BMJ Open Nutrition competencies for medicine: an integrative review and critical synthesis

Breanna Lepre 1,2, Kylie J Mansfield,1 Sumantra Ray,2,3,4 Eleanor J Beck1

Abstract
Objective Globally, 11 million deaths are attributable to suboptimal diet annually, and nutrition care has been shown to improve health outcomes. While medically trained clinicians are well-placed to provide nutrition care, medical education remains insufficient to support clinicians to deliver nutrition advice as part of routine clinical practice. Competency standards provide a framework for workforce development and a vehicle for aligning health priorities with the values of a profession. Although, there remains an urgent need to establish consensus on nutrition competencies for medicine. The aim of this review is to provide a critical synthesis of published nutrition competencies for medicine internationally.

Design Integrative review.

Data sources CINAHL, Medline, Embase, Scopus, Web of Science and Global Health were searched through April 2020.

Eligibility criteria We included published Nutrition Competency Frameworks. This search was complemented by handsearching reference lists of literature deemed relevant.

Data extraction and synthesis Data were extracted into summary tables and this matrix was then used to identify common themes and to compare and analyse the literature. Miller’s pyramid, the Knowledge to Action Cycle and the Dreyfus model of skill acquisition were also used to consider the results of this review.

Results Using a predetermined search strategy, 11 articles were identified. Five common themes were identified and include (1) clinical practice, (2) health promotion and disease prevention, (3) communication, (4) working as a team and (5) professional practice. This review also identified 25 nutrition competencies for medicine, the majority of which were knowledge-based.

Conclusions This review recommends vertical integration of nutrition competencies into existing medical education based on key, cross-cutting themes and increased opportunities to engage in relevant, skill-based nutrition training.

Introduction
Globally, 11 million deaths are attributable to suboptimal diet annually.1 Furthermore, in 2014, more than 1.9 billion adults were overweight, while 462 million were underweight. This coexistence of undernutrition, along with overweight and obesity, or diet-related chronic diseases, is referred to as the double burden of malnutrition. This burden is universal and presents an imperative to improve the nutrition capacity of the health workforce.2 Nutrition is a powerful tool for the prevention and management of diet-related chronic diseases.1 Nutrition care refers to any intervention performed by a health professional to improve the nutrition behaviour and subsequent health status of an individual or community and has been shown to improve diet-related and health outcomes, often with reduced risk, side effects and costs when compared with pharmacological interventions.3,4 For example, when doctors provide nutrition advice as part of prenatal care, their patients have fewer complications associated with pregnancy and give birth to healthier children.5 In fact, a recent systematic review reports that improvement of diet could potentially prevent one in every five deaths globally.1 Furthermore, public health legislation such as the Patient Protection and Affordable Care Act (Sections 4001(d), 4004(c)(d), 4103(b) and 4206) recognise the increased

Strengths and limitations of this study
- This review offers a critical and timely synthesis of medical nutrition competencies and a conceptual Nutrition Competency Framework.
- Themes such as communication and teamwork are not specific to nutrition and highlight integration of topics across a curriculum.
- As an integrative review, this framework might be considered a candidate theory for further review and development.
- It is recognised that the characteristics of included publications is skewed towards those published in the USA and that there may be other frameworks internationally. However, it is relevant to note that there are a greater number of medical education facilities in the USA than other countries included such as Australia, New Zealand and Sweden.
- Research into competence and competency standards is dynamic and frameworks included are from varied time periods. This may limit application of this work to modern standards.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

1School of Medicine, University of Wollongong, Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
2NNEDPro Global Centre for Nutrition and Health, St John’s Innovation Centre, Cambridge, UK
3School of Biomedical Sciences, Ulster University at Coleraine, Coleraine, UK
4School of Humanities and Social Sciences, University of Cambridge, Cambridge, UK

Correspondence to Breanna Lepre; bl777@uowmail.edu.au
neuroleptics. Despite this, a recent systematic review indicates that medical education remains insufficient to support clinicians to provide nutrition care as part of routine clinical practice.

Medically trained clinicians are well-placed to initiate and support patient nutrition care, in part due to their regular contact with the individuals for whom they provide care. For example, 88% of individuals are likely to see a general practitioner (primary care physician) annually. Furthermore, in a hospital setting, an estimated 13%–69% of hospitalised individuals are malnourished on admission, and importantly, the prevalence is also high predischarge. Despite this, a recent systematic review indicates that medical education remains insufficient to support clinicians to provide nutrition care as part of routine clinical practice. There are a number of organisations calling for improved nutrition education for physicians. Competency standards provide a framework for workforce development and are essential for the delivery of safe, effective and patient-centred care and a vehicle for aligning the health priorities of the country with the values of a profession. This is particularly relevant, as there is an existing disconnect between medical education and the exigent double burden of malnutrition. While there are many approaches to developing a competency framework, authors argue that a preoccupation with discipline-specific tasks overlooks the relevance of cross-cutting attributes such as critical thinking, communication and collaboration which align outcomes across disciplines. An integrated approach to competency encompasses the ability to combine and apply practical and reflexive competence in different contexts. The use of competency standards in improving medical nutrition education has been previously established and has been shown to increase a clinician’s ability to integrate nutrition into patient care. Competency in nutrition care is important in the delivery of safe, effective and coordinated care. However, there is a recognised need to establish consensus on relevant nutrition competencies for medicine. The aim of this review is to provide a critical synthesis of published nutrition competencies for medicine internationally. As the UN Decade of Action on Nutrition 2016–2025 is well underway, this is a timely and important review.

METHODS

This review was an integrative literature review, a ‘form of research that reviews, critiques and synthesises representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated’. This methodology is considered rigorous in this context, and was selected as it allows for a combination of various study designs and data sources to be included. Data, namely, nutrition competencies, were extracted into summary tables and this matrix was then used to identify common themes and compare, contrast and analyse the literature. Miller’s pyramid, the Knowledge to Action Cycle and the Dreyfus model of skill acquisition were also used to consider the results of this review. These frameworks acknowledge the complexity of clinical competence and the process of skill acquisition including the application of knowledge in practice. Furthermore, Miller’s pyramid and the Dreyfus model of skill acquisition have been previously used as a theoretical framework on which to underpin and improve educational practice in the field of medicine. These frameworks were therefore used as a theoretical blueprint for the organisation of nutrition competencies identified in this review. For the purposes of this review, we initially defined key concepts based on published definitions and author experience (table 1).

Search methods

CINAHL, Medline, Embase, Scopus, Web of Science and Global Health were searched through April 2020 to identify published Nutrition Competency Frameworks (NCFs) for medical education. The search strategy for each database is provided in online supplemental material 1. In brief, the key concepts were related to medically trained clinicians, nutrition and diet and competency. A research team comprised all authors in this study, as well as a medical librarian, agreed on terms with the aim of avoiding researcher bias when selecting articles. This search was complemented by handsearching reference lists of literature deemed relevant.

Inclusion criteria for this review were original research publications representing nutrition competencies for the continuum of medical education (preregistration and postregistration). We included interdisciplinary NCFs if the framework stipulated use by the medical profession. We excluded frameworks which included only limited reference to nutrition. For example, if a framework was specific to a disease, condition or specialty rather than only nutrition, the paper was excluded (eg, Cardiovascular disease-related frameworks which only included a reference to possible nutrition therapy). We included only current versions of frameworks and excluded editorials, reviews, conference proceedings, opinion papers and interviews. Grey literature was also reviewed by searching the reference lists of literature deemed relevant. The results of the search were not limited by time or language.
Competency (or competency standard) A measure used to describe the idealised capacity of an individual to perform a role or set of tasks.36

Competence Competence can be described as the ability to perform a task with desirable outcomes under varied circumstances. This definition encompasses multiple components such as the habitual and judicious application of knowledge, technical skills, values, clinical reasoning and attitudes.33 37

Domains of competence Competency domains represent organised clusters of competencies which are intended to characterise a central aspect of professional practice in which a professional should be competent.34

Competency framework A competency framework represents a complete collection of competencies required for effective performance.18

Curriculum framework A curriculum framework is an organised set of standards or learning objectives that define educational requirements

Search outcome
All database searches were directly imported into the electronic reference management tool Endnote V.X9 (Clarivate Analytics, Philadelphia, USA) and grey literature searches were manually entered by the primary author (BL). After the removal of duplicates using EndNote and manually, one author (BL) independently screened titles and abstracts and selected studies according to the predefined inclusion criteria. If the abstract was not sufficient, full texts of remaining papers were screened independently to identify publications for inclusion. Where it was not clear, the primary author engaged in consultative and iterative discussion among authors to reach consensus. All authors reached consensus on the included articles.

Data analysis
Data extraction was completed independently by the primary researcher (BL). Information relating to nutrition competencies was extracted from the retained articles. Information discussing the nutrition-related knowledge, skills or attitudes which published authors believed medical practitioners needed to obtain was categorised as a competency and recorded. Similarly, competency domains or themes represent organised clusters of competencies which are intended to characterise a central aspect of professional practice in which a professional should be competent.34 Information related to competency domains was also included. Data were extracted from each paper into a summary table and series of matrices. The following information was extracted from full-text publications and presented systematically: citation and country, organisation/group, name of the framework, nutrition domains (if stated), nutrition competencies, learning objectives (if stated) and the level of medical education that the framework is intended for (eg, residency). Findings were read, re-read and articles compared and contrasted to identify patterns and relationships.

Quality appraisal
To determine quality and risk of bias for review, the full text of each article was assessed independently for quality (including risk of bias) by the primary researcher (BL). Given the variation in research methodologies, the Critical Appraisal Skills Programme (CASP) tool was modified for use, as adapted by Halcomb et al25 (CASP; Halcomb et al25).

Patient and public involvement
There is no patient and public involved in the study.

RESULTS

Search results
The total yield from all databases was 19709 results. This was reduced to 14023 results after the removal of duplicates. Using the exclusion criteria against title and abstract, a total of 56 full-text publications were assessed for eligibility, including four publications identified through hand searching of reference lists (figure 1). It is of interest to note that a considerable number of results were related to the impact of a nutrition course or competency framework on nutrition knowledge, skills and attitudes and therefore not eligible for inclusion. Following full-text review, 11 articles were included in the review. Reasons for exclusion included papers which did not include competencies or a framework (n=18) and competencies that are not specific to nutrition or competencies for a specific aspect of nutrition or healthcare (eg, cardiovascular disease nutrition competencies) (n=15). A list of excluded studies along with reasons for exclusion is provided in online supplemental material 2.

Characteristics of included publications
Included studies were published between 1983 and 2019. The majority were peer-reviewed articles (n=7), with the remaining grey literature comprising documented frameworks (n=3) and a position statement (n=1). Seven studies were from the USA, with
one study from each of Australia and New Zealand, Africa, Sweden and the UK.

Quality appraisal

Descriptions of how the competency frameworks were developed varied in level of detail. It is important to note that few publications reported the research methods used to develop their frameworks. Furthermore, few publications acknowledged the limitations or weaknesses of the processes used to develop the competency frameworks (question 5). Given these limitations, articles that did not achieve a ‘yes’ on all items of the checklist were not excluded from the review, but the appraisal was taken into consideration in the overall rigour of the present review (table 2).

Competency domains

Five of eleven publications (45%) explicitly used competency domains to categorise or subdivide nutrition competencies. Different methods of classification, or domains, included type of competency (such as knowledge, skills and attitudes), domains of human nutrition (including concepts of basic nutrition, concepts of applied nutrition and principles of clinical nutrition) and subdivision of competencies by nutrition concept (eg, macronutrients and micronutrients) or by elements of nutrition care (eg, diagnosis, treatment, prevention). Competency domains which were identified but only found within one framework included those related to patient nutrition counselling skills, nutrition referral, nutrition evidence, aspects of critical nutrition care (such as enteral and parenteral nutrition) and the impact of disease on nutrition.

The NCF for medical graduates, developed by the Deakin University Strategic Teaching and Learning Grant Steering Committee in Australia, was the only framework in this review purposefully mapped to a medical framework, namely, the Australian Medical Council (AMC) Graduate Outcome Statements. Other frameworks in this review, published in the UK, are endorsed by statutory bodies such as the General Medical Council (GMC) and Medical Schools Council. Some interdisciplinary NCFs also delineated competencies, such as by amount of patient education responsibility or by level of service delivery, to emphasise the relevance of nutrition competencies for the wider health workforce.

Despite differences in the taxonomy and language across included nutrition competencies for medical education, there are some common underlying themes, which in some contexts may be considered ‘domains’ if the papers are summarised. Specifically, five common themes were identified across the included nutrition competencies, including clinical practice (all 11

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for identification of articles related to nutrition competencies for medicine.
publications), health promotion and disease prevention (n=8), communication (n=7), working as a team (n=7) and professional practice (n=3). These themes overlap with existing medical competency standards and could be considered cross-cutting.

Competencies

Twenty-five unique nutrition competencies for medical education were identified in the 11 publications. Fifteen of twenty-five nutrition competencies for medicine were classified as knowledge/behaviour-based competencies. For example, ‘Demonstrate knowledge of the functions of essential nutrients’.

Seven nutrition competencies were classified as skill-based (eg, ‘Demonstrate ability to select and prescribe dietary strategies in the prevention and treatment of disease’ and only four competencies were attitude/value-based (eg, ‘Demonstrate sensitivity to the social, cultural, emotional and psychological factors that may affect an individual’s nutrition behaviour and health status’).

The most common nutrition competencies (suggested in greater than 50% of articles), were related to (1) skills in nutrition assessment, (2) the ability to prescribe dietary interventions in the prevention and treatment of disease, (3) knowledge of the role of nutrition in health promotion and disease prevention and (4) knowledge of the social and cultural importance of food, including food consumption trends and current nutrition recommendations. Authors less commonly suggested the relevance of demonstrating competency in how disease can affect nutritional status, food-borne illness, an awareness of personal health and nutrition and a commitment to provide evidence-based nutrition care for all patients regardless of health status. Articles published in developed countries were more likely to recommend competencies related to nutritional management of chronic diseases, while studies originating from low-income and middle-income countries included competencies related to emergency medicine and nutritional management for people living with HIV and AIDS.

One paper specified cross-cutting nutrition competencies for all health professionals including community mobilisation and nutrition counselling.

Level of medical education

All 11 articles specified the level of medical education where there would be an expectation to teach and achieve the nutrition competencies. Five articles included nutrition competencies for undergraduate and graduate (entry-level) medical education. Three of the eleven articles stipulated use by primary care providers and one paper included competencies for family practice residents. The remaining two articles merely specified use by ‘practicing physicians’.

Summary of concepts

A summary NCF, adapted from Hughes et al and informed by the Dreyfus model of skill acquisition, the framework for clinical competency assessment outlined in Miller and the Knowledge to Action Cycle as described by Graham and colleagues is presented based on the competencies in the literature. This provides a preliminary model for an NCF for medicine, which can be further investigated in subsequent research. In this framework, categories of competency units are delineated into four different tiers to represent hierarchies of competency acquisition and assessment. At the base of the matrix are enabling and critical competencies (know

Table 2 Quality appraisal

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Academy of Family Physicians, 1998</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp et al</td>
<td>Unclear</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuerda et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Deen et al</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deakin University Strategic Teaching and Learning Grant Steering Committee</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Jhpiego & Save the Children</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lindsley et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Maillet and Young</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierpina et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Young et al</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ICGN Undergraduate Nutrition Education Implementation Group</td>
<td>Unclear</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theme and number of publications which include this theme</td>
<td>Domain</td>
<td>Competency</td>
<td>Competency type</td>
<td>n*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical practice n=11 (100%)</td>
<td>Nutrition assessment</td>
<td>Demonstrate skills in the assessment of nutritional health including the ability to calculate energy expenditure, nutrition requirements and body composition.</td>
<td>Skill</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition management</td>
<td>Demonstrate knowledge of evidence-based dietary strategies for prevention and treatment of disease</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate ability to select and prescribe dietary strategies in the prevention and treatment of disease</td>
<td>Skill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of possible drug–nutrient interactions and prescribe accordingly</td>
<td>Skill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of breast feeding and complementary feeding practices</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition monitoring and evaluation</td>
<td>Demonstrate the ability to monitor nutrition status and modify dietary recommendations as needed</td>
<td>Skill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health promotion and disease prevention n=8 (73%)</td>
<td>Basic sciences as applied to nutrition</td>
<td>Demonstrate knowledge of the basic scientific principles of human nutrition</td>
<td>Knowledge/behaviour</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of nutrition applied to different stages of the life cycle</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate awareness of the nutritional content of food including the major dietary sources of macronutrients and micronutrients</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of the difference between food allergies and food intolerance</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of the functions of essential nutrients</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate an understanding of how disease and its management can affect nutritional status</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate an awareness of their own personal health and nutrition</td>
<td>Attitude/value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of the role of nutrition in health promotion and disease prevention</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of the social and cultural importance of food, including awareness of food consumption trends and current nutrition recommendations</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of nutrition-related causes of mortality and morbidity in the population</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate knowledge of the principles of public health nutrition, including strategies to reduce the burden of disease</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Describe food-borne illnesses and outline the process of reporting and investigating outbreaks of these illnesses</td>
<td>Knowledge/behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Continued

<table>
<thead>
<tr>
<th>Theme and number of publications which include this theme</th>
<th>Domain</th>
<th>Competency</th>
<th>Competency type</th>
<th>n*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication n=7 (64%)</td>
<td>Nutrition counselling skills</td>
<td>Demonstrate the ability to effectively provide nutrition education and counselling<sup>21 35 36 40 44 47</sup></td>
<td>Skill</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstrate sensitivity to the social, cultural, emotional, and psychological factors that may affect an individual’s nutrition behaviour and health status<sup>16</sup></td>
<td>Attitude/value</td>
<td></td>
</tr>
<tr>
<td>Working as a team n=7 (64%)</td>
<td>The multidisciplinary team approach to nutrition care</td>
<td>Demonstrate the ability to work effectively in a multidisciplinary team to deliver nutrition care, including the ability to refer onwards<sup>21 36 38 44 46</sup></td>
<td>Skill</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstrate knowledge of the role of other health professionals and community services in the multidisciplinary approach to nutrition care<sup>36 40 48</sup></td>
<td>Knowledge/behaviour</td>
<td>3</td>
</tr>
<tr>
<td>Professional practice n=3 (27%)</td>
<td>Critical thinking</td>
<td>Demonstrate ability to think critically including the ability to interpret nutrition evidence and apply appropriately in clinical practice<sup>21 36 38 40 47</sup></td>
<td>Skill</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ethics</td>
<td>Demonstrate the ability to consider and apply principles of ethics related to nutritional management<sup>25 36 38</sup></td>
<td>Attitude/value</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstrate a commitment to promote sound nutritional decision-making and appropriate levels of physical activity for all patients regardless of health status<sup>36</sup></td>
<td>Attitude/value</td>
<td>1</td>
</tr>
</tbody>
</table>

*Number of articles which include this competency.
<table>
<thead>
<tr>
<th>Practice (does)</th>
<th>Cross-cutting (shows how)</th>
<th>Clinical practice</th>
<th>Health promotion and disease prevention</th>
<th>Communication</th>
<th>Working as a team</th>
<th>Professional practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical (knows how)</td>
<td>Evidence-based dietary strategies for the prevention and treatment of disease</td>
<td>Knowledge of possible drug–nutrient interactions and prescribe accordingly</td>
<td>Think critically including the ability to interpret nutrition evidence and apply appropriately in clinical practice</td>
<td>Consider and apply principles of ethics related to nutritional management</td>
<td>Commitment to promote sound nutritional decision-making and appropriate levels of physical activity for all patients regardless of health status</td>
<td>Awareness of their own personal health and nutrition</td>
</tr>
<tr>
<td>Enabling (knows)</td>
<td>Knowledge of the functions of essential nutrients</td>
<td>Nutritional content of food including the major dietary sources of macronutrients and micronutrients</td>
<td>Nutrition applied to different stages of the life cycle</td>
<td>Describe food-borne illnesses and outline the process of reporting and investigating outbreaks of these illnesses</td>
<td>An understanding of how disease and its management can affect nutritional status</td>
<td>Awareness of the social and cultural importance of food, including food consumption trends and current nutrition recommendations</td>
</tr>
</tbody>
</table>

Table 4 Proposed conceptual nutrition competency framework for medicine

- **Assessment of nutritional health including the ability to calculate energy expenditure, nutrition requirements and body composition**
- **Select and prescribe dietary strategies in the prevention and treatment of disease**
- **Monitor nutrition status and modify dietary recommendations as needed**
- **Effectively provide nutrition education and counseling**
- **Work effectively in a multidisciplinary team to deliver nutrition care, including the ability to refer onwards**

Cross-cutting
- Clinical practice
- Health promotion and disease prevention
- Communication

Working as a team
- Working as a team
- Professional practice

Critical (knows how)
- Evidence-based dietary strategies for the prevention and treatment of disease
- Knowledge of possible drug–nutrient interactions and prescribe accordingly
- Think critically including the ability to interpret nutrition evidence and apply appropriately in clinical practice
- Consider and apply principles of ethics related to nutritional management
- Commitment to promote sound nutritional decision-making and appropriate levels of physical activity for all patients regardless of health status
- Awareness of their own personal health and nutrition

Enabling (knows)
- Knowledge of the functions of essential nutrients
- Nutritional content of food including the major dietary sources of macronutrients and micronutrients
- Nutrition applied to different stages of the life cycle
- Describe food-borne illnesses and outline the process of reporting and investigating outbreaks of these illnesses
- An understanding of how disease and its management can affect nutritional status
- Awareness of the social and cultural importance of food, including food consumption trends and current nutrition recommendations

Basic scientific principles of human nutrition
- The role of nutrition in health promotion and disease prevention
- Breastfeeding and complementary feeding practices
- Nutrition-related causes of mortality and morbidity in the population
- Public health nutrition, including strategies to reduce the burden of disease
- The role of other health professionals and community services in the multidisciplinary approach to nutrition
DISCUSSION

There is currently no consensus on nutrition competen-
cies relevant for medical education. This review provides
critically synthesised published nutrition competencies
for medical education and practice internationally. This
review identified five common themes across nutrition
competencies which add to existing literature related to
medical nutrition education. Twenty-five unique
nutrition competencies for medical education were identified
from 11 articles.

The five common themes across nutrition competen-
cies for medicine, were clinical practice, health promo-
tion and disease prevention, communication, working as
a team and professional practice. The latter three, while
referring to nutrition, highlighting generic skills that
are required to be applied across all aspects of medical
care. This is congruent with core competencies and
individual roles in existing medical frameworks, such as
the CanMEDS Physician Competency Framework, the
Accreditation Council for Graduate Medical Education
(ACGME) core competencies, the GMC Outcomes for
graduates, the AMC Limited Graduate Outcome State-
mements and the Royal Australasian College of Physicians
Professional Practice Framework. For example, the
CanMEDS Physician Competency Framework, one of the
most globally recognised healthcare profession compen-
tency frameworks articulates a number of intrinsic roles
which reflect key themes identified in this review, such
as the communicator, collaborator and health advocate.

Generic themes such as those identified in this review
can provide leverage in educational reform, by aligning
incentives to facilitate synergy across healthcare profes-
sions. For example, a multidisciplinary team (MDT—
identified as ‘working as a team’ in this review) approach
to nutrition care has been shown to provide high quality,
cost-effective nutrition outcomes. However, there is
a disconnect between the university education environ-
ment, which is generally not interdisciplinary, and the
practice environment, which increasingly requires collab-
orative skills. Furthermore, communication and collabora-
tion are key aspects of the iterative process of knowledge
translation, including the ability to exchange information
to overcome barriers to implementation. Communication
and collaboration (teamwork) were also common themes
identified by this review. Optimised knowledge translation
has been shown to improve the quality of evidence-based
nutrition care and strengthen the healthcare system,
as summarised by the Knowledge to Action Cycle. Not
only does this cross-over between medical and nutrition
competencies highlight the lateral nature of nutrition as
a cognate scientific discipline, but it also provides merit
to opportunity for the vertical integration of nutrition
competencies into existing medical education. Rather
than an isolated concept with a distinct set of competen-
cies, existing medical spiral curricula could be enhanced
by applying existing medical competencies to a nutrition
context. Deen illustrated this by successfully mapping
the Curriculum Committee of the National Academic
Award learning objectives to the ACGME competencies
for competency-based resident evaluation. This reiter-
ates the relevance of nutrition as a core facet of clinical
practice without necessarily adding time to curricula.
Namely, vertical integration of nutrition competencies into
medical education is particularly relevant in a crowded
curriculum, and is a key element of a successful integrated
medical nutrition curriculum, shown to improve medical
students’ perceptions of nutrition as part of total patient
care. However, there is a need to first build consensus
on nutrition competencies for medical education.

The majority of the medical nutrition competencies
identified in this review were knowledge-based, while
less than 30% of nutrition competencies were skill-
based and only four competencies were attitude-based
(table 3). While knowledge-based (enabling) competen-
cies are essential to interpret new concepts in nutrition
and underpin higher order (practice) competencies,
skill-based competencies are relevant to clinical practice,
which requires the complex and judicial application of
knowledge, technical skills, clinical reasoning, values and
reflection under varied circumstances. This is in line
with the experience of medical graduates and practising
physicians, who do not feel comfortable or adequately
prepared to provide nutrition counselling to their
patients. In order to overcome these barriers, Adams et al
and Lindsley et al emphasise the need for ‘skill-centred
nutrition training’. A realist synthesis of educational interventions to improve nutrition care competencies and delivery by doctors and other health-
care professionals, reports that educational interventions
which led to improvements in the delivery of nutrition
care focused on skills and attitudes rather than just knowl-
edge. Skill-based nutrition training has been shown to
improve medical students’ nutrition knowledge and
confidence in lifestyle counselling.

While competency frameworks provide an architectural
blueprint for constructing educational programmes, the
centrality of valid assessment methods to support the lifelong journey of competency development cannot be overlooked. Increasing the weighting of a topic in assessment has been shown to enhance medical students’ reported motivation to learn about the topic. Furthermore, regular and repeated assessment can improve knowledge retention in medical students. This is particularly important given that despite initial high interest in nutrition, interest in and perception of the importance of nutrition may decline during time in medical school. Earlier research highlights the effectiveness of the Objective Structured Clinical Exam (OSCE) in evaluating the ability to synthesise and translate knowledge to clinical practice. Miller also emphasises the role of skill-based assessment methods such as the OSCE in the appraisal of technical and clinical competence. Problem-based learning tutorials, culinary skills training and clinical case presentations have also been shown to promote active learning and lead to significant changes in participants’ knowledge, personal health habits, confidence to provide dietary counselling and ability to nutritionally manage malnutrition. A combination of innovative learning strategies is required to support the development of clinical competence. Educational strategies and assessment methods which improve nutrition care competencies, such as problem-based learning and the OSCE, are already widely used methods in medical education. Therefore, the application of existing learning to a nutrition context, such as a nutrition OSCE, may lead to improvements in competency to provide nutrition care in future practice. There is currently no consensus on the required nutrition competencies for medicine, which presents a further barrier to the integration of nutrition in medical education. The nutrition competencies identified in this review provide a potential benchmark for the nutrition knowledge, skills and attitudes to be included in curricula (table 3). However, given the lack of consensus on relevant nutrition competencies, commitment of individual institutions to compulsory nutrition education is insufficient and regulation is required. The 2019 report ‘Doctoring Our Diet’ recommends policy levers to include nutrition in US medical training, such as government investment to provide financial incentive for the inclusion of nutrition in medical training, amending accreditation standards to mandate requirements for nutrition education, increasing representation of nutrition in step and board-examinations and compulsory nutrition training in continuing medical education.

Strengths and limitations
This review offers a critical and timely synthesis of medical nutrition competencies and a conceptual NCF. As an integrative review, this framework might be considered a candidate theory for further review and development. However, this review also needs to be considered in the context of its limitations. While the search strategy used included terms previously used to identify competency frameworks, others may exist and therefore some studies may not have been captured. We acknowledge there may be some bias in the conduct of the review in that only one author was involved in extraction of data. It is recognised that the characteristics of included publications is skewed towards those published in the USA (and English language) and that this may have biased our findings. However, it is relevant to note that there are a greater number of medical education facilities in the USA than other countries included such as Australia, New Zealand and Sweden. The majority (6/7) of the included studies were published in developed countries; this may have implications on the generalisability of the proposed NCF. We used the Dreyfus model of skill acquisition, Miller’s hierarchy for the assessment of clinical competence and the Knowledge to Action Cycle to frame this work, and acknowledge that other frameworks may also be useful in this context. For example, the frameworks used may not consider elements of cognitive aptitude such as diagnostic reasoning.

CONCLUSION
This review identified five common, cross-cutting themes across nutrition competencies for medicine: (1) clinical practice, (2) health promotion and disease prevention, (3) communication, (4) working as a team and (5) professional practice. This review also identified 25 nutrition competencies for medicine, the majority of which were knowledge-based. The most common nutrition competencies were related to nutrition assessment, dietary interventions for the prevention and treatment of disease, the role of nutrition in health promotion and disease prevention and knowledge of the social and cultural importance of food. This review recommends vertical integration of nutrition competencies into existing medical education based on key, cross-cutting themes and increased opportunities to engage in relevant, skill-based nutrition training.

Acknowledgements We would like to thank Isla Kuhn, Medical Librarian at the University of Cambridge for her invaluable input to the search strategy.

Contributors BL, EJB, KJM and SR contributed to the design of the review. BL did the literature search, performed data analysis and drafted the manuscript. EJB contributed to data extraction. All authors contributed to revision of the manuscript and approval of the final manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. Patients and/or the public were not involved in this study.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data sharing not applicable as no datasets generated and/or analysed for this study. Not applicable.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability
of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use and license their derivative works on different terms, provided the original work is.

REFERENCES

Supplementary Materials 1 – Search Strategy

<table>
<thead>
<tr>
<th>Data base</th>
<th>Search terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINAHL Plus with Full Text</td>
<td>((("doctor*" OR ("physicians+")) OR ("medical student*")) OR (("students, medical") OR ("medic* OR doctor* OR clinical") N2 student*) OR (("general practitioner" OR family doctor* OR family physician*)) OR ("physicians, family") OR (("interns and residents") OR "medical N3 (specialist* OR intern* OR resident*)") OR ("education, medical") OR "medical education") OR ("education, medical, continuing") OR ("undergraduate medical education") OR ("postgraduate medical education") OR ("nutrition education") OR "nutrition education" OR ("nutrition education") AND ("nutrition") AND ("nutrition") OR ("public health nutrition") OR ("nutrition services+") OR ("nutrition policy+") OR ("diet") OR ("diet") OR ("life style") OR ("lifestyle") AND ("competen") OR ("clinical competence") OR "clinical competen* OR ("education, competency-based") OR ("competency-based education") OR ("curriculum") OR "curriculum") OR ("competency framework*" OR ("professional competence+")) OR ("competency standard*").</td>
<td>2650</td>
</tr>
<tr>
<td>Embase</td>
<td>(((doctor*) OR (physician* OR 'physician'/exp) OR (medical student* OR 'medical student'/exp) OR (medic* OR doctor* OR clinical*) NEAR/2 student*) OR (medical NEAR/3 (specialist* OR intern* OR resident*)) OR (specialist registrar* OR 'medical specialist'/exp) OR (clinical specialist*) OR (medical education OR 'medical education'/exp) OR (graduate medical education OR 'residency education'/exp) OR (nutrition education OR 'nutrition education'/exp OR 'health education'/exp) OR (medical nutrition education*) AND ("nutrition" OR 'nutrition'/exp OR 'nutrition service'/exp) OR (diet* OR "diet"/exp) OR (lifestyle* OR 'lifestyle'/exp OR 'lifestyle modification'/exp)) AND ("competen" OR 'competence'/exp) OR (clinical competen* OR 'clinical competence'/exp) OR (curriculum* OR 'curriculum'/exp OR 'medical school'/exp) OR (competency framework* OR 'professional competence'/exp) OR (competency standard*).</td>
<td>7695</td>
</tr>
<tr>
<td>Global Health</td>
<td>(((doctor* OR physician+) OR (medical student* OR medical students) OR (medic* OR doctor* OR clinical*) N2 student*) OR ((general practitioner* OR gp* OR family doctor* OR family physician*) OR general practitioners) OR (medical N3 (specialist* OR intern* OR resident*)) OR (specialist registrar*) OR (clinical specialist*) OR (medical</td>
<td>1280</td>
</tr>
<tr>
<td>Database</td>
<td>Query</td>
<td>Results</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Medline</td>
<td>(("doctor*"") OR ("physician*"") OR (("medic* OR doctor* OR clinical") W/2 "student*"") OR ("general practitioner* OR gp* OR family doctor* OR family physician*") OR ("medical NEAR/3 (specialist* OR intern* OR resident*)") OR "internship and residency"") OR "internal medicine+") OR ("specialist registrar*"") OR ("clinical specialist*"") OR ("medical education" OR "education, medical, undergraduate") OR ("education, medical, continuing") OR ("education, premedical") OR ("postgraduate medical education") OR ("nutrition education" OR "nutritional sciences+") AND ("competency") OR ("competency-based education" OR "clinical competence" OR "professional competence+") OR ("curriculum" OR "curriculum+") OR ("competency framework") OR ("competency standard") AND ("nutrition*" OR "diet*" OR "lifestyle")</td>
<td>3605</td>
</tr>
<tr>
<td>Scopus</td>
<td>(((doctor* OR (medic* OR doctor* OR clinical)) W/2 student*) OR ("medical student") OR ("general practitioner*" OR gp* OR "family doctor*" OR ("medical W/3 (specialist* OR intern* OR resident*)") OR (specialist registrar*) OR ("clinical specialist*") OR ("medical education") OR ("undergraduate medical education") OR ("postgraduate medical education");)) AND ((nutrition*) OR (diet*) OR (lifestyle)) AND ((competency) OR ("clinical competen*") OR ("competency-based education") OR (curriculum*) OR ("competency framework") OR ("competency standard"))</td>
<td>2382</td>
</tr>
<tr>
<td>Web of Science</td>
<td>(((doctor*) OR (physician*) OR (medical student*) OR (student* NEAR/2 (medic* OR doctor* OR clinical*)) OR (general practitioner* OR gp OR family doctor* OR family physician*) OR (medical NEAR/3 (specialist* OR intern* OR resident*))) OR (specialist registrar*)) OR (clinical</td>
<td>2097</td>
</tr>
</tbody>
</table>
specialist*) OR (medical education) OR (undergraduate medical education) OR (postgraduate medical education) OR (nutrition education) OR (medical nutrition education)) AND ((nutrition*) OR (diet*) OR (lifestyle* OR life style)) AND ((competen*) OR (clinical competen*) OR (competency-based education) OR (curricul*) OR (competency framework*) OR (professional competen*) OR (competency standard*))

| Total yield from all databases | 19709 |
Supplementary Materials 2 – List of excluded studies along with reasons for exclusion

Full-text articles excluded, with reasons (n=45)

- Single site case study (n=7)
- Does not contain competencies or a framework (n=18)
- Not specific to nutrition / disease-specific (n=15)
- Review / Conference Proceedings (n=1)
- Unable to translate to English language (n=1)

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams et al., 2010</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Akner & Vessby, 1997</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Al-Nimr et al., 2019</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Asp et al., 1995</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Aspry et al., 2018</td>
<td>Framework not specific to nutrition (Competencies for ASCVD prevention)</td>
</tr>
<tr>
<td>Bairey Merz et al., 2009</td>
<td>Framework not specific to nutrition (Competencies specific to the prevention of cardiovascular disease)</td>
</tr>
<tr>
<td>Bakemeier et al., 1989</td>
<td>Framework not specific to nutrition (Nutrition and cancer education objectives)</td>
</tr>
<tr>
<td>Ball et al., 2010</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Brodribb et al., 2012</td>
<td>Framework not specific to nutrition (Competencies specific to breastfeeding)</td>
</tr>
<tr>
<td>Chamberlain et al., 1989</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Cooksey et al., 2000</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Cresci et al., 2019</td>
<td>Does not include competencies or a framework</td>
</tr>
<tr>
<td>Committee of the Nutrition Academic Award Program, 2002</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Dahl, 2006</td>
<td>Does not include competencies or a framework</td>
</tr>
<tr>
<td>Edwards & Rosenfeld, 2006</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Gallagher et al., 1979</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Hark et al., 2000</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Heimburger, 2002</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Heimburger, 2006</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Hivert et al., 2016</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Huang et al., 2009</td>
<td>Framework not specific to nutrition (Health and obesity: prevention and education curriculum)</td>
</tr>
<tr>
<td>Jackson, 2001</td>
<td>Review article</td>
</tr>
<tr>
<td>Jensen & Hessov, 1991</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Kaye et al., 2018</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Kelly et al., 2019</td>
<td>Framework not specific to nutrition (Competencies for lifestyle medicine intensivists)</td>
</tr>
<tr>
<td>Authors</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kligler et al., 2004</td>
<td>Framework not specific to nutrition (Competencies in integrative medicine)</td>
</tr>
<tr>
<td>Kushner et al., 2019</td>
<td>Framework not specific to nutrition (Obesity competencies)</td>
</tr>
<tr>
<td>Lianov et al., 2010</td>
<td>Framework not specific to nutrition (Physician competencies for prescribing lifestyle medicine)</td>
</tr>
<tr>
<td>Lin et al., 1999</td>
<td>Unable to translate to English from Chinese</td>
</tr>
<tr>
<td>Maiburg et al., 2004</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Milla, 2002</td>
<td>Framework not specific to nutrition (European training syllabus in paediatric gastroenterology, hepatology and nutrition)</td>
</tr>
<tr>
<td>Mularski et al., 1997</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Mulder et al., 2016</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>Powell-Tuck et al., 1997</td>
<td>Does not contain competencies or a framework (course evaluation)</td>
</tr>
<tr>
<td>Ray et al., 2010</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Rock et al., 1995</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Rudolph et al., 1999</td>
<td>Framework not specific to nutrition (NASPGN guidelines for training in paediatric gastroenterology)</td>
</tr>
<tr>
<td>Ryen et al., 2003</td>
<td>Framework not specific to nutrition (Gastroenterology core curriculum)</td>
</tr>
<tr>
<td>Scolapio et al., 2008</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Somannavar, 2012</td>
<td>Single site case study (Not formally adopted or endorsed)</td>
</tr>
<tr>
<td>The Gastroenterology Leadership Council, 1996</td>
<td>Framework not specific to nutrition (Gastroenterology core curriculum)</td>
</tr>
<tr>
<td>Trilk et al., 2019</td>
<td>Framework not specific to nutrition (Lifestyle medicine curriculum)</td>
</tr>
<tr>
<td>Weinsier et al., 1989</td>
<td>Does not contain competencies or a framework (Priority rankings for nutrition topics to be included in curriculum)</td>
</tr>
<tr>
<td>Winick, 1993</td>
<td>Does not contain competencies or a framework</td>
</tr>
<tr>
<td>Withers et al., 2019</td>
<td>Framework not specific to nutrition (Core competencies in global health training)</td>
</tr>
</tbody>
</table>