

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

## Inverse association between dietary vitamin C and retinol intake and hyperhomocysteinemia prevalence in middleaged and older adults with hypertension: a cross-sectional study

| Journal:                      | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | bmjopen-2020-045732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Article Type:                 | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date Submitted by the Author: | 12-Oct-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complete List of Authors:     | Peng, Xiaolin; Nanshan Centre for Chronic Disease Control<br>Gao, Qin; Huazhong University of Science and Technology Tongji Medical<br>College; Jining Medical College<br>Zhou, Juan; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,<br>Ma, Jianping; Nanshan Centre for Chronic Disease Control<br>Zhao, Dan; Shenzhen Nanshan Centre for Chronic Disease Control<br>Hao, Liping; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,; Huazhong University of<br>Science and Technology Tongji Medical College, Hubei Key Laboratory<br>of Food Nutrition and Safety |
| Keywords:                     | Hypertension < CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

| 1<br>2         |    | l                                                                                                                                                           |
|----------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 1  | Inverse association between dietary vitamin C and retinol intake and                                                                                        |
| 5<br>6         | 2  | hyperhomocysteinemia prevalence in middle-aged and older adults with                                                                                        |
| 7<br>8         | 3  | hypertension: a cross-sectional study                                                                                                                       |
| 9<br>10        | 4  | Peng Xiaolin <sup>#1</sup> , Gao Qin <sup>#2,3</sup> , Zhou Juan <sup>2</sup> , Ma Jianping <sup>1</sup> , Zhao Dan <sup>1</sup> , Hao Liping <sup>2*</sup> |
| 11<br>12       | 5  | <sup>#</sup> Peng Xiaolin and Gao Qin contributed equally to this paper.                                                                                    |
| 13<br>14       | 6  | <sup>1</sup> Shenzhen Nanshan Centre for Chronic Disease Control, Guangdong, People's                                                                       |
| 15<br>16       | 7  | Republic of China;                                                                                                                                          |
| 17<br>18       | 8  | <sup>2</sup> Department of Nutrition and Food Hygiene, School of Public Health, Tongji                                                                      |
| 19<br>20       | 9  | Medical College, Huazhong University of Science and Technology, Wuhan, Hubei,                                                                               |
| 21             | 10 | People's Republic of China;                                                                                                                                 |
| 22<br>23       | 11 | <sup>3</sup> Department of Public Health, Jining Medical University, Jining, Shandong, People's                                                             |
| 24<br>25       | 12 | Republic of China.                                                                                                                                          |
| 26<br>27       | 13 | * Corresponding Author: Hao Liping, 13 Hangkong Road, Wuhan 430030, People's                                                                                |
| 28<br>29       | 14 | Republic of China. E-mail addresses: haolp@mails.tjmu.edu.cn,                                                                                               |
| 30<br>31       | 15 | Tel.:+86-27-83650523, Fax: 0086-27-83693307                                                                                                                 |
| 32<br>33       | 16 |                                                                                                                                                             |
| 34<br>35       | 17 |                                                                                                                                                             |
| 36<br>37       | 18 |                                                                                                                                                             |
| 38<br>39       | 19 |                                                                                                                                                             |
| 40<br>41       | 20 |                                                                                                                                                             |
| 42<br>43       | 21 |                                                                                                                                                             |
| 44<br>45       | 22 |                                                                                                                                                             |
| 46<br>47       | 23 |                                                                                                                                                             |
| 48<br>49       | 24 |                                                                                                                                                             |
| 50<br>51       | 25 |                                                                                                                                                             |
| 52<br>53       | 26 |                                                                                                                                                             |
| 55<br>54<br>55 | 27 |                                                                                                                                                             |
| 56             | 28 |                                                                                                                                                             |
| 57<br>58       | 29 |                                                                                                                                                             |
| 59<br>60       | 30 |                                                                                                                                                             |
|                |    |                                                                                                                                                             |

| 31 | Abstract                                                                                    |
|----|---------------------------------------------------------------------------------------------|
| 32 | Objectives: Plasma total homocysteine (tHcy) has been implicated in the development         |
| 3  | of cardiovascular disease. This study aimed to assess the relationship of dietary           |
| 1  | antioxidant vitamins intake with hyperhomocysteinemia (HHcy) prevalence in                  |
| 5  | middle-aged and older adults with hypertension.                                             |
| 5  | Design: A cross-sectional study.                                                            |
| 7  | Setting: The survey was conducted in the Nanshan district of Shenzhen.                      |
| 8  | Participants: A total of 1465 middle-aged and older adults with hypertension were           |
| 9  | included between July and September of 2013.                                                |
| )  | Measurements: Some dietary antioxidant vitamins (vitamin C (VC) and vitamin E               |
| 1  | (VE), carotenes, retinol, lutein) intake was estimated using the food frequency             |
| 2  | questionnaire. Socio-demographic and potential covariates were evaluated through            |
| 3  | questionnaires, anthropometric measurements and blood tests. Multiple logistic              |
| 4  | regression models were used to determine odds ratios (ORs) and 95% confidence               |
| 5  | intervals (CIs).                                                                            |
| 6  | Results: Compared with the lowest quartile in the fully adjusted model, the ORs (95%        |
| ,  | CIs) for HHcy level across quartiles of dietary VC intake were 0.87 (0.60, 1.26), 0.53      |
| 5  | (0.34, 0.82) and 0.43 (0.23, 0.82) (P for trend=0.005), and the ORs (95% CIs) in the third  |
| )  | quartile of retinol intake was 0.50 (0.33, 0.76), while the effect for the highest quartile |
| )  | was not significant (P for trend=0.488). No significant association was observed between    |
| 1  | dietary VE, carotenes and lutein intake and HHcy.                                           |
| 2  | Conclusions: A linear inverse association between dietary VC intake and HHcy                |
|    | prevalence, and a U-shaped association between dietary retinol intake and HHcy              |
| ł  | prevalence were found in Chinese middle-aged and older adults with hypertension.            |
| 5  |                                                                                             |
| 6  | Keywords: Hyperhomocysteinemia, Hypertension, Antioxidant vitamin, Vitamin C,               |
| 7  | Retinol                                                                                     |
| 3  |                                                                                             |
|    | Strengths and limitations of this study:                                                    |
|    |                                                                                             |

This study focused on the risk of hyperhomocysteinemia among middle-aged and

61 older adults with hypertension.

A cross-sectional study could not explain the temporal relationship between dietaryantioxidant intake and tHcy.

Although some confounding factors, such as a sedentary lifestyle and a history of
 disease and medicine use were included in the analysis, other potential confounders
 may exist.

## 68 Introduction

Increasing evidence has shown that elevated total homocysteine (tHcy) levels are associated with atherosclerotic cardiovascular diseases, stroke, peripheral arterial occlusive disease, and venous thrombosis (1, 2). Hyperhomocysteinemia (HHcy)  $(tHcy \ge 15 \mu mol/L)$  (3), the result of a disturbed methionine metabolism, may lead to an enhancement of the adverse effects of risk factors like hypertension on human health (4). Hypertension is a major risk factor for cardiovascular and chronic kidney disease and a major cause of the global burden of disease and mortality (5, 6). It was estimated that the prevalence of hypertension in China in 2015 was 23.2%, and about 245 million Chinese adults had hypertension (7). Notably, the incidence of hypertension with hyperhomocysteinemia, or 'H-type hypertension', is significantly higher compared with other countries, representing 75% of Chinese patients with hypertension (8). Thus, the nutritional treatment focus on the attempt to reduce cardiovascular risk by reducing tHey is important, particularly among patients with hypertension (9).

Increasing age, male sex, genetic factors, consumption of alcohol or tobacco, kidney function and physical activity are some of the factors associated with tHcy levels (10). Epidemiological studies and clinical trials have indicated that folate, vitamin B<sub>12</sub> and vitamin B<sub>6</sub> status, well-known predictors of tHcy, are important for tHcy metabolism. The latest meta-analysis demonstrated that a lower risk of stroke and overall cardiovascular disease (CVD) with folic acid supplementation, which may partly contribute to the decrease of tHcy level (11). Folate, a key factor of tHcy metabolism, is very sensitive to free radicals (12). There are many studies have shown 

#### **BMJ** Open

the antioxidant vitamins may influence the tHcy levels for the protective effect of folate from oxidation. Plasma levels or dietary intake of vitamin C (VC), vitamin E (VE) or  $\beta$ -carotene was inversely associated with tHcy levels, however, the findings were not consistent (13-15). Of note, the association has never been investigated among the hypertensive population.

Therefore, this large population-based study aimed to determine the association
between the dietary intake of VC, VE, carotenes, retinol and lutein and the prevalence
of HHcy in middle-aged and older men and women with hypertension.

99 Methods

## 100 Study design and population

This study consecutively recruited individuals with hypertension from 60 community health service centres (CHSCs) in the Nanshan district of Shenzhen from July to September of 2013 using a three-stage random sampling method. In the first stage, 8 sub-districts were selected in the Nanshan district; in the second stage, 6 to 8 communities were selected from each sub-district using a simple random selection procedure; and in the third stage, individuals with hypertension were selected from each community using isometric random sampling. All subjects were of Chinese ethnicity and had lived in the Nanshan district of Shenzhen for over six months. The individuals were invited to visit the CHSCs, where the researcher-administered questionnaire (including the validated food frequency questionnaire (FFQ)) was conducted, the anthropometric measurements were recorded, and fasting blood samples were collected. The survey protocol was approved by the Ethics Committee of the Shenzhen Nanshan Centre for Chronic Disease Control, and all participants provided written informed consent before enrolment.

We collected the data of 1802 participants, and excluded 51 participants whose age was not reported or who were aged  $\leq 40$  years and 27 underweight participants (body mass index (BMI) < 18.5 kg/m<sup>2</sup>), as well as participants for whom fasting blood samples (n = 74) and complete dietary surveys (n = 133) were not available. We also excluded participants with an extreme dietary energy intake (male: < 800 kcal or > 4000 kcal, female: < 700 kcal or > 3500 kcal) (n = 52). Finally, 1465 participants

## 121 were included in the analysis (Supplementary Figure.1).

## 122 Patient and public involvement

The development of standardised form is in response to the public health need of preventing stroke among hypertension population. Patients and the public were not involved in the design of the study. The results of our study will be disseminated through open access publications.

### 127 Dietary assessment

The researcher-administered FFQ consisted of 92 food items, which were assembled into 7 food groups: cereals, vegetables, fruits, beans, animal foods, nuts and beverages. The FFQ was based on the national FFQ used in the 2010-2012 China National Nutrition and Health Survey according to the Chinese Nutrition and Health Surveillance in 2010-2012 (16). Participants were asked to recall the consumption of each item during the past year, including the type of food, frequency and amount. Food weight maps were available for participants to estimate their portion size. Primary data obtained from FFQs were doubly entered into the EpiData 3.0 software by two trained technicians to verify accuracy. Dietary energy and other nutrients were calculated based on the Chinese Food Composition Database (17, 18). Dietary intake of VC, VE, carotenes (consist of  $\alpha$ -carotene,  $\beta$ -carotene and  $\beta$ -cryptoxanthin), and retinol were calculated based on the Chinese Food Composition Table 2002 (17). Dietary intake of lutein was calculated based on the food composition table of vegetables, fruits, eggs and nuts that contain large amounts of lutein (Chinese Dietary Reference Intakes 2013). The intake of all dietary nutrients and carotenoids was adjusted for energy using the residual method (19). The second FFQ was conducted 3 months after the completion of the first FFQ among 108 participants. The intra-class correlation coefficients of two administrations of FFQ for nutrients ranged from 0.044 (iodine) to 0.562 (phosphorus) and were all statistically significant, except for iodine. 

147 Assessment of other covariates

Participants' socio-demographic characteristics (e.g., age and sex), lifestyle factors
(e.g., sedentary time), history of chronic diseases, and medication and supplement use
status were collected. Sedentary time consisted of time spent watching TV and sitting,

#### **BMJ** Open

which were combined into one variable with 2 categories, < 3 h/d and > 3 h/d, based on a median sedentary time of 3 h/d. The history of cardiovascular events including coronary heart disease, cerebral haemorrhage, cerebral thrombosis, and the history of diabetes and kidney disease were recorded for each participant. The prescription use status was classified into 2 groups (yes or no) corresponding to whether the participant was taking any type or quantity of drugs, including antihypertensive drugs, antihyperglycaemic drugs, lipid-lowering drugs or tHcy-lowering drugs. Supplement use consisted of vitamin A, retinol, B vitamins, VC, VE and folic acid was included. 

## 159 Anthropometric measurements

Height and weight and waist circumference (WC) were measured by specialists. BMI was calculated as weight (kg) / height (m<sup>2</sup>). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured from the right arm of participants in a seated position after a sufficient rest period using a mercury sphygmomanometer in the morning. Blood pressure was measured manually and recorded as the average of three measurements.

#### *Laboratory tests and outcomes*

Fasting blood samples were collected from the participants at CHSCs and transported under refrigerated conditions to a clinical laboratory of the Nanshan Centre for Chronic Disease Control on the same day. Blood samples were collected through deposition and centrifugation for ten minutes at 3000 s/min at room temperature. The concentrations of plasma tHcy, fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), uric acid and creatinine were assessed on the day of blood collection using enzymatic methods via an auto-analyser (HITACH 7080). The inter-day quality control assessments met the standard during the analysis. HHcy was defined as plasma tHcy concentration  $\geq 15$ µmol/L. 

#### 177 Statistical analysis

178 Demographic characteristics were described by means  $\pm$  SDs for normally distributed 179 data, medians (interquartile ranges, IQRs) for non-normally distributed data and 180 numbers (percentages) for categorical data. The differences between males and 181 females were compared using the t test for normally distributed variables, the 182 Kruskal-Wallis rank test for non-normally distributed variables, and the chi-square 183 test for categorical variables.

The associations between dietary antioxidant vitamins intake and the prevalence of HHcy were analyzed using multiple logistic regression models, with the lowest quartile as the reference category. Potential confounders related to dietary intake of antioxidant vitamins and HHcy reported in previous literature were chosen in multivariable analyses. The first model was adjusted for age, sex ('male' as the reference) and BMI. The second model was further adjusted for sedentary time ( $\leq 3$ h/d' as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin  $B_6$  and vitamin  $B_{12}$ , saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, which were .antihypertensive drug use (yes), antihyperglycaemic drug use (yes), and lipid-lowering drug use (yes). The third model was further adjusted for the history of cardiovascular events and kidney disease ('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference), and lipid-lowering drug use ('no' as the reference). Linear trends were tested by creating a continuous variable for dietary antioxidant vitamins intake using the median value for each quartile. The sensitive analyses between dietary antioxidant vitamins intake and HHcy prevalence were applied among the population who had never suffered cardiovascular events, or among the population who never use the tHcy-lowering drug.

To further explore the nonlinearity of the relationship between dietary antioxidant vitamins intake and high tHcy, we used restricted cubic spline with 4 knots at the 5<sup>th</sup>, 35<sup>th</sup>, 65<sup>th</sup> and 95<sup>th</sup> percentiles of dietary antioxidant vitamins intake.

To evaluate the modification effect by some potential prevalence factors of HHcy,
including sex (male or female) and BMI (<24 or ≥24 kg/m<sup>2</sup>), stratified analyses were
conducted by these potential factors and estimated *P* values for interaction terms.
All data were analyzed using the R Foundation version 3.1.2 and Empower X&Y

210 Solutions Inc. Statistical significance was considered when P < 0.05 (two-sided).

#### 211 Results

In this cross-sectional study, 1465 participants (male: 729, female: 736) were included in the analysis, and the mean  $\pm$  SD of age and BMI was  $62.0 \pm 10.7$  years, and  $24.9 \pm 3.5$  kg/m<sup>2</sup>. The tHcy level of the participants was  $14.63 \pm 9.06$  µmol/L, and the number (percentage) of HHcy was 469 (32.0%). The participants with HHcy were older and more male, and have higher WC, SBP, tHcy, uric acid, creatinine, and of history of cardiovascular higher percentages events (including coronary heart disease, cerebral hemorrhage, cerebral thrombosis) and kidney disease, and have lower FPG level (all P < 0.05) (**Table 1**). 

The dietary intake of nutrients were shown in **Table 2**. The median (IQR) of dietary antioxidant vitamins intake were as follows: VC 153.5 (91.2, 240.9) mg/d, VE 25.0 (19.3, 31.9) mg/d, carotenes 3.3 (1.8, 5.6) mg/d, retinol 138.3 (78.0, 283.6)  $\mu$ g/d, and lutein 9.5 (5.2, 14.8) mg/d. Among the participants with HHcy, the intake of carbohydrate was higher, and the intake of fruit, protein, fibre, retinol, folic acid, vitamin B<sub>12</sub>, saturated fatty acid, selenium, magnesium, zinc was lower, and the percentage of supplement use was lower (all *P* < 0.05).

The association between dietary antioxidant vitamins intake and the HHcy prevalence are shown in Table 3. After adjusting for age, sex and BMI, the ORs (95%) CIs) for HHcy prevalence across quartiles of VC intake were 1.00, 0.92 (0.66, 1.27), 0.64 (0.46, 0.90), and 0.55 (0.34, 0.89) ( $P_{\text{for trend}} = 0.048$ ); the ORs (95% CIs) across quartiles of retinol intake were 1.00, 0.84 (0.61, 1.16), 0.50 (0.35, 0.70), and 0.55 (0.40, 0.77) ( $P_{\text{for trend}} = 0.003$ ). In the fully adjusted model, the significant association was found in the third and highest quartile of VC intake, and the ORs (95% CIs) were 0.53 (0.34, 0.82) and 0.43 (0.23, 0.82) ( $P_{\text{for trend}} = 0.005$ ); the significant association was only found in the third quartile of retinol intake, and the ORs (95% CIs) was 0.50 (0.33, 0.76) (P<sub>for trend</sub> = 0.488). However, the non-significant association between dietary intake of VE, carotenes and lutein and HHcy prevalence was found. The results were similar in the sensitivity analyses that excluded participants with cardiovascular events or who use the tHcy-lowering drug (see Supplementary Table 1). 

After fully adjusting for the potential confounders, the association between dietary antioxidant vitamins intake and the prevalence of HHcy were shown in Figure.1. From the cubic splines, we noted that the linear inverse trend of VC intake and HHcy prevalence (P for overall association=0.019, P for nonlinearity=0.058) and the U-shaped relationship of retinol intake and HHcy prevalence (P for overall association=0.010, P for nonlinearity=0.010), which were consistent with the results of logistic regression analyses. The non-association between carotenes, lutein and VE and HHcy was not shown.

In stratified analyses, the association between dietary VC and retinol intake and HHcy prevalence were not significantly modified by sex (male or female), BMI (<24 or  $\geq$ 24 kg/m<sup>2</sup>) (all *P* for interaction were >0.05) (**Figure.2**). Similar results of stratified analyses of carotenes, lutein and VE were not shown.

#### **Discussion**

 In this community-based cross-sectional study, we observed some of the antioxidant vitamins intake were significantly correlated with the prevalence of HHcy. After adjusting potential confounders, a linear inverse association between VC intake and HHcy prevalence, and a U-shaped relationship between retinol intake and HHcy prevalence were found, which were not modified by sex or BMI. However, the non-significant effect of VE, carotenes and lutein on HHcy was detected.

Numerous studies have suggested that HHcy may be a modifiable risk factor for CVD, especially for stroke. In the past decades, there were many clinical trials aimed to show the effect of folic acid and vitamins  $B_{12}$  and  $B_6$  supplement on lowering the level of tHcy, however, the negative results were found in most studies (20). The potential reason may be correlated with the harmful effect of unmetabolized excessive folate or the cyanide and thiocyanate from excessive cyanocobalamin. In China, where folate fortification has not been implemented, folic acid significantly reduced the risk of stroke was observed from the China Stroke Primary Prevention Trial (CSPPT) (21). Thus, appropriate B vitamins therapy is of great importance for lowering tHcy level in stroke prevention. 

270 Notably, folate, which exists in blood and tissues mainly in a labile form, is very

#### **BMJ** Open

sensitive to oxidative stress (12). In the past decades, several researches reported the potential association between plasma levels or intake of different antioxidant vitamins and tHcy level (13, 14, 22-24). In 1999, Brude IR et al. observed the inverse association between plasma tHcy concentration and dietary intake of vegetables, vitamin C and  $\beta$ -carotene from 41 participants (22). In addition, dietary intake of retinol equivalents,  $\beta$ -carotene and VC were inversely correlated with plasma tHcy level, after adjustment for dietary B-vitamins (14). What's more, the study focus on the effect of antioxidant vitamins on the plasma tHcy level in a free-living elderly population found that plasma VC, rather than the intake and supplementation of VC, showed a negative association with tHcy in simple regression analysis, and also found that the plasma levels, as well as the intake and supplementation of vitamin E, and  $\beta$ -carotene were not associated with tHcy (13). Similarly, the cross-sectional NHANES 1999-2002 study found that dietary VC and VE intake were associated with a lower prevalence of elevated blood tHcy concentration, whereas no association between dietary carotenes intake and tHcy was detected (23). 

Consistent with our findings, these studies have a common conclusion that VC intake was inversely correlated with tHcy level. Given the report of an interaction of VC and folate (25), Magana AA *et al.* found the underlying molecular mechanisms that VC activates the folate-mediated one-carbon cycle in C2C12 myoblasts (26). Thus, VC has been explored as an attractive factor to increase circulating levels of folic acid and to reduce Hcy levels.

We found a U-shaped association between dietary retinol intake and high tHcy prevalence, which was similar to the conclusion that dietary intake of retinol equivalents was inversely correlated with plasma tHcy level (14). Retinol, a preformed vitamin A, plays an important role in vision, cellular differentiation, and proliferation, as well as the immune system regulation. In addition, there is increasing evidence indicates that retinol seems to inhibit thrombosis (27) and inflammation effects (28), which indicates retinol is emerging as a factor of interest to CVD. Brazionis L reported that plasma retinol was a novel marker for CVD mortality in Australian adults, with an inverse association between plasma retinol in the middle

tertile and 5-year CVD mortality (29). Similarly, a U-shaped relation between plasma retinol and the risk of stroke death was examined (30). However, a nested case-control study showed a significant inverse association between plasma retinol and the risk of first stroke among Chinese hypertensive adults from the CSPPT (31), which may due to relatively low baseline retinol concentrations (median:  $67.5 \,\mu g/dL$ ). Besides, the interaction of retinol and tHcy was found (31), which showed the effect was stronger among the participants whose tHcy  $< 10 \mu mol/L$  than whose tHcy  $\ge 10$ µmol/L.

In addition, the dietary source of retinol may contribute to the non-significant effect of retinol in the highest quartile in the fully adjusted model, as it is present in animal-based foods, particularly in liver and whole milk. In this study, we found the TG level was gradually increased with the increase of retinol (data not shown). High retinol intake may alter lipid metabolism by increasing TG levels, which may impact the tHcy metabolism (32).

At present, a few studies demonstrate the complicated relationship between retinol, tHcy and CVD risk, but the underlying mechanism has not yet been clarified (33). The antioxidant activity of retinol may be a plausible mechanism that links the effect of retinol on tHcy levels, as retinol is essential for the maintenance of immune function and antioxidant defence (34, 35).

However, we found no relationship between HHcy prevalence and dietary intake of VE. The aforementioned study has found significant inverse associations between plasma tHcy and dietary intake of VE, but the effect was not significant after adjusting B-vitamins intake, which was consistent with our finding (14). On the contrary, dietary VE ( $\alpha$ -tocopherol) intake was associated with a lower risk of elevated blood tHcy concentration among US adults (23).

Epidemiological studies have reported the positive role of carotenoids on human health. In this study, we focused on the effect of carotenes ( $\beta$ -carotene,  $\alpha$ -carotene and  $\beta$ -cryptoxanthin) and lutein on tHcy, however, the negative results were found. Many of the aforementioned studies reported the protective effect of  $\beta$ -carotene by lowering tHey concentration (14, 22), but the risk of tHey > 13  $\mu$ mol/L was associated with the 

total carotene intake from diet plus supplement use, rather than the only intake from diet (23). The negative finding of lutein cannot be compared because of a lack of previously reported data. Thus, more prospective cohort studies and randomized double trials are warranted to indicate the relationship of antioxidant vitamins with HHcy risk.

The strength of this study is the face-to-face researcher-administered FFQ survey. First, to our knowledge, this is the first study to demonstrate an association of dietary intake of antioxidant vitamins with HHcy prevalence that was conducted in both a male and female hypertensive population. Then, the researcher-administered face-to-face interview was considered by validated FFQ, which was designed to evaluate dietary intake and gave full consideration to eating habits and food nutrient composition in the Chinese population.

Our study has several limitations. First, the limitations of a cross-sectional study are worth considering, which prevent us from explaining the temporal relationship between dietary antioxidant intake and tHcy. Second, we investigated the participants whether they took dietary supplements, while the detailed doses were not recorded. Therefore, we are not able to eliminate the possible association between supplement use and HHcy prevalence. Nevertheless, the study reported that there was some potential benefit from the antioxidant supplementation on plasma tHcy concentration (23), which could stabilize the positive results in this study. In addition, although some confounding factors, such as a sedentary lifestyle and a history of disease and medicine use were included in the analysis, other potential confounders may exist. For instance, the influence of smoking and drinking on HHcy was not assessed because of the lack of information about the status of smoking and drinking.

In conclusion, we found dietary intake of VC and retinol was inversely associated with HHcy prevalence in middle-aged and older adults with hypertension after adjusting the potential confounders. Our findings have provided suggestive evidence of a relationship between certain antioxidant intake and HHcy, which should be the impetus for longitudinal and random control trails to verify the relationship and direction and to elucidate the underlying mechanisms in the future.

| 361 |                                                                                        |
|-----|----------------------------------------------------------------------------------------|
| 362 | Acknowledgements                                                                       |
| 363 | The authors are grateful to the individuals who participate in this study. We also     |
| 364 | thank the investigators, staff and participants from the community health service      |
| 365 | centres for their assistance.                                                          |
| 366 | The present study was jointly supported by the National Natural Science                |
| 367 | Foundation of China (No. 81573149), the Health and Family Commission of                |
| 368 | Shenzhen Municipality Funded Project (No. 201502017 and SZSJ2017001) and               |
| 369 | Nanshan District, Shenzhen Science and Technology Innovation Bureau funded             |
| 370 | projects (No. 2015064).                                                                |
| 371 | The authors' responsibilities were as follows: H.L. conceived and designed the         |
| 372 | study and critically revised the manuscript. P.X. and G.Q. analyzed the data and wrote |
| 373 | the paper. Z.J. participated in the laboratory assay. M.J. and Z.D. collected the data |
| 374 | and revised the manuscript. All authors read and approved the final version of the     |
| 375 | manuscript.                                                                            |
| 376 | All authors declare they have no conflict of interest relevant to the content of this  |
| 377 | article.                                                                               |
| 378 | article.                                                                               |
| 379 | References                                                                             |
| 380 | 1. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a Risk Factor             |
| 381 | for Vascular Contributions to Cognitive Impairment and Dementia. Front Aging           |
| 382 | Neurosci 2018;10:350.                                                                  |
| 383 | 2. Saposnik G, Ray JG, Sheridan P et al. Homocysteine-lowering therapy and stroke      |
| 384 | risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke      |
| 385 | 2009;40:1365-1372.                                                                     |
| 386 | 3. Guo H, Chi J, Xing Y et al. Influence of folic acid on plasma homocysteine levels   |
| 387 | & arterial endothelial function in patients with unstable angina. Indian J Med Res     |
| 388 | 2009;129:279-284.                                                                      |
| 389 | 4. Baszczuk A, Kopczyński Z. [Hyperhomocysteinemia in patients with                    |
| 390 | cardiovascular disease]. Postepy Hig Med Dosw (Online) 2014;68:579-589.                |
|     |                                                                                        |

**BMJ** Open

| 2              |     |                                                                                       |
|----------------|-----|---------------------------------------------------------------------------------------|
| 3<br>4         | 391 | 5. Forouzanfar MH, Liu P, Roth GA et al. Global Burden of Hypertension and            |
| 5<br>6         | 392 | Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA                 |
| 7<br>8         | 393 | 2017;317:165-182.                                                                     |
| 9<br>10        | 394 | 6. Carey RM, Muntner P, Bosworth HB et al. Reprint of: Prevention and Control         |
| 11<br>12       | 395 | of Hypertension: JACC Health Promotion Series. J Am Coll Cardiol                      |
| 13<br>14       | 396 | 2018;72:2996-3011.                                                                    |
| 15<br>16       | 397 | 7. Wang Z, Chen Z, Zhang L et al. Status of Hypertension in China: Results From the   |
| 17<br>18       | 398 | China Hypertension Survey, 2012-2015. Circulation 2018;137:2344-2356.                 |
| 19<br>20       | 399 | 8. Liu LS. [2010 Chinese guidelines for the management of hypertension]. Zhonghua     |
| 20<br>21<br>22 | 400 | xin xue guan bing za zhi 2011;39:579-615.                                             |
| 23             | 401 | 9. Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in         |
| 24<br>25       | 402 | At-Risk Population Groups. Int J Mol Sci 2020;21:1421.                                |
| 26<br>27       | 403 | 10. Shenoy V, Mehendale V, Prabhu K et al. Correlation of serum homocysteine          |
| 28<br>29       | 404 | levels with the severity of coronary artery disease. Indian J Clin Biochem            |
| 30<br>31       | 405 | 2014;29:339-344.                                                                      |
| 32<br>33       | 406 | 11. Li Y, Huang T, Zheng Y et al. Folic Acid Supplementation and the Risk of          |
| 34<br>35       | 407 | Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am        |
| 36<br>37       | 408 | Heart Assoc 2016;5:e003768.                                                           |
| 38<br>39       | 409 | 12. Carmel R: Folic Acid. In: Shils M, Shike M, Ross A, Caballero B, Cousins R        |
| 40<br>41       | 410 | (eds): Modern Nutrition in Health and Disease. Philadelphia, Lippincott Williams and  |
| 42<br>43       | 411 | Wilkins, 2006.                                                                        |
| 44<br>45       | 412 | 13. Breilmann J, Pons-Kuhnemann J, Brunner C et al. Effect of antioxidant vitamins    |
| 46<br>47       | 413 | on the plasma homocysteine level in a free-living elderly population. Ann Nutr Metab  |
| 48<br>49       | 414 | 2010;57:177-182.                                                                      |
| 50<br>51       | 415 | 14. Konstantinova SV, Vollset SE, Berstad P et al. Dietary predictors of plasma total |
| 52<br>53       | 416 | homocysteine in the Hordaland Homocysteine Study. Br J Nutr 2007;98:201-210.          |
| 54<br>55       | 417 | 15. Racek J, Rusnáková H, Trefil L et al. The influence of folate and antioxidants on |
| 56<br>57       | 418 | homocysteine levels and oxidative stress in patients with hyperlipidemia and          |
| 58             | 419 | hyperhomocysteinemia. Physiol Res 2005;54:87-95.                                      |
| 59<br>60       | 420 | 16. Zhao L, Ma G, Piao J et al. [Scheme of the 2010-2012 Chinese nutrition and        |
|                |     |                                                                                       |

| 2        |     |                                                                                        |
|----------|-----|----------------------------------------------------------------------------------------|
| 3<br>4   | 421 | health surveillance]. Zhonghua Yu Fang Yi Xue Za Zhi 2016;50:204-207.                  |
| 5<br>6   | 422 | 17. Yang Y, Wang G, Pang X (2002). China Food Cmposition. Peking: Peking               |
| 7<br>8   | 423 | University Medical Center Press.                                                       |
| 9<br>10  | 424 | 18. Yang Y (2004). China Food Composition. Peiking:Peking University Medical           |
| 11<br>12 | 425 | Press.                                                                                 |
| 13<br>14 | 426 | 19. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic        |
| 15<br>16 | 427 | analyses. Am J Epidemiol 1986;124:17-27.                                               |
| 17<br>18 | 428 | 20. Spence JD. Homocysteine lowering for stroke prevention: Unravelling the            |
| 19<br>20 | 429 | complexity of the evidence. Int J Stroke 2016;11:744-747.                              |
| 21<br>22 | 430 | 21. Huo Y, Li J, Qin X et al. Efficacy of folic acid therapy in primary prevention of  |
| 23<br>24 | 431 | stroke among adults with hypertension in China: the CSPPT randomized clinical trial.   |
| 25<br>26 | 432 | <i>JAMA</i> 2015;313:1325-1335.                                                        |
| 27<br>28 | 433 | 22. Brude IR, Finstad HS, Seljeflot I et al. Plasma homocysteine concentration related |
| 29<br>30 | 434 | to diet, endothelial function and mononuclear cell gene expression among male          |
| 31<br>32 | 435 | hyperlipidaemic smokers. Eur J Clin Invest 1999;29:100-108.                            |
| 33<br>34 | 436 | 23. Floegel A, Chung SJ, von Ruesten A et al. Antioxidant intake from diet and         |
| 35       | 437 | supplements and elevated serum C-reactive protein and plasma homocysteine              |
| 36<br>37 | 438 | concentrations in US adults: a cross-sectional study. Public Health Nutr               |
| 38<br>39 | 439 | 2011;14:2055-2064.                                                                     |
| 40<br>41 | 440 | 24. Olsen T, Vinknes KJ, Svingen GFT et al. The risk association of plasma total       |
| 42<br>43 | 441 | homocysteine with acute myocardial infarction is modified by serum vitamin A. $Eur J$  |
| 44<br>45 | 442 | Prev Cardiol 2018;25:1612-1620.                                                        |
| 46<br>47 | 443 | 25. Lucock M, Yates Z, Boyd L et al. Vitamin C-related nutrient-nutrient and           |
| 48<br>49 | 444 | nutrient-gene interactions that modify folate status. Eur J Nutr 2013;52:569-582.      |
| 50<br>51 | 445 | 26. Magana AA, Reed RL, Koluda R et al. Vitamin C Activates the Folate-Mediated        |
| 52<br>53 | 446 | One-Carbon Cycle in C2C12 Myoblasts. Antioxidants 2020;9:217.                          |
| 54<br>55 | 447 | 27. Horie S, Kizaki K, Ishii H et al. Retinoic acid stimulates expression of           |
| 56<br>57 | 448 | thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial        |
| 58<br>59 | 449 | cells. Differences between up-regulation of thrombomodulin by retinoic acid and        |
| 60       | 450 | cyclic AMP. Biochem 1992;281:149-154.                                                  |

| 2              |     |                                                                                        |
|----------------|-----|----------------------------------------------------------------------------------------|
| 3<br>4         | 451 | 28. Swamidas GP, Basaraba RJ, Baybutt RC. Dietary retinol inhibits inflammatory        |
| 5<br>6         | 452 | responses of rats treated with monocrotaline. J Nutr 1999;129:1285-1290.               |
| 7<br>8         | 453 | 29. Brazionis L, Walker KZ, Itsiopoulos C et al. Plasma retinol: a novel marker for    |
| 9<br>10        | 454 | cardiovascular disease mortality in Australian adults. Nutr Metab Cardiovasc Dis       |
| 11<br>12       | 455 | 2012;22:914-920.                                                                       |
| 13<br>14       | 456 | 30. Espe KM, Raila J, Henze A et al. Impact of vitamin A on clinical outcomes in       |
| 15<br>16       | 457 | haemodialysis patients. Nephrol Dial Transplant 2011;26:4054-4061.                     |
| 17<br>18       | 458 | 31. Yu Y, Zhang H, Song Y et al. Plasma retinol and the risk of first stroke in        |
| 19<br>20       | 459 | hypertensive adults: a nested case-control study. Am J Clin Nutr 2019;109:449-456.     |
| 21<br>22       | 460 | 32. Puddu PE. Serum vitamin A, total homocysteine and acute myocardial infarction:     |
| 22<br>23<br>24 | 461 | is there a causal association? Eur J Prev Cardiol 2018;25:1607-1611.                   |
| 24<br>25<br>26 | 462 | 33. Momin M, Jia J, Fan F et al. Relationship between plasma homocysteine level and    |
| 27             | 463 | lipid profiles in a community-based Chinese population. Lipids Health Dis              |
| 28<br>29       | 464 | 2017;16:54.                                                                            |
| 30<br>31       | 465 | 34. da Silva R, dos Santos-Valente EC, Burim Scomparini F et al. The relationship      |
| 32<br>33       | 466 | between nutritional status, vitamin A and zinc levels and oxidative stress in patients |
| 34<br>35       | 467 | with ataxia-telangiectasia. Allergol Immunopathol (Madr) 2014;42:329-335.              |
| 36<br>37       | 468 | 35. Ferreira CA, de Souza FI, Melges AP et al. Retinol, beta-carotene, oxidative       |
| 38<br>39       | 469 | stress, and metabolic syndrome components in obese asthmatic children. Pediatr         |
| 40<br>41       | 470 | Allergy Immunol 2014;25:292-294.                                                       |
| 42<br>43       | 471 |                                                                                        |
| 44<br>45       | 472 |                                                                                        |
| 46<br>47       | 473 |                                                                                        |
| 48<br>49       | 474 |                                                                                        |
| 50<br>51       | 475 |                                                                                        |
| 52<br>53       | 476 |                                                                                        |
| 54<br>55       | 477 |                                                                                        |
| 56<br>57       | 478 |                                                                                        |
| 58<br>59       | 479 |                                                                                        |
| 60             | 480 |                                                                                        |
|                |     |                                                                                        |

| 481 |  |
|-----|--|
|-----|--|

Table 1 Basic characteristics of the participants #

|                            | 1 1              |                   |                  |         |
|----------------------------|------------------|-------------------|------------------|---------|
|                            | Total (n=1465)   | HHcy (n=469)      | non-HHcy (n=996) | Р       |
| Age (years)                | $62.0 \pm 10.7$  | $64.4 \pm 11.4$   | $60.9 \pm 10.2$  | < 0.001 |
| Gender (Male, n (%))       | 729 (49.8)       | 339 (72.3)        | 390 (39.2)       | < 0.001 |
| BMI (kg/m <sup>2</sup> )   | $24.9 \pm 3.5$   | $25.0 \pm 3.4$    | $24.8 \pm 3.6$   | 0.252   |
| WC (cm)                    | $87.3 \pm 9.5$   | $88.7 \pm 10.0$   | $86.7 \pm 9.2$   | < 0.001 |
| SBP (mmHg)                 | 132.9 ± 13.5     | $133.9 \pm 14.0$  | $132.4 \pm 13.3$ | 0.046   |
| DBP (mmHg)                 | 80.4 ± 10.6      | $81.2 \pm 11.4$   | $80.0\pm10.2$    | 0.050   |
| tHcy (μmol/L)              | $14.63 \pm 9.06$ | $21.57 \pm 13.35$ | $11.37 \pm 1.89$ | < 0.001 |
| FPG (mmol/L)               | 5.42 ± 1.54      | $5.29 \pm 1.35$   | $5.49 \pm 1.62$  | 0.024   |
| TC (mmol/L)                | $5.25 \pm 1.64$  | $5.20\pm2.49$     | $5.27 \pm 1.02$  | 0.414   |
| TG (mmol/L)                | 1.95 ± 1.39      | $2.01 \pm 1.34$   | $1.92 \pm 1.41$  | 0.254   |
| LDL-C (mmol/L)             | $3.19 \pm 0.87$  | 3.14 ± 0.89       | $3.21\pm0.87$    | 0.133   |
| Uric acid (µmol/L)         | $380 \pm 97$     | $420 \pm 103$     | $362 \pm 89$     | < 0.001 |
| Creatinine (µmol/L)        | $83 \pm 44$      | $98 \pm 67$       | $76 \pm 25$      | < 0.001 |
| Sedentary time <3h/d (n (  | %)) 667 (45.5)   | 211 (45.0)        | 456 (45.8)       | 0.776   |
| History of disease (n (%)) |                  |                   |                  |         |
| Coronary heart disease     | 178 (12.2)       | 72 (15.4)         | 106 (10.6)       | 0.010   |
| Cerebral hemorrhage        | 15 (1.0)         | 11 (2.3)          | 4 (0.4)          | < 0.001 |
| Cerebral thrombosis        | 61 (4.2)         | 34 (7.2)          | 27 (2.7)         | < 0.001 |
| Diabetes                   | 240 (16.4)       | 82 (17.5)         | 158 (15.9)       | 0.434   |
| Kidney disease             | 57 (3.9)         | 34 (7.2)          | 23 (2.3)         | < 0.001 |
| Medications use (n (%))    |                  |                   |                  |         |
| Antihypertensive           | 1146 (78.2)      | 380 (81.0)        | 766 (76.9)       | 0.075   |
| Antihyperglycemic          | 21(1.4)          | 8 (1.7)           | 13 (1.3)         | 0.547   |
| Lipid-lowering             | 21 (1.4)         | 5 (1.1)           | 16 (1.6)         | 0.417   |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HHcy, hyperhomocysteinemia; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; tHcy, total homocysteine; WC, waist circumference. <sup>#</sup>: Values are mean  $\pm$  SD or median (interquartile range) or number (percentage).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1              | 18 |
|----------------|----|
| 2<br>3         |    |
| 4<br>5         |    |
| 6              |    |
| 7              |    |
| 8<br>9         |    |
| 10             |    |
| 11<br>12       |    |
| 13             |    |
| 14             |    |
| 15<br>16       |    |
| 17             |    |
| 18<br>19       |    |
| 20             |    |
| 21             |    |
| 22<br>23       |    |
| 23<br>24       |    |
| 25<br>26       |    |
| 27<br>28       |    |
| 28             |    |
| 29<br>30       |    |
| 31             |    |
| 32<br>33       |    |
| 34             |    |
| 35             |    |
| 35<br>36<br>37 |    |
| 38             |    |
| 39<br>40       |    |
| 41             |    |
| 42<br>43       |    |
| 44             |    |
| 45             |    |
| 46<br>47       |    |
| 48             |    |
| 49<br>50       |    |
| 51             |    |
| 52             |    |
| 53<br>54       |    |
| 55             |    |
| 56<br>57       |    |
| 58             |    |
| 59<br>60       |    |
| 00             |    |

| <b>Table 2</b> The dietary intake o | f food and nutrients of the participar | nts <sup>#</sup>     | bmjopen-2020-045732 on           |        |
|-------------------------------------|----------------------------------------|----------------------|----------------------------------|--------|
| Dietary intake (/d)                 | Total (n=1465)                         | HHcy (n=469)         | noneHHcy (n=996)                 | Р      |
| Energy (kcal)                       | 1488 (1172, 1899)                      | 1508 (1202-1874)     | 1473 (1150-1913)                 | 0.460  |
| Vegetable (g)                       | 383.7 (240.3, 578.0)                   | 377.7 (227.2, 580.0) | 3882 (252.5, 577.1)              | 0.510  |
| Fruit (g)                           | 79.2 (39.7, 139.5)                     | 75.4 (33.2, 127.5)   | 813 (42.1, 144.6)                | 0.03   |
| Protein (g)                         | 43.2 (35.4, 53.5)                      | 41.7 (33.9-50.9)     | 4422 (36.2-54.8)                 | < 0.00 |
| Fat (g)                             | 54.3 (42.2, 65.6)                      | 52.5 (41.6-64.3)     | 55 <u>9</u> 1 (42.6-65.9)        | 0.05   |
| Carbohydrate (g)                    | 206.6 (179.4, 234.4)                   | 212.6 (186.6-237.7)  | 204 (176.6-231.7)                | < 0.00 |
| Cholesterol (mg)                    | 232.7 (152.3, 325.8)                   | 228.3 (154.5, 313.7) | 236 <sup>3</sup> (147.3, 333.6)  | 0.22   |
| Fibre (g)                           | 11.2 (8.2, 15.2)                       | 10.6 (7.9-14.8)      | 1.4 (8.4-15.2)                   | 0.02   |
| Vitamin C (mg)                      | 153.5 (91.2, 240.9)                    | 138.6 (85.6-231.6)   | 1595 (93.6-242.7)                | 0.072  |
| Vitamin E (mg)                      | 25.0 (19.3-31.9)                       | 24.1 (19.0-31.5)     | $25\frac{9}{24}$ (19.5-32.2)     | 0.154  |
| Carotenes (mg)                      | 3.3 (1.8, 5.6)                         | 3.1 (1.7-5.5)        |                                  | 0.22   |
| Retinol (µg)                        | 138.3 (78.0, 283.6)                    | 110.9 (62.2-239.3)   | 15150 (83.3-317.6)               | < 0.00 |
| Lutein (mg)                         | 9.5 (5.2, 14.8)                        | 9.0 (5.1-14.2)       | 9<br>9<br>9<br>9<br>6 (5.3-15.0) | 0.26   |
| Folic acid (µg)                     | 170.4 (109.4, 263.5)                   | 160.0 (99.9-246.2)   | 176 1 (112.8-266.9)              | 0.00   |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                | Total                 | HHcy (n=469)        | noneHHcy (n=996)                                         | <i>P</i> |
|--------------------------------|-----------------------|---------------------|----------------------------------------------------------|----------|
| Vitamin $B_6$ (mg)             | 0.3 (0.2, 0.5)        | 0.3 (0.2-0.5)       | $\frac{8}{3}$ .3 (0.2-0.5)<br>$\frac{3}{2}$ .0 (1.8-4.9) | 0.23     |
| Vitamin $B_{12}(\mu g)$        | 2.7 (1.6, 4.6)        | 2.3 (1.4-4.0)       | 3.0 (1.8-4.9)                                            | < 0.00   |
| Saturated fatty acid (g)       | 10.6 (8.1-13.2)       | 10.2 (7.8-12.9)     | 198 (8.3-13.3)                                           | 0.01     |
| Monounsaturated fatty acid (g) | 12.7 (9.8-16.3)       | 12.4 (9.7-16.1)     | 12.9 (9.9-16.3)                                          | 0.11     |
| Polyunsaturated fatty acid (g) | 20.0 (14.9-26.4)      | 19.7 (14.9-26.0)    | 2022 (15.0-26.7)                                         | 0.292    |
| Selenium (µg)                  | 31.3 (23.2, 41.9)     | 28.6 (21.0-38.8)    | 3255 (24.5-43.7)                                         | <0.00    |
| Magnesium (mg)                 | 216.1 ( 173.3- 269.2) | 205.8 (167.7-261.5) | 221 (176.3-271.6)                                        | 0.01     |
| Zinc (mg)                      | 7.0 ( 6.0- 8.3)       | 6.8 (5.9-7.9)       | <u>3</u> .1 (6.1-8.5)                                    | <0.00    |
| Iron (mg)                      | 16.6 (12.0-23.4)      | 16.5 (11.8-23.1)    | 166 (12.1-23.6)                                          | 0.29     |
| Supplement use (n (%))         | 302 (20.6)            | 80 (17.1)           | 9<br>≥222 (22.3)                                         | 0.02     |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 bmjopen-2020-q4

| nong the middle-aged and older h     | Q1         | Q2                | Q3                | e Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $P_{\rm for trend$ |
|--------------------------------------|------------|-------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Vitamin C (mg/d)                     | < 91.2     | 91.2-153.5        | 153.6-240.9       | $\begin{array}{c c} & & & \\ \hline \\ \hline$ | I for tren         |
|                                      |            |                   |                   | $\sim 240.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| Cases (%)                            | 132 (36.1) | 122 (33.3)        | 104 (28.4)        | <u>n</u> 111 (30.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| Age-, sex- and BMI- adjusted #       | Ref.       | 0.92 (0.66, 1.27) | 0.64 (0.46, 0.90) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.048              |
| Multivariable-adjusted <sup>\$</sup> | Ref.       | 0.89 (0.62, 1.28) | 0.53 (0.34, 0.81) | 0.46 (0.24, 0.86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.007              |
| Multivariable-adjusted *             | Ref.       | 0.87 (0.60, 1.26) | 0.53 (0.34, 0.82) | 0.43 (0.23, 0.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005              |
| Vitamin E (mg/d)                     | < 19.3     | 19.3-25.0         | 25.1-31.9         | $\geq 31.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| Cases (%)                            | 122 (33.6) | 126 (34.2)        | 113 (30.9)        | $\begin{array}{l} \begin{array}{l} & \begin{array}{l} 0.43 \ (0.23, \ 0.82) \\ & \geq 31.9 \\ & \begin{array}{l} 108 \ (29.3) \\ & \begin{array}{l} 0.95 \ (0.68, \ 1.33) \end{array} \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Age-, sex- and BMI- adjusted #       | Ref.       | 1.10 (0.79, 1.53) | 0.96 (0.69, 1.34) | 0.95 (0.68, 1.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.618              |
| Multivariable-adjusted §             | Ref.       | 1.31 (0.92, 1.88) | 1.13 (0.76, 1.69) | on<br>→ 1.18 (0.70, 1.99)<br>1.08 (0.64, 1.83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.670              |
| Multivariable-adjusted *             | Ref.       | 1.26 (0.87, 1.81) | 1.05 (0.70, 1.58) | <u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u><br><u>;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.946              |
| Carotenes (mg/d)                     | < 1.78     | 1.78-3.30         | 3.31-5.61         | $\geq 5.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| Cases (%)                            | 118 (32.7) | 136 (37.0)        | 99 (26.8)         | $\geq 5.61$<br>by $116 (31.6)$<br>= 0.93 (0.67, 1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Age-, sex- and BMI- adjusted #       | Ref.       | 1.22 (0.88, 1.69) | 0.72 (0.51, 1.01) | <sup>8</sup> .<br>0.93 (0.67, 1.30) و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.254              |
|                                      |            |                   |                   | notected by copyright.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n next pag         |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                      |                      | BMJ Open          |                   | bmjopen                                                      |                    |
|--------------------------------------|----------------------|-------------------|-------------------|--------------------------------------------------------------|--------------------|
|                                      |                      |                   |                   | n-2020-                                                      |                    |
| Table 3 (continued)                  |                      |                   |                   | 045732 on 1                                                  |                    |
|                                      | Q1                   | Q2                | Q3                | Octo Q4                                                      | $P_{\rm for trend$ |
| Multivariable-adjusted <sup>\$</sup> | Ref.                 | 1.17 (0.82, 1.68) | 0.68 (0.45, 1.03) | 0.70 (0.39, 1.27)                                            | 0.103              |
| Multivariable-adjusted *             | Ref.                 | 1.19 (0.83, 1.71) | 0.71 (0.47, 1.08) | $\overset{\aleph}{\overset{\circ}_{\Box}}$ 0.73 (0.40, 1.33) | 0.136              |
| Retinol (µg/d)                       | < 78.0               | 78.0-138.3        | 138.4-283.6       | $\geq 283.6$<br>ed 98 (26.7)                                 |                    |
| Cases (%)                            | 147 (40.2)           | 133 (36.3)        | 91 (24.9)         | ade 98 (26.7)                                                |                    |
| Age-, sex- and BMI- adjuste          | ed <sup>#</sup> Ref. | 0.84 (0.61, 1.16) | 0.50 (0.35, 0.70) | 0.55 (0.40, 0.77)                                            | 0.003              |
| Multivariable-adjusted <sup>\$</sup> | Ref.                 | 0.80 (0.56, 1.14) | 0.49 (0.32, 0.74) | 0.65 (0.41, 1.05)                                            | 0.536              |
| Multivariable-adjusted *             | Ref.                 | 0.81 (0.56, 1.15) | 0.50 (0.33, 0.76) | g 0.65 (0.40, 1.05)                                          | 0.488              |
| Lutein (mg/d)                        | < 5.22               | 5.22-9.48         | 9.49-14.82        | $\geq 14.82$<br>$\approx 112 (30.4)$                         |                    |
| Cases (%)                            | 123 (33.7)           | 120 (32.8)        | 114 (31.1)        |                                                              |                    |
| Age-, sex- and BMI- adjuste          | ed <sup>#</sup> Ref. | 0.98 (0.71, 1.37) | 0.84 (0.61, 1.17) | 0.87 (0.62, 1.22)                                            | 0.331              |
| Multivariable-adjusted <sup>\$</sup> | Ref.                 | 1.05 (0.73, 1.51) | 0.88 (0.58, 1.34) | ق 0.82 (0.44, 1.51)                                          | 0.438              |
| Multivariable-adjusted *             | Ref.                 | 1.01 (0.70, 1.46) | 0.88 (0.58, 1.34) | <sup>8</sup> 0.78 (0.42, 1.46)                               | 0.392              |

BMI, body mass index; FPG, fasting plasma glucose; LDL-C, low-density lipoprotein cholesterol; TC, total Enolesterol; TG, triglyceride

#: Adjusted for age, sex ('male' as the reference), BMI.
§: Adjusted for variables in Model # and further adjusted for sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the</li> reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin B<sub>6</sub> and vitamin B<sub>12</sub>, saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine. ed by copyright.

bmjopen-2020-045732

s.sted for the hs antihyperglycaemic dr. \*: Adjusted for variables in Model \$ and further adjusted for the history of cardiovascular events and kidney disease('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference), and lipid-lowering drug use ('no' as the reference). ctober 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

 482 Figure Legends:

Fig. 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d'as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin B<sub>6</sub> and vitamin B<sub>12</sub>, saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, the history of cardiovascular events and kidney disease ('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference), and lipid-lowering drug use ('no' as the reference). 

Fig. 2 ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age, sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin B6 and vitamin B12, saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, the history of cardiovascular events and kidney disease ('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference), and lipid-lowering drug use ('no' as the reference). 



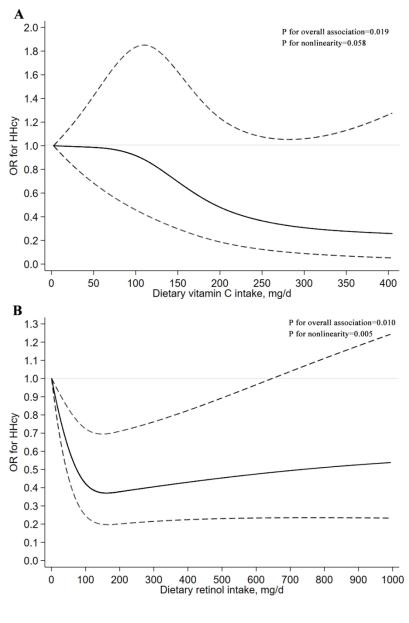
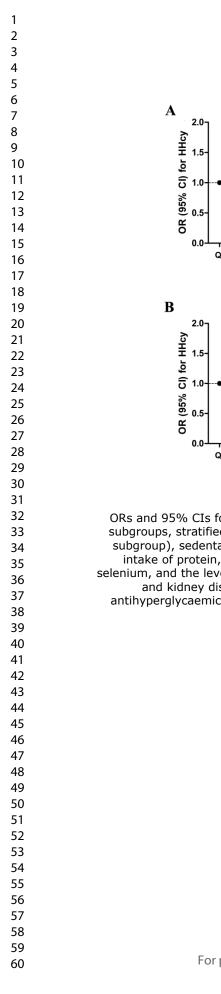
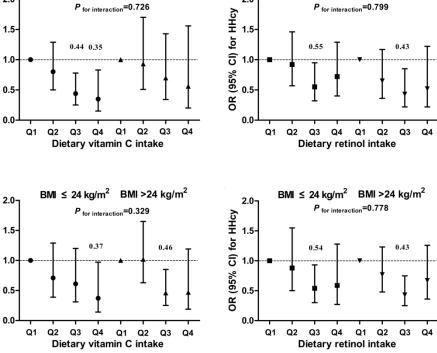



Figure 1

Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin B6 and vitamin B12, saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, the history of cardiovascular events and kidney disease ('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

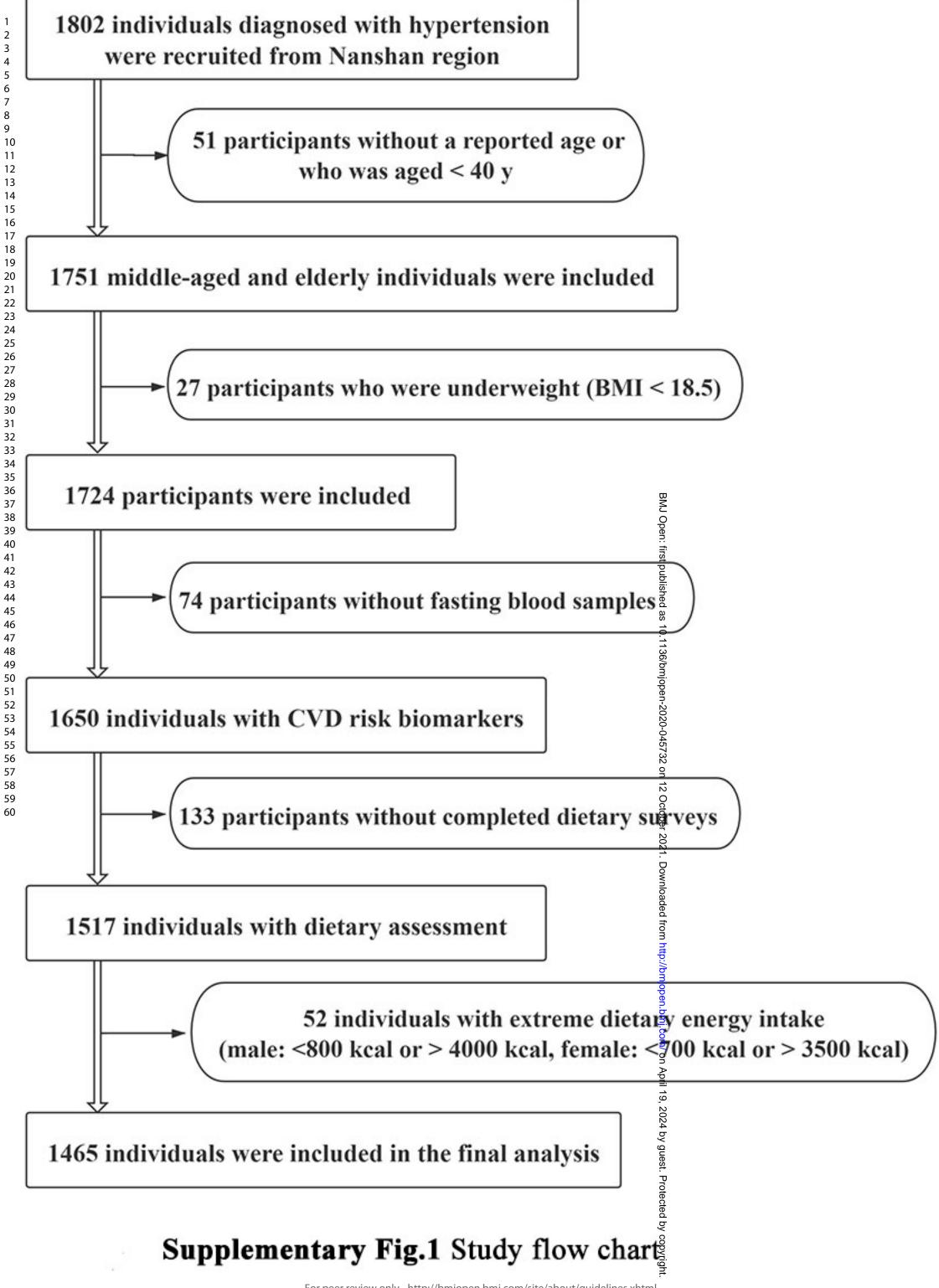

2.0


Female

Male

Female

Male








ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age, sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin B6 and vitamin B12, saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, the history of cardiovascular events and kidney disease ('no' as the reference), antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference).

127x96mm (600 x 600 DPI)



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ** Open

**Supplementary Table 1** Sensitivity analyses of ORs (95% CIs) of antioxidant vitamins intake for hyperhomocysteinemia prevalence in multivariable-adjusted model among the patients with hypertension <sup>#</sup>

|                 | Q1                                        | Q2                | Q3                | Q4                | P for trend |  |  |
|-----------------|-------------------------------------------|-------------------|-------------------|-------------------|-------------|--|--|
| Without cardiov | Without cardiovascular events (n=1245)    |                   |                   |                   |             |  |  |
| Vitamin C       | 1.00 (Ref.)                               | 0.93 (0.62, 1.40) | 0.55 (0.34, 0.89) | 0.40 (0.19, 0.82) | 0.005       |  |  |
| Vitamin E       | 1.00 (Ref.)                               | 1.16 (0.78, 1.72) | 0.97 (0.62, 1.52) | 0.93 (0.53, 1.64) | 0.668       |  |  |
| Carotenes       | 1.00 (Ref.)                               | 1.23 (0.82, 1.85) | 0.69 (0.43, 1.09) | 0.69 (0.36, 1.34) | 0.115       |  |  |
| Retinol         | 1.00 (Ref.)                               | 0.95 (0.64, 1.42) | 0.58 (0.37, 0.92) | 0.72 (0.43, 1.23) | 0.518       |  |  |
| Lutein          | 1.00 (Ref.)                               | 1.08 (0.72, 1.62) | 0.83 (0.52, 1.31) | 0.68 (0.34, 1.36) | 0.208       |  |  |
| Without tHcy-lo | Without tHcy-lowering drug-using (n=1360) |                   |                   |                   |             |  |  |
| Vitamin C       | 1.00 (Ref.)                               | 0.92 (0.61, 1.37) | 0.54 (0.33, 0.88) | 0.50 (0.24, 0.97) | 0.032       |  |  |
| Vitamin E       | 1.00 (Ref.)                               | 1.25 (0.83, 1.87) | 1.13 (0.72, 1.78) | 1.23 (0.68, 2.21) | 0.585       |  |  |
| Carotenes       | 1.00 (Ref.)                               | 1.24 (0.83, 1.85) | 0.74 (0.46, 1.19) | 0.67 (0.34, 1.34) | 0.122       |  |  |
| Retinol         | 1.00 (Ref.)                               | 0.79 (0.53, 1.18) | 0.50 (0.32, 0.80) | 0.67 (0.40, 1.13) | 0.614       |  |  |
| Lutein          | 1.00 (Ref.)                               | 0.95 (0.63, 1.42) | 0.86 (0.53, 1.37) | 0.71 (0.35, 1.45) | 0.338       |  |  |

BMI, body mass index; FPG, fasting plasma glucose; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride

<sup>#</sup>: Adjusted for age, sex, BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of protein, fat, cholesterol, fiber, folic acid, vitamin  $B_6$  and vitamin  $B_{12}$ , saturated fatty acid, selenium, and the levels of TC, TG, LDL-C, FPG, uric acid and creatinine, and the history of kidney disease, antihypertensive drug use ('no' as the reference), antihyperglycaemic drug use ('no' as the reference), lipid-lowering drug use ('no' as the reference).

|                              | BMJ Open 30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |  |
|------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                              | ST          | ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| Section/Topic                | Item<br>#   | Recommendation 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reported on page # |  |
| Title and abstract           | 1           | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-2                |  |
|                              |             | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                  |  |
| Introduction                 | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |  |
| Background/rationale         | 2           | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                  |  |
| Objectives                   | 3           | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                  |  |
| Methods                      | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |  |
| Study design                 | 4           | Present key elements of study design early in the paper $\vec{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                  |  |
| Setting                      | 5           | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                  |  |
| Participants                 | 6           | ( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection of participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                  |  |
| Variables                    | 7           | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-5                |  |
| Data sources/<br>measurement | 8*          | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                  |  |
| Bias                         | 9           | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                  |  |
| Study size                   | 10          | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                  |  |
| Quantitative variables       | 11          | Explain how quantitative variables were handled in the analyses. If applicable, describe which groutings were chosen and why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6-7                |  |
| Statistical methods          | 12          | (a) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-7                |  |
|                              |             | (b) Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6-7                |  |
|                              |             | ្រុក in the second sec | 6-7                |  |
|                              |             | (d) If applicable, describe analytical methods taking account of sampling strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-7                |  |
|                              |             | (e) Describe any sensitivity analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-7                |  |
| Results                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |  |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 bmjopen-202

copyright.

|                   |     | 220                                                                                                                                                                                              |    |
|-------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 7  |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                                             |    |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                                               | 4  |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders                                                         | 7  |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest 8                                                                                                            | 7  |
| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                                             | 7  |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence                                                                          | 8  |
|                   |     | interval). Make clear which confounders were adjusted for and why they were included                                                                                                             |    |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                        | 8  |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time eriod                                                                                  | 8  |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                   | 8  |
| Discussion        |     | tp://                                                                                                                                                                                            |    |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                         | 9  |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias                                       | 12 |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence                       |    |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                            | 12 |
| Other information |     |                                                                                                                                                                                                  |    |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on                                                                       | 12 |
|                   |     | which the present article is based                                                                                                                                                               |    |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinebrg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.sbooksteent.org.

## Association between dietary antioxidant vitamins intake and homocysteine levels in middle-aged and older adults with hypertension: a cross-sectional study

| Journal:                             | BM1 Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manuscript ID                        | bmjopen-2020-045732.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date Submitted by the Author:        | 19-Apr-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complete List of Authors:            | Peng, Xiaolin; Nanshan Centre for Chronic Disease Control<br>Gao, Qin; Huazhong University of Science and Technology Tongji Medical<br>College; Jining Medical College<br>Zhou, Juan; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,<br>Ma, Jianping; Nanshan Centre for Chronic Disease Control<br>Zhao, Dan; Shenzhen Nanshan Centre for Chronic Disease Control<br>Hao, Liping; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,; Huazhong University of<br>Science and Technology Tongji Medical College, Hubei Key Laboratory<br>of Food Nutrition and Safety |
| <b>Primary Subject<br/>Heading</b> : | Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secondary Subject Heading:           | Epidemiology, Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Keywords:                            | Hypertension < CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

| 1  | Association between dietary antioxidant vitamins intake and homocysteine levels                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | in middle-aged and older adults with hypertension: a cross-sectional study                                                                                  |
| 3  | Peng Xiaolin <sup>#1</sup> , Gao Qin <sup>#2,3</sup> , Zhou Juan <sup>2</sup> , Ma Jianping <sup>1</sup> , Zhao Dan <sup>1</sup> , Hao Liping <sup>2*</sup> |
| 4  | <sup>#</sup> Peng Xiaolin and Gao Qin contributed equally to this paper.                                                                                    |
| 5  | <sup>1</sup> Shenzhen Nanshan Centre for Chronic Disease Control, Guangdong, People's                                                                       |
| 6  | Republic of China;                                                                                                                                          |
| 7  | <sup>2</sup> Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical                                                              |
| 8  | College, Huazhong University of Science and Technology, Wuhan, Hubei, People's                                                                              |
| 9  | Republic of China;                                                                                                                                          |
| 10 | <sup>3</sup> Department of Public Health, Jining Medical University, Jining, Shandong, People's                                                             |
| 11 | Republic of China.                                                                                                                                          |
| 12 | * Corresponding Author: Hao Liping, 13 Hangkong Road, Wuhan 430030, People's                                                                                |
| 3  | Republic of China. E-mail addresses: haolp@mails.tjmu.edu.cn, Tel.:+86-27-                                                                                  |
| 4  | 83650523, Fax: 0086-27-83693307                                                                                                                             |
| 15 |                                                                                                                                                             |
| 16 |                                                                                                                                                             |
| 17 |                                                                                                                                                             |
| 18 | 05050525, Fux. 0000 27 05055507                                                                                                                             |
| 19 |                                                                                                                                                             |
| 20 |                                                                                                                                                             |
| 21 |                                                                                                                                                             |
| 22 |                                                                                                                                                             |
| 23 |                                                                                                                                                             |
| 24 |                                                                                                                                                             |
| 25 |                                                                                                                                                             |
| 26 |                                                                                                                                                             |
| 27 |                                                                                                                                                             |
| 28 |                                                                                                                                                             |
| 29 |                                                                                                                                                             |
| 30 |                                                                                                                                                             |

| 31 | Abstract                                                                                                |
|----|---------------------------------------------------------------------------------------------------------|
| 32 | Objectives: Plasma total homocysteine (tHcy) has been implicated in the development                     |
| 33 | of cardiovascular disease. This study aimed to assess the relationship of dietary                       |
| 34 | antioxidant vitamins intake with tHcy levels in middle-aged and older adults with                       |
| 35 | hypertension.                                                                                           |
| 36 | Design: A cross-sectional study.                                                                        |
| 37 | Setting: The survey was conducted in the Nanshan district of Shenzhen.                                  |
| 38 | Participants: A total of 1465 middle-aged and older adults with hypertension were                       |
| 39 | included between July and September of 2013.                                                            |
| 40 | Measurements: Some dietary antioxidant vitamins (vitamin C (VC) and vitamin E (VE),                     |
| 41 | carotenes, retinol, lutein) intake was estimated using the food frequency questionnaire.                |
| 42 | Socio-demographic and potential covariates were evaluated through questionnaires,                       |
| 43 | anthropometric measurements and blood tests. The association between dietary intakes                    |
| 44 | of antioxidant vitamins and tHcy concentration were evaluated by multiple linear                        |
| 45 | regression analyses after In-transformed. Multiple logistic regression models were                      |
| 16 | further used to determine odds ratios (ORs) and 95% confidence intervals (CIs).                         |
| 17 | Results: The $\beta$ (95% CIs) of VC intake and tHcy was -0.050 (-0.084, -0.016). Compared              |
| 48 | with the lowest quartile in the fully adjusted model, the ORs (95% CIs) for HHcy levels                 |
| 49 | across quartiles of dietary VC intake were 0.82 (0.57, 1.16), 0.49 (0.33, 0.74) and 0.40                |
| 50 | $(0.22, 0.74)$ ( <i>P</i> for trend=0.001). The $\beta$ (95% CIs) of retinol intake and tHcy was -0.021 |
| 51 | (-0.041, -0.002), and the ORs (95% CIs) in the third quartile of retinol intake was 0.61                |
| 52 | (0.42, 0.86), while the effect for the highest quartile was not significant (P for                      |
| 53 | trend=0.951). No significant association was observed between dietary VE, carotenes                     |
| 54 | and lutein intake and HHcy.                                                                             |
| 55 | Conclusions: A linear inverse association between dietary VC intake and HHcy                            |
| 56 | prevalence, and an L-shaped association between dietary retinol intake and HHcy                         |
| 57 | prevalence were found in Chinese middle-aged and older adults with hypertension.                        |
| 58 |                                                                                                         |

59 Strengths and limitations of this study:

1. This study focused on the risk of hyperhomocysteinemia among middle-aged and

61 older adults with hypertension.

2. The threshold effect of retinol on HHcy was reported in this study.

3. Based on a cross-sectional study design, we could only draw a conclusion aboutcorrelation, not causation.

4. Although some confounding factors were included in the analysis, other potentialconfounders may exist.

# 68 Introduction

Increasing evidence has shown that elevated total homocysteine (tHcy) levels are associated with atherosclerotic cardiovascular diseases, stroke, peripheral arterial occlusive disease, and venous thrombosis (1, 2). Hyperhomocysteinemia (HHcy) (tHcy  $\geq$  15 µmol/L) (3), the result of a disturbed methionine metabolism, may lead to an enhancement of the adverse effects of risk factors like hypertension on human health (4). Hypertension is a major risk factor for cardiovascular and chronic kidney disease and a major cause of the global burden of disease and mortality (5, 6). It was estimated that the prevalence of hypertension in China in 2015 was 23.2%, and about 245 million Chinese adults had hypertension (7). Notably, the incidence of hypertension with hyperhomocysteinemia, or 'H-type hypertension', is significantly higher compared with other countries, representing 75% of Chinese patients with hypertension (8). Thus, the nutritional treatment focus on the attempt to reduce cardiovascular risk by reducing tHcy is important, particularly among patients with hypertension (9). 

Increasing age, male sex, genetic factors, consumption of alcohol or tobacco, kidney function and physical activity are some of the factors associated with tHcy levels (10). Epidemiological studies and clinical trials have indicated that folate, vitamin  $B_{12}$  and vitamin B<sub>6</sub> status, well-known predictors of tHcy, are important for tHcy metabolism. The latest meta-analysis demonstrated that a lower risk of stroke and overall cardiovascular disease (CVD) with folic acid supplementation, which may partly contribute to the decrease of tHcy levels (11). Folate, a key factor of tHcy metabolism, is very sensitive to free radicals (12-14). There are many studies have shown the antioxidant vitamins may influence the tHcy levels for the protective effect of folate 

#### **BMJ** Open

| 3              |
|----------------|
| 4              |
|                |
| 5              |
| 6              |
| /              |
| 8              |
| 9              |
| 10             |
| 11             |
| 12             |
| 13             |
| 14<br>15<br>16 |
| 15             |
| 16             |
| 16<br>17       |
| 17             |
| 18             |
| 19             |
| 20             |
| 21             |
| 22             |
| 22             |
| 23<br>24<br>25 |
| 25             |
| 25             |
| 26             |
| 27             |
| 27<br>28<br>29 |
| 27             |
| 30             |
| 31             |
| 32             |
| 33             |
| 34             |
| 35             |
|                |
| 36             |
| 37             |
| 38             |
| 39             |
| 40             |
| 41             |
| 42             |
| 43             |
| 44             |
| 45             |
|                |
| 46             |
| 47             |
| 48             |
| 49             |
| 50             |
| 51             |
| 52             |
| 53             |
| 54             |
| 55             |
|                |
| 56             |
| 57             |
| 58             |
| 59             |
| 60             |

from oxidation. Plasma levels or dietary intake of vitamin C (VC), vitamin E (VE) or  $\beta$ -carotene was inversely associated with tHcy levels, however, the findings were not consistent (15-17). Of note, the association has never been investigated among the hypertensive population.

Therefore, this large population-based study aimed to determine the association between the dietary intake of VC, VE, carotenes, retinol and lutein and the prevalence of HHcy in middle-aged and older men and women with hypertension.

98 Methods

99 Study design and population

This study consecutively recruited individuals with hypertension from 60 community 100 health service centres in the Nanshan district of Shenzhen from July to September of 101 102 2013 using a three-stage random sampling method. In the first stage, 8 sub-districts were selected in the Nanshan district; in the second stage, 6 to 8 communities were 103 selected from each sub-district using a simple random selection procedure; and in the 104 third stage, individuals with hypertension were selected from each community using 105 106 isometric random sampling. All subjects were of Chinese ethnicity and had lived in the Nanshan district of Shenzhen for over six months. The individuals were invited to visit 107 the CHSCs, where the researcher-administered questionnaire (including the validated 108 109 food frequency questionnaire (FFQ)) was conducted, the anthropometric measurements 110 were recorded, and fasting blood samples were collected.

We collected the data of 1802 participants, and excluded 51 participants whose age was not reported or who were aged  $\leq 40$  years and 27 underweight participants (body mass index (BMI) < 18.5 kg/m<sup>2</sup>), as well as participants for whom fasting blood samples (n = 74) and complete dietary surveys (n = 133) were not available. We also excluded participants with an extreme dietary energy intake (male: < 800 kcal or > 4000 kcal, female: < 700 kcal or > 3500 kcal) (n = 52). Finally, 1465 participants were included in the analysis (Supplementary Figure 1).

118 **Patient and public involvement** 

119 The development of standardised form is in response to the public health need of 120 preventing stroke among hypertension population. Patients and the public were not involved in the design of the study. The results of our study will be disseminatedthrough open access publications.

123 Dietary assessment

The researcher-administered FFQ consisted of 92 food items, which were assembled into 7 food groups: cereals, vegetables, fruits, beans, animal foods, nuts and beverages. The FFQ was based on the national FFQ used in the 2010-2012 China National Nutrition and Health Survey according to the Chinese Nutrition and Health Surveillance in 2010-2012 (18). Participants were asked to recall the consumption of each item during the past year, including the type of food, frequency and amount. Food weight maps were available for participants to estimate their portion size. Primary data obtained from FFQs were doubly entered into the EpiData 3.0 software by two trained technicians to verify accuracy. Dietary energy and other nutrients were calculated based on the Chinese Food Composition Database (19, 20). Dietary intake of VC, VE, carotenes (consist of  $\alpha$ -carotene,  $\beta$ -carotene and  $\beta$ -cryptoxanthin), and retinol were calculated based on the Chinese Food Composition Table 2002 (17). Dietary intake of lutein was calculated based on the food composition table of vegetables, fruits, eggs and nuts that contain large amounts of lutein, according to Chinese Dietary Reference Intakes 2013 (21). The intake of all dietary nutrients and carotenoids was adjusted for energy using the residual method (22). The second FFQ was conducted 3 months after the completion of the first FFQ among 108 participants. The intra-class correlation coefficients of two administrations of FFQ for nutrients of VC, VE, carotenes, retinol, lutein were 0.395, 0.477, 0.355, 0.551 and 0.350, and were all statistically significant. 

# Assessment of other covariates

Participants' socio-demographic characteristics (e.g., age and sex), lifestyle factors (e.g., sedentary time), history of chronic diseases, and medication and supplement use status were collected. Sedentary time consisted of time spent watching TV and sitting, which were combined into one variable with 2 categories, < 3 h/d and  $\ge 3$  h/d, based on a median sedentary time of 3 h/d. The history of cardiovascular events including coronary heart disease, cerebral haemorrhage, cerebral thrombosis, and the history of diabetes and kidney disease were recorded for each participant. The prescription use

#### **BMJ** Open

151 status was classified into 2 groups (yes or no) corresponding to whether the participant 152 was taking any type or quantity of drugs, including antihypertensive drugs, 153 antihyperglycaemic drugs, lipid-lowering drugs or tHcy-lowering drugs. Supplement 154 use consisted of vitamin A, retinol, B vitamins, VC, VE and folic acid was included.

155 Anthropometric measurements

Height and weight and waist circumference (WC) were measured by specialists. BMI was calculated as weight (kg) / height (m<sup>2</sup>). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured from the right arm of participants in a seated position after a sufficient rest period using a mercury sphygmomanometer in the morning. Blood pressure was measured manually and recorded as the average of three measurements.

162 Laboratory tests and outcomes

Fasting blood samples were collected from the participants at the community health service centres and transported under refrigerated conditions to a clinical laboratory of the Nanshan Centre for Chronic Disease Control within 2 hours. The blood specimens were collected in a 5-ml EDTA vacuum tube. Blood samples were collected through deposition and centrifugation for ten minutes at 3000 r/min at room temperature. The concentrations of plasma tHcy, fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), uric acid and creatinine were assessed on the day of blood collection using enzymatic methods via an auto-analyser (HITACHI 7080). The inter-day quality control assessments met the standard during the analysis. HHcy was defined as plasma tHcy concentration  $\geq 15 \,\mu mol/L$ . 

173 Statistical analysis

174 Demographic characteristics were described by means  $\pm$  SDs for normally distributed 175 data, medians (interquartile ranges, IQRs) for non-normally distributed data and 176 numbers (percentages) for categorical data. The differences between males and females 177 were compared using the *t* test for normally distributed variables, the Kruskal-Wallis 178 rank test for non-normally distributed variables, and the chi-square test for categorical 179 variables.

180 Both dietary intakes of antioxidant vitamins and tHcy concentration were ln-

transformed to improve normality before analyses and categorised into quartiles. The associations between dietary antioxidant vitamins intake and the prevalence of HHcy were analyzed using multiple logistic regression models, with the lowest quartile as the reference category. Confounding variables were selected based on the minimal sufficient adjustment recommended by the Directed Acyclic Graph, created in the online software Dagitty 3.0 (Supplementary Figure 2). The selected potential confounders included age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), the intakes of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). Linear trends were tested by creating a continuous variable for dietary antioxidant vitamins intake using the median value for each quartile. The sensitive analyses between dietary antioxidant vitamins intake and HHcy prevalence were applied among the population who had never suffered cardiovascular events, or among the population who never use the tHcy-lowering drug. 

To further explore the nonlinearity of the relationship between dietary antioxidant vitamins intake and high tHcy, we used restricted cubic spline with 4 knots at the 5<sup>th</sup>, 35<sup>th</sup>, 65<sup>th</sup> and 95<sup>th</sup> percentiles of dietary antioxidant vitamins intake.

To evaluate the modification effect by some potential prevalence factors of HHcy, including sex (male or female) and BMI (<24 or  $\geq 24$  kg/m<sup>2</sup>), stratified analyses were conducted by these potential factors and estimated *P* values for interaction terms.

All data were analyzed using the R Foundation version 3.1.2 and Empower X&Y Solutions Inc. Statistical significance was considered when P < 0.05 (two-sided).

**Results** 

In this cross-sectional study, 1465 participants (male: 729, female: 736) were included in the analysis, and the mean  $\pm$  SD of age and BMI was  $62.0 \pm 10.7$  years, and  $24.9 \pm 3.5$  kg/m<sup>2</sup>. The tHcy levels of the participants was  $14.63 \pm 9.06 \mu$ mol/L, and the number (percentage) of HHcy was 469 (32.0%). The participants with HHcy were older and more male, and have higher WC, SBP, tHcy, uric acid, creatinine, and higher percentages of history of cardiovascular events (including coronary heart disease, cerebral hemorrhage, cerebral thrombosis) and kidney disease, and have lower FPG

211 level (all P < 0.05) (**Table 1**).

The dietary intakes of nutrients were shown in **Table 2**. The median (IQR) of dietary antioxidant vitamins intake were as follows: VC 153.5 (91.2, 240.9) mg/d, VE 25.0 (19.3, 31.9) mg/d, carotenes 3.3 (1.8, 5.6) mg/d, retinol 138.3 (78.0, 283.6)  $\mu$ g/d, and lutein 9.5 (5.2, 14.8) mg/d. Among the participants with HHcy, the intake of carbohydrate was higher, and the intake of fruit, protein, fibre, retinol, folate, vitamin B<sub>12</sub>, saturated fatty acid, selenium, magnesium, zinc was lower, and the percentage of supplement use was lower (all *P* < 0.05).

The association between dietary antioxidant vitamins intake and tHcy levels are shown in Table 3. The inverse association between VC intake and tHcy concentration after ln-transformed in the fully adjusted model, and the  $\beta$  (95% CIs) was -0.050 (-0.084, -0.016), which was consistent with the logistic regression as categorical variables. In Model II, the significant association was found in the third and highest quartile of VC intake, and the ORs (95% CIs) were 0.49 (0.33, 0.74) and 0.40 (0.22, 0.74) ( $P_{\text{for trend}} = 0.001$ ). The retinol intake was also inversely associated with tHcy, as the  $\beta$  (95% CIs) was -0.021 (-0.041, -0.002). After adjusting for age, sex and BMI, the ORs (95% CIs) for HHcy prevalence across quartiles of retinol intake were 1.00, 0.84  $(0.61, 1.16), 0.50 (0.35, 0.70), and 0.55 (0.40, 0.77) (P_{\text{for trend}} = 0.003)$ . However, in Model II, the significant association was only found in the third quartile of retinol intake, and the ORs (95% CIs) was 0.61 (0.42, 0.86) ( $P_{\text{for trend}} = 0.951$ ). The non-significant association between dietary intake of VE, carotenes and lutein and HHcy prevalence was found. The results were similar in the sensitivity analyses that excluded participants with cardiovascular events or who use the tHcy-lowering drug (see Supplementary Table 1).

After fully adjusting for the potential confounders, the association between dietary antioxidant vitamins intake and the prevalence of HHcy were shown in **Figure.1**. From the cubic splines, we noted that the linear inverse trend of VC intake and HHcy prevalence (*P* for overall association=0.016, *P* for nonlinearity=0.055) and the Lshaped relationship of retinol intake and HHcy prevalence (*P* for overall association=0.011, *P* for nonlinearity=0.020), which were consistent with the results of

241 logistic regression analyses. The threshold analysis showed that the ORs (95% CIs) of 242 HHcy was 0.995 (0.991, 0.995) (P=0.005) when retinol intake was lower than 147.2 243  $\mu$ g/d and 1.000 (1.000, 1.001) (P=0.094) when retinol intake was more than 147.2  $\mu$ g/d, 244 and the *P* value of log-likelihood ratio was 0.003. The non-association between 245 carotenes, lutein and VE and HHcy was not shown.

In stratified analyses, the association between dietary VC and retinol intake and HHcy prevalence were not significantly modified by sex (male or female), BMI (<24 or  $\geq$ 24 kg/m<sup>2</sup>) (all *P* for interaction were >0.05) (Figure 2). Similar results of stratified analyses of carotenes, lutein and VE were not shown.

250 Discussion

 In this community-based cross-sectional study, we observed some of the antioxidant vitamins intakes were significantly correlated with the prevalence of HHcy. After adjusting potential confounders, a linear inverse association between VC intake and HHcy prevalence, and an L-shaped relationship between retinol intake and HHcy prevalence were found, which were not modified by sex or BMI. However, the nonsignificant effect of VE, carotenes and lutein on HHcy was detected.

Numerous studies have suggested that HHcy may be a modifiable risk factor for CVD, especially for stroke. In the past decades, there were many clinical trials aimed to show the effect of folate and vitamins  $B_{12}$  and  $B_6$  supplement on lowering the levels of tHcy, however, the negative results were found in most studies (23). The potential reason may be correlated with the harmful effect of unmetabolized excessive folate or the cyanide and thiocyanate from excessive cyanocobalamin. In China, where folate fortification has not been implemented, folic acid significantly reduced the risk of stroke was observed from the China Stroke Primary Prevention Trial (CSPPT) (24). Thus, appropriate B vitamins therapy is of great importance for lowering tHcy levels in stroke prevention. 

Notably, folate, which exists in blood and tissues mainly in a labile form, is very
sensitive to oxidative stress (12-14). In addition, methionine synthase and cystathionine
β-synthase (the key enzymes involved in methionine and homocysteine metabolism)
were strongly influenced by oxidative stress, which may be associated with dietary

Page 11 of 30

#### **BMJ** Open

antioxidant vitamins and Hcy levels (25, 26). In the past decades, several researches reported the potential association between plasma levels or intake of different antioxidant vitamins and tHcy levels (15, 16, 27-28). In 1999, Brude IR et al. observed the inverse association between plasma tHcy concentration and dietary intake of vegetables, vitamin C and  $\beta$ -carotene from 41 participants (27). In addition, dietary intake of retinol equivalents,  $\beta$ -carotene and VC were inversely correlated with plasma tHcy levels, after adjustment for dietary B-vitamins, but not after additional adjustment for plasma folate and vitamin  $B_{12}$  (16). What's more, the study focused on the effect of antioxidant vitamins on the plasma tHcy levels in a free-living elderly population found that plasma VC, rather than the intake and supplementation of VC, showed a negative association with tHcy in simple regression analysis, and also found that the plasma levels, as well as the intake and supplementation of vitamin E, and  $\beta$ -carotene were not associated with tHcy (15). Similarly, the cross-sectional NHANES 1999–2002 study found that dietary VC and VE intake were associated with a lower prevalence of elevated blood tHcy concentration, whereas no association between dietary carotenes intake and tHcy was detected (28).

287 Consistent with our findings, these studies have a common conclusion that VC intake 288 was inversely correlated with tHcy levels. Given the report of an interaction of VC and 289 folate (29), Magana AA *et al.* found the underlying molecular mechanisms that VC 290 activates the folate-mediated one-carbon cycle in C2C12 myoblasts (30). Thus, VC has 291 been explored as an attractive factor to increase circulating levels of folic acid and to 292 reduce Hcy levels.

We found an L-shaped association between dietary retinol intake and high tHcy prevalence, which meant that if the retinol intake was low, the risk of HHcy was decreased as retinol intake increased, but the risk was not changed when retinol intake reached certain level, which was more than 147.2  $\mu$ g/d among the participants in this study. The dietary intake of retinol equivalents was inversely correlated with plasma tHcy levels after adjustment for dietary B-vitamins (16). Retinol, a preformed vitamin A, plays an important role in vision, cellular differentiation, and proliferation, as well as the immune system regulation. In addition, there is increasing evidence indicates that 

retinol seems to inhibit thrombosis (31) and inflammation effects (32), which indicates retinol is emerging as a factor of interest to CVD. Brazionis L reported that plasma retinol was a novel marker for CVD mortality in Australian adults, with an inverse association between plasma retinol in the middle tertile and 5-year CVD mortality (33). Similarly, a strong association between low retinol and the risk of sudden cardiac death was examined (34). In addition, a nested case-control study showed a significant inverse association between plasma retinol and the risk of first stroke among Chinese hypertensive adults from the CSPPT (35), which may due to relatively low baseline retinol concentrations (median:  $67.5 \,\mu g/dL$ ). Besides, the interaction of retinol and tHcy on CVD risk was also reported. Yu Y (35) showed the inverse effect between plasma retinol and first stroke was stronger among the participants whose tHcy  $< 10 \mu mol/L$ than whose tHcy  $\geq$  10 µmol/L. Olsen T (36) found that the plasma tHcy was associated with acute myocardial infarction only in the upper Vit-A tertile, and the potential mechanisms may include inflammation and lipid metabolism, which may be partly interpreted with the high intake of retinol (1576  $\mu$ g RAE/d). 

In addition, the dietary source of retinol may contribute to the non-significant effect of retinol in the highest quartile in the fully adjusted model, as it is present in animalbased foods, particularly in liver and whole milk. In this study, we found the TG level was gradually increased with the increase of retinol (data not shown). High retinol intake may alter lipid metabolism by increasing TG level, which may impact the tHcy metabolism (37).

At present, a few studies demonstrate the complicated relationship between retinol, tHcy and CVD risk, but the underlying mechanism has not yet been clarified (38). The antioxidant activity of retinol may be a plausible mechanism that links the effect of retinol on tHcy levels, as retinol is essential for the maintenance of immune function and antioxidant defence (39, 40).

However, we found no relationship between HHcy prevalence and dietary intake of
VE. The aforementioned study has found significant inverse associations between
plasma tHcy and dietary intake of VE, but the effect was not significant after adjusting
B-vitamins intake, which was consistent with our finding (16). On the contrary, dietary

#### **BMJ** Open

331 VE (α-tocopherol) intake was associated with a lower risk of elevated blood tHcy
332 concentration among US adults (28).

Epidemiological studies have reported the positive role of carotenoids on human health. In this study, we focused on the effect of carotenes ( $\beta$ -carotene,  $\alpha$ -carotene and  $\beta$ -cryptoxanthin) and lutein on tHcy, however, the negative results were found. Many of the aforementioned studies reported the protective effect of  $\beta$ -carotene by lowering tHey concentration (16, 27), but the risk of tHey  $> 13 \mu mol/L$  was associated with the total carotene intake from diet plus supplement use, rather than the only intake from diet (28). The negative finding of lutein cannot be compared because of a lack of previously reported data. Thus, more prospective cohort studies and randomized double trials are warranted to indicate the relationship of antioxidant vitamins with HHcy risk. The strength of this study is the face-to-face researcher-administered FFQ survey. First, to our knowledge, this is the first study to demonstrate an association of dietary intake of antioxidant vitamins with HHcy prevalence that was conducted in both a male and female hypertensive population. Then, the researcher-administered face-to-face interview was considered by validated FFQ, which was designed to evaluate dietary intake and gave full consideration to eating habits and food nutrient composition in the Chinese population. 

Our study has several limitations. First, based on a cross-sectional study design, we cannot draw a conclusion about causality. Second, we adjusted the dietary intake of folate,  $B_{12}$ ,  $B_6$ , rather than plasma concentrations, which may could not eliminate confounding effect. Just like Konstantinova SV (16) reported, the inverse correlation of dietary retinol intake and plasma tHcy disappeared after adjustment for plasma folate and vitamin  $B_{12}$ . Then, we investigated the participants whether they took dietary supplements, while the detailed doses were not recorded. Therefore, we are not able to eliminate the possible association between supplement use and HHcy prevalence. Nevertheless, the study reported that there was some potential benefit from the antioxidant supplementation on plasma tHcy concentration (28), which could stabilize the positive results in this study. In addition, although some confounding factors were included in the analysis, other potential confounders may exist. For instance, the 

influence of smoking and drinking on HHcy was not assessed because of the lack ofinformation about the status of smoking and drinking.

In conclusion, we found dietary intake of VC and retinol was inversely associated with HHcy prevalence in middle-aged and older adults with hypertension after adjusting the potential confounders. Our findings have provided suggestive evidence of an inverse relationship between certain antioxidant intake and HHcy, which should be the impetus for longitudinal and random control trails to verify the relationship and direction and to elucidate the underlying mechanisms in the future.

#### 370 Acknowledgements

The authors are grateful to the individuals who participate in this study. We also thank the investigators, staff and participants from the community health service centres for their assistance.

374 Funding

The present study was jointly supported by the National Natural Science Foundation of China (No. 81573149), the Health and Family Commission of Shenzhen Municipality Funded Project (No. 201502017 and SZSJ2017001) and Nanshan District, Shenzhen Science and Technology Innovation Bureau funded projects (No. 2015064).

**Contributors** 

The authors' responsibilities were as follows: H.L. conceived and designed the study and critically revised the manuscript. P.X. and G.Q. analyzed the data and wrote the paper. Z.J. participated in the laboratory assay. M.J. and Z.D. collected the data and revised the manuscript. All authors read and approved the final version of the manuscript.

**Competing interests** 

386 No, there are no competing interests for any author.

**Ethics approval** 

388 The survey protocol was approved by the Ethics Committee of the Shenzhen 389 Nanshan Centre for Chronic Disease Control, and all participants provided written 390 informed consent before enrolment.

| 1 | 4  |
|---|----|
|   | 4  |
|   | т. |

| 391 | Data availability statement                                                            |
|-----|----------------------------------------------------------------------------------------|
| 392 | No data are available.                                                                 |
| 393 |                                                                                        |
| 394 | References                                                                             |
| 395 | 1. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a Risk Factor for         |
| 396 | Vascular Contributions to Cognitive Impairment and Dementia. Front Aging Neurosci      |
| 397 | 2018;10:350.                                                                           |
| 398 | 2. Saposnik G, Ray JG, Sheridan P et al. Homocysteine-lowering therapy and stroke      |
| 399 | risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke      |
| 400 | 2009;40:1365-1372.                                                                     |
| 401 | 3. Guo H, Chi J, Xing Y et al. Influence of folic acid on plasma homocysteine levels & |
| 402 | arterial endothelial function in patients with unstable angina. Indian J Med Res       |
| 403 | 2009;129:279-284.                                                                      |
| 404 | 4. Baszczuk A, Kopczyński Z. [Hyperhomocysteinemia in patients with cardiovascular     |
| 405 | disease]. Postepy Hig Med Dosw (Online) 2014;68:579-589.                               |
| 406 | 5. Forouzanfar MH, Liu P, Roth GA et al. Global Burden of Hypertension and Systolic    |
| 407 | Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA 2017;317:165-182.         |
| 408 | 6. Carey RM, Muntner P, Bosworth HB et al. Reprint of: Prevention and Control          |
| 409 | of Hypertension: JACC Health Promotion Series. J Am Coll Cardiol 2018;72:2996-         |
| 410 | 3011.                                                                                  |
| 411 | 7. Wang Z, Chen Z, Zhang L et al. Status of Hypertension in China: Results From the    |
| 412 | China Hypertension Survey, 2012-2015. Circulation 2018;137:2344-2356.                  |
| 413 | 8. Liu LS. [2010 Chinese guidelines for the management of hypertension]. Zhonghua      |
| 414 | <i>xin xue guan bing za zhi</i> 2011;39:579-615.                                       |
| 415 | 9. Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk  |
| 416 | Population Groups. Int J Mol Sci 2020;21:1421.                                         |
| 417 | 10. Shenoy V, Mehendale V, Prabhu K et al. Correlation of serum homocysteine levels    |
| 418 | with the severity of coronary artery disease. Indian J Clin Biochem 2014;29:339-344.   |
| 419 | 11. Li Y, Huang T, Zheng Y et al. Folic Acid Supplementation and the Risk of           |
| 420 | Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am         |
|     |                                                                                        |

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16<br>17 |  |
|          |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30<br>31 |  |
| 32       |  |
| 32<br>33 |  |
| 33<br>34 |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

1 2

421 *Heart Assoc* 2016;5:e003768.

422 12. Odin E, Carlsson G, Frosing R et al. Chemical stability and human
423 plasma pharmacokinetics of reduced folates. Cancer Invest 1998;16(7):447-455.13.13.
424 Lulock MD, Proestnall M, Daskalakis I et al. Nonenzymatic degradation and salvage
425 of dietary folate: physicochemical factors likely to influence bioavailibility. Biochem
426 Mol Med 1995;55(1):43-53.

- 427 14. Verlinde PH, Oey I, Hendrickx ME et al. L-ascorbic acid improves the serum
- folate response to an oraal dose of [6S]-5-methyltetrahydrofolic acid in healthy men.
  Eur J Clin Nutr 2008;62(10):1224-1230.

430 15. Breilmann J, Pons-Kuhnemann J, Brunner C et al. Effect of antioxidant vitamins on

- the plasma homocysteine level in a free-living elderly population. *Ann Nutr Metab*2010;57:177-182.
- 433 16. Konstantinova SV, Vollset SE, Berstad P et al. Dietary predictors of plasma total
  434 homocysteine in the Hordaland Homocysteine Study. *Br J Nutr* 2007;98:201-210.
- 435 17. Racek J, Rusnáková H, Trefil L et al. The influence of folate and antioxidants on
  436 homocysteine levels and oxidative stress in patients with hyperlipidemia and
  437 hyperhomocysteinemia. *Physiol Res* 2005;54:87-95.
- 438 18. Zhao L, Ma G, Piao J et al. [Scheme of the 2010-2012 Chinese nutrition and health
  439 surveillance]. *Zhonghua Yu Fang Yi Xue Za Zhi* 2016;50:204-207.
- 440 19. Yang Y, Wang G, Pang X. China Food Cmposition 2002 [M]. Beijing: Peking
  441 University Medical Center Press 2002.
- 442 20. Yang Y. China food composition 2004 [M]. Beijing: Peking University Medical
  443 Press 2004.
- 444 21. Chinese Society of Nutrition. Chinese dietary reference intakes 2013 [M]. Beijing:
  445 Science Press 2014.
- 446 22. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic
  447 analyses. *Am J Epidemiol* 1986;124:17-27.
- 448 23. Spence JD. Homocysteine lowering for stroke prevention: Unravelling the
  449 complexity of the evidence. *Int J Stroke* 2016;11:744-747.
  - 450 24. Huo Y, Li J, Qin X et al. Efficacy of folic acid therapy in primary prevention of

**BMJ** Open

| 2        |     |                                                                                         |
|----------|-----|-----------------------------------------------------------------------------------------|
| 3<br>4   | 451 | stroke among adults with hypertension in China: the CSPPT randomized clinical trial.    |
| 5<br>6   | 452 | <i>JAMA</i> 2015;313:1325-1335.                                                         |
| 7<br>8   | 453 | 25. Zou CG, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal         |
| 9<br>10  | 454 | 2005;7(5-6):547-559.                                                                    |
| 11<br>12 | 455 | 26. Waly M, Power-Charnitsky VA, Hodgson N et al. Alternatively Spliced                 |
| 13<br>14 | 456 | Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH                   |
| 15<br>16 | 457 | Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal. Oxid Med         |
| 17<br>18 | 458 | Cell Longev 2016;2016:6143753.                                                          |
| 19       | 459 | 27. Brude IR, Finstad HS, Seljeflot I et al. Plasma homocysteine concentration related  |
| 20<br>21 | 460 | to diet, endothelial function and mononuclear cell gene expression among male           |
| 22<br>23 | 461 | hyperlipidaemic smokers. Eur J Clin Invest 1999;29:100-108.                             |
| 24<br>25 | 462 | 28. Floegel A, Chung SJ, von Ruesten A et al. Antioxidant intake from diet and          |
| 26<br>27 | 463 | supplements and elevated serum C-reactive protein and plasma homocysteine               |
| 28<br>29 | 464 | concentrations in US adults: a cross-sectional study. Public Health Nutr 2011;14:2055-  |
| 30<br>31 | 465 | 2064.                                                                                   |
| 32<br>33 | 466 | 29. Lucock M, Yates Z, Boyd L et al. Vitamin C-related nutrient-nutrient and nutrient-  |
| 34<br>35 | 467 | gene interactions that modify folate status. <i>Eur J Nutr</i> 2013;52:569-582.         |
| 36<br>37 | 468 | 30. Magana AA, Reed RL, Koluda R et al. Vitamin C Activates the Folate-Mediated         |
| 38<br>39 | 469 | One-Carbon Cycle in C2C12 Myoblasts. Antioxidants 2020;9:217.                           |
| 40<br>41 | 470 | 31. Horie S, Kizaki K, Ishii H et al. Retinoic acid stimulates expression of            |
| 42<br>43 | 471 | thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells.  |
| 44<br>45 | 472 | Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP.    |
| 46<br>47 | 473 | Biochem 1992;281:149-154.                                                               |
| 48       | 474 | 32. Swamidas GP, Basaraba RJ, Baybutt RC. Dietary retinol inhibits inflammatory         |
| 49<br>50 | 475 | responses of rats treated with monocrotaline. J Nutr 1999;129:1285-1290.                |
| 51<br>52 | 476 | 33. Brazionis L, Walker KZ, Itsiopoulos C et al. Plasma retinol: a novel marker for     |
| 53<br>54 | 477 | cardiovascular disease mortality in Australian adults. <i>Nutr Metab Cardiovasc Dis</i> |
| 55<br>56 | 478 | 2012;22:914-920.                                                                        |
| 57<br>58 | 479 | 34. Espe KM, Raila J, Henze A et al. Impact of vitamin A on clinical outcomes in        |
| 59<br>60 | 480 | haemodialysis patients. <i>Nephrol Dial Transplant</i> 2011;26:4054-4061.               |
|          |     |                                                                                         |

| 2        |     |                                                                                                                          |
|----------|-----|--------------------------------------------------------------------------------------------------------------------------|
| 3<br>4   | 481 | 35. Yu Y, Zhang H, Song Y et al. Plasma retinol and the risk of first stroke in                                          |
| 5<br>6   | 482 | hypertensive adults: a nested case-control study. Am J Clin Nutr 2019;109:449-456.                                       |
| 7<br>8   | 483 | 36. Olsen T, Vinknes KJ, Svingen GFT et al. The risk association of plasma total                                         |
| 9<br>10  | 484 | homocysteine with acute myocardial infarction is modified by serum vitamin A. Eur J                                      |
| 11<br>12 | 485 | Prev Cardiol 2018;25:1612-1620.                                                                                          |
| 13<br>14 | 486 | 37. Puddu PE. Serum vitamin A, total homocysteine and acute myocardial infarction:                                       |
| 15<br>16 | 487 | is there a causal association? Eur J Prev Cardiol 2018;25:1607-1611.                                                     |
| 17<br>18 | 488 | 38. Momin M, Jia J, Fan F et al. Relationship between plasma homocysteine level and                                      |
| 19<br>20 | 489 | lipid profiles in a community-based Chinese population. <i>Lipids Health Dis</i> 2017;16:54.                             |
| 21       | 490 | 39. da Silva R, dos Santos-Valente EC, Burim Scomparini F et al. The relationship                                        |
| 22<br>23 | 491 | between nutritional status, vitamin A and zinc levels and oxidative stress in patients                                   |
| 24<br>25 | 492 | with ataxia-telangiectasia. Allergol Immunopathol (Madr) 2014;42:329-335.                                                |
| 26<br>27 | 493 | 40. Ferreira CA, de Souza FI, Melges AP et al. Retinol, beta-carotene, oxidative stress,                                 |
| 28<br>29 | 494 | and metabolic syndrome components in obese asthmatic children. Pediatr Allergy                                           |
| 30<br>31 | 495 | and metabolic syndrome components in obese asthmatic children. <i>Pediatr Allergy</i><br><i>Immunol</i> 2014;25:292-294. |
| 32<br>33 | 496 |                                                                                                                          |
| 34<br>35 | 497 |                                                                                                                          |
| 36<br>37 | 498 |                                                                                                                          |
| 38<br>39 | 499 |                                                                                                                          |
| 40<br>41 | 500 |                                                                                                                          |
| 42<br>43 | 501 |                                                                                                                          |
| 44<br>45 | 502 |                                                                                                                          |
| 46<br>47 | 503 |                                                                                                                          |
| 48<br>49 | 504 |                                                                                                                          |
| 50       | 505 |                                                                                                                          |
| 51<br>52 | 506 |                                                                                                                          |
| 53<br>54 | 507 |                                                                                                                          |
| 55<br>56 | 508 |                                                                                                                          |
| 57<br>58 | 509 |                                                                                                                          |
| 59<br>60 | 507 |                                                                                                                          |

Page 19 of 30

| ]                           | Total (n=1465)   | HHcy (n=469)      | non-HHcy (n=996) | Р      |
|-----------------------------|------------------|-------------------|------------------|--------|
| Age (years)                 | $62.0\pm10.7$    | $64.4 \pm 11.4$   | $60.9 \pm 10.2$  | < 0.00 |
| Gender (Male, n (%))        | 729 (49.8)       | 339 (72.3)        | 390 (39.2)       | < 0.00 |
| BMI (kg/m <sup>2</sup> )    | $24.9\pm3.5$     | $25.0 \pm 3.4$    | $24.8\pm3.6$     | 0.25   |
| WC (cm)                     | $87.3\pm9.5$     | $88.7\pm10.0$     | $86.7 \pm 9.2$   | <0.00  |
| SBP (mmHg)                  | $132.9 \pm 13.5$ | $133.9 \pm 14.0$  | $132.4 \pm 13.3$ | 0.04   |
| DBP (mmHg)                  | $80.4\pm10.6$    | $81.2 \pm 11.4$   | $80.0\pm10.2$    | 0.05   |
| tHcy (μmol/L)               | $14.63 \pm 9.06$ | $21.57 \pm 13.35$ | $11.37 \pm 1.89$ | <0.00  |
| FPG (mmol/L)                | 5.42 ± 1.54      | $5.29 \pm 1.35$   | $5.49 \pm 1.62$  | 0.02   |
| TC (mmol/L)                 | 5.25 ± 1.64      | $5.20\pm2.49$     | $5.27 \pm 1.02$  | 0.41   |
| TG (mmol/L)                 | $1.95 \pm 1.39$  | $2.01 \pm 1.34$   | $1.92 \pm 1.41$  | 0.25   |
| LDL-C (mmol/L)              | $3.19 \pm 0.87$  | $3.14\pm0.89$     | $3.21\pm0.87$    | 0.13   |
| Uric acid (μmol/L)          | $380 \pm 97$     | ▲ 420 ± 103       | $362 \pm 89$     | <0.00  |
| Creatinine (µmol/L)         | 83 ± 44          | 98 ± 67           | $76 \pm 25$      | <0.00  |
| Sedentary time <3h/d (n (%) | ) 667 (45.5)     | 211 (45.0)        | 456 (45.8)       | 0.77   |
| History of disease (n (%))  |                  |                   |                  |        |
| Coronary heart disease      | 178 (12.2)       | 72 (15.4)         | 106 (10.6)       | 0.01   |
| Cerebral hemorrhage         | 15 (1.0)         | 11 (2.3)          | 4 (0.4)          | <0.00  |
| Cerebral thrombosis         | 61 (4.2)         | 34 (7.2)          | 27 (2.7)         | <0.00  |
| Diabetes                    | 240 (16.4)       | 82 (17.5)         | 158 (15.9)       | 0.43   |
| Kidney disease              | 57 (3.9)         | 34 (7.2)          | 23 (2.3)         | <0.00  |
| Medications use (n (%))     |                  |                   |                  |        |
| Antihypertensive            | 1146 (78.2)      | 380 (81.0)        | 766 (76.9)       | 0.07   |
| Antihyperglycemic           | 21(1.4)          | 8 (1.7)           | 13 (1.3)         | 0.54   |
| Lipid-lowering              | 21 (1.4)         | 5 (1.1)           | 16 (1.6)         | 0.41   |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HHcy, hyperhomocysteinemia; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; tHcy, total homocysteine; WC, waist circumference.<sup>#</sup>: Values are mean ± SD or median (interquartile range) or number (percentage).

| Table 2 The dietary intake or | f food and nutrients of the participar | nts <sup>#</sup>     | bmjopen-2020-045732 on                |        |
|-------------------------------|----------------------------------------|----------------------|---------------------------------------|--------|
| Dietary intake (/d)           | Total (n=1465)                         | HHcy (n=469)         | nongHHcy (n=996)                      | Р      |
| Energy (kcal)                 | 1488 (1172, 1899)                      | 1508 (1202-1874)     | 1473 (1150-1913)                      | 0.46   |
| Vegetable (g)                 | 383.7 (240.3, 578.0)                   | 377.7 (227.2, 580.0) | 3882 (252.5, 577.1)                   | 0.51   |
| Fruit (g)                     | 79.2 (39.7, 139.5)                     | 75.4 (33.2, 127.5)   | 813 (42.1, 144.6)                     | 0.03   |
| Protein (g)                   | 43.2 (35.4, 53.5)                      | 41.7 (33.9-50.9)     | 4482 (36.2-54.8)                      | < 0.00 |
| Fat (g)                       | 54.3 (42.2, 65.6)                      | 52.5 (41.6-64.3)     | 55 <u>9</u> 1 (42.6-65.9)             | 0.05   |
| Carbohydrate (g)              | 206.6 (179.4, 234.4)                   | 212.6 (186.6-237.7)  | 204 (176.6-231.7)                     | < 0.00 |
| Cholesterol (mg)              | 232.7 (152.3, 325.8)                   | 228.3 (154.5, 313.7) | 236 <sup>3</sup> (147.3, 333.6)       | 0.22   |
| Fibre (g)                     | 11.2 (8.2, 15.2)                       | 10.6 (7.9-14.8)      | 1.4 (8.4-15.2)                        | 0.02   |
| Vitamin C (mg)                | 153.5 (91.2, 240.9)                    | 138.6 (85.6-231.6)   | 1595 (93.6-242.7)                     | 0.072  |
| Vitamin E (mg)                | 25.0 (19.3-31.9)                       | 24.1 (19.0-31.5)     | 254 (19.5-32.2)                       | 0.15   |
| Carotenes (mg)                | 3.3 (1.8, 5.6)                         | 3.1 (1.7-5.5)        | ⊒.<br>jð.5 (1.8-5.6)                  | 0.22   |
| Retinol (µg)                  | 138.3 (78.0, 283.6)                    | 110.9 (62.2-239.3)   | 15120 (83.3-317.6)                    | < 0.00 |
| Lutein (mg)                   | 9.5 (5.2, 14.8)                        | 9.0 (5.1-14.2)       | 9<br>9<br>9<br>9<br>9<br>6 (5.3-15.0) | 0.26   |
| Folate (µg)                   | 170.4 (109.4, 263.5)                   | 160.0 (99.9-246.2)   | ي<br>176يل (112.8-266.9)              | 0.00   |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                | Total                 | HHcy (n=469)        | noneHHcy (n=996)                                         | <i>P</i> |
|--------------------------------|-----------------------|---------------------|----------------------------------------------------------|----------|
| Vitamin $B_6$ (mg)             | 0.3 (0.2, 0.5)        | 0.3 (0.2-0.5)       | $\frac{8}{3}$ .3 (0.2-0.5)<br>$\frac{3}{2}$ .0 (1.8-4.9) | 0.23     |
| Vitamin $B_{12}(\mu g)$        | 2.7 (1.6, 4.6)        | 2.3 (1.4-4.0)       | 3.0 (1.8-4.9)                                            | < 0.00   |
| Saturated fatty acid (g)       | 10.6 (8.1-13.2)       | 10.2 (7.8-12.9)     | 198 (8.3-13.3)                                           | 0.01     |
| Monounsaturated fatty acid (g) | 12.7 (9.8-16.3)       | 12.4 (9.7-16.1)     | 12.9 (9.9-16.3)                                          | 0.11     |
| Polyunsaturated fatty acid (g) | 20.0 (14.9-26.4)      | 19.7 (14.9-26.0)    | 2022 (15.0-26.7)                                         | 0.292    |
| Selenium (µg)                  | 31.3 (23.2, 41.9)     | 28.6 (21.0-38.8)    | 3255 (24.5-43.7)                                         | <0.00    |
| Magnesium (mg)                 | 216.1 ( 173.3- 269.2) | 205.8 (167.7-261.5) | 221 (176.3-271.6)                                        | 0.01     |
| Zinc (mg)                      | 7.0 ( 6.0- 8.3)       | 6.8 (5.9-7.9)       | <u>3</u> .1 (6.1-8.5)                                    | <0.00    |
| Iron (mg)                      | 16.6 (12.0-23.4)      | 16.5 (11.8-23.1)    | 166 (12.1-23.6)                                          | 0.29     |
| Supplement use (n (%))         | 302 (20.6)            | 80 (17.1)           | 9<br>≥222 (22.3)                                         | 0.02     |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                              |                                     |                   | BMJ Open               |                                                                                        |                                 |                   |
|----------------------------------------------|-------------------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------|---------------------------------|-------------------|
|                                              |                                     |                   |                        |                                                                                        |                                 |                   |
| <b>Table 3</b> β (95% CI hypertensive partic | s) and ORs (95% CIs) of d<br>ipants | ietary intakes of | f antioxidant vitamins | and homocysteine level                                                                 | among the middle-age            | d and old         |
|                                              | tHcy                                | Q1                | Q2                     | ō                                                                                      | Γ                               | $P_{\rm for tra}$ |
| Vitamin C (mg/d)                             | 4                                   | < 91.2            | 91.2-153.5             | 153.6-240.9                                                                            | $\geq 240.9$                    |                   |
| Cases (%)                                    |                                     | 132 (36.1)        | 122 (33.3)             | Q3<br>153.6-240.9<br>104 (28.4)<br>0.70 (0.52, 0.96)                                   | 111 (30.2)                      |                   |
| Crude Model                                  | -0.037 (-0.063, -0.011)             | Ref.              | 0.89 (0.65, 1.20)      |                                                                                        |                                 | 0.07              |
| Model I                                      | -0.031 (-0.055, -0.006)             | Ref.              | 0.92 (0.66, 1.27)      | 0.64 (0.46, 0.90)                                                                      | 0.55 (0.34, 0.89)               | 0.04              |
| Model II                                     | -0.050 (-0.084, -0.016)             | Ref.              | 0.82 (0.57, 1.16)      | 0.49 (0.33, 0.74)                                                                      | 0.40 (0.22, 0.74)               | 0.00              |
| Vitamin E (mg/d)                             |                                     | < 19.3            | 19.3-25.0              | 0.64 (0.46, 0.90)<br>0.49 (0.33, 0.74)<br>25.1-31.9<br>113 (30.9)<br>0.88 (0.65, 1.20) | ≥ 31.9                          |                   |
| Cases (%)                                    |                                     | 122 (33.6)        | 126 (34.2)             | 113 (30.9)                                                                             | 108 (29.3)                      |                   |
| Crude Model                                  | -0.035 (-0.084, 0.014)              | Ref.              | 1.03 (0.76, 1.40)      | 0.88 (0.65, 1.20)                                                                      | 0.82 (0.60, 1.12)               | 0.13              |
| Model I                                      | -0.007 (-0.053, 0.039)              | Ref.              | 1.10 (0.79, 1.53)      | 0.96 (0.69, 1.34)<br>0.95 (0.68, 1.33)                                                 | 0.95 (0.68, 1.33)               | 0.61              |
| Model II                                     | -0.009 (-0.055, 0.036)              | Ref.              | 1.12 (0.80, 1.57)      | 0.95 (0.68, 1.33)                                                                      | $\frac{1}{5}$ 0.91 (0.65, 1.28) | 0.41              |
| Carotenes (mg/d)                             |                                     | < 1.78            | 1.78-3.30              | 3.31-5.61                                                                              | ≥ 5.61                          |                   |
| Cases (%)                                    |                                     | 118 (32.7)        | 136 (37.0)             | 99 (26.8)                                                                              | 116 (31.6)                      |                   |
| Crude Model                                  | -0.024 (-0.045, -0.003)             | Ref.              | 1.21 (0.89, 1.64)      | 0.76 (0.55, 1.04)                                                                      |                                 | 0.315             |
|                                              |                                     |                   |                        |                                                                                        |                                 | n next pa         |
|                                              |                                     |                   |                        |                                                                                        |                                 |                   |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Table 3 (continue) | <i>d</i> )              |            |                   |                                                                                         |                                 |                    |
|--------------------|-------------------------|------------|-------------------|-----------------------------------------------------------------------------------------|---------------------------------|--------------------|
|                    | tHcy                    | Q1         | Q2                | Q3                                                                                      | Q4                              | $P_{\rm for tren}$ |
| Model I            | -0.022 (-0.042, -0.003) | Ref.       | 1.22 (0.88, 1.69) | 0.72 (0.51, 1.01)                                                                       | 0.93 (0.67, 1.30)               | 0.254              |
| Model II           | -0.022 (-0.052, 0.009)  | Ref.       | 1.18 (0.84, 1.68) | Q3<br>0.72 (0.51, 1.01)<br>0.68 (0.46, 1.02)<br>138.4-283.6<br>91 (24.9)                | 0.76 (0.43, 1.35)               | 0.159              |
| Retinol (µg/d)     |                         | < 78.0     | 78.0-138.3        | 138.4-283.6                                                                             | $\geq 283.6$                    |                    |
| Cases (%)          |                         | 147 (40.2) | 133 (36.3)        |                                                                                         |                                 |                    |
| Crude Model        | -0.030 (-0.046, -0.015) | Ref.       | 0.85 (0.63, 1.15) | 0.49 (0.36, 0.68)<br>0.50 (0.35, 0.70)                                                  | 0.54 (0.40, 0.74)               | 0.001              |
| Model I            | -0.027 (-0.041, -0.012) | Ref.       | 0.84 (0.61, 1.16) | 0.50 (0.35, 0.70)                                                                       | 0.55 (0.40, 0.77)               | 0.003              |
| Model II           | -0.021 (-0.041, -0.002) | Ref.       | 0.90 (0.65, 1.25) |                                                                                         |                                 | 0.951              |
| Lutein (mg/d)      |                         | < 5.22     | 5.22-9.48         | 0.61 (0.42, 0.86)<br>9.49-14.82<br>114 (31.1)<br>0.89 (0.65, 1.21)<br>0.84 (0.61, 1.17) | ≥ 14.82                         |                    |
| Cases (%)          |                         | 123 (33.7) | 120 (32.8)        | 114 (31.1)                                                                              | 112 (30.4)                      |                    |
| Crude Model        | -0.028 (-0.053, -0.004) | Ref.       | 0.96 (0.71, 1.31) | 0.89 (0.65, 1.21)                                                                       | 0.86 (0.63, 1.17)               | 0.311              |
| Model I            | -0.024 (-0.046, -0.001) | Ref.       | 0.98 (0.71, 1.37) | 0.84 (0.61, 1.17)                                                                       | $\frac{2}{6}$ 0.87 (0.62, 1.22) | 0.331              |
| Model II           | -0.025(-0.063, 0.013)   | Ref.       | 0.92 (0.65, 1.31) | 0.76 (0.51, 1.14)                                                                       | <b>0.66</b> (0.37, 1.19)        | 0.138              |

Model II: Adjusted for variables in Model I and further adjusted for sedentary time (<3 h/d as the reference), the intakes of folate, vitamin B6 and vitamin B12, supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). rotected by copyright.

bmjopen-:

510 Figure Legends:

Fig. 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , the history of cardiovascular events ('no' as the reference).

516 Fig. 2 ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to

517 vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age,

518 sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as

519 the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin

520 B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).

**BMJ** Open

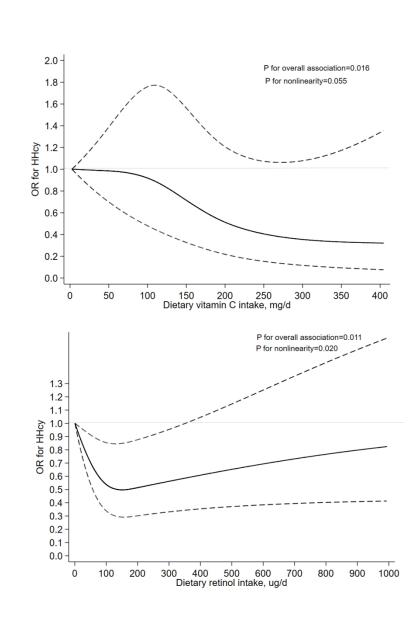
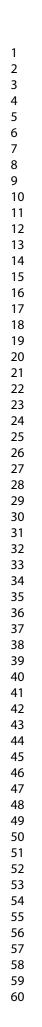




Figure 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).

187x287mm (144 x 144 DPI)

BMJ Open: first published as 10.1136/bmjopen-2020-045732 on 12 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



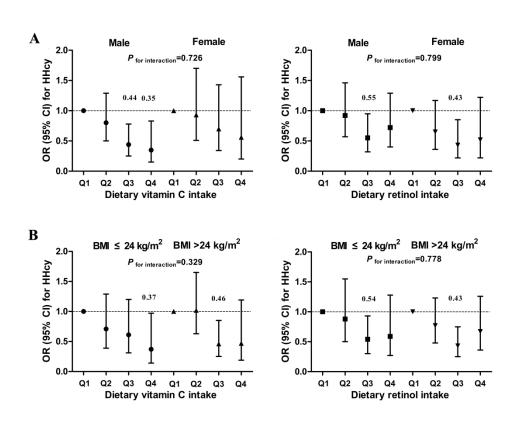
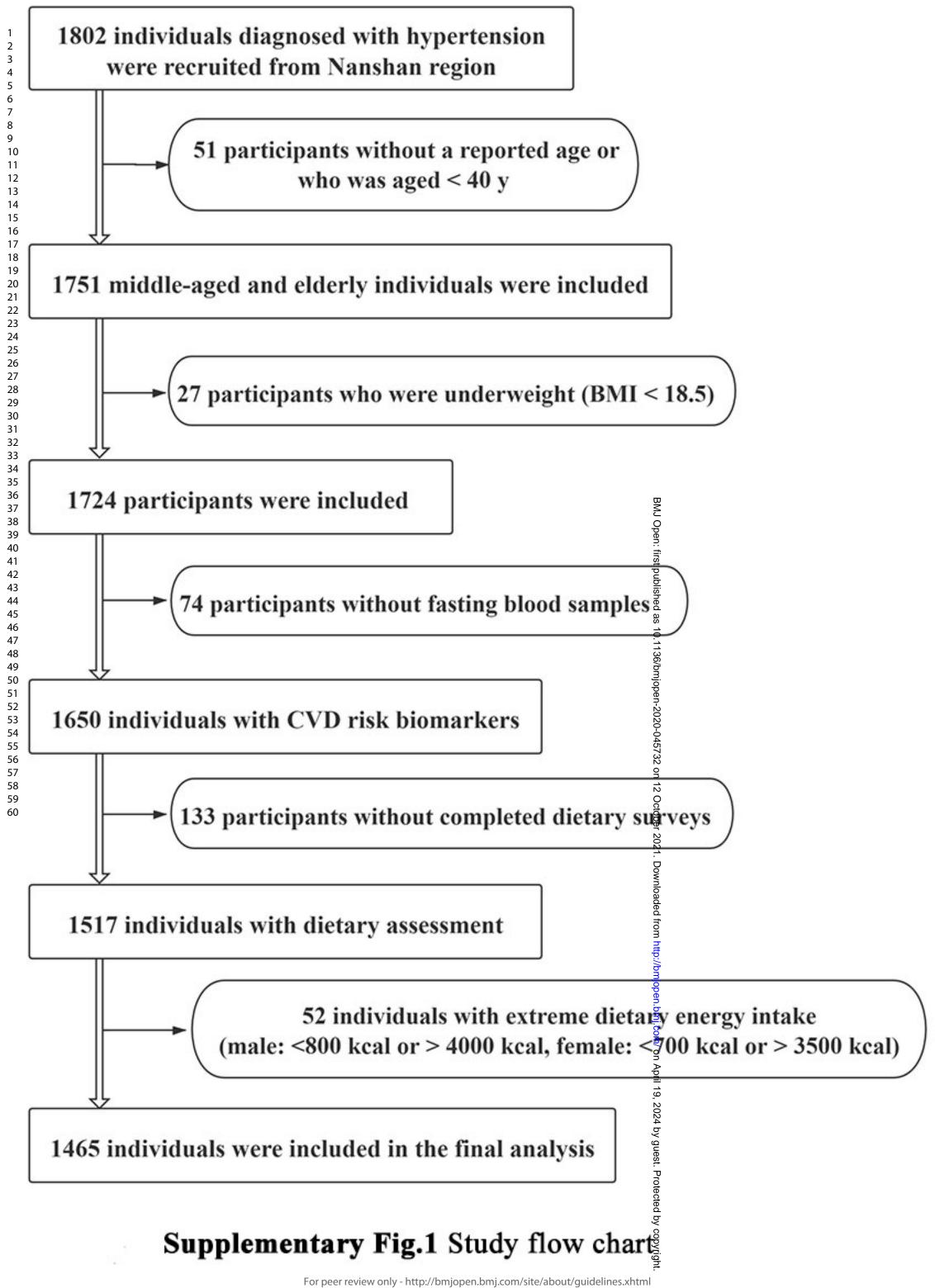
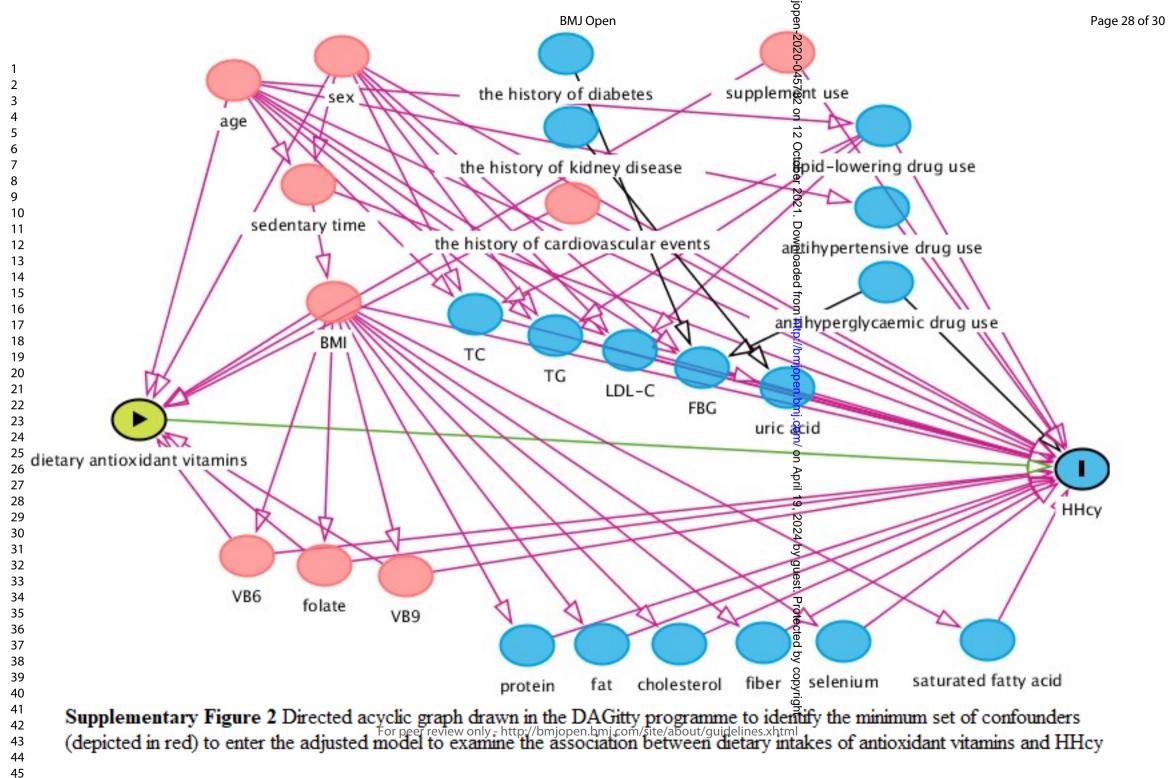





Figure 2 ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age, sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).





**Supplementary Table 1** Sensitivity analyses of ORs (95% CIs) of antioxidant vitamins intake for hyperhomocysteinemia prevalence in multivariable-adjusted model among the patients with hypertension <sup>#</sup>

|                                           | Q1              | Q2                | Q3                | Q4                | P for trend |
|-------------------------------------------|-----------------|-------------------|-------------------|-------------------|-------------|
| Without cardiov                           | vascular events | s (n=1245)        |                   |                   |             |
| Vitamin C                                 | 1.00 (Ref.)     | 0.92 (0.63, 1.35) | 0.54 (0.35, 0.84) | 0.41 (0.21, 0.80) | 0.003       |
| Vitamin E                                 | 1.00 (Ref.)     | 1.14 (0.79, 1.64) | 0.95 (0.66, 1.39) | 0.90 (0.62, 1.31) | 0.425       |
| Carotenes                                 | 1.00 (Ref.)     | 1.25 (0.85,1.84   | 0.67 (0.43, 1.04) | 0.77 (0.41, 1.44) | 0.178       |
| Retinol                                   | 1.00 (Ref.)     | 1.05 (0.73, 1.50) | 0.61 (0.43, 0.94) | 0.78 (0.50, 1.34) | 0.836       |
| Lutein                                    | 1.00 (Ref.)     | 1.04 (0.71, 1.53) | 0.74 (0.48, 1.14) | 0.63 (0.33, 1.20) | 0.104       |
| Without tHcy-lowering drug-using (n=1360) |                 |                   |                   |                   |             |
| Vitamin C                                 | 1.00 (Ref.)     | 0.85 (0.58, 1.24) | 0.49 (0.31, 0.78) | 0.44 (0.22, 0.86) | 0.007       |
| Vitamin E                                 | 1.00 (Ref.)     | 1.07 (0.74, 1.55) | 0.98 (0.68, 1.42) | 0.95 (0.66, 1.37) | 0.685       |
| Carotenes                                 | 1.00 (Ref.)     | 1.27 (0.87, 1.85) | 0.69 (0.44, 1.07) | 0.67 (0.35, 1.28) | 0.090       |
| Retinol                                   | 1.00 (Ref.)     | 0.84 (0.59, 1.20) | 0.56 (0.38, 0.84) | 0.85 (0.54, 1.35) | 0.837       |
| Lutein                                    | 1.00 (Ref.)     | 0.88 (0.60, 1.29) | 0.74 (0.47, 1.15) | 0.60 (0.31, 1.16) | 0.115       |

<sup>#</sup>: Adjusted for age, sex, BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ .

|                              | BMJ Open  |                                                                                                                                                                                                                                                |                    |
|------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                              | ST        | ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>                                                                                                                               |                    |
| Section/Topic                | ltem<br># | Recommendation 73<br>12                                                                                                                                                                                                                        | Reported on page # |
| Title and abstract           | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                         | 1-2                |
|                              |           | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                            | 2                  |
| Introduction                 |           |                                                                                                                                                                                                                                                |                    |
| Background/rationale         | 2         | Explain the scientific background and rationale for the investigation being reported $\begin{tabular}{c} \hline \hline$ | 3                  |
| Objectives                   | 3         | State specific objectives, including any prespecified hypotheses                                                                                                                                                                               | 4                  |
| Methods                      | 1         |                                                                                                                                                                                                                                                |                    |
| Study design                 | 4         | Present key elements of study design early in the paper $\vec{5}$                                                                                                                                                                              | 4                  |
| Setting                      | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                | 4                  |
| Participants                 | 6         | ( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection of participants                                                                                                                                           | 4-5                |
| Variables                    | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                                                                       | 4-5                |
| Data sources/<br>measurement | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe                                                                                                                               | 5-6                |
| Bias                         | 9         | Describe any efforts to address potential sources of bias                                                                                                                                                                                      | 7                  |
| Study size                   | 10        | Explain how the study size was arrived at                                                                                                                                                                                                      | 4                  |
| Quantitative variables       | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                   | 6-7                |
| Statistical methods          | 12        | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                 | 6-7                |
|                              |           | (b) Describe any methods used to examine subgroups and interactions                                                                                                                                                                            | 6-7                |
|                              |           | o<br>(c) Explain how missing data were addressed                                                                                                                                                                                               | 6-7                |
|                              |           | (d) If applicable, describe analytical methods taking account of sampling strategy                                                                                                                                                             | 6-7                |
|                              |           | (e) Describe any sensitivity analyses                                                                                                                                                                                                          | 6-7                |
| Results                      |           |                                                                                                                                                                                                                                                |                    |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### BMJ Open

bmjopen-202

copyright.

|                   |     | 200                                                                                                                                                                                                |       |
|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine of or eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | 7     |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                                               |       |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                                                 | 5     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential                                                                       | 7-8   |
|                   |     | confounders B                                                                                                                                                                                      |       |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                | 7-8   |
| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                                               | 7-8   |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence                                                                            | 8-9   |
|                   |     | interval). Make clear which confounders were adjusted for and why they were included 🛛 👮                                                                                                           |       |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                          | 8     |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time deriod                                                                                   | 8     |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                     | 8-9   |
| Discussion        |     | tp://                                                                                                                                                                                              |       |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                           | 9     |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias                                         | 12-13 |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence                         | 11-12 |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                              | 13    |
| Other information |     | pril 1                                                                                                                                                                                             |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on                                                                         | 13    |
|                   |     | which the present article is based                                                                                                                                                                 |       |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan bless of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinebrg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.sbooksteent.org.

# Association between dietary antioxidant vitamins intake and homocysteine levels in middle-aged and older adults with hypertension: a cross-sectional study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2020-045732.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Article Type:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date Submitted by the<br>Author:     | 28-Jul-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Complete List of Authors:            | <ul> <li>Peng, Xiaolin; Nanshan Centre for Chronic Disease Control</li> <li>Gao, Qin; Huazhong University of Science and Technology Tongji Medical</li> <li>College; Jining Medical College</li> <li>Zhou, Juan; Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Ma, Jianping; Nanshan Centre for Chronic Disease Control</li> <li>Zhao, Dan; Shenzhen Nanshan Centre for Chronic Disease Control</li> <li>Hao, Liping; Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Huazhong University of Science and Technology Tongji</li> <li>Medical College, Nutrition and Food Hygiene,</li> <li>Huazhong University of Science and Technology Tongji</li> </ul> |
| <b>Primary Subject<br/>Heading</b> : | Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Secondary Subject Heading:           | Epidemiology, Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Keywords:                            | Hypertension < CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

| 1                                                                                |  |
|----------------------------------------------------------------------------------|--|
| 2                                                                                |  |
| 3                                                                                |  |
| 4                                                                                |  |
| 5                                                                                |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                  |  |
| 8                                                                                |  |
| 9                                                                                |  |
| 10                                                                               |  |
| 11                                                                               |  |
| 12                                                                               |  |
| 13<br>14                                                                         |  |
| 14<br>15                                                                         |  |
| 16                                                                               |  |
| 17                                                                               |  |
| 18                                                                               |  |
| 19                                                                               |  |
| 20                                                                               |  |
| 21                                                                               |  |
| 23                                                                               |  |
| 24                                                                               |  |
| 25                                                                               |  |
| 26                                                                               |  |
| 2/                                                                               |  |
| 20<br>29                                                                         |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 |  |
| 31                                                                               |  |
| 32                                                                               |  |
| 33                                                                               |  |
| 34<br>35                                                                         |  |
| 36                                                                               |  |
| 37                                                                               |  |
| 38                                                                               |  |
| 39                                                                               |  |
| 40                                                                               |  |
| 41<br>42                                                                         |  |
| 43                                                                               |  |
| 44                                                                               |  |
| 45                                                                               |  |
| 46                                                                               |  |
| 47<br>48                                                                         |  |
| 40<br>49                                                                         |  |
| 49<br>50                                                                         |  |
| 51                                                                               |  |
| 52                                                                               |  |
| 53                                                                               |  |
| 54                                                                               |  |
| 55<br>56                                                                         |  |
| 50<br>57                                                                         |  |
| 58                                                                               |  |
| 59                                                                               |  |
| 60                                                                               |  |

30

| 1  | Association between dietary antioxidant vitamins intake and homocysteine levels                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | in middle-aged and older adults with hypertension: a cross-sectional study                                                                                  |
| 3  | Peng Xiaolin <sup>#1</sup> , Gao Qin <sup>#2,3</sup> , Zhou Juan <sup>2</sup> , Ma Jianping <sup>1</sup> , Zhao Dan <sup>1</sup> , Hao Liping <sup>2*</sup> |
| 4  | <sup>#</sup> Peng Xiaolin and Gao Qin contributed equally to this paper.                                                                                    |
| 5  | <sup>1</sup> Shenzhen Nanshan Centre for Chronic Disease Control, Guangdong, People's                                                                       |
| 6  | Republic of China;                                                                                                                                          |
| 7  | <sup>2</sup> Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical                                                              |
| 8  | College, Huazhong University of Science and Technology, Wuhan, Hubei, People's                                                                              |
| 9  | Republic of China;                                                                                                                                          |
| 10 | <sup>3</sup> Department of Public Health, Jining Medical University, Jining, Shandong, People's                                                             |
| 11 | Republic of China.                                                                                                                                          |
| 12 | * Corresponding Author: Hao Liping, 13 Hangkong Road, Wuhan 430030, People's                                                                                |
| 13 | Republic of China. E-mail addresses: haolp@mails.tjmu.edu.cn, Tel.:+86-27-                                                                                  |
| 14 | 83650523, Fax: 0086-27-83693307                                                                                                                             |
| 15 | 83650523, Fax: 0086-27-83693307                                                                                                                             |
| 16 |                                                                                                                                                             |
| 17 |                                                                                                                                                             |
| 18 |                                                                                                                                                             |
| 19 |                                                                                                                                                             |
| 20 |                                                                                                                                                             |
| 21 |                                                                                                                                                             |
| 22 |                                                                                                                                                             |
| 23 |                                                                                                                                                             |
| 24 |                                                                                                                                                             |
| 25 |                                                                                                                                                             |
| 26 |                                                                                                                                                             |
| 27 |                                                                                                                                                             |
| 28 |                                                                                                                                                             |
| 29 |                                                                                                                                                             |

| 31 | Abstract                                                                                                |
|----|---------------------------------------------------------------------------------------------------------|
| 2  | Objectives: Plasma total homocysteine (tHcy) has been implicated in the development                     |
| 3  | of cardiovascular disease. This study aimed to assess the relationship of dietary                       |
| 4  | antioxidant vitamins intake with tHcy levels in middle-aged and older adults with                       |
| 5  | hypertension.                                                                                           |
| 6  | Design: A cross-sectional study.                                                                        |
| 37 | Setting: The survey was conducted in the Nanshan district of Shenzhen.                                  |
| 38 | Participants: A total of 1465 middle-aged and older adults with hypertension were                       |
| 9  | included between July and September of 2013.                                                            |
| 0  | Measurements: Hyperhomocysteinemia (HHcy) was defined as tHcy $\geq$ 15 µmol/L.                         |
| 1  | Some dietary antioxidant vitamins (vitamin C (VC) and vitamin E (VE), carotenes,                        |
| 12 | retinol, lutein) intake was estimated using the food frequency questionnaire. Socio-                    |
| 43 | demographic and potential covariates were evaluated through questionnaires,                             |
| 4  | anthropometric measurements and blood tests. The association between dietary intakes                    |
| 5  | of antioxidant vitamins and tHcy concentration were evaluated by multiple linear                        |
| 6  | regression analyses after napierian logarithm -transformed. Multiple logistic regression                |
| 17 | models were further used to determine odds ratios (ORs) and 95% confidence intervals                    |
| 8  | (CIs).                                                                                                  |
| 9  | Results: The $\beta$ (95% CIs) of VC intake and tHcy was -0.050 (-0.084, -0.016). Compared              |
| 0  | with the lowest quartile in the fully adjusted model, the ORs (95% CIs) for HHcy levels                 |
| 51 | across quartiles of dietary VC intake were 0.82 (0.57, 1.16), 0.49 (0.33, 0.74) and 0.40                |
| 52 | $(0.22, 0.74)$ ( <i>P</i> for trend=0.001). The $\beta$ (95% CIs) of retinol intake and tHcy was -0.021 |
| 53 | (-0.041, -0.002), and the ORs (95% CIs) in the third quartile of retinol intake was 0.61                |
| 54 | (0.42, 0.86), while the effect for the highest quartile was not significant ( $P$ for                   |
| 5  | trend=0.951). No significant association was observed between dietary VE, carotenes                     |
| 5  | and lutein intake and HHcy.                                                                             |
| 7  | Conclusions: A linear inverse association between dietary VC intake and HHcy                            |
|    |                                                                                                         |

58 prevalence, and an L-shaped association between dietary retinol intake and HHcy 59 prevalence were found in Chinese middle-aged and older adults with hypertension.

Page 4 of 31

61 Strengths and limitations of this study:

62 1. This study focused on the risk of hyperhomocysteinemia among middle-aged and63 older adults with hypertension.

A linear inverse association between dietary VC intake and HHcy prevalence and
the threshold effect of retinol on HHcy was reported in this study.

Based on a cross-sectional study design, we could only draw a conclusion aboutcorrelation, not causation.

4. Although some confounding factors were included in the analysis, other potentialconfounders may exist.

# 71 Introduction

Increasing evidence has shown that elevated total homocysteine (tHcy) levels are associated with atherosclerotic cardiovascular diseases, stroke, peripheral arterial occlusive disease, and venous thrombosis (1, 2). Hyperhomocysteinemia (HHcy) (tHcy  $\geq$  15 µmol/L) (3), the result of a disturbed methionine metabolism, may lead to an enhancement of the adverse effects of risk factors like hypertension on human health (4). Hypertension is a major risk factor for cardiovascular and chronic kidney disease and a major cause of the global burden of disease and mortality (5, 6). It was estimated that the prevalence of hypertension in China in 2015 was 23.2%, and about 245 million Chinese adults had hypertension (7). Notably, the incidence of hypertension with hyperhomocysteinemia, or 'H-type hypertension', is significantly higher compared with other countries, representing 75% of Chinese patients with hypertension (8). Thus, the nutritional treatment focus on the attempt to reduce cardiovascular risk by reducing tHcy is important, particularly among patients with hypertension (9).

Increasing age, male sex, genetic factors, consumption of alcohol or tobacco, kidney function and physical activity are some of the factors associated with tHcy levels (10). Epidemiological studies and clinical trials have indicated that folate, vitamin  $B_{12}$  and vitamin  $B_6$  status, well-known predictors of tHcy, are important for tHcy metabolism. The latest meta-analysis demonstrated that a lower risk of stroke and overall cardiovascular disease (CVD) with folic acid supplementation, which may partly Page 5 of 31

91 contribute to the decrease of tHcy levels (11).

Folic acid and vitamin B<sub>12</sub>, which are involved in remethylation of homocysteine to methionine by methionine synthase (MS), and vitamin B<sub>6</sub>, which acts as a cofactor in the transsulfuration of homocysteine to cysteine by cystathionine  $\beta$ -synthase (CBS) (12). Folate, a key factor of tHcy metabolism, is very sensitive to free radicals (13-15). In addition, MS and CBS were strongly influenced by oxidative stress, which may be associated with dietary antioxidant vitamins and Hcy levels (16,17). We hypothesized that antioxidant nutrients may regulate tHcy metabolism by influencing methionine-homocysteine cycle. Plasma levels or dietary intake of vitamin C (VC), vitamin E (VE) or  $\beta$ -carotene was inversely associated with tHcy levels, however, the findings were not consistent (18-20). Of note, the association has never been investigated among the hypertensive population.

Therefore, this large population-based study aimed to determine the association
between the dietary intake of VC, VE, carotenes, retinol and lutein and the prevalence
of HHcy in middle-aged and older men and women with hypertension.

106 Methods

### 107 Study design and population

This study consecutively recruited individuals with hypertension from 60 community health service centres (CHSCs) in the Nanshan district of Shenzhen from July to September of 2013 using a three-stage random sampling method. In the first stage, 8 sub-districts were selected in the Nanshan district; in the second stage, 6 to 8 communities were selected from each sub-district using a simple random selection procedure; and in the third stage, individuals with hypertension were selected from each community using isometric random sampling. All subjects were of Chinese ethnicity and had lived in the Nanshan district of Shenzhen for over six months. The individuals were invited to visit the CHSCs, where the researcher-administered questionnaire (including the validated food frequency questionnaire (FFQ)) was conducted, the anthropometric measurements were recorded, and fasting blood samples were collected. We collected the data of 1802 participants, and excluded 51 participants whose age was not reported or who were aged  $\leq 40$  years and 27 underweight participants (body 

121 mass index (BMI) < 18.5 kg/m<sup>2</sup>), as well as participants for whom fasting blood 122 samples (n = 74) and complete dietary surveys (n = 133) were not available. We also 123 excluded participants with an extreme dietary energy intake (male: < 800 kcal or > 4000 124 kcal, female: < 700 kcal or > 3500 kcal) (n = 52). Finally, 1465 participants were 125 included in the analysis (**Supplementary Figure 1**).

## Patient and public involvement

127 The development of standardised form is in response to the public health need of 128 preventing stroke among hypertension population. Patients and the public were not 129 involved in the design of the study. The results of our study will be disseminated 130 through open access publications.

#### 131 Dietary assessment

The researcher-administered FFQ consisted of 92 food items, which were assembled into 7 food groups: cereals, vegetables, fruits, beans, animal foods, nuts and beverages. The FFQ was based on the national FFQ used in the 2010-2012 China National Nutrition and Health Survey according to the Chinese Nutrition and Health Surveillance in 2010-2012 (21). Participants were asked to recall the consumption of each item during the past year, including the type of food, frequency and amount. Food weight maps were available for participants to estimate their portion size. Primary data obtained from FFQs were doubly entered into the EpiData 3.0 software by two trained technicians to verify accuracy. Dietary energy and other nutrients were calculated based on the Chinese Food Composition Database (22, 23). Dietary intake of VC, VE, carotenes (consist of  $\alpha$ -carotene,  $\beta$ -carotene and  $\beta$ -cryptoxanthin), and retinol were calculated based on the Chinese Food Composition Table 2002 (22). We report carotenes and retinol separately, because we could not get the accurate calculation for vitamin A, as the data for carotenes were combined with different carotene, rather than separate one. Dietary intake of lutein was calculated based on the food composition table of vegetables, fruits, eggs and nuts that contain large amounts of lutein, according to Chinese Dietary Reference Intakes 2013 (24). The intake of all dietary nutrients and carotenoids was adjusted for energy using the residual method (25). The second FFQ was conducted 3 weeks after the completion of the first FFQ among 108 participants.

The intra-class correlation coefficients of two administrations of FFO for nutrients of VC, VE, carotenes, retinol, lutein were 0.395, 0.477, 0.355, 0.551 and 0.350, and were all statistically significant. Assessment of other covariates Participants' socio-demographic characteristics (e.g., age and sex), lifestyle factors (e.g., sedentary time), history of chronic diseases, and medication and supplement use status were collected. Sedentary time consisted of time spent watching TV and sitting, which were combined into one variable with 2 categories, < 3 h/d and  $\ge 3 \text{ h/d}$ , based on a median sedentary time of 3 h/d. The history of cardiovascular events including coronary heart disease, cerebral haemorrhage, cerebral thrombosis, and the history of diabetes and kidney disease were recorded for each participant. The prescription use status was classified into 2 groups (yes or no) corresponding to whether the participant was taking any type or quantity of drugs, including antihypertensive drugs, antihyperglycaemic drugs, lipid-lowering drugs or tHcy-lowering drugs. Supplement use consisted of vitamin A, retinol, B vitamins, VC, VE and folic acid was included. Anthropometric measurements Height and weight and waist circumference (WC) were measured by specialists. BMI was calculated as weight (kg) / height (m<sup>2</sup>). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured from the right arm of participants in a seated position after a sufficient rest period using a mercury sphygmomanometer in the morning. Blood pressure was measured manually and recorded as the average of three measurements. Laboratory tests and outcomes Morning fasting elbow vein blood samples were required to fast overnight (at least 10 

hours) were collected from the participants at the CHSCs and transported under refrigerated conditions to a clinical laboratory of the Nanshan Centre for Chronic Disease Control within 2 hours. The blood specimens were collected in a 5-ml EDTA vacuum tube. Blood samples were collected through deposition and centrifugation for ten minutes at 3000 r/min at room temperature. The concentrations of plasma tHcy, fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), low-density 

181 lipoprotein cholesterol (LDL-C), uric acid and creatinine were assessed on the day of 182 blood collection using enzymatic methods via an auto-analyser (HITACHI 7080). The 183 inter-day quality control assessments met the standard during the analysis. HHcy was 184 defined as plasma tHcy concentration  $\geq$  15 µmol/L.

185 Statistical analysis

 Demographic characteristics were described by means  $\pm$  SDs for normally distributed data, medians (interquartile ranges, IQRs) for non-normally distributed data and numbers (percentages) for categorical data. The differences between males and females were compared using the *t* test for normally distributed variables, the Kruskal-Wallis rank test for non-normally distributed variables, and the chi-square test for categorical variables.

Both dietary intakes of antioxidant vitamins and tHcy concentration were napierian logarithm (ln)-transformed to improve normality before analyses and categorised into quartiles. The associations between dietary antioxidant vitamins intake and the prevalence of HHcy were analyzed using multiple logistic regression models, with the lowest quartile as the reference category. Confounding variables were selected based on the minimal sufficient adjustment recommended by the Directed Acyclic Graph, created in the online software Dagitty 3.0 (Supplementary Figure 2). The selected potential confounders included age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), the intakes of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). Linear trends were tested by creating a continuous variable for dietary antioxidant vitamins intake using the median value for each quartile. The sensitive analyses between dietary antioxidant vitamins intake and HHcy prevalence were applied among the population who had never suffered cardiovascular events, or among the population who never use the tHcy-lowering drug. 

To further explore the nonlinearity of the relationship between dietary antioxidant vitamins intake and high tHcy, we used restricted cubic spline with 4 knots at the 5<sup>th</sup>, 35<sup>th</sup>, 65<sup>th</sup> and 95<sup>th</sup> percentiles of dietary antioxidant vitamins intake.

210 To evaluate the modification effect by some potential prevalence factors of HHcy,

| 2 |        |
|---|--------|
| 3 |        |
| 4 |        |
| 5 |        |
|   |        |
| 6 |        |
| 7 |        |
| 8 |        |
| 9 |        |
|   | 0      |
| 1 | 1      |
|   |        |
| 1 | 2      |
| 1 | 3      |
| 1 | 4      |
| 1 | 5      |
|   | 6      |
|   |        |
|   | 7      |
|   | 8      |
| 1 | 9      |
| 2 | 0      |
|   | 1      |
| 2 |        |
|   |        |
|   | 3      |
|   | 4      |
| 2 | 5      |
| 2 | 6      |
|   | 7      |
|   | ,<br>8 |
|   |        |
|   | 9      |
|   | 0      |
| 3 | 1      |
| 3 | 2      |
| 3 | 3      |
|   | 4      |
|   | 5      |
|   |        |
|   | 6      |
| 3 |        |
| 3 | 8      |
| 3 | 9      |
|   | 0      |
| 4 |        |
|   |        |
| 4 |        |
|   | 3      |
| 4 | 4      |
| 4 | 5      |
|   | 6      |
| 4 | •      |
|   |        |
|   | 8      |
|   | 9      |
| 5 | 0      |
| 5 | 1      |
| 5 | 2      |
| 5 |        |
| 5 |        |
|   |        |
| 5 |        |
|   | 6      |
| 5 | 7      |
| 5 | 8      |
|   |        |
| 5 | 9      |

including sex (male or female) and BMI (<24 or  $\ge$ 24 kg/m<sup>2</sup>), stratified analyses were conducted by these potential factors and estimated *P* values for interaction terms.

All data were analyzed using the R Foundation version 3.1.2 and Empower X&Y Solutions Inc. Statistical significance was considered when P < 0.05 (two-sided).

215 **Results** 

In this cross-sectional study, 1465 participants (male: 729, female: 736) were 216 included in the analysis, and the mean  $\pm$  SD of age and BMI was  $62.0 \pm 10.7$  years, and 217 218  $24.9 \pm 3.5$  kg/m<sup>2</sup>. The tHcy levels of the participants was  $14.63 \pm 9.06$  µmol/L, and the number (percentage) of HHcy was 469 (32.0%). The participants with HHcy were older 219 and more male, and have higher WC, SBP, tHcy, uric acid, creatinine, and 220 higher percentages of history of cardiovascular events (including coronary heart disease, 221 222 cerebral hemorrhage, cerebral thrombosis) and kidney disease, and have lower FPG level (all *P* < 0.05) (**Table 1**). 223

The dietary intakes of nutrients were shown in **Table 2**. The median (IQR) of dietary antioxidant vitamins intake were as follows: VC 153.5 (91.2, 240.9) mg/d, VE 25.0 (19.3, 31.9) mg/d, carotenes 3.3 (1.8, 5.6) mg/d, retinol 138.3 (78.0, 283.6)  $\mu$ g/d, and lutein 9.5 (5.2, 14.8) mg/d. Among the participants with HHcy, the intake of carbohydrate was higher, and the intake of fruit, protein, fibre, retinol, folate, vitamin B<sub>12</sub>, saturated fatty acid, selenium, magnesium, zinc was lower, and the percentage of supplement use was lower (all *P* < 0.05).

The association between dietary antioxidant vitamins intake and tHcy levels are 231 232 shown in **Table 3**. The inverse association between VC intake and tHcy concentration after ln-transformed in the fully adjusted model, and the  $\beta$  (95% CIs) was -0.050 (-233 234 0.084, -0.016), which was consistent with the logistic regression as categorical 235 variables. In Model II, the significant association was found in the third and highest quartile of VC intake, and the ORs (95% CIs) were 0.49 (0.33, 0.74) and 0.40 (0.22, 236 0.74) ( $P_{\text{for trend}} = 0.001$ ). The retinol intake was also inversely associated with tHcy, as 237 the  $\beta$  (95% CIs) was -0.021 (-0.041, -0.002). After adjusting for age, sex and BMI, the 238 ORs (95% CIs) for HHcy prevalence across quartiles of retinol intake were 1.00, 0.84 239  $(0.61, 1.16), 0.50 (0.35, 0.70), and 0.55 (0.40, 0.77) (P_{\text{for trend}} = 0.003)$ . However, in 240

Model II, the significant association was only found in the third quartile of retinol intake, and the ORs (95% CIs) was 0.61 (0.42, 0.86) ( $P_{\text{for trend}} = 0.951$ ). The non-significant association between dietary intake of VE, carotenes and lutein and HHcy prevalence was found. The results were similar in the sensitivity analyses that excluded participants with cardiovascular events or who use the tHcy-lowering drug (see **Supplementary Table 1**).

After fully adjusting for the potential confounders, the association between dietary antioxidant vitamins intake and the prevalence of HHcy were shown in **Figure.1**. From the cubic splines, we noted that the linear inverse trend of VC intake and HHcy prevalence (P for overall association=0.016, P for nonlinearity=0.055) and the L-shaped relationship of retinol intake and HHcy prevalence (P for overall association=0.011, P for nonlinearity=0.020), which were consistent with the results of logistic regression analyses. The threshold analysis showed that the ORs (95% CIs) of HHcy was 0.995 (0.991, 0.995) (P=0.005) when retinol intake was lower than 147.2  $\mu$ g/d and 1.000 (1.000, 1.001) (P=0.094) when retinol intake was more than 147.2  $\mu$ g/d, and the P value of log-likelihood ratio was 0.003. The non-association between carotenes, lutein and VE and HHcy was not shown. 

In stratified analyses, the association between dietary VC and retinol intake and HHcy prevalence were not significantly modified by sex (male or female), BMI (<24 or  $\geq$ 24 kg/m<sup>2</sup>) (all *P* for interaction were >0.05) (Figure 2). Similar results of stratified analyses of carotenes, lutein and VE were not shown.

262 Discussion

In this community-based cross-sectional study, we observed some of the antioxidant vitamins intakes were significantly correlated with the prevalence of HHcy. After adjusting potential confounders, a linear inverse association between VC intake and HHcy prevalence, and an L-shaped relationship between retinol intake and HHcy prevalence were found, which were not modified by sex or BMI. However, the nonsignificant effect of VE, carotenes and lutein on HHcy was detected.

Numerous studies have suggested that HHcy may be a modifiable risk factor forCVD, especially for stroke. In the past decades, there were many clinical trials aimed

Page 11 of 31

#### **BMJ** Open

to show the effect of folate and vitamins  $B_{12}$  and  $B_6$  supplement on lowering the levels of tHcy, however, the negative results were found in most studies (26). The potential reason may be correlated with the harmful effect of unmetabolized excessive folate or the cyanide and thiocyanate from excessive cyanocobalamin. In China, where folate fortification has not been implemented, folic acid significantly reduced the risk of stroke was observed from the China Stroke Primary Prevention Trial (CSPPT) (27). Thus, appropriate B vitamins therapy is of great importance for lowering tHcy levels in stroke prevention.

In the past decades, several researches reported the potential association between plasma levels or intake of different antioxidant vitamins and tHcy levels (18, 19, 28-30). In 1999, Brude IR et al. observed the inverse association between plasma tHcy concentration and dietary intake of vegetables, vitamin C and  $\beta$ -carotene from 41 participants (28). In addition, dietary intake of retinol equivalents,  $\beta$ -carotene and VC were inversely correlated with plasma tHcy levels, after adjustment for dietary B-vitamins, but not after additional adjustment for plasma folate and vitamin  $B_{12}$  (19). What's more, the study focused on the effect of antioxidant vitamins on the plasma tHcy levels in a free-living elderly population found that plasma VC, rather than the intake and supplementation of VC, showed a negative association with tHcy in simple regression analysis, and also found that the plasma levels, as well as the intake and supplementation of vitamin E, and  $\beta$ -carotene were not associated with tHcy (18). Similarly, the cross-sectional NHANES 1999–2002 study found that dietary VC and VE intake were associated with a lower prevalence of elevated blood tHcy concentration, whereas no association between dietary carotenes intake and tHcy was detected (29). In addition, Rajesh Ullegaddi et al. found that significant reductions in plasma homocysteine in the group with antioxidant treatment (vitamins C and E) combination with B-vitamin, compared with the group with B-vitamin alone (30), which support the importance of antioxidant vitamins on tHcy metabolism.

298 Consistent with our findings, these studies have a common conclusion that VC intake 299 was inversely correlated with tHcy levels. Given the report of an interaction of VC and 300 folate (31), Magana AA *et al.* found the underlying molecular mechanisms that VC activates the folate-mediated one-carbon cycle in C2C12 myoblasts (32). Thus, VC has
been explored as an attractive factor to increase circulating levels of folic acid and to
reduce Hcy levels.

We found an L-shaped association between dietary retinol intake and high tHcy prevalence, which meant that if the retinol intake was low, the risk of HHcy was decreased as retinol intake increased, but the risk was not changed when retinol intake reached certain level, which was more than 147.2  $\mu$ g/d among the participants in this study. The dietary intake of retinol equivalents was inversely correlated with plasma tHcy levels after adjustment for dietary B-vitamins (19). Retinol, a preformed vitamin A, plays an important role in vision, cellular differentiation, and proliferation, as well as the immune system regulation. In addition, there is increasing evidence indicates that retinol seems to inhibit thrombosis (33) and inflammation effects (34), which indicates retinol is emerging as a factor of interest to CVD. Brazionis L et al. reported that plasma retinol was a novel marker for CVD mortality in Australian adults, with an inverse association between plasma retinol in the middle tertile and 5-year CVD mortality (35). Similarly, a strong association between low retinol and the risk of sudden cardiac death was examined (36). In addition, a nested case-control study showed a significant inverse association between plasma retinol and the risk of first stroke among Chinese hypertensive adults from the CSPPT (37), which may due to relatively low baseline retinol concentrations (median: 67.5 µg/dL). Besides, the interaction of retinol and tHcy on CVD risk was also reported. Yu Y et al. (37) showed the inverse effect between plasma retinol and first stroke was stronger among the participants whose tHcy < 10 $\mu$ mol/L than whose tHcy  $\geq$  10  $\mu$ mol/L. Olsen T *et al.* (38) found that the plasma tHcy was associated with acute myocardial infarction only in the upper Vit-A tertile, and the potential mechanisms may include inflammation and lipid metabolism, which may be partly interpreted with the high intake of retinol (1576 µg RAE/d). 

In addition, the dietary source of retinol may contribute to the non-significant effect of retinol in the highest quartile in the fully adjusted model, as it is present in animalbased foods, particularly in liver and whole milk. In this study, we found the TG level was gradually increased with the increase of retinol (data not shown). High retinol

#### **BMJ** Open

| 23                              |             |  |
|---------------------------------|-------------|--|
|                                 |             |  |
| 4                               |             |  |
| 5                               |             |  |
| 6                               |             |  |
| 7                               |             |  |
| ,<br>8                          |             |  |
|                                 |             |  |
| 9                               |             |  |
| 1                               | 0           |  |
| 1                               | 0<br>1<br>2 |  |
| 1                               | 2           |  |
| 1                               | 3           |  |
| 1                               | 4           |  |
| 1                               | 4           |  |
| 1                               | 5           |  |
| 1                               | 6           |  |
| 1                               | 7           |  |
| 1                               | 8           |  |
| 1                               | 9           |  |
| י<br>ר                          | 0           |  |
| 2<br>2                          | 1           |  |
| 2                               | 1           |  |
| 2                               | 2           |  |
| 2                               | 3           |  |
| 2                               | 4           |  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2 | 5           |  |
| 2<br>ว                          | 6           |  |
| 2                               |             |  |
| 2                               | 7           |  |
| 2                               | 8           |  |
| 2                               | 9           |  |
| 3                               | 0           |  |
|                                 | 1           |  |
| 3                               | 2           |  |
| 3                               |             |  |
|                                 |             |  |
| 3                               | 4           |  |
| 3                               | 5           |  |
| 3                               | 6           |  |
| 3                               | 7           |  |
| 2                               | ,<br>8      |  |
| с<br>2                          | 0<br>9      |  |
|                                 |             |  |
|                                 | 0           |  |
| 4                               | 1           |  |
| 4                               |             |  |
| 4                               | 3           |  |
| 4                               | 4           |  |
| 4                               |             |  |
|                                 |             |  |
| 4                               |             |  |
| 4                               |             |  |
| 4                               |             |  |
| 4                               | 9           |  |
| 5                               | 0           |  |
| 5                               | 1           |  |
| 5<br>5                          | ו<br>2      |  |
| S<br>Z                          | 2           |  |
| 5                               | 3           |  |
| 5                               | 4           |  |
| 5                               | 5           |  |
| 5                               | 6           |  |
| 5                               | 7           |  |
| 5                               | /<br>0      |  |
| 2<br>-                          | ۵<br>۲      |  |
| 5                               | 9           |  |

intake may alter lipid metabolism by increasing TG level, which may impact the tHcymetabolism (39).

At present, a few studies demonstrate the complicated relationship between retinol, tHcy and CVD risk, but the underlying mechanism has not yet been clarified (40). The antioxidant activity of retinol may be a plausible mechanism that links the effect of retinol on tHcy levels, as retinol is essential for the maintenance of immune function and antioxidant defence (41, 42).

However, we found no relationship between HHcy prevalence and dietary intake of VE. The aforementioned study has found significant inverse associations between plasma tHcy and dietary intake of VE, but the effect was not significant after adjusting B-vitamins intake, which was consistent with our finding (19). On the contrary, dietary VE ( $\alpha$ -tocopherol) intake was associated with a lower risk of elevated blood tHcy concentration among US adults (29).

Epidemiological studies have reported the positive role of carotenoids on human 344 health. In this study, we focused on the effect of carotenes ( $\beta$ -carotene,  $\alpha$ -carotene and 345 346  $\beta$ -cryptoxanthin) and lutein on tHcy, however, the negative results were found. Many of the aforementioned studies reported the protective effect of  $\beta$ -carotene by lowering 347 tHcy concentration (19, 28), but the risk of tHcy  $> 13 \mu$ mol/L was associated with the 348 total carotene intake from diet plus supplement use, rather than the only intake from 349 diet (29). The negative finding of lutein cannot be compared because of a lack of 350 previously reported data. Thus, more prospective cohort studies and randomized double 351 352 trials are warranted to indicate the relationship of antioxidant vitamins with HHcy risk. 353 The strength of this study is the face-to-face researcher-administered FFQ survey. 354 First, to our knowledge, this is the first study to demonstrate an association of dietary 355 intake of antioxidant vitamins with HHcy prevalence that was conducted in both a male and female hypertensive population. Then, the researcher-administered face-to-face 356 interview was considered by validated FFQ, which was designed to evaluate dietary 357 358 intake and gave full consideration to eating habits and food nutrient composition in the Chinese population. 359

360

60

Our study has several limitations. First, based on a cross-sectional study design, we

cannot draw a conclusion about causality. The strong effects observed in this study may be enhanced because of selection effects, because hypertensive individuals may have made changes to their diet in response to diagnosis. Second, we adjusted the dietary intake of folate, B<sub>12</sub>, B<sub>6</sub>, rather than plasma concentrations, which may could not eliminate confounding effect. Just like Konstantinova SV (19) reported, the inverse correlation of dietary retinol intake and plasma tHcy disappeared after adjustment for plasma folate and vitamin B<sub>12</sub>. Then, we investigated the participants whether they took dietary supplements, while the detailed doses were not recorded. Therefore, we are not able to eliminate the possible association between supplement use and HHcy prevalence. Nevertheless, the study reported that there was some potential benefit from the antioxidant supplementation on plasma tHcy concentration (29), which could stabilize the positive results in this study. In addition, although some confounding factors were included in the analysis, other potential confounders may exist. For instance, the influence of smoking and drinking on HHcy was not assessed because of the lack of information about the status of smoking and drinking. 

In conclusion, we found dietary intake of VC and retinol was inversely associated with HHcy prevalence in middle-aged and older adults with hypertension after adjusting the potential confounders. Our findings have provided suggestive evidence of an inverse relationship between certain antioxidant intake and HHcy, which should be the impetus for longitudinal and random control trails to verify the relationship and direction and to elucidate the underlying mechanisms in the future.

382 Acknowledgements

The authors are grateful to the individuals who participate in this study. We also thank the investigators, staff and participants from the community health service centres for their assistance.

386 Funding

The present study was jointly supported by the National Natural Science Foundation of China (No. 81573149), the Health and Family Commission of Shenzhen Municipality Funded Project (No. 201502017 and SZSJ2017001) and Nanshan District, Shenzhen Science and Technology Innovation Bureau funded projects (No. 2015064).

| 3        | 391 | Contributors                                                                             |
|----------|-----|------------------------------------------------------------------------------------------|
| 5<br>6   | 392 | The authors' responsibilities were as follows: H.L. conceived and designed the study     |
| 7<br>8   | 393 | and critically revised the manuscript. P.X. and G.Q. analyzed the data and wrote the     |
| 9<br>10  | 394 | paper. Z.J. participated in the laboratory assay. M.J. and Z.D. collected the data and   |
| 11<br>12 | 395 | revised the manuscript. All authors read and approved the final version of the           |
| 13<br>14 | 396 | manuscript.                                                                              |
| 15<br>16 | 397 | Competing interests                                                                      |
| 17       | 398 | No, there are no competing interests for any author.                                     |
| 18<br>19 | 399 | Ethics approval                                                                          |
| 20<br>21 | 400 | The survey protocol was approved by the Ethics Committee of the Shenzhen                 |
| 22<br>23 | 401 | Nanshan Centre for Chronic Disease Control (ID: 1120190003), and all participants        |
| 24<br>25 | 402 | provided written informed consent before enrolment.                                      |
| 26<br>27 | 403 | Data availability statement                                                              |
| 28<br>29 | 404 | No data are available.                                                                   |
| 30<br>31 | 405 |                                                                                          |
| 32<br>33 | 406 | References                                                                               |
| 34<br>35 | 407 | 1. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a Risk Factor for           |
| 36<br>37 | 408 | Vascular Contributions to Cognitive Impairment and Dementia. Front Aging Neurosci        |
| 38       | 409 | 2018;10:350.                                                                             |
| 39<br>40 | 410 | 2. Saposnik G, Ray JG, Sheridan P et al. Homocysteine-lowering therapy and stroke        |
| 41<br>42 |     |                                                                                          |
| 43<br>44 | 411 | risk, severity, and disability: additional findings from the HOPE 2 trial. <i>Stroke</i> |
| 45<br>46 | 412 | 2009;40:1365-1372.                                                                       |
| 47<br>48 | 413 | 3. Guo H, Chi J, Xing Y et al. Influence of folic acid on plasma homocysteine levels &   |
| 49<br>50 | 414 | arterial endothelial function in patients with unstable angina. Indian J Med Res         |
| 51       | 415 | 2009;129:279-284.                                                                        |
| 52<br>53 | 416 | 4. Baszczuk A, Kopczyński Z. [Hyperhomocysteinemia in patients with cardiovascular       |
| 54<br>55 | 417 | disease]. Postepy Hig Med Dosw (Online) 2014;68:579-589.                                 |
| 56<br>57 | 418 | 5. Forouzanfar MH, Liu P, Roth GA et al. Global Burden of Hypertension and Systolic      |
| 58<br>59 | 419 | Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA 2017;317:165-182.           |
| 60       | 420 | 6. Carey RM, Muntner P, Bosworth HB et al. Reprint of: Prevention and Control            |

| 421 | of Hypertension: JACC Health Promotion Series. J Am Coll Cardiol 2018;72:2996-          |
|-----|-----------------------------------------------------------------------------------------|
| 422 | 3011.                                                                                   |
| 423 | 7. Wang Z, Chen Z, Zhang L et al. Status of Hypertension in China: Results From the     |
| 424 | China Hypertension Survey, 2012-2015. Circulation 2018;137:2344-2356.                   |
| 425 | 8. Liu LS. [2010 Chinese guidelines for the management of hypertension]. Zhonghua       |
| 426 | <i>xin xue guan bing za zhi</i> 2011;39:579-615.                                        |
| 427 | 9. Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk   |
| 428 | Population Groups. Int J Mol Sci 2020;21:1421.                                          |
| 429 | 10. Shenoy V, Mehendale V, Prabhu K et al. Correlation of serum homocysteine levels     |
| 430 | with the severity of coronary artery disease. Indian J Clin Biochem 2014;29:339-344.    |
| 431 | 11. Li Y, Huang T, Zheng Y et al. Folic Acid Supplementation and the Risk of            |
| 432 | Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am          |
| 433 | Heart Assoc 2016;5:e003768.                                                             |
| 434 | 12. oseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic |
| 435 | acid in cardiovascular pathobiology. Nutrients. 2013;5(8):3235-3256.                    |
| 436 | 13. Odin E, Carlsson G, Frosing R et al. Chemical stability and human                   |
| 437 | plasma pharmacokinetics of reduced folates. Cancer Invest 1998;16(7):447-455.13.14.     |
| 438 | Lulock MD, Proestnall M, Daskalakis I et al. Nonenzymatic degradation and salvage       |
| 439 | of dietary folate: physicochemical factors likely to influence bioavailibility. Biochem |
| 440 | Mol Med 1995;55(1):43-53.                                                               |
| 441 | 15. Verlinde PH, Oey I, Hendrickx ME et al. L-ascorbic acid improves the serum          |
| 442 | folate response to an oraal dose of [6S]-5-methyltetrahydrofolic acid in healthy men.   |
| 443 | Eur J Clin Nutr 2008;62(10):1224-1230.                                                  |
| 444 | 16. Zou CG, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal         |
| 445 | 2005;7(5-6):547-559.                                                                    |
| 446 | 17. Waly M, Power-Charnitsky VA, Hodgson N et al. Alternatively Spliced Methionine      |
| 447 | Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and               |
| 448 | Inhibitory Effects of Neurotoxic Metals and Thimerosal. Oxid Med Cell Longev            |
| 449 | 2016;2016:6143753.                                                                      |
| 450 | 18. Breilmann J, Pons-Kuhnemann J, Brunner C et al. Effect of antioxidant vitamins on   |
|     |                                                                                         |

#### **BMJ** Open

| 2        |     |                                                                                        |
|----------|-----|----------------------------------------------------------------------------------------|
| 3        | 451 | the plasma homocysteine level in a free-living elderly population. Ann Nutr Metab      |
| 5<br>6   | 452 | 2010;57:177-182.                                                                       |
| 7<br>8   | 453 | 19. Konstantinova SV, Vollset SE, Berstad P et al. Dietary predictors of plasma total  |
| 9<br>10  | 454 | homocysteine in the Hordaland Homocysteine Study. Br J Nutr 2007;98:201-210.           |
| 11<br>12 | 455 | 20. Racek J, Rusnáková H, Trefil L et al. The influence of folate and antioxidants on  |
| 13<br>14 | 456 | homocysteine levels and oxidative stress in patients with hyperlipidemia and           |
| 15<br>16 | 457 | hyperhomocysteinemia. Physiol Res 2005;54:87-95.                                       |
| 17<br>18 | 458 | 21. Zhao L, Ma G, Piao J et al. [Scheme of the 2010-2012 Chinese nutrition and health  |
| 19<br>20 | 459 | surveillance]. Zhonghua Yu Fang Yi Xue Za Zhi 2016;50:204-207.                         |
| 21<br>22 | 460 | 22. Yang Y, Wang G, Pang X. China Food Composition 2002 [M]. Beijing: Peking           |
| 23<br>24 | 461 | University Medical Center Press 2002.                                                  |
| 25       | 462 | 23. Yang Y. China Food Composition 2004 [M]. Beijing: Peking University Medical        |
| 26<br>27 | 463 | Press 2004.                                                                            |
| 28<br>29 | 464 | 24. Chinese Society of Nutrition. Chinese dietary reference intakes 2013 [M]. Beijing: |
| 30<br>31 | 465 | Science Press 2014.                                                                    |
| 32<br>33 | 466 | 25. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic        |
| 34<br>35 | 467 | analyses. Am J Epidemiol 1986;124:17-27.                                               |
| 36<br>37 | 468 | 26. Spence JD. Homocysteine lowering for stroke prevention: Unravelling the            |
| 38<br>39 | 469 | complexity of the evidence. Int J Stroke 2016;11:744-747.                              |
| 40<br>41 | 470 | 27. Huo Y, Li J, Qin X et al. Efficacy of folic acid therapy in primary prevention of  |
| 42<br>43 | 471 | stroke among adults with hypertension in China: the CSPPT randomized clinical trial.   |
| 44<br>45 | 472 | JAMA 2015;313:1325-1335.                                                               |
| 46<br>47 | 473 | 28. Brude IR, Finstad HS, Seljeflot I et al. Plasma homocysteine concentration related |
| 48<br>49 | 474 | to diet, endothelial function and mononuclear cell gene expression among male          |
| 50<br>51 | 475 | hyperlipidaemic smokers. Eur J Clin Invest 1999;29:100-108.                            |
| 52<br>53 | 476 | 29. Floegel A, Chung SJ, von Ruesten A et al. Antioxidant intake from diet and         |
| 54<br>55 | 477 | supplements and elevated serum C-reactive protein and plasma homocysteine              |
| 56<br>57 | 478 | concentrations in US adults: a cross-sectional study. Public Health Nutr 2011;14:2055- |
| 58<br>59 | 479 | 2064.                                                                                  |
| 60       | 480 | 30. Ullegaddi R, Powers HJ, Gariballa SE. Antioxidant supplementation with or          |
|          |     |                                                                                        |

| 481 | without B-group vitamins after acute ischemic stroke: a randomized controlled            |
|-----|------------------------------------------------------------------------------------------|
| 482 | trial. JPEN J Parenter Enteral Nutr. 2006;30(2):108-114.                                 |
| 483 | 31. Lucock M, Yates Z, Boyd L et al. Vitamin C-related nutrient-nutrient and nutrient-   |
| 484 | gene interactions that modify folate status. Eur J Nutr 2013;52:569-582.                 |
| 485 | 32. Magana AA, Reed RL, Koluda R et al. Vitamin C Activates the Folate-Mediated          |
| 486 | One-Carbon Cycle in C2C12 Myoblasts. Antioxidants 2020;9:217.                            |
| 487 | 33. Horie S, Kizaki K, Ishii H et al. Retinoic acid stimulates expression of             |
| 488 | thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells.   |
| 489 | Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP.     |
| 490 | Biochem 1992;281:149-154.                                                                |
| 491 | 34. Swamidas GP, Basaraba RJ, Baybutt RC. Dietary retinol inhibits inflammatory          |
| 492 | responses of rats treated with monocrotaline. J Nutr 1999;129:1285-1290.                 |
| 493 | 35. Brazionis L, Walker KZ, Itsiopoulos C et al. Plasma retinol: a novel marker for      |
| 494 | cardiovascular disease mortality in Australian adults. Nutr Metab Cardiovasc Dis         |
| 495 | 2012;22:914-920.                                                                         |
| 496 | 36. Espe KM, Raila J, Henze A et al. Impact of vitamin A on clinical outcomes in         |
| 497 | haemodialysis patients. Nephrol Dial Transplant 2011;26:4054-4061.                       |
| 498 | 37. Yu Y, Zhang H, Song Y et al. Plasma retinol and the risk of first stroke in          |
| 499 | hypertensive adults: a nested case-control study. Am J Clin Nutr 2019;109:449-456.       |
| 500 | 38. Olsen T, Vinknes KJ, Svingen GFT et al. The risk association of plasma total         |
| 501 | homocysteine with acute myocardial infarction is modified by serum vitamin A. Eur J      |
| 502 | Prev Cardiol 2018;25:1612-1620.                                                          |
| 503 | 39. Puddu PE. Serum vitamin A, total homocysteine and acute myocardial infarction:       |
| 504 | is there a causal association? Eur J Prev Cardiol 2018;25:1607-1611.                     |
| 505 | 40. Momin M, Jia J, Fan F et al. Relationship between plasma homocysteine level and      |
| 506 | lipid profiles in a community-based Chinese population. Lipids Health Dis 2017;16:54.    |
| 507 | 41. da Silva R, dos Santos-Valente EC, Burim Scomparini F et al. The relationship        |
| 508 | between nutritional status, vitamin A and zinc levels and oxidative stress in patients   |
| 509 | with ataxia-telangiectasia. Allergol Immunopathol (Madr) 2014;42:329-335.                |
| 510 | 42. Ferreira CA, de Souza FI, Melges AP et al. Retinol, beta-carotene, oxidative stress, |
|     |                                                                                          |

| 1<br>2         |     | 18                                                                             |
|----------------|-----|--------------------------------------------------------------------------------|
| 2<br>3<br>4    | 511 | and metabolic syndrome components in obese asthmatic children. Pediatr Allergy |
| 5<br>6         | 512 | Immunol 2014;25:292-294.                                                       |
| 7<br>8         | 513 |                                                                                |
| 9<br>10        | 514 |                                                                                |
| 11<br>12       | 515 |                                                                                |
| 13<br>14       | 516 |                                                                                |
| 15<br>16       | 517 |                                                                                |
| 17<br>18       | 518 |                                                                                |
| 19<br>20       | 519 |                                                                                |
| 21<br>22       | 520 |                                                                                |
| 23<br>24       | 521 |                                                                                |
| 25<br>26       | 522 |                                                                                |
| 27<br>28       | 523 |                                                                                |
| 29<br>30       | 524 |                                                                                |
| 31<br>32       | 525 |                                                                                |
| 33<br>34       | 526 |                                                                                |
| 35<br>36       | 527 |                                                                                |
| 37             | 528 |                                                                                |
| 38<br>39<br>40 | 529 |                                                                                |
| 41             | 530 |                                                                                |
| 42<br>43<br>44 | 531 |                                                                                |
| 44<br>45<br>46 | 532 |                                                                                |
| 47             | 533 |                                                                                |
| 48<br>49       | 534 |                                                                                |
| 50<br>51       | 535 |                                                                                |
| 52<br>53       | 536 |                                                                                |
| 54<br>55       | 537 |                                                                                |
| 56<br>57       | 538 |                                                                                |
| 58<br>59<br>60 | 539 |                                                                                |

|                            | Total (n=1465)   | HHcy (n=469)      | non-HHcy (n=996) | Р       |
|----------------------------|------------------|-------------------|------------------|---------|
| Age (years)                | $62.0\pm10.7$    | $64.4 \pm 11.4$   | $60.9 \pm 10.2$  | < 0.001 |
| Gender (Male, n (%))       | 729 (49.8)       | 339 (72.3)        | 390 (39.2)       | < 0.001 |
| BMI (kg/m <sup>2</sup> )   | $24.9\pm3.5$     | $25.0 \pm 3.4$    | $24.8 \pm 3.6$   | 0.252   |
| WC (cm)                    | $87.3\pm9.5$     | $88.7 \pm 10.0$   | $86.7\pm9.2$     | < 0.001 |
| SBP (mmHg)                 | $132.9 \pm 13.5$ | $133.9\pm14.0$    | $132.4 \pm 13.3$ | 0.046   |
| DBP (mmHg)                 | 80.4 ± 10.6      | $81.2 \pm 11.4$   | $80.0 \pm 10.2$  | 0.050   |
| tHcy (μmol/L)              | $14.63 \pm 9.06$ | $21.57 \pm 13.35$ | $11.37 \pm 1.89$ | < 0.00  |
| FPG (mmol/L)               | $5.42 \pm 1.54$  | $5.29 \pm 1.35$   | $5.49 \pm 1.62$  | 0.024   |
| TC (mmol/L)                | 5.25 ± 1.64      | $5.20\pm2.49$     | $5.27 \pm 1.02$  | 0.414   |
| TG (mmol/L)                | $1.95 \pm 1.39$  | $2.01 \pm 1.34$   | $1.92 \pm 1.41$  | 0.254   |
| LDL-C (mmol/L)             | $3.19\pm0.87$    | $3.14\pm0.89$     | $3.21\pm0.87$    | 0.133   |
| Uric acid (µmol/L)         | $380\pm97$       | ▲ 420 ± 103       | $362 \pm 89$     | < 0.00  |
| Creatinine (µmol/L)        | $83 \pm 44$      | 98 ± 67           | $76 \pm 25$      | < 0.00  |
| Sedentary time <3h/d (n (% | (o)) 667 (45.5)  | 211 (45.0)        | 456 (45.8)       | 0.776   |
| History of disease (n (%)) |                  |                   |                  |         |
| Coronary heart disease     | 178 (12.2)       | 72 (15.4)         | 106 (10.6)       | 0.010   |
| Cerebral hemorrhage        | 15 (1.0)         | 11 (2.3)          | 4 (0.4)          | < 0.00  |
| Cerebral thrombosis        | 61 (4.2)         | 34 (7.2)          | 27 (2.7)         | < 0.00  |
| Diabetes                   | 240 (16.4)       | 82 (17.5)         | 158 (15.9)       | 0.434   |
| Kidney disease             | 57 (3.9)         | 34 (7.2)          | 23 (2.3)         | < 0.00  |
| Medications use (n (%))    |                  |                   |                  |         |
| Antihypertensive           | 1146 (78.2)      | 380 (81.0)        | 766 (76.9)       | 0.075   |
| Antihyperglycemic          | 21(1.4)          | 8 (1.7)           | 13 (1.3)         | 0.547   |
| Lipid-lowering             | 21 (1.4)         | 5 (1.1)           | 16 (1.6)         | 0.417   |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HHcy, hyperhomocysteinemia; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; tHcy, total homocysteine; WC, waist circumference.<sup>#</sup>: Values are mean  $\pm$  SD or median (interquartile range) or number (percentage).

| Table 2   The dietary intake of | food and nutrients of the participar | nts <sup>#</sup>     | bmjopen-2020-045732 on 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|--------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dietary intake (/d)             | Total (n=1465)                       | HHcy (n=469)         | nongHHcy (n=996)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Energy (kcal)                   | 1488 (1172, 1899)                    | 1508 (1202-1874)     | 1473 (1150-1913)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vegetable (g)                   | 383.7 (240.3, 578.0)                 | 377.7 (227.2, 580.0) | 3882 (252.5, 577.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fruit (g)                       | 79.2 (39.7, 139.5)                   | 75.4 (33.2, 127.5)   | 81 (42.1, 144.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Protein (g)                     | 43.2 (35.4, 53.5)                    | 41.7 (33.9-50.9)     | 4482 (36.2-54.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat (g)                         | 54.3 (42.2, 65.6)                    | 52.5 (41.6-64.3)     | 55 <u>9</u> 1 (42.6-65.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbohydrate (g)                | 206.6 (179.4, 234.4)                 | 212.6 (186.6-237.7)  | 204 (176.6-231.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cholesterol (mg)                | 232.7 (152.3, 325.8)                 | 228.3 (154.5, 313.7) | 236 <sup>3</sup> (147.3, 333.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fibre (g)                       | 11.2 (8.2, 15.2)                     | 10.6 (7.9-14.8)      | 1.4 (8.4-15.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vitamin C (mg)                  | 153.5 (91.2, 240.9)                  | 138.6 (85.6-231.6)   | 1595 (93.6-242.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vitamin E (mg)                  | 25.0 (19.3-31.9)                     | 24.1 (19.0-31.5)     | 254 (19.5-32.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Carotenes (mg)                  | 3.3 (1.8, 5.6)                       | 3.1 (1.7-5.5)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Retinol (µg)                    | 138.3 (78.0, 283.6)                  | 110.9 (62.2-239.3)   | 15150 (83.3-317.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lutein (mg)                     | 9.5 (5.2, 14.8)                      | 9.0 (5.1-14.2)       | 9<br>9<br>9<br>6 (5.3-15.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Folate (µg)                     | 170.4 (109.4, 263.5)                 | 160.0 (99.9-246.2)   | 176 الم<br>176 م<br>176  م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>17 |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Vitamin $B_{12} (\mu g)$ 2.7 (1.6, 4.6)2.3 (1.4-4.0) $30 (1.8-4.9)$ Saturated fatty acid (g)10.6 (8.1-13.2)10.2 (7.8-12.9)10.8 (8.3-13.3)Monounsaturated fatty acid (g)12.7 (9.8-16.3)12.4 (9.7-16.1)12.9 (9.9-16.3)Polyunsaturated fatty acid (g)20.0 (14.9-26.4)19.7 (14.9-26.0)202 (15.0-26.7)Selenium ( $\mu g$ )31.3 (23.2, 41.9)28.6 (21.0-38.8)325 (24.5-43.7)Magnesium (mg)216.1 (173.3-269.2)205.8 (167.7-261.5)2218 (176.3-271.6) | 0.2    | O O                   | HHcy (n=469)        | Total                 |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|---------------------|-----------------------|--------------------------------|
| Saturated fatty acid (g) $10.6 (8.1-13.2)$ $10.2 (7.8-12.9)$ $10.8 (8.3-13.3)$ Monounsaturated fatty acid (g) $12.7 (9.8-16.3)$ $12.4 (9.7-16.1)$ $12.9 (9.9-16.3)$ Polyunsaturated fatty acid (g) $20.0 (14.9-26.4)$ $19.7 (14.9-26.0)$ $2002 (15.0-26.7)$ Selenium (µg) $31.3 (23.2, 41.9)$ $28.6 (21.0-38.8)$ $325 (24.5-43.7)$ Magnesium (mg) $216.1 (173.3-269.2)$ $205.8 (167.7-261.5)$ $22129 (176.3-271.6)$                         |        | 0.2-0.5)              | 0.3 (0.2-0.5)       | 0.3 (0.2, 0.5)        | Vitamin $B_6$ (mg)             |
| Monounsaturated fatty acid (g)12.7 (9.8-16.3)12.4 (9.7-16.1)19.9 (9.9-16.3)Polyunsaturated fatty acid (g)20.0 (14.9-26.4)19.7 (14.9-26.0) $2002 (15.0-26.7)$ Selenium (µg)31.3 (23.2, 41.9)28.6 (21.0-38.8) $325 (24.5-43.7)$ Magnesium (mg)216.1 (173.3- 269.2)205.8 (167.7-261.5) $22192 (176.3-271.6)$                                                                                                                                   | <0.    | 0                     | 2.3 (1.4-4.0)       | 2.7 (1.6, 4.6)        | Vitamin $B_{12}$ (µg)          |
| Polyunsaturated fatty acid (g) $20.0 (14.9-26.4)$ $19.7 (14.9-26.0)$ $200 (14.9-26.7)$ Selenium (µg) $31.3 (23.2, 41.9)$ $28.6 (21.0-38.8)$ $325 (24.5-43.7)$ Magnesium (mg) $216.1 (173.3-269.2)$ $205.8 (167.7-261.5)$ $2213 (176.3-271.6)$                                                                                                                                                                                               | 0.0    | 16.8 (8.3-13.3)       | 10.2 (7.8-12.9)     | 10.6 (8.1-13.2)       | Saturated fatty acid (g)       |
| Selenium (μg)31.3 (23.2, 41.9)28.6 (21.0-38.8)32.5 (24.5-43.7)Magnesium (mg)216.1 (173.3- 269.2)205.8 (167.7-261.5)221.9                                                                                                                                                                                                                                                                                                                    | 0.1    | 12.9 (9.9-16.3)       | 12.4 (9.7-16.1)     | 12.7 (9.8-16.3)       | Monounsaturated fatty acid (g) |
| Magnesium (mg) 216.1 (173.3-269.2) 205.8 (167.7-261.5) 221 (176.3-271.6)                                                                                                                                                                                                                                                                                                                                                                    | ) 0.2  | 2022 (15.0-26.7)      | 19.7 (14.9-26.0)    | 20.0 (14.9-26.4)      | Polyunsaturated fatty acid (g) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) <0.  | 325 (24.5-43.7)       | 28.6 (21.0-38.8)    | 31.3 (23.2, 41.9)     | Selenium (µg)                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6) 0.0 | 221 (176.3-271.6)     | 205.8 (167.7-261.5) | 216.1 ( 173.3- 269.2) | Magnesium (mg)                 |
| Zinc (mg) $7.0 ( 6.0- 8.3 )$ $6.8 (5.9-7.9 )$ $\boxed{3}.1 (6.1-8.5 )$                                                                                                                                                                                                                                                                                                                                                                      | <0.    | <u>3</u> .1 (6.1-8.5) | 6.8 (5.9-7.9)       | 7.0 ( 6.0- 8.3)       | Zinc (mg)                      |
| Iron (mg) 16.6 (12.0-23.4) 16.5 (11.8-23.1) 1666 (12.1-23.6)                                                                                                                                                                                                                                                                                                                                                                                | ) 0.2  |                       | 16.5 (11.8-23.1)    | 16.6 ( 12.0- 23.4)    | Iron (mg)                      |
| Supplement use (n (%)) $302 (20.6)$ $80 (17.1)$ $9 \\ > 222 (22.3)$                                                                                                                                                                                                                                                                                                                                                                         | 0.0    | ≥222 (22.3)           | 80 (17.1)           | 302 (20.6)            | Supplement use (n (%))         |

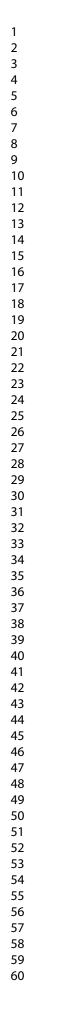
Page 23 of 31

|                                                    |                           |                   | BMJ Open               | omjopen-zuzu-c                                                                         |                   |                    |
|----------------------------------------------------|---------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------|-------------------|--------------------|
|                                                    |                           |                   |                        |                                                                                        |                   |                    |
| <b>Table 3</b> $\beta$ (95% CI hypertensive partic | s) and ORs (95% CIs) of d | ietary intakes of | f antioxidant vitamins | and homocysteine level                                                                 | )                 | d and old          |
|                                                    | tHcy                      | Q1                | Q2                     | Q3                                                                                     | Q4                | $P_{\rm for tree}$ |
| Vitamin C (mg/d)                                   | ~                         | < 91.2            | 91.2-153.5             | 153.6-240.9                                                                            | ≥ 240.9           |                    |
| Cases (%)                                          |                           | 132 (36.1)        | 122 (33.3)             | Q3<br>153.6-240.9<br>104 (28.4)<br>0.70 (0.52, 0.96)                                   | 111 (30.2)        |                    |
| Crude Model                                        | -0.037 (-0.063, -0.011)   | Ref.              | 0.89 (0.65, 1.20)      |                                                                                        |                   | 0.07               |
| Model I                                            | -0.031 (-0.055, -0.006)   | Ref.              | 0.92 (0.66, 1.27)      | 0.64 (0.46, 0.90)                                                                      | 0.55 (0.34, 0.89) | 0.048              |
| Model II                                           | -0.050 (-0.084, -0.016)   | Ref.              | 0.82 (0.57, 1.16)      | 0.49 (0.33, 0.74)                                                                      | 0.40 (0.22, 0.74) | 0.00               |
| Vitamin E (mg/d)                                   |                           | < 19.3            | 19.3-25.0              | 25.1-31.9                                                                              | ≥ 31.9            |                    |
| Cases (%)                                          |                           | 122 (33.6)        | 126 (34.2)             | 0.64 (0.46, 0.90)<br>0.49 (0.33, 0.74)<br>25.1-31.9<br>113 (30.9)<br>0.88 (0.65, 1.20) | 108 (29.3)        |                    |
| Crude Model                                        | -0.035 (-0.084, 0.014)    | Ref.              | 1.03 (0.76, 1.40)      | 0.88 (0.65, 1.20)                                                                      | 0.82 (0.60, 1.12) | 0.139              |
| Model I                                            | -0.007 (-0.053, 0.039)    | Ref.              | 1.10 (0.79, 1.53)      |                                                                                        |                   | 0.618              |
| Model II                                           | -0.009 (-0.055, 0.036)    | Ref.              | 1.12 (0.80, 1.57)      | 0.96 (0.69, 1.34)<br>0.95 (0.68, 1.33)                                                 | 0.91 (0.65, 1.28) | 0.412              |
| Carotenes (mg/d)                                   |                           | < 1.78            | 1.78-3.30              | 3.31-5.61                                                                              | ≥ 5.61            |                    |
| Cases (%)                                          |                           | 118 (32.7)        | 136 (37.0)             | 99 (26.8) 99                                                                           | 116 (31.6)        |                    |
| Crude Model                                        | -0.024 (-0.045, -0.003)   | Ref.              | 1.21 (0.89, 1.64)      | 0.76 (0.55, 1.04)                                                                      |                   | 0.315              |
|                                                    |                           |                   |                        |                                                                                        |                   | n next pag         |
|                                                    |                           |                   |                        | ed by                                                                                  | -                 |                    |
|                                                    |                           |                   |                        | rotected by copyright                                                                  |                   |                    |
|                                                    |                           |                   |                        | ignt.                                                                                  |                   |                    |

bmjopen-

|                     |                         |            |                   |                                                                                         |                   | 23                  |
|---------------------|-------------------------|------------|-------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------|
| Table 3 (continued) | <i>d</i> )              |            |                   | 45/32 on 12                                                                             |                   |                     |
|                     | tHcy                    | Q1         | Q2                | Q3 Coto                                                                                 | Q4                | $P_{\rm for trend}$ |
| Model I             | -0.022 (-0.042, -0.003) | Ref.       | 1.22 (0.88, 1.69) | 0.72 (0.51, 1.01)                                                                       | 0.93 (0.67, 1.30) | 0.254               |
| Model II            | -0.022 (-0.052, 0.009)  | Ref.       | 1.18 (0.84, 1.68) | 0.72 (0.51, 1.01)<br>0.68 (0.46, 1.02)<br>138.4-283.6<br>91 (24.9)                      | 0.76 (0.43, 1.35) | 0.159               |
| Retinol (µg/d)      |                         | < 78.0     | 78.0-138.3        | 138.4-283.6                                                                             | ≥ 283.6           |                     |
| Cases (%)           |                         | 147 (40.2) | 133 (36.3)        |                                                                                         |                   |                     |
| Crude Model         | -0.030 (-0.046, -0.015) | Ref.       | 0.85 (0.63, 1.15) | 0.49 (0.36, 0.68)                                                                       | 0.54 (0.40, 0.74) | 0.001               |
| Model I             | -0.027 (-0.041, -0.012) | Ref.       | 0.84 (0.61, 1.16) | 0.50 (0.35, 0.70)                                                                       | 0.55 (0.40, 0.77) | 0.003               |
| Model II            | -0.021 (-0.041, -0.002) | Ref.       | 0.90 (0.65, 1.25) | 0.61 (0.42, 0.86)                                                                       | 0.86 (0.56, 1.32) | 0.951               |
| Lutein (mg/d)       |                         | < 5.22     | 5.22-9.48         | 0.49 (0.36, 0.68)<br>0.50 (0.35, 0.70)<br>0.61 (0.42, 0.86)<br>9.49-14.82<br>114 (31.1) | ≥ 14.82           |                     |
| Cases (%)           |                         | 123 (33.7) | 120 (32.8)        | 114 (31.1)                                                                              | 112 (30.4)        |                     |
| Crude Model         | -0.028 (-0.053, -0.004) | Ref.       | 0.96 (0.71, 1.31) |                                                                                         | -                 | 0.311               |
| Model I             | -0.024 (-0.046, -0.001) | Ref.       | 0.98 (0.71, 1.37) | 0.89 (0.65, 1.21)<br>0.84 (0.61, 1.17)                                                  | 0.87 (0.62, 1.22) | 0.331               |
| Model II            | -0.025(-0.063, 0.013)   | Ref.       | 0.92 (0.65, 1.31) | 0.76 (0.51, 1.14)                                                                       | 0.66 (0.37, 1.19) | 0.138               |

 Model I: Adjusted for age, sex ('male' as the reference) BMI. and vitamin B12, supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). rotected by copyright.


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

540 Figure Legends:

Fig. 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , the history of cardiovascular events ('no' as the reference).

Fig. 2 ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to
vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age,
sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as</li>
the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin
B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).

BMJ Open: first published as 10.1136/bmjopen-2020-045732 on 12 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



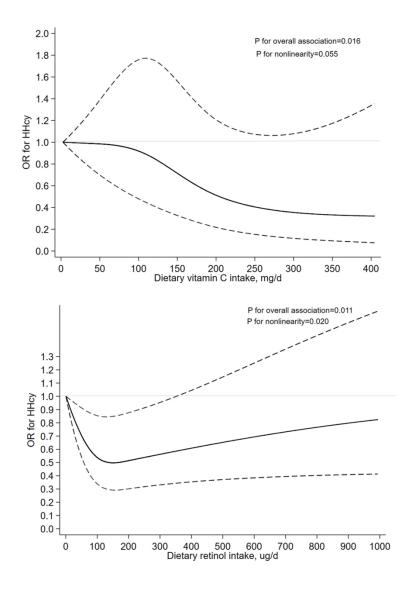
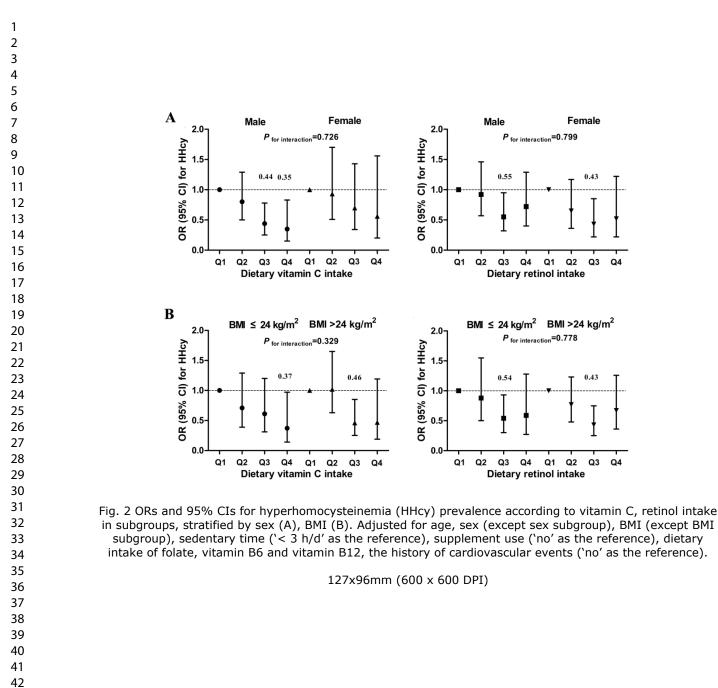
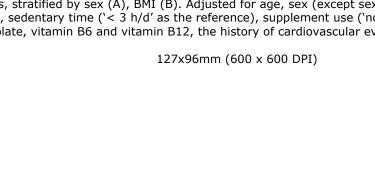



Fig. 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).</li>


187x287mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Q3

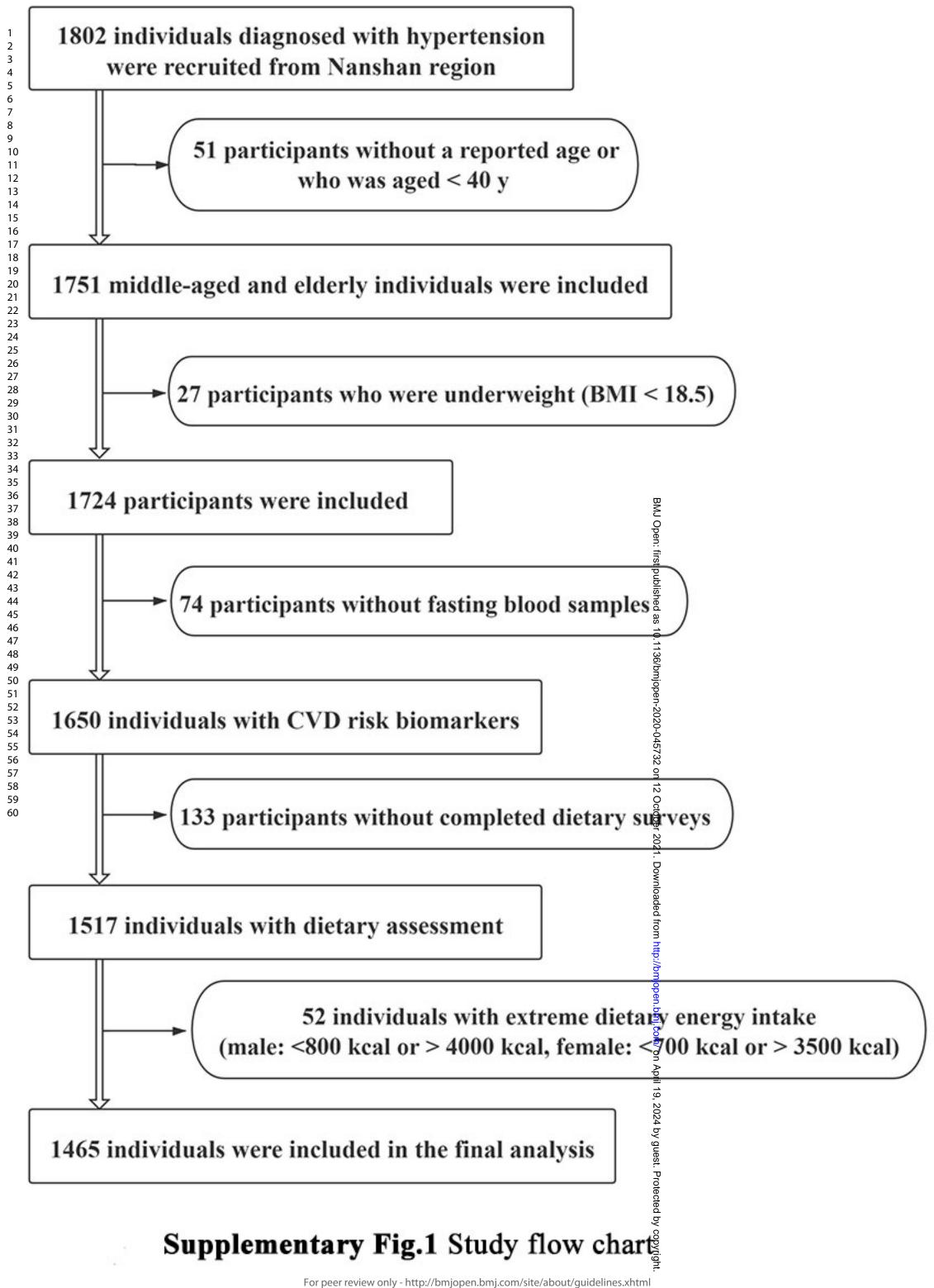
Q3 Q4

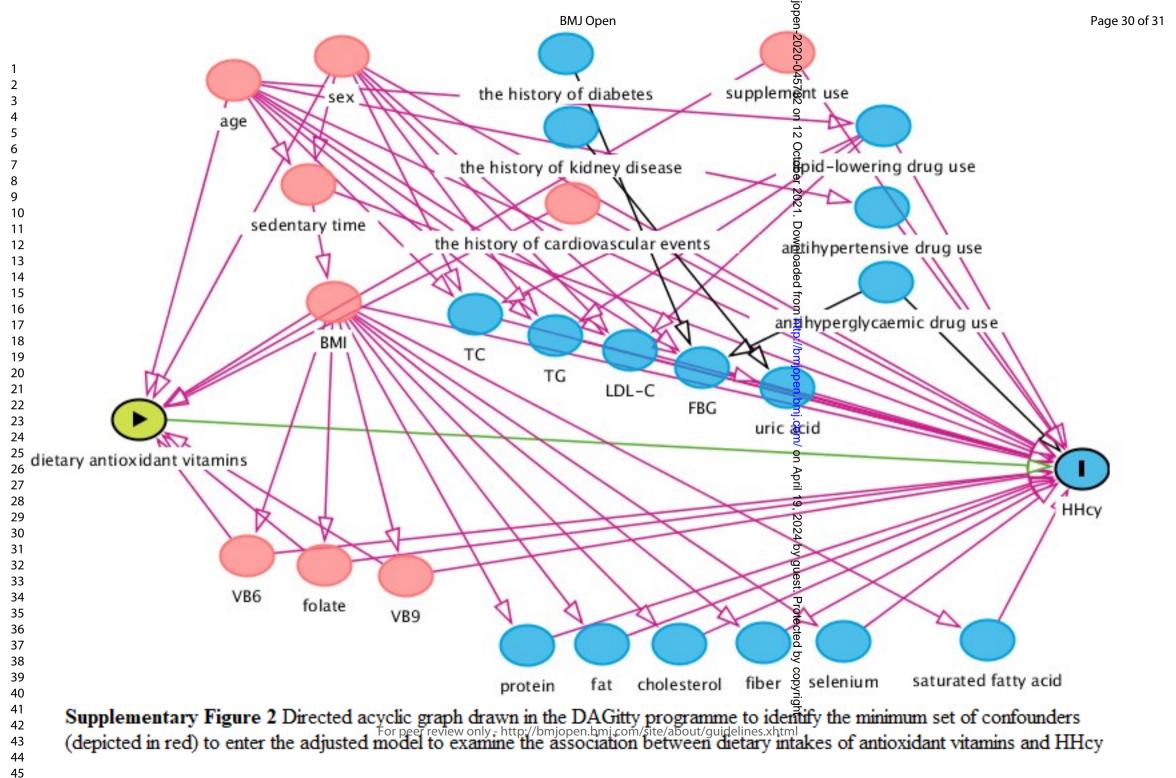
Q4








For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2020-045732 on 12 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

**Supplementary Table 1** Sensitivity analyses of ORs (95% CIs) of antioxidant vitamins intake for hyperhomocysteinemia prevalence in multivariable-adjusted model among the patients with hypertension <sup>#</sup>

|                 | Q1              | Q2                | Q3                | Q4                | P for trend |
|-----------------|-----------------|-------------------|-------------------|-------------------|-------------|
| Without cardiov | vascular events | s (n=1245)        |                   |                   |             |
| Vitamin C       | 1.00 (Ref.)     | 0.92 (0.63, 1.35) | 0.54 (0.35, 0.84) | 0.41 (0.21, 0.80) | 0.003       |
| Vitamin E       | 1.00 (Ref.)     | 1.14 (0.79, 1.64) | 0.95 (0.66, 1.39) | 0.90 (0.62, 1.31) | 0.425       |
| Carotenes       | 1.00 (Ref.)     | 1.25 (0.85,1.84   | 0.67 (0.43, 1.04) | 0.77 (0.41, 1.44) | 0.178       |
| Retinol         | 1.00 (Ref.)     | 1.05 (0.73, 1.50) | 0.61 (0.43, 0.94) | 0.78 (0.50, 1.34) | 0.836       |
| Lutein          | 1.00 (Ref.)     | 1.04 (0.71, 1.53) | 0.74 (0.48, 1.14) | 0.63 (0.33, 1.20) | 0.104       |
| Without tHcy-lo | owering drug-   | using (n=1360)    |                   |                   |             |
| Vitamin C       | 1.00 (Ref.)     | 0.85 (0.58, 1.24) | 0.49 (0.31, 0.78) | 0.44 (0.22, 0.86) | 0.007       |
| Vitamin E       | 1.00 (Ref.)     | 1.07 (0.74, 1.55) | 0.98 (0.68, 1.42) | 0.95 (0.66, 1.37) | 0.685       |
| Carotenes       | 1.00 (Ref.)     | 1.27 (0.87, 1.85) | 0.69 (0.44, 1.07) | 0.67 (0.35, 1.28) | 0.090       |
| Retinol         | 1.00 (Ref.)     | 0.84 (0.59, 1.20) | 0.56 (0.38, 0.84) | 0.85 (0.54, 1.35) | 0.837       |
| Lutein          | 1.00 (Ref.)     | 0.88 (0.60, 1.29) | 0.74 (0.47, 1.15) | 0.60 (0.31, 1.16) | 0.115       |

<sup>#</sup>: Adjusted for age, sex, BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ .





Page 31 of 31

 BMJ Open

| Section/Topic                | ltem<br># | Recommendation 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reported on page # |
|------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Title and abstract           | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 1-2              |
|                              |           | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 2                |
| Introduction                 |           | 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Background/rationale         | 2         | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 3-4              |
| Objectives                   | 3         | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # 4                |
| Methods                      |           | adec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Study design                 | 4         | Present key elements of study design early in the paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 4-5              |
| Setting                      | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # 4                |
| Participants                 | 6         | ( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection of participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 4-5              |
| Variables                    | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 5-7              |
| Data sources/<br>measurement | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 5-7              |
| Bias                         | 9         | comparability of assessment methods if there is more than one group       >         Describe any efforts to address potential sources of bias       =         0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 7                |
| Study size                   | 10        | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # 4-5              |
| Quantitative variables       | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # 6                |
| Statistical methods          | 12        | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # 7-8              |
|                              |           | (b) Describe any methods used to examine subgroups and interactions 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 7-8              |
|                              |           | (c) Explain how missing data were addressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|                              |           | (d) If applicable, describe analytical methods taking account of sampling strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|                              |           | (e) Describe any sensitivity analyses     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S <t< td=""><td># 7</td></t<> | # 7                |

# bmjopen-2020-

 bmjopen-202

copyright.

| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine d for eligibility,                                                       | # 8     |
|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                   |     | confirmed eligible, included in the study, completing follow-up, and analysed                                                                                              |         |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                       |         |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                         | # 5     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders                                   | # 8     |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                        |         |
| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                       | # 8     |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence                                                    | # 8-9   |
|                   |     | interval). Make clear which confounders were adjusted for and why they were included                                                                                       |         |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                  | # 8     |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time beriod                                                           |         |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                             | # 9     |
| Discussion        |     | tp:///                                                                                                                                                                     |         |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                   | # 9     |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias                 | # 12-13 |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence | # 10-12 |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                      | # 13    |
| Other information |     |                                                                                                                                                                            |         |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on                                                 | # 13    |
|                   |     | which the present article is based                                                                                                                                         |         |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exangeles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strong.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# Association between dietary antioxidant vitamins intake and homocysteine levels in middle-aged and older adults with hypertension: a cross-sectional study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2020-045732.R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date Submitted by the<br>Author:     | 07-Sep-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complete List of Authors:            | Peng, Xiaolin; Nanshan Centre for Chronic Disease Control<br>Gao, Qin; Huazhong University of Science and Technology Tongji Medical<br>College; Jining Medical College<br>Zhou, Juan; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,<br>Ma, Jianping; Nanshan Centre for Chronic Disease Control<br>Zhao, Dan; Shenzhen Nanshan Centre for Chronic Disease Control<br>Hao, Liping; Huazhong University of Science and Technology Tongji<br>Medical College, Nutrition and Food Hygiene,; Huazhong University of<br>Science and Technology Tongji Medical College, Hubei Key Laboratory<br>of Food Nutrition and Safety |
| <b>Primary Subject<br/>Heading</b> : | Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secondary Subject Heading:           | Epidemiology, Nutrition and metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Keywords:                            | Hypertension < CARDIOLOGY, EPIDEMIOLOGY, Cardiac Epidemiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

| 1                                                                                |  |
|----------------------------------------------------------------------------------|--|
| 2                                                                                |  |
| 3                                                                                |  |
| 4                                                                                |  |
| 5                                                                                |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                  |  |
| 8                                                                                |  |
| 9                                                                                |  |
| 10                                                                               |  |
| 11                                                                               |  |
| 12                                                                               |  |
| 13<br>14                                                                         |  |
| 14<br>15                                                                         |  |
| 16                                                                               |  |
| 17                                                                               |  |
| 18                                                                               |  |
| 19                                                                               |  |
| 20                                                                               |  |
| 21                                                                               |  |
| 23                                                                               |  |
| 24                                                                               |  |
| 25                                                                               |  |
| 26                                                                               |  |
| 2/                                                                               |  |
| 20<br>29                                                                         |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 |  |
| 31                                                                               |  |
| 32                                                                               |  |
| 33<br>24                                                                         |  |
| 34<br>35                                                                         |  |
| 36                                                                               |  |
| 37                                                                               |  |
| 38                                                                               |  |
| 39                                                                               |  |
| 40                                                                               |  |
| 41<br>42                                                                         |  |
| 43                                                                               |  |
| 44                                                                               |  |
| 45                                                                               |  |
| 46                                                                               |  |
| 47<br>48                                                                         |  |
| 48<br>49                                                                         |  |
| 50                                                                               |  |
| 51                                                                               |  |
| 52                                                                               |  |
| 53                                                                               |  |
| 54                                                                               |  |
| 55<br>56                                                                         |  |
| 50<br>57                                                                         |  |
| 58                                                                               |  |
| 59                                                                               |  |
| 60                                                                               |  |

| 1  | Association between dietary antioxidant vitamins intake and homocysteine levels                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | in middle-aged and older adults with hypertension: a cross-sectional study                                                                                  |
| 3  | Peng Xiaolin <sup>#1</sup> , Gao Qin <sup>#2,3</sup> , Zhou Juan <sup>2</sup> , Ma Jianping <sup>1</sup> , Zhao Dan <sup>1</sup> , Hao Liping <sup>2*</sup> |
| 4  | <sup>#</sup> Peng Xiaolin and Gao Qin contributed equally to this paper.                                                                                    |
| 5  | <sup>1</sup> Shenzhen Nanshan Centre for Chronic Disease Control, Guangdong, People's                                                                       |
| 6  | Republic of China;                                                                                                                                          |
| 7  | <sup>2</sup> Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical                                                              |
| 8  | College, Huazhong University of Science and Technology, Wuhan, Hubei, People's                                                                              |
| 9  | Republic of China;                                                                                                                                          |
| 10 | <sup>3</sup> Department of Public Health, Jining Medical University, Jining, Shandong, People's                                                             |
| 11 | Republic of China.                                                                                                                                          |
| 12 | * Corresponding Author: Hao Liping, 13 Hangkong Road, Wuhan 430030, People's                                                                                |
| 13 | Republic of China. E-mail addresses: haolp@mails.tjmu.edu.cn, Tel.:+86-27-                                                                                  |
| 14 | 83650523, Fax: 0086-27-83693307                                                                                                                             |
| 15 | 83650523, Fax: 0086-27-83693307                                                                                                                             |
| 16 |                                                                                                                                                             |
| 17 |                                                                                                                                                             |
| 18 |                                                                                                                                                             |
| 19 |                                                                                                                                                             |
| 20 |                                                                                                                                                             |
| 21 |                                                                                                                                                             |
| 22 |                                                                                                                                                             |
| 23 |                                                                                                                                                             |
| 24 |                                                                                                                                                             |
| 25 |                                                                                                                                                             |
| 26 |                                                                                                                                                             |
| 27 |                                                                                                                                                             |
| 28 |                                                                                                                                                             |
| 29 |                                                                                                                                                             |

| 31        | Abstract                                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------|
| 2         | Objectives: Plasma total homocysteine (tHcy) has been implicated in the development                     |
| 3         | of cardiovascular disease. This study aimed to assess the relationship of dietary                       |
| 4         | antioxidant vitamins intake with tHcy levels in middle-aged and older adults with                       |
| 5         | hypertension.                                                                                           |
| 6         | Design: A cross-sectional study.                                                                        |
| 37        | Setting: The survey was conducted in the Nanshan district of Shenzhen.                                  |
| 38        | Participants: A total of 1465 middle-aged and older adults with hypertension were                       |
| <u>89</u> | included between July and September of 2013.                                                            |
| 10        | Measurements: Hyperhomocysteinemia (HHcy) was defined as tHcy $\geq$ 15 µmol/L.                         |
| 1         | Some dietary antioxidant vitamins (vitamin C (VC) and vitamin E (VE), carotenes,                        |
| 12        | retinol, lutein) intake was estimated using the food frequency questionnaire. Socio-                    |
| 43        | demographic and potential covariates were evaluated through questionnaires,                             |
| 14        | anthropometric measurements and blood tests. The association between dietary intakes                    |
| 45        | of antioxidant vitamins and tHcy concentration were evaluated by multiple linear                        |
| 46        | regression analyses after napierian logarithm -transformed. Multiple logistic regression                |
| 17        | models were further used to determine odds ratios (ORs) and 95% confidence intervals                    |
| ·8        | (CIs).                                                                                                  |
| 9         | Results: The $\beta$ (95% CIs) of VC intake and tHcy was -0.050 (-0.084, -0.016). Compared              |
| 0         | with the lowest quartile in the fully adjusted model, the ORs (95% CIs) for HHcy levels                 |
| 51        | across quartiles of dietary VC intake were 0.82 (0.57, 1.16), 0.49 (0.33, 0.74) and 0.40                |
| 52        | $(0.22, 0.74)$ ( <i>P</i> for trend=0.001). The $\beta$ (95% CIs) of retinol intake and tHcy was -0.021 |
| 53        | (-0.041, -0.002), and the ORs (95% CIs) in the third quartile of retinol intake was 0.61                |
| 54        | (0.42, 0.86), while the effect for the highest quartile was not significant ( $P$ for                   |
| 55        | trend=0.951). No significant association was observed between dietary VE, carotenes                     |
| 6         | and lutein intake and HHcy.                                                                             |
| 57        | Conclusions: A linear inverse association between dietary VC intake and HHcy                            |
|           |                                                                                                         |

58 prevalence, and an L-shaped association between dietary retinol intake and HHcy 59 prevalence were found in Chinese middle-aged and older adults with hypertension.

Page 4 of 31

61 Strengths and limitations of this study:

62 1. This study focused on the risk of hyperhomocysteinemia among middle-aged and63 older adults with hypertension.

A linear inverse association between dietary VC intake and HHcy prevalence and
the threshold effect of retinol on HHcy was reported in this study.

Based on a cross-sectional study design, we could only draw a conclusion about
 correlation, not causation.

4. Although some confounding factors were included in the analysis, other potentialconfounders may exist.

# 71 Introduction

Increasing evidence has shown that elevated total homocysteine (tHcy) levels are associated with atherosclerotic cardiovascular diseases, stroke, peripheral arterial occlusive disease, and venous thrombosis (1, 2). Hyperhomocysteinemia (HHcy) (tHcy  $\geq$  15 µmol/L) (3), the result of a disturbed methionine metabolism, may lead to an enhancement of the adverse effects of risk factors like hypertension on human health (4). Hypertension is a major risk factor for cardiovascular and chronic kidney disease and a major cause of the global burden of disease and mortality (5, 6). It was estimated that the prevalence of hypertension in China in 2015 was 23.2%, and about 245 million Chinese adults had hypertension (7). Notably, the incidence of hypertension with hyperhomocysteinemia, or 'H-type hypertension', is significantly higher compared with other countries, representing 75% of Chinese patients with hypertension (8). Thus, the nutritional treatment focus on the attempt to reduce cardiovascular risk by reducing tHcy is important, particularly among patients with hypertension (9).

Increasing age, male sex, genetic factors, consumption of alcohol or tobacco, kidney function and physical activity are some of the factors associated with tHcy levels (10). Epidemiological studies and clinical trials have indicated that folate, vitamin  $B_{12}$  and vitamin  $B_6$  status, well-known predictors of tHcy, are important for tHcy metabolism. The latest meta-analysis demonstrated that a lower risk of stroke and overall cardiovascular disease (CVD) with folic acid supplementation, which may partly Page 5 of 31

91 contribute to the decrease of tHcy levels (11).

Folic acid and vitamin B<sub>12</sub>, which are involved in remethylation of homocysteine to methionine by methionine synthase (MS), and vitamin B<sub>6</sub>, which acts as a cofactor in the transsulfuration of homocysteine to cysteine by cystathionine  $\beta$ -synthase (CBS) (12). Folate, a key factor of tHcy metabolism, is very sensitive to free radicals (13-15). In addition, MS and CBS were strongly influenced by oxidative stress, which may be associated with dietary antioxidant vitamins and Hcy levels (16,17). We hypothesized that antioxidant nutrients may regulate tHcy metabolism by influencing methionine-homocysteine cycle. Plasma levels or dietary intake of vitamin C (VC), vitamin E (VE) or  $\beta$ -carotene was inversely associated with tHcy levels, however, the findings were not consistent (18-20). Of note, the association has never been investigated among the hypertensive population.

Therefore, this large population-based study aimed to determine the association
between the dietary intake of VC, VE, carotenes, retinol and lutein and the prevalence
of HHcy in middle-aged and older men and women with hypertension.

106 Methods

# 107 Study design and population

This study consecutively recruited individuals with hypertension from 60 community health service centres (CHSCs) in the Nanshan district of Shenzhen from July to September of 2013 using a three-stage random sampling method. In the first stage, 8 sub-districts were selected in the Nanshan district; in the second stage, 6 to 8 communities were selected from each sub-district using a simple random selection procedure; and in the third stage, individuals with hypertension were selected from each community using isometric random sampling. All subjects were of Chinese ethnicity and had lived in the Nanshan district of Shenzhen for over six months. The individuals were invited to visit the CHSCs, where the researcher-administered questionnaire (including the validated food frequency questionnaire (FFQ)) was conducted, the anthropometric measurements were recorded, and fasting blood samples were collected. We collected the data of 1802 participants, and excluded 51 participants whose age was not reported or who were aged  $\leq 40$  years and 27 underweight participants (body 

121 mass index (BMI) < 18.5 kg/m<sup>2</sup>), as well as participants for whom fasting blood 122 samples (n = 74) and complete dietary surveys (n = 133) were not available. We also 123 excluded participants with an extreme dietary energy intake (male: < 800 kcal or > 4000 124 kcal, female: < 700 kcal or > 3500 kcal) (n = 52). Finally, 1465 participants were 125 included in the analysis (**Supplementary Figure 1**).

# Patient and public involvement

127 The development of standardised form is in response to the public health need of 128 preventing stroke among hypertension population. Patients and the public were not 129 involved in the design of the study. The results of our study will be disseminated 130 through open access publications.

## 131 Dietary assessment

The researcher-administered FFQ consisted of 92 food items, which were assembled into 7 food groups: cereals, vegetables, fruits, beans, animal foods, nuts and beverages. The FFQ was based on the national FFQ used in the 2010-2012 China National Nutrition and Health Survey according to the Chinese Nutrition and Health Surveillance in 2010-2012 (21). Participants were asked to recall the consumption of each item during the past year, including the type of food, frequency and amount. Food weight maps were available for participants to estimate their portion size. Primary data obtained from FFQs were doubly entered into the EpiData 3.0 software by two trained technicians to verify accuracy. Dietary energy and other nutrients were calculated based on the Chinese Food Composition Database (22, 23). Dietary intake of VC, VE, carotenes (consist of  $\alpha$ -carotene,  $\beta$ -carotene and  $\beta$ -cryptoxanthin), and retinol were calculated based on the Chinese Food Composition Table 2002 (22). We report carotenes and retinol separately, because we could not get the accurate calculation for vitamin A, as the data for carotenes were combined with different carotene, rather than separate one. Dietary intake of lutein was calculated based on the food composition table of vegetables, fruits, eggs and nuts that contain large amounts of lutein, according to Chinese Dietary Reference Intakes 2013 (24). The intake of all dietary nutrients and carotenoids was adjusted for energy using the residual method (25). The second FFQ was conducted 3 weeks after the completion of the first FFQ among 108 participants.

The intra-class correlation coefficients of two administrations of FFO for nutrients of VC, VE, carotenes, retinol, lutein were 0.395, 0.477, 0.355, 0.551 and 0.350, and were all statistically significant. Assessment of other covariates Participants' socio-demographic characteristics (e.g., age and sex), lifestyle factors (e.g., sedentary time), history of chronic diseases, and medication and supplement use status were collected. Sedentary time consisted of time spent watching TV and sitting, which were combined into one variable with 2 categories, < 3 h/d and  $\ge 3 \text{ h/d}$ , based on a median sedentary time of 3 h/d. The history of cardiovascular events including coronary heart disease, cerebral haemorrhage, cerebral thrombosis, and the history of diabetes and kidney disease were recorded for each participant. The prescription use status was classified into 2 groups (yes or no) corresponding to whether the participant was taking any type or quantity of drugs, including antihypertensive drugs, antihyperglycaemic drugs, lipid-lowering drugs or tHcy-lowering drugs. Supplement use consisted of vitamin A, retinol, B vitamins, VC, VE and folic acid was included. Anthropometric measurements Height and weight and waist circumference (WC) were measured by specialists. BMI was calculated as weight (kg) / height (m<sup>2</sup>). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured from the right arm of participants in a seated position after a sufficient rest period using a mercury sphygmomanometer in the morning. Blood pressure was measured manually and recorded as the average of three measurements. Laboratory tests and outcomes Morning fasting elbow vein blood samples were required to fast overnight (at least 10 

hours) were collected from the participants at the CHSCs and transported under refrigerated conditions to a clinical laboratory of the Nanshan Centre for Chronic Disease Control within 2 hours. The blood specimens were collected in a 5-ml EDTA vacuum tube. Blood samples were collected through deposition and centrifugation for ten minutes at 3000 r/min at room temperature. The concentrations of plasma tHcy, fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), low-density 

181 lipoprotein cholesterol (LDL-C), uric acid and creatinine were assessed on the day of 182 blood collection using enzymatic methods via an auto-analyser (HITACHI 7080). The 183 inter-day quality control assessments met the standard during the analysis. HHcy was 184 defined as plasma tHcy concentration  $\geq$  15 µmol/L.

185 Statistical analysis

 Demographic characteristics were described by means  $\pm$  SDs for normally distributed data, medians (interquartile ranges, IQRs) for non-normally distributed data and numbers (percentages) for categorical data. The differences between males and females were compared using the *t* test for normally distributed variables, the Kruskal-Wallis rank test for non-normally distributed variables, and the chi-square test for categorical variables.

Both dietary intakes of antioxidant vitamins and tHcy concentration were napierian logarithm (ln)-transformed to improve normality before analyses and categorised into quartiles. The associations between dietary antioxidant vitamins intake and the prevalence of HHcy were analyzed using multiple logistic regression models, with the lowest quartile as the reference category. Confounding variables were selected based on the minimal sufficient adjustment recommended by the Directed Acyclic Graph, created in the online software Dagitty 3.0 (Supplementary Figure 2). The selected potential confounders included age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), the intakes of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). Linear trends were tested by creating a continuous variable for dietary antioxidant vitamins intake using the median value for each quartile. The sensitive analyses between dietary antioxidant vitamins intake and HHcy prevalence were applied among the population who had never suffered cardiovascular events, or among the population who never use the tHcy-lowering drug. 

To further explore the nonlinearity of the relationship between dietary antioxidant vitamins intake and high tHcy, we used restricted cubic spline with 4 knots at the 5<sup>th</sup>, 35<sup>th</sup>, 65<sup>th</sup> and 95<sup>th</sup> percentiles of dietary antioxidant vitamins intake.

210 To evaluate the modification effect by some potential prevalence factors of HHcy,

| 2 |        |
|---|--------|
| 3 |        |
| 4 |        |
| 5 |        |
|   |        |
| 6 |        |
| 7 |        |
| 8 |        |
| 9 |        |
|   | 0      |
| 1 | 1      |
|   |        |
| 1 | 2      |
| 1 | 3      |
| 1 | 4      |
| 1 | 5      |
|   | 6      |
|   |        |
|   | 7      |
|   | 8      |
| 1 | 9      |
| 2 | 0      |
|   | 1      |
| 2 |        |
|   |        |
|   | 3      |
|   | 4      |
| 2 | 5      |
| 2 | 6      |
|   | 7      |
|   | ,<br>8 |
|   |        |
|   | 9      |
|   | 0      |
| 3 | 1      |
| 3 | 2      |
| 3 | 3      |
|   | 4      |
|   | 5      |
|   |        |
|   | 6      |
| 3 |        |
| 3 | 8      |
| 3 | 9      |
|   | 0      |
| 4 |        |
|   |        |
| 4 |        |
|   | 3      |
| 4 | 4      |
| 4 | 5      |
| 4 | 6      |
| 4 | •      |
|   |        |
|   | 8      |
|   | 9      |
| 5 |        |
| 5 | 1      |
| 5 | 2      |
| 5 |        |
| 5 |        |
|   |        |
| 5 |        |
|   | 6      |
| 5 | 7      |
| 5 | 8      |
|   |        |
| 5 | 9      |

including sex (male or female) and BMI (<24 or  $\ge$ 24 kg/m<sup>2</sup>), stratified analyses were conducted by these potential factors and estimated *P* values for interaction terms.

All data were analyzed using the R Foundation version 3.1.2 and Empower X&Y Solutions Inc. Statistical significance was considered when P < 0.05 (two-sided).

215 **Results** 

In this cross-sectional study, 1465 participants (male: 729, female: 736) were 216 included in the analysis, and the mean  $\pm$  SD of age and BMI was  $62.0 \pm 10.7$  years, and 217 218  $24.9 \pm 3.5$  kg/m<sup>2</sup>. The tHcy levels of the participants was  $14.63 \pm 9.06$  µmol/L, and the number (percentage) of HHcy was 469 (32.0%). The participants with HHcy were older 219 and more male, and have higher WC, SBP, tHcy, uric acid, creatinine, and 220 higher percentages of history of cardiovascular events (including coronary heart disease, 221 222 cerebral hemorrhage, cerebral thrombosis) and kidney disease, and have lower FPG level (all *P* < 0.05) (**Table 1**). 223

The dietary intakes of nutrients were shown in **Table 2**. The median (IQR) of dietary antioxidant vitamins intake were as follows: VC 153.5 (91.2, 240.9) mg/d, VE 25.0 (19.3, 31.9) mg/d, carotenes 3.3 (1.8, 5.6) mg/d, retinol 138.3 (78.0, 283.6)  $\mu$ g/d, and lutein 9.5 (5.2, 14.8) mg/d. Among the participants with HHcy, the intake of carbohydrate was higher, and the intake of fruit, protein, fibre, retinol, folate, vitamin B<sub>12</sub>, saturated fatty acid, selenium, magnesium, zinc was lower, and the percentage of supplement use was lower (all *P* < 0.05).

The association between dietary antioxidant vitamins intake and tHcy levels are 231 232 shown in **Table 3**. The inverse association between VC intake and tHcy concentration after ln-transformed in the fully adjusted model, and the  $\beta$  (95% CIs) was -0.050 (-233 234 0.084, -0.016), which was consistent with the logistic regression as categorical 235 variables. In Model II, the significant association was found in the third and highest quartile of VC intake, and the ORs (95% CIs) were 0.49 (0.33, 0.74) and 0.40 (0.22, 236 0.74) ( $P_{\text{for trend}} = 0.001$ ). The retinol intake was also inversely associated with tHcy, as 237 the  $\beta$  (95% CIs) was -0.021 (-0.041, -0.002). After adjusting for age, sex and BMI, the 238 ORs (95% CIs) for HHcy prevalence across quartiles of retinol intake were 1.00, 0.84 239  $(0.61, 1.16), 0.50 (0.35, 0.70), and 0.55 (0.40, 0.77) (P_{\text{for trend}} = 0.003)$ . However, in 240

Model II, the significant association was only found in the third quartile of retinol intake, and the ORs (95% CIs) was 0.61 (0.42, 0.86) ( $P_{\text{for trend}} = 0.951$ ). The non-significant association between dietary intake of VE, carotenes and lutein and HHcy prevalence was found. The results were similar in the sensitivity analyses that excluded participants with cardiovascular events or who use the tHcy-lowering drug (see **Supplementary Table 1**).

After fully adjusting for the potential confounders, the association between dietary antioxidant vitamins intake and the prevalence of HHcy were shown in **Figure.1**. From the cubic splines, we noted that the linear inverse trend of VC intake and HHcy prevalence (P for overall association=0.016, P for nonlinearity=0.055) and the L-shaped relationship of retinol intake and HHcy prevalence (P for overall association=0.011, P for nonlinearity=0.020), which were consistent with the results of logistic regression analyses. The threshold analysis showed that the ORs (95% CIs) of HHcy was 0.995 (0.991, 0.995) (P=0.005) when retinol intake was lower than 147.2  $\mu$ g/d and 1.000 (1.000, 1.001) (P=0.094) when retinol intake was more than 147.2  $\mu$ g/d, and the P value of log-likelihood ratio was 0.003. The non-association between carotenes, lutein and VE and HHcy was not shown. 

In stratified analyses, the association between dietary VC and retinol intake and HHcy prevalence were not significantly modified by sex (male or female), BMI (<24 or  $\geq$ 24 kg/m<sup>2</sup>) (all *P* for interaction were >0.05) (Figure 2). Similar results of stratified analyses of carotenes, lutein and VE were not shown.

262 Discussion

In this community-based cross-sectional study, we observed some of the antioxidant vitamins intakes were significantly correlated with the prevalence of HHcy. After adjusting potential confounders, a linear inverse association between VC intake and HHcy prevalence, and an L-shaped relationship between retinol intake and HHcy prevalence were found, which were not modified by sex or BMI. However, the nonsignificant effect of VE, carotenes and lutein on HHcy was detected.

Numerous studies have suggested that HHcy may be a modifiable risk factor forCVD, especially for stroke. In the past decades, there were many clinical trials aimed

Page 11 of 31

### **BMJ** Open

to show the effect of folate and vitamins  $B_{12}$  and  $B_6$  supplement on lowering the levels of tHcy, however, the negative results were found in most studies (26). The potential reason may be correlated with the harmful effect of unmetabolized excessive folate or the cyanide and thiocyanate from excessive cyanocobalamin. In China, where folate fortification has not been implemented, folic acid significantly reduced the risk of stroke was observed from the China Stroke Primary Prevention Trial (CSPPT) (27). Thus, appropriate B vitamins therapy is of great importance for lowering tHcy levels in stroke prevention.

In the past decades, several researches reported the potential association between plasma levels or intake of different antioxidant vitamins and tHcy levels (18, 19, 28-30). In 1999, Brude IR et al. observed the inverse association between plasma tHcy concentration and dietary intake of vegetables, vitamin C and  $\beta$ -carotene from 41 participants (28). In addition, dietary intake of retinol equivalents,  $\beta$ -carotene and VC were inversely correlated with plasma tHcy levels, after adjustment for dietary B-vitamins, but not after additional adjustment for plasma folate and vitamin  $B_{12}$  (19). What's more, the study focused on the effect of antioxidant vitamins on the plasma tHcy levels in a free-living elderly population found that plasma VC, rather than the intake and supplementation of VC, showed a negative association with tHcy in simple regression analysis, and also found that the plasma levels, as well as the intake and supplementation of vitamin E, and  $\beta$ -carotene were not associated with tHcy (18). Similarly, the cross-sectional NHANES 1999–2002 study found that dietary VC and VE intake were associated with a lower prevalence of elevated blood tHcy concentration, whereas no association between dietary carotenes intake and tHcy was detected (29). In addition, Rajesh Ullegaddi et al. found that significant reductions in plasma homocysteine in the group with antioxidant treatment (vitamins C and E) combination with B-vitamin, compared with the group with B-vitamin alone (30), which support the importance of antioxidant vitamins on tHcy metabolism.

298 Consistent with our findings, these studies have a common conclusion that VC intake 299 was inversely correlated with tHcy levels. Given the report of an interaction of VC and 300 folate (31), Magana AA *et al.* found the underlying molecular mechanisms that VC activates the folate-mediated one-carbon cycle in C2C12 myoblasts (32). Thus, VC has
been explored as an attractive factor to increase circulating levels of folic acid and to
reduce Hcy levels.

We found an L-shaped association between dietary retinol intake and high tHcy prevalence, which meant that if the retinol intake was low, the risk of HHcy was decreased as retinol intake increased, but the risk was not changed when retinol intake reached certain level, which was more than 147.2  $\mu$ g/d among the participants in this study. The dietary intake of retinol equivalents was inversely correlated with plasma tHcy levels after adjustment for dietary B-vitamins (19). Retinol, a preformed vitamin A, plays an important role in vision, cellular differentiation, and proliferation, as well as the immune system regulation. In addition, there is increasing evidence indicates that retinol seems to inhibit thrombosis (33) and inflammation effects (34), which indicates retinol is emerging as a factor of interest to CVD. Brazionis L et al. reported that plasma retinol was a novel marker for CVD mortality in Australian adults, with an inverse association between plasma retinol in the middle tertile and 5-year CVD mortality (35). Similarly, a strong association between low retinol and the risk of sudden cardiac death was examined (36). In addition, a nested case-control study showed a significant inverse association between plasma retinol and the risk of first stroke among Chinese hypertensive adults from the CSPPT (37), which may due to relatively low baseline retinol concentrations (median: 67.5 µg/dL). Besides, the interaction of retinol and tHcy on CVD risk was also reported. Yu Y et al. (37) showed the inverse effect between plasma retinol and first stroke was stronger among the participants whose tHcy < 10 $\mu$ mol/L than whose tHcy  $\geq$  10  $\mu$ mol/L. Olsen T *et al.* (38) found that the plasma tHcy was associated with acute myocardial infarction only in the upper Vit-A tertile, and the potential mechanisms may include inflammation and lipid metabolism, which may be partly interpreted with the high intake of retinol (1576 µg RAE/d). 

In addition, the dietary source of retinol may contribute to the non-significant effect of retinol in the highest quartile in the fully adjusted model, as it is present in animalbased foods, particularly in liver and whole milk. In this study, we found the TG level was gradually increased with the increase of retinol (data not shown). High retinol

#### **BMJ** Open

| 23                                   |             |  |
|--------------------------------------|-------------|--|
|                                      |             |  |
| 4                                    |             |  |
| 5                                    |             |  |
| 6                                    |             |  |
| 7                                    |             |  |
| ,<br>8                               |             |  |
|                                      |             |  |
| 9                                    |             |  |
| 1                                    | 0           |  |
| 1                                    | 0<br>1<br>2 |  |
| 1                                    | 2           |  |
| 1                                    | 3           |  |
| 1                                    | 4           |  |
| 1                                    | 4           |  |
| 1                                    | 5           |  |
| 1                                    | 6           |  |
| 1                                    | 7           |  |
| 1                                    | 8           |  |
| 1                                    | 9           |  |
| י<br>ר                               | 0           |  |
| 2<br>2                               | 1           |  |
| 2                                    | 1           |  |
| 2                                    | 2           |  |
| 2                                    | 3           |  |
| 2                                    | 4           |  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5           |  |
| 2<br>ว                               | 6           |  |
| 2                                    |             |  |
| 2                                    | 7           |  |
| 2                                    | 8           |  |
| 2                                    | 9           |  |
| 3                                    | 0           |  |
|                                      | 1           |  |
| 3                                    | 2           |  |
| 3                                    |             |  |
|                                      |             |  |
| 3                                    | 4           |  |
| 3                                    | 5           |  |
| 3                                    | 6           |  |
| 3                                    | 7           |  |
| 2                                    | ,<br>8      |  |
| с<br>2                               | 0<br>9      |  |
|                                      |             |  |
|                                      | 0           |  |
| 4                                    | 1           |  |
| 4                                    |             |  |
| 4                                    | 3           |  |
| 4                                    | 4           |  |
| 4                                    |             |  |
|                                      |             |  |
| 4                                    |             |  |
| 4                                    |             |  |
| 4                                    |             |  |
| 4                                    | 9           |  |
| 5                                    | 0           |  |
| 5                                    | 1           |  |
| 5<br>5                               | ו<br>2      |  |
| S<br>Z                               | 2           |  |
| 5                                    | 3           |  |
| 5                                    | 4           |  |
| 5                                    | 5           |  |
| 5                                    | 6           |  |
| 5                                    | 7           |  |
| 5                                    | /<br>0      |  |
| 2<br>-                               | ۵<br>۲      |  |
| 5                                    | 9           |  |

intake may alter lipid metabolism by increasing TG level, which may impact the tHcymetabolism (39).

At present, a few studies demonstrate the complicated relationship between retinol, tHcy and CVD risk, but the underlying mechanism has not yet been clarified (40). The antioxidant activity of retinol may be a plausible mechanism that links the effect of retinol on tHcy levels, as retinol is essential for the maintenance of immune function and antioxidant defence (41, 42).

However, we found no relationship between HHcy prevalence and dietary intake of VE. The aforementioned study has found significant inverse associations between plasma tHcy and dietary intake of VE, but the effect was not significant after adjusting B-vitamins intake, which was consistent with our finding (19). On the contrary, dietary VE ( $\alpha$ -tocopherol) intake was associated with a lower risk of elevated blood tHcy concentration among US adults (29).

Epidemiological studies have reported the positive role of carotenoids on human 344 health. In this study, we focused on the effect of carotenes ( $\beta$ -carotene,  $\alpha$ -carotene and 345 346  $\beta$ -cryptoxanthin) and lutein on tHcy, however, the negative results were found. Many of the aforementioned studies reported the protective effect of  $\beta$ -carotene by lowering 347 tHcy concentration (19, 28), but the risk of tHcy  $> 13 \mu$ mol/L was associated with the 348 total carotene intake from diet plus supplement use, rather than the only intake from 349 diet (29). The negative finding of lutein cannot be compared because of a lack of 350 previously reported data. Thus, more prospective cohort studies and randomized double 351 352 trials are warranted to indicate the relationship of antioxidant vitamins with HHcy risk. 353 The strength of this study is the face-to-face researcher-administered FFQ survey. 354 First, to our knowledge, this is the first study to demonstrate an association of dietary 355 intake of antioxidant vitamins with HHcy prevalence that was conducted in both a male and female hypertensive population. Then, the researcher-administered face-to-face 356 interview was considered by validated FFQ, which was designed to evaluate dietary 357 358 intake and gave full consideration to eating habits and food nutrient composition in the Chinese population. 359

360

60

Our study has several limitations. First, based on a cross-sectional study design, we

cannot draw a conclusion about causality. The strong effects observed in this study may be enhanced because of selection effects, because hypertensive individuals may have made changes to their diet in response to diagnosis. Second, we adjusted the dietary intake of folate, B<sub>12</sub>, B<sub>6</sub>, rather than plasma concentrations, which may could not eliminate confounding effect. Just like Konstantinova SV (19) reported, the inverse correlation of dietary retinol intake and plasma tHcy disappeared after adjustment for plasma folate and vitamin B<sub>12</sub>. Then, we investigated the participants whether they took dietary supplements, while the detailed doses were not recorded. Therefore, we are not able to eliminate the possible association between supplement use and HHcy prevalence. Nevertheless, the study reported that there was some potential benefit from the antioxidant supplementation on plasma tHcy concentration (29), which could stabilize the positive results in this study. In addition, although some confounding factors were included in the analysis, other potential confounders may exist. For instance, the influence of smoking and drinking on HHcy was not assessed because of the lack of information about the status of smoking and drinking. 

In conclusion, we found dietary intake of VC and retinol was inversely associated with HHcy prevalence in middle-aged and older adults with hypertension after adjusting the potential confounders. Our findings have provided suggestive evidence of an inverse relationship between certain antioxidant intake and HHcy, which should be the impetus for longitudinal and random control trails to verify the relationship and direction and to elucidate the underlying mechanisms in the future.

382 Acknowledgements

The authors are grateful to the individuals who participate in this study. We also thank the investigators, staff and participants from the community health service centres for their assistance.

386 Funding

The present study was jointly supported by the National Natural Science Foundation of China (No. 81573149), the Health and Family Commission of Shenzhen Municipality Funded Project (No. 201502017 and SZSJ2017001) and Nanshan District, Shenzhen Science and Technology Innovation Bureau funded projects (No. 2015064).

| 3        | 391 | Contributors                                                                             |
|----------|-----|------------------------------------------------------------------------------------------|
| 5<br>6   | 392 | The authors' responsibilities were as follows: H.L. conceived and designed the study     |
| 7<br>8   | 393 | and critically revised the manuscript. P.X. and G.Q. analyzed the data and wrote the     |
| 9<br>10  | 394 | paper. Z.J. participated in the laboratory assay. M.J. and Z.D. collected the data and   |
| 11<br>12 | 395 | revised the manuscript. All authors read and approved the final version of the           |
| 13<br>14 | 396 | manuscript.                                                                              |
| 15<br>16 | 397 | Competing interests                                                                      |
| 17       | 398 | No, there are no competing interests for any author.                                     |
| 18<br>19 | 399 | Ethics approval                                                                          |
| 20<br>21 | 400 | The survey protocol was approved by the Ethics Committee of the Shenzhen                 |
| 22<br>23 | 401 | Nanshan Centre for Chronic Disease Control (ID: 1120190003), and all participants        |
| 24<br>25 | 402 | provided written informed consent before enrolment.                                      |
| 26<br>27 | 403 | Data availability statement                                                              |
| 28<br>29 | 404 | No data are available.                                                                   |
| 30<br>31 | 405 |                                                                                          |
| 32<br>33 | 406 | References                                                                               |
| 34<br>35 | 407 | 1. Price BR, Wilcock DM, Weekman EM. Hyperhomocysteinemia as a Risk Factor for           |
| 36<br>37 | 408 | Vascular Contributions to Cognitive Impairment and Dementia. Front Aging Neurosci        |
| 38       | 409 | 2018;10:350.                                                                             |
| 39<br>40 | 410 | 2. Saposnik G, Ray JG, Sheridan P et al. Homocysteine-lowering therapy and stroke        |
| 41<br>42 |     |                                                                                          |
| 43<br>44 | 411 | risk, severity, and disability: additional findings from the HOPE 2 trial. <i>Stroke</i> |
| 45<br>46 | 412 | 2009;40:1365-1372.                                                                       |
| 47<br>48 | 413 | 3. Guo H, Chi J, Xing Y et al. Influence of folic acid on plasma homocysteine levels &   |
| 49<br>50 | 414 | arterial endothelial function in patients with unstable angina. Indian J Med Res         |
| 51       | 415 | 2009;129:279-284.                                                                        |
| 52<br>53 | 416 | 4. Baszczuk A, Kopczyński Z. [Hyperhomocysteinemia in patients with cardiovascular       |
| 54<br>55 | 417 | disease]. Postepy Hig Med Dosw (Online) 2014;68:579-589.                                 |
| 56<br>57 | 418 | 5. Forouzanfar MH, Liu P, Roth GA et al. Global Burden of Hypertension and Systolic      |
| 58<br>59 | 419 | Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA 2017;317:165-182.           |
| 60       | 420 | 6. Carey RM, Muntner P, Bosworth HB et al. Reprint of: Prevention and Control            |

| 421 | of Hypertension: JACC Health Promotion Series. J Am Coll Cardiol 2018;72:2996-          |
|-----|-----------------------------------------------------------------------------------------|
| 422 | 3011.                                                                                   |
| 423 | 7. Wang Z, Chen Z, Zhang L et al. Status of Hypertension in China: Results From the     |
| 424 | China Hypertension Survey, 2012-2015. Circulation 2018;137:2344-2356.                   |
| 425 | 8. Liu LS. [2010 Chinese guidelines for the management of hypertension]. Zhonghua       |
| 426 | <i>xin xue guan bing za zhi</i> 2011;39:579-615.                                        |
| 427 | 9. Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk   |
| 428 | Population Groups. Int J Mol Sci 2020;21:1421.                                          |
| 429 | 10. Shenoy V, Mehendale V, Prabhu K et al. Correlation of serum homocysteine levels     |
| 430 | with the severity of coronary artery disease. Indian J Clin Biochem 2014;29:339-344.    |
| 431 | 11. Li Y, Huang T, Zheng Y et al. Folic Acid Supplementation and the Risk of            |
| 432 | Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am          |
| 433 | Heart Assoc 2016;5:e003768.                                                             |
| 434 | 12. oseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic |
| 435 | acid in cardiovascular pathobiology. Nutrients. 2013;5(8):3235-3256.                    |
| 436 | 13. Odin E, Carlsson G, Frosing R et al. Chemical stability and human                   |
| 437 | plasma pharmacokinetics of reduced folates. Cancer Invest 1998;16(7):447-455.13.14.     |
| 438 | Lulock MD, Proestnall M, Daskalakis I et al. Nonenzymatic degradation and salvage       |
| 439 | of dietary folate: physicochemical factors likely to influence bioavailibility. Biochem |
| 440 | Mol Med 1995;55(1):43-53.                                                               |
| 441 | 15. Verlinde PH, Oey I, Hendrickx ME et al. L-ascorbic acid improves the serum          |
| 442 | folate response to an oraal dose of [6S]-5-methyltetrahydrofolic acid in healthy men.   |
| 443 | Eur J Clin Nutr 2008;62(10):1224-1230.                                                  |
| 444 | 16. Zou CG, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal         |
| 445 | 2005;7(5-6):547-559.                                                                    |
| 446 | 17. Waly M, Power-Charnitsky VA, Hodgson N et al. Alternatively Spliced Methionine      |
| 447 | Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and               |
| 448 | Inhibitory Effects of Neurotoxic Metals and Thimerosal. Oxid Med Cell Longev            |
| 449 | 2016;2016:6143753.                                                                      |
| 450 | 18. Breilmann J, Pons-Kuhnemann J, Brunner C et al. Effect of antioxidant vitamins on   |
|     |                                                                                         |

### **BMJ** Open

| 2        |     |                                                                                        |
|----------|-----|----------------------------------------------------------------------------------------|
| 3        | 451 | the plasma homocysteine level in a free-living elderly population. Ann Nutr Metab      |
| 5<br>6   | 452 | 2010;57:177-182.                                                                       |
| 7<br>8   | 453 | 19. Konstantinova SV, Vollset SE, Berstad P et al. Dietary predictors of plasma total  |
| 9<br>10  | 454 | homocysteine in the Hordaland Homocysteine Study. Br J Nutr 2007;98:201-210.           |
| 11<br>12 | 455 | 20. Racek J, Rusnáková H, Trefil L et al. The influence of folate and antioxidants on  |
| 13<br>14 | 456 | homocysteine levels and oxidative stress in patients with hyperlipidemia and           |
| 15<br>16 | 457 | hyperhomocysteinemia. Physiol Res 2005;54:87-95.                                       |
| 17<br>18 | 458 | 21. Zhao L, Ma G, Piao J et al. [Scheme of the 2010-2012 Chinese nutrition and health  |
| 19<br>20 | 459 | surveillance]. Zhonghua Yu Fang Yi Xue Za Zhi 2016;50:204-207.                         |
| 21<br>22 | 460 | 22. Yang Y, Wang G, Pang X. China Food Composition 2002 [M]. Beijing: Peking           |
| 23<br>24 | 461 | University Medical Center Press 2002.                                                  |
| 25       | 462 | 23. Yang Y. China Food Composition 2004 [M]. Beijing: Peking University Medical        |
| 26<br>27 | 463 | Press 2004.                                                                            |
| 28<br>29 | 464 | 24. Chinese Society of Nutrition. Chinese dietary reference intakes 2013 [M]. Beijing: |
| 30<br>31 | 465 | Science Press 2014.                                                                    |
| 32<br>33 | 466 | 25. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic        |
| 34<br>35 | 467 | analyses. Am J Epidemiol 1986;124:17-27.                                               |
| 36<br>37 | 468 | 26. Spence JD. Homocysteine lowering for stroke prevention: Unravelling the            |
| 38<br>39 | 469 | complexity of the evidence. Int J Stroke 2016;11:744-747.                              |
| 40<br>41 | 470 | 27. Huo Y, Li J, Qin X et al. Efficacy of folic acid therapy in primary prevention of  |
| 42<br>43 | 471 | stroke among adults with hypertension in China: the CSPPT randomized clinical trial.   |
| 44<br>45 | 472 | JAMA 2015;313:1325-1335.                                                               |
| 46<br>47 | 473 | 28. Brude IR, Finstad HS, Seljeflot I et al. Plasma homocysteine concentration related |
| 48<br>49 | 474 | to diet, endothelial function and mononuclear cell gene expression among male          |
| 50<br>51 | 475 | hyperlipidaemic smokers. Eur J Clin Invest 1999;29:100-108.                            |
| 52<br>53 | 476 | 29. Floegel A, Chung SJ, von Ruesten A et al. Antioxidant intake from diet and         |
| 54<br>55 | 477 | supplements and elevated serum C-reactive protein and plasma homocysteine              |
| 56<br>57 | 478 | concentrations in US adults: a cross-sectional study. Public Health Nutr 2011;14:2055- |
| 58<br>59 | 479 | 2064.                                                                                  |
| 60       | 480 | 30. Ullegaddi R, Powers HJ, Gariballa SE. Antioxidant supplementation with or          |
|          |     |                                                                                        |

| 481 | without B-group vitamins after acute ischemic stroke: a randomized controlled            |
|-----|------------------------------------------------------------------------------------------|
| 482 | trial. JPEN J Parenter Enteral Nutr. 2006;30(2):108-114.                                 |
| 483 | 31. Lucock M, Yates Z, Boyd L et al. Vitamin C-related nutrient-nutrient and nutrient-   |
| 484 | gene interactions that modify folate status. Eur J Nutr 2013;52:569-582.                 |
| 485 | 32. Magana AA, Reed RL, Koluda R et al. Vitamin C Activates the Folate-Mediated          |
| 486 | One-Carbon Cycle in C2C12 Myoblasts. Antioxidants 2020;9:217.                            |
| 487 | 33. Horie S, Kizaki K, Ishii H et al. Retinoic acid stimulates expression of             |
| 488 | thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells.   |
| 489 | Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP.     |
| 490 | Biochem 1992;281:149-154.                                                                |
| 491 | 34. Swamidas GP, Basaraba RJ, Baybutt RC. Dietary retinol inhibits inflammatory          |
| 492 | responses of rats treated with monocrotaline. J Nutr 1999;129:1285-1290.                 |
| 493 | 35. Brazionis L, Walker KZ, Itsiopoulos C et al. Plasma retinol: a novel marker for      |
| 494 | cardiovascular disease mortality in Australian adults. Nutr Metab Cardiovasc Dis         |
| 495 | 2012;22:914-920.                                                                         |
| 496 | 36. Espe KM, Raila J, Henze A et al. Impact of vitamin A on clinical outcomes in         |
| 497 | haemodialysis patients. Nephrol Dial Transplant 2011;26:4054-4061.                       |
| 498 | 37. Yu Y, Zhang H, Song Y et al. Plasma retinol and the risk of first stroke in          |
| 499 | hypertensive adults: a nested case-control study. Am J Clin Nutr 2019;109:449-456.       |
| 500 | 38. Olsen T, Vinknes KJ, Svingen GFT et al. The risk association of plasma total         |
| 501 | homocysteine with acute myocardial infarction is modified by serum vitamin A. Eur J      |
| 502 | Prev Cardiol 2018;25:1612-1620.                                                          |
| 503 | 39. Puddu PE. Serum vitamin A, total homocysteine and acute myocardial infarction:       |
| 504 | is there a causal association? Eur J Prev Cardiol 2018;25:1607-1611.                     |
| 505 | 40. Momin M, Jia J, Fan F et al. Relationship between plasma homocysteine level and      |
| 506 | lipid profiles in a community-based Chinese population. Lipids Health Dis 2017;16:54.    |
| 507 | 41. da Silva R, dos Santos-Valente EC, Burim Scomparini F et al. The relationship        |
| 508 | between nutritional status, vitamin A and zinc levels and oxidative stress in patients   |
| 509 | with ataxia-telangiectasia. Allergol Immunopathol (Madr) 2014;42:329-335.                |
| 510 | 42. Ferreira CA, de Souza FI, Melges AP et al. Retinol, beta-carotene, oxidative stress, |
|     |                                                                                          |

| 1<br>2         |     | 18                                                                             |
|----------------|-----|--------------------------------------------------------------------------------|
| 2<br>3<br>4    | 511 | and metabolic syndrome components in obese asthmatic children. Pediatr Allergy |
| 5<br>6         | 512 | Immunol 2014;25:292-294.                                                       |
| 7<br>8         | 513 |                                                                                |
| 9<br>10        | 514 |                                                                                |
| 11<br>12       | 515 |                                                                                |
| 13<br>14       | 516 |                                                                                |
| 15<br>16       | 517 |                                                                                |
| 17<br>18       | 518 |                                                                                |
| 19<br>20       | 519 |                                                                                |
| 21<br>22       | 520 |                                                                                |
| 23<br>24       | 521 |                                                                                |
| 25<br>26       | 522 |                                                                                |
| 27<br>28       | 523 |                                                                                |
| 29<br>30       | 524 |                                                                                |
| 31<br>32       | 525 |                                                                                |
| 33<br>34       | 526 |                                                                                |
| 35<br>36       | 527 |                                                                                |
| 37             | 528 |                                                                                |
| 38<br>39<br>40 | 529 |                                                                                |
| 41             | 530 |                                                                                |
| 42<br>43<br>44 | 531 |                                                                                |
| 44<br>45<br>46 | 532 |                                                                                |
| 47             | 533 |                                                                                |
| 48<br>49       | 534 |                                                                                |
| 50<br>51       | 535 |                                                                                |
| 52<br>53       | 536 |                                                                                |
| 54<br>55       | 537 |                                                                                |
| 56<br>57       | 538 |                                                                                |
| 58<br>59<br>60 | 539 |                                                                                |

|                            | Total (n=1465)   | HHcy (n=469)      | non-HHcy (n=996) | Р       |
|----------------------------|------------------|-------------------|------------------|---------|
| Age (years)                | $62.0\pm10.7$    | $64.4 \pm 11.4$   | $60.9 \pm 10.2$  | < 0.001 |
| Gender (Male, n (%))       | 729 (49.8)       | 339 (72.3)        | 390 (39.2)       | < 0.001 |
| BMI (kg/m <sup>2</sup> )   | $24.9\pm3.5$     | $25.0 \pm 3.4$    | $24.8 \pm 3.6$   | 0.252   |
| WC (cm)                    | $87.3\pm9.5$     | $88.7 \pm 10.0$   | $86.7\pm9.2$     | < 0.001 |
| SBP (mmHg)                 | $132.9 \pm 13.5$ | $133.9\pm14.0$    | $132.4 \pm 13.3$ | 0.046   |
| DBP (mmHg)                 | 80.4 ± 10.6      | $81.2 \pm 11.4$   | $80.0 \pm 10.2$  | 0.050   |
| tHcy (μmol/L)              | $14.63 \pm 9.06$ | $21.57 \pm 13.35$ | $11.37 \pm 1.89$ | < 0.00  |
| FPG (mmol/L)               | $5.42 \pm 1.54$  | $5.29 \pm 1.35$   | $5.49 \pm 1.62$  | 0.024   |
| TC (mmol/L)                | 5.25 ± 1.64      | $5.20\pm2.49$     | $5.27 \pm 1.02$  | 0.414   |
| TG (mmol/L)                | $1.95 \pm 1.39$  | $2.01 \pm 1.34$   | $1.92 \pm 1.41$  | 0.254   |
| LDL-C (mmol/L)             | $3.19\pm0.87$    | $3.14\pm0.89$     | $3.21\pm0.87$    | 0.133   |
| Uric acid (µmol/L)         | $380\pm97$       | ▲ 420 ± 103       | $362 \pm 89$     | < 0.00  |
| Creatinine (µmol/L)        | $83 \pm 44$      | 98 ± 67           | $76 \pm 25$      | < 0.00  |
| Sedentary time <3h/d (n (% | (o)) 667 (45.5)  | 211 (45.0)        | 456 (45.8)       | 0.776   |
| History of disease (n (%)) |                  |                   |                  |         |
| Coronary heart disease     | 178 (12.2)       | 72 (15.4)         | 106 (10.6)       | 0.010   |
| Cerebral hemorrhage        | 15 (1.0)         | 11 (2.3)          | 4 (0.4)          | < 0.00  |
| Cerebral thrombosis        | 61 (4.2)         | 34 (7.2)          | 27 (2.7)         | < 0.00  |
| Diabetes                   | 240 (16.4)       | 82 (17.5)         | 158 (15.9)       | 0.434   |
| Kidney disease             | 57 (3.9)         | 34 (7.2)          | 23 (2.3)         | < 0.00  |
| Medications use (n (%))    |                  |                   |                  |         |
| Antihypertensive           | 1146 (78.2)      | 380 (81.0)        | 766 (76.9)       | 0.075   |
| Antihyperglycemic          | 21(1.4)          | 8 (1.7)           | 13 (1.3)         | 0.547   |
| Lipid-lowering             | 21 (1.4)         | 5 (1.1)           | 16 (1.6)         | 0.417   |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HHcy, hyperhomocysteinemia; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; tHcy, total homocysteine; WC, waist circumference.<sup>#</sup>: Values are mean  $\pm$  SD or median (interquartile range) or number (percentage).

| Table 2   The dietary intake of | food and nutrients of the participar | nts <sup>#</sup>     | bmjopen-2020-045732 on 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|--------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dietary intake (/d)             | Total (n=1465)                       | HHcy (n=469)         | nongHHcy (n=996)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Energy (kcal)                   | 1488 (1172, 1899)                    | 1508 (1202-1874)     | 1473 (1150-1913)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vegetable (g)                   | 383.7 (240.3, 578.0)                 | 377.7 (227.2, 580.0) | 3882 (252.5, 577.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fruit (g)                       | 79.2 (39.7, 139.5)                   | 75.4 (33.2, 127.5)   | 81 \$ (42.1, 144.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Protein (g)                     | 43.2 (35.4, 53.5)                    | 41.7 (33.9-50.9)     | 4482 (36.2-54.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fat (g)                         | 54.3 (42.2, 65.6)                    | 52.5 (41.6-64.3)     | 55 <u>9</u> 1 (42.6-65.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbohydrate (g)                | 206.6 (179.4, 234.4)                 | 212.6 (186.6-237.7)  | 204 (176.6-231.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cholesterol (mg)                | 232.7 (152.3, 325.8)                 | 228.3 (154.5, 313.7) | 236 <sup>3</sup> (147.3, 333.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fibre (g)                       | 11.2 (8.2, 15.2)                     | 10.6 (7.9-14.8)      | 1.4 (8.4-15.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vitamin C (mg)                  | 153.5 (91.2, 240.9)                  | 138.6 (85.6-231.6)   | 1595 (93.6-242.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vitamin E (mg)                  | 25.0 (19.3-31.9)                     | 24.1 (19.0-31.5)     | 254 (19.5-32.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Carotenes (mg)                  | 3.3 (1.8, 5.6)                       | 3.1 (1.7-5.5)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Retinol (µg)                    | 138.3 (78.0, 283.6)                  | 110.9 (62.2-239.3)   | 15150 (83.3-317.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lutein (mg)                     | 9.5 (5.2, 14.8)                      | 9.0 (5.1-14.2)       | 9<br>9<br>9<br>6 (5.3-15.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Folate (µg)                     | 170.4 (109.4, 263.5)                 | 160.0 (99.9-246.2)   | 176 الم<br>176 م<br>176  م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>176 م<br>17 |

| Vitamin $B_{12} (\mu g)$ 2.7 (1.6, 4.6)2.3 (1.4-4.0) $30 (1.8-4.9)$ Saturated fatty acid (g)10.6 (8.1-13.2)10.2 (7.8-12.9)10.8 (8.3-13.3)Monounsaturated fatty acid (g)12.7 (9.8-16.3)12.4 (9.7-16.1)12.9 (9.9-16.3)Polyunsaturated fatty acid (g)20.0 (14.9-26.4)19.7 (14.9-26.0)202 (15.0-26.7)Selenium ( $\mu g$ )31.3 (23.2, 41.9)28.6 (21.0-38.8)325 (24.5-43.7)Magnesium (mg)216.1 (173.3-269.2)205.8 (167.7-261.5)2218 (176.3-271.6) | 0.2    | O O                      | HHcy (n=469)        | Total                 |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|---------------------|-----------------------|--------------------------------|
| Saturated fatty acid (g) $10.6 (8.1-13.2)$ $10.2 (7.8-12.9)$ $10.8 (8.3-13.3)$ Monounsaturated fatty acid (g) $12.7 (9.8-16.3)$ $12.4 (9.7-16.1)$ $12.9 (9.9-16.3)$ Polyunsaturated fatty acid (g) $20.0 (14.9-26.4)$ $19.7 (14.9-26.0)$ $2002 (15.0-26.7)$ Selenium (µg) $31.3 (23.2, 41.9)$ $28.6 (21.0-38.8)$ $325 (24.5-43.7)$ Magnesium (mg) $216.1 (173.3-269.2)$ $205.8 (167.7-261.5)$ $22129 (176.3-271.6)$                         |        | 0.2-0.5)                 | 0.3 (0.2-0.5)       | 0.3 (0.2, 0.5)        | Vitamin $B_6$ (mg)             |
| Monounsaturated fatty acid (g)12.7 (9.8-16.3)12.4 (9.7-16.1)19.9 (9.9-16.3)Polyunsaturated fatty acid (g)20.0 (14.9-26.4)19.7 (14.9-26.0) $2002 (15.0-26.7)$ Selenium (µg)31.3 (23.2, 41.9)28.6 (21.0-38.8) $325 (24.5-43.7)$ Magnesium (mg)216.1 (173.3- 269.2)205.8 (167.7-261.5) $22192 (176.3-271.6)$                                                                                                                                   | <0.    | 0                        | 2.3 (1.4-4.0)       | 2.7 (1.6, 4.6)        | Vitamin $B_{12}$ (µg)          |
| Polyunsaturated fatty acid (g) $20.0 (14.9-26.4)$ $19.7 (14.9-26.0)$ $200 (14.9-26.7)$ Selenium (µg) $31.3 (23.2, 41.9)$ $28.6 (21.0-38.8)$ $325 (24.5-43.7)$ Magnesium (mg) $216.1 (173.3-269.2)$ $205.8 (167.7-261.5)$ $2213 (176.3-271.6)$                                                                                                                                                                                               | 0.0    | 16.8 (8.3-13.3)          | 10.2 (7.8-12.9)     | 10.6 (8.1-13.2)       | Saturated fatty acid (g)       |
| Selenium (μg)31.3 (23.2, 41.9)28.6 (21.0-38.8)32.5 (24.5-43.7)Magnesium (mg)216.1 (173.3- 269.2)205.8 (167.7-261.5)221.9                                                                                                                                                                                                                                                                                                                    | 0.1    | 1 <u>2</u> .9 (9.9-16.3) | 12.4 (9.7-16.1)     | 12.7 (9.8-16.3)       | Monounsaturated fatty acid (g) |
| Magnesium (mg) 216.1 (173.3-269.2) 205.8 (167.7-261.5) 221 (176.3-271.6)                                                                                                                                                                                                                                                                                                                                                                    | ) 0.2  | 2022 (15.0-26.7)         | 19.7 (14.9-26.0)    | 20.0 (14.9-26.4)      | Polyunsaturated fatty acid (g) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) <0.  | 325 (24.5-43.7)          | 28.6 (21.0-38.8)    | 31.3 (23.2, 41.9)     | Selenium (µg)                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6) 0.0 | 221 (176.3-271.6)        | 205.8 (167.7-261.5) | 216.1 ( 173.3- 269.2) | Magnesium (mg)                 |
| Zinc (mg) $7.0 ( 6.0- 8.3 )$ $6.8 (5.9-7.9 )$ $\boxed{3}.1 (6.1-8.5 )$                                                                                                                                                                                                                                                                                                                                                                      | <0.    | <u>3</u> .1 (6.1-8.5)    | 6.8 (5.9-7.9)       | 7.0 ( 6.0- 8.3)       | Zinc (mg)                      |
| Iron (mg) 16.6 (12.0-23.4) 16.5 (11.8-23.1) 1666 (12.1-23.6)                                                                                                                                                                                                                                                                                                                                                                                | ) 0.2  |                          | 16.5 (11.8-23.1)    | 16.6 ( 12.0- 23.4)    | Iron (mg)                      |
| Supplement use (n (%)) $302 (20.6)$ $80 (17.1)$ $9 \\ > 222 (22.3)$                                                                                                                                                                                                                                                                                                                                                                         | 0.0    | ≥222 (22.3)              | 80 (17.1)           | 302 (20.6)            | Supplement use (n (%))         |

Page 23 of 31

|                                                    |                           |                   | BMJ Open               | omjopen-zuzu-c                                                                         |                   |                    |
|----------------------------------------------------|---------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------|-------------------|--------------------|
|                                                    |                           |                   |                        |                                                                                        |                   |                    |
| <b>Table 3</b> $\beta$ (95% CI hypertensive partic | s) and ORs (95% CIs) of d | ietary intakes of | f antioxidant vitamins | and homocysteine level                                                                 |                   | d and old          |
|                                                    | tHcy                      | Q1                | Q2                     | Q3                                                                                     | Q4                | $P_{\rm for tree}$ |
| Vitamin C (mg/d)                                   | ~                         | < 91.2            | 91.2-153.5             | 153.6-240.9                                                                            | ≥ 240.9           |                    |
| Cases (%)                                          |                           | 132 (36.1)        | 122 (33.3)             | Q3<br>153.6-240.9<br>104 (28.4)<br>0.70 (0.52, 0.96)                                   | 111 (30.2)        |                    |
| Crude Model                                        | -0.037 (-0.063, -0.011)   | Ref.              | 0.89 (0.65, 1.20)      |                                                                                        |                   | 0.07               |
| Model I                                            | -0.031 (-0.055, -0.006)   | Ref.              | 0.92 (0.66, 1.27)      | 0.64 (0.46, 0.90)                                                                      | 0.55 (0.34, 0.89) | 0.048              |
| Model II                                           | -0.050 (-0.084, -0.016)   | Ref.              | 0.82 (0.57, 1.16)      | 0.49 (0.33, 0.74)                                                                      | 0.40 (0.22, 0.74) | 0.00               |
| Vitamin E (mg/d)                                   |                           | < 19.3            | 19.3-25.0              | 25.1-31.9                                                                              | ≥ 31.9            |                    |
| Cases (%)                                          |                           | 122 (33.6)        | 126 (34.2)             | 0.64 (0.46, 0.90)<br>0.49 (0.33, 0.74)<br>25.1-31.9<br>113 (30.9)<br>0.88 (0.65, 1.20) | 108 (29.3)        |                    |
| Crude Model                                        | -0.035 (-0.084, 0.014)    | Ref.              | 1.03 (0.76, 1.40)      | 0.88 (0.65, 1.20)                                                                      | 0.82 (0.60, 1.12) | 0.139              |
| Model I                                            | -0.007 (-0.053, 0.039)    | Ref.              | 1.10 (0.79, 1.53)      |                                                                                        |                   | 0.618              |
| Model II                                           | -0.009 (-0.055, 0.036)    | Ref.              | 1.12 (0.80, 1.57)      | 0.96 (0.69, 1.34)<br>0.95 (0.68, 1.33)                                                 | 0.91 (0.65, 1.28) | 0.412              |
| Carotenes (mg/d)                                   |                           | < 1.78            | 1.78-3.30              | 3.31-5.61                                                                              | ≥ 5.61            |                    |
| Cases (%)                                          |                           | 118 (32.7)        | 136 (37.0)             | 99 (26.8) 99                                                                           | 116 (31.6)        |                    |
| Crude Model                                        | -0.024 (-0.045, -0.003)   | Ref.              | 1.21 (0.89, 1.64)      | 0.76 (0.55, 1.04)                                                                      |                   | 0.315              |
|                                                    |                           |                   |                        |                                                                                        |                   | n next pag         |
|                                                    |                           |                   |                        | ed by                                                                                  | -                 |                    |
|                                                    |                           |                   |                        | rotected by copyright                                                                  |                   |                    |
|                                                    |                           |                   |                        | ignt.                                                                                  |                   |                    |

bmjopen-

|                     |                         |            |                   |                                                                                         |                   | 23                  |
|---------------------|-------------------------|------------|-------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------|
| Table 3 (continued) | <i>d</i> )              |            |                   | 45/32 on 12                                                                             |                   |                     |
|                     | tHcy                    | Q1         | Q2                | Q3 Coto                                                                                 | Q4                | $P_{\rm for trend}$ |
| Model I             | -0.022 (-0.042, -0.003) | Ref.       | 1.22 (0.88, 1.69) | 0.72 (0.51, 1.01)                                                                       | 0.93 (0.67, 1.30) | 0.254               |
| Model II            | -0.022 (-0.052, 0.009)  | Ref.       | 1.18 (0.84, 1.68) | 0.72 (0.51, 1.01)<br>0.68 (0.46, 1.02)<br>138.4-283.6<br>91 (24.9)                      | 0.76 (0.43, 1.35) | 0.159               |
| Retinol (µg/d)      |                         | < 78.0     | 78.0-138.3        | 138.4-283.6                                                                             | ≥ 283.6           |                     |
| Cases (%)           |                         | 147 (40.2) | 133 (36.3)        |                                                                                         |                   |                     |
| Crude Model         | -0.030 (-0.046, -0.015) | Ref.       | 0.85 (0.63, 1.15) | 0.49 (0.36, 0.68)                                                                       | 0.54 (0.40, 0.74) | 0.001               |
| Model I             | -0.027 (-0.041, -0.012) | Ref.       | 0.84 (0.61, 1.16) | 0.50 (0.35, 0.70)                                                                       | 0.55 (0.40, 0.77) | 0.003               |
| Model II            | -0.021 (-0.041, -0.002) | Ref.       | 0.90 (0.65, 1.25) | 0.61 (0.42, 0.86)                                                                       | 0.86 (0.56, 1.32) | 0.951               |
| Lutein (mg/d)       |                         | < 5.22     | 5.22-9.48         | 0.49 (0.36, 0.68)<br>0.50 (0.35, 0.70)<br>0.61 (0.42, 0.86)<br>9.49-14.82<br>114 (31.1) | ≥ 14.82           |                     |
| Cases (%)           |                         | 123 (33.7) | 120 (32.8)        | 114 (31.1)                                                                              | 112 (30.4)        |                     |
| Crude Model         | -0.028 (-0.053, -0.004) | Ref.       | 0.96 (0.71, 1.31) |                                                                                         | -                 | 0.311               |
| Model I             | -0.024 (-0.046, -0.001) | Ref.       | 0.98 (0.71, 1.37) | 0.89 (0.65, 1.21)<br>0.84 (0.61, 1.17)                                                  | 0.87 (0.62, 1.22) | 0.331               |
| Model II            | -0.025(-0.063, 0.013)   | Ref.       | 0.92 (0.65, 1.31) | 0.76 (0.51, 1.14)                                                                       | 0.66 (0.37, 1.19) | 0.138               |

 Model I: Adjusted for age, sex ('male' as the reference) BMI. and vitamin B12, supplement use ('no' as the reference) and the history of cardiovascular events ('no' as the reference). rotected by copyright.

540 Figure Legends:

Fig. 1 Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ , the history of cardiovascular events ('no' as the reference).

Fig. 2 ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to
vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age,
sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as</li>
the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin
B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).



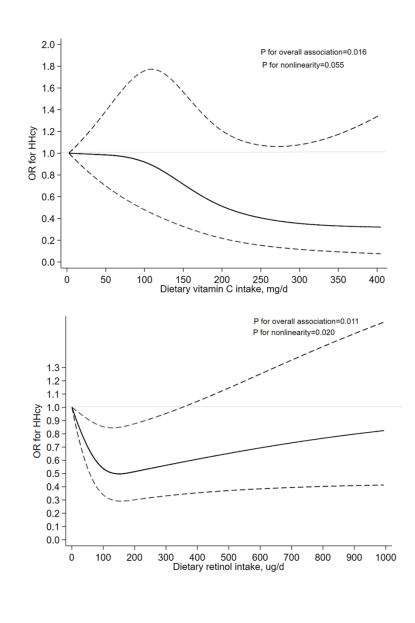
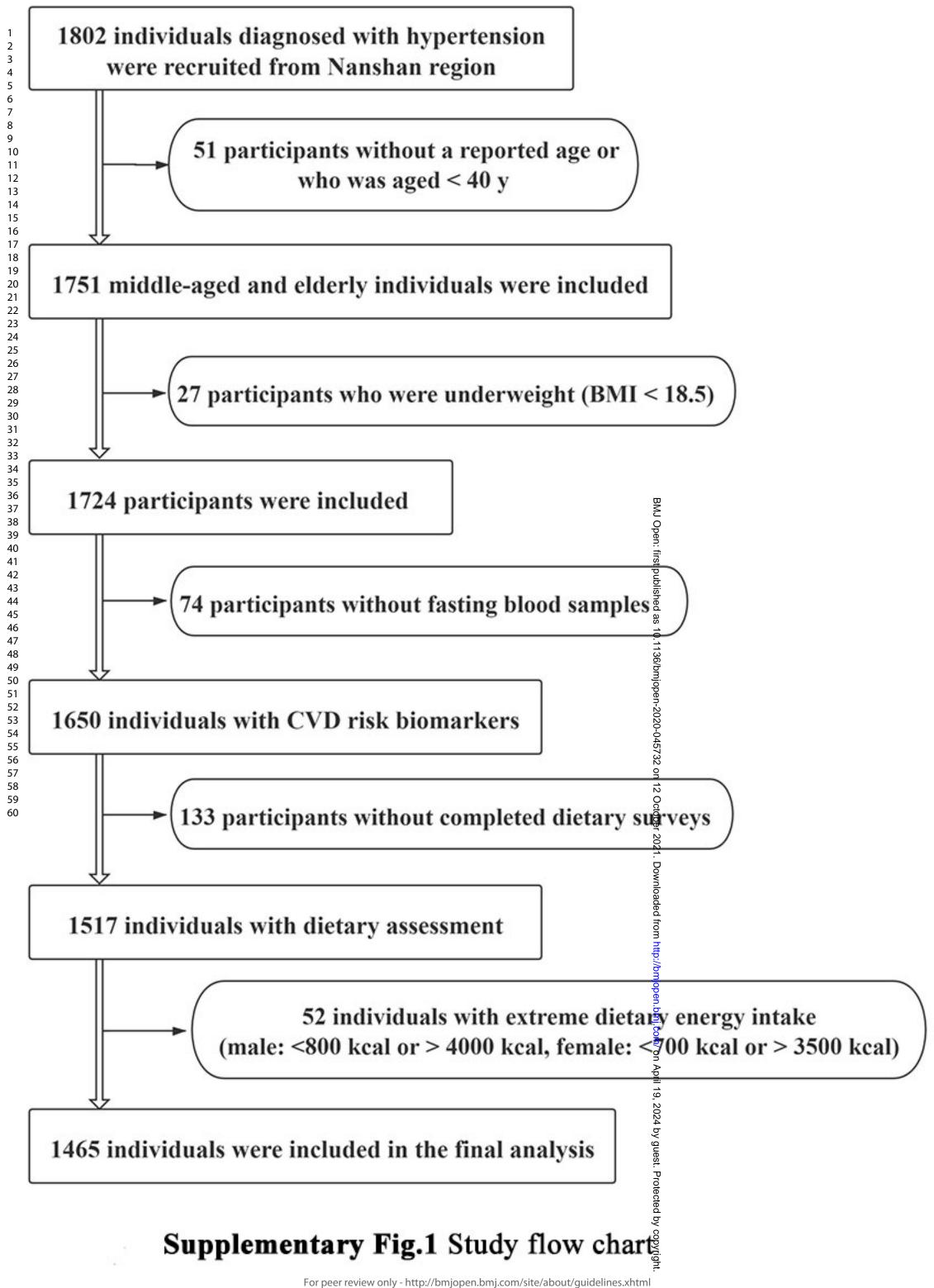
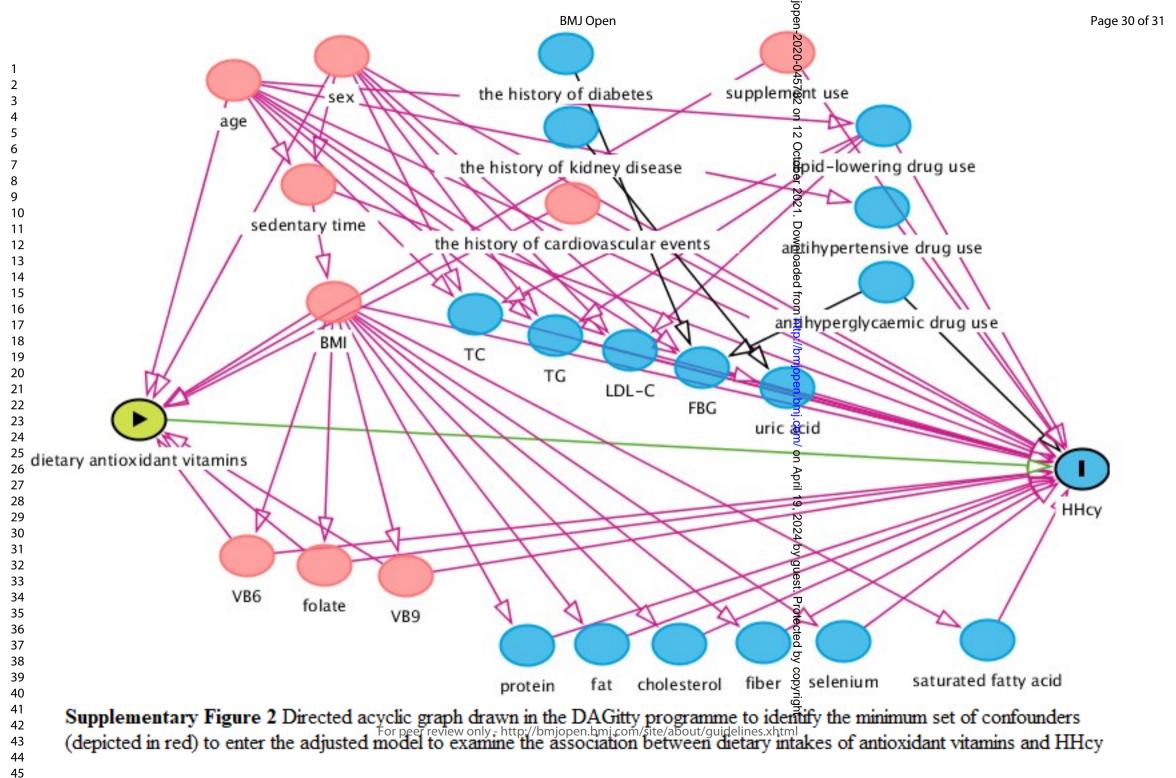



Fig 1. Restricted cubic spline analyses illustrating the shapes of multivariable association between dietary vitamin C intake (A), or dietary retinol intake (B) and HHcy. Adjusted for age, sex ('male' as the reference), BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).</li>



Fig 2. ORs and 95% CIs for hyperhomocysteinemia (HHcy) prevalence according to vitamin C, retinol intake in subgroups, stratified by sex (A), BMI (B). Adjusted for age, sex (except sex subgroup), BMI (except BMI subgroup), sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin B6 and vitamin B12, the history of cardiovascular events ('no' as the reference).


BMJ Open: first published as 10.1136/bmjopen-2020-045732 on 12 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.


289x199mm (300 x 300 DPI)

**Supplementary Table 1** Sensitivity analyses of ORs (95% CIs) of antioxidant vitamins intake for hyperhomocysteinemia prevalence in multivariable-adjusted model among the patients with hypertension <sup>#</sup>

|                                           | Q1          | Q2                | Q3                | Q4                | P for trend |  |  |  |
|-------------------------------------------|-------------|-------------------|-------------------|-------------------|-------------|--|--|--|
| Without cardiovascular events (n=1245)    |             |                   |                   |                   |             |  |  |  |
| Vitamin C                                 | 1.00 (Ref.) | 0.92 (0.63, 1.35) | 0.54 (0.35, 0.84) | 0.41 (0.21, 0.80) | 0.003       |  |  |  |
| Vitamin E                                 | 1.00 (Ref.) | 1.14 (0.79, 1.64) | 0.95 (0.66, 1.39) | 0.90 (0.62, 1.31) | 0.425       |  |  |  |
| Carotenes                                 | 1.00 (Ref.) | 1.25 (0.85,1.84   | 0.67 (0.43, 1.04) | 0.77 (0.41, 1.44) | 0.178       |  |  |  |
| Retinol                                   | 1.00 (Ref.) | 1.05 (0.73, 1.50) | 0.61 (0.43, 0.94) | 0.78 (0.50, 1.34) | 0.836       |  |  |  |
| Lutein                                    | 1.00 (Ref.) | 1.04 (0.71, 1.53) | 0.74 (0.48, 1.14) | 0.63 (0.33, 1.20) | 0.104       |  |  |  |
| Without tHcy-lowering drug-using (n=1360) |             |                   |                   |                   |             |  |  |  |
| Vitamin C                                 | 1.00 (Ref.) | 0.85 (0.58, 1.24) | 0.49 (0.31, 0.78) | 0.44 (0.22, 0.86) | 0.007       |  |  |  |
| Vitamin E                                 | 1.00 (Ref.) | 1.07 (0.74, 1.55) | 0.98 (0.68, 1.42) | 0.95 (0.66, 1.37) | 0.685       |  |  |  |
| Carotenes                                 | 1.00 (Ref.) | 1.27 (0.87, 1.85) | 0.69 (0.44, 1.07) | 0.67 (0.35, 1.28) | 0.090       |  |  |  |
| Retinol                                   | 1.00 (Ref.) | 0.84 (0.59, 1.20) | 0.56 (0.38, 0.84) | 0.85 (0.54, 1.35) | 0.837       |  |  |  |
| Lutein                                    | 1.00 (Ref.) | 0.88 (0.60, 1.29) | 0.74 (0.47, 1.15) | 0.60 (0.31, 1.16) | 0.115       |  |  |  |

<sup>#</sup>: Adjusted for age, sex, BMI, sedentary time ('< 3 h/d' as the reference), supplement use ('no' as the reference), dietary intake of folate, vitamin  $B_6$  and vitamin  $B_{12}$ .





Page 31 of 31

 BMJ Open

| Section/Topic                | ltem<br># | Recommendation 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reported on page # |
|------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Title and abstract           | 1         | (a) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 1-2              |
|                              |           | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 2                |
| Introduction                 |           | 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Background/rationale         | 2         | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 3-4              |
| Objectives                   | 3         | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # 4                |
| Methods                      |           | adec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Study design                 | 4         | Present key elements of study design early in the paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 4-5              |
| Setting                      | 5         | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # 4                |
| Participants                 | 6         | ( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection of participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 4-5              |
| Variables                    | 7         | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 5-7              |
| Data sources/<br>measurement | 8*        | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 5-7              |
| Bias                         | 9         | comparability of assessment methods if there is more than one group       >         Describe any efforts to address potential sources of bias       =         0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 7                |
| Study size                   | 10        | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # 4-5              |
| Quantitative variables       | 11        | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # 6                |
| Statistical methods          | 12        | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # 7-8              |
|                              |           | (b) Describe any methods used to examine subgroups and interactions 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 7-8              |
|                              |           | (c) Explain how missing data were addressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|                              |           | (d) If applicable, describe analytical methods taking account of sampling strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|                              |           | (e) Describe any sensitivity analyses     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S     S       S <t< td=""><td># 7</td></t<> | # 7                |

# bmjopen-2020-

 bmjopen-202

copyright.

| Participants      | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine d for eligibility,                                                       | # 8     |
|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                   |     | confirmed eligible, included in the study, completing follow-up, and analysed                                                                                              |         |
|                   |     | (b) Give reasons for non-participation at each stage                                                                                                                       |         |
|                   |     | (c) Consider use of a flow diagram                                                                                                                                         | # 5     |
| Descriptive data  | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders                                   | # 8     |
|                   |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                        |         |
| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                       | #8      |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision geg, 95% confidence                                                    | # 8-9   |
|                   |     | interval). Make clear which confounders were adjusted for and why they were included                                                                                       |         |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                  | # 8     |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time beriod                                                           |         |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                             | # 9     |
| Discussion        |     | tp:///                                                                                                                                                                     |         |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                   | # 9     |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias                 | # 12-13 |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence | # 10-12 |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                      | # 13    |
| Other information |     |                                                                                                                                                                            |         |
| Funding           | 22  | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on                                                 | # 13    |
|                   |     | which the present article is based                                                                                                                                         |         |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exangeles of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.grg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strong.