, Poisson, and logistic) for discrete [...] outcomes. We also assessed the effect of [...]	"In all of our primary analyses we adjusted for the following key confounders: [...]"	"Table 2 shows that there was no strong evidence of a clinically important association of [...] and [...] with [...] or [...]."	"We recognise that we assessed multiple associations and the isolated positive association of [...] and [...] may reflect a chance finding, particularly as	Both abstract and main text use causal language and explain that the aim is to identify whether the exposure is a cause of the outcome and

		on an individual's repeat [...] outcomes scores. [...] Linear mixed effects models were fitted with time as a fixed effect and a random effect of subject."			there was no consistent association with [...] at any other [...]. [...] We would suggest the overall impact would be potentially small as there was no clinically important impact on [...] at any age. We acknowledge that [...] may have attenuated to the null any potential detrimental effect of [...] on [...] outcomes, but this would further support that [...] does not have permanent consequences for [...]."	fter adjusting for potential onfounders onclude that it is not, given hat they only dentify one positive ssociation when multiple were assessed nd consider it o be by chance.

"To determine if [...] is associated with an increased risk of [...] in the general population."	"[...] is associated with a greater risk of [...] compared with [...], but not a greater risk of death. The relative risk increase is similar across population groups, but the higher baseline risk among those [...] translates into higher absolute risks of [...] in these groups."	"We calculated odds ratios for each outcome [...] within 14 days of [...] comparing each [...] adjusting for potential confounders using logistic regression."	"Based on a priori knowledge, we considered the following variables as potential confounders of the relation between [...] and [...]: [...]. All covariates other than sex and ethnicity were updated over time. [...] We initially adjusted for sex and age only, and then fitted an adjusted model using [...]."	"In the 14 days after [...], [...] is associated with the highest odds of [...] (adjusted odds ratio 1.72, 95\% confidence interval 1.31 to 2.24) and [...] (2.27, 1.49 to 3.45) of all the [...] investigated. [...] The odds of death within 14 days of [...] were similar to [...] for [...] (0.90, 0.76 to 1.07) and the other [...]."	"We saw minimal differences in the odds ratios for [...]. [...] analyses using multivariable regression and inverse probability treatment weighting approaches [...] were consistent. [...] our study also had greater ability to adjust for detailed characteristics, such as [...], which are likely to have reduced residual confounding."	The elements that point to a causal aim: confounder adjustment by regression models, sensitivity analysis using inverse probability of treatment weighting and discussing residual confounding.
"To evaluate the [...] safety of [...], in direct comparisons with	"In this large cohort study, [...] was associated with a lower risk of	"For each comparison and for all outcomes, we calculated unadjusted and propensity score matched number of events,	"We considered the following covariates as potential confounders: [...]	"Table 3 shows that after propensity score matching, for [...] primary	"Randomized controlled trials are the best way to assess drug efficacy [...] On	Both abstract and main text use causal language and they are

[...], as used in routine practice."	[...] I and with a similar risk of [...] in direct comparisons with [...] as used in routine care."	incidence rates, and hazard ratios with 95\% confidence intervals."	To control for imbalances in patient characteristics between cohorts, we calculated exposure propensity scores as the predicted probability of receiving the treatment of interest (ie, [...] v each comparator) conditional upon the subjects' baseline covariates using three separate multivariable logistic regression models. All variables were included and no further selection was conducted.	$\begin{aligned} & \text { outcome, the } \\ & \text { number of events } \\ & \text { for [...] and the } \\ & {[. . .] \text { comparator }} \\ & \text { were } 91 \text { and } 124 \\ & \text { respectively (} 8.9 \\ & \text { v } 12.8 \text { per } 1000 \\ & \text { person years; } \\ & \text { hazard ratio } 0.70, \\ & 95 \% \text { confidence } \\ & \text { interval } 0.54 \text { to } \\ & 0.92 \text {) in cohort } 1 ; \\ & 94 \text { and } 148(7.5 \mathrm{v} \\ & 12.4 ; 0.61,0.47 \\ & \text { to } 0.78) \text { in cohort } \\ & 2 ; \text { and } 77 \text { and } \\ & 154(7.3 \text { v } 14.4 ; \\ & 0.51,0.38 \text { to } \\ & 0.67) \text { in cohort } \\ & 3 . " \end{aligned}$	the other hand, strict inclusion and exclusion criteria and rigorous safety monitoring limit the generalizability of randomized controlled trial results. Our study [...] allowing better generalizability to routine care [...] provides data from direct comparisons. [...] while we used propensity score matching to balance more than 100 baseline characteristics between the groups, residual confounding by some unmeasured	explicit to state that the aim is to evaluate safety of the exposure and use causal methods (propensity score matching). They discuss why the design was observational and consider that due to this nature, residual confounding cannot be excluded that may have led to downtown of conclusion which is phrased more in terms of association.

			We 1:1 matched cohorts on their propensity score using a caliper width equal to 0.2 of the standard deviation of the logit of the propensity score."		characteristic(s) cannot be ruled out."	
INCONSISTENT						
"To evaluate the relation between [...] and development of [...]"	"[...] was associated with an increased risk of [...] that was mediated by [...]. Systematically addressing [...] may be an important public health strategy to reduce the incidence of [...]	"We calculated the hazard ratios for the relation of [...] to the risk of MRSA using Cox proportional hazard models. [...] We also calculated the absolute risk difference. [...] We performed mediation analyses to examine the extent to which the effect of [...] on the risk of [...] was through [...]. Using marginal structural models we then estimated the natural	"We performed a matched cohort study [...] matched on age (one year either way), sex, and study entry time (within one year either way). Such comparators were chosen to further ensure the comparability [...] In the multivariable Cox	"The matched and multivariable adjusted hazard ratios for patients with [...] were 1.69 (1.51 to 1.90) for [...] and 1.26 (1.12 to 1.40) for [...]."	"Our GP practice based dataset could have missed the detection of some inpatient cases of [...]; however, these potential nondifferential misclassifications would have biased our results towards the null, rendering our	The aim in the abstract limits to state that they are exploring the relationship of exposure and outcome. However, in the abstract conclusion and full text they describe mediation analysis,

	among patients wih [...]."	direct effect [...] and the natural indirect effect [...] while adjusting for the same confounding variables"	model we adjusted for [...]."		findings conservative"	identifying direct and indirect effects and use marginal structural models which are part of the causal toolkit.
"To quantify the effects of varying [...]"	"[...] is associated with a large increase in [...] among [...] patients. The data from this study suggest that [...] rather than [...] is more strongly associated with [...]"	"For adjusted analysis of time until [...] we used Cox proportional hazards models."	"Adjusted models included [...]"	"Each additional [...] increased the rate of [...] by 70.7\% (95\% confidence interval 54.6\% to 88.4\%) before adjustment and increased the hazard of [...] by 44.0\% (40.8\% to 47.2\%, $\mathrm{P}<0.001$) after adjusting for covariates."	"To determine the extent to which strong unobserved confounding might explain the observed association, we included this synthetic confounder in a Cox model. [...] As part of a sensitivity analysis, we constructed models that removed potential	The aim uses causal language and they provided adjusted estimates. However the conclusion is phrased in terms of association. They do use sensitivity analysis to test for residual confounding and it might be that due to concern of

					confounders. $[. . .]^{\prime \prime}$	unmeasured confounding they decided to be conservative with the conclusions.
"To evaluate the long term association between [...]"	"Widespread utilisation of [...] may be contributing to long term increased risk of [...]. The potential for [...] should be considered when [...]."	"We conducted Poisson regression analyses using person years as observations."	"We included several variables as known confounders or effect modifiers in the relation between. [...]The final fully adjusted model adjusted for [...]"	"After adjustment for covariates, the rate ratio was [...] indicating that during the entire period of followup the risk of [...] was 21% higher during [...] than at other times."	"The registered active [...] population is generally representative of the UK population in terms of age, sex, and regional distribution"	The aim is phrased in terms of association but the conclusion uses causal language and they discuss confounder adjustment.
"To investigate the association of [...]"	"The shape of the association between [...] and [...] was determined by [...].This finding suggests that the [...] may be largely	"We used Cox proportional hazards models to estimate hazard ratios and 95\% confidence intervals. We stratified the analysis by age in months and calendar year of the questionnaire cycle."	"For the main analysis, we used [...] measured at baseline to minimize the effect of underlying diseases on mortality [...] In multivariable	"A multivariable adjusted model showed a positive association between [...] and all cause mortality, whereas [...] showed a U	"Our findings remained robust in several sensitivity analyses [...] we cannot entirely rule out the possibility of unmeasured or unknown	The aim is stated in terms of association but they adjust for confounders, discuss unmeasured confounding and conclude

	explained by $[. . .]^{\prime \prime}$		models, we adjusted for potential confounders including [...]"	shaped association with all cause mortality. In a mutually adjusted model including both [...] and [...] we consistently observed a strong positive association between [...] and all cause mortality."	confounding factors that may account for the associations observed in this study."	that the outcome can be 'largely explained' by the exposure.
"To examine the associations of [...]"	"This association could be explained by the finding that [...] These results emphasise the importance of revisiting [...] or establishing specific guidelines for	"We performed Cox models with penalised splines"	"In final Cox models with penalised splines, we made adjustments for: [...]"	"[A]fter adjustment for confounding factors, the U shaped association with [...]"		The aim is phrased in terms of association but they provide adjusted estimates, discuss confounding and conclude that the exposure

	management among [...]"				could explain the outcome and suggest to take actions given the findings.
"To estimate long term survival, health, and educational/socia I functioning in patients with [...]"	"[...] had no substantial effect on [...]"	"We calculated mortality rate ratios and incidence rate ratios as measures of relative risk."	"For each [...] patient, we used the Danish Civil Registration System and the DNPR to identify all Danish residents with the same sex and date of birth as the patient who had not tested positive [...] and who met the study's inclusion and exclusion criteria [...]. From this population, we extracted 10 people at random for each patient. People in	Patients and members of the comparison cohort were well matched with respect to [...] Mortality was not higher among patients in the [...] cohort"	The abstract states that they aim is to estimate survival but they use matching and conclude that the exposure has no 'substantial effect' on the outcome.

				the population comparison cohort were assigned the same date of study inclusion as $[\ldots$.$] patients to$ whom they were matched."	

			were matched to patients who [...] using a $1: 1$ nearest neighbor matching algorithm with a caliper of 0.2 of the standard deviation of the propensity score on the logit scale. Covariate balance between the two groups was assessed after matching, and we considered an absolute standardized difference less than 0.1 as evidence of balance"		are adjusted for in our study."	applied when aiming for causal inference.
"To determine whether [...] is associated with [...]"	"[...] was independently associated With [...]"	"We fitted both a mixed effect logistic regression model (in which the outcome was defined as	"We examined the relation between [...] and	"The rate of distinct criteria met per year increased by 24%	"We did a sensitivity analysis using propensity score	The aim uses causal language but the conclusion

		dichotomous [...] and the Prentice, Williams, and Peterson (PWP) model"	[...] adjusted for	if a patient had been admitted to hospital (hazard ratio 1.24, 95\% confidence interval 1.20 to 1.28) when controlled for the other covariates"	matching to assess whether the association between [...] and [...] could be due to unmeasured confounders [...] Although we adjusted for a range of characteristics of patients, as with any observational study potential exists for unmeasured confounding, which may partly or fully explain the relation between [...]"	is phrased in terms of association. They provide adjusted estimates, use propensity score as sensitivity analysis and discuss unmeasured confounders. The only reason to present a conservative conclusion seems to be the observational nature of the study.
"To investigate associations between [...] and to analyse the	"Risks of [...] are inversely associated with [...]"	"We used multivariable Cox regression analysis to compare the rates of [...] and [...]. "	"Confounders included in the final models were based on the literature or	"Compared with [...], [...] had increased hazard ratios of [...]"	"We believe that our findings are widely applicable and provide justification for	The aim suggests a causal aim because they evaluate the

effect of changes [...]"			statistical significance ($\mathrm{P}<0.10$). The full model included [...]"		[...] and continuing [...]"	impact of changing the exposure which makes it an intervention and they provide estimates adjusted for confounders. The conclusion is phrased in terms of association.
"To estimate the rates of [...]"	"In cases of [...], approximately [...] will become [...], of which a third will have [...]."	"We present denominators where data for the secondary outcome are missing. We defined the population attributable fraction as (Re-Run)/Re=(RR-1)/RR, calculated using Stata. To test the robustness of our findings, we did a sensitivity analysis."	"We compared the demographic and clinical variables of [...]. We used the binomial Wilson score to calculate confidence intervals of single proportions and the Pearson exact method to calculate	"[...] had a higher risk of [...] The population attributable fraction of [...] was 47% for [...] and 61\% for [...]"	"Considering these results when counselling potentially exposed [...] seems reasonable"	The aim and conclusion are phrased in association terms. However, they estimate attributable fractions and suggest to act given the findings.

			confidence intervals of risk ratios and medians."			
To perform an expedited assessment of [...] risk associated with exposure to [...]".	"The results do not imply a markedly increased short term overall risk of [...] in [...]."	"We used Cox regression to estimate the hazard ratio with 95% confidence intervals for [...] associated with [...], both for ever use and for the predefined categories of cumulative use"	"Analyses were, however, performed as crude comparisons adjusted only for [...] as well as adjusted for [...] and the potential confounding factors."	"Overall, exposure to [...] showed no association with [...] compared with exposure to [...] (adjusted hazard ratio 1.09, 95\% confidence interval 0.85 to 1.41) and no evidence of a dose-response relation"	```"This ensured that the estimates were not affected by immortal time bias [...]. As all comparisons were performed within users of [...], the exposure to [...] can reasonably be expected to be a random event, and confounding is thus expected to be limited."```	The aim does not use causal language. They do provide estimates adjusted for confounding, discuss immortal time bias and conclude that the exposure does not result in an increase survival.
"To investigate the risks of [...] in [...]"	"No increased risk of [...] was detected in [...], but increased risks of [...] were found in this study. Our	"To calculate expected [...], we multiplied the person years at risk by corresponding national incidence rates (by 5 year age band and individual calendar year) for the	"We obtained data relating to potential confounding factors such as [...]"	"There was no overall increased risk of [...] (2578 observed v 2641.2 expected [...]; standardised incidence ratio	"Given previous inconsistent results, small study size, and lack of information on potential	The aim does not use causal language. They provide standardised estimates, discuss

	results suggest that [...] risks could be due to [...], rather than [...]."	general female population of England and Wales. Standardised incidence ratios were calculated by the comparison of observed values with expected values."		0.98 (95\% confidence interval 0.94 to 1.01); absolute excess risk -2.8 cases per 100 000 person years (95\% confidence interval -7.1 to 1.8); table 2)".	confounders, we undertook a population based linkage study in [...]"	confounding and conclude that the risk of the outcome is due to a given exposure compared to another.
CONSISTENTLY NOT CAUSAL						
"To determine whether [...], compared [...], is associated with an increased risk of [...]"	"In this population based cohort study, [...] was associated with an increased risk of [...]. The association was particularly elevated among people using [...] for more than five years. Additional studies, with	"We calculated crude incidence rates of [...] and 95\% confidence intervals, based on the Poisson distribution, for each exposure group. We used time dependent Cox proportional hazards models to estimate hazard ratios and 95\% confidence intervals of [...] associated with [...] compared with [...], using multiple imputation for variables with missing values."	"Potential confounders. All models were adjusted for the following variables measured at cohort entry: [...]. [...] as an alternate means of controlling for confounding, we repeated the analysis by stratifying the model on tenths	"Compared with [...], [...] were associated with an overall 14\% greater risk of [..] (1.6 v 1.2 per 1000 person years; hazard ratio 1.14, 95\% confidence interval 1.01 to 1.29)."	"We introduced a one year exposure lag period to account for a minimum latency time window and to minimize reverse causality. [...]The association between [...] and [...] is biologically plausible. [...] although we were able to adjust for several	In the abstract they only describe associations but in the full text their interest points to a causal aim given the different methods applied to adjust for confounding and reverse causality. They

	long term follow-up, are needed to investigate the effects of [...] on [...]."		of disease risk score. Finally, we repeated the analysis using a marginal structural Cox proportional hazards model using inverse probability of treatment and censoring weighting-a method designed to adjust for time dependent confounding associated with time varying exposures"		important confounders, this study lacked information on other potential confounders such as [...] In this large, population based study, [...] was associated with an elevated risk of [...] overall, along with evidence of a durationresponse relation."	also consider elements as biologically plausibility and duration response relation. Residual confounding seems to be a concern because they lacked information on relevant cofounders which could lead to down tone of the conclusions.
"To determine whether [...] and [...] are associated with an increased risk of [...] in adults with [...]."	"Compared with [...], [...], and [...], might be associated with an increased risk of [...] in adults with [...]."	"For each exposure category we calculated crude incidence rates of [...] with 95% confidence intervals, based on the Poisson distribution. Time dependent Cox proportional hazards	"The models were adjusted for the potential confounders measured at cohort entry: [...] To minimise potential	"Compared with [...], [...] was associated with a 77\% increase in the hazards of [...] (hazard ratio 1.77, 95\% confidence	"Finally, we excluded those with less than one year of follow-up after cohort entry, to allow for a sufficient latency	The abstract only refers to association but the full text mentions adjusting for confounders and ways to

		models were used to estimate hazard ratios and 95\% confidence intervals of [...] associated with [...] and [...], separately, when compared with [...]."	confounding by indication, we compared [...]. [...] we fit a marginal structural model to investigate the impact of potential time dependent confounding using inverse probability of treatment and censoring weighting."	interval 1.04 to 3.01)."	```period and to minimise reverse causality. [...] To assess possible duration- response relations, we investigated the association between cumulative duration of [...] on the risk of [...]. An association between [...] and incidence of [...] is biologically plausible. [...] as with all observational studies, residual confounding is possible. We conducted several sensitivity and ancillary analyses specifically designed to```	minimise reverse causality. They also describe its biological plausibility. There is a concern for residual confounding due to the observational nature rather than missing information on particular relevant confounders.

					assess the potential impact of residual confounding."	
"To examine the association between [...] and [...] risk of [...]."	"[...] could increase the risk of [...]. However, confirmation of these findings are warranted, preferably in an intervention setting"	"[...] was categorised by percentiles (<10, 10-20, $20-50,50-80,80-90, \geq 90$). [...] With these same categories of exposure, the association between [...] and [...] was examined by Cox regression. We used [...] age from birth up to May 2016 as the underlying timescale censoring if death or emigration from Denmark occurred (1217 events)."	"Characteristics that might influence the risk of [....] were identified a priori and included as potential confounders in our adjusted analysis. In model 1, we adjusted for: [...].In model 2, additional adjustments were made for [...]"	"[...] was significantly associated with increased risk of [...] in both unadjusted and covariate adjusted analyses (table 3). Compared with [...], offspring of those with [...] had double the risk of [...] during followup (hazard ratio 2.00 (95\% confidence interval 1.02 to 4.00)). Risk of [...] was positively associated with [...]: the association was	"[...] the mechanism that might be responsible for this effect is not known, but could include [...]. [...] the role of unmeasured or unidentified confounders can never be fully excluded in observational studies."	The abstract only considers associations but the full text mentions confounder adjustment and discusses potential mechanism (biological plausibility). Concern of residual confounding is due to the observational nature of the study.

				significant (Ptrend=0.016) and increased monotonically. Only minor differences were observed between the unadjusted and covariate adjusted analyses."		

	status of [...] and [...] may help to improve reporting rates."					
"To assess how often older adults [...] were [...], and to identify markers of [...]."	"One in seven older adults [...] were [...]. More than half of [...] occurred in patients with [...]. More attention is needed to reduce potentially harmful [...] as older adults [...]."	"We did multivariable mixed effect logistic regression analyses to determine associations between the outcome of [...] and primary predictors of [...]."	"Our primary predictor variables were [...]. Adjusted analyses included the covariates noted above, a random effect term to account for clustering by hospital, and an interaction term to account for the relation between [...] and [...]."	"A total of 2074 (14\%) patients were [...]; 1293 (9\%) were [...] and 300 (2\%) were [...]. Additionally, 628 (4\%) patients were [...]. [...] Patients with [...] had a 25\% (95\% confidence interval 23\% to 78\%) probability of [...]."	--	The abstract indicates that the aim is to assess the frequency of a condition and that is reflected in the main text. No causal language used.
"To describe trends in the rate and daily dose of [...] used among [...] from 2007 to 2016."	"[...] rates were high during the study period of 2007-16, with the highest rates in [...] versus [...] and	"Endpoints were defined at the person quarter level. We used logistic regression to model the proportion of the population [...] each quarter. The average [...]	"All analyses were stratified by beneficiary category including commercially insured, aged	"Averaged across the entire study period, 51.5% of disabled Medicare beneficiaries [...] per year ($n=1128$	--	The abstract indicates that the aim is to describe the frequency of a condition which is

	[...]. [...] and average daily dose have not substantially declined from their peaks, despite increased attention to [...] and awareness of their risks."	per person day by quarter was modelled by a generalized linear model with negative binomial family and log link. The dependent variable was the total [...] per person in the quarter, with an exposure variable representing the number of days of insurance coverage for each person included to standardize daily [...]."	Medicare, and disabled Medicare (beneficiaries with Medicare coverage who were under age 65 years)"	088), compared with 14.3% ($n=18$ 721 915) of commercial beneficiaries and 25.7\% (n=3 847 676) of aged Medicare beneficiaries."		reflected in the main text. No causal language used.
"To describe [...] related mortality in the United States during 1999-2016 by age group, sex, race, cause of [...], and geographic region."	"Mortality due to [...] has been increasing in the US since 2009. Driven by deaths due to [...], people aged 25-34 have experienced the greatest relative increase in mortality.	"Our primary aim was to describe temporal trends in death rates attributable to [...] and [...] as the primary or underlying cause of death for adults in the USA.[...] We then evaluated trends in death rates using the National Cancer Institute's Joinpoint program. This enabled us to identify if there were years in the study period where the	"We adjusted rates for agethat is, age specific mortality was weighted according to the age distribution in a standard year (2000). We also sought to describe how these trends differed based on demographic	$\begin{aligned} & \text { "During the study } \\ & \text { period, a total of } \\ & 460760 \text { deaths } \\ & \text { were attributed } \\ & \text { to }[\ldots](20661 \text { in } \\ & 1999 \text { and } 34174 \\ & \text { in } 2016) \text { and } 136 \\ & 442 \text { to }[. . .](5112 \\ & \text { in } 1999 \text { and } 11 \\ & 073 \text { in } 2016) \\ & \text { (table 1). Men } \\ & \text { had a higher } \\ & \text { burden of age } \\ & \text { adjusted } \end{aligned}$	"[...] though we have detected worsening mortality since 2009, the precise reasons for this trend and the geographic heterogeneity in our analysis require further study. For example, we identify the	The abstract indicates that the aim is to describe the frequency of a condition which is reflected in the main text. No causal language used.

	White Americans, Native Americans, and Hispanic Americans experienced the greatest increase in deaths from [...]. Mortality due to [...] is improving in Maryland but worst in Kentucky, New Mexico, and Arkansas. The rapid increase in death rates among young people due to [...] highlight new challenges for optimal care of patients with [...]."	rate of change in mortality was statistically significantly different. The program uses a piecewise linear regression approach to determine whether rates over time are best described by a straight line (0 joinpoints) or by multiple linear segments (≥ 1 joinpoints)"	subgroups; age, sex, race (Asian or Pacific Islander, Native American (designated as "American Indian" in the census database) or Alaska Native, black or African American, and white American), Hispanic ethnicity, and geographic area of residence."	mortality due to [...] compared with women by a 2:1 ratio and a higher burden of mortality due to [...] by a nearly 4:1 ratio."	states most at risk, but granular data are needed to determine the root causes"	

"To examine whether [...] are associated with an increased risk of [...] after [...]."	"Women with [...], especially [...], may be at higher risk of [...]. If these findings are replicated elsewhere, a massive amount of data exists that could aid in identifying women at higher risk of [...] and that could be conveyed to them or their healthcare providers."	"The main model assessed the primary [...] composite outcome, as well as the individual outcomes of [...], in relation to each [...] for the screened cohort, with censoring at a woman's death or arrival at the end of the study period of 31 March 2016, allowing for a maximum follow-up of 22 years. We did time to event analyses using multivariable Cox regression models, to derive a hazard ratio and 95\% confidence interval for each study outcome."	"Hazard ratios were adjusted for variables chosen a priori, based on the existing literature, including: [...]"	"A total of 6209 women developed the primary [...] composite outcome, which was typically about 1.2 to 1.3 times more likely to occur in a [...], even after adjustment for other covariates"	"Potential confounders between [...] and the risk of [...], including [...] were each accounted for in the models. Nevertheless, about 10\% of [...] lacked information on [...], and [...] and [...] were entirely unknown."	The abstract indicates that the aim is to identify the association between an exposure and an outcome. They consider residual confounding due to lack of information on relevant confounders.
"To examine the association between [...] and the risk of [...] according to levels of [...]."	"Among [...], increasingly worse [...] was associated with a progressively increased risk of [...]. Even	"Using generalised linear models with a robust sandwich estimator, we estimated risk ratios for [...], comparing [...] according to levels of [...] with [...]. To take into	"Analyses were adjusted for [...]"	"In analyses based on [...] levels, the adjusted risk ratios for [...] were 2.17 (95\% confidence	"It is also possible that the previously demonstrated association [...] has resulted in increased clinical	The abstract indicates that the aim is to identify the association between an exposure and

	with [...] within target levels recommended by guidelines [...], the risk of [...] was increased more than twofold. The risk of [...] was not statistically significantly increased at any of the [...] levels examined; the study had limited statistical power for this outcome and was based on [...] only."	account possible dependence from repeated [...], we constructed models with [...] as a cluster variable. [...] were assumed to follow a poisson distribution, and we estimated risk ratios using a log link function"		interval 1.37 to 3.42) for [...], 3.17 (2.45 to 4.11) for [...], 2.79 (1.90 to 4.12) for [...], and 6.23 (4.32 to 9.00) for [...] versus [...]. The corresponding adjusted risk differences were 17 (95\% confidence interval 5 to 36), 32 (21 to 46), 26 (13 to 46), and 77 (49 to 118) cases per 1000 [...]."	surveillance for defects among [...]. [...] health registers do not record data on [...] and hence we could not account for these factors."	an outcome. They consider residual confounding due to lack of information on relevant confounders.
"To examine the association between risk factor burdenscategorized as	"Regardless of index ages at 55,65 , or 75 years, an optimal risk	"We calculated the lifetime risks for the first incident [...] from index ages 55,65 , and 75 years up to age 95 years. [...] we	"We computed lifetime risk in subgroups of participants according to their	"The associated lifetime risk of [...] was lowest if the risk factor profile was	"Our observational study design limits the ability to establish	The abstract and main text indicate that the study mainly aims at

optimal, borderline, or elevated-and the lifetime risk of [...]."	factor profile was associated with a lifetime risk of [...] of about one in five; this risk rose to more than one in three in individuals with at least one elevated risk factor."	used a modified Kaplan- Meier estimator with age as the time scale, accounting for the competing risk of death to compute the lifetime cumulative risk of [...] and associated 95\% confidence intervals"	risk profile at a specified index age (optimal, borderline, and elevated), for each risk factor separately and for the combination of risk factors. [...] we fitted a multivariable Fine and Gray model, adjusted for competing risk of death to predict the lifetime risk of [...]."	optimal. The lifetime risk of [...] increased gradually as the risk factor profile changed from optimal to borderline and elevated at each index age."	causal pathways, and only associations between risk factor profiles and lifetime risk of [...] can be concluded from our study."	identifying associations. There is a concern for residual confounding due to the observational nature rather than missing information on particular relevant confounders.
"To compare rates of [...] for patients [...], with patients [...]."	"[...] was associated with lower [...] rates compared with [...]."	"We used a Cox proportional hazards regression model, adjusting for (...), to estimate hazard ratios and 95\% confidence intervals for [...] comparing [...] with [...]. To summarize switchback estimates	"[...] adjusting for basic demographics (age, sex, and calendar year)"	"Figure 5 shows that in the adjusted analysis, the [...] rates remained consistently lower among [...] than [...]. The magnitude of this	"[...] our results indicate that [...] may in part be driven by [...]."	Even though causal language is not used and both the abstract and main text mainly describe associations,

		across [...], we conducted inverse variance weighted random effects metaanalyses"		effect was largest for [...] (hazard ratio 0.52, 95\% confidence interval 0.43 to 0.63) and smallest for [...] (0.86, 0.77 to 0.97). The pooled hazard ratio across [...] suggested that [...] was associated with a 28% lower rate of [...] compared with [...] (0.72, 0.64 to 0.81)."		their conclusion at the end of the text suggests a causal relationship.
"To assess whether [...] is associated with the incidence of [...] in patients with [...]."	"In this first population based study, [...] was associated with an increased risk of [...]. Although these findings need to be	"We calculated crude incidence rates of [...] with 95\% confidence intervals based on the Poisson distribution for the entire cohort and for each exposure group. For all analyses, we used time dependent Cox proportional hazards	"The models were adjusted for the following potential confounders measured at cohort entry: [...]"	"Compared with [...], [...] was associated with a 75\% increase in risk of [...] (53.4 v 34.5 per 100000 per year; hazard ratio 1.75, 95\% confidence interval 1.22 to	"[...] as with all observational studies, residual confounding from unknown or unmeasured variables remains possible. However, on the basis of the rule	The abstract mainly describes associations but in the main text they describe how their estimates were adjusted for potential

	replicated, physicians should be aware of this possible association."	models to estimate hazard ratios and 95\% confidence intervals for [...] associated with [...] compared with [...]. We also calculated the number needed to harm for patients followed over a two year and four year period by using methods accounting for varying patient follow-up times."		2.49). The number needed to harm corresponded to 2291 patients followed over a two year period and 1177 over a four year period."	out method, a hypothetical confounder would need to be strongly associated with both the exposure (odds ratio >4.7) and the outcome (relative risk >5.0) to move the point estimate towards the null."	confounders and they estimate numbers needed to harm (NNH). Also they consider residual confounding and suggest that only a strong unmeasured confounder will remove the association observed. All of these, point to a causal analysis.
"To assess the prospective associations between [...] and risk of [...].	"In this large prospective study, a 10\% increase in the proportion of [...] associated with a	"We used Cox proportional hazards models with age as the primary timescale to evaluate the association between [...] and incidence of [...]. In these	"Models were adjusted for [...] we made additional adjustments [...]. In addition we	"In model 1, [...]. was associated with increased risks of overall cancer (hazard ratio for a 10 point increment	"Lastly, although we included a large range of confounding factors in the analyses, the hypothesis of	The abstract mainly describes associations but in the main text they describe how

	significant increase of greater than 10% in risks of [...]. Further studies are needed to better understand the relative effect of the various dimensions of [...] in these associations."	models. We estimated hazard ratios and 95\% confidence intervals with the lowest quarter as the reference category."	did mediation analyses [...]"	in the proportion of [...] 1.12 (95\% confidence interval 1.06 to 1.18), $\mathrm{P}<0.001$) and [...] (1.11 (1.02 to 1.22), $\mathrm{P}=0.02$). ."	residual confounding resulting from unmeasured factors (...) cannot be entirely excluded owing to the observational design of this study"	their estimates were adjusted for potential confounders and they use mediation analysis which suggest a causal aim. They also consider residual confounding due to the observational nature of the study.
"To assess the association between [...] and all cause mortality in [...] with [...]."	"Giving [...] to [...] with [...] was associated with an increased rate of [...] but a paradoxical lowered rate of all cause mortality. Careful	"We calculated the incidence of [...] and all cause mortality per 100 person years of follow-up. We generated KaplanMeier survival curves for the outcomes of interest grouped by [...] status. Cox proportion regression were reported as adjusted hazard ratios with 95\%	"We used propensity score matching with demographic and clinical variables to adjust for potential confounding from imbalances in clinical characteristics	"The crude rates for [...] and [...] were 4.6 and 1.2 after [...], and 1.5 and 0.4 in patients who [....] per 100 person years, respectively. In the Cox proportion	"The study population was derived from real world evidence with the inherent limitations of diagnostic coding and case ascertainment Despite well matched groups	The abstract limits to describe associations and rates of the condition but the main text suggest a causal aim as they use propensity

	consideration should be given before [...]. There remains an urgent need for adequately powered randomised trials in this population to explore these findings and to provide clarity on correct clinical management."	confidence intervals. Because all baseline characteristics were balanced in the propensity matched model, [...] was the only independent variable in our Cox regression model."	between patients receiving and not receiving [...]. Demographic variables were [...]. Clinical variables were [...]. Patients who received anticoagulation were matched in a 1:1 ratio"	regression models, the hazard ratios for [...], [...] and all cause mortality for patients [...] were 2.60 (95% confidence interval 2.00 to 3.38), 2.42 (1.44 to 4.05), and 0.82 (0.74 to 0.91) compared with those who [...]."	after propensity score matching, we cannot exclude that the reported associations were confounded by indication"	score matching to control for confounding.
"To assess the temporal change in [...] and to identify [...] with the greatest increase in use."	"Total [...] use has increased markedly over time, in both sexes, and across all age groups [...]. Of the patients who [...], the proportion who had [...] increased	"For comparison across years, we standardised crude rates to the mid2015 UK population. Rates were calculated for [...]. Joinpoint regression was used to model the temporal changes in age and sex standardised rates"	"For each year we calculated the total number [...], stratified by age and sex. We calculated total person years of observation in each age and sex stratum for each year."	"The age and sex adjusted rate of [...] increased from 14869 tests per 10000 person years in 2000/1 to 49267 in 2015/16 (table 1, fig 1), an annual increase of 8.5\% (95\% confidence	"We analysed the temporal change in [...] from UK primary care. The total use of tests increased markedly over time, even after adjustment for population growth"	The abstract and full text state that they aim to quantify changes of a condition over time. It is a descriptive study that does not use causal

	significantly over time."			interval 7.6\% to 9.3\%). [...] The slope of the trend line changed significantly at two points: 2004/5 (P<0.001) and 2008/9 ($\mathrm{P}=0.004$) (fig 1)."		language accordingly.
"To investigate the association of [...] with disease specific incidence and mortality and whether [...] enhances the prediction ability of an established office based risk score."	"[...] was associated with a range of health outcomes and improved prediction of an office based risk score. Further work on the use of [...] in risk scores or risk screening is needed to establish its potential clinical utility."	"[...] we investigated the associations of [...] with cause specific incidence and mortality over followup with Cox proportional hazard models. We reported the results as hazard ratios together with 95% confidence intervals."	"We treated [...] as potential confounders. For Cox proportional hazard analyses, we ran four models that included an increasing number of covariates: model 0 (minimally adjusted) included [...]"	"As shown in figure 1, in both men and women, [...] was associated with a higher hazard for all cause mortality and incidence of and mortality from [...] in model 0. The associations were similar after adjustment for [...] in model 1; after further adjustment, the magnitude of	"To minimise the potential contribution of reverse causality to the findings, we did a landmark analysis excluding events occurring within the two years after recruitment in model 4 (landmark analysis). This landmark analysis was adjusted as in	The abstract mentions associations and suggests that the aim is prediction. In the main text, the authors conclude that the exposure of interest enhances prediction and identification of patients with risk of certain diseases.

					increased risk, and not seeking to make strong causal inferences, reverse causality is not a major limitation."	
"To externally validate four commonly used rules in [...] for [...]."	"Application of the [...] rules can lead to a wide variation in [...] among patients with [...], resulting in many unnecessary [...] findings. Until an existing decision rule has been updated, any of the four rules can be used for patients presenting [...] at the	"The sensitivity, specificity, and proportion of patients [...] (with 95\% confidence intervals) were assessed for each of the four decision rules. [...] The Cochran's Q test was used to directly compare the sensitivities and specificities between the four decision rules [...]. Net proportional benefit has been proposed to incorporate such weighting in calculation of clinical usefulness of decision rules. For each rule, we expressed the net proportional benefit using the formula: (true	--	"The sensitivity for identifying patients with [...] ranged from 72.5% for the [...] criteria to 98.8% for the [...] rule (table 4; appendix 3). [...] The [...] criteria would have missed 11 of 74 patients with [...] (appendix 4). The CHIP criteria would have missed two patients with [...], who both had [...]. The	--	Both the abstract and the full text state that they aim to validate four decision rules for a particular condition. They compared the tests in terms of sensibility or specificity and concluded that the tests are similar and recommended the use of a particular one

	emergency department. Use of the [...] rule is recommended because it leads to a substantial reduction in [...] while missing few potential [...]."	positives/total number) - weight \times (false positives/total number)."		specificity for identifying [...] was lowest for the [...] rule (4.4\%) and highest for the [...] criteria (60.9\%). [...] The sensitivity and specificity differed significantly between all the rules (Cochran's Q P<0.001)."		given that it can help avoid false negatives. The wording 'resulting' and 'leads to' are in fact to discuss the potential for false positives/ false negatives rather than a casual claim.
"To develop and validate a set of practical prediction tools that reliably estimate the outcome of [...]."	"The prediction models reliably estimate the outcome of patients who were managed in various settings for [...]. The predictor items are readily derived at hospital admission. The	"The association between predictor variables and [...] was analysed by fitting proportional odds logistic regression models adjusting for the fixed effect of study. Prognostic strength was quantified as odds ratios with 95\% confidence intervals. The relative importance of each predictor in the models was estimated	"In a published systematic review, we identified relevant predictors of outcome in patients [...]. Based on the results of this published review, we selected the following	"Bootstrap resampling showed negligible model optimism. The models had internally validated AUCs between 0.77 and 0.83 . There was no significant lack of fit (goodness of fit	--	The abstract and main text state that the goal of the study is to validate a prediction tool. Consistent with the prediction aim, no causal

	web based [...] prognostic calculator [...] and the related app could be adjunctive tools to support management of patients."	with partial R2 statistic, which estimates the independent contribution of the predictor to the variance of the outcome"	predictor variables that are assessable early at hospital admission and are consistently associated with outcomes for inclusion in the prediction models: [...]"	$\begin{aligned} & P \geq 0.2 \text { in all } \\ & \text { models). Cross } \\ & \text { validated } \\ & \text { performance was } \\ & \text { variable across } \\ & \text { studies [...]. The } \\ & \text { partial R2 values } \\ & \text { ranged between } \\ & 4 \% \text { and } 46 \% \text {, and } \\ & \text { the pooled AUC } \\ & \text { values were } \\ & \text { between } 0.74 \\ & \text { and } 0.77^{\prime \prime} \end{aligned}$		language is used.
"To prospectively validate [...] to triage patients with [...] in routine clinical practice."	"In a population of patients referred for [...], this new triaging approach accurately classified [...] for most, with half the utilisation of ABPM compared with usual care. This	"To examine model performance, we constructed a logistic regression model with true [...] as the dependant outcome variable and classification using [...] as the independent predictor variable. From this model we estimated the area under the receiver operating characteristic (AUROC) curve statistic."	--	"The triaging strategy [...] predicted true [...] (true positives 66\%, 95\% confidence interval 63\% to 69\%; true negatives 24%, 22% to 27%) with a low error rate (false positives $8 \%, 6 \%$ to 10%; false negatives $2 \%, 1 \%$ to 3%)	--	The abstract and main text describe that the aim is to validate a triage tool and assessed its performance compared to the standard of reference. As the aim is prediction, no causal language is

	triaging strategy can therefore be recommended for diagnosis or management of $[\ldots]$ in patients where [...] is being considered, particularly in settings with limited resources."	(table 2). The triaging strategy resulted in 49\% (46\% to 52\%) being referred for [...] and the remainder managed on the basis of their clinic measurements."	used accordingly.		

Supplementary Material

Table A. Statements in each of the included observational studies published in the BMJ in 2018

Published Abstract		Published Full text				Comment
Objective	Conclusion	Method	Confounder adjustment	Estimates provided	Authors Considerations	
CONSISTENTLY CAUSAL						
"To evaluate the impact of [...] on [...] in [...]"	"[...] is associated with negative effects on [...]. Given the relatively low prevalence of [...], population level impacts are currently modest. Nevertheless, as [...] has doubled in the US over the past generation, further investigation is warranted of the impact on	"To estimate the adjusted odds ratio for each [...] outcome by [...] group, we created logistic regression models with [...] as the reference group. [...] The population attributable risk was calculated using the standard formula"	"Other subgroup analyses were done to ensure that [...] association was not confounded by [...]"	"[...] had 14\% higher odds of [...] compared with [...] (adjusted odds ratio 1.14, 99\% confidence interval 1.13 to 1.15). [...] 14.5\% (13.6\% to 15.4\%) of [...] (under the assumption of a causal relation) can be attributed to [...]"	"The pooling of all [...] during this period minimizes the risk of confounding from yearly fluctuations in [...] outcomes. Finally, despite attempts to adjust [...] using regression analysis and stratification, some residual confounding effects from [...] could remain. [...] As more than 12% of [...] might have been	Both abstract and main text use causal language: they state that their aim is to assess the impact of the exposure on the outcome, adjust for confounders, provide population attributable risks and discuss residual confounding.

	[...] and public health.				prevented were [...], the importance of these data are most relevant to [...]. The cumulative risk over [...] is also likely to be important in terms of both economic burden and overall public health"	
"To examine the [...] risks of [...] initiation compared with initiation of other traditional [...] drugs, initiation of [...], and no initiation."	" $[. .$.$] poses a$ [...] risk compared with non-use, [...] use, and use of other traditional [...] drugs."	"[W]e conducted a series of cohort studies, each mimicking the strict design criteria of a clinical trial (a so-called emulated trial design), to compare rates of [...] among [...] with rates among [...]. [...] We estimated an observational analogue of the intention to treat hazard ratio, as a measure of the incidence rate ratio,	"We calculated the propensity score for all eligible individuals initiating [...] at enrolment by fitting a logistic regression model including covariates on sex, age, year, comorbidity, and	"[...] initiators had a 50\% increased rate of [...] events compared with [...] non-initiators (incidence rate ratio 1.5, 95\% confidence interval 1.4 to 1.7)."	"We performed the following sensitivity analyses, [...] to estimate how strongly a single unmeasured binary confounder would need to be associated with [...] to fully explain our	The use of causal language appears in both abstract and main text. They apply causal methods including target trial emulation and propensity

"To explore associations between [...] and later[...], overall and by [...] subtype and timing of onset."	"[...] was associated with an increased risk of [...], particularly [subtype]. [...] were unlikely to mediate the associations substantially, suggesting that [...] and [...] may share underlying mechanisms or susceptibility pathways. Asking about a history of [...] could help physicians to identify women who might benefit from screening for early signs of disease, allowing for	"We used Cox regression with age as the underlying time to estimate hazard ratios for [...] comparing women with and without a history of [...] We used competing risk methods when analysing associations with [...] subtypes. [...] We evaluated potential mediation by [...]"	"We considered [...] as a priori confounders."	"Women with a history of [...] had a 53% increase in risk of [...] overall, compared with women with no history of [...] (incidence rate for women with a history of [...]: 11.6 per 100000 person years; incidence rate for women with no history of [...]: 8.33 per 100000 person years; hazard ratio 1.53, 95\% confidence interval 1.26 to 1.85)."	"We did sensitivity analyses [...] using the array approach for testing the effect of an unmeasured or incompletely measured confounder. [...] Sensitivity analyses suggested that confounding by [...] was unlikely to explain the observed associations for [...]; in contrast, [...] could conceivably explain a considerable part of the association between [...] and [...]. [...] we also cannot rule out the possibility of	Causal language is present in abstract and main text. They apply mediation analysis, adjust for confounders, and discuss the unmeasured confounding assumption and residual confounding.

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { early clinical } \\ \text { intervention." }\end{array} & & & & \begin{array}{l}\text { residual } \\ \text { confounding by } \\ \text { other } \\ \text { unmeasured }\end{array} \\ \text { covariates" }\end{array}\right]$

		and assuming the prevalence of [...] to be 10%."	of covariates and mediators and to avoid collider bias"	greatest population attributable risks were estimated for [...] (2.4\%, 1.1\% to 3.9\%) and [...] (1.9\%, 1.0% to $2.9 \%)$."	adjusting for potential mediators, including conventional risk factors for [...] outcomes. Consideration should be given to developing prevention strategies to reduce the risk of [...] among patients with severe or predominantly [...]"	and provides population attributable risks.
"To determine the effect of [...] outcome reporting in [...] on risk averse clinical practice, "gaming" of clinical data, and 90 day	"This study did not find evidence that the introduction of [...] in [...] has led to risk averse clinical practice behaviour or	"We used a change point analysis to study the change over time in adjusted 90 day mortality after [...] and after [...]. We used a multivariable logistic regression model for 90 day mortality, with a slope for calendar time and an interaction	"The risk factors included in this logistic regression model are [...]. An adjusted outcome was then produced by indirect standardisation"	"The 90 day mortality in patients undergoing an [...] fell during the study period from 952/33 638 (2.8\%) before the introduction of [...] to 552/25	"If we assume that the decrease in mortality can be causally linked to [...], the process of [...] This team response could have been	Causal language is present in abstract and main text as they state that their aim is to determine the effect of the exposure on

postoperative mortality."	"gaming" of data. However, its introduction coincided with a significant reduction in 90 day mortality."	between time preintroduction versus postintroduction of [...], in addition to all of the risk adjustment variables. This modelled a change in the slope of mortality at the point that [...] was introduced but no immediate change in mortality."		905 (2.1\%) after (fig 4). Therefore, we carried out change point analysis which showed a steeper decline in 90 day mortality after the introduction of [...] ($\mathrm{P}=0.03$). The change point analysis also found a significant effect of [...] when it was modelled as an immediate shift in 90 day mortality ($\mathrm{P}=0.01$) and when it was modelled as both an immediate shift and a change in slope ($\mathrm{P}=0.04$)."	mediated through [...]"	the outcome and conclude that the exposure has not led to the outcome. The main text explains that confounder adjustment was made through standardisatio n and discuss possible mediators for this relationship.
"To assess the effectiveness of	"Little evidence was found of a	"We estimated one year net survival for each [...]	"Survival estimates for all	"One year survival	"The lack of consistent results	Causal language is

the [...] policy initiatives in improving [...] and reducing [...] in survival in England."	direct impact of [...] on one year survival, and no evidence for a reduction in [...] in cancer survival. These findings emphasise that [...] in survival remain a major public health problem for a healthcare system founded on equity."	by sex, year of diagnosis (1996 to 2013), and deprivation category. Patients with a diagnosis between 1996 and 2013 had the potential to be followed up for at least one year, so we used the classic cohort approach. [...] We estimated net survival using the consistent nonparametric estimator defined by Pohar-Perme."	ages combined were age standardised with the International Cancer Survival Standard weights. [...] We used multivariable linear regression to investigate the survival patterns for each [...] and by sex"	improved for 20 of the 21 [...] examined in women and 16 of the 20 [...] examined in men. [...] For these [...], the average annual absolute increase in one year age standardised net survival was often greater than 1% over the whole study period"	between men and women, as well as the lack of general patterns across [...] types, provide little evidence for any strong impact of the [...] policies on short term [...] survival. The evidence is even weaker for their impact on the [...] in [...] survival. [...] These findings should be taken into consideration by [...] policy makers and inform future initiatives."	present in both abstract and main text. The aim is to evaluate the effectiveness of a policy on a given outcome, they provide standardised net survival and suggest to take action given the findings.

To investigate whether improving adherence to [...] interacts with the genetic predisposition to [...] in relation to long term changes in [...] and [...]."	"These data indicate that improving adherence to [...] could attenuate the genetic association with [...]. Moreover, the beneficial effect of improved [...] on [...] was particularly pronounced in people at high genetic risk for [...].	"We used multivariable generalized linear models with repeated measures analyses to assess the main associations of the [...] and changes in the [...] with change in [...]"	"We used multivariable models to adjust for [...]"	"In general, the [...] was associated with increases in [...] every four years: in the two cohorts combined, each additional [...] was associated with 0.02 (SE 0.01) increase in [...] and 0.05 (SE 0.03) kg increase in [...]"	"[...] unmeasured or unknown confounders may also exist. Secondly, because adherence to [...] was not randomized, the association between [...] and [...] may not imply a causal relation. Thirdly, the results could be underestimated by potential reverse causality. [...] Our study provides reproducible evidence from two prospective cohorts of US men and women that improving [...] could attenuate the [...]	Assessing if improving adherence has an effect translates to an intervention that is being assessed. They conclude that there is a beneficial effect and suggest to take action. The main text discusses unmeasured confounding assumption and reverse causality. All of the above is consistent with a causal aim.

	for incident [...] and more than one third of the risk for [...] death. [...] is associated with a nearly 40% reduction in the [...] risk associated with [...]."	hazard ratios and 95\% confidence intervals"		[...] in a doseresponse manner"	follow-up, and further adjustment for [...] minimize the likelihood of reverse causation and lend support for causality. [...] Our study uncovered a substantial impact of [...] jointly on [...] risk, which were equally as important as five lifestyle factors combined."	for covariates. They discuss dose-response relationship and reverse causality.
"To examine the association between [...] and [...] in later life, and determine whether the maintenance of [...] will offset age related [...]"	"These results show that [...] is not associated with the trajectory of [...] in late life, but is associated with the acquisition of ability during	"The raw scores from the [...] tests were standardised to a mean of 100 and a standard deviation of 15 to produce an [...] scale. Age at testing was the number of years after participants' 60th birthdays. We modelled age in this form so that	"Because our sample were all born in the same year and tested at a similar age, a confounder for age at entry was not used. We modelled cognitive	"The typical intellectual engagement models for each domain are shown in table 2 and indicated an expected significant decline in [...]	"In our statistical models, we introduced possible confounders available from early life and life course, including [...]. We also controlled for [...]	The causal aim is suggested when the goal is to establish temporal relationship between exposure and outcome, describing the

	the life course. Overall, findings suggest that high performing adults engage and those that engage more being protected from relative decline."	the intercept occurred at age 60 years rather than zero years, such that the calculation for the intercept would represent a realistic adult value rather than one extrapolated 64 years earlier. [...] For each model, a probability value of $\mathrm{P}<0.05$ was considered significant."	performance with a linear mixed model, as a combination of [...]."	with age, ranging from -1.09 to -1.31 standard points per year for the [...] test and -0.77 to -1.69 for the [...] test. [...] None of the age \times TIE interaction terms were significant, indicating that [...] did not influence the trajectories of age decline."	associated with repeated testing. [...] significant associations remained after adjustment for age, sex, and test practice effects. [...] is an independent contributor to late life [...] and has a unique effect over and above the effect of other life course variables. [...] It is, however, impossible for a causal effect to be inferred [...]"	exposure as a trajectory, providing standardised and adjusted estimates and considering whether it is possible to infer a causal link.
"To evaluate the associations of a [...] and [...] with incident [...]."	"In this cohort study, [...] were independently associated with incident [...]. These results	"To test the association of [...] and [...] with [...] we used Cox proportional hazards models. The duration of follow-up was calculated as time	"Cox proportional hazards models included adjustment for age and sex for	"In Cox proportional hazards analysis, the risk of [...] was higher for those with [...]	"The present study provides further support that common [...] are implicated in the development	The abstract describes that the goal is to establish a temporal relationship

	emphasise the benefit of entire populations adhering to [...], independent of [...] risk."	between the baseline assessment and the first event of either [...] or 1 March 2016, which was the end of follow-up for the current data release. Participants who had a [...] before a [...] occurred were censored at the time of the respective event."	the lifestyle score models. For the models including the genetic score we additionally adjusted for the first 10 principal components of ancestry and genotyping batch."	(hazard ratio 1.20, 95\% confidence interval 1.08 to 1.34) and [...] (1.35, 1.21 to 1.50) compared with those with a low genetic risk score"	of [...]. [...] The [...] was also associated with [...], which suggest that the effect of the [...] on risk of incident [...] might at least in part be mediated by [...]. The effects of [...] might differ according to the cause of [...], although some [...] factors are shared between two or more causal factors"	between the exposure and the outcome and suggest to take action given the findings. The main text describes adjusting for covariates and discusses mediation.
"To determine the longitudinal association between [...] and [...]."	"In older adults, a higher cumulative level of [...] was associated with a higher likelihood of [...]. These	"We used a Cox proportional hazards model to evaluate the association between time-varying [...], adjusting for time-varying covariates (updated at [...] measurement), and the	"We selected covariates and potential mediators based on biological interest, current or previously observed	"Figure 1 shows that after multivariable adjustment for demographic, lifestyle, cardiovascular risks, dietary	"[...] we excluded participants [...] who reported baseline [...] (to avoid reverse causality; n=195). [...] The community	The abstract describes that the goal is to establish a temporal relationship between the exposure and

	findings support guidelines for increased dietary consumption of [...] in older adults."	likelihood [...]. Time at risk was from the first [...] measurement until the first [...] event or censoring [...] or the latest date of adjudicated follow-up in June 2015."	associations with [...], and meaningful changes in the exposure risk estimate ($\pm 5 \%$). Minimal adjustments included age and sex. Multivariable adjustments additionally included [...]. We used the potential mediators to explore what additional associations could exist to these potential pathways."	habits, and other [...], higher [...] levels were associated with a lower likelihood of unhealthy ageing. Overall, participants in the highest group of [...] had an 18\% (95\% confidence interval 3\% to 30%; $P=0.001$) lower risk of [...].Findings were not appreciably altered after adjustment for potential mediators (not shown)."	based design improves generalizability, and regular physical examinations ensured that demographics and other risk factors were well measured, which may help to minimize confounding. [...]The possibility of residual confounding by imprecisely measured or unknown factors also cannot be excluded for an observational study. [...] Any unmeasured confounders would have to be strongly associated with	the outcome and suggest to take action given the findings. The main text describes adjusting for covariates and discusses mediation, residual confounding and reverse causality. The statement in italic is a clear causal statement.

					both the exposure and the outcome, conditional on all the variables already in the model. Thus, it seems unlikely that either poorly measured or unmeasured confounders could fully account for our findings."	
"To prospectively evaluate the joint association of [...] and [...] with risk of type 2 diabetes risk, and to quantitatively decompose this joint association to [...]"	"Among female nurses, both [...] were associated with a higher risk of [...]. The excess risk of [...] was higher than the addition of risk associated with each individual factor. These findings	"Participants contributed person time from the return of the baseline questionnaire [...] until the date of diagnosis of [...], death, loss to follow-up, or the end of the followup period (30 June 2012 for the NHS and 30 June 2013 for NHS II), whichever came first. We used multivariable time dependent Cox	"Information on potential confounders was assessed and updated every other year via the questionnaires throughout follow-up. This information included [...] In multivariable analysis, we	"We observed a positive association between duration of [...] and risk of [...] in both cohorts. Compared with women without rotating night shift work, the pooled multivariable	"From a public health standpoint, because 71% of the joint effect could be attributed to an [...], our findings underscore the importance of maintaining [...].Our findings suggest that	Their aim is to establish a temporal relationship exposureoutcome, they discuss adjusting for confounders, provide excess risk and suggest to take action

	suggest that most cases of [...] could be prevented by [...], and the benefits could be greater in [...]."	proportional hazards models to estimate hazard ratios and 95\% confidence intervals for the associations between [...] alone and in combination with [...]."	adjusted for several confounding factors including [...] We also examined the decomposition of the joint effect: the proportion attributable to [...]"	adjusted hazard ratios for women with 1-5, 5-9, and 10 or more years of [...] were 1.11 (95\% confidence interval 1.00 to 1.22), 1.28 (1.10 to 1.49$)$, and 1.46 (1.33 to 1.62) (P for trend <0.001) [...](table 3). [...] The attributable proportions of the joint effect were 17.1\% (95\% confidence interval 14.0\% to 20.8\%) for [...] alone, 71.2% (66.9\% to 75.8\%) for [...] alone, and 11.3\% (7.3\% to 17.3\%) for their interaction."	most cases of [...] could be prevented by [...], and the benefits would be larger in [...] "	given the findings to prevent the outcome.
"To assess the association between [...] and	"In this analysis of nationwide registers from	"Patients were followed from cohort entry to treatment cessation,	"We used an active comparator new-	"Use of [...], as compared with [...], was	"The findings should be interpreted in the	The goal is to evaluate the association

seven serious adverse events of current concern."	two countries, use of [...], as compared with [...], was associated with an increased risk of [...], but not with other serious adverse events of current concern."	crossover to the other study drug [...], the outcome event, death, emigration, or the end of the study period (31 December 2016). We used Cox proportional hazards regression to calculate hazard ratios, analysing each outcome independently. The absolute risk difference was calculated as hazard ratio-1 multiplied by the rate in the comparator group."	user study design and controlled for a wide range of potential confounders (patient characteristics that might be associated with both the outcome and the decision to initiate a drug) through a non- parsimonious propensity score model to minimise the risk of bias, including confounding by indication [...]. We estimated propensity scores by using logistic regression for the probability of [...] conditional on the status of 66	associated with an increased risk of [...] (hazard ratio 2.32, 95\% confidence interval 1.37 to 3.91) and [...] (2.14, 1.01 to 4.52) but not with [...] (1.11, 0.93 to 1.33), [...] (0.69, 0.45 to 1.05), [...] (0.89, 0.67 to 1.19), [...] (0.99, 0.71to 1.38), or [...] (1.16, 0.64 to 2.12)."	context of limitations of observational studies and the uncertainty of the effect estimates. [...] Therefore, the studies could suffer from compromised confounding control, as indicated by the imbalance in [...] at baseline between users of [...] versus comparators, even after propensity score matching [...] Finally, residual and unmeasured confounding affecting the findings in our study cannot be ruled out."	with the exposure to adverse events which translates into assessing safety. They discuss adjusting for confounding, resort to propensity score matching and consider residual confounding.

"To determine whether patients [...] have fewer [...] and higher rates of [...] than patients [...].	**In results: "Per 100000 patients, there were 2999 fewer follow- up appointments within 14 days, 26 excess deaths, [...] attributable to [...]." "Patients [...] are less likely to have [...] and are at higher risk of [...]."	"For all outcome comparisons we report unadjusted and adjusted odds ratios (with 95\% confidence intervals). Adjusted odds ratios were obtained with logistic regression models estimated using generalised estimating equations methods and including all measured patient and hospital characteristics."	"We examined hospital type and several characteristics of patients and admissions: year of Charlson comorbidity index score, socioeconomic status (measured using median neighbourhood income), length of hospital stay, arrival by ambulance, diagnosis, discharged with home support or against medical advice, and previous healthcare usage (emergency department visits, hospital stays, outpatient visits, home care	"Patients [...] were less likely to have follow-up with a physician within seven days (36.3\% v 47.8%, adjusted odds ratio $0.61,95 \%$ confidence interval 0.60 to 0.62) and 14 days (59.5\% v 68.7%, $0.65,0.64$ to $0.66) .[\ldots]$ Patients discharged during the holiday period were at increased risk of death or readmission within 30 days (25.9\% v 24.7%, $1.09,1.07$ to $1.10)$. This was explained by an increased risk of return to the	$\begin{aligned} & \text { "A confirmatory } \\ & \text { time-to-event } \\ & \text { analysis in a } \\ & \text { propensity score } \\ & \text { matched cohort } \\ & \text { (see } \\ & \text { supplementary } \\ & \text { appendix table 5) } \\ & \text { showed } \\ & \text { consistent results } \\ & \text { (death or } \\ & \text { readmission } \\ & \text { hazard ratio 1.08, } \\ & 95 \% \text { confidence } \\ & \text { interval 1.07 to } \\ & \text { 1.09). [...] The } \\ & \text { differences in } \\ & \text { outcomes could } \\ & \text { not be explained } \\ & \text { by observed } \\ & \text { hospital or } \\ & \text { patient } \\ & \text { characteristics, } \\ & \text { including } \\ & \text { admission } \\ & \text { diagnosis. [...] the } \\ & \text { possibility of } \\ & \text { confounding due } \\ & \text { to unmeasured } \end{aligned}$	The abstract and main text use causal language: they discuss risk attributed to the exposure, provide adjusted estimates using propensity score matching and discuss residual confounding.

			visits). hospital discharge, age, sex, rural residence,"	emergency department (24.3\% v 23.0\%, 1.09, 1.07 to 1.10), rehospitalisation (11.8\% v 11.4\%, 1.06, 1.04 to 1.08), and death (1.5\% v 1.5\%, 1.06, 1.02 to 1.10) within 30 days"	differences remains"	
"To investigate the association between [...] and overall and specific types of [...]."	"Use of [...] is associated with a reduction in [...] risk in women of reproductive age-an effect related to duration of use, which diminishes after stopping use. These data suggest no protective	"We calculated age standardised incidence rates of [...] per 100000 person years, using the age distribution of the cohort as standard. Risk of [...] among users of the different product groups was analysed by a Poisson regression model in SAS version 9.3 (SAS Institute). [...] We calculated the population prevented fraction (population prevented fraction =	"Adjusted incidence rate ratios (referred to here as relative risks) and their surrounding 95\% confidence intervals were calculated for each model, with never users as the reference group. The adjusted models included the	"The age adjusted incidence of [...] was highest in women who were never users of [...] (7.5 per 100000 person years; table 2). Among ever users of [...], reduction in the age standardised absolute rate of [...] was 3.2 per	"The data linkage study design also enabled us to adjust for several important confounding variables. We were not able to adjust for some factors, such as [...] Our findings, therefore, could be subject to residual confounding."	When assessing the exposureoutcome relationship, they provide standardised estimates, discuss residual confounding, dose-response and provide attributable fraction.

	effect from [...]."	prevalence exposure (1-relativ e risk)) associated with ever use of [...] by using the relative risk of never use versus ever use of [...]. The population prevented fraction is the proportion (expressed as a percentage) of the [...] in the cohort that has been prevented by ever use of [...]."	following time varying covariates [...]"	100000 person years. Overall, ever users of [...] had a reduced risk of [...] compared with never users (relative risk 0.66 (95\% confidence interval 0.58 to $0.76)$). [...] use of [...] prevented 21% of [...] in the study population"		
"To assess whether [...] is associated with a reduction in [...] and mortality in old and very old adults with and without [...]."	"In participants older than 74 years without [...], [...] was not associated with a reduction in [...] or in allcause mortality, even when the incidence of [...] was	"To prevent survivor bias and covariate measurement bias, we selected a "new users design" over "all [...] users. [...] Using Cox proportional hazard regression models adjusted by propensity score, we calculated the hazard ratios of statin use for the outcome events. Participants were censored at the date of	"We explored the variables associated with [...] to determine candidate variables for the propensity score of [...]. From SIDIAPQ we obtained data on age, sex, [...] Because of nonrandom	"In participants without [...], the hazard ratios for [...] were 0.94 (95\% confidence interval 0.86 to 1.04) for [...] and 0.98 (0.91 to 1.05) for all cause mortality in 7584 year olds. [...] The one year number needed	"To prevent residual confounding we performed additional regression adjustments after adjustment of propensity score. Variables that remained imbalanced after propensity score	They use causal language and causal methods. To estimate the effect of the exposure on the outcome. They use propensity score methods to adjust for

"To examine the association between [...] and risk of [...]."	"The risk of [...] was increased in people who [...]. In several countries, guidelines define thresholds for [...]. The present findings encourage the downward revision of such guidelines to promote [...] at older ages."	"Cox regression was used in all analyses, with age as the timescale to model the associations with hazard of incident [...]. Participants were censored at date of record of [...], death, or 31 March 2017, whichever came first."	"Models were first adjusted for sociodemographi c factors, then additionally for health behaviours, and finally for health status."	"[...] was associated with a higher risk of [...] when the reference was [...]; in these analyses [...] was associated with an increased risk of [...] in a linear fashion (among those [...], P for non- linearity=0.97 using spline regressions). In a model adjusted for sociodemographi c factors [...] was associated with a greater risk of [...] (hazard ratio 1.47, 1.15 to 1.89) compared with [...]"	"[...] multistate models showed that part of the excess risk of [...] in [...] was attributable to the greater risk of [...] in this group. [...] We accounted for several sociodemographi c and health related characteristics in the analysis, but residual confounding cannot be excluded as an explanation for the higher risk of [...] among [...]. Our multistate models lent partial support for a mediating role of [...] in the association	The abstract and main text use causal language, they provide adjusted, discuss residual confounding and suggest to take action given the findings.

					between [...] and increased [...]"	
"To assess whether adding or switching to [...] is associated with an increased risk of [...], compared with remaining on [...] in patients with [...]."	"[...] as second line drugs are associated with an increased risk of [...] compared with remaining on [...]. Continuing [...] when introducing [...] appears to be safer than switching."	"The study cohort was formed by identifying all subjects from the base cohort of [...] initiators who subsequently added or switched to a [...] as second line treatment. Patients who added or switched to other [...] were censored. For each patient adding or switching to a [...], we identified a matched reference patient who also was a [...] initiator but remained on metformin, using a prevalent newuser design. [...] we constructed a Cox proportional hazards regression model for each outcome that estimated the hazard ratio and the 95\% confidence intervals for [...] versus [...]."	"[...] exposed and reference subjects were matched on high-dimensional propensity score. The high- dimensional propensity score method empirically selects covariates based on their prevalence and potential for confounding. For each member of each matched set, we identified all available information from seven data dimensions (five dimensions from the CPRD: drug prescriptions,	"Compared with the use of [...], adding or switching to [...] was associated with an increased risk of [...] (7.8 v 6.2 per 1000 person years, hazard ratio 1.26, 95\% confidence interval 1.01 to 1.56), all cause mortality (27.3 v $21.5,1.28,1.15$ to 1.44$)$, and [...] (5.5 v 0.7, 7.60, 4.64 to 12.44). There was also a trend towards increased risks of [...] (6.7 v 5.5, $1.24,0.99$ to 1.56) and [...] (9.4 v 8.1, 1.18, 0.98 to 1.43)."	"Based on a posthoc analysis, the findings of the primary analysis on [...] unlikely to be the result of an unmeasured confounder under most plausible exposureconfounder and confounderoutcome associations. [...] For our study, we used the recently developed prevalent newuser design. To emulate the randomised controlled trial, this design identifies (at the doctor visit that	The aim is to assess the effect of the intervention strategy of adding or switching to a particular drug, they emulate a target trial, use propensity score matching, discuss residual confounding and conclude that the strategy is safe.

			procedures, diagnoses, disease history, and administrative information; two dimensions form the HES: diagnoses and procedures) in the one year period before the date of the matched set. We then applied conditional logistic regression to estimate the propensity of receiving a [...] drug, thereby considering the 500 most likely confounders."		led to the patient on [...] adding or being switched to [...]) a comparable patient with the same history of [...] use and of other characteristics, but who on that visit continued on [...]. [...] owing to its observational nature there is the potential for residual confounding."	
"To investigate the associations between [...] and	"Overall, [...] was found to be the safest	"We used a new-user design to capture all events occurring after	"Confounding factors. It is possible that	"In patients with [...], [...] was associated with a	"Although many adjustments have been done using	The aim is to assess the safety of a

risks of [...] compared [...]."	drug, with reduced risks [...] compared with [...]. [...] and low dose [...] were, however, associated with increased risks of all cause mortality compared with [...]."	starting treatment and to reduce the impact of confounding. [...] Incidence rates for each outcome were calculated based on the numbers with the outcome and the person years of follow-up, and were age and sex standardised for each drug. To estimate the risks associated with each [...], an outcome specific Cox model containing all confounding factors was used, with [...] as a primary reference."	patients at higher risk of [...] may preferentially be prescribed [...] rather than [...], so all analyses were adjusted for demographic and clinical variables, either because they may have been used as indicators for prescribing a specific [...] or because they have possible associations with increased risk of [...]. We similarly adjusted for comorbidities, previous events, and drugs also used as indicators or associated with increased risks."	lower risk of [...] than [...] (adjusted hazard ratio 0.66, 95\% confidence interval 0.54 to 0.79). [...]Table 5 shows the number needed to treat or number needed to harm to measure the relative benefits or risks of [...] in comparison with [...]."	the data available on the existing databases, there is a possibility of unmeasured confounding or confounding by indication. [...] Although we used a proportional hazard model adjusting for all available confounding factors, we also undertook a sensitivity analysis using the propensity score method and obtained very similar results."	drug and they use different strategies to adjust for confounding, including propensity scores, provide NNT and discuss the unmeasured confounding assumption.

"To examine the association between [...] and the risk of developing [...]."	"Our study indicates that adherence to a [...] is associated with a substantially reduced risk of [...]. These findings highlight the potential benefits of implementing [...] interventions to curb the risk of [...]."	"To evaluate the association between [...] and [...], we calculated relative risks and 95% confidence intervals using multivariable log-binomial regression models with generalized estimating equations and specified an exchangeable correlation structure."	"We first evaluated associations with [...] by categories of each low risk factor, adjusting for [...]."	"In multivariable analyses (model 2), [...] had a relative risk of 3.10 (95\% confidence interval 2.69 to 3.57) of [...], compared with [...]."	"Several factors could contribute to the weak mediation effect of [...] in the association between [...] and [...] risk. [...] Another limitation, as in any observational study, is that we cannot exclude the possibility of uncontrolled confounding by [...] or residual confounding. [...] Our findings highlight the potentially critical role of [...] in the etiology of [...] and lend support to [...] based intervention strategies for reducing [...]."	They provide adjusted estimates, discuss mediation and residual confounding and suggest to take action given the findings.

"To determine rates of [...] and all cause mortality in patients with [...] compared to patients with [...] and without [...]."	"Patients with [...] remain at higher risk of [...] than patients without [...]. The risk is increased even in those in whom [...] is not documented. Guidelines should be updated to advocate continued use of [...] in patients with [...]"	"We carried out two retrospective cohort studies to determine incidence rates of [...] (primary outcome) and all cause mortality (secondary outcome) in patients with [...] versus randomly selected matched controls with [...]. We calculated crude and adjusted incidence rate ratios comparing the incidence of [...]"	"Poisson regression was used to calculate adjusted incidence rate ratios, adjusting for the baseline covariates [...]"	$\begin{aligned} & \text { "The crude } \\ & \text { incidence rate } \\ & \text { ratio was } 0.73 \\ & \text { (95\% confidence } \\ & \text { interval } 0.65 \text { to } \\ & 0.81, \mathrm{P}<0.001 \text {). } \\ & \text { Adjusting for } \\ & \text { potential } \\ & \text { confounders [...] } \\ & \text { made little } \\ & \text { difference to the } \\ & \text { incidence rate } \\ & \text { ratio: } 0.76 \text { (95\% } \\ & \text { confidence } \\ & \text { interval } 0.67 \text { to } \\ & 0.85, \mathrm{P}<0.001 \text {)" } \end{aligned}$	"In light of the evidence produced by this study, it is recommended that clinical guidelines and schemes designed to incentivise appropriate management [...] are updated"	Even though the use of causal language is not explicit, they compare rates of the condition in the different groups that have been matched, provide adjusted estimates and suggest to update guidelines to reflect the findings.
"To examine the association between [...] at [...] and [...]."	"[...] during the period [...] is safe with respect to the risk of [...]."	"We estimated odds ratios of [...] and [...] and associated Wald type two sided 95\% confidence intervals by logistic regression. For [...] and [...], we calculated hazard ratios and associated	"[...] to adjust for potential confounding due to temporal trends, we included [...]. [...] are well established risk	"In analyses without covariate adjustment (model 1), [...] was associated with an increased risk of [...] (hazard ratio 1.69	"[...] is not causally related to increased risks (...). Instead, our results suggest other factors underlying and confounding the	The abstract suggests a causal aim when describing the intention to establish a temporal

		Wald type two sided 95\% confidence intervals from Cox regression models, which allow for detailed adjustment for censoring affecting the length of follow-up of each child. Days since birth was used as the underlying time scale. Each child was followed from birth until a diagnosis of the outcome, death, or end of follow-up at 31 December 2014, whichever event occurred first. "	factors for [...]. [...] All estimates were calculated by models with increasing complexity, beginning with models without adjustment for covariates (model 1), followed by models adjusting for all included potentially confounding covariates (model 2)."	(95\% confidence interval 1.18 to 2.41)) and [...] (2.14 (1.39 to 3.30); fig 2). After covariate adjustment (model 2), [...] was only associated with an increased risk of [...] (adjusted hazard ratio 1.66 (1.06 to 2.59); fig 2)."	associations between [...]. Furthermore, although our results suggest that [...] are not causally associated [...] could be a causal factor for other outcomes. [...] although the present study did not find a causal link [...], replication of the results is imperative."	relationship between the exposure and the outcome and concluding that the exposure is safe. The main text uses causal language explicitly when describing the strategies to control for confounding and concluding that a causal relationship was discarded.
"To assess the association of [...] and risk factors for [...] with [...] at [...]."	"The independent association between [...] and [...] in [...] is comparable	"We used a generalised additive mixed model (GAMM) to estimate [...], with [...] as fixed effect predictors and [...] as random effect at the	"We considered [...] as potential confounders."		"As our analyses relied on cross sectional data, these findings should be interpreted	The abstract suggests a causal aim when describing the intention to

	in strength and consistency with those for [...]. The results of this study suggest that tackling all these risk factors might substantially increase life years spent in good physical functioning."	intercept and [...] slope. [...] We computed 95\% confidence intervals from the uncertainty of the estimated smoothing function. We computed the number of years of functioning lost from the mixed model predictions"			cautiously and should not be considered as causal estimates of the impact of [...] on [...]. [...] Given that the present study is based on observational data, our study informs about associations but cannot provide evidence of causality."	establish a temporal relationship between the exposure and the outcome and concluding that the link is comparable to those for other established risk factors. It is important to note that In the abstract the design of the study is described as "Multi-cohort population based study". However the method and discussion refer to a "cross sectional" design that

	with an increased risk of [...]. This association appeared to be largely driven by [...]."	for [...], comparing episodes of [...] and [...] use."	potential confounding by indication [...], we used an active comparator design, [...] To control for potential confounding from differences in baseline health status, we used a propensity score matched design, taking into account demographic characteristics, medical history, [..]."	confidence interval 1.12 to 2.46). This increase corresponded to an absolute difference of 82 (95\% confidence interval 15 to 181) cases of [...] per 1 million treatment episodes in the 60 day risk period."	confounding. We used an active comparator to limit confounding by factors associated with [...], including confounding by indication, and propensity score matching derived from a range of covariates. Despite this, the possibility of residual confounding (for example, due to [...]) cannot completely be ruled out."	causal methods including propensity score matching. They discuss the possibility of residual confounding mainly because of the observational nature of the study but also suggest possible confounders missed.
"To examine the risks of [...] in patients with [...] and in a general population comparison cohort."	"[...] was associated with increased risks of [...]. [...] may be an important risk factor for [...]."	"We did a population based matched cohort study based on routinely and prospectively collected data. [...] We calculated the 0-1 year, $>1-5$ years, and $>5-19$	"Using the full hospital history (inpatient and outpatient diagnoses) recorded in the DNPR before the	"After adjustment for the covariables, [...] was associated with [...] (adjusted hazard ratio 1.49,	"Although we and adjusted the analyses for a wide range of potential confounders identified a priori	Both the abstract and main text describe the exposureoutcome relation in a

		years cumulative incidence per 1000 people for each outcome, accounting for the competing risk of death. Correspondingly, we used matching factors stratified (conditional) Cox proportional hazards regression to estimate hazard ratios, adjusting for the categorical comorbidities listed above as covariables."	index date, we obtained information on the following [...] risk factors: [...]"	95\% confidence interval 1.36 to 1.64), [...] (2.26, 2.11 to 2.41), and [...] (1.94, 1.68 to 2.23), as well as [...] (1.59, 1.45 to 1.74) and [...] (1.25, 1.16 to 1.36) (fig 2). We found no association with [...] (adjusted hazard ratio 1.12, 0.96 to 1.30) or [...] (1.04, 0.93 to 1.16).	on the basis of excisting literature, we cannot exclude influence of unknown or residual confounding, for example, by [...]" ** Typos copied as in the published version	matched cohort. They discuss the possibility of residual confounding and suggest possible confounders missed. All of these elements point to a causal aim.
"To determine if [...] a critical determinant of [...] is and [...]."	"[...] does not have a clinically important association with [...] or [...]."	"We assessed the effect of [...] compared with [...], using multivariable regression. Modified Park's tests were used to determine the appropriate regression models (gamma, Poisson, and logistic) for discrete [...] outcomes. We also assessed the effect of [...]	"In all of our primary analyses we adjusted for the following key confounders: [...]"	"Table 2 shows that there was no strong evidence of a clinically important association of [...] and [...] with [...] or [...]."	"We recognise that we assessed multiple associations and the isolated positive association of [...] and [...] may reflect a chance finding, particularly as	Both abstract and main text use causal language and explain that the aim is to identify whether the exposure is a cause of the outcome and

		on an individual's repeat [...] outcomes scores. [...] Linear mixed effects models were fitted with time as a fixed effect and a random effect of subject."			there was no consistent association with [...] at any other [...]. [...] We would suggest the overall impact would be potentially small as there was no clinically important impact on [...] at any age. We acknowledge that [...] may have attenuated to the null any potential detrimental effect of [...] on [...] outcomes, but this would further support that [...] does not have permanent consequences for [...]."	fter adjusting for potential onfounders onclude that it is not, given hat they only dentify one positive ssociation when multiple were assessed nd consider it o be by chance.

"To determine if [...] is associated with an increased risk of [...] in the general population."	"[...] is associated with a greater risk of [...] compared with [...], but not a greater risk of death. The relative risk increase is similar across population groups, but the higher baseline risk among those [...] translates into higher absolute risks of [...] in these groups."	"We calculated odds ratios for each outcome [...] within 14 days of [...] comparing each [...] adjusting for potential confounders using logistic regression."	"Based on a priori knowledge, we considered the following variables as potential confounders of the relation between [...] and [...]: [...]. All covariates other than sex and ethnicity were updated over time. [...] We initially adjusted for sex and age only, and then fitted an adjusted model using [...]."	"In the 14 days after [...], [...] is associated with the highest odds of [...] (adjusted odds ratio 1.72, 95\% confidence interval 1.31 to 2.24) and [...] (2.27, 1.49 to 3.45) of all the [...] investigated. [...] The odds of death within 14 days of [...] were similar to [...] for [...] (0.90, 0.76 to 1.07) and the other [...]."	"We saw minimal differences in the odds ratios for [...]. [...] analyses using multivariable regression and inverse probability treatment weighting approaches [...] were consistent. [...] our study also had greater ability to adjust for detailed characteristics, such as [...], which are likely to have reduced residual confounding."	The elements that point to a causal aim: confounder adjustment by regression models, sensitivity analysis using inverse probability of treatment weighting and discussing residual confounding.
"To evaluate the [...] safety of [...], in direct comparisons with	"In this large cohort study, [...] was associated with a lower risk of	"For each comparison and for all outcomes, we calculated unadjusted and propensity score matched number of events,	"We considered the following covariates as potential confounders: [...]	"Table 3 shows that after propensity score matching, for [...] primary	"Randomized controlled trials are the best way to assess drug efficacy [...] On	Both abstract and main text use causal language and they are

[...], as used in routine practice."	[...] I and with a similar risk of [...] in direct comparisons with [...] as used in routine care."	incidence rates, and hazard ratios with 95\% confidence intervals."	To control for imbalances in patient characteristics between cohorts, we calculated exposure propensity scores as the predicted probability of receiving the treatment of interest (ie, [...] v each comparator) conditional upon the subjects' baseline covariates using three separate multivariable logistic regression models. All variables were included and no further selection was conducted.	$\begin{aligned} & \text { outcome, the } \\ & \text { number of events } \\ & \text { for [...] and the } \\ & {[. . .] \text { comparator }} \\ & \text { were } 91 \text { and } 124 \\ & \text { respectively (} 8.9 \\ & \text { v } 12.8 \text { per } 1000 \\ & \text { person years; } \\ & \text { hazard ratio } 0.70, \\ & 95 \% \text { confidence } \\ & \text { interval } 0.54 \text { to } \\ & 0.92 \text {) in cohort } 1 ; \\ & 94 \text { and } 148(7.5 \mathrm{v} \\ & 12.4 ; 0.61,0.47 \\ & \text { to } 0.78) \text { in cohort } \\ & 2 ; \text { and } 77 \text { and } \\ & 154(7.3 \text { v } 14.4 ; \\ & 0.51,0.38 \text { to } \\ & 0.67) \text { in cohort } \\ & 3 . " \end{aligned}$	the other hand, strict inclusion and exclusion criteria and rigorous safety monitoring limit the generalizability of randomized controlled trial results. Our study [...] allowing better generalizability to routine care [...] provides data from direct comparisons. [...] while we used propensity score matching to balance more than 100 baseline characteristics between the groups, residual confounding by some unmeasured	explicit to state that the aim is to evaluate safety of the exposure and use causal methods (propensity score matching). They discuss why the design was observational and consider that due to this nature, residual confounding cannot be excluded that may have led to downtown of conclusion which is phrased more in terms of association.

			We 1:1 matched cohorts on their propensity score using a caliper width equal to 0.2 of the standard deviation of the logit of the propensity score."		characteristic(s) cannot be ruled out."	
INCONSISTENT						
"To evaluate the relation between [...] and development of [...]"	"[...] was associated with an increased risk of [...] that was mediated by [...]. Systematically addressing [...] may be an important public health strategy to reduce the incidence of [...]	"We calculated the hazard ratios for the relation of [...] to the risk of MRSA using Cox proportional hazard models. [...] We also calculated the absolute risk difference. [...] We performed mediation analyses to examine the extent to which the effect of [...] on the risk of [...] was through [...]. Using marginal structural models we then estimated the natural	"We performed a matched cohort study [...] matched on age (one year either way), sex, and study entry time (within one year either way). Such comparators were chosen to further ensure the comparability [...] In the multivariable Cox	"The matched and multivariable adjusted hazard ratios for patients with [...] were 1.69 (1.51 to 1.90) for [...] and 1.26 (1.12 to 1.40) for [...]."	"Our GP practice based dataset could have missed the detection of some inpatient cases of [...]; however, these potential nondifferential misclassifications would have biased our results towards the null, rendering our	The aim in the abstract limits to state that they are exploring the relationship of exposure and outcome. However, in the abstract conclusion and full text they describe mediation analysis,

	among patients wih [...]."	direct effect [...] and the natural indirect effect [...] while adjusting for the same confounding variables"	model we adjusted for [...]."		findings conservative"	identifying direct and indirect effects and use marginal structural models which are part of the causal toolkit.
"To quantify the effects of varying [...]"	"[...] is associated with a large increase in [...] among [...] patients. The data from this study suggest that [...] rather than [...] is more strongly associated with [...]"	"For adjusted analysis of time until [...] we used Cox proportional hazards models."	"Adjusted models included [...]"	"Each additional [...] increased the rate of [...] by 70.7\% (95\% confidence interval 54.6\% to 88.4\%) before adjustment and increased the hazard of [...] by 44.0\% (40.8\% to 47.2\%, $\mathrm{P}<0.001$) after adjusting for covariates."	"To determine the extent to which strong unobserved confounding might explain the observed association, we included this synthetic confounder in a Cox model. [...] As part of a sensitivity analysis, we constructed models that removed potential	The aim uses causal language and they provided adjusted estimates. However the conclusion is phrased in terms of association. They do use sensitivity analysis to test for residual confounding and it might be that due to concern of

					confounders. $[. . .]^{\prime \prime}$	unmeasured confounding they decided to be conservative with the conclusions.
"To evaluate the long term association between [...]"	"Widespread utilisation of [...] may be contributing to long term increased risk of [...]. The potential for [...] should be considered when [...]."	"We conducted Poisson regression analyses using person years as observations."	"We included several variables as known confounders or effect modifiers in the relation between. [...]The final fully adjusted model adjusted for [...]"	"After adjustment for covariates, the rate ratio was [...] indicating that during the entire period of followup the risk of [...] was 21% higher during [...] than at other times."	"The registered active [...] population is generally representative of the UK population in terms of age, sex, and regional distribution"	The aim is phrased in terms of association but the conclusion uses causal language and they discuss confounder adjustment.
"To investigate the association of [...]"	"The shape of the association between [...] and [...] was determined by [...].This finding suggests that the [...] may be largely	"We used Cox proportional hazards models to estimate hazard ratios and 95\% confidence intervals. We stratified the analysis by age in months and calendar year of the questionnaire cycle."	"For the main analysis, we used [...] measured at baseline to minimize the effect of underlying diseases on mortality [...] In multivariable	"A multivariable adjusted model showed a positive association between [...] and all cause mortality, whereas [...] showed a U	"Our findings remained robust in several sensitivity analyses [...] we cannot entirely rule out the possibility of unmeasured or unknown	The aim is stated in terms of association but they adjust for confounders, discuss unmeasured confounding and conclude

	explained by $[. . .]^{\prime \prime}$		models, we adjusted for potential confounders including [...]"	shaped association with all cause mortality. In a mutually adjusted model including both [...] and [...] we consistently observed a strong positive association between [...] and all cause mortality."	confounding factors that may account for the associations observed in this study."	that the outcome can be 'largely explained' by the exposure.
"To examine the associations of [...]"	"This association could be explained by the finding that [...] These results emphasise the importance of revisiting [...] or establishing specific guidelines for	"We performed Cox models with penalised splines"	"In final Cox models with penalised splines, we made adjustments for: [...]"	"[A]fter adjustment for confounding factors, the U shaped association with [...]"		The aim is phrased in terms of association but they provide adjusted estimates, discuss confounding and conclude that the exposure

	management among [...]"				could explain the outcome and suggest to take actions given the findings.
"To estimate long term survival, health, and educational/socia I functioning in patients with [...]"	"[...] had no substantial effect on [...]"	"We calculated mortality rate ratios and incidence rate ratios as measures of relative risk."	"For each [...] patient, we used the Danish Civil Registration System and the DNPR to identify all Danish residents with the same sex and date of birth as the patient who had not tested positive [...] and who met the study's inclusion and exclusion criteria [...]. From this population, we extracted 10 people at random for each patient. People in	Patients and members of the comparison cohort were well matched with respect to [...] Mortality was not higher among patients in the [...] cohort"	The abstract states that they aim is to estimate survival but they use matching and conclude that the exposure has no 'substantial effect' on the outcome.

				the population comparison cohort were assigned the same date of study inclusion as $[\ldots$.$] patients to$ whom they were matched."	

			were matched to patients who [...] using a $1: 1$ nearest neighbor matching algorithm with a caliper of 0.2 of the standard deviation of the propensity score on the logit scale. Covariate balance between the two groups was assessed after matching, and we considered an absolute standardized difference less than 0.1 as evidence of balance"		are adjusted for in our study."	applied when aiming for causal inference.
"To determine whether [...] is associated with [...]"	"[...] was independently associated With [...]"	"We fitted both a mixed effect logistic regression model (in which the outcome was defined as	"We examined the relation between [...] and	"The rate of distinct criteria met per year increased by 24%	"We did a sensitivity analysis using propensity score	The aim uses causal language but the conclusion

		dichotomous [...] and the Prentice, Williams, and Peterson (PWP) model"	[...] adjusted for	if a patient had been admitted to hospital (hazard ratio 1.24, 95\% confidence interval 1.20 to 1.28) when controlled for the other covariates"	matching to assess whether the association between [...] and [...] could be due to unmeasured confounders [...] Although we adjusted for a range of characteristics of patients, as with any observational study potential exists for unmeasured confounding, which may partly or fully explain the relation between [...]"	is phrased in terms of association. They provide adjusted estimates, use propensity score as sensitivity analysis and discuss unmeasured confounders. The only reason to present a conservative conclusion seems to be the observational nature of the study.
"To investigate associations between [...] and to analyse the	"Risks of [...] are inversely associated with [...]"	"We used multivariable Cox regression analysis to compare the rates of [...] and [...]. "	"Confounders included in the final models were based on the literature or	"Compared with [...], [...] had increased hazard ratios of [...]"	"We believe that our findings are widely applicable and provide justification for	The aim suggests a causal aim because they evaluate the

effect of changes [...]"			statistical significance ($\mathrm{P}<0.10$). The full model included [...]"		[...] and continuing [...]"	impact of changing the exposure which makes it an intervention and they provide estimates adjusted for confounders. The conclusion is phrased in terms of association.
"To estimate the rates of [...]"	"In cases of [...], approximately [...] will become [...], of which a third will have [...]."	"We present denominators where data for the secondary outcome are missing. We defined the population attributable fraction as (Re-Run)/Re=(RR-1)/RR, calculated using Stata. To test the robustness of our findings, we did a sensitivity analysis."	"We compared the demographic and clinical variables of [...]. We used the binomial Wilson score to calculate confidence intervals of single proportions and the Pearson exact method to calculate	"[...] had a higher risk of [...] The population attributable fraction of [...] was 47% for [...] and 61\% for [...]"	"Considering these results when counselling potentially exposed [...] seems reasonable"	The aim and conclusion are phrased in association terms. However, they estimate attributable fractions and suggest to act given the findings.

			confidence intervals of risk ratios and medians."			
To perform an expedited assessment of [...] risk associated with exposure to [...]".	"The results do not imply a markedly increased short term overall risk of [...] in [...]."	"We used Cox regression to estimate the hazard ratio with 95% confidence intervals for [...] associated with [...], both for ever use and for the predefined categories of cumulative use"	"Analyses were, however, performed as crude comparisons adjusted only for [...] as well as adjusted for [...] and the potential confounding factors."	"Overall, exposure to [...] showed no association with [...] compared with exposure to [...] (adjusted hazard ratio 1.09, 95\% confidence interval 0.85 to 1.41) and no evidence of a dose-response relation"	```"This ensured that the estimates were not affected by immortal time bias [...]. As all comparisons were performed within users of [...], the exposure to [...] can reasonably be expected to be a random event, and confounding is thus expected to be limited."```	The aim does not use causal language. They do provide estimates adjusted for confounding, discuss immortal time bias and conclude that the exposure does not result in an increase survival.
"To investigate the risks of [...] in [...]"	"No increased risk of [...] was detected in [...], but increased risks of [...] were found in this study. Our	"To calculate expected [...], we multiplied the person years at risk by corresponding national incidence rates (by 5 year age band and individual calendar year) for the	"We obtained data relating to potential confounding factors such as [...]"	"There was no overall increased risk of [...] (2578 observed v 2641.2 expected [...]; standardised incidence ratio	"Given previous inconsistent results, small study size, and lack of information on potential	The aim does not use causal language. They provide standardised estimates, discuss

	results suggest that [...] risks could be due to [...], rather than [...]."	general female population of England and Wales. Standardised incidence ratios were calculated by the comparison of observed values with expected values."		0.98 (95\% confidence interval 0.94 to 1.01); absolute excess risk -2.8 cases per 100 000 person years (95\% confidence interval -7.1 to 1.8); table 2)".	confounders, we undertook a population based linkage study in [...]"	confounding and conclude that the risk of the outcome is due to a given exposure compared to another.
CONSISTENTLY NOT CAUSAL						
"To determine whether [...], compared [...], is associated with an increased risk of [...]"	"In this population based cohort study, [...] was associated with an increased risk of [...]. The association was particularly elevated among people using [...] for more than five years. Additional studies, with	"We calculated crude incidence rates of [...] and 95\% confidence intervals, based on the Poisson distribution, for each exposure group. We used time dependent Cox proportional hazards models to estimate hazard ratios and 95\% confidence intervals of [...] associated with [...] compared with [...], using multiple imputation for variables with missing values."	"Potential confounders. All models were adjusted for the following variables measured at cohort entry: [...]. [...] as an alternate means of controlling for confounding, we repeated the analysis by stratifying the model on tenths	"Compared with [...], [...] were associated with an overall 14\% greater risk of [..] (1.6 v 1.2 per 1000 person years; hazard ratio 1.14, 95\% confidence interval 1.01 to 1.29)."	"We introduced a one year exposure lag period to account for a minimum latency time window and to minimize reverse causality. [...]The association between [...] and [...] is biologically plausible. [...] although we were able to adjust for several	In the abstract they only describe associations but in the full text their interest points to a causal aim given the different methods applied to adjust for confounding and reverse causality. They

	long term follow-up, are needed to investigate the effects of [...] on [...]."		of disease risk score. Finally, we repeated the analysis using a marginal structural Cox proportional hazards model using inverse probability of treatment and censoring weighting-a method designed to adjust for time dependent confounding associated with time varying exposures"		important confounders, this study lacked information on other potential confounders such as [...] In this large, population based study, [...] was associated with an elevated risk of [...] overall, along with evidence of a durationresponse relation."	also consider elements as biologically plausibility and duration response relation. Residual confounding seems to be a concern because they lacked information on relevant cofounders which could lead to down tone of the conclusions.
"To determine whether [...] and [...] are associated with an increased risk of [...] in adults with [...]."	"Compared with [...], [...], and [...], might be associated with an increased risk of [...] in adults with [...]."	"For each exposure category we calculated crude incidence rates of [...] with 95% confidence intervals, based on the Poisson distribution. Time dependent Cox proportional hazards	"The models were adjusted for the potential confounders measured at cohort entry: [...] To minimise potential	"Compared with [...], [...] was associated with a 77\% increase in the hazards of [...] (hazard ratio 1.77, 95\% confidence	"Finally, we excluded those with less than one year of follow-up after cohort entry, to allow for a sufficient latency	The abstract only refers to association but the full text mentions adjusting for confounders and ways to

		models were used to estimate hazard ratios and 95\% confidence intervals of [...] associated with [...] and [...], separately, when compared with [...]."	confounding by indication, we compared [...]. [...] we fit a marginal structural model to investigate the impact of potential time dependent confounding using inverse probability of treatment and censoring weighting."	interval 1.04 to 3.01)."	```period and to minimise reverse causality. [...] To assess possible duration- response relations, we investigated the association between cumulative duration of [...] on the risk of [...]. An association between [...] and incidence of [...] is biologically plausible. [...] as with all observational studies, residual confounding is possible. We conducted several sensitivity and ancillary analyses specifically designed to```	minimise reverse causality. They also describe its biological plausibility. There is a concern for residual confounding due to the observational nature rather than missing information on particular relevant confounders.

					assess the potential impact of residual confounding."	
"To examine the association between [...] and [...] risk of [...]."	"[...] could increase the risk of [...]. However, confirmation of these findings are warranted, preferably in an intervention setting"	"[...] was categorised by percentiles (<10, 10-20, $20-50,50-80,80-90, \geq 90$). [...] With these same categories of exposure, the association between [...] and [...] was examined by Cox regression. We used [...] age from birth up to May 2016 as the underlying timescale censoring if death or emigration from Denmark occurred (1217 events)."	"Characteristics that might influence the risk of [....] were identified a priori and included as potential confounders in our adjusted analysis. In model 1, we adjusted for: [...].In model 2, additional adjustments were made for [...]"	"[...] was significantly associated with increased risk of [...] in both unadjusted and covariate adjusted analyses (table 3). Compared with [...], offspring of those with [...] had double the risk of [...] during followup (hazard ratio 2.00 (95\% confidence interval 1.02 to 4.00)). Risk of [...] was positively associated with [...]: the association was	"[...] the mechanism that might be responsible for this effect is not known, but could include [...]. [...] the role of unmeasured or unidentified confounders can never be fully excluded in observational studies."	The abstract only considers associations but the full text mentions confounder adjustment and discusses potential mechanism (biological plausibility). Concern of residual confounding is due to the observational nature of the study.

				significant (Ptrend=0.016) and increased monotonically. Only minor differences were observed between the unadjusted and covariate adjusted analyses."		

	status of [...] and [...] may help to improve reporting rates."					
"To assess how often older adults [...] were [...], and to identify markers of [...]."	"One in seven older adults [...] were [...]. More than half of [...] occurred in patients with [...]. More attention is needed to reduce potentially harmful [...] as older adults [...]."	"We did multivariable mixed effect logistic regression analyses to determine associations between the outcome of [...] and primary predictors of [...]."	"Our primary predictor variables were [...]. Adjusted analyses included the covariates noted above, a random effect term to account for clustering by hospital, and an interaction term to account for the relation between [...] and [...]."	"A total of 2074 (14\%) patients were [...]; 1293 (9\%) were [...] and 300 (2\%) were [...]. Additionally, 628 (4\%) patients were [...]. [...] Patients with [...] had a 25\% (95\% confidence interval 23\% to 78\%) probability of [...]."	--	The abstract indicates that the aim is to assess the frequency of a condition and that is reflected in the main text. No causal language used.
"To describe trends in the rate and daily dose of [...] used among [...] from 2007 to 2016."	"[...] rates were high during the study period of 2007-16, with the highest rates in [...] versus [...] and	"Endpoints were defined at the person quarter level. We used logistic regression to model the proportion of the population [...] each quarter. The average [...]	"All analyses were stratified by beneficiary category including commercially insured, aged	"Averaged across the entire study period, 51.5% of disabled Medicare beneficiaries [...] per year ($n=1128$	--	The abstract indicates that the aim is to describe the frequency of a condition which is

	[...]. [...] and average daily dose have not substantially declined from their peaks, despite increased attention to [...] and awareness of their risks."	per person day by quarter was modelled by a generalized linear model with negative binomial family and log link. The dependent variable was the total [...] per person in the quarter, with an exposure variable representing the number of days of insurance coverage for each person included to standardize daily [...]."	Medicare, and disabled Medicare (beneficiaries with Medicare coverage who were under age 65 years)"	088), compared with 14.3% ($n=18$ 721 915) of commercial beneficiaries and 25.7\% (n=3 847 676) of aged Medicare beneficiaries."		reflected in the main text. No causal language used.
"To describe [...] related mortality in the United States during 1999-2016 by age group, sex, race, cause of [...], and geographic region."	"Mortality due to [...] has been increasing in the US since 2009. Driven by deaths due to [...], people aged 25-34 have experienced the greatest relative increase in mortality.	"Our primary aim was to describe temporal trends in death rates attributable to [...] and [...] as the primary or underlying cause of death for adults in the USA.[...] We then evaluated trends in death rates using the National Cancer Institute's Joinpoint program. This enabled us to identify if there were years in the study period where the	"We adjusted rates for agethat is, age specific mortality was weighted according to the age distribution in a standard year (2000). We also sought to describe how these trends differed based on demographic	$\begin{aligned} & \text { "During the study } \\ & \text { period, a total of } \\ & 460760 \text { deaths } \\ & \text { were attributed } \\ & \text { to }[\ldots](20661 \text { in } \\ & 1999 \text { and } 34174 \\ & \text { in } 2016) \text { and } 136 \\ & 442 \text { to }[. . .](5112 \\ & \text { in } 1999 \text { and } 11 \\ & 073 \text { in } 2016) \\ & \text { (table 1). Men } \\ & \text { had a higher } \\ & \text { burden of age } \\ & \text { adjusted } \end{aligned}$	"[...] though we have detected worsening mortality since 2009, the precise reasons for this trend and the geographic heterogeneity in our analysis require further study. For example, we identify the	The abstract indicates that the aim is to describe the frequency of a condition which is reflected in the main text. No causal language used.

	White Americans, Native Americans, and Hispanic Americans experienced the greatest increase in deaths from [...]. Mortality due to [...] is improving in Maryland but worst in Kentucky, New Mexico, and Arkansas. The rapid increase in death rates among young people due to [...] highlight new challenges for optimal care of patients with [...]."	rate of change in mortality was statistically significantly different. The program uses a piecewise linear regression approach to determine whether rates over time are best described by a straight line (0 joinpoints) or by multiple linear segments (≥ 1 joinpoints)"	subgroups; age, sex, race (Asian or Pacific Islander, Native American (designated as "American Indian" in the census database) or Alaska Native, black or African American, and white American), Hispanic ethnicity, and geographic area of residence."	mortality due to [...] compared with women by a 2:1 ratio and a higher burden of mortality due to [...] by a nearly 4:1 ratio."	states most at risk, but granular data are needed to determine the root causes"	

"To examine whether [...] are associated with an increased risk of [...] after [...]."	"Women with [...], especially [...], may be at higher risk of [...]. If these findings are replicated elsewhere, a massive amount of data exists that could aid in identifying women at higher risk of [...] and that could be conveyed to them or their healthcare providers."	"The main model assessed the primary [...] composite outcome, as well as the individual outcomes of [...], in relation to each [...] for the screened cohort, with censoring at a woman's death or arrival at the end of the study period of 31 March 2016, allowing for a maximum follow-up of 22 years. We did time to event analyses using multivariable Cox regression models, to derive a hazard ratio and 95\% confidence interval for each study outcome."	"Hazard ratios were adjusted for variables chosen a priori, based on the existing literature, including: [...]"	"A total of 6209 women developed the primary [...] composite outcome, which was typically about 1.2 to 1.3 times more likely to occur in a [...], even after adjustment for other covariates"	"Potential confounders between [...] and the risk of [...], including [...] were each accounted for in the models. Nevertheless, about 10\% of [...] lacked information on [...], and [...] and [...] were entirely unknown."	The abstract indicates that the aim is to identify the association between an exposure and an outcome. They consider residual confounding due to lack of information on relevant confounders.
"To examine the association between [...] and the risk of [...] according to levels of [...]."	"Among [...], increasingly worse [...] was associated with a progressively increased risk of [...]. Even	"Using generalised linear models with a robust sandwich estimator, we estimated risk ratios for [...], comparing [...] according to levels of [...] with [...]. To take into	"Analyses were adjusted for [...]"	"In analyses based on [...] levels, the adjusted risk ratios for [...] were 2.17 (95\% confidence	"It is also possible that the previously demonstrated association [...] has resulted in increased clinical	The abstract indicates that the aim is to identify the association between an exposure and

	with [...] within target levels recommended by guidelines [...], the risk of [...] was increased more than twofold. The risk of [...] was not statistically significantly increased at any of the [...] levels examined; the study had limited statistical power for this outcome and was based on [...] only."	account possible dependence from repeated [...], we constructed models with [...] as a cluster variable. [...] were assumed to follow a poisson distribution, and we estimated risk ratios using a log link function"		interval 1.37 to 3.42) for [...], 3.17 (2.45 to 4.11) for [...], 2.79 (1.90 to 4.12) for [...], and 6.23 (4.32 to 9.00) for [...] versus [...]. The corresponding adjusted risk differences were 17 (95\% confidence interval 5 to 36), 32 (21 to 46), 26 (13 to 46), and 77 (49 to 118) cases per 1000 [...]."	surveillance for defects among [...]. [...] health registers do not record data on [...] and hence we could not account for these factors."	an outcome. They consider residual confounding due to lack of information on relevant confounders.
"To examine the association between risk factor burdenscategorized as	"Regardless of index ages at 55,65 , or 75 years, an optimal risk	"We calculated the lifetime risks for the first incident [...] from index ages 55,65 , and 75 years up to age 95 years. [...] we	"We computed lifetime risk in subgroups of participants according to their	"The associated lifetime risk of [...] was lowest if the risk factor profile was	"Our observational study design limits the ability to establish	The abstract and main text indicate that the study mainly aims at

optimal, borderline, or elevated-and the lifetime risk of [...]."	factor profile was associated with a lifetime risk of [...] of about one in five; this risk rose to more than one in three in individuals with at least one elevated risk factor."	used a modified Kaplan- Meier estimator with age as the time scale, accounting for the competing risk of death to compute the lifetime cumulative risk of [...] and associated 95\% confidence intervals"	risk profile at a specified index age (optimal, borderline, and elevated), for each risk factor separately and for the combination of risk factors. [...] we fitted a multivariable Fine and Gray model, adjusted for competing risk of death to predict the lifetime risk of [...]."	optimal. The lifetime risk of [...] increased gradually as the risk factor profile changed from optimal to borderline and elevated at each index age."	causal pathways, and only associations between risk factor profiles and lifetime risk of [...] can be concluded from our study."	identifying associations. There is a concern for residual confounding due to the observational nature rather than missing information on particular relevant confounders.
"To compare rates of [...] for patients [...], with patients [...]."	"[...] was associated with lower [...] rates compared with [...]."	"We used a Cox proportional hazards regression model, adjusting for (...), to estimate hazard ratios and 95\% confidence intervals for [...] comparing [...] with [...]. To summarize switchback estimates	"[...] adjusting for basic demographics (age, sex, and calendar year)"	"Figure 5 shows that in the adjusted analysis, the [...] rates remained consistently lower among [...] than [...]. The magnitude of this	"[...] our results indicate that [...] may in part be driven by [...]."	Even though causal language is not used and both the abstract and main text mainly describe associations,

		across [...], we conducted inverse variance weighted random effects metaanalyses"		effect was largest for [...] (hazard ratio 0.52, 95\% confidence interval 0.43 to 0.63) and smallest for [...] (0.86, 0.77 to 0.97). The pooled hazard ratio across [...] suggested that [...] was associated with a 28% lower rate of [...] compared with [...] (0.72, 0.64 to 0.81)."		their conclusion at the end of the text suggests a causal relationship.
"To assess whether [...] is associated with the incidence of [...] in patients with [...]."	"In this first population based study, [...] was associated with an increased risk of [...]. Although these findings need to be	"We calculated crude incidence rates of [...] with 95\% confidence intervals based on the Poisson distribution for the entire cohort and for each exposure group. For all analyses, we used time dependent Cox proportional hazards	"The models were adjusted for the following potential confounders measured at cohort entry: [...]"	"Compared with [...], [...] was associated with a 75\% increase in risk of [...] (53.4 v 34.5 per 100000 per year; hazard ratio 1.75, 95\% confidence interval 1.22 to	"[...] as with all observational studies, residual confounding from unknown or unmeasured variables remains possible. However, on the basis of the rule	The abstract mainly describes associations but in the main text they describe how their estimates were adjusted for potential

	replicated, physicians should be aware of this possible association."	models to estimate hazard ratios and 95\% confidence intervals for [...] associated with [...] compared with [...]. We also calculated the number needed to harm for patients followed over a two year and four year period by using methods accounting for varying patient follow-up times."		2.49). The number needed to harm corresponded to 2291 patients followed over a two year period and 1177 over a four year period."	out method, a hypothetical confounder would need to be strongly associated with both the exposure (odds ratio >4.7) and the outcome (relative risk >5.0) to move the point estimate towards the null."	confounders and they estimate numbers needed to harm (NNH). Also they consider residual confounding and suggest that only a strong unmeasured confounder will remove the association observed. All of these, point to a causal analysis.
"To assess the prospective associations between [...] and risk of [...].	"In this large prospective study, a 10\% increase in the proportion of [...] associated with a	"We used Cox proportional hazards models with age as the primary timescale to evaluate the association between [...] and incidence of [...]. In these	"Models were adjusted for [...] we made additional adjustments [...]. In addition we	"In model 1, [...]. was associated with increased risks of overall cancer (hazard ratio for a 10 point increment	"Lastly, although we included a large range of confounding factors in the analyses, the hypothesis of	The abstract mainly describes associations but in the main text they describe how

	significant increase of greater than 10% in risks of [...]. Further studies are needed to better understand the relative effect of the various dimensions of [...] in these associations."	models. We estimated hazard ratios and 95\% confidence intervals with the lowest quarter as the reference category."	did mediation analyses [...]"	in the proportion of [...] 1.12 (95\% confidence interval 1.06 to 1.18), $\mathrm{P}<0.001$) and [...] (1.11 (1.02 to 1.22), $\mathrm{P}=0.02$). ."	residual confounding resulting from unmeasured factors (...) cannot be entirely excluded owing to the observational design of this study"	their estimates were adjusted for potential confounders and they use mediation analysis which suggest a causal aim. They also consider residual confounding due to the observational nature of the study.
"To assess the association between [...] and all cause mortality in [...] with [...]."	"Giving [...] to [...] with [...] was associated with an increased rate of [...] but a paradoxical lowered rate of all cause mortality. Careful	"We calculated the incidence of [...] and all cause mortality per 100 person years of follow-up. We generated KaplanMeier survival curves for the outcomes of interest grouped by [...] status. Cox proportion regression were reported as adjusted hazard ratios with 95\%	"We used propensity score matching with demographic and clinical variables to adjust for potential confounding from imbalances in clinical characteristics	"The crude rates for [...] and [...] were 4.6 and 1.2 after [...], and 1.5 and 0.4 in patients who [....] per 100 person years, respectively. In the Cox proportion	"The study population was derived from real world evidence with the inherent limitations of diagnostic coding and case ascertainment Despite well matched groups	The abstract limits to describe associations and rates of the condition but the main text suggest a causal aim as they use propensity

	consideration should be given before [...]. There remains an urgent need for adequately powered randomised trials in this population to explore these findings and to provide clarity on correct clinical management."	confidence intervals. Because all baseline characteristics were balanced in the propensity matched model, [...] was the only independent variable in our Cox regression model."	between patients receiving and not receiving [...]. Demographic variables were [...]. Clinical variables were [...]. Patients who received anticoagulation were matched in a 1:1 ratio"	regression models, the hazard ratios for [...], [...] and all cause mortality for patients [...] were 2.60 (95% confidence interval 2.00 to 3.38), 2.42 (1.44 to 4.05), and 0.82 (0.74 to 0.91) compared with those who [...]."	after propensity score matching, we cannot exclude that the reported associations were confounded by indication"	score matching to control for confounding.
"To assess the temporal change in [...] and to identify [...] with the greatest increase in use."	"Total [...] use has increased markedly over time, in both sexes, and across all age groups [...]. Of the patients who [...], the proportion who had [...] increased	"For comparison across years, we standardised crude rates to the mid2015 UK population. Rates were calculated for [...]. Joinpoint regression was used to model the temporal changes in age and sex standardised rates"	"For each year we calculated the total number [...], stratified by age and sex. We calculated total person years of observation in each age and sex stratum for each year."	"The age and sex adjusted rate of [...] increased from 14869 tests per 10000 person years in 2000/1 to 49267 in 2015/16 (table 1, fig 1), an annual increase of 8.5\% (95\% confidence	"We analysed the temporal change in [...] from UK primary care. The total use of tests increased markedly over time, even after adjustment for population growth"	The abstract and full text state that they aim to quantify changes of a condition over time. It is a descriptive study that does not use causal

	significantly over time."			interval 7.6\% to 9.3\%). [...] The slope of the trend line changed significantly at two points: 2004/5 (P<0.001) and 2008/9 ($\mathrm{P}=0.004$) (fig 1)."		language accordingly.
"To investigate the association of [...] with disease specific incidence and mortality and whether [...] enhances the prediction ability of an established office based risk score."	"[...] was associated with a range of health outcomes and improved prediction of an office based risk score. Further work on the use of [...] in risk scores or risk screening is needed to establish its potential clinical utility."	"[...] we investigated the associations of [...] with cause specific incidence and mortality over followup with Cox proportional hazard models. We reported the results as hazard ratios together with 95% confidence intervals."	"We treated [...] as potential confounders. For Cox proportional hazard analyses, we ran four models that included an increasing number of covariates: model 0 (minimally adjusted) included [...]"	"As shown in figure 1, in both men and women, [...] was associated with a higher hazard for all cause mortality and incidence of and mortality from [...] in model 0. The associations were similar after adjustment for [...] in model 1; after further adjustment, the magnitude of	"To minimise the potential contribution of reverse causality to the findings, we did a landmark analysis excluding events occurring within the two years after recruitment in model 4 (landmark analysis). This landmark analysis was adjusted as in	The abstract mentions associations and suggests that the aim is prediction. In the main text, the authors conclude that the exposure of interest enhances prediction and identification of patients with risk of certain diseases.

					increased risk, and not seeking to make strong causal inferences, reverse causality is not a major limitation."	
"To externally validate four commonly used rules in [...] for [...]."	"Application of the [...] rules can lead to a wide variation in [...] among patients with [...], resulting in many unnecessary [...] findings. Until an existing decision rule has been updated, any of the four rules can be used for patients presenting [...] at the	"The sensitivity, specificity, and proportion of patients [...] (with 95\% confidence intervals) were assessed for each of the four decision rules. [...] The Cochran's Q test was used to directly compare the sensitivities and specificities between the four decision rules [...]. Net proportional benefit has been proposed to incorporate such weighting in calculation of clinical usefulness of decision rules. For each rule, we expressed the net proportional benefit using the formula: (true	--	"The sensitivity for identifying patients with [...] ranged from 72.5% for the [...] criteria to 98.8% for the [...] rule (table 4; appendix 3). [...] The [...] criteria would have missed 11 of 74 patients with [...] (appendix 4). The CHIP criteria would have missed two patients with [...], who both had [...]. The	--	Both the abstract and the full text state that they aim to validate four decision rules for a particular condition. They compared the tests in terms of sensibility or specificity and concluded that the tests are similar and recommended the use of a particular one

	emergency department. Use of the [...] rule is recommended because it leads to a substantial reduction in [...] while missing few potential [...]."	positives/total number) - weight \times (false positives/total number)."		specificity for identifying [...] was lowest for the [...] rule (4.4\%) and highest for the [...] criteria (60.9\%). [...] The sensitivity and specificity differed significantly between all the rules (Cochran's Q P<0.001)."		given that it can help avoid false negatives. The wording 'resulting' and 'leads to' are in fact to discuss the potential for false positives/ false negatives rather than a casual claim.
"To develop and validate a set of practical prediction tools that reliably estimate the outcome of [...]."	"The prediction models reliably estimate the outcome of patients who were managed in various settings for [...]. The predictor items are readily derived at hospital admission. The	"The association between predictor variables and [...] was analysed by fitting proportional odds logistic regression models adjusting for the fixed effect of study. Prognostic strength was quantified as odds ratios with 95\% confidence intervals. The relative importance of each predictor in the models was estimated	"In a published systematic review, we identified relevant predictors of outcome in patients [...]. Based on the results of this published review, we selected the following	"Bootstrap resampling showed negligible model optimism. The models had internally validated AUCs between 0.77 and 0.83 . There was no significant lack of fit (goodness of fit	--	The abstract and main text state that the goal of the study is to validate a prediction tool. Consistent with the prediction aim, no causal

	web based [...] prognostic calculator [...] and the related app could be adjunctive tools to support management of patients."	with partial R2 statistic, which estimates the independent contribution of the predictor to the variance of the outcome"	predictor variables that are assessable early at hospital admission and are consistently associated with outcomes for inclusion in the prediction models: [...]"	$\begin{aligned} & P \geq 0.2 \text { in all } \\ & \text { models). Cross } \\ & \text { validated } \\ & \text { performance was } \\ & \text { variable across } \\ & \text { studies [...]. The } \\ & \text { partial R2 values } \\ & \text { ranged between } \\ & 4 \% \text { and } 46 \% \text {, and } \\ & \text { the pooled AUC } \\ & \text { values were } \\ & \text { between } 0.74 \\ & \text { and } 0.77^{\prime \prime} \end{aligned}$		language is used.
"To prospectively validate [...] to triage patients with [...] in routine clinical practice."	"In a population of patients referred for [...], this new triaging approach accurately classified [...] for most, with half the utilisation of ABPM compared with usual care. This	"To examine model performance, we constructed a logistic regression model with true [...] as the dependant outcome variable and classification using [...] as the independent predictor variable. From this model we estimated the area under the receiver operating characteristic (AUROC) curve statistic."	--	"The triaging strategy [...] predicted true [...] (true positives 66\%, 95\% confidence interval 63\% to 69\%; true negatives 24%, 22% to 27%) with a low error rate (false positives $8 \%, 6 \%$ to 10%; false negatives $2 \%, 1 \%$ to 3%)	--	The abstract and main text describe that the aim is to validate a triage tool and assessed its performance compared to the standard of reference. As the aim is prediction, no causal language is

	triaging strategy can therefore be recommended for diagnosis or management of $[\ldots]$ in patients where [...] is being considered, particularly in settings with limited resources."	(table 2). The triaging strategy resulted in 49\% (46\% to 52\%) being referred for [...] and the remainder managed on the basis of their clinic measurements."	used accordingly.		

