Impact of electronic health records on predefined safety outcomes in patients admitted to hospital: a scoping review

Christian Peter Subbe 1,2, Genevieve Tellier,2 Paul Barach 1,3

ABSTRACT

Objectives Review available evidence for impact of electronic health records (EHRs) on predefined patient safety outcomes in interventional studies to identify gaps in current knowledge and design interventions for future research.

Design Scoping review to map existing evidence and identify gaps for future research.

Data sources PubMed, the Cochrane Library, EMBASE, Trial registers.

Study selection Eligibility criteria: We conducted a scoping review of bibliographic databases and the grey literature of randomised and non-randomised trials describing interventions targeting a list of fourteen predefined areas of safety. The search was limited to manuscripts published between January 2008 and December 2018 of studies in adult inpatient settings and complemented by a targeted search for studies using a sample of EHR vendors. Studies were categorised according to methodology, intervention characteristics and safety outcome.

Results From identified studies were grouped around common themes of safety measures.

Results The search yielded 583 articles of which 24 articles were included. The identified studies were largely from US academic medical centres, heterogeneous in study conduct, definitions, treatment protocols and study outcome reporting. Of the 24 included studies effective safety themes included medication reconciliation, decision support for prescribing medications, communication between teams, infection prevention and measures of EHR-specific harm. Heterogeneity of the interventions and study characteristics precluded a systematic meta-analysis. Most studies reported process measures and not patient-level safety outcomes: We found no or limited evidence in 13 of 14 predefined safety areas, with good evidence limited to medication safety.

Conclusions Published evidence for EHR impact on safety outcomes from interventional studies is limited and does not permit firm conclusions regarding the full safety impact of EHRs or support recommendations about ideal design features. The review highlights the need for greater transparency in quality assurance of existing EHRs and further research into suitably metrics and study designs.

INTRODUCTION

Caring for patients with complex conditions safely and competently mandates having access to the right information at the right time.1 Ineffective sharing of information between providers and patients seriously impedes the quality and safety of patient care and is a leading cause of adverse events in hospital.2 Harm from medical care is common, has a significant associated morbidity and mortality and affects the mental health of staff as well as the financial performance of institutions.3 A small number of categories of patient harm account for the bulk of adverse events.4 Most interventions aimed at reducing harm have included introducing a digital health record while restructuring the patient documentation and communication.5 It is widely accepted wisdom that the introduction of comprehensive systems for documentation and communication such as electronic health records (EHRs) should improve the safer delivery of care. Mortality improves after implementation of EHRs in smaller non-teaching hospitals.6 The number of reported adverse events changes after implementation of EHRs with ‘meaningful usage’ functionality7 but it is unclear whether changes are due to improved practice or changed event reporting. There are technical standards for EHR implementation and metrics for meaningful usage have focused on technical and efficiency aspects but not safety outcomes.8 There is hence the need to review the existing evidence for this specific aspect of care at a time of increasing spread of EHRs.
The objective of this scoping review is to map key concepts as a basis for a deeper understanding on the effects of electronic record systems on commonly used clinical safety metrics while identifying gaps in our current knowledge to inform design of future research and the design of more effective EHRs.

**Methods**

Scoping reviews are a traceable method of ‘mapping’ areas of research and highlighting gaps in the literature for future research. Scoping reviews are a useful tool in the ever-increasing arsenal of evidence synthesis approaches and require rigorous and transparent methods to ensure that the results are trustworthy. We used O’Malley’s and Arksey framework for undertaking a scoping review. This methodology summarises the evidence available on a topic in order to convey the breadth and depth of that topic by mapping the existing literature in a field of interest in terms of the volume, nature and characteristics of the primary research and identify gaps in the existing literature. In line with the methodology of scoping reviews, a formal evaluation of the quality of the studies was not undertaken. The review included the following five key phases: identifying the research question, identifying relevant studies, study selection, charting the data and collating, summarising, and reporting the results. A detailed review protocol can be obtained from the primary author on request.

A checklist for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews can be found in online supplemental appendix 1.

**Research question**

This review was guided by the question: ‘How do patients admitted to hospital (P) benefit from implementation of an EHR (I) compared with patients not exposed to this or exposed to a different technology (C) in relation to commonly used outcome measures of safe care (O).’ Our PICO search strategy for identifying and selection of studies is outlined below. The studies were divided into categories based on similarities in their main objectives/findings and the themes discussed.

**Data sources and search strategy**

The initial search was undertaken in March 2019 on studies published between January 2008 and December 2018, in the following databases: PubMed (including MEDLINE) and Embase, the European Trials Register, the Australian New Zealand Clinical Trials Register, the International Standard Randomised Controlled Trial Register and the Cochrane Library with supplementary searches on Google. The databases were selected to be comprehensive and to cover a broad range of disciplines. No limits on language, subject or type were placed on the database search. The initial search was conducted in March 2019 with the supplementary searches run in December 2019.

We used a validated algorithm from a literature review on search terms for studies on patient safety that was subsequently used by an authoritative systematic review of interventions to reduce adverse events in hospital. Online supplemental appendix 2 provides a sample listing of the search query terms tailored to the specific requirements of each database.

Fourteen topics of patient safety were identified in the review, including adverse drug events, infection, delirium, adverse event after hospital discharge or clinical handover, fall, adverse event in surgery, cardiopulmonary arrest, venous thromboembolism, staffing, pressure ulcer, mechanical complication and underfeeding, clinical pathway, safety culture, external inspection. EHRs were defined according to the National Centre for Biotechnological Information as Media that facilitate transportability of pertinent information concerning patients illness across varied providers and geographical locations.

**Study selection process**

The study initial selection for inclusion was based on the title and abstract of the studies that were reviewed to preclude waste of resources in procuring articles that did not meet the minimum inclusion criteria. Two of the authors (CS and GT) reviewed titles, references and abstracts generated by the original search against the agreed inclusion and exclusion criteria. When the title and abstract provided insufficient information to determine the relevance, a full-text copy of the article was retrieved and reviewed. For the final selection, a full-text copy of each study was examined to determine if it fulfilled the inclusion criteria. The references of eligible studies were manually checked to identify additional relevant studies that were missed in the database searches (snowballing). The studies were reviewed for their research design and internal validity and the references of the selected studies were manually checked to identify additional relevant studies that were missed in the database search.

**Eligibility criteria**

Inclusion criteria: Record systems can be applied to inpatient or outpatient settings as well as to systems in community, primary or secondary care. This review focuses on medical record systems that are being used to support care of adult patients admitted to hospital wards. The review included publications identified in any language that reported experimental interventions in clinical trials that tested how records influenced patient safety. Only studies comparing two interventions or an intervention against usual or standard care were included. Studies excluded at this phase if they were found to not meet the eligibility criteria.

Exclusion criteria: Study protocols, case series, technical descriptions, conference abstracts and studies limited to primary care records, outpatient care and...
highly specialised environments such as cardiac catheterisation laboratories, operating rooms or day-case units were excluded. Systematic reviews have been undertaken to document the safety impact of electronic prescribing systems. Studies examining the effects of interventions after hospital discharge were outside of the scope.

Supplemental searches
In order to validate the search strategy, additional searches were undertaken against the name of commonly used EHR vendors from the USA and UK identified from a Google search of EHRs companies. In order to assure the capture of important themes additional searches against the names of a sample of 12 major providers of electronic records was undertaken (online supplemental appendix 2). A total of 451 studies were screened. Four clinical trials that fulfilled inclusion criteria were identified. One of these reviewed safety alerts about gastrointestinal prophylaxis in a population that included inpatient and outpatient. The study did not allow to differentiate between the two groups and the study was thus excluded. Supplementary searches identified one further trial.

Data extraction
Each article that met the study eligibility criteria was abstracted by using a standardised form based on a template by the Cochrane Collaboration. The data were extracted from the studies using an extraction tool that included the following items: article identifiers (authors, year of publication, objective); study identifiers (sample size, design, country, length of follow-up, inclusion and exclusion criteria); setting and population; outcome measures.

We organised the study characteristics in a tabular form. The identified studies were summarised according to key themes based on similarities of their main intervention and metrics and mapped against the 14 safety topics.

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of the research. The study was not formally registered.

Patients or the public involvement
Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this literature review.

Role of the funding source
The Health Foundation provided funding for the study through an improvement science fellowship (CS). The funding agency did not participate in study conception, data collection, analyses, manuscript preparation, the decision to submit the manuscript for publication or any other part of the study.

RESULTS
Search results
The initial searches identified 60 articles for full-text review in the scoping review and further analyses. Twenty-four papers met the eligibility and inclusion criteria and underwent a full-text abstraction (table 1). Because of heterogeneity of the study designs, participants and outcome measures, a meta-analysis was not feasible. The flow of articles through identification to final inclusion is represented in figure 1.

General characteristics of included studies
The studies originated from a number of countries: 18 from the USA, three from Switzerland and one each from Australia, Belgium and Korea. The studies involved general hospital wards areas, critical care and laboratory settings. Studies almost exclusively originated from academic medical institutions.

Eleven studies were randomised controlled trials; 13 studies were observational before-and-after studies or parallel group studies comparing electronic records with paper records and other electronic records. The methodological quality of the studies was not formally assessed in line with the framework of scoping reviews.

The majority of studies involved only a single institution, some involved a group of hospitals and in one study, the authors reported from one geographical region. The small number of multicentre studies involving between 18 and 29 hospitals. The study duration ranged from a single month to 5 years with most studies lasting 6–18 months.

The studies examined interventions created by installing new electronic systems, changes delivered within an existing system and changes between different electronic systems.

The unit of examination were patients, hospitals units, pathology specimens and categories of healthcare professionals: nurses, physicians, prescribers.

Processes by which EHRs aimed to effect changes in safety outcomes
The majority of studies used interventions that created information aimed to influence the behaviour of physicians or prescribers, one study was aimed at nurses and no study was aimed at patients. The interventions included randomisation that was delivered at hospital, clinical units, clinician or patient levels. The comparative studies reviewed changes in adverse event reporting in hospitals implementing EHRs to those that did not implement EHR or in clinical departments preimplementation and postimplementation. Alerts were created for a random sample of patients or for a random sample of clinicians. Most studies reported on compliance with processes associated with safe care. Only a limited number of studies reported on actual adverse events or harm.

Metrics of impact
Results were mapped against the 14 predefined topics of patient safety (table 2): Significant evidence was identified for the topic of adverse drug events and limited evidence for the topics of clinical handover, venous
### Table 1  Synopsis of 24 identified studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>RCT</th>
<th>Intervention</th>
<th>Type of safety metric</th>
<th>Unit of measurement</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abramson</td>
<td>USA</td>
<td>No</td>
<td>Transition between EHRs</td>
<td>Medication safety</td>
<td>Clinicians</td>
<td>n.s.</td>
</tr>
<tr>
<td>Adelman</td>
<td>USA</td>
<td>Yes</td>
<td>Change in version of EHR</td>
<td>System safety: wrong patient orders</td>
<td>Clinicians</td>
<td>Identification-re-entry function resulted in lower error rate (p&lt;0.001).</td>
</tr>
<tr>
<td>Awdishu</td>
<td>USA</td>
<td>Yes</td>
<td>Notification: AKI</td>
<td>Medication safety: AKI</td>
<td>Clinicians</td>
<td>Adjusted prescriptions increased (p&lt;0.001).</td>
</tr>
<tr>
<td>Barnett</td>
<td>USA</td>
<td>No</td>
<td>Transition between EHRs</td>
<td>Adverse event reporting: PSI-90, death and readmissions</td>
<td>Patients</td>
<td>n.s.</td>
</tr>
<tr>
<td>Boockvar</td>
<td>USA</td>
<td>Yes</td>
<td>Link to community EHR</td>
<td>Medication safety: Reconciliation</td>
<td>Patients</td>
<td>n.s.</td>
</tr>
<tr>
<td>Cardozo</td>
<td>USA</td>
<td>No</td>
<td>Notification: Trauma</td>
<td>Clinical pathway: cervical-spine clearance protocol</td>
<td>Patients</td>
<td>Improved compliance rate with pathway.</td>
</tr>
<tr>
<td>Cho</td>
<td>USA</td>
<td>No</td>
<td>EHR generated lists</td>
<td>Alerts</td>
<td>Clinical unit</td>
<td>Reduction in catheter related infections (p&lt;0.05).</td>
</tr>
<tr>
<td>Cho</td>
<td>Korea</td>
<td>No</td>
<td>Notification: Falls risk assessment</td>
<td>Falls</td>
<td>Patients</td>
<td>Unchanged rate of falls.</td>
</tr>
<tr>
<td>Colpaert</td>
<td>Belgium</td>
<td>No</td>
<td>Transition to electronic system</td>
<td>Medication safety</td>
<td>Patients</td>
<td>Reduction in prescription errors (p&lt;0.001).</td>
</tr>
<tr>
<td>Cook</td>
<td>USA</td>
<td>No</td>
<td>Transition to electronic system</td>
<td>Medication safety: antibiotic prescribing</td>
<td>Patients</td>
<td>Reduction in nosocomial infections (p&lt;0.07).</td>
</tr>
<tr>
<td>Dowding</td>
<td>USA</td>
<td>No</td>
<td>Transition to electronic system</td>
<td>Hospital acquired pressure ulcers and falls</td>
<td>Patients</td>
<td>Increased documentation rates for hospital acquired pressure ulcers.</td>
</tr>
<tr>
<td>Fahey</td>
<td>USA</td>
<td>No</td>
<td>Change in version of EHR</td>
<td>Medication safety: wrong dosage of chemotherapy</td>
<td>Clinicians</td>
<td>Decrease in dosage error (n=0) compared with manual rounding (n=4).</td>
</tr>
<tr>
<td>Hess</td>
<td>USA</td>
<td>No</td>
<td>Transition from paper to electronic system</td>
<td>Medication safety: wrong dosage in chemotherapy</td>
<td>Clinicians</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mishra</td>
<td>USA</td>
<td>No</td>
<td>Notification: Medication dosage</td>
<td>Medication safety: monitoring of Vancomycin dosage</td>
<td>Patients</td>
<td>Increase in frequency of trough levels (p&lt;0.01).</td>
</tr>
<tr>
<td>Mohsen</td>
<td>USA</td>
<td>No</td>
<td>Change in version of EHR</td>
<td>Venous thrombembolism Reduction in inappropriate alerts</td>
<td>Patients</td>
<td>Alert reduction (p&lt;0.001), increase in alert effectiveness (p&lt;0.001), but decrease in alert efficiency (p=0.007).</td>
</tr>
<tr>
<td>Muhlenkamp</td>
<td>USA</td>
<td>Yes</td>
<td>Notification: Dosage alerts</td>
<td>Medication safety: removal of inappropriate or unnecessary alerts</td>
<td>Patients</td>
<td>Decrease in dosage alerts by 3.6%.</td>
</tr>
<tr>
<td>Nanchal</td>
<td>USA</td>
<td>Yes</td>
<td>Change in version of EHR</td>
<td>ICU handover: occurrence of non-routine events</td>
<td>Clinicians</td>
<td>Structured sign-out process reduced the occurrence of non-routine events reported by residents (p=0.005).</td>
</tr>
<tr>
<td>Nendaz</td>
<td>Switzerland</td>
<td>Yes</td>
<td>Notification: VTE risk assessment</td>
<td>Medication safety: decision support for VTE prophylaxis</td>
<td>Patients</td>
<td>Less overprescribing with e-alerts (p&lt;0.01).</td>
</tr>
</tbody>
</table>

Continued
thromboembolism, clinical pathways, pressure ulcers and falls. No evidence was identified for seven of the predefined topics.

Identified studies were linked to safety themes. The patient safety themes identified included (1) the use of electronic notifications as reminders or alerts,22 25 31 33–39 (2) electronic notifications specifically in relation to medication safety,19 20 22 23 26–28 31–36 40–43 (3) communication between teams,27 28 44 (4) prevention and treatment of infections,27 and (5) harm caused by the architecture of the EHRs.29 45 46

Theme (1): Electronic reminders: Automated notifications were used to alert prescribers to good practices in prescribing of antibiotics,19 22 24 43 prevention of falls and hospital acquired pressure ulcers,25 oral anticoagulants,35 thrombosis prophylaxis31 38 and nephrotoxic medications.33 36

Best practice alerts for prescribing of antibiotics on general wards22 elicited only a response in 19% of prescribers in one study, with most of the responders following the advice that resulted in a reduction in the number of broad-spectrum antibiotics prescribed.

A study in a medical intensive care unit used checklists for antibiotics in the EHRs.19 These checklists were more effective on their own when compared with additional face-to-face prompting by a dedicated resident in changing the antibiotics to empirical antibiotics. Adverse events were not reported. The length of stay in the intensive care unit and standardised mortality rates were not different between the intervention and control groups.

The electronic reminders for clinicians to prescribe oral anticoagulants in patients with stroke and atrial fibrillation35 resulted in a relative improvement in the rates of appropriate prescribing from 16% to 22%, however, the adverse effects were not reported.

The computer-generated alerts about rising creatinine levels that indicated acute kidney injuries resulted in a significantly higher rate of repeat creatinine laboratory checks.36 There was a small increase in the subgroup of surgical ward patients in the number of renal consults ordered and in subsequent dialysis sessions. The primary combined outcomes of maximum creatinine rise, dialysis or death at 7 days, however, did not change.

Implementation of risk assessments for falls and hospital acquired pressure ulcers led to improved documentation rates: Falls rates did not change and the rate of hospital acquired pressure ulcers dropped continuously over the period of the investigation but no step-change after implementation of the EHR.

An electronic protocol for the clearance of the cervical spine after mechanical trauma resulted in improved documentation.37 A falls-prediction algorithm47 created a notification tool for falls prevention—this was tested against a non-matched control group.

Theme (2): Medication safety: The studies included reconciliation of medications,27 28 anticoagulants,31 35 antibiotic prescribing,19 22 24 acute kidney injury,31 33 36 calculating and monitoring of correct dosage32 42 43 and error-reporting.20 23 48 The effects on patient outcomes were

Table 1

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>RCT</th>
<th>Intervention</th>
<th>Type of safety metric</th>
<th>Unit of measurement</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnipper</td>
<td>USA</td>
<td>Yes</td>
<td>Medication Reconciliation</td>
<td>Medication safety: adverse drug events</td>
<td>Patients</td>
<td>Changes significant at discharge but not admission.</td>
</tr>
<tr>
<td>Silbernagel</td>
<td>Switzerland</td>
<td>Yes</td>
<td>Notification: Complications of Atrial fibrillation</td>
<td>Medication safety: anticoagulation</td>
<td>Patients</td>
<td>Adequate prescription increased from 16% to 22% (p=0.021).</td>
</tr>
<tr>
<td>Spirk</td>
<td>Switzerland</td>
<td>Yes</td>
<td>Notification: VTE prophylaxis</td>
<td>Medication safety: VTE prophylaxis</td>
<td>Patients</td>
<td>n.s.</td>
</tr>
<tr>
<td>Weiss</td>
<td>USA</td>
<td>Yes</td>
<td>Checklist in EHR</td>
<td>Medication Safety: Antibiotic prescribing</td>
<td>Patients</td>
<td>Increase in number of days with empirical antibiotics (p&lt;0.002).</td>
</tr>
<tr>
<td>Westbrook</td>
<td>Australia</td>
<td>No</td>
<td>Implementation of two EHRs</td>
<td>Medication Safety</td>
<td>Patients</td>
<td>44% reduction in serious errors, increase in system errors.</td>
</tr>
<tr>
<td>Wilson</td>
<td>USA</td>
<td>Yes</td>
<td>Notification: AKI</td>
<td>Medication Safety: AKI</td>
<td>Patients</td>
<td>Increase in creatinine checks (p&lt;0.05) and reduction in deaths and dialysis (p&lt;0.01) only in surgical stratum.</td>
</tr>
</tbody>
</table>

AKI, acute kidney injury; EHR, electronic health record; ICU, intensive care unit; n.s., not significant; PSI, Patient Safety Indicator (PSI-90); PSI-90, Patient Safety and Adverse Events Composite for the International Classification of Diseases; RCT, randomised controlled trial; VTE, venous thromboembolism.
either not reported or small and limited to subgroups of patients.

Theme (3): Communication between teams: Medication reconciliation on admission to the hospital was the focus of two studies.27 28 The reconciliation on hospital admission led to no measurable impact on safety outcomes. The electronic handover was related to a reduction in clinician reported ‘non-routine events’.44

Theme (4): Infection: The prescribing practice of antibiotics19 22 24 was examined. Significant impact on patient outcomes was reported in one study with a fall in only one of several examined nosocomial infections.24 A list of indwelling devices generated by the EHR was used to inform multi-disciplinary rounds with some evidence of lower exposure to risk.39 The evidence was lacking on surrogate metrics describing the clinical course of infections such as the patients’ white cell count, level of C reactive protein or vital signs.

Theme (5): Harm caused by the EHR: The potential harm caused by introduction of the EHR was measured through a novel ‘retract-and-reorder’ tool45 46 that captured when clinicians prescribed corrected prescriptions and were reordered again for other patients. The majority of these events were likely near-misses. A reduction of harm from ‘wrong patient’ orders were attempted through the repeat of identity checks/verification45 and a reduction in the number of maximum opened patient records.46 A summary nationally reported measure of patient harm was used in another study to quantify the impact of transitions between medical records.29

Additional gaps in understanding of impact of EHRs on safety outcomes

Studies reported limited explanatory context required to fully understand the likelihood of an impactful implementation such as staff workload, patient satisfaction, staff satisfaction or health economic outcomes. Staff satisfaction was measured in a single study44 and only one study reported a patient-reported outcome measure: Adverse events collected through telephone interviews in the study on electronic discharge notifications were not specified and not affected by the intervention.30

Figure 1  Flow diagram of literature search of impact of electronic health records.
We found limitations in measurement of attributable harm at the patient level: A study examining the effect of a Health Information Exchange on adverse drug events found only 37 adverse events in 381 patients. All reported adverse events were characterised by temporary symptoms (eg, pain) or temporary organ dysfunction (eg, a rise in creatinine), and none caused serious or permanent harm. A study using electronic alerts for acute kidney injury examined events such as the administration of contrast in patients-at-risk without clinical validation of the preventability of these events.

There was some degree of innovative functionality specific to electronic systems in relation to safety outcomes: An EHR specific ‘retract-and-reorder’ measure and a ‘patient safety composite measure’ for a selected validated summary indicator, the ‘Patient Safety and Adverse Events Composite for the International Classification of Diseases’ (PSI-90) were described. We were unable to identify a single trial using personal health records (PHRs) or patient portals in a hospital that reported on safety outcomes.

### DISCUSSION

This is the first scoping review, to the authors’ knowledge, to systematically evaluate the impact of EHR interventions on patient safety metrics in hospital. We found little published evidence for positive effects of EHRs on safety metrics that commonly feature in the literature such as hospital acquired infection, medication safety, allergies, falls. The review identified some evidence for a meaningful impact of EHRs in hospitals on surrogate outcomes that was largely restricted to changes in hospital prescribing practices. Limited follow-up periods might have been too short to capture the lasting effects beyond the immediate implementation period.

The review did not examine studies in primary care or paediatrics. Mortality was not included as a primary safety outcome as it depends on a large number of variables including the patient casemix but there are indications that patient mortality improves in a subgroup of hospitals that have implemented EHRs.

Direct comparative clinical studies of EHRs by different vendors were missing. We were only able to identify two studies that directly compared EHRs. The first, a non-clinical study tested the safety processes in a simulated
environment, and demonstrated large differences in the number of computer keyboard clicks and the time required to perform basic work tasks, and the second, an observational audit study that compared the prescription errors between two EHRs.

We found no evidence for EHR related patient engagement at any level. Patients have been called the first line of defence or the ‘smoke alarm’ to raise alerts about potential patient harm and are able if invited to do so, to play a key role in monitoring their safety across the health continuum. PHRs held by patients might provide an obvious tool for enhanced patient safety but the evidence for a safety impact in primary care is limited to medication safety. The American Veterans Administration Healthcare system has undertaken a robust evaluation of their PHR that indicates a better adherence to treatment plans but little data on whether this adherence leads to safer or cost-effective care, and patients’ active contribution to documentation systems in hospital is likely to enhance care.

Our scooping review has several limitations. First the search strategy was limited to safety outcomes predefined by a group of experts and we focused exclusively on EHRs. It is not clear whether other safety relevant outcomes could have been found in other studies of EHRs. Second, we focused on interventional studies to obtain a higher graded evidence and it is possible that safety outcomes are described in observational studies. Third, there is an understanding that monitoring systems for specific diseases that can be displayed through an EHR might be of benefit for safety outcomes such as measuring blood sugar levels in patients with diabetes or the electrocardiogram in patients with a coronary event. For unselected patient groups, there is evidence for the value of systems’ monitoring of vital signs that might be linked to an EHR or have their own recording systems; these authors have illustrated an impact on relevant clinical and safety outcomes, although with some methodological challenges. Fourth, the studies identified in this review used exemplar conditions and applications of electronic records. Frameworks to classify safety incidents in a broader, real world context are missing. Fifth, the number of studies identified was small and despite using a robust, systematic search strategy we were unable to generate a hierarchy of effective or ineffective EHR interventions. The comparison between EHR systems is difficult given the lack of operational and interoperative standards, the lack of transparent data by the vendors and even in a simulated environment straight comparisons are exceedingly rare. Sixth, the overwhelming number of studies originated in the USA which is highly influenced by the US healthcare regulatory and reimbursement schemes that are rather different from other healthcare systems. Finally, scoping reviews are not intended to assess the quality of the literature analysed. Nevertheless, this scoping review provides a comprehensive overview of the existing research and has clearly identified key themes and challenges for broader research which is needed.

EHRs can be used in many different ways in different hospitals. Linking the EHR intervention to a specific outcome might therefore be challenging even where process changes are the endpoints. Randomised trials might not be the most appropriate methodology for EHR evaluation and other generic service interventions because the effects at system level might be too diffuse. Carefully designed observational and adaptive interventional studies are needed to allow appropriate evaluation of service and policy interventions in this area.

The authoritative peer-reviewed search strategy deployed to identify publications reporting on patient safety topics uses a mix of process and outcome measures. Definition of these is subject to interpretation—that is, organisational culture could be used as an outcome measure as part of the quadruple aim or as a process that facilitates better quality of care for patients. Conceptually it would, however, be difficult to identify changes in outcomes without a model of change that does not involve some measure of change in process. Outcomes will of course depend on fidelity of implementation of processes but the absence of changes in safety critical processes is therefore likely to signify an absence in changes in safety outcomes.

The implementation of EHRs has got safety implications well beyond the scope of this review which range from the reliability of software and hardware, design or systems and user interfaces and risk of abuse and fraud. We have also not examined the broader context of implementations: evidence suggests that nurses working in hospitals with no EHRs report poorer quality of care and patient safety and cultural context and trust might modify impact.

Clinicians at the coal-face of care complain bitterly about poorly designed and supported EHR systems, which have unsuitable interfaces, add to workload, and fail to respond to change requests in a timely manner. EHRs are reported be the number one reason for clinician burnout and dissatisfaction. Given the enormous investment costs in the development and deployment of the technology and the emerging evidence of the negative effects of EHR on clinician burnout, the lack of reported benefits in sustainable and measurable safety outcomes is surprising. We share the concerns of others that there is largely ‘anecdotal evidence of the fundamental expected benefits and risks relating to the organisational efficiency resulting from the storage and management facilities within the EHR and thus the potential for secondary uses’. Health information systems designed for and by a clinical teams using a technology that enables real-time adaptation might provide greater efficiency for the staff in decreasing the time to complete standard tasks.

Unstructured and fragmented information is at the core of countless serious adverse events and the link between fragmented information and patient harm is well established in the literature. Human factors and ergonomics design is part of the safety assurance of medical devices but not the commonly used EHRs.
The EHRs are among the most expensive capital investments that health system leaders undertake with cost for an installation by a single organisation up to a billion dollars,\(^8\) despite the absence of evidence for cost-effectiveness.\(^9\) and routine complaints about the deleterious effects of implementation on clinicians and their workflow.\(^8\) EHRs have been introduced with an expectation of workflow and safety improvements that have failed to materialise.\(^8\) An Australian study demonstrated that systematic errors in the usage of EHRs are common, and the audited files of 629 patients admitted to hospital were found to contain 493 errors related to the EHR and accounted for 42% of prescription errors.\(^8\)

Our review outlines a rich area for several key research questions, including the need to develop a clearer description of EHR interventions, using uniform and validated outcomes measures, and attending to care provider’s needs, attitudes and training. Given the erosion of trust in the data safety of large projects, smaller pilots in multiple locations might be needed to develop EHR systems that aid patients, professionals and policy-makers.\(^8\) Enormous amounts of data relevant to patient safety are collated within EHRs. It is likely that hospitals and vendors are undertaking internal reviews of safety outcomes for purposes of audit, quality improvement, internal quality assurance or research. Given the size of the investment in EHRs and the adverse public health impact of patient safety it would seem that these type of datasets should be made public for research and quality assurance.

CONCLUSIONS
The clinical consequences of EHR use for patients might be considerable but the available studies suggest a limited understanding about the safety or potentially harmful outcomes following the implementation of EHRs. The literature contains inadequate evidence to guide policy or a digital strategy for healthcare jurisdictions in how best to select and implement EHRs.

Our review highlights an urgent need for greater transparency in quality assurance of existing EHRs and further research into suitable outcome metrics and appropriate study designs.

Twitter Christian Peter Subbe @cSubbe

Collaborators n.a.

Contributors CS and PB designed the study; CS and GT screened the articles, CS, GT and PB synthesised and interpreted the data; CS, GT and PB drafted and revised the manuscript; all authors approved of the submitted version to be published; all authors agreed to be accountable for all aspects of the work.

Funding This work was supported by an Improvement Science Fellowship from The Health Foundation, London, UK (Unique Award Reference Number: AIMS 109820).

Competing interests CPS is partially funded through an Improvement Science Fellowship.

Patient consent for publication Not required.

Ethics approval This study did not involve human material or human data, so an ethics approval was not needed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplemental information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Christian Peter Subbe http://orcid.org/0000-0002-3110-8888
Paul Barach http://orcid.org/0000-0002-7906-698X

REFERENCES
4 Coleman AL, Staff A, Emptege NP. Secretary for quality of care. BMJ Open 2014;.

18 Cochrane effective practice and organisation of care review group data collection checklist Cochrane effective practice and organisation of care review group (EPOC) data collection checklist.


52 Nazi KM, Hogan TP, Mccinnes DK. Evaluating patient access to electronic health records results from a survey of Veterans 2013:512–4.


63 Ratwani RM, Hettige L, Fairbanks RJ. Barriers to comparing EHR- based approaches to clinical decision support. JAMA 2018;321:1780.


66 BMJ Open: first published as 10.1136/bmjopen-2020-047446 on 13 January 2021. Downloaded from
87 Frankel RM, Tilden VP, Suchman A. Physicians’ trust in one another. JAMA 2019;321:1345.
# Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEM</th>
<th>PRISMA-ScR CHECKLIST ITEM</th>
<th>REPORTED ON PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>Title</td>
<td>Identify the report as a scoping review.</td>
<td>Page 1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>Structured summary</td>
<td>Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.</td>
<td>Page 3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>Rationale</td>
<td>Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.</td>
<td>Page 5</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.</td>
<td>Page 5</td>
</tr>
<tr>
<td>METHODS</td>
<td>Protocol and registration</td>
<td>Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.</td>
<td>Page 9</td>
</tr>
<tr>
<td></td>
<td>Eligibility criteria</td>
<td>Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.</td>
<td>Page 7-8</td>
</tr>
<tr>
<td></td>
<td>Information sources*</td>
<td>Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.</td>
<td>Page 6</td>
</tr>
<tr>
<td></td>
<td>Search</td>
<td>Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.</td>
<td>Appendix</td>
</tr>
<tr>
<td></td>
<td>Selection of sources of evidence†</td>
<td>State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.</td>
<td>Page 7</td>
</tr>
<tr>
<td></td>
<td>Data charting process‡</td>
<td>Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>Page 8</td>
</tr>
<tr>
<td></td>
<td>Data items</td>
<td>List and define all variables for which data were sought and any assumptions and simplifications made.</td>
<td>Page 8</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal of individual sources of evidence§</td>
<td>If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

---

*Subbe CP, *et al.* BMJ Open 2021; 11:e047446. doi: 10.1136/bmjopen-2020-047446*
<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEM</th>
<th>PRISMA-ScR CHECKLIST ITEM</th>
<th>REPORTED ON PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of results</td>
<td>13</td>
<td>Describe the methods of handling and summarizing the data that were charted.</td>
<td>Page 9</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of sources of evidence</td>
<td>14</td>
<td>Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.</td>
<td>Page 9</td>
</tr>
<tr>
<td>Characteristics of sources of evidence</td>
<td>15</td>
<td>For each source of evidence, present characteristics for which data were charted and provide the citations.</td>
<td>Page 10-11</td>
</tr>
<tr>
<td>Critical appraisal within sources of evidence</td>
<td>16</td>
<td>If done, present data on critical appraisal of included sources of evidence (see item 12).</td>
<td>Page 12</td>
</tr>
<tr>
<td>Results of individual sources of evidence</td>
<td>17</td>
<td>For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.</td>
<td>Page 13-15</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>18</td>
<td>Summarize and/or present the charting results as they relate to the review questions and objectives.</td>
<td>Page 16</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of evidence</td>
<td>19</td>
<td>Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.</td>
<td>Page 18</td>
</tr>
<tr>
<td>Limitations</td>
<td>20</td>
<td>Discuss the limitations of the scoping review process.</td>
<td>Page 18-19</td>
</tr>
<tr>
<td>Conclusions</td>
<td>21</td>
<td>Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.</td>
<td>Page 22</td>
</tr>
<tr>
<td>FUNDING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>22</td>
<td>Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.</td>
<td>Page 9</td>
</tr>
</tbody>
</table>

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with information sources (see first footnote).

‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of “risk of bias” (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy documents).

Appendix 2: Sample search Strategy

This is the search terms employed for pubmed:

(((Hospitals [Mesh]) OR Inpatients [Mesh]) OR Critical Care [Mesh]) OR Perioperative Care [Mesh]) OR Preoperative Care [Mesh]) OR hospital [tiab]) OR hospitals [tiab]) OR hospitalised [tiab]) OR hospitalized [tiab]) OR inpatient*[tiab]) OR critical care [tiab]) OR intensive care [tiab]) OR perioperative [tiab]) OR preoperative [tiab]) OR postoperative [tiab]) OR peri-operative [tiab]) OR pre-operative [tiab]) OR post-operative [tiab]) OR ((Attitude of Health Personnel[mesh]) OR Patient Safety [tiab]) OR Risk Management [tiab]) OR Equipment Safety [Mesh]) OR Equipment Safety [tiab]) OR Harm Reduction [mesh]) OR harm reduc*[tiab]) OR Safety Management[mesh]) OR Safety Management[tiab]) OR ((prevention and control [Subheading]))) OR prevent*[tiab]) OR safe*[tiab]) OR (((Hand Hygiene [Mesh]) OR Hospital Rapid Response Team [Mesh]) OR Hand Hygiene [tiab]) OR Rapid Response Team [tiab]) OR Medication Reconciliation [tiab]) OR Antibiotic Prophylaxis [Mesh]) OR Prophylaxis [tiab]) OR Infection Control [Mesh]) OR Infection Control [tiab]) OR Checklist[mesh]) OR Checklist[tiab]) OR Automatic Data Processing[mesh]) OR Automatic Data Processing[tiab]) OR Pain management[mesh]) OR Pain management[tiab]) OR Leadership[mesh]) OR Leadership[tiab]) OR Patient handoff[mesh]) OR Patient handoff[tiab]) OR Personnel staffing[Mesh term]) OR staff*[tiab]) OR Hospital nursing staff[Mesh]) OR Hospital medical staff[mesh]) OR Nurse-Patient Ratio[tiab]) OR Education[mesh]) OR Education[tiab]) OR Patient simulation[mesh]) OR simulation[tiab]) OR Safety rounds[tiab]) OR fall prevent*[tiab]) OR pressure ulcer prevent*[tiab]) OR organizational culture[Mesh]) OR organizational culture[tiab]) OR safety culture[tiab]) OR Team training[tiab]) OR Case management [mesh]) OR Case management [tiab]) OR Continuity of Patient Care [mesh]) OR Quality indicators[mesh]) OR indicators[tiab]) OR Patient Participation[mesh]) OR Patient Participation[tiab])) AND (((mortality[mesh]) OR mortality[tiab]) OR adverse

Supplementary search for EHR providers

[Company name] AND ("Clinical Trial" [Publication Type]) OR "Safety"[Mesh])

List of companies searches: AdvancedMD, Agfa Healthcare, Allscripts, Athenahealth, CareCloud, Cerner, CureMD, Epic, GE centricity, NextGen, Eclinicalworks.