
SUPPLEMENTARY MATERIAL 

The area of interest is 𝐴 ⊂ ℝ2 and the time period of interest is 𝑇 ⊂ ℝ≥0. The data are 

assumed to be realisations of a Log Gaussian Cox process (LGCP), i.e. an 

inhomogeneous Poisson process with stochastic intensity function {𝜆(𝑠, 𝑡): 𝑠 ∈ 𝐴, 𝑡 ∈𝑇}.[1] The number of cases occurring in any locally finite random set 𝑆 ⊆ 𝐴 is Poisson 

distributed conditional on 𝜆(𝑠, 𝑡): 

𝑌(𝑆, 𝑡) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (∫ 𝜆(𝑠, 𝑡)𝑑𝑠𝑆 ) 

The intensity of the Poisson process is decomposed as the log-linear model: 𝜆(𝑠, 𝑡) = 𝑒(𝑠) exp(𝛽0 + 𝛽1𝑥(𝑠, 𝑡)  + 𝑍(𝑠, 𝑡)). (1) 

In equation (1): 

1.  𝑒(𝑠) is an offset, the population density (number per hectare) at location s;  we 

assumed that changes within the time-window under consideration were 

negligible. 

2.  𝑥(𝑠, 𝑡) is a set of spatially or temporally varying covariates; no covariates that 

varied both spatially and temporally on the temporal scale of our analyses were 

identified. 

3.  {𝑍(𝑠, 𝑡): 𝑠 ∈ 𝐴, 𝑡 ∈ 𝑇} is a zero-mean spatio-temporal Gaussian process with 

minimally parameterised covariance function: 𝐶𝑜𝑣(𝑍(𝑠, 𝑡), 𝑍(𝑠′, 𝑡′)) = 𝜎2𝜌𝑠(||𝑠 − 𝑠′||; 𝜙)𝜌𝑡(||𝑡 − 𝑡′||; 𝜃) 

where ||. || is the Euclidean norm.  

We used a double- exponential correlation function: 

𝜌𝑠(||𝑠 − 𝑠′||; 𝜙) = exp (− ||𝑠 − 𝑠′||𝜙 ) ;  𝜌𝑡(||𝑡 − 𝑡′||; 𝜃) = exp (− ||𝑡 − 𝑡′||𝜃 ) 

where 𝜙 and 𝜃 are the spatial and temporal correlation range parameters.  

There are a variety of approaches to fitting LGCPs. Almost all of the computational 

methods discretize the area of interest using a fine regular lattice onto which case 

counts are aggregated.[1, 2] To ensure the reliability of the discretization, the lattice is 
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generally assumed to be fine enough so that the latent Gaussian field can be assumed 

to be approximately constant within each cell. A finer lattice would be computationally 

inefficient, a less fine lattice may smooth over important variation and preclude 

predictions at finer spatial scales. Based on likely social interactions, disease 

transmission, and the scales on which variation could be meaningfully interpreted, we 

selected a cell size of 0.005 on a longitude/latitude scale, which is approximately 

500m2. This results in a grid with 1,411 cells inside the boundary of our area of interest. 

There have been few head-to-head comparisons of computational methods for LGCPs, 

and those that do exist consider spatial-models only.[3, 4] The principle approaches 

are Bayesian: a Markov Chain Monte Carlo (MCMC) approach, and a Gauss-Markov 

Random Field approximation of the model above estimated using MCMC or Integrated 

Nested Laplacian Approximation. We conducted a scoping comparison of these three 

approaches using simulated spatio-temporal case data and available software, and in 

conjunction with previous comparisons, selected a MCMC approach based on the full 

model as the best performing in terms of stability, computational time, and predictive 

accuracy. The software package lgcp for R implements the MCMC sampler for this 

model.[5, 6] 

For the first day’s analysis we used weakly informative N(0,52) priors on parameters in 

the linear predictor and for the log parameters in the covariance function. Weakly 

informative priors were preferred to “uninformative” priors as they provide a degree 

of computational stability and regularisation, while providing little information on 

parameter location within a plausible range for each parameter. For each subsequent 

day’s analysis, the priors were set to the posteriors from the previous day. 
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