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ABSTRACT
Objectives  To develop a prognostic model to identify and 
quantify risk factors for mortality among patients admitted 
to the hospital with COVID-19.
Design  Retrospective cohort study. Patients were 
randomly assigned to either training (80%) or test (20%) 
sets. The training set was used to fit a multivariable 
logistic regression. Predictors were ranked using variable 
importance metrics. Models were assessed by C-indices, 
Brier scores and calibration plots in the test set.
Setting  Optum de-identified COVID-19 Electronic Health 
Record dataset including over 700 hospitals and 7000 
clinics in the USA.
Participants  17 086 patients hospitalised with COVID-19 
between 20 February 2020 and 5 June 2020.
Main outcome measure  All-cause mortality while 
hospitalised.
Results  The full model that included information on 
demographics, comorbidities, laboratory results, and vital 
signs had good discrimination (C-index=0.87) and was 
well calibrated, with some overpredictions for the most 
at-risk patients. Results were similar on the training and 
test sets, suggesting that there was little overfitting. Age 
was the most important risk factor. The performance of 
models that included all demographics and comorbidities 
(C-index=0.79) was only slightly better than a model that 
only included age (C-index=0.76). Across the study period, 
predicted mortality was 1.3% for patients aged 18 years 
old, 8.9% for 55 years old and 28.7% for 85 years old. 
Predicted mortality across all ages declined over the study 
period from 22.4% by March to 14.0% by May.
Conclusion  Age was the most important predictor of 
all-cause mortality, although vital signs and laboratory 
results added considerable prognostic information, with 
oxygen saturation, temperature, respiratory rate, lactate 
dehydrogenase and white cell count being among the most 
important predictors. Demographic and comorbidity factors 
did not improve model performance appreciably. The full 
model had good discrimination and was reasonably well 
calibrated, suggesting that it may be useful for assessment 
of prognosis.

INTRODUCTION
In December 2019, an outbreak of novel 
COVID-19 occurred in Wuhan, China, and was 

officially declared a pandemic in March 2020 
by the WHO. To date (March 2021), more 
than 120 million people have been infected 
worldwide and over 2.7 million people have 
died1 with case and fatality rates among the 
highest in the USA. Severe COVID-19 illness 
can result in hospitalisation, intensive care 
stays and death. Mortality rates among hospi-
talised patients are especially high and have 
ranged from 15% to 20% in the USA.2–4

High mortality rates are due to a number 
of factors, including severity of the disease, 
a lack of available treatments, and in some 
cases, shortages in medical supplies and 
personnel caused by surges in hospitalisa-
tions. Yet, despite high mortality rates, there 
is still some uncertainty about which factors 
place patients most at risk for the poorest 
outcomes. Efforts to reduce this uncertainty 
through better quantification of the relative 
importance of risk factors for severe illness 
can help on a number of fronts. Specifi-
cally, it has been suggested that known risk 

Strengths and limitations of this study

►► To our knowledge, this is the largest dataset used 
for prognostic modelling of patients with COVID-19 
in the USA.

►► Interpretable models were developed that can ex-
plain the clinical effects of predictors and quan-
tify their relative importance in a straightforward 
manner.

►► Model evaluation was performed by assessing both 
discrimination and calibration; bootstrap resam-
pling and a random training/test split were used for 
validation.

►► Considerable missing data in the laboratory re-
sults were imputed using multivariate imputation 
by chained equations and diagnostics were run to 
assess adequacy.

►► Estimates of mortality may be underestimated due 
to lack of out-of-hospital mortality data.
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factors for severe outcomes can be used by medical staff 
to triage patients or for health systems to identify priority 
groups for vaccination.5–7 Furthermore, it can help indi-
viduals understand their own risks of illness and clini-
cians assess prognosis for their patients. Finally, a better 
understanding of risk factors for COVID-19 mortality can 
be used to stratify patients in clinical trials or to identify 
covariates to adjust for in comparative-effectiveness anal-
yses using observational data.8–10

For many of these reasons, there has been a strong 
interest in the development of prognostic models for 
COVID-19. While a number of models have already been 
developed, there is still a need for more rigorous and 
validated models. Wynants et al5 conducted a systematic 
review of existing models and found that most studies had 
a high likelihood of bias due to non-representative patient 
cohorts, overfitting due to small sample sizes and exclu-
sion of patients who have not yet had an event. While, to 
date, total deaths in the USA comprise almost one-fifth 
of global deaths,1 few models have been developed using 
large geographically diverse US cohorts. Existing studies 
have also inadequately adjusted for confounding vari-
ables when assessing the impact of particular risk factors. 
It is, therefore, difficult to make claims on the relative 
importance of different risk factors.11

In this study, we developed a prognostic model of 
in-hospital mortality in the USA and aimed to overcome 
many of the limitations of prior studies.

METHODS
Data source
The Optum de-identified COVID-19 Electronic Health 
Record dataset was used to identify patients hospitalised 
with COVID-19. This dataset consists of a national sample 
of inpatient and outpatient medical records sourced from 
hospital networks from across the USA. Data are de-iden-
tified in compliance with the Health Insurance Portability 
and Accountability Act Expert Method and managed 
according to Optum customer data use agreements.4 Age 
for those 89 years and older was aggregated in the dataset.

Study cohort
To be eligible for the hospitalised cohort in this study, 
patients were required to be older than 18 years old 
and have: (1) a U07.1 or U07.2 diagnosis, (2) a posi-
tive SARS-CoV-2 diagnostic test (eg, either molecular or 
antigen tests) or (3) a B97.29 diagnosis with the absence 
of a negative SARS-CoV-2 molecular test within a 14-day 
window. Eligible hospitalisations required inpatient or 
emergency room (ER) overnight visits with a COVID-19 
diagnosis or starting up to 21 days after a COVID-19 diag-
nosis. Contiguous ER and inpatient visits, with up to a 
1-day gap were considered a single hospitalisation. The 
date of admission was used as index date when COVID-19 
diagnosis occurred before hospitalisation; otherwise, 
index date was set to the date of COVID-19 diagnosis. 

Only the first hospitalisation was considered in this study. 
The study period was 20 February 2020–5 June 2020.

Outcome
The outcome was a binary measure of in-hospital all-cause 
mortality. To ensure that there was sufficient follow-up 
time, patients were removed from the study population 
if their index date was less than 2 weeks prior to the date 
the Optum dataset was censored (5 June 2020), resulting 
in the removal of approximately 5% of the overall study 
population. Evidence from the US Centers for Disease 
Control and Prevention on time to death following 
hospital admission (median: 5 days, IQR: 3–8 days)12 
suggests that this was sufficient to capture most deaths.

Predictors
Candidate predictors were chosen based on prior research 
and included demographics, calendar time, comorbid-
ities, vital signs and laboratory results.5 Demographic 
variables were age, sex, race, ethnicity, geographical divi-
sion and smoking status. To capture trends over time, 
a calendar time variable was derived that measured the 
number of days between a patient’s index date and the 
date of the first case in the data. Comorbidities were iden-
tified based on International Classification of Diseases, 
Ninth Revision (ICD-9) and ICD-10 codes within a year 
of index date and included hypertension, diabetes, and 
those included in the Charlson Comorbidity Index (CCI).

Vital signs considered were peripheral oxygen satura-
tion, systolic blood pressure, heart rate, respiratory rate, 
temperature and body mass index (BMI). Laboratory 
results for aspartate aminotransferase, C reactive protein, 
creatinine, ferritin, lactate dehydrogenase (LDH), 
troponin I, lymphocyte count, neutrophil count, platelet 
count (PLT) and white blood cell count (WBC) were 
obtained. D-dimer and procalcitonin laboratory measures 
were also considered but were dropped due to very high 
missingness (90% and 49%, respectively). We restricted 
vital signs and laboratory results to those within a (−3, 
+1) day window surrounding the index date and used the 
(median of the) value(s) closest to the index date when 
multiple values were available within the window.

Missing data for each of the candidate predictors are 
summarised in online supplemental file 1 section 1. 
There were significant missing data for race, ethnicity, 
BMI, smoking status, and some of the vital signs and labo-
ratory results. Multiple imputation was consequently used 
as described below.

Model development and statistical analysis
A multivariable logistic regression was used to model 
mortality. To protect against overfitting, we first performed 
variable selection by fitting a logistic model with a group 
lasso penalty.13 14 We repeatedly fit the lasso model 100 
times and used 10-fold cross-validation during each of 
the 100 iterations to select the optimal tuning parameter, 
‘lambda’. Variables with non-zero coefficients in at least 
90% of the iterations were included. In practice, only two 
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variables were excluded: peptic ulcer disease and neutro-
phil count (online supplemental file 1 section 2).

The model with all predictors chosen by group lasso 
was the ‘full’ model. For comparison, we fit four more 
parsimonious models with the following predictors: (1) 
age only, (2) comorbidities only, (3) all demographics 
(and calendar time), and (4) demographics (and 
calendar time) and comorbidities. Non-linear relation-
ships between mortality and continuous predictors were 
modelled using restricted cubic splines. Three knots 
were deemed sufficient based on graphical assessment of 
univariate fits in nearly all cases; four knots were used for 
respiration rate to capture a bathtub-shaped relationship 
with mortality. These graphical assessments also showed 
that a few outliers were influencing the fit of some of the 
laboratory results. They were consequently truncated 
from above (at the ‘outer fence’ defined as the third quar-
tile plus three times the IQR), which led to stronger and 
more clinically meaningful relationships (online supple-
mental file 1 section 3).

Predictor effects were summarised in four ways. First, 
coefficient estimates were translated into clinically mean-
ingful ORs. ORs for each value of a categorical variable 
were computed based on comparisons with a refer-
ence group. ORs for continuous predictors were based 
on changes in value from the 25th percentile to the 
75th percentile. Second, we predicted log odds across 
different values of each predictor and visually assessed 
the effects. Third, predicted probabilities were computed 
by age, sex and calendar time for a random sample of 
1000 patients, and then averaged across patients. Fourth, 
variable importance was assessed using Χ2 minus df from 
a Wald test that tests the hypothesis that the coefficient of 
each term associated with a variable (eg, all categories of 
a categorical variable or all spline terms of a continuous 
variable) is zero.15 16

To validate the model, we randomly split the data into 
a training and test set using an 80/20 split and evalu-
ated the model in both the training and the test sets. 
Model performance was assessed using the C-index 
(area under the receiver operating characteristic curve) 
and Brier score. To assess overfitting, 50 bootstrap repli-
cations were used to quantify ‘optimism’ in the training 
set, defined as the average of differences in model 
performance between the training and bootstrapped 
samples. Calibration was assessed using a calibration 
curve that compared predicted probabilities with actual 
probabilities.

Missing data were imputed using multivariate imputa-
tion by chained equations.17 A total of five datasets were 
imputed. Assessment of the imputation was performed by 
comparing the distribution of the missing imputed data 
with the observed data for each predictor. Online supple-
mental file 1 section 4 shows that these distributions 
were very similar for each variable, which suggests that 
the imputation was adequate. Coefficient estimates and 
CIs were combined across the imputations using Rubin’s 
rule.18

Analyses were performed using R V.4.0.0. We used 
three main R packages in the analysis: mice for multiple 
imputation, oem to fit the group lasso, and rms to fit the 
multivariable logistic regressions, summarise the coeffi-
cients and validate the model.14 15 17 Additional details of 
the methodology and code for the analyses are available 
in online supplemental file 2.

Patient and public involvement
No patients were involved in the design or implementa-
tion of the study, nor were they involved in the interpreta-
tion or writing up of the results.

RESULTS
Characteristics of the study population
We identified 17 086 patients who met the inclusion 
criteria for the COVID-19 hospitalised cohort, defined 
in detail elsewhere.4 The characteristics of the 13 658 
patients included in the training set are described in 
table 1 and in additional detail in online supplemental 
file 1 section 5.

The median age was 62 years old (IQR: 49–75). The 
cohort was composed mostly of male (51.9%) non-
Hispanic whites (56.0%). Most patients resided in the 
Middle Atlantic (34.9%) and East North Central (34.9%) 
geographical divisions, which mirrors the initial surge of 
cases in the USA. Patients had high rates of comorbidi-
ties: 58.6% had hypertension, 33.8% had diabetes, 26.6% 
had chronic pulmonary disease (CPD), 20.7% had renal 
disease, and the median CCI score was 1 (IQR: 0–3). The 
majority of patients were overweight (30%) or obese 
(48%). Median oxygen saturation was 96.0%, and 25% of 
patients had oxygen saturation lower than 94.0%.

A comparison of the training and test sets is provided 
in online supplemental file 1 section 6. There were no 
meaningful differences in demographics, comorbidities, 
vital signs or laboratory results.

Predictor effects
ORs from the multivariable logistic regression are 
displayed in figure 1. Age was an important predictor as 
the odds of death for a 75-year-old patient (75th percen-
tile) were around six times more than for a 49-year-old 
patient (25th percentile). Mortality decreased over time 
as evidenced by the negative OR for calendar time. Since 
some of the predictor effects were non-linear, plots 
showing the non-linear predicted effects of the contin-
uous variables on the log-odds scale are displayed in 
online supplemental file 1 section 7 . The log-odds plot 
shows, for instance, that mortality is higher at both lower 
and higher levels of temperature and systolic blood pres-
sure, and that the strong negative relationship between 
oxygen saturation and mortality is only present below 
approximately 95%.

Figure 2 displays the importance of each variable based 
on Wald tests. Age is the most important predictor by a 
considerable amount. Laboratory results and vital signs 
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Table 1  Characteristics of hospitalised patients with COVID-19 in training set by mortality status

Missing 
(%)

Overall
Median (IQR)
N (%)

Survivor
Median (IQR)
N (%)

Non-survivor
Median (IQR)
N (%)

N  �  13 658 11 495 2163

Demographics

 � Age, median (IQR) 0 62.0 (49.0–75.0) 59.0 (46.0–71.0) 77.0 (67.0–85.0)

 � Calendar time (days), median (IQR) 0 47.0 (38.0–64.0) 47.0 (38.0–64.0) 46.0 (37.0–60.0)

 � Geographical division (%) 2.7  �   �   �

 � East North Central  �  4627 (34.8) 3954 (35.3) 673 (31.9)

 � Middle Atlantic  �  4636 (34.9) 3844 (34.4) 792 (37.6)

 � New England  �  1583 (11.9) 1272 (11.4) 311 (14.8)

 � Other  �  191 (1.4) 175 (1.6) 16 (0.8)

 � Pacific  �  511 (3.8) 438 (3.9) 73 (3.5)

 � South Atlantic/West South
 � Central

 �  364 (2.7) 317 (2.8) 47 (2.2)

 � West North Central  �  1384 (10.4) 1189 (10.6) 195 (9.3)

 � Race/ethnicity 26.1  �   �   �

 � Non-Hispanic white  �  5647 (56.0) 4455 (53.1) 1192 (70.3)

 � Asian  �  362 (3.6) 307 (3.7) 55 (3.2)

 � Hispanic  �  533 (5.3) 478 (5.7) 55 (3.2)

 � Non-Hispanic black  �  3547 (35.2) 3153 (37.6) 394 (23.2)

 � Sex=female/male (%) 0 6563/7091 (48.1/51.9) 5635/5856 (49.0/51.0) 928/1235 (42.9/57.1)

 � Smoking status (%) 25.6  �   �   �

 � Current  �  866 (8.5) 785 (9.0) 81 (5.5)

 � Never  �  6207 (61.1) 5450 (62.8) 757 (51.1)

 � Previous  �  3092 (30.4) 2450 (28.2) 642 (43.4)

Comorbidities

 � Acute myocardial infarction 0 1535 (11.2) 1028 (8.9) 507 (23.4)

 � AIDS/HIV 0 101 (0.7) 89 (0.8) 12 (0.6)

 � Cancer 0 1678 (12.3) 1282 (11.2) 396 (18.3)

 � Cerebrovascular disease 0 1439 (10.5) 1023 (8.9) 416 (19.2)

 � Congestive heart failure 0 3627 (26.6) 2933 (25.5) 694 (32.1)

 � Chronic pulmonary disease 0 2325 (17.0) 1604 (14.0) 721 (33.3)

 � Dementia 0 1394 (10.2) 854 (7.4) 540 (25.0)

 � Diabetes 0 4612 (33.8) 3669 (31.9) 943 (43.6)

 � Hemiplegia or paraplegia 0 330 (2.4) 228 (2.0) 102 (4.7)

 � Hypertension 0 8003 (58.6) 6333 (55.1) 1670 (77.2)

 � Metastatic cancer 0 277 (2.0) 188 (1.6) 89 (4.1)

 � Mild liver disease 0 879 (6.4) 711 (6.2) 168 (7.8)

 � Moderate/severe liver disease 0 128 (0.9) 88 (0.8) 40 (1.8)

 � Peptic ulcer disease 0 206 (1.5) 160 (1.4) 46 (2.1)

 � Peripheral vascular disease 0 1671 (12.2) 1176 (10.2) 495 (22.9)

 � Renal disease 0 2833 (20.7) 1984 (17.3) 849 (39.3)

 � Rheumatoid disease 0 398 (2.9) 315 (2.7) 83 (3.8)

 � CCI 0 1.0 (0.0–3.0) 1.0 (0.0–2.0) 3.0 (1.0–5.0)

Vitals

 � BMI, median (IQR) 11.9 29.7 (25.5–35.1) 30.0 (25.8–35.4) 28.1 (24.0 33.5)

 � Diastolic blood pressure (mm Hg), median (IQR) 3.1 73.0 (65.5–80.5) 74.0 (66.5–81.0) 68.0 (60.0–75.5)

 � Heart rate (beats/min), median (IQR) 3.1 87.5 (77.5–98.0) 87.0 (77.5–98.0) 89.0 (77.5–102.0)

Continued
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tend to be more important predictors than either comor-
bidities or demographics: impactful predictors include 
respiration rate, temperature, oxygen saturation, heart 
rate, WBC and LDH. Calendar time is also considered an 
important predictor.

To assess the clinical impact of changes in predictors, 
it is helpful to assess predicted probabilities of mortality. 
These are displayed across levels of age and calendar 
time for a random sample of 1000 patients in figure 3. 
The effect of age on the probability scale is exponential 
and increased sharply with older ages. In March of 2020, 
a hospitalised patient aged 80 years old had a predicted 
probability of death of 34% whereas a patient aged 70 
years old had a predicted probability of death around 
10% points lower. The predicted probability of death for 
an 18-year-old patient at the same date was less than 2%. 
Mortality probabilities did decrease considerably over 
time with mortality rates for patients aged 80 years old 
approaching 20% by May 2020.

Validation and predictive performance
Calibration curves comparing predictive probabilities to 
actual probabilities among patients in the training and 
test sets are shown in online supplemental file 1 section 
8 and figure 4, respectively. In the training set, the bias-
adjusted and unadjusted curves were similar, and ‘opti-
mism’ was approximately zero, suggesting that there was 
little overfitting; however, there was more overpredic-
tion for higher risk patients in the test set. In both cases, 
models including comorbidities tended to be poorly 

calibrated for more at-risk patients, while the full model 
was better calibrated.

Higher predicted probabilities of mortality were much 
more common in the full model than in any of the other 
models. In other words, the variance of the predictions 
was higher implying that the full model was better able to 
discriminate between patients. This was also reflected in 
table 2, which reported estimates of the C-index and Brier 
score. In the test set, the C-index improved from 0.756 
in the age-only model to 0.874 in the full model and the 
Brier score decreased from 0.111 to 0.088. Results were 
similar in the training set. Notably, there was no appre-
ciable difference in either the Brier score or the C-index 
between the age-only model, the demographics model, or 
the demographics and comorbidities model.

The full model including laboratory results and vitals 
consequently performed best overall given that it was 
more discriminating than the competing models and 
was still well calibrated. The parameter estimates used 
to predict mortality with the full model are available in 
online supplemental file 1 section 9.

DISCUSSION
We aimed to develop a rigorous model that was both clini-
cally interpretable and had good predictive performance. 
We quantified the relative importance of different predic-
tors to identify risk factors that would be most important 
for assessing prognosis. One of the most striking findings 

Missing 
(%)

Overall
Median (IQR)
N (%)

Survivor
Median (IQR)
N (%)

Non-survivor
Median (IQR)
N (%)

 � Oxygen saturation (%), median (IQR) 3.9 96.0 (94.0–98.0) 96.0 (94.5–98.0) 95.0 (93.0–97.0)

 � Respiratory rate (breaths/min), median (IQR) 3.9 20.0 (18.0–22.0) 19.5 (18.0–21.0) 22.0 (19.0–26.0)

 � Systolic blood pressure (mm Hg), median (IQR) 3.2 126.0 (115.0–139.0) 127.0 (116.0–139.0) 122.0 (109.0–136.5)

 � Temperature (Celsius), median (IQR) 3.1 37.0 (36.7–37.4) 37.0 (36.7–37.4) 37.1 (36.7–37.6)

Laboratory tests

 � Alanine aminotransferase (U/L), median (IQR) 20.1 28.0 (18.0–46.0) 28.0 (18.0–46.0) 27.0 (18.0–44.0)

 � Aspartate aminotransferase (U/L), median (IQR) 21 37.0 (25.0–58.0) 35.0 (25.0–54.0) 46.0 (30.0–73.0)

 � C reactive protein (mg/L), median (IQR) 38.7 79.1 (34.0–140.0) 72.2 (30.0–130.0) 116.0 (63.0–184.0)

 � Creatinine (mg/dL), median (IQR) 10.4 1.0 (0.8–1.4) 1.0 (0.8–1.3) 1.3 (1.0–2.1)

 � Ferritin (ng/mL), median (IQR) 43.6 510.0 (224.0–1080.0) 470.0 (207.0–992.0) 747.5 (320.8–1501.5)

 � Fibrin D-dimer (ng/mL), median (IQR) 90.4 750.0 (390.0–1540.8) 692.5 (370.0–1346.5) 1345.0 (668.2–3315.0)

 � Lactate dehydrogenase (U/L), median (IQR) 45.2 321.0 (238.0–441.0) 308.0 (232.0–415.0) 404.0 (284.0–556.5)

 � Lymphocyte count (103/µL), median (IQR) 11.2 1.0 (0.7–1.4) 1.0 (0.7–1.4) 0.8 (0.5–1.1)

 � Neutrophil count (103/µL), median (IQR) 11.2 4.9 (3.4–7.1) 4.7 (3.2–6.7) 6.1 (4.1–9.2)

 � Platelet count (109/L), median (IQR) 9.8 202.0 (157.0–260.0) 205.0 (160.0–262.0) 187.5 (143.0–245.0)

 � Procalcitonin (ng/mL), median (IQR) 49.3 0.1 (0.1–0.4) 0.1 (0.1–0.3) 0.3 (0.1–1.0)

 � Troponin (ng/mL), median (IQR) 41.2 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.1)

 � White cell count (109/L), median (IQR) 9.7 6.7 (4.9–9.1) 6.5 (4.8–8.7) 7.7 (5.6–11.1)

BMI, body mass index; CCI, Charlson Comorbidity Index.

Table 1  Continued
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from our study is that the most parsimonious model—one 
that only includes age—is highly predictive; in fact, age is 
nearly as prognostic as all other information on demo-
graphic and comorbidities. This does not mean that age 
alone is sufficient for prediction, but it does suggest that 
simply knowing a patient’s age is very informative. Vital 
signs and laboratory results do improve model predic-
tions which use age alone, meaningfully increasing the 
C-index and decreasing the Brier score.

Comparison with other studies
A living systematic review of existing prognostic models 
has been conducted by Wynants et al5 and 50 prognostic 
models have been identified to date. A subset of those 
predict mortality among hospitalised patients.

Most prognostic models are based on data from 
China,19–24 although others have been developed with 
data from the UK,25–27 Mexico,28 South Korea,29 Israel,30 

the USA31–33 and a mix of countries.34 Our study differs 
from the other US studies in that it includes a broader 
cohort of patients encompassing all geographical regions. 
Our results may then help inform the extent to which 
models trained using narrower cohorts can generalise 
across heterogeneous populations.

Models have typically been trained on smaller data-
sets, with most consisting of <1000 patients and a few 
with sample sizes ranging from 1000 to 3000.29 31 32 
Only two studies, to our knowledge, had a sample size 
larger than 10 000 and both were based outside of the 
USA.27 28 Smaller sample sizes not only increase the 
likelihood of overfitting, but also reduce the ability to 
detect important risk factors.

One advantage of our approach compared with 
more ‘black box’ prediction models is that the effects 
of the predictors were interpretable.35 36 For instance, 

Figure 1  ORs of mortality from the full multivariable logistic regression. Error bars represent 95% CIs. IQR ORs are used 
for continuous predictors (upper quartile: lower quartile). Reference groups for categorical predictors are as follows: race/
ethnicity=‘non-Hispanic white’, division=‘Pacific’, sex=‘male’, smoking =‘never smoker’. BMI, body mass index; CPD, chronic 
pulmonary disease.
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we used splines15 16 37 to plot the non-linear effect of 
each predictor in the model and predict mortality by 
different values of important predictors like age and 
calendar time. As we discuss below, the model param-
eters had a reasonable clinical interpretation, which, 

in turn, increases confidence that our findings will 
generalise to other settings. Although prior analyses 
have focused on clinical interpretation, they tended to 
report measures of relative effect such as ORs or HRs, 
which cannot be used to directly assess the relative 
importance of categorical and continuous variables 
or of transformed continuous variables. Therefore, 
we also reported metrics that quantified the relative 
importance of each predictor.

The strength of the relationship between mortality and 
age was consistent with other studies including Gupta 
et al,26 who evaluated the performance of models from 
19 studies (14 of which were COVID-19 specific) on an 
independent dataset of 411 patients hospitalised for 
COVID-19 in the UK and found that no other variables 
added additional incremental value beyond age. Age may 
be a strong predictor because while it is correlated with 
the comorbidities specified in the model, it also likely 
captures other unspecified comorbidities that may be 
associated with worse outcomes. Additionally, age may 
be associated with altered immune function that could 
result in slower viral clearance, or a hyperactive immune 
response that could contribute to severe clinical manifes-
tations of the disease.38

Our results also differ from Gupta et al26 in that labo-
ratory results and vital signs added non-negligible 
incremental value to the discriminative ability of our 
predictions. Oxygen saturation, temperature and respi-
ration rate were among the most important risk factors 
in the model, which is consistent with other models of 

Figure 2  Ranking of importance of predictors of mortality from the full multivariable logistic regression. A higher value of ‘Χ2 
minus df’ implies that a predictor has a larger contribution to the fit of the model.

Figure 3  Predicted probability of mortality from the full 
multivariable logistic regression by age and calendar time. 
Each curve represents a specific hypothetical index date. 
Age and calendar time effects are adjusted for all variables 
in the full model. Predictions for each age and calendar time 
combination are averaged over a random sample of 1000 
patients.
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mortality, both among patients with COVID-1922 25 39 
and in more general populations.40–42 The positive rela-
tionship between higher levels of BMI and mortality was 
consistent with prior research.43 44

Troponin I, LDH and PLT were among the most 
important laboratory results, which has been docu-
mented elsewhere.5 45 46 Troponin and LDH elevations 
may reflect more severe microvascular dysfunction 
which could lead to myocardial and other end-organ 
injury. Lower PLT counts could reflect increased 
consumption due to macrothromboses and micro-
thromboses, which have been described clinically and 

in autopsy studies,47 and which may be associated with 
and exacerbate microvascular dysfunction. Of note, the 
lasso model selected WBC and lymphocyte count for 
inclusion and excluded neutrophil count. We explored 
this further by running a separate model omitting WBC 
and found that neutrophil count had similar variable 
importance to WBC in this specification. Neutrophil 
count also had a strong relationship with mortality in 
univariate fits (online supplemental file 1 section 3). 
Our results are therefore consistent with prior work 
showing that mortality is associated with lower lympho-
cyte and higher neutrophil counts.48 49 We did not find 

Figure 4  Calibration curves from predictions of the logistic regression model on the test set by model specification. Points on 
the dashed 45° line imply that the predicted probability is equal to the actual probability.

Table 2  Summary of predictive performance in the training and test sets by model specification

Training set Test set

Model C-index (AUROC) Brier score C-index (AUROC) Brier score

Age only 0.7746 0.1159 0.7558 0.1111

All comorbidities 0.7310 0.1216 0.7186 0.1151

All demographics 0.7848 0.1143 0.7732 0.1082

Demographics and comorbidities 0.8018 0.1118 0.7904 0.1062

All variables 0.8825 0.0897 0.8737 0.0879

AUROC, area under the receiver operating characteristic curve.

https://dx.doi.org/10.1136/bmjopen-2020-047121
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an association between ferritin and mortality despite 
studies showing that severe illness is characterised by 
hyperferritinaemia.50

Finally, while comorbidities added little prognostic 
information beyond age, it is important to distinguish 
these findings from those based on a general popula-
tion diagnosed with COVID-19, since risk factors that 
are predictive of hospitalisation (or death in the general 
population) may not be predictive of mortality condi-
tional on hospitalisation. Petrilli et al45 provide some 
evidence consistent with this in that comorbidities were 
more important predictors of hospital admission than of 
severe illness and mortality among hospitalised patients.

On the other hand, a number of studies have also 
found evidence that even in hospitalised populations, 
comorbidities such as hypertension, cardiovascular 
disease, CPD, and diabetes were predictive of severe 
illness or mortality.43 51–54 One potential reason that 
comorbidities were less important in our model is that 
we controlled for laboratory results and vitals, which 
may be mediators for demographics and comorbidities 
(online supplemental file 1 section 10). We assessed this 
in online supplemental file 1 section 11 by removing 
laboratory results and vitals from the model: the ORs 
were very similar, although female sex was a notable 
exception as the OR changed from approximately 0.7 
to almost 1. While including predictors for laboratory 
results and vitals does not seem to impact the qualitative 
interpretation of the predictor effects in most cases, it is 
worth emphasising that our findings are not necessarily 
inconsistent with the other studies since comorbidities 
and BMI tended to be ‘statistically significant’ despite 
not meaningfully improving predictive performance. 
Furthermore, the wide range of mortality reported in 
case series of patients with severe COVID-19 may indi-
cate that factors that predict severe disease do not neces-
sarily predict mortality.55 56

Implications of this study
The most obvious use case of the findings in this paper 
is to inform the development of mortality prediction 
models for patients admitted to the hospital in the USA. 
The variable importance rankings can be used for variable 
selection and the predictor effects can help guide specifi-
cation of the functional forms of the included predictors. 
However, since mortality rates have changed over time, 
we would recommend re-estimating the model on more 
recent data prior to implementation in a clinical setting.

The findings related to variable selection and model 
specification are also relevant outside of prediction 
modelling. Observational studies that compare the effi-
cacy of treatments for patients admitted to the hospital 
with severe disease are a good example. Such studies 
frequently use propensity score methods in order to mini-
mise confounding and a number of studies recommend 
estimating the propensity score using the most important 
prognostic factors.57–59

Study limitations
This study is not without limitations. First, there were 
considerable missing data, especially for laboratory 
results. We attempted to overcome this limitation using 
multiple imputation, although the coefficient estimates 
are only guaranteed to be unbiased if the data are missing 
at random and the missing mechanism is known. While 
this is an untestable assumption, our diagnostics were not 
suggestive of problems in the imputation as the distribu-
tion of the observed and imputed data was very similar.

Second, many of the laboratory results contained 
outliers. Although we truncated these variables to 
improve fit, predictions for new patients with extreme 
laboratory values lying outside of the chosen bounds are 
inherently uncertain. The presence of outliers could also 
imply that some laboratory values have been miscoded. 
This miscoding is a form of measurement error that 
would attenuate the relationship between mortality and 
the laboratory values.60 61

Third, we did not have out-of-hospital mortality data. 
Mortality could have consequently been underestimated 
if patients were discharged from the hospital and later 
died at home from COVID-19. Evidence suggests that 
COVID-19 deaths outside the hospital comprise 38% of 
all deaths, but since the proportion of those 38% who 
were previously hospitalised is unknown, it is difficult 
to calibrate the extent of this potential bias.12 Estimates 
of in-hospital mortality might have also been underesti-
mated if some patients had neither recovered nor died by 
the end of follow-up, although we did aim to mitigate this 
risk by dropping all observations with index dates less than 
2 weeks from the data release date and controlling for 
calendar time in our models. Future work could consider 
time to event analyses to test the sensitivity of our results 
to right censoring. Since discharge is a competing risk 
for death, a competing risk framework should be used in 
cases where out-of-hospital mortality is unavailable.

CONCLUSION
We developed a prognostic model of mortality with a 
cohort of over 17 000 patients hospitalised with COVID-19 
in the USA using information on demographic, comor-
bidities, laboratory results and vital signs. We addressed 
many of the limitations of prior studies by using a large 
geographically diverse US database, assessing calibration, 
performing validation using bootstrap resampling and a 
random training/test split, and providing detailed descrip-
tions of the study population and statistical methods in the 
supplemental material . Age was the strongest predictor 
of mortality and the predictive performance of a model 
that only included age was nearly identical to a model 
containing additional demographic information (age, 
sex, race/ethnicity, geographical location, smoking status 
and calendar time) and a model containing information 
on both demographics and comorbidities. However, vital 
signs and laboratory results did add prognostic informa-
tion beyond age. Overall, these results suggest that age, 

https://dx.doi.org/10.1136/bmjopen-2020-047121
https://dx.doi.org/10.1136/bmjopen-2020-047121
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vital signs and laboratory results may be useful to assess 
the prognosis of hospitalised patients, although external 
validation on new data is needed.
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