Diagnostic and prognostic factors in patients with prostate cancer: a systematic review protocol

Katharina Beyer, Lisa Moris, Michael Lardas, Anna Haire, Francesco Barletta, Simone Scuderi, Eleni Vradi, Giorgio Gandaglia, Muhammad Imran Omar, Steven MacLennan, Jihong Zong, Bahman Farahmand, Sara J MacIennan, Zsuzsanna Devecseri, Alex Asimwe, Laurence Collette, Anders Bjartell, James Ndow, Alberto Briganti, Mieke Van Hemelrijck, The PIONEER Consortium

ABSTRACT

Introduction As part of the PIONEER (Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe) Consortium, we will explore which diagnostic and prognostic factors (DPFs) are currently being researched to previously defined clinical and patient-reported outcomes for prostate cancer (PCa).

Methods and analysis This research project will follow the following four steps: (1) a broad systematic literature review of DPFs for all stages of PCa, covering evidence from 2014 onwards; (2) discussion of systematic review findings by a multidisciplinary expert panel; (3) risk of bias assessment and applicability with Prediction model Risk Of Bias Assessment Tool criteria, Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Quality In Prognosis Studies tool (QUIPS) and (4) additional quantitative assessments if required.

Ethics and dissemination We aim to develop an online tool to present the DPFs identified in this research and make them available across all stakeholders. There are no ethical implications.

INTRODUCTION

Prostate cancer (PCa) is the second most common cancer in men worldwide and accounts for 15% of all cancers diagnosed. Clinically localised PCa is typically characterised by a favourable long-term natural history, where several therapeutic options are available. Moreover, the treatment landscape of advanced and metastatic PCa has changed dramatically in the past decade with the approval of multiple systemic agents, improving patients’ survival. PCa is usually suspected based on the clinical findings of digital rectal examination and/or prostate-specific antigen (PSA) level. However, which treatment strategy is best or which biomarkers can be used to select patients for specific therapeutic options remains largely uncertain.

Multiple diagnostic and prognostic factors (DPFs) are available on top of traditional PSA testing to improve the diagnosis of PCa, such as PCA3, TMPRSS2-ERG fusion, or kallikreins as incorporated in the Phi or 4Kscore test. The European Association of Urology (EAU) guidelines (2019) currently do not provide recommendations to implement these factors or biomarkers into routine screening programmes due to limited data.

The PIONEER (Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe) Consortium is an international collaboration coordinated by the EAU which aims to establish the best evidence-based management and clinical practice of PCa across all disease stages using the power of big data analytics towards a more outcome-driven, value-based
<table>
<thead>
<tr>
<th>Workflow</th>
<th>Task</th>
</tr>
</thead>
</table>
| Stage 1. | Broad literature-based systematic review of diagnostic and prognostic factors (DPFs) for all stages of prostate cancer from 2014 onwards (English only; humans)
- Extract data from the included studies following the CHARMS-PF guideline |
| Stage 2. | Discussion of systematic review findings by a multidisciplinary expert panel
- Review the list of included studies |
| Stage 3. | Risk of Bias Assessment and applicability of individual studies using PROBAST, QUIPS and QUADAS-2 |
| Stage 4. | Quantitative assessment of individual articles using meta-analytic techniques:
- If PROBAST indicates low risk of bias and low concerns for applicability: Oxford Classification Centre for Evidence Based Medicine:
 1. If there is Level 1a (SR) cohort studies validated in different populations or Level 1 diagnostic studies from different clinical centres), we do not do a meta-analysis
 2. No Level 1a but >2 studies which apply to 1b (Prognostic: individual inception cohort study with > 80% follow-up; CDR* validated in a single population; Diagnostic: Validating cohort study with good reference standards; or CDR* tested within one clinical centre) or 1c (Prognostic: All or none case-series; diagnostic: Absolute SpPins and SnNouts), we do a meta-analysis |
| Final aim: | Develop online PIONEER Online Search Tool for DPFs |

Figure 1 Overview of four stage process. CDR, clinical decision rule; CHARMS PF, Critical Appraisal and Data Extraction for systematic reviews of prediction modelling; PIONEER, Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe; PROBAST, Prediction model Risk Of Bias ASsessment Tool; QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies; QUIPS, Quality In Prognosis Studies tool; SR, systematic review.

and patient-centric healthcare system. A key objective is to address one of the major challenges within the context of diagnostic or prognostic biomarkers/factors: the inability to incorporate real-world clinical outcome data into the management of PCa in terms of screening, diagnosis and treatment. Biomarkers can be classified into different types: diagnostic, prognostic, predictive and therapeutic. A diagnostic biomarker or factor allows the early detection of cancer in a non-invasive way and thus the secondary prevention of cancer. A prognostic biomarker or factor is a clinical or biological characteristic that provides information on the likely course of the disease. In the sections below, we have used the terms biomarkers and factors interchangeably.

This project investigates which DPFs are available in relation to PIONEER’s previously defined core outcomes for PCa by evaluating at the evidence published from 2014 onwards as to reflect current medical practice and the ‘2014 International Society of Urological Pathology Consensus Conference on Grading Patterns and Proposal for a New Grading system’. We specifically aim to assess the strength of the evidence for each DPF and use this information to develop an online search tool on the PIONEER website to be used by all stakeholders.

METHODS AND ANALYSIS
This research project will follow the following four steps (figure 1):
1. We will start with a broad systematic literature-based review of DPFs for all stages of PCa, covering English language publications of human studies from 2014 onwards.
2. The final list of all available DPFs for which a systematic review is required will then be discussed by a multidisciplinary expert panel.
3. Each study and systematic review identified through the literature search will be assessed using a risk of bias tool and if applicable the Prediction model Risk Of Bias ASsessment Tool (PROBAST) criteria.
4. For those studies with an overall low score on risk of bias and low concerns for the applicability of their results, we will use the Classification from the Oxford Centre for Evidence-Based Medicine to define whether an additional quantitative assessment is required.

Stage 1: systematic review
The systematic review will be conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Search methods and identification of studies
The literature search has been developed by an experienced Information Scientist. We will search for quantitative observational studies which assess either diagnostic or prognostic factors. The search strategy is shown in box 1.

The eligibility will be independently checked by at least two researchers. Conflicts will be solved by discussion or consulting an additional author. The abstract and full-text screening will be conducted in duplicate, and results will be compared and shared with the core group involved.
Data Extraction for systematic reviews of prediction models

Data will be extracted by at least two reviewers and checked by a third reviewer following the Critical Appraisal and Data Extraction for systematic reviews of prediction modelling studies.17 18

Stage 2: assessment of stage 1 output with expert panel to identify the individual topics for systematic reviews

An expert panel of urologists, radiologists, radiation oncologist, oncologist, methodologist and pathologists will review the extracted factors to discuss if any DPFs are missing. If no DPFs are missing, the review team will assess the quality of the identified studies for each DPF systematic review using the PROBAST criteria.19 20

Stage 3: risk of bias assessment of individual articles using PROBAST

Each study and systematic review identified through the literature search will be assessed using PROBAST criteria.19 PROBAST is a tool to assess the risk of bias as well as the applicability of diagnostic and prognostic prediction models. For studies that will not meet the PROBAST criteria, we will use Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)21 for diagnostic factors.
accuracy studies and the Quality In Prognosis Studies tool (QUIPS)22 for prognostic factors studies.

Stage 4: quantitative assessment of individual articles using meta-analytical techniques

We are well aware of the limitation of pooling evidence from non-randomised studies, as there could be specific bias inherent within the design. We will be very cautious while pooling evidence from non-randomised studies. For those studies with an overall low score on risk of bias and low on concerns for applicability, we will use the Classification from the Oxford Centre for Evidence-Based Medicine to define whether an additional quantitative assessment is required.

1. If there is level 1a (SR of inception cohort studies validated in different populations or level 1 diagnostic studies from different clinical centres), we do not do a meta-analysis.

2. No level 1a but >2 studies which apply to 1b (Prognostic: individual inception cohort study with >80% follow-up; clinical decision rule (CDR) validated in a single population; diagnostic: validating cohort study with good reference standards; or CDR tested within one clinical centre) or 1c (prognostic: all or none case series; diagnostic: absolute specificity is so high that a positive result rules-in the diagnosis (SpPins) and diagnostic finding whose sensitivity is so high that a Negative result rules-out the diagnosis (SnNouts)), we will perform a meta-analysis.

In the situation where we are not able to perform additional meta-analysis due to low quality of the assessed papers, we will add an additional stage to the review and discuss the data with the DPF PIONEER expert panel. We will aim to provide recommendations for researchers to define whether an additional quantitative assessment is required. We will follow the methodology developed by the Joanna Briggs Institute guidelines23 and the framework by Arksey and O’Malley.24

Patient and public involvement

PIONEER brings together 32 key stakeholders in PCa research and clinical care from across nine countries. Consortium members are drawn from academic institutions, European organisations, patient advocacy groups, clinicians and pharmaceutical companies, as well as regulatory agencies, experts in legal data management, economics and ethics, and information and technology specialists. Hence, the patients and their family members are an integral part of all research conducted by the PIONEER Consortium.

ETHICS AND DISSEMINATION

No additional ethical approval is required as the work will rely on published publicly available study data.

The findings of these systematic reviews will be exported into an online search tool to ensure wide applicability of the study findings. More specifically, this online search tool will produce evidence-based recommendations so that these could be used by researchers, clinicians and experts in the field. The tool will be designed so that stakeholders can access up to date available evidence (and view the quality of the studies published) when developing new DPFs or setting up clinical trials. To ensure sustainability of this tool, PIONEER and the EAU aim to update the systematic reviews described above on a regular basis to reflect the latest available research on DPFs for PCa.
Waldeck; Megan Molnar; Amanda Bruno; Ronald Herrera; Shan Jiang; Ekaterina Nevedomsksaya; Samuel Fatoba; Niculae Constantinovic; Carl Steinbeiler; Sini Thomas; Monika Maass; Patrizia Torremante (Bayer AG Berlin Germany); Marc Dietrich Voss; Zsuzaanna Devecseri; Guido Cuperus (Sanofi Chilly-Mazarin France); Tom Abbott; Amit Kiran; Chad Da Kishore; Papineni Jing; Wang-silvanto Steve; Hass Robert; Snijder Verena; Doyé Xuewei; Wang Andy Ghanam (ASTELLAS); Mark Lambrecht; Rüdiger Wollfingr; Stijn Rogiers (SAS Tervuren Belgium); Heidi Turunen; Olavi Kilkku; Pasi Pohjankou; Olli Voima; Liina Nevalaita (Orion Corporation Espoo Finland); Christian Reich; Sonia Araujo (IQVIA London Belgium); Heidi Turunen; Olavi Kilkku; Pasi Pohjankou; Olli Voima; Liina Nevalaita Florence Lefresne; Joaquin Casariego; Mohamed Samir; Joe Lawson; Katie Pascoe; Lambrecht; Russ Wolfinger; Stijn Rogiers (SAS Tervuren Belgium); Angela Servan; Beyer K, BMJ Open 2021;11:e040531. doi:10.1136/bmjopen-2020-040531 2021;45:534–42.

6 Bregemmenn M, Stephan C, Cammann H, et al. The percentage of prostate-specific antigen (PSA) isoform [-2]proPSA and the Prostate Health Index improve the diagnostic accuracy for clinically relevant prostate cancer at initial and repeat biopsy compared with total PSA and percentage free PSA in men aged ≥65 years. BJU Int 2016;117:72–9.

9 Beyer KML, Lardas M, Maclennan S. PIONEER’s systematic review of outcomes reported in effectiveness trials for interventions in locally advanced prostate cancer. 11th European Multidisciplinary Congress on Urological Cancers, Vienna, 2019.

