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ABSTRACT
Introduction  Mechanical ventilation of intensive care unit 
(ICU) patients universally involves titration of the fraction 
of inspired oxygen to maintain arterial oxygen saturation 
(SpO

2). However, the optimal SpO2 target remains 
unknown.
Methods and analysis  The Pragmatic Investigation of 
optimaL Oxygen Targets (PILOT) trial is a prospective, 
unblinded, pragmatic, cluster-crossover trial being 
conducted in the emergency department (ED) and medical 
ICU at Vanderbilt University Medical Center in Nashville, 
Tennessee, USA. PILOT compares use of a lower SpO

2 
target (target 90% and goal range: 88%–92%), an 
intermediate SpO2 target (target 94% and goal range: 
92%–96%) and a higher SpO2 target (target 98% and 
goal range: 96%–100%). The study units are assigned 
to a single SpO2 target (cluster-level allocation) for each 
2-month study block, and the assigned SpO2 target 
switches every 2 months in a randomly generated 
sequence (cluster-level crossover). The primary outcome 
is ventilator-free days (VFDs) to study day 28, defined as 
the number of days alive and free of invasive mechanical 
ventilation from the final receipt of invasive mechanical 
ventilation through 28 days after enrolment.
Ethics and dissemination  The trial was approved by the 
Vanderbilt Institutional Review Board. The results will be 
submitted for publication in a peer-reviewed journal and 
presented at one or more scientific conferences.
Trial registration number  The trial protocol was 
registered with ​ClinicalTrials.​gov on 25 May 2018 prior to 
initiation of patient enrolment (​ClinicalTrials.​gov identifier: 
NCT03537937).

INTRODUCTION
Each year 2–3 million intensive care unit 
(ICU) patients receive invasive mechan-
ical ventilation.1–3 Despite recent advances 
in lung-protective ventilation,4 in-hospital 
mortality among mechanically ventilated ICU 
patients remains 25%–35%.5

Mechanical ventilation for ICU patients 
universally involves titrating the fraction of 

inspired oxygen (FiO2) to maintain arterial 
oxygen saturation (SpO2) within a goal range. 
Despite decades of ICU practice, however, 
the optimal SpO2 target remains unknown. 
Higher SpO2 targets (96%–100%) provide 
a margin of safety against hypoxaemia, but 
may increase exposure to excess FiO2, hyper-
oxaemia, and tissue hyperoxia, causing 
oxidative damage,6–8 inflammation9 10 and 
increased alveolar-capillary permeability.11 
Lower SpO2 targets (88%–92%) minimise 
exposure to excess FiO2, hyperoxaemia and 
tissue hyperoxia,4 12 13 but may increase the 
risk of hypoxaemia and tissue hypoxia.14 15 An 
intermediate SpO2 target (92%–96%) may 
avoid the risks of both hyperoxia and hypoxia 
or, conversely, may expose patients intermit-
tently to both sets of risks.16 17

The relative risks and benefits of different 
SpO2 or PaO2 targets have been extensively 
examined in the setting of the neonatal 
ICU18–21 and have been examined among 

Strengths and limitations of this study

►► This ongoing pragmatic trial will provide information 
on the optimal oxygen saturation target during inva-
sive mechanical ventilation of critically ill adults—
informing a common therapy in current clinical 
practice for which there is limited available evidence 
on which to base care.

►► Broad inclusion criteria will increase generalisability 
and the sample size will allow examination of im-
portant patient subgroups.

►► The trial is being conducted at a single centre.
►► The nature of the study intervention does not allow 
blinding.

►► Decisions regarding oxygen administration before 
and after invasive mechanical ventilation are de-
ferred to treating clinicians.
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adult ICU patients in a series of recently published 
clinical trials.22–27 Together, these trials have suggested 
that both higher and lower oxygenation targets are 
safe—although some trials have potentially suggested 
better outcomes with higher targets25 and other trials 
have suggested potentially better outcomes with lower 
targets.24

Given the still incomplete evidence from randomised 
trials, current guidelines offer divergent recommen-
dations—ranging from tolerating SpO2 values as low as 
88%28–30 to pursuing SpO2 values as high as 98%.31 In clin-
ical practice, hyperoxaemia remains common,32 33 even 
among patients cared for by clinicians who self-identify as 
avoiding high oxygen levels.34

The wide variation in current practice, conflicting 
guidelines and conflicting data from some available trials 
indicate the need for further clinical trials to determine 
the effect of SpO2 target on patient outcomes.12 35 We 
designed the Pragmatic Investigation of optimaL Oxygen 
Targets (PILOT) trial to examine the effects of higher, 
intermediate and lower SpO2 targets on the number of 
days alive and free of invasive mechanical ventilation 
among mechanically ventilated ICU patients.

METHODS AND ANALYSIS
This manuscript was prepared by the PILOT investi-
gators (online supplemental file 1, section 1) in accor-
dance with Standard Protocol Items: Recommendations 
for Interventional Trials (SPIRIT) guidelines (figure  1; 
SPIRIT checklist in online supplemental file 1, section 
2).36 This manuscript describes key elements of the trial 
protocol and statistical analysis plan. The supplemental 
methods in online supplemental file 1 provide addi-
tional background on prior trials (section 3), rationale 
for design decisions (sections 4–5), SpO2 monitoring and 
management (sections 6–8), institutional protocols for 
mechanical ventilation (sections 9–17), a complete list 
of data elements (section 18), definitions of exploratory 
outcomes and measures of separation between groups 
(sections 19–21), and details of the interim analysis 
(section 22) and secondary analyses (sections 23–25).

Study design
The PILOT trial is a prospective, unblinded, pragmatic, 
cluster-crossover trial being conducted in the ED and 
medical ICU at Vanderbilt University Medical Center in 
Nashville, Tennessee, USA. PILOT compares use of a 

Figure 1  Standard Protocol Items: Recommendations for Interventional Trials checklist. Enrolment, interventions and 
assessments. FiO2, fraction of inspired oxygen; SpO2, arterial oxygen saturation.
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lower SpO2 target (target 90% and goal range: 88%–92%), 
an intermediate SpO2 target (target 94% and goal range: 
92%–96%) and a higher SpO2 target (target 98% and 
goal range: 96%–100%) with regard to the number of 
days alive and free of invasive mechanical ventilation 
among mechanically ventilated ICU patients. Consistent 
with the concept of a pragmatic clinical trial,37 the eligi-
bility criteria are broad, the delivery of the intervention 
is embedded in routine clinical care and executed by 
clinical personnel, and data collection prioritises clin-
ical outcomes over mechanistic evaluation. The trial was 
approved by the Vanderbilt University Medical Center 
Institutional Review Board (IRB 171272). The trial is inves-
tigator initiated with funding provided by the National 
Heart, Lung, and Blood Institute (K23HL143053). The 
trial protocol was registered with ​ClinicalTrials.​gov on 25 
May 2018 prior to initiation of patient enrolment on 1 
July 2018 (​ClinicalTrials.​gov identifier: NCT03537937).

Patient and public involvement
Materials used to communicate about the study with 
patients and families were developed with input from the 
Vanderbilt Community Engaged Research Core and the 
Vanderbilt Community Advisory Council.

Study site and population
The trial is being conducted in the adult ED and medical 
ICU at Vanderbilt University Medical Center.

The inclusion criteria are
1.	 Age ≥18 years.
2.	 Receiving mechanical ventilation through an endotra-

cheal tube or tracheostomy.
3.	 Admitted to the study ICU or admission to the study 

ICU from the ED is planned.

The exclusion criteria are
1.	 Known pregnancy or beta-human chorionic gonado-

tropin level greater than the laboratory upper limit of 
normal in a patient capable of becoming pregnant (if 
measured clinically).

2.	 Known to be a prisoner.
Adults located in the study ICU or for whom admis-

sion to the study ICU from the ED is planned who meet 
inclusion criteria and do not meet exclusion criteria are 
enrolled immediately on receipt of invasive mechanical 

ventilation in a study location. The time of enrolment for 
the trial (‘time zero’) is the time of first receipt of invasive 
mechanical ventilation in a participating study location.

Randomisation and treatment allocation
For each of the 18 2-month blocks during the 36 months 
of enrolment in the PILOT trial, the medical ICU is 
assigned to a single SpO2 target (cluster-level alloca-
tion). Every 2 months, the ICU will switch between use 
of a lower SpO2 target (target 90% and goal range: 
88%–92%), use of an intermediate SpO2 target (target 
94% and goal range: 92%–96%) and use of a higher 
SpO2 target (target 98% and goal range: 96%–100%) in 
a randomly generated sequence (cluster-level crossover) 
(figure 2). The order of study group assignments for each 
2-month block was generated by computerised randomi-
sation using permuted blocks of three to minimise the 
impact of seasonal variation and temporal changes. For 
the 36 months of enrolment in the PILOT trial, patients 
receiving invasive mechanical ventilation in the ED for 
whom admission to the medical ICU is planned will 
receive the same SpO2 target assigned to the medical 
ICU. The study did not enrol in April and May of 2020 
due to disruptions in research and clinical care from the 
COVID-19 pandemic (figure 2).

Washout periods
The last 7 days of each 2-month block are considered an 
analytic washout period during which the ICU continues 
to target the assigned SpO2, but data from new patients 
are not included in the primary analysis. Assuming a 
median duration of mechanical ventilation of 3 (IQR: 
3–5) days, a 7-day washout period will ensure that 98% 
patients in the primary analysis do not experience a 
‘crossover’ from a period assigned to one assigned SpO2 
target to a period assigned to another SpO2 target. Data 
from patients admitted during washout periods will be 
included in a prespecified sensitivity analysis (see Statis-
tical analysis section). Any patient who does remain 
mechanically ventilated in the study ICU through a 
crossover from a period assigned to one SpO2 target to a 
period assigned to another SpO2 target will be analysed in 
the SpO2 target group to which the ICU was assigned at 
the time of the patient’s enrolment in the trial (intention-
to-treat analysis).

Figure 2  Group assignment during the trial. For each of the 18 2-month study periods, the study intensive care unit is 
randomly assigned to a higher, intermediate or lower SpO2 target. in this figure, The letters ‘A’, ‘B’ and ‘C’ each correspond to 
one of the three possible SpO2 targets, the allocation sequence of which remains concealed until the start of each 2-month 
study period. The study did not enrol in April and May of 2020 due to disruptions in research and clinical care from the 
COVID-19 pandemic. As a result, March and June of 2020 represent a single 2-month block assigned to one SpO2 target. SpO2, 
arterial oxygen saturation.
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Study interventions
Choice of SpO2 targets
In clinical practice, 98% of SpO2 values experienced 
by mechanically ventilated adults fall between 88% and 
100%.32 33 Within this range, current guidelines for 
oxygen therapy in mechanically ventilated adults outline 
three contrasting approaches: (1) allowing the lower end 
of the range of acceptable SpO2 values to be as low as 
88%28 29 to avoid excess FiO2, hyperoxaemia and hyper-
oxia; (2) titrating within an intermediate range of SpO2 
values, such as 92%–96%38; or (3) targeting higher SpO2 
to avoid the risks of hypoxaemia and hypoxia.31 The 
PILOT trial has three study groups, each emulating a 
different approach to SpO2 targets represented in guide-
lines and clinical practice (table 1).

Oxygen titration
In the study ED and ICU, titration of FiO2 to main-
tain SpO2 for mechanically ventilated adults is typically 
performed by respiratory therapists with input from 
nurses and physicians. In preparation for the PILOT trial, 
we collaborated with respiratory therapy leaders in the 
study ED and ICU to adapt existing ventilator manage-
ment protocols to provide guidance for respiratory ther-
apists in titrating FiO2 to achieve each of the three study 
SpO2 targets.

For patients enrolled in the study, respiratory thera-
pists are instructed to begin titrating FiO2 to the target 
SpO2 value within 15 min of the initiation of mechanical 
ventilation. During the maintenance of invasive mechan-
ical ventilation, SpO2 is assessed by continuous pulse 
oximetry. The protocol directs the respiratory therapist 
managing the patient’s ventilator to target an SpO2 value 
of 90% in the lower SpO2 target group, an SpO2 value of 
94% in the intermediate SpO2 target group and an SpO2 
value of 98% in the higher SpO2 target group (table 1). 
Respiratory therapists and other treating clinicians titrate 
FiO2 when the SpO2 is out of the goal range, when the 
SpO2 is within the goal range but closer alignment with 
the assigned SpO2 target is desired, to facilitate weaning 
from mechanical ventilation, or for other clinical indica-
tions. SpO2 is reassessed 5 min after each change in FiO2 
or sooner if clinically indicated.

The protocol determines the SpO2 target from enrol-
ment until the first of: (1) discontinuation of invasive 
mechanical ventilation, (2) transfer out of a participating 

study location, (3) completion of an SpO2 target modifica-
tion sheet by treating clinicians or (4) end of the 2-month 
study period. The protocol does not determine the SpO2 
target during time periods in which the patient is not 
physically located in a study location (eg, during trans-
port) or when FiO2 is being administered for purposes 
other than achieving a target SpO2 (eg, when an FiO2 of 
1.0 is being administered for a procedure).

At any time, if a treating clinician or a patient, family 
member or surrogate feels that an SpO2 target other than 
that assigned by the study would be best for the optimal 
treatment of the patient for any reason, the SpO2 target 
for that patient is modified. To modify the target, the 
respiratory therapist and supervising physician complete 
a one-page SpO2 target modification sheet documenting 
the new SpO2 target and the rationale for modifying the 
target. Examples of conditions for which the assigned 
SpO2 target may be modified that were specified in the 
initial trial protocol included pneumothorax, pneumo-
mediastinum, carbon monoxide poisoning, decompres-
sion sickness, bleomycin toxicity and paraquat toxicity. 
Examples of conditions for which the assigned SpO2 
target may be modified that were not explicitly specified 
in the initial trial protocol include severe chronic obstruc-
tive pulmonary disease, severe acute respiratory distress 
syndrome, severe anaemia, status post lung transplanta-
tion and receipt of extracorporeal membrane oxygen-
ation support. Trial protocol directs only the titration of 
FiO2 to the assigned SpO2 target. Other aspects of invasive 
mechanical ventilation, such as tidal volume,4 positive 
end-expiratory pressure39 40 and use of rescue therapies 
for hypoxaemia, are determined by institutional proto-
cols and treating clinicians (see sections 9–17 of online 
supplemental file 1).

Blinding
Similar to prior studies of SpO2 targets among critically ill 
adults,22 24 26 patients and clinicians will not be blinded to 
study group assignment.

Data collection
The PILOT trial uses data collected by two methods to 
minimise observer bias: (1) manual data collection by 
study personnel and (2) automated collection of struc-
tured data recorded in routine clinical care, exported 
daily from the institution’s electronic health record and 

Table 1  SpO2 and PaO2 targets and goal ranges by study group

Study group SpO2 target SpO2 goal range
PaO2 target (mm 
Hg)

PaO2 goal range 
(mm Hg)

Lower SpO2 target 90% 88%–92% 60 55–65

Intermediate SpO2 target 94% 92%–96% 70 65–8

Higher SpO2 target 98% 96%–100% 110 >80

For each study group, the SpO2 target and goal range are displayed. PaO2 is used to guide titration of FiO2 for participants without reliable 
pulse oximetry monitoring.
FiO2, fraction of inspired oxygen; PaO2, arterial oxygen tension; SpO2, arterial oxygen saturation.
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patient registration, billing and laboratory clinical infor-
mation systems into an Enterprise Data Warehouse. We 
have previously validated the quality of the automated 
method of data collection against the reference stan-
dard of two-physician manual chart review41 and have 
employed this approach for the conduct of prior prag-
matic trials.42 43 Data are stored, curated and secured in 
REDCap.44

Outcomes
Primary outcome
The primary outcome is VFDs to study day 28. VFDs 
will be defined as the number of whole calendar days 
alive and free of invasive mechanical ventilation begin-
ning at midnight on the day of the final receipt of 
invasive mechanical ventilation through day 28 after 
enrolment.45 46 Outcome ascertainment will cease at the 
time of hospital discharge or 28 days after enrolment, 
whichever occurs first. Receipt of invasive mechanical 
ventilation will be considered to end when patients 
undergo the final tracheal extubation or disconnection 
of the ventilator from the endotracheal tube or trache-
ostomy tube between enrolment and 28 days after enrol-
ment. Patients whose final receipt of invasive mechanical 
ventilation occurs on the day of enrolment will receive 27 
VFDs. Patients who continue to receive invasive mechan-
ical ventilation 28 days after enrolment will receive 0 
VFDs. Patients who die prior to day 28 will receive 0 VFDs. 
Patients who are discharged from the hospital prior to 
day 28 and are receiving invasive mechanical ventilation 
at the time of discharge will receive 0 VFDs. Patients who 
are removed from invasive mechanical ventilation and are 
discharged from the hospital without invasive mechanical 
ventilation prior to 28 days will be assumed to remain 
free of invasive mechanical ventilation between hospital 
discharge and day 28. For patients who are removed 
from invasive mechanical ventilation, return to invasive 
mechanical ventilation, and are subsequently removed 
again from invasive mechanical ventilation prior to day 
28, VFDs will be counted from the final receipt of invasive 
mechanical ventilation prior to day 28.

Secondary outcome
The sole prespecified secondary outcome is 28-day in-hos-
pital mortality, defined as death from any cause between 
enrolment and the first of hospital discharge or 28 days 
after enrollment.

Exploratory clinical outcomes
1.	 ICU mortality—death in the ICU between enrolment 

and the first of 28 days after enrolment or hospital 
discharge

2.	 Free-day outcomes—defined as whole calendar days 
from last receipt of therapy until 28 days (online sup-
plemental file 1, section 19)
i.	 Vasopressor-free days
ii.	 Renal replacement therapy-free days
iii.	 ICU-free days

iv.	 Hospital-free days

Exploratory organ function outcomes
1.	 Daily non-respiratory Sequential Organ Failure 

Assessment (SOFA) score (online supplemental table 
S1)47

2.	 Plasma creatinine concentration (mg/dL)
3.	 Plasma lactate concentration (mmol/L)
4.	 Presence of acute respiratory distress syndrome by Ber-

lin criteria48

5.	 Stage II or greater acute kidney injury (AKI) by Kidney 
Disease: Improving Global Outcomes creatinine 
criteria.49

Exploratory safety outcomes
1.	 Atrial arrhythmia
2.	 Ventricular arrhythmia
3.	 Cardiac arrest with return of spontaneous circulation
4.	 Pneumothorax or pneumomediastinum
5.	 Ischaemic stroke
6.	 Myocardial infarction50

Additional long-term patientimportant outcomes
The independently funded Cognitive Outcomes in the 
Pragmatic Investigation of Optimal Oxygen Targets 
(CO-PILOT) study (R21AG063126) will assess cognitive, 
physical and psychological outcomes at 12 months after 
enrolment in the PILOT trial. The protocol and statistical 
analysis plan for the CO-PILOT study will be published 
separately.

Statistical analysis and reporting
Sample size estimation and power calculation
In a prior cluster-randomised cluster-crossover trial in 
the same ICU,51 880 mechanically ventilated adults were 
enrolled per year (73.3 per month), with a median of 
22 VFDs (IQR: 0–25 VFDs) and an intracluster intra-
period correlation of 0.01. We estimate 2640 mechani-
cally ventilated adults will be admitted to the study ICU 
during the 36-month PILOT trial, of whom 390 will be 
excluded from the primary analysis for initial receipt 
of invasive mechanical ventilation in a study location 
during a washout period and 2250 will be enrolled and 
included in the primary analysis. With a total enrolment 
of 2250 patients, a SD in the primary outcome of VFDs 
of 11.4 days, and a two-sided alpha of 0.05, we calculated 
using a t-test that the PILOT trial will have 92% statistical 
power to detect an absolute reduction in VFDs of 2.0 days 
(similar to the numerical difference in VFDs between 
SpO2 target groups reported in prior studies22 24).

DSMB and interim analysis
An independent Data and Safety Monitoring Board 
(DSMB) oversees the trial. On 23 March 2020 the DSMB 
conducted a single, planned interim analysis at the antic-
ipated halfway point of the trial and recommended the 
trial to continue without modification (see DSMB charter 
in online supplemental file 2) and details of interim 
analysis in online supplemental file 1, section 22). The 
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DSMB is composed of two physicians outside the study 
institution with expertise in adult pulmonary and critical 
care medicine clinical practice and clinical research, one 
bioethicist and one biostatistician.

Statistical analysis principles
R (R Foundation for Statistical Computing, Vienna, 
Austria) will be used for analyses. Analyses will be 
conducted at the level of an individual patient during an 
individual hospitalisation in an intent-to-treat fashion, 
unless otherwise specified. Continuous variables will be 
reported as mean±SD or median and IQR; categorical 
variables will be reported as frequencies and proportions.

Main analysis of the primary outcome
The main analysis will be an intention-to-treat compar-
ison of the primary outcome of VFDs between the higher, 
intermediate and lower SpO2 target groups among all 
patients enrolled in the trial except1 those admitted 
during one of the 7-day washout periods and2 those with 
a laboratory-confirmed diagnosis of COVID-19. Patients 
with a diagnosis of COVID-19 will be excluded from the 
main analysis for two reasons. First, the majority of the 
PILOT trial occurred prior the COVID-19 pandemic, 
with too few 2-month study blocks occurring during the 
pandemic to ensure balance in the number of patients 
with COVID-19 between trial groups. Second, at the study 
hospital, ICU patients diagnosed with COVID-19 are 
transferred to a separate, dedicated COVID-19 ICU that 
was not participating in the PILOT trial. Thus, patients 
with COVID-19 are unlikely to have received significant 
exposure to the SpO2 target intervention in the PILOT 
trial. Patients enrolled during washout periods and 
patients diagnosed with COVID-19 will be included in 
sensitivity analyses (see Sensitivity analyses below).

It is possible to estimate a conditional effect, which is 
interpreted as the effect of a given SpO2 target on an indi-
vidual patient given the values of the covariates for that 
patient, or a marginal effect, which is interpreted as the 
population effect of implementing a given SpO2 target as 
a general policy.52 Since an SpO2 target intervention may 
be applied both at the patient level as an individual inter-
vention and at the unit level as a general policy, both may 
be of interest.

To estimate the conditional effect, we will use a propor-
tional odds model with independent covariates of group 
assignment (higher, intermediate or lower SpO2 target) 
and time.53 54 Time (in days) will be treated as a contin-
uous variable with values ranging from 1 (first day of 
enrolment) to 1097 (final day of enrolment) and will 
be analysed using restricted cubic splines with multiple 
knots to allow for non-linearity resulting from seasonality 
or secular trends. For the purposes of declaring a statisti-
cally significant difference between groups in the primary 
endpoint, we will consider the conditional effect from the 
proportional odds model and a two-sided p value of 0.05.

To estimate the marginal effect, we will use generalised 
estimating equations with study period as the cluster and 

an independent variable for group assignment (higher, 
intermediate or lower SpO2 target).

For both approaches, in addition to assessing for an 
overall group effect within the model, we will estimate 
the differences between each pair of SpO2 targets by 
extracting 95% CIs from the model.

Sensitivity analyses of the primary outcome
►► We will repeat the primary analysis using alterna-

tive statistical approaches to comparing the VFDs 
outcome between groups such as zero-inflated Poisson 
regression or zero-inflated negative binomial regres-
sion, global rank scale analysis55 and Fine and Gray 
competing risk regression.

►► We will repeat the primary analysis with adjustment 
for prespecified baseline covariates of age, sex, race 
and ethnicity, source of ICU admission, vasopressor 
receipt, acute diagnoses at enrolment, and severity of 
illness as assessed by the non-respiratory SOFA score.

►► We will repeat the primary analysis replacing the 
continuous covariate of time with a categorical covar-
iate of season defined as: winter (January, February, 
March); spring (April, May, June); summer (July, 
August, September); and fall (October, November, 
December).

►► We will repeat the primary analysis among all patients 
enrolled in the trial, including1 patients initiated on 
invasive mechanical ventilation in a study location 
during one of the prespecified 7-day washout periods 
and2 patients with a diagnosis of COVID-19.

Analysis of effect modification for the primary outcome
We will examine whether prespecified baseline variables 
modify the effect of study group on the primary outcome 
using formal tests of statistical interaction in a propor-
tional odds model. Independent variables will include 
study group assignment, the potential effect modifier of 
interest and the interaction between the two (eg, study 
group × presence of sepsis or septic shock) and time. 
Significance will be determined by the p value for the 
interaction term, with values <0.10 considered to suggest 
a potential interaction and values <0.05 considered to 
confirm an interaction.

We will examine whether the following baseline vari-
ables modify the effect of study group on the primary 
outcome:
1.	 Age;
2.	 Race and ethnicity (Hispanic, non-Hispanic Black, 

non-Hispanic white, Other);
3.	 Source of admission to the ICU (ED, hospital ward, 

another ICU in the study hospital, operating room, 
outside hospital);

4.	 Duration of invasive mechanical ventilation prior to 
enrollment;

5.	 Chronic comorbidities (categories are not mutually 
exclusive)
i.	 Receipt of supplemental oxygen at place of resi-

dence prior to hospital admission (yes, no);
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ii.	 Coronary artery disease or heart failure with re-
duced ejection fraction (yes, no);

6.	 Acute diagnoses at enrollment (categories are not mu-
tually exclusive)56

i.	 cardiac arrest (yes, no);
ii.	 acute myocardial infarction (yes, no);
iii.	 sepsis or septic shock (yes, no);
iv.	 acute respiratory distress syndrome (yes, no);

7.	 Receipt of vasopressors at enrollment (yes, no);
8.	 Non-respiratory SOFA score at enrollment;
9.	 Time period before the COVID-19 pandemic (July 

2018 to December 2019), and during the COVID-19 
pandemic (January 2020 to August 2021).

Analysis of the secondary outcome
The sole prespecified secondary outcome of 28-day 
in-hospital mortality will be compared between the three 
study groups in an intention-to-treat fashion in the main 
analysis population using a logistic regression model with 
independent covariates of group assignment (higher, 
intermediate or lower SpO2 target) and time. In addition 
to assessing for an overall group effect within the model, 
we will estimate the differences between each pair of SpO2 
targets by extracting 95% CIs from the model.

Analysis of the exploratory outcomes
Each of the exploratory outcomes will be compared 
between groups in an intention-to-treat fashion in the 
main analysis population. Exploratory outcomes will be 
compared between study groups in a similar manner as 
for primary and secondary outcomes. A logistic model 
will be used for binary outcomes, a multinomial model 
for categorical outcomes, and a proportional odds model 
will be used for ordinal and continuous outcomes.

Trial status
PILOT is an ongoing pragmatic trial comparing higher, 
intermediate and lower SpO2 targets for mechanically 
ventilated critically ill adults. Patient enrolment began on 
1 July 2018 and is anticipated to conclude on 31 August 
2021.

Ethics and dissemination
IRB approval
The trial was approved by the IRB of Vanderbilt Univer-
sity Medical Center with a waiver of informed consent 
(IRB# 171272), details of which are provided in (online 
supplemental file 1, section 26). Participants who regain 
capacity to provide informed consent, or legally autho-
rised surrogate decision-makers for those patients who do 
not regain the capacity to provide informed consent, are 
approached to provide informed consent for assessment 
of long-term outcomes as a part of the independently 
funded CO-PILOT study (R21AG063126).

Information for patients and families
An information sheet providing an IRB approved lay 
language summary of the study and containing the contact 
information for investigators (who remain available 

throughout the study period to provide additional infor-
mation to patients and families on request) is made avail-
able throughout the study period in glass display cases 
near the public entrance to the ICU and near the centre 
of the ICU, in the ‘welcome packet’ of information about 
the ICU, which is distributed at the time of ICU admis-
sion to patients, families and surrogates by the medical 
receptionist or charge nurse as a part of routine admis-
sion processes, in a brochure holder in the family waiting 
room for the study ICU, and by treating physicians and 
respiratory therapist to any patients, families, or surro-
gates with questions or concerns about the study.

Protocol changes
Any changes to the trial protocol will be recorded on 
ClinicalTrials.Gov as per SPIRIT guidelines (see section 
27 of online supplemental file 1).

Data handling and sharing
For details of privacy, data handling and data sharing, see 
sections 28–29 of online supplemental file 1.

Dissemination plan
Trial results will be submitted to a peer-reviewed journal 
for consideration of publication and will be presented 
at scientific conferences. The results of the study will be 
disseminated to patients and the public at the completion 
of the trial.

The full list of the PILOT investigators may be found in 
(online supplemental file 1, section 1).
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