

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Sick leave and disability pension before and after chronic hepatitis C diagnosis and comparison to matched general population comparators

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035996
Article Type:	Original research
Date Submitted by the Author:	26-Nov-2019
Complete List of Authors:	Büsch, Katharina; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine Hansson, Fredrik; Devicia AB Holton, Michelle; Lorimer Enterprises Inc Lagging, Martin ; Goteborgs Universitet, Westin, Johan; Goteborgs Universitet Kövamees, Jan; AbbVie Inc, Medical Affairs Sällberg, Matti; Karolinska Institutet, Department of Laboratory Medicine Söderholm, Jonas; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine
Keywords:	HEALTH ECONOMICS, INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Gastroenterology < INTERNAL MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Sick leave and disability pension before and after chronic hepatitis C diagnosis and comparison to matched

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

general population comparators Katharina Büsch^{1,2}, Fredrik Hansson³, Michelle Holton⁴, Martin Lagging⁵, Johan Westin⁵, Jan Kövamees¹, Matti Sällberg², and Jonas Söderholm^{1,2,*} ¹AbbVie AB, Stockholm, Sweden ²Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden ³Devicia AB, Stockholm, Sweden ⁴Lorimer Enterprises Inc., Red Deer, Canada ⁵Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Emails: Katharina Büsch, katharina.buesch@abbvie.com; Fredrik Hansson, fredrik.hansson@clinicaltrialconsultants.se; Michelle Holton, michelle.holton@shaw.ca; Martin Lagging, martin.lagging@medfak.gu.se; Johan Westin, johan.westin@infect.gu.se; Jan Kövamees, jan.kovamees@abbvie.com; Matti Sällberg, Matti.Sallberg@ki.se; Jonas Söderholm, jonas.soderholm@abbvie.com *Correspondence Jonas Söderholm Hemvärnsgatan 9 Box 1523, 171 29 Solna, Sweden Email: jonas.soderholm@abbvie.com; jonas.soderholm@ki.se; Jonas.soderholm@gmail.com For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	1	Running title (40 characters without spaces): Sick leave/disability pension in HCV patients
4 5		
6	2	Keywords: Hepatitis C, chronic; Disability Leave; Sick Leave; Sweden
7 8	3	
9 10	4	Word Counts, Tables & Figures
11 12	5	Full article:3,567 words
13 14	6	Abstract: 288 words
15 16	7	Tables: 2
17	8	Figures: 4
18 19	0	rigures. 4
20 21	9	Tables: 2 Figures: 4 Supplemental Tables: 3 Supplemental Figures: 1
22 23	10	Supplemental Figures: 1
24 25		
26		
27 28		
29		
30 31		
32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47 48		
40 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Abstract

OBJECTIVE: The objective of this study was to evaluate sick leave and disability pension in patients with chronic hepatitis C virus (HCV) infection patients as compared with matched general population comparators.

4 DESIGN: Retrospective register study

SETTING: Nationwide

PARTICIPANTS: The register-based study used the Swedish National Patient Register to identify both working-age
patients with HCV in 2012 (n=32,021) as well as HCV patients diagnosed between 1999 and 2007 (n=19,362). Sick
leave and disability pension data were retrieved from Statistics Sweden (1994–2012), with up to 5 matched individuals
from the general population.

PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was workdays lost due to sick
leave episodes (>14 days) and disability pension overall. The secondary outcome was workdays lost per subgroup of
patients with chronic HCV.

RESULTS: In 2012, 14% of the HCV patients had ≥1 registered sick leave episode compared with 10% in the matched comparator cohort. For disability pension benefits, results were 30% vs. 8%, respectively. Overall in 2012, 57% of patients with HCV did not have any registered workdays lost, whereas 30% were absent ≥360 days compared with 83% and 9% in the matched cohort, respectively. The mean total number of annual workdays lost in 2012 was 126 days in the HCV patient cohort compared with 40 days in the matched general population comparator cohort. Annual days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis.

CONCLUSIONS: These results show that Swedish HCV patients use more sick days and have a higher frequency of
disability pension compared with a comparator cohort from the general Swedish population. Whether earlier diagnosis
of and treatment for HCV infection might impact work absence in Sweden warrants further investigation.

23 ARTICLE SUMMARY: Strengths and limitations of the study

• Previous studies of have focused on describing the sick-leave in a small segment of patients with chronic hepatitis C, this is the first study investigating sick-leave and disability pension on a nation-wide level.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1		
2 3	1	• Hepatitis C is a slowly progressive disease where the patients experience an increasing number of
4		
5 6	2	unspecific symptoms until the patient is diagnosed, but only patients diagnosed with chronic HCV are
7 8	3	included in the study.
9 10	4	• The actual number of workdays lost are underestimated since only sick leave episodes ≥14 days are
11 12	5	included in the data.
13		included in the data.
14 15		
16 17		
18		
19 20		
21		
22 23		
24 25		
26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hepatitis C is an infectious viral disease affecting the liver, with Western European prevalence rates estimated to between 0.35 and 1.42%.[1] In Sweden, the prevalence of chronic hepatitis C infection was estimated to be 0.36% in 2013.[2]

Patients with hepatitis C virus (HCV) infection have been shown to have increased work disabilities.[3] Furthermore, models have shown a relationship has been shown between HCV; loss of productivity, increased absenteeism, and higher healthcare benefit costs, which results in substantial economic burden to society. [4–6] A retrospective database analysis showed employees in the United States with HCV infection to have a higher number of lost work days than employees without HCV infection. In addition, they also utilised more sick leave, with an increased use of short-term and long-term disability.[5] The annual cost due to productivity loss in untreated patients with genotype 1 HCV infection in the United States has been estimated to 7.1 billion USD.[6] Before the introduction of the new interferon-free HCV treatment options was the HCV-associated productivity losses in the United Kingdom estimated to rise from 184-367 million GBP in 2010 to 210–427 million GBP in 2035.[7]

The objective of the present study was to evaluate sick leave and disability pension in patients with chronic HCV compared with matched general population comparators using the Swedish National Patient Register. A secondary objective was to examine sick leave and disability pension within certain subgroups (e.g., patients with decompensated cirrhosis, cirrhosis, hepatocellular carcinoma, or liver transplantation) or prevalent patients, as well as sick leave in relation to diagnosis.

 BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Methods

2 Setting

The population in Sweden was 9.6 million people in 2012 (Statistics Sweden; <u>www.scb.se</u>). Sweden has a universal taxfunded health care system where the Swedish Social Insurance Agency captures information on full or partial sick leave and disability compensations. In 2012 the common retirement age in Sweden was 65 years with people having the right to retire at 61 years of age or choose to continue working until 67 years of age.

Information on Swedish citizens are collected in the nationwide registers using the Swedish unique personal identity number.[8] In the present study the following registries were used; the National Patient Register (NPR), the Cancer Register, the Prescribed Drug Register (PDR), the Cause of Death Register (CDR), the Total Population Register (TPR), and the Longitudinal Integrated Database for Health Insurance and Labor Market studies (LISA). NPR: Contains all inpatient (1987–2013) and non-primary outpatient care (2001–2013) visits, but no primary care visits.[9] It includes information on both main and contributory diagnoses based on the International Classification of Diseases (ICD-9, 1987–1996; ICD-10, 1997-2013). The Cancer Registry covers medical data such as the site of tumor, histologic type, basis, and date of diagnosis (1958-2013). It is mandatory to report all newly detected cancers are mandatory to the registry. However, some cases are only reported to the CDR (i.e., cases denoted as death certificate only and death certificate notification) and are not necessarily included in the Cancer Registry. The PDR includes all prescribed drug use in ambulatory care (2005–2013), although in-hospital use is captured to a lesser extent. [10] It captures information on dates, drugs, and costs for all pharmacy dispensed prescriptions in Sweden using Anatomical Therapeutic Chemical codes. The CDR contains the cause of death with information of year and month of death. The TPR provided information on place of residence, age, sex, country of origin, and emigration status. LISA includes data on sick leave and disability pension for all residents in Sweden ≥16 years of age with information on work-related and socioeconomic variables (e.g. education level, marital status, and days per year of sick leave and disability pension [annual data retrieved for 1994-2012]).

HCV as a diagnosis was introduced with the ICD-10 in 1997 and at the time of data collection was the data on sick leave
and disability pension until 2012; thus, the current analysis is based on data from 1997 to 2012.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

1 Informed consent is not required for large-scale registry-based studies in Sweden.[11] Data from the Swedish

2 registries are available for research after ethical and registry approval. The study was approved (Dnr 2014/746-31) by

3 the Regional Ethics Committee, Karolinska Institutet, Stockholm, Sweden.

Patient and Public Involvement

No patient involved.

Identification of patients with HCV and matched general population comparators

Patients were identified in the NPR using health care visits listing chronic HCV diagnosis (ICD10: B18.2).[12] Only
patients of working age (i.e., between 19 and 65 years) were included. Subgroup analyses by age (19–29, 30–39, 40–
49, 50–59, 60–65), gender (male/female), education (<9 years, 10–12 years, ≥12 years), disease status (e.g.,
decompensation cirrhosis [DCC], liver cancer [hepatocellular carcinoma {HCC}], liver transplantation; Table S1 and
S2), treatment status (HCV treatment or opioid substitution therapy [OST]; Table S3), and co-infection (HIV or hepatitis
B virus; Table S4), were performed. Up to 5 general population controls were matched by age, sex, and county of
residence to each patient with HCV at the time of diagnosis.

17 Definition of outcomes

18 The outcome was the annual the number of days of sick leave and disability pension (maximum of 365 per year).

Sick leave: As of 1998 the first day of sick leave is not compensated ("waiting period") in Sweden, with day 2 to 14 being paid by employers. Thus, only sick leave episodes >14 days were recorded in the LISA database, as those were paid by the Social Insurance Agency. Any episode occurring within 5 days of a previous episode does not require a new "waiting period" or "sick pay period", thus multiple short-term episodes could waive these periods. I.e. individuals with 0 days registered may in fact have had sick leave episodes ≤14 days, hence that group was denoted "0" registered days to acknowledge this uncertainty.

Disability pension: Disability pension refers to either disability pension (1990–2002) or sickness/activity compensation
(2003–2012). In Sweden, disability pension can be either part-time (25%, 50%, 67%, or 75%) or full-time (100%) due
to the medical condition. As of 2003 was the disability pension replaced by two types of compensation depending on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

age. "Activity compensation" was introduced for younger individuals (19 to 29 years old) whereas older individuals
 were eligible for "sickness compensation". Both sickness and activity compensation were either time-limited or
 permanent, but required at least ≥25% reduction in work capacity that was expected for at least 1 year.

5 Follow-up of patients with HCV and matched general population comparators

Patients with HCV were followed from the date of first visit with an HCV diagnosis during the observation time (index date) until emigration, death, retirement (age 65 years), or study end (December 31, 2012), whichever occurred first. The matched comparators were followed from index date until emigration, death, retirement, until HCV diagnosis, or December 31, 2012, whichever occurred first.

In the analyses of work loss in relation to HCV diagnosis were the patients with HCV followed from 5 years before to 5 years after the year of diagnosis. Patients were included if diagnosed between 1999 and 2007 to allow a \pm 5-year follow-up time. In addition, patients had to be between 24 and 59 years of age at the time of diagnoses in order to be eligible for benefits during the full follow-up. All codes used are available in the supplemental tables S1 – S4.

Statistics

The annual days of sick leave and disability pension were grouped by categories ("0," 1–90, 91–180, 181–359, and \geq 360 days) and presented using arithmetic means.[13] The study calculated the total annual number of days of sick leave and disability pension in 2012 for both cohorts. The difference in workdays lost between the groups was also evaluated using multivariable regression models. The analyses were adjusted for age, sex, and educational level, as well as occurrence of psychiatric diseases and/or liver-related outcomes (defined as history of cirrhosis, F, and/or liver transplantation).

The longitudinal analysis followed the HCV patients and their comparators from 5 years ahead of index date until 5 years after the index date. The impact of interferon-based treatment was analyzed for patients with HCV treated with interferon 2 years before until 2 years after first treatment during 2005 and 2010.

24 SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. All p values are two-sided.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Overall, 32,021 patients aged 19 to 64 years were	diagnosed with HCV and were	living in Sweden in 2012
prevalent cohort; Table 1).		
Table 1 Characteristics of register-identified patient	ts with prevalent CHC aged 19 to	64 years on December 31,
2012, in Sweden and their matched general populati	ion comparators	
	Patients with CHC in	Matched GenPop
	2012; 19–64 years	comparators in 201
	(n=32,021*)	(n=149,688)
Men, n (%)	20,654 (65%)	95,546 (64%)
Mean (SD) age, y		
At identification/diagnosis	39 (11)	-
In 2012	47 (11)	47 (11)
Highest attained education, n (%)		
<9 years	11,509 (36%)	21,600 (14%)
10–12 years	16,021 (50%)	72,946 (49%)
≥ 12 years	4159 (13%)	53,866 (36%)
Missing	332 (1%)	1276 (1%)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I	10 725 (620/)	75 011 (500/
Unmarried	19,725 (62%)	75,011 (50%
Married	6074 (19%)	57,376 (38%)
Divorced	6111 (19%)	16,539 (11%
Widow	0	5 (<0.1%)
Missing	111 (0.3%)	757 (1%)
Co-infection, n (%)		
HIV	672 (2%)	210 (0.1%)
HBV	3222 (10%)	377 (0.3%)
Registered CHC-related outcome, n (%) [†]		
Liver cirrhosis	2346 (7%)	213 (0.1%)
Decompensated cirrhosis	1041 (3%)	31 (0%)
Hepatocellular carcinoma 🧹	408 (1%)	125 (0.1%)
Liver transplantation	289 (1%)	48 (<0.1%)
HCV treatment since 2005	6234 (19%)	-
OST treatment since 2005	3735 (12%)	1102 (1%)

for Health Insurance and Labor Market Studies; NPR=National Patient Register; OST=opioid substitution therapy;

SD=standard deviation.

*169 patients with CHC were excluded, as there was no data available in the LISA dataset.

[†]Interpretation of data should be done with caution, as certain outcomes such as liver cirrhosis were likely

underreported in the NPR; all codes used to define outcomes are provided in Table S1, S2, S3, and S4.

Prevalence and days of sick leave and disability pension in 2012

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Fourteen percent of patients with HCV had ≥ 1 registered sick leave episode(s) in 2012 compared with 10% in the matched general population comparator cohort. Eight percent of individuals in the matched general population received disability pension benefits, compared with 30% of patients with HCV. In total, 43% of patients with HCV and 17% of individuals in the matched general population comparator cohort had at least one registered sick leave episode or received disability pension benefits in 2012 (Table 2). Table 2 Annual number of days of sick leave and disability pension in 2012 in patients with register-identified CHC and matched general population comparators Patients with CHC in Matched GenPop Difference (days) 2012; 19-64 years comparators in 2012 (n=32,021*)(n=149,688) Mean (SD) total annual number 106 (155) 34 (97) of days during follow-up Sick leave 27 (78) 13 (55) Disability pension, gross 80 (148) 21 (84) Disability pension, net 76 (143) 18 (75) Mean (SD) total days in 2012 126 (166) 40 (107) Sick leave 22 (72) 11 (88) 29 (98) Disability pension, gross 106 (164) Disability pension, net 101 (159) 25 (88) CHC=chronic hepatitis C; SD=standard deviation. NOTE. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick pay period (waived only under certain circumstances). *Matched general population comparators were matched on age, sex, education, and place of residency at the time of For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

diagnosis.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

The prevalence of receiving a disability pension was similar among men and women, but was higher among older individuals, those with co-infection (HCV and HIV or hepatitis B virus), and those receiving OST (Figure S1). It was lower among those with a higher educational level and those who previously had been treated for HCV infection. The prevalence of sick leave was higher among women and those with higher education; there were minor variations by age. Prevalence of sick leave or disability pension use was always higher among patients with an HCV–related complication such as cirrhosis, DCC, HCC, or liver transplantation.

8 Overall, fewer patients with HCV (57%) did not have any registered workdays lost in 2012 in relation to the 83%
9 without any registered workdays lost in matched general population comparator cohort. A greater proportion (30%) of
10 patients with HCV were absent ≥360 days than in the matched general population comparator cohort (9%, p<0.001;
11 Figure 1). The median number of workdays lost was "0" in both cohorts, thus the distribution of workdays lost in 2012
12 was non-normal.

Among prevalent patients, the annual number of workdays lost was generally higher among older patients, patients with lower education, patients with co-infection, and among patients with liver complications such as DCC, HCC, and liver transplantation (Figure 2). The average total annual number of workdays lost in 2012 was 126 in the HCV patient cohort and 40 in the matched general population comparator cohort (Table 2). When only those with a registered episode were analysed, the mean total annual number of workdays lost rose to 296 days among patients with HCV, a trend that was observed among all subgroups (Figure 2).

The multivariable regression model was adjusted for age, sex, and educational level, showed patients with HCV to have on average 75 more workdays lost compared with the general population. The number of workdays lost decreased to 60 days when considering psychiatric diseases. When also adjusting for any history of either cirrhosis, HCC, or liver transplantation the estimate was reduced to 55 days. The independent factors associated with a greater number of workdays lost were older age, lower level of education, female sex, psychiatric diseases, and history of liver-related outcomes were all independently and significantly (p<0.001).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Longitudinal work loss in relation to diagnosis

Among all patients with HCV, 19,362 patients were diagnosed between 1999 and 2007 and qualified for a follow-up of work loss for up to 5 years before and after diagnosis. Five years before diagnosis, 37% of patients with HCV had workdays lost registered, which increased to 51% in the year of diagnosis and remained constant thereafter. The workdays lost for the matched general population comparators for these 19,362 patients remained between 16% and 21% throughout the longitudinal analysis (Figure 3). More than 30% of patients with HCV were almost fully work disabled already 1 year after diagnosis compared with approximately 10% in the matched general population comparators. Thus, patients with HCV were 3 times as likely to be fully work disabled compared with the matched general population cohort.

The mean annual workdays lost increased from 86 days to 146 days from 5 years before HCV diagnosis to 1 year after diagnosis. The number of workdays lost were always considerably higher among patients with HCV (5 years before HCV diagnosis: 86 vs. 28 days = difference of 59 days; at the year of HCV diagnosis: 136 vs. 43 days = difference of 92 days; 5 years after HCV diagnosis: 148 vs. 50 days = difference of 97 days; Figure 3).

Among the 5,177 patients treated with interferon-based treatments between 2005 and 2010, the mean annual number of sick leave days was approximately 30 days before the start of treatment. Sick leave days increased to 60 days during the year of treatment initiation and decreased to pre-treatment levels (approximately 30 days) 2 years after treatment initiation (Figure S2). In relation to interferon-based treatment, no large differences were observed in mean annual disability pension days. The trend that showed an increase in mean disability pension days before treatment initiation was no longer evident after treatment.

1 Discussion

Hepatitis C virus infection is a slowly developing disease, often beginning with vague symptoms such as fatigue, loss of appetite, and headache. These symptoms often begin to manifest well before the patient is diagnosed with HCV, and these comorbidities are believed to affect the general well-being of patients, with an accompanying increased need for sick leave and disability pension. However, the use of sick leave/disability has only been investigated in a few studies, with the largest examining data from 1,664 patients with an HCV diagnosis who were employed in the United States. In order to get the full picture of the sick leave and disability pension for patients with HCV in a whole country and to avoid the bias of only analysing employed patients with HCV, the study set out to investigating the sick leave and disability pension for all diagnosed patients with HCV of working age in Sweden. The diagnosis rate of HCV differs between regions, with an estimated 75% of the cases of HCV in the United States remaining undiagnosed.[14] In contrast, globally the diagnosis rate in Sweden is fairly high, with an estimated 20% of patients remaining undiagnosed.[15] This, in combination with the virtually complete national coverage of the Swedish registers, makes Sweden a country well-suited for the investigation of the burden of HCV on the welfare system.

Most importantly did the study show that 42% of the patients with HCV received compensation from the Social Insurance Agency in form of sick leave or received a disability pension in 2012 compared with 17% of the comparators. In total, the patients with HCV lost an average of 87 extra workdays per year compared with matched comparators. The difference in the number of sick leave days, as well as disability pension, could be explained by the inherent differences between patients with and without HCV infection, with riskier lifestyle and psychiatric disorders being more common in patients in the HCV cohort. [16,17] This could explain the greater frequency of disability pension and higher mean sick leave days noted 5 years before HCV diagnosis, where the annual number of days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis; in the comparator cohort, there was only an increase of 15 days during this time (Figure 3). However, despite starting from a higher rate, there was a rapid increase in both mean sick leave and disability pension in the years leading up to HCV diagnosis, whereas no such rapid increase was seen in the match comparators. This suggests that patients most likely experience increased symptoms as the disease progress that leads to a greater utilisation of sick leave and likely more visits to both primary care physicians and specialists until diagnosis. In addition, after adjusting for psychiatric disease, the difference in sick leave between the 2 groups remained; this suggests that HCV impacts the general health status of patients. It is tempting

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

to hypothesize that earlier diagnosis and treatment of patients with HCV would slow down the increasing need for sick leave and disability pension; however, the present study was not designed to investigate this. Nevertheless, other studies have suggested that earlier treatment benefits both society and the individual patient.[18–20]

5 In line with previous studies, there was an increase in mean sick leave days noted during the first year of treatment, 6 which is likely due to the side effects associated with interferon-based treatment.[21,22] The newly introduced 7 interferon-free regimens for patients with HCV infection have a more favourable safety profile compared with 8 interferon-based regimens.[23] This would most likely reduce the number of sick leave days needed during treatment. 9 The difference between interferon-based and interferon-free regimens will need to be analysed further when data from 10 interferon-free treatments become available in the registers.

Registry studies on sick leave and disability pension contains the actual number of days the social insurance is used per person, compared with self-reported information that is more prone to bias. However, the data is only as valid as the information entered, but the nationwide Swedish registers are considered to be >99% complete. Nationwide largescale registries allow assessment of subgroup variations and the use of up to 5 matched comparators from the general population instead of retrospective matching strengthen the results of the study.

One main limitation of the study is that the patients with HCV were identified in the NPR that is dependent on physician entered diagnoses from inpatient and non-primary outpatient care (previously discussed for this cohort[24]), and any mistake when entering a diagnosis could for example consider individuals without HCV to be patients with HCV. Importantly, the first visit may not necessary be the first HCV diagnosis given that the specific ICD code for HCV (B18.2 ICD-10) has only been available since 1997, thus the time of diagnosis must be interpreted with caution. As mentioned in the methods, the Social Insurance Agency data only includes sick leave episodes >14 days, as these the first episodes are covered by the employer. This will result in an underestimation of the actual number of workdays lost; however, this applies to both cohorts. Interestingly, the main difference in work absence for US employees with HCV was driven by the short-term disability (defined as sick leave between 14 days and 6 months[5,25]), thus suggesting the present study would capture the HCV-mediated impact on sick leave

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

1 Conclusions

To our knowledge, this is the largest study on sick leave and disability pension in patients with HCV to date and the first longitudinal study that investigated this in relation to time of diagnosis. These results indicate that patients with HCV use more sick days and that they have a higher frequency of disability pension compared with a comparator cohort from the general population. However, any impact of earlier hepatitis C diagnosis and if virologic cure reduces work absence is not answered by this study and needs to be further investigated. Finally, the results may be less generalizable to countries where private health insurance is more common.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

ETHICS APPROVAL AND CONSENT TO PARTICIPATE: The study was approved by the Regional Ethics Committee, Karolinska Institutet, Stockholm, Sweden. Informed consent is not needed for large registry-based studies in Sweden.[11]

CONSENT FOR PUBLICATION: Not applicable, only aggregated data included in the study. Informed consent is not needed for large registry-based studies in Sweden.[11]

AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analysed during the current study where retrieved from the National Patient Register (NPR), the Cancer Register, the Prescribed Drug Register (PDR), the Cause of Death Register (CDR), the Total Population Register (TPR), and the Longitudinal Integrated Database for Health Insurance and Labor Market studies (LISA) are available for research after ethical approval. The ethical approval for the present study does not allow for sharing data to persons not in the ethical approval.

COMPETING INTERESTS: M. Lagging has consultancies with AbbVie, Gilead, and MSD/Merck and is a member of the speakers' bureau for AbbVie, Gilead, and MSD/Merck. M. Sällberg is founder and owner of Svenska Vaccinfabriken AB. F. Hansson reports no conflicts of interest. M. Holton is President of Lorimer Enterprises Inc., a company that has consulted for AbbVie. J. Westin has had paid teaching assignments for AbbVie, Gilead, and MSD/Merck. J. Söderholm and J. Kövamees are employees of AbbVie and may hold AbbVie stocks or stock options. K. Büsch was an employee of AbbVie at the time of the study and may hold AbbVie stocks or stock options.

FUNDING: The design, study conduct, and financial support for the study were provided by AbbVie. AbbVie participated in the study design, data/input analysis, interpretation of results, review, and approval of the publication. The authors determined the final content. No payments were made to the authors for writing this publication.

AUTHOR CONTRIBUTIONS: The concept of the study was designed by KB, JK, and JS. FH and KB managed the database. KB, FH, MH, and JS interpreted the data with support from ML, JK, and JW. KB and JS were the major contributors in writing the manuscript. All authors critically revised the manuscript and approved the final version that was submitted.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	Re	ferences
2	1	daCosta DiBonaventura M, Yuan Y, Wagner J-S, et al. The burden of viral hepatitis C in Europe: a
3		propensity analysis of patient outcomes. Eur J Gastroenterol Hepatol 2012;24:869.
4		doi:10.1097/MEG.0b013e3283551dee
5	2	Büsch K, Waldenström J, Lagging M, et al. Prevalence and comorbidities of chronic hepatitis C: a
6		nationwide population-based register study in Sweden. Scand J Gastroenterol 2017;52:61–8.
7		doi:10.1080/00365521.2016.1228119
8	3	Manne V, Sassi K, Allen R, et al. Hepatitis C and Work Impairment: A Review of Current Literature
9		Clin Gastroenterol 2014; 48 :595. doi:10.1097/MCG.0000000000000080
10	4	Khoury ACE, Vietri J, Prajapati G. The Burden of Untreated Hepatitis C Virus Infection: A US Patie
11		Perspective. <i>Dig Dis Sci</i> 2012; 57 :2995–3003. doi:10.1007/s10620-012-2233-1
12	5	Su J, Brook RA, Kleinman NL, et al. The impact of hepatitis C virus infection on work absence,
13		productivity, and healthcare benefit costs. <i>Hepatology</i> 2010; 52 :436–42. doi:10.1002/hep.23726
14	6	Younossi ZM, Jiang Y, Smith NJ, et al. Ledipasvir/sofosbuvir regimens for chronic hepatitis C
15		infection: Insights from a work productivity economic model from the United States. Hepatology
16		2015; 61 :1471–8. doi:10.1002/hep.27757
17	7	Patruni B, Nolte E. Hepatitis C A Projection of the Healthcare and Economic Burden in the UK. Ro
18		Health Q 2013;3.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945231/ (accessed 9 Apr 201
19	8	Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity numbe
20		possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol 2009;24:659–67.
21		doi:10.1007/s10654-009-9350-y
		18
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 34

BMJ Open

2			
3 4	1	9	Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish national
5 6 7	2		inpatient register. BMC Public Health 2011; 11 :450. doi:10.1186/1471-2458-11-450
8 9 10	3	10	WHOCC. ATC/DDD Index https://www.whocc.no/atc_ddd_index/ Accessed: 2019-Apr-09.
11 12 13	4		2019.https://www.whocc.no/atc_ddd_index/ (accessed 9 Apr 2019).
14 15	5	11	Ludvigsson JF, Håberg SE, Knudsen GP, <i>et al.</i> Ethical aspects of registry-based research in the Nordic
16 17 18	6		countries. Clin Epidemiol 2015;7:491–508. doi:10.2147/CLEP.S90589
19 20 21	7	12	Socialstyrelsen. International Statistical Classification of Diseases and Related Health Problems,
22 23	8		Tenth Revision (ICD-10).
24 25	9		2016.https://apps.who.int/iris/bitstream/handle/10665/246208/9789175553801-V1-part1-
26 27 28	10		swe.pdf?sequence=11&isAllowed=y
29 30 31	11	13	Olofsson T, Petersson IF, Eriksson JK, et al. Predictors of work disability during the first 3 years after
32 33	12		diagnosis in a national rheumatoid arthritis inception cohort. Ann Rheum Dis 2014; 73 :845–53.
34 35 36	13		doi:10.1136/annrheumdis-2012-202911
37 38	14	14	Jacobson IM, Cacoub P, Dal Maso L, et al. Manifestations of Chronic Hepatitis C Virus Infection
39 40 41	15		Beyond the Liver. <i>Clin Gastroenterol Hepatol</i> 2010; 8 :1017–29. doi:10.1016/j.cgh.2010.08.026
42 43 44	16	15	Duberg A-S, Blach S, Falconer K, et al. The future disease burden of hepatitis C virus infection in
45 46	17		Sweden and the impact of different treatment strategies. <i>Scand J Gastroenterol</i> 2015; 50 :233–44.
47 48	18		doi:10.3109/00365521.2014.990505
49 50 51 52 53 54 55			
56 57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

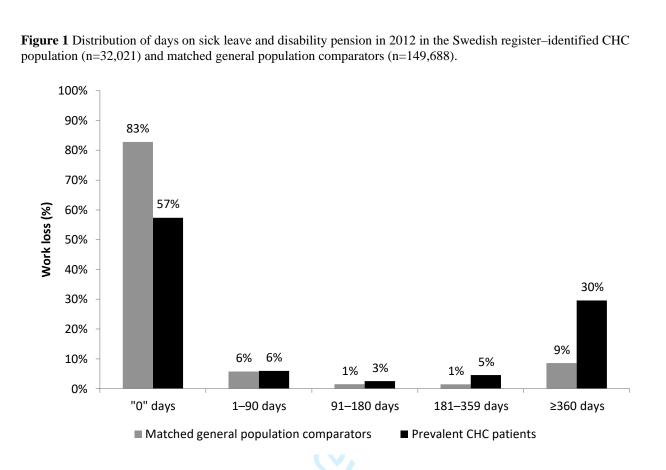
1			20
2 3			
4	1	16	Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people
5 6 7	2		who inject drugs: results of systematic reviews. <i>The Lancet</i> 2011; 378 :571–83. doi:10.1016/S0140-
7 8 9	3		6736(11)61097-0
10 11 12	4	17	Trager E, Khalili M, Masson CL, et al. Hepatitis C Screening Rate Among Underserved Adults With
12 13 14	5		Serious Mental Illness Receiving Care in California Community Mental Health Centers. Am J Public
15 16 17	6		<i>Health</i> 2016; 106 :740–2. doi:10.2105/AJPH.2016.303059
18 19	7	18	Gordon SC, Pockros PJ, Terrault NA, et al. Impact of disease severity on healthcare costs in patients
20 21 22 23	8		with chronic hepatitis C (CHC) virus infection. <i>Hepatology</i> 2012; 56 :1651–60. doi:10.1002/hep.25842
23 24 25	9	19	Koh C, Heller T, Haynes-Williams V, et al. Long-term outcome of chronic hepatitis C after sustained
26 27	10		virological response to interferon-based therapy. Aliment Pharmacol Ther 2013; 37 :887–94.
28 29 30	11		doi:10.1111/apt.12273
31 32 33	12	20	Manos MM, Darbinian J, Rubin J, et al. The Effect of Hepatitis C Treatment Response on Medical
33 34 35	13		Costs: A Longitudinal Analysis in an Integrated Care Setting. J Manag Care Pharm 2013;19:438–47.
36 37 38	14		doi:10.18553/jmcp.2013.19.6.438
39 40	15	21	McHutchison JG, Ware JE, Bayliss MS, et al. The effects of interferon alpha-2b in combination with
41 42 43	16		ribavirin on health related quality of life and work productivity. <i>J Hepatol</i> 2001; 34 :140–7.
43 44 45 46	17		doi:10.1016/S0168-8278(00)00026-X
47 48	18	22	Perrillo R, Rothstein KD, Rubin R, et al. Comparison of quality of life, work productivity and medical
49 50	19		resource utilization of peginterferon alpha 2a vs the combination of interferon alpha 2b plus
51 52 53	20		ribavirin as initial treatment in patients with chronic hepatitis C. J Viral Hepat 2004;11:157–65.
55 54 55	21		doi:10.1046/j.1365-2893.2003.00482.x
56 57 58			20
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 34

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

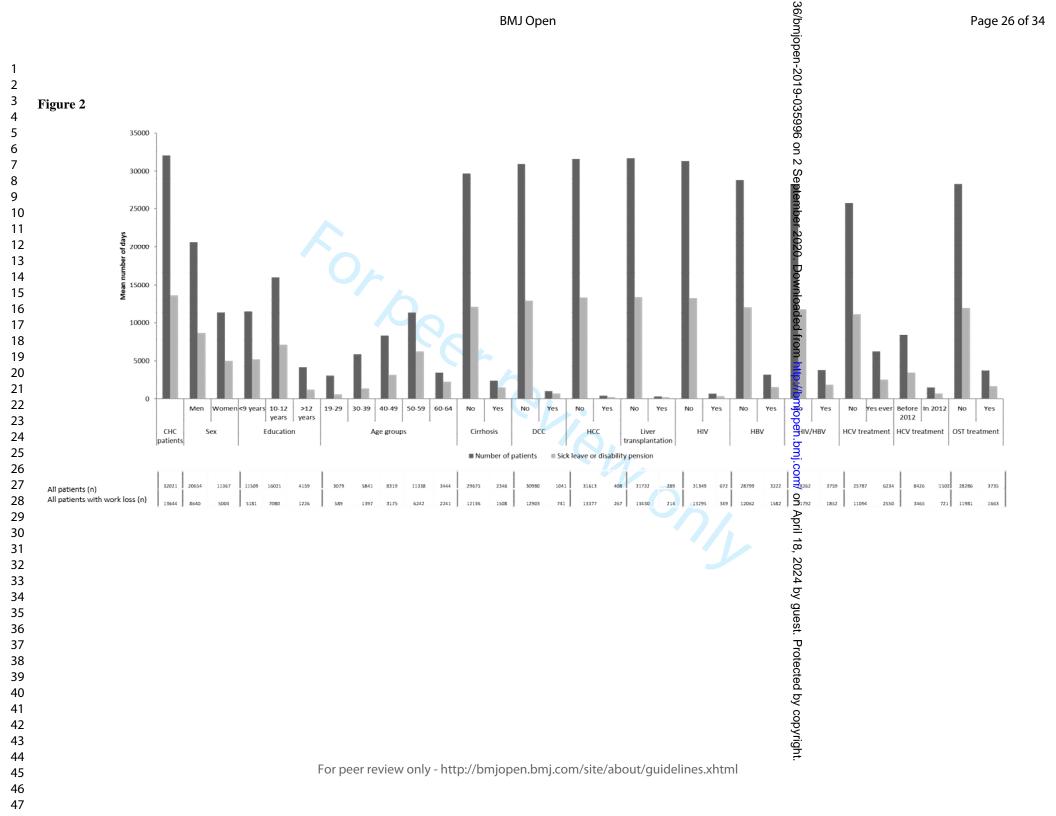
23 Asselah T, Boyer N, Saadoun D, et al. Direct-acting antivirals for the treatment of hepatitis C virus infection: optimizing current IFN-free treatment and future perspectives. Liver Int 2016;36:47–57. doi:10.1111/liv.13027 24 Büsch K, Baj R, Kövamees J, et al. High Mortality in Chronic Hepatitis C Patients in Sweden Compared to Matched Controls - A Nationwide Population-Based Register Study from 1997 till 2013. J Hepatol 2016;64:S204-5. doi:10.1016/S0168-8278(16)01721-9 25 Baran RW, Samp JC, Walker DR, et al. Costs and absence of HCV-infected employees by disease stage. J Med Econ 2015;18:691-703. doi:10.3111/13696998.2015.1045423

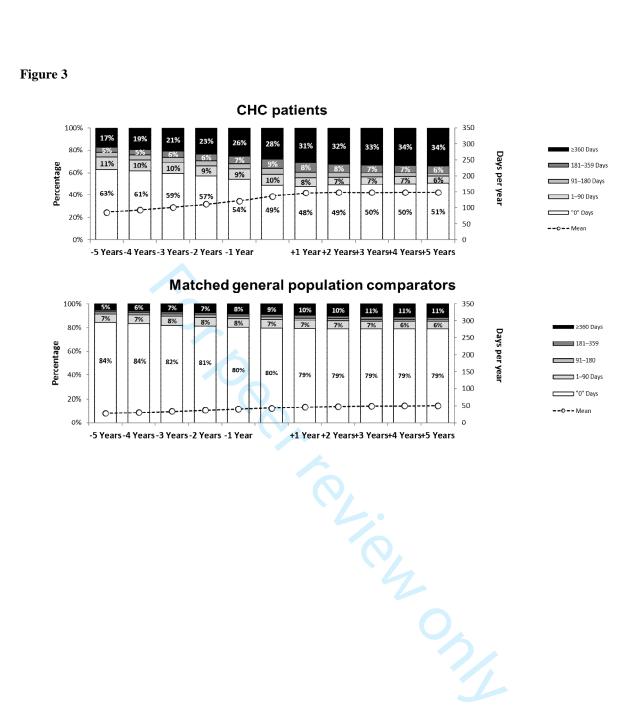
BMJ Open

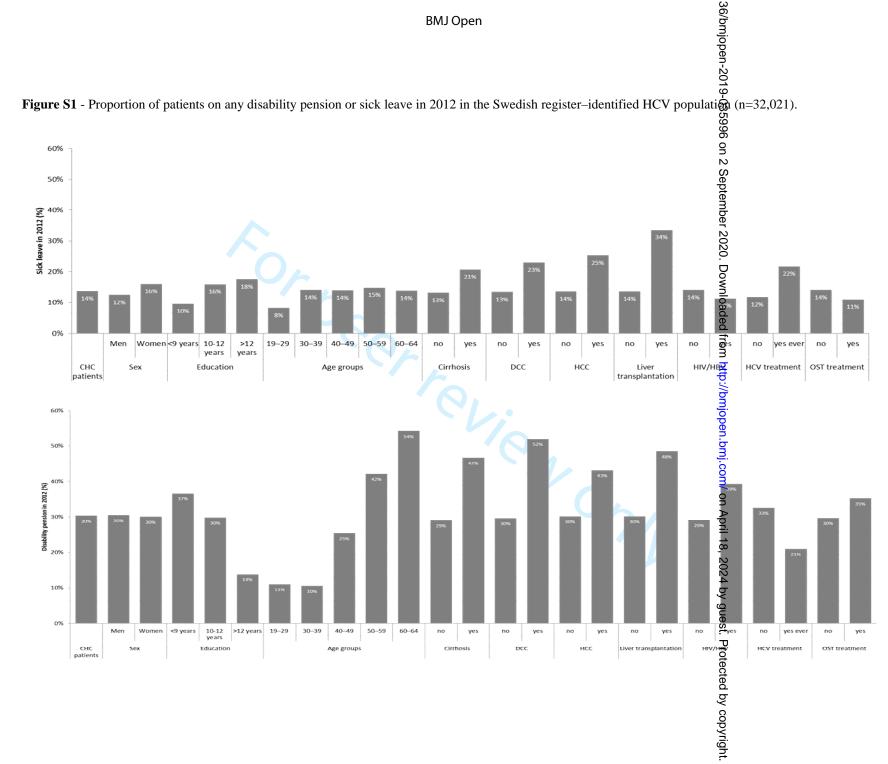

1		
2 3	1	Figure legends
4	1	
5 6 7	2	Figure 1
8 9 10	3	Distribution of days on sick leave and disability pension in 2012 in the Swedish register-identified HCV population
10 11 12	4	(n=32,021) and matched general population comparators (n=149,688).
13 14	5	HCV=chronic hepatitis C. "0" days may include sick leave episodes <14 days. General population comparators were
15 16	6	matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
17 18 19	7	
20 21	8	Figure 2
22 23 24	9	Mean total annual number of days of work loss in 2012 in the Swedish register-identified HCV population
25 26	10	(n=32,021); among all patients and those with registered sick leave or disability pension.
27 28	11	HCV=chronic hepatitis C; DCC=decompensated cirrhosis; HBV=hepatitis B virus; HCC=hepatocellular carcinoma;
29 30	12	HCV=hepatitis C virus; OST=opioid substitution therapy. The bars represent a mix of full-time and part-time sick
31 32	13	leave and disability pension days. Some sick leave episodes <14 days were not captured due to the 1-day waiting
33 34	14	period and the 13-day sick pay period, which could be waived only under certain circumstances. General population
35 36	15	comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
37 38 39	16	
40 41 42	17	Figure 3
43 44 45	18	Annual days of sick leave and disability pension 5 years before to 5 years after HCV diagnosis.
46 47	19	Patients with register-identified HCV who were diagnosed between the age of 24 and 59 years (n=19,362) and
48 49	20	matched general population comparators (n= 92,697) in a longitudinal analysis of annual days of sick leave and
50 51	21	disability pension from 5 years before to 5 years after diagnosis during 1999-2007.
52 53 54	22	HCV=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and
55 56	23	the 13-day sick pay period, which could be waived only under certain circumstances. General population 22
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date). The figures
 show the full distribution of days in categories and annual mean number of total days.

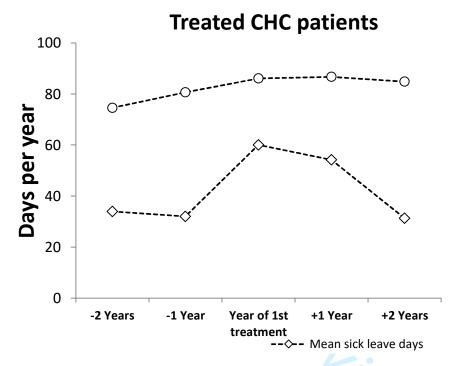

to beet terien only


BMJ Open


CHC=chronic hepatitis C.

"0" days may include sick leave episodes <14 days. General population comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.



 BMJ Open
 BMJ Open

 Provide the partition of th -hepatin. a d part-time sick leax. a period, which could be waived o. substitution therapy. The bars represent a mix of full-time and part-time sick leave and disability pension. Some sick leave episode S 14 days were not captured 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright. due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S2 Mean annual days of sick leave and disability pension in patients with register-identified CHC in a longitudinal analysis from 2 years before to 2 years after first treatment initiation.

CHC=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

Supplementary Tables

Table S1 ICD codes used for hepatitis C and liver-related complications

Diseases	ICD9 (1987-1996)	ICD10 (1997-2013)
Hepatitis		
Unspecific/virus hepatitis	070E, 070F, 070G, 070X	B19
Acute hepatitis C	-	B17.1
Chronic hepatitis C	-	B18.2
Chronic active HCV with cirrhosis		B18.2E
Chronic HCV with fibrosis		B18.2F
Chronic HCV with cirrhosis		B18.2G
Liver-related complications / liver disease		
Liver complications*	570, 571A-571G, 571X, 571W, 572C- 572E, 572W, 573W	К70, К72, К73, К74, К76
Complication of liver disease	452, 456A-456C	181, 185, 198.2, 198.3
Symptoms	782E, 789B-789C, 789F	R16, R17, R18,
Hepatocellular carcinoma (HCC)**	155A, 155C, 235D, 239A	C22.0, C22.9, D37.6
Liver transplantation***	V42H	Z94.4

* Plus sub-codes to B18.2E-G (see above); ** Plus ICD7 codes 155.0 in the cancer register; *** Plus surgery codes (see Table S4)

Liver-related complications included liver complications defined fibrosis, cirrhosis, liver failure, complications of the liver defined as portal vein thrombosis, esofageal varices and symptoms including ascites, jaundice.

Table S2 Surgical procedure codes used in the analysis

Surgical procedure	National classification of procedures (till 1996)	NOMESCO classification of surgical procedures (since 1997)
Liver transplantation	5200	JIC

			ATC codes (2005-2013)
Peg-Interferon and	d ribavirin	J05AB04, L0)3AB10, L03AB11, L03AB60, L03AB6
Protease inhibitor	S		J05AE11, J05AE12
Table S4 ICD code	s used for co-in	fections and psychiatric disorde	ers ICD10 (1997-2013)
Co-infections		(,	
	HIV	279K, 279L	B20-B24
I	Hepatitis B	070C, 070D	B18.0, B18.1
Other comorbiditi	es		
Psychiatri	c disorders	F00-F99	290-319

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	1
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	3
		what was done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	7
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	7
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	6
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	8
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		taking account of sampling strategy	

Continued on next page	(<i>e</i>) Describe any sensitivity analyses	Done in ref 2

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sick leave and disability pension in patients with chronic hepatitis C compared to a matched general population: A nationwide register study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035996.R1
Article Type:	Original research
Date Submitted by the Author:	20-May-2020
Complete List of Authors:	Büsch, Katharina; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine Hansson, Fredrik; Devicia AB Holton, Michelle; Lorimer Enterprises Inc Lagging, Martin ; Goteborgs Universitet, Westin, Johan; Goteborgs Universitet Kövamees, Jan; AbbVie Inc, Medical Affairs Sällberg, Matti; Karolinska Institutet, Department of Laboratory Medicine Söderholm, Jonas; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Gastroenterology and hepatology, Infectious diseases, Public health
Keywords:	HEALTH ECONOMICS, INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Gastroenterology < INTERNAL MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

	1
1	Sick leave and disability pension in patients with chronic hepatitis C compared to a matched general
2	population: A nationwide register study
3	
4	Katharina Büsch ^{1,2} , Fredrik Hansson ³ , Michelle Holton ⁴ , Martin Lagging ⁵ , Johan Westin ⁵ , Jan Kövamees ¹ , Matti
5	Sällberg ² , and Jonas Söderholm ^{1,2,*}
6	
0	
7	¹ AbbVie AB, Stockholm, Sweden
8	² Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet at Karolinska
9	University Hospital Huddinge, Stockholm, Sweden
10	³ Devicia AB, Stockholm, Sweden
11	⁴ Lorimer Enterprises Inc., Red Deer, Canada
12	⁵ Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of
13	Gothenburg, Gothenburg, Sweden
14	
15	Emails: Katharina Büsch, katharina_buesch@yahoo.de; Fredrik Hansson, fredrik.hansson@ctc-ab.se; Michelle
16	Holton, michelle.holton@shaw.ca; Martin Lagging, martin.lagging@medfak.gu.se; Johan Westin,
17	johan.westin@infect.gu.se; Jan Kövamees, jan.kovamees@abbvie.com; Matti Sällberg, Matti.Sallberg@ki.se; Jonas
18	Söderholm, jonas.soderholm@abbvie.com
19	
20	
20	
21	* <u>Correspondence</u>
22	Jonas Söderholm
23	Hemvärnsgatan 9
24	Box 1523, 171 29 Solna, Sweden
25	Email: jonas.soderholm@abbvie.com; jonas.soderholm@ki.se; Jonas.soderholm@gmail.com
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	1	Running title (40 characters without spaces): Sick leave/disability pension in HCV patients
4	L T	Kunning the (40 characters without spaces): Sick leave/disability pension in HC v patients
5 6	2	Keywords: Hepatitis C, chronic; Disability Leave; Sick Leave; Sweden
7 8	3	
9 10	4	Word Counts, Tables & Figures
11 12	5	Full article:3,269 words
13 14	6	Abstract: 284 words
15 16	7	Tables: 2
17 18 19	8	Tables: 2 Figures: 3 Supplemental Tables: 3 Supplemental Figures: 1
20 21 22	9	Supplemental Tables: 3
23	10	Supplemental Figures: 1
24 25		
26		
27 28		
29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
42 43		
44		
45 46		
47		
48		
49 50		
51		
52 53		
55 54		
55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00	1	

1 Abstract

OBJECTIVE: The objective of this study was to evaluate sick leave and disability pension in patients with chronic
hepatitis C virus (HCV) infection as compared with a matched general population cohort.

4 DESIGN: Retrospective register study

5 SETTING: Nationwide in Sweden

PARTICIPANTS: This register-based study used the Swedish National Patient Register to identify working-age
patients with HCV in 2012 (n=32,021) who were diagnosed between 1999 and 2007 (n=19,362). Sick leave and
disability pension data were retrieved from Statistics Sweden (1994–2012), with up to 5 matched individuals from the
general population.

PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was workdays lost due to sick
 leave episodes (>14 days) and disability pension overall. The secondary outcome was workdays lost per subgroup of
 patients with chronic HCV.

RESULTS: In 2012, 14% of the HCV patients had ≥1 registered sick leave episode compared with 10% in the matched comparator cohort. For disability pension benefits, results were 30% vs. 8%, respectively. Overall, in 2012, 57% of patients with HCV did not have any registered workdays lost, whereas 30% were absent ≥360 days compared with 83% and 9% in the matched cohort, respectively. The mean total number of annual workdays lost in 2012 was 126 days in the HCV patient cohort compared with 40 days in the matched general population comparator cohort. Annual days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis.

CONCLUSIONS: These results show that Swedish HCV patients used more sick days and have a higher frequency of
 disability pension compared with a comparator cohort from the general Swedish population. Whether earlier diagnosis
 of HCV and treatment might impact work absence in Sweden warrants further investigation.

ARTICLE SUMMARY: Strengths and limitations of the study

• Previous studies focused on describing sick leave in a small segment of patients with chronic hepatitis C, whereas this is the first study to investigating sick leave and disability pension on a nationwide level.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	1	• The registers contain routinely collected data, i.e. limiting the risk for sampling bias.
5	2	• The diagnosis analysed was retrieved from Swedish patient register and was not validated, however the
6 7	3	Swedish patient register has previously shown high reliability.
8 9	4	• The registers do not contain information on treatment outcome, so analysis on the impact of viral
10 11	5	eradication and workdays lost was not feasible.
12 13	6	• The actual number of workdays lost are underestimated since only sick leave episodes ≥ 14 days are
14 15	7	• The actual number of workdays lost are underestimated since only sick leave episodes ≥14 days are registered.
16		
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Background

Hepatitis C is an infectious viral disease affecting the liver, with Western European prevalence rates estimated between 0.35 and 1.42%.[1] In Sweden, the prevalence of chronic hepatitis C infection was estimated to be 0.36% in 2013.[2]

Patients with hepatitis C virus (HCV) infection have been shown to have increased work disabilities.[3] Furthermore, models have shown a relationship between HCV and loss of productivity, increased absenteeism, and higher healthcare benefit costs, which results in substantial economic burden to society.[4-6] A retrospective database analysis showed employees in the United States with HCV infection to have a higher number of lost workdays than employees without HCV infection. In addition, they also utilised more sick leave, with an increased use of short-term and long-term disability.[5] The annual cost due to productivity loss in untreated patients with genotype 1 HCV infection in the United States has been estimated to 7.1 billion USD.[6] Before the introduction of the new interferon-free HCV treatment options the HCV-associated productivity losses in the United Kingdom were estimated to rise from 184-367 million GBP in 2010 to 210–427 million GBP in 2035.[7]

The objective of the present study was to evaluate sick leave and disability pension in patients with chronic HCV compared with matched general population comparators using the Swedish National Patient Register. A secondary objective was to examine sick leave and disability pension within certain subgroups (e.g., patients with decompensated cirrhosis, cirrhosis, hepatocellular carcinoma, or liver transplantation) or prevalent patients, as well as sick leave in relation to diagnosis.

18 Methods

19 Setting

The population in Sweden was 9.6 million people in 2012 (Statistics Sweden; <u>www.scb.se</u>). Sweden has a universal taxfunded health care system where the Swedish Social Insurance Agency captures information on full or partial sick leave and disability compensations. In 2012 the common retirement age in Sweden was 65 years with people having the right to retire at 61 years of age or choose to continue working until 67 years of age.

Information on Swedish citizens are collected in the nationwide registers using the Swedish unique personal identity
number.[8] In the present study the following registries were used; the National Patient Register (NPR), the Cancer
Register, the Prescribed Drug Register (PDR), the Cause of Death Register (CDR), the Total Population Register (TPR),
and the Longitudinal Integrated Database for Health Insurance and Labour Market studies (LISA). The NPR contains

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

all inpatient (1987–2013) and non-primary outpatient care (2001–2013) visits, but it does not capture any primary care visits.[9] The NPR includes information on both main and contributory diagnoses based on the *International Classification of Diseases* (ICD-9, 1987–1996; ICD-10, 1997-2013). The Cancer Registry covers medical data such as the site of tumour, histologic type, basis, and date of diagnosis (1958–2013). It is mandatory to report all newly detected cancers to the registry. However, some cases are only reported to the CDR (i.e., cases denoted as death certificate only and death certificate notification) and are not necessarily included in the Cancer Registry. The PDR includes all prescribed drug use in ambulatory care (2005–2013), although in-hospital drug use is captured to a much lesser extent.[10] It contains information on dates, drugs, and costs for all pharmacy dispensed prescriptions in Sweden using Anatomical Therapeutic Chemical codes. The CDR contains information on the cause of death with information on the year and month of death. The TPR provides information on place of residence, age, sex, country of origin, and emigration status. LISA includes data on sick leave and disability pension for all residents in Sweden \geq 16 years of age with information on work-related and socioeconomic variables (e.g. education level, marital status, and days per year of sick leave and disability pension [annual data retrieved for 1994–2012]).

HCV as a diagnosis was introduced with the ICD-10 in 1997 and at the time of data collection (April 2014) was the data
on sick leave and disability pension available until December 31, 2012; thus, the current analysis is based on data from
16 1997 to 2012.

17 Informed consent is not required for large-scale registry-based studies in Sweden.[11] Data from the Swedish

18 registries are available for research after ethical and registry approval. The study was approved (Dnr 2014/746-31) by

19 the Regional Ethics Committee, Karolinska Institutet, Stockholm, Sweden.

Patient and Public Involvement

2 No patient involved.

4 Identification of patients with HCV and matched general population comparators

Patients were identified in the NPR using health care visits with a chronic HCV diagnosis (ICD10: B18.2),[12] as
described previously for this cohort.[2] Only patients of working age (i.e., between 19 and 65 years) were included.
Subgroup analyses by age (19–29, 30–39, 40–49, 50–59, 60–65), gender (male/female), education (<9 years, 10–12)

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

years, ≥12 years), disease status (e.g., decompensation cirrhosis [DCC], liver cancer [hepatocellular carcinoma {HCC}],
 liver transplantation; Table S1 and S2), treatment status (HCV treatment or opioid substitution therapy [OST]; Table
 S3), and co-infection (HIV or hepatitis B virus; Table S4), were performed. Up to 5 general population controls were
 matched by age, sex, and county of residence to each patient with HCV at the time of diagnosis.

Definition of outcomes

The outcome was the annual number of days of sick leave and disability pension (maximum of 365 per year).

Sick leave: As of 1998 the first day of sick leave is not compensated ("waiting period") in Sweden, with day 2 to 14 being paid by employers. Thus, only sick leave episodes >14 days were recorded in the LISA database, as those were paid by the Social Insurance Agency. Any episode occurring within 5 days of a previous episode does not require a new "waiting period" or "sick pay period", thus multiple short-term episodes could waive these periods. I.e. individuals with 0 days registered may in fact have had sick leave episodes ≤14 days, hence that group was denoted "0" registered days to acknowledge this uncertainty.

Disability pension: Disability pension refers to either disability pension (1990–2002) or sickness/activity compensation (2003–2012). In Sweden, disability pension can be either part-time (25%, 50%, 67%, or 75%) or full-time (100%) based on the type and severity of the medical condition. As of 2003 was the disability pension replaced by two types of compensation depending on age. "Activity compensation" was introduced for younger individuals (19 to 29 years old) whereas older individuals were eligible for "sickness compensation". Both sickness and activity compensation were either time-limited or permanent but required at least $\geq 25\%$ reduction in work capacity that was expected for at least 1 year. Gross disability pension refers to the number away from work, whereas net disability pension refers to the net time away, e.g. 50% sick leave for 14 days would equal 14 days gross disability pension and 7 days net disability pension. [13]

24 Follow-up of patients with HCV and matched general population comparators

Patients with HCV were followed from the date of first visit with an HCV diagnosis during the observation time (index date) until emigration, death, retirement (age 65 years), or study end (December 31, 2012), whichever occurred first.
The matched comparators were followed from index date until emigration, death, retirement, until HCV diagnosis, or

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

December 31, 2012, whichever occurred first. The prevalent cohort included patients alive and living in Sweden as of December 31, 2012.

For the longitudinal analyses of work loss due to sick leave and disability pension the patients with HCV were followed from 5 years before to 5 years after diagnosis. Patients were included if diagnosed between 1999 and 2007 to allow a \pm 5-year follow-up time. In addition, patients had to be between 24 and 59 years of age at the time of diagnoses in order to be eligible for benefits during the full follow-up. All codes used are available in the supplemental tables S1 - S4.

Statistics

The annual days of sick leave and disability pension were grouped by categories ("0," 1–90, 91–180, 181–359, and \geq 360 days) and presented using arithmetic means.[14] The study calculated the total annual number of days of sick leave and disability pension in 2012 for both cohorts. The difference in workdays lost between the groups was also evaluated using multivariable regression models. The analyses were adjusted for age, sex, and educational level, as well as occurrence of psychiatric diseases and/or liver-related outcomes (defined as history of cirrhosis, mental and behavioural disorders, and/or liver transplantation), if the goodness of fit was >0.6.

The longitudinal analysis followed the HCV patients and their comparators from 5 years ahead of index date until 5 years after the index date. The impact of interferon-based treatment was analysed for patients with HCV treated with interferon 2 years before until 2 years after first treatment during 2005 and 2010.

SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. All p values are two-sided.

Overall, 32,021 patients aged 19 to 64 years were o	diagnosed with HCV and were liv	ving in Sweden on December
2012 (HCV prevalent cohort; Table 1).		
Table 1 Characteristics of register-identified patien	ts with prevalent HCV aged 19 to	o 64 years on December 31,
2012, in Sweden and their matched general populat	ion comparators	
	Patients with HCV in	Matched GenPop
	2012; 19–64 years	comparators in 2012
	(n=32,021*)	(n=149,688)
Men, n (%)	20,654 (65%)	95,546 (64%)
Mean (SD) age, y		
At identification/diagnosis	39 (11)	-
In 2012	47 (11)	47 (11)
Highest attained education, n (%)		
<9 years	11,509 (36%)	21,600 (14%)
10–12 years	16,021 (50%)	72,946 (49%)
≥ 12 years	4159 (13%)	53,866 (36%)
Missing	332 (1%)	1276 (1%)

		10
Unmarried	19,725 (62%)	75,011 (50%)
Married	6074 (19%)	57,376 (38%)
Divorced	6111 (19%)	16,539 (11%)
Widow	0	5 (<0.1%)
Missing	111 (0.3%)	757 (1%)
Co-infection, n (%)		
HIV	672 (2%)	210 (0.1%)
HBV	3222 (10%)	377 (0.3%)
Registered HCV -related outcome, n (%) [†]		
Liver cirrhosis	2346 (7%)	213 (0.1%)
Decompensated cirrhosis	1041 (3%)	31 (0%)
Hepatocellular carcinoma	408 (1%)	125 (0.1%)
Liver transplantation	289 (1%)	48 (<0.1%)
HCV treatment since 2005	6234 (19%)	-
OST treatment since 2005	3735 (12%)	1102 (1%)
HBV=hepatitis B virus; HCV=hepatitis C virus; L	ISA=Longitudinal Integrated D	atabase for Health Insurance and
Labour Market Studies; NPR=National Patient Regi	ister; OST=opioid substitution t	herapy; SD=standard deviation.
*169 patients with HCV were excluded, as there wa	s no data available in the LISA	dataset.
[†] Interpretation of data should be done with caution,	as certain outcomes such as live	r cirrhosis were likely
underreported in the NPR; all codes used to define of	outcomes are provided in Table	S1, S2, S3, and S4.
Prevalence and days of sick leave and disability pe	nsion in 2012	

Fourteen percent of patients with HCV had ≥1 registered sick leave episode(s) in 2012 compared with 10% in the matched general population comparator cohort. Eight percent of individuals in the matched general population received disability pension benefits, compared with 30% of patients with HCV. In total, 43% of patients with HCV and 17% of individuals in the matched general population comparator cohort had at least one registered sick leave episode or received disability pension benefits in 2012 (Table 2).

Table 2 Annual number of days of sick leave and disability pension in 2012 in patients with register-identified HCV

7	and matched general population comparators
---	--

U,	Patients with HCV in	Matched GenPop	Difference (days)
	2012; 19–64 years	comparators in 2012	
	(n=32,021*)	(n=149,688)	
Mean (SD) total annual number	No.		
of days during follow-up	106 (155)	34 (97)	72
Sick leave	27 (78)	13 (55)	14
Disability pension, gross	80 (148)	21 (84)	59
Disability pension, net	76 (143)	18 (75)	58
Mean (SD) total days in 2012	126 (166)	40 (107)	86
Sick leave	22 (72)	11 (88)	11
Disability pension, gross	106 (164)	29 (98)	77
Disability pension, net	101 (159)	25 (88)	76

HCV = chronic hepatitis C; SD=standard deviation.

9 NOTE. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick

10 pay period (waived only under certain circumstances).

11 *Matched general population comparators were matched on age, sex, and place of residency at the time of diagnosis.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

The prevalence of receiving a disability pension was similar among men and women, but was higher among older individuals, those with co-infection (HCV and HIV or hepatitis B virus), and those receiving OST (Figure S1). It was lower among those with a higher educational level and those who previously had been treated for HCV infection. The prevalence of sick leave was higher among women and those with higher education, with minor variations by age. Prevalence of sick leave or disability pension use was always higher among patients with an HCV-related complication such as cirrhosis, DCC, HCC, or liver transplantation.

Overall, fewer patients with HCV did not have any registered workdays lost in 2012 compared to the matched general population comparator cohort (57% vs. 83%). A greater proportion (30%) of patients with HCV were absent \geq 360 days than in the matched general population comparator cohort (9%, p<0.001; Figure 1). The median number of workdays lost was "0" in both cohorts, thus the distribution of workdays lost in 2012 was non-normal.

Among prevalent patients, the annual number of workdays lost was generally higher among older patients, patients with lower education, patients with co-infection, and among patients with liver complications such as DCC, HCC, and liver transplantation (Figure 2). The average total annual number of workdays lost in 2012 was 126 in the HCV patient cohort and 40 in the matched general population comparator cohort (Table 2). When only those with a registered episode were analysed, the mean total annual number of workdays lost rose to 296 days among patients with HCV, a trend that was observed among all subgroups (Figure 2).

The multivariable regression model was adjusted for age, sex, and educational level, showed patients with HCV to have on average 75 more workdays lost compared with the general population. The number of workdays lost decreased to 60 days when considering psychiatric diseases. When also adjusting for any history of either cirrhosis, HCC, or liver transplantation the estimate was reduced to 55 days. The independent factors associated with a greater number of workdays lost were older age, lower level of education, female sex, psychiatric diseases, and history of liver-related outcomes were all independently and significantly (p<0.001).

Longitudinal work loss in relation to diagnosis

Among all patients with HCV 19,362 patients were diagnosed between 1999 and 2007, thus qualified for the longitudinal analysis that followed work loss for up to 5 years before and after diagnosis. Five years before diagnosis,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

37% of patients with HCV had workdays lost registered, which increased to 51% in the year of diagnosis and thereafter remained constant. The workdays lost for the matched general population comparators for these 19,362 patients remained between 16% and 21% throughout the longitudinal analysis (Figure 3). More than 30% of patients with HCV were almost fully work disabled already 1 year after diagnosis compared with approximately 10% in the matched general population comparators. Thus, patients with HCV were 3 times as likely to be fully work disabled compared with the matched general population cohort.

The mean annual workdays lost increased from 86 days to 146 days from 5 years before HCV diagnosis to 1 year after
diagnosis. The number of workdays lost were always considerably higher among patients with HCV (5 years before
HCV diagnosis: 86 vs. 28 days = difference of 59 days; at the year of HCV diagnosis: 136 vs. 43 days = difference of
92 days; 5 years after HCV diagnosis: 148 vs. 50 days = difference of 97 days; Figure 3).

Among the 5,177 patients treated with interferon-based treatments between 2005 and 2010, the mean annual number of sick leave days was approximately 30 days before the start of treatment. Sick leave days increased to 60 days during the year of treatment initiation followed be a decrease to pre-treatment levels (approximately 30 days) 2 years after treatment initiation (Figure S2). No large differences were observed in mean annual disability pension days in relation to interferon-based treatment. The trend that showed an increase in mean disability pension days before treatment initiation was no longer evident after treatment.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Discussion

Hepatitis C infection is a slowly developing disease that often begins with vague symptoms such as fatigue, loss of appetite, and headache. These symptoms often begin to manifest well before the patient is diagnosed with HCV. The comorbidities are believed to affect the general well-being of the patients with an accompanying increased need for sick leave and disability pension. However, the use of sick leave/disability has only been investigated in a few studies, with the largest examining data from 1.664 patients with HCV diagnoses who were employed in the United States. In order to get the full picture of the sick leave and disability pension use for patients with HCV in an entire country and to avoid the bias of only analysing employed patients with HCV, the present study set out to investigating the sick leave and disability pension for all diagnosed patients with HCV of working age in Sweden. The diagnosis rate of HCV differs between regions, with an estimated 75% of the cases of HCV in the United States remaining undiagnosed.[15] In contrast, the diagnosis rate in Sweden is fairly high with an estimated 20% of patients remaining undiagnosed.[16] This, in combination with the virtually complete national coverage of the Swedish registers, makes Sweden a country well-suited for the investigation of the burden of HCV on the welfare system.

Most importantly, the study showed that 43% of the patients with HCV received compensation from the Social Insurance Agency in form of sick leave or disability pension in 2012 compared with 17% of the comparators. In total, the patients with HCV lost an average of 87 extra workdays per year compared with matched comparators. The difference in the number of sick leave days, as well as disability pension, could be explained by the inherent differences between patients with and without HCV infection, with riskier lifestyle and psychiatric disorders being more common in patients in the HCV cohort. [17,18] This could explain the greater frequency of disability pension and higher mean sick leave days noted 5 years before HCV diagnosis. Interestingly, the annual number of days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis. In contrast, there was only an increase of 15 days in the comparator cohort during the 5 year time frame (Figure 3). Thus, despite that patients with HCV started with a higher number of workdays lost, the analysis showed a rapid increase in both mean sick leave and disability pension in the years leading up to HCV diagnosis. In contrast, no such rapid increase was seen for the match comparators. It suggests that patients did most likely experience increased symptoms as the disease progress. This increase in symptoms lead to a greater utilisation of sick leave, as well as more visits to both primary care physicians and specialists until the HCV diagnosis. In addition, after adjusting for psychiatric disease, the difference in sick leave

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

between the 2 groups remained, thus suggesting that HCV impacts the general health status of patients. It is tempting to hypothesize that earlier diagnosis and treatment of patients with HCV would slow down the increasing need for sick leave and disability pension; however, the present study was not designed to investigate this. Nevertheless, other studies have suggested that earlier treatment benefits both society and the individual patient.[19–21]

In line with previous studies, there was an increase in mean sick leave days noted during the first year of treatment, which is likely due to the side effects associated with the old interferon-based treatment.[22,23] The newly introduced interferon-free regimens for patients with HCV infection have a more favourable safety profile compared with interferon-based regimens.[24] This would most likely reduce the number of sick leave days needed during treatment. The difference between interferon-based and interferon-free regimens will need to be analysed further when data from interferon-free treatments become available in the registers.

One strength of the study was the use of nationwide register data that contained the actual number of days the social insurance pays for per person. This is in contrast to other studies relying on self-reported information, which are more prone to bias. While the data is only as valid as the information entered, the nationwide Swedish registers are considered to be >99% complete. Nationwide large-scale registries allow assessment of subgroup variations and the use of up to 5 matched comparators from the general population.

One main limitation of the study is that patients were identified in the NPR using physician entered diagnoses from inpatient and non-primary outpatient care (previously discussed for this cohort[25]) thus any mistake entering a diagnosis led to misclassification in the study. Another limitation is that the first visit during the study period may not necessary be the first HCV diagnosis given that the specific ICD code for HCV (B18.2 ICD-10) has only been available since 1997, thus the time of diagnosis must be interpreted with caution. As mentioned in the methods, the Social Insurance Agency data only includes sick leave episodes >14 days, as the first episodes are covered by the employer. This will result in an underestimation of the actual number of workdays lost; however, this applies to both cohorts. Interestingly, the main difference in work absence for US employees with HCV was driven by the short-term disability (defined as sick leave between 14 days and 6 months [5,26]), thus suggesting the present study would capture the HCV-mediated impact on sick leave.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Conclusions

countries where private health insurance is more common.

To our knowledge, this is the largest study on sick leave and disability pension in patients with HCV to date and the

first longitudinal study that investigated this in relation to time of diagnosis. These results indicate that patients with

HCV use more sick days and have a higher frequency of disability pension compared with a comparator cohort from

the general population. However, whether earlier hepatitis C diagnosis or virologic cure reduces work absence is not

addressed by this study and this needs to be further investigated. Finally, the results may be less generalizable to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

ETHICS APPROVAL AND CONSENT TO PARTICIPATE: The study was approved by the Regional Ethics
 Committee, Karolinska Institutet, Stockholm, Sweden. Informed consent is not needed for large registry-based
 studies in Sweden.[11]

4 CONSENT FOR PUBLICATION: Not applicable, only aggregated data included in the study. Informed consent is
5 not needed for large registry-based studies in Sweden.[11]

AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analysed during the current study
where retrieved from the National Patient Register (NPR), the Cancer Register, the Prescribed Drug Register (PDR),
the Cause of Death Register (CDR), the Total Population Register (TPR), and the Longitudinal Integrated Database
for Health Insurance and Labor Market studies (LISA) are available for research after ethical approval. The ethical
approval for the present study does not allow for sharing data to persons not included in the ethical approval.

11 COMPETING INTERESTS: M. Lagging has consultancies with AbbVie, Gilead, and MSD/Merck and is a member 12 of the speakers' bureau for AbbVie, Gilead, and MSD/Merck. M. Sällberg is founder and owner of Svenska 13 Vaccinfabriken AB. F. Hansson reports no conflicts of interest. M. Holton is President of Lorimer Enterprises Inc., a 14 company that has consulted for AbbVie. J. Westin has had paid teaching assignments for AbbVie, Gilead, and 15 MSD/Merck. J. Söderholm and J. Kövamees are employees of AbbVie and may hold AbbVie stocks or stock options. 16 K. Büsch was an employee of AbbVie at the time of the study and may hold AbbVie stocks or stock options.

FUNDING: The design, study conduct, and financial support for the study were provided by AbbVie. AbbVie
participated in the study design, data/input analysis, interpretation of results, review, and approval of the publication.
The authors determined the final content. No payments were made to the authors for writing this publication.

AUTHOR CONTRIBUTIONS: The concept of the study was designed by KB and JS. FH and KB managed the database. KB, FH, MH, and JS interpreted the data with support from ML, JK, and JW. KB and JS were the major contributors in writing the manuscript. All authors critically revised the manuscript and approved the final version that was submitted.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	Re	ferences
2	1	daCosta DiBonaventura M, Yuan Y, Wagner J-S, et al. The burden of viral hepatitis C in Europe: a
3		propensity analysis of patient outcomes. Eur J Gastroenterol Hepatol 2012;24:869.
4		doi:10.1097/MEG.0b013e3283551dee
5	2	Büsch K, Waldenström J, Lagging M, et al. Prevalence and comorbidities of chronic hepatitis C: a
6		nationwide population-based register study in Sweden. Scand J Gastroenterol 2017;52:61–8.
7		doi:10.1080/00365521.2016.1228119
8	3	Manne V, Sassi K, Allen R, et al. Hepatitis C and Work Impairment: A Review of Current Literature
9		Clin Gastroenterol 2014; 48 :595. doi:10.1097/MCG.0000000000000080
10	4	Khoury ACE, Vietri J, Prajapati G. The Burden of Untreated Hepatitis C Virus Infection: A US Patie
11		Perspective. <i>Dig Dis Sci</i> 2012; 57 :2995–3003. doi:10.1007/s10620-012-2233-1
12	5	Su J, Brook RA, Kleinman NL, et al. The impact of hepatitis C virus infection on work absence,
13		productivity, and healthcare benefit costs. <i>Hepatology</i> 2010; 52 :436–42. doi:10.1002/hep.23726
14	6	Younossi ZM, Jiang Y, Smith NJ, et al. Ledipasvir/sofosbuvir regimens for chronic hepatitis C
15		infection: Insights from a work productivity economic model from the United States. Hepatology
16		2015; 61 :1471–8. doi:10.1002/hep.27757
17	7	Patruni B, Nolte E. Hepatitis C A Projection of the Healthcare and Economic Burden in the UK. Ro
18		Health Q 2013;3.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945231/ (accessed 9 Apr 201
19	8	Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity numbe
20		possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol 2009;24:659–67.
21		doi:10.1007/s10654-009-9350-y
		18
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 34

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

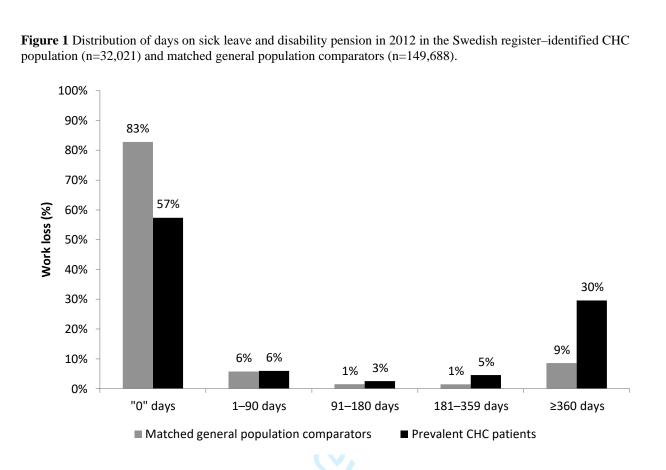
2			
3 4	1	9	Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish national
5 6 7	2		inpatient register. BMC Public Health 2011; 11 :450. doi:10.1186/1471-2458-11-450
8 9 10	3	10	WHOCC. ATC/DDD Index https://www.whocc.no/atc_ddd_index/ Accessed: 2019-Apr-09.
11 12 13	4		2019.https://www.whocc.no/atc_ddd_index/ (accessed 9 Apr 2019).
14 15	5	11	Ludvigsson JF, Håberg SE, Knudsen GP, <i>et al.</i> Ethical aspects of registry-based research in the Nordic
16 17 18	6		countries. <i>Clin Epidemiol</i> 2015; 7 :491–508. doi:10.2147/CLEP.S90589
19 20	7	12	Socialstyrelsen. International Statistical Classification of Diseases and Related Health Problems,
21 22 23	8		Tenth Revision (ICD-10).
24 25	9		2016.https://apps.who.int/iris/bitstream/handle/10665/246208/9789175553801-V1-part1-
26 27 28	10		swe.pdf?sequence=11&isAllowed=y
29 30	11	13	Ludvigsson JF, Svedberg P, Olén O, et al. The longitudinal integrated database for health insurance
31 32 33	12		and labour market studies (LISA) and its use in medical research. <i>Eur J Epidemiol</i> 2019; 34 :423–37.
34 35 36	13		doi:10.1007/s10654-019-00511-8
37 38	14	14	Olofsson T, Petersson IF, Eriksson JK, et al. Predictors of work disability during the first 3 years after
39 40	15		diagnosis in a national rheumatoid arthritis inception cohort. Ann Rheum Dis 2014; 73 :845–53.
41 42 43 44	16		doi:10.1136/annrheumdis-2012-202911
45 46	17	15	Jacobson IM, Cacoub P, Dal Maso L, et al. Manifestations of Chronic Hepatitis C Virus Infection
47 48 49 50 51 52 53 54 55	18		Beyond the Liver. <i>Clin Gastroenterol Hepatol</i> 2010; 8 :1017–29. doi:10.1016/j.cgh.2010.08.026
56 57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1 ว			
2 3 4	1	16	Duberg A-S, Blach S, Falconer K, et al. The future disease burden of hepatitis C virus infection in
5 6	2		Sweden and the impact of different treatment strategies. Scand J Gastroenterol 2015;50:233-44.
7 8 9	3		doi:10.3109/00365521.2014.990505
10 11 12	4	17	Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people
13 14	5		who inject drugs: results of systematic reviews. <i>The Lancet</i> 2011; 378 :571–83. doi:10.1016/S0140-
15 16 17	6		6736(11)61097-0
18 19	7	18	Trager E, Khalili M, Masson CL, et al. Hepatitis C Screening Rate Among Underserved Adults With
20 21 22	8		Serious Mental Illness Receiving Care in California Community Mental Health Centers. Am J Public
22 23 24 25	9		<i>Health</i> 2016; 106 :740–2. doi:10.2105/AJPH.2016.303059
25 26 27	10	19	Gordon SC, Pockros PJ, Terrault NA, et al. Impact of disease severity on healthcare costs in patients
28 29	11		with chronic hepatitis C (HCV) virus infection. <i>Hepatology</i> 2012; 56 :1651–60.
30 31 32	12		doi:10.1002/hep.25842
33 34 35	13	20	Koh C, Heller T, Haynes-Williams V, et al. Long-term outcome of chronic hepatitis C after sustained
36 37	14		virological response to interferon-based therapy. Aliment Pharmacol Ther 2013;37:887–94.
38 39 40	15		doi:10.1111/apt.12273
41 42 42	16	21	Manos MM, Darbinian J, Rubin J, et al. The Effect of Hepatitis C Treatment Response on Medical
43 44 45	17		Costs: A Longitudinal Analysis in an Integrated Care Setting. J Manag Care Pharm 2013;19:438–47.
46 47 48	18		doi:10.18553/jmcp.2013.19.6.438
49 50	19	22	McHutchison JG, Ware JE, Bayliss MS, et al. The effects of interferon alpha-2b in combination with
51 52	20		ribavirin on health related quality of life and work productivity. <i>J Hepatol</i> 2001; 34 :140–7.
53 54 55	21		doi:10.1016/S0168-8278(00)00026-X
56 57 58			20
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

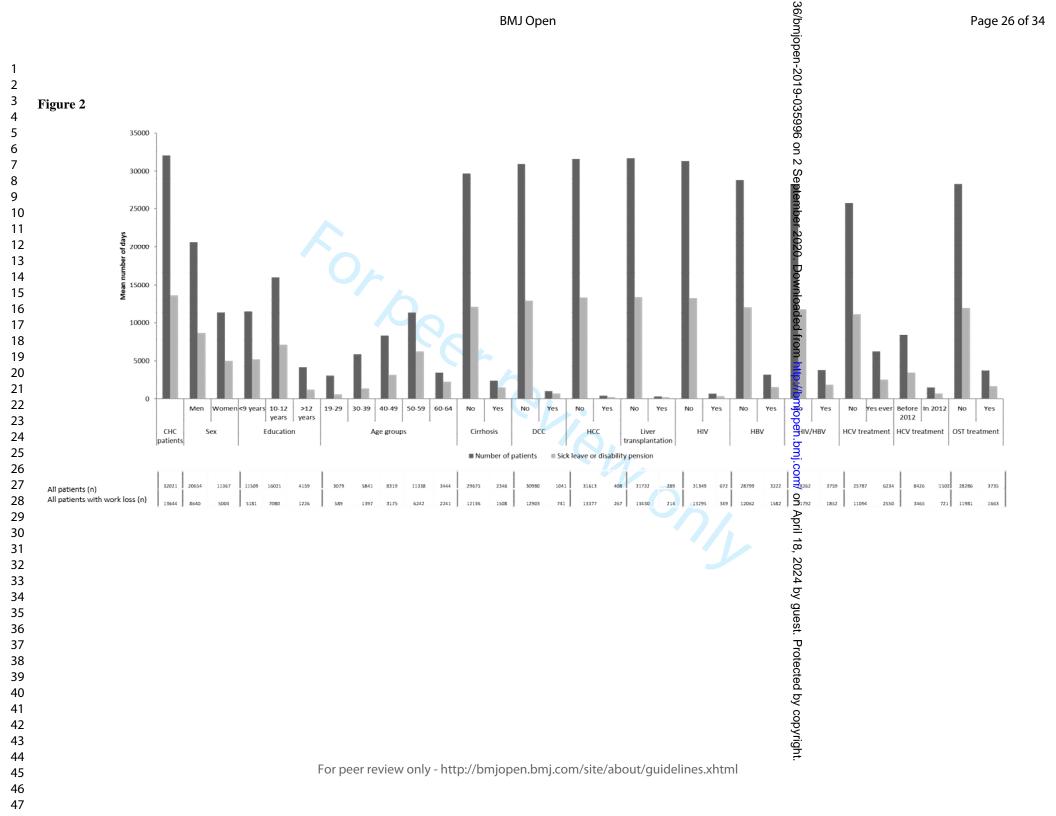
21

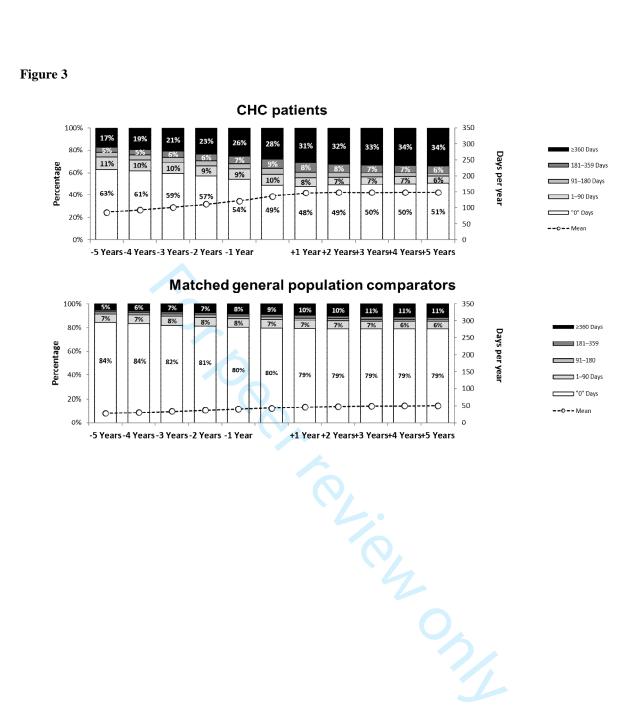
1			
2 3 4	1	23	Perrillo R, Rothstein KD, Rubin R, et al. Comparison of quality of life, work productivity and medical
5 6	2		resource utilization of peginterferon alpha 2a vs the combination of interferon alpha 2b plus
7 8	3		ribavirin as initial treatment in patients with chronic hepatitis C. J Viral Hepat 2004;11:157–65.
9 10 11 12	4		doi:10.1046/j.1365-2893.2003.00482.x
13 14	5	24	Asselah T, Boyer N, Saadoun D, et al. Direct-acting antivirals for the treatment of hepatitis C virus
15 16	6		infection: optimizing current IFN-free treatment and future perspectives. <i>Liver Int</i> 2016; 36 :47–57.
17 18 19	7		doi:10.1111/liv.13027
20 21 22	8	25	Büsch K, Baj R, Kövamees J, et al. High Mortality in Chronic Hepatitis C Patients in Sweden
22 23 24	9		Compared to Matched Controls - A Nationwide Population-Based Register Study from 1997 till 2013.
25 26 27	10		J Hepatol 2016; 64 :S204–5. doi:10.1016/S0168-8278(16)01721-9
28 29	11	26	Baran RW, Samp JC, Walker DR, et al. Costs and absence of HCV-infected employees by disease
30 31 32	12		stage. J Med Econ 2015;18:691-703. doi:10.3111/13696998.2015.1045423
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	13		
54 55 56 57 58 59			21

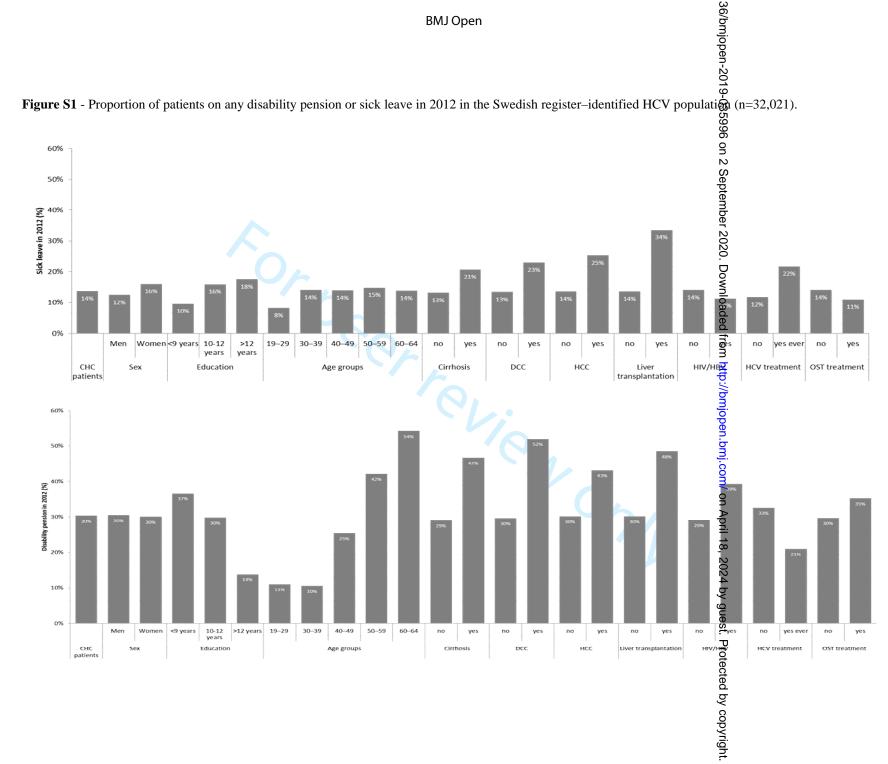

1 2		
3 4	1	Figure legends
5 6 7	2	Figure 1
8 9 10	3	Distribution of days on sick leave and disability pension in 2012 in the Swedish register-identified HCV population
10 11 12	4	(n=32,021) and matched general population comparators (n=149,688).
13 14	5	HCV=chronic hepatitis C. "0" days may include sick leave episodes <14 days. General population comparators were
15 16	6	matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
17 18 19	7	
20 21	8	Figure 2
22 23	9	Mean total annual number of days of work loss in 2012 in the Swedish register-identified HCV population
24 25 26	10	(n=32,021); among all patients and those with registered sick leave or disability pension.
27 28	11	HCV=chronic hepatitis C; DCC=decompensated cirrhosis; HBV=hepatitis B virus; HCC=hepatocellular carcinoma;
29 30	12	HCV=hepatitis C virus; OST=opioid substitution therapy. The bars represent a mix of full-time and part-time sick
31 32	13	leave and disability pension days. Some sick leave episodes <14 days were not captured due to the 1-day waiting
33 34	14	period and the 13-day sick pay period, which could be waived only under certain circumstances. General population
35 36	15	comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
37 38 39	16	
40 41 42	17	Figure 3
43 44 45	18	Annual days of sick leave and disability pension 5 years before to 5 years after HCV diagnosis.
46 47	19	Patients with register-identified HCV who were diagnosed between the age of 24 and 59 years (n=19,362) and
48 49	20	matched general population comparators (n= 92,697) in a longitudinal analysis of annual days of sick leave and
50 51	21	disability pension from 5 years before to 5 years after diagnosis during 1999–2007.
52 53	22	HCV=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and
54 55 56 57	23	the 13-day sick pay period, which could be waived only under certain circumstances. General population 22
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date). The figures
 show the full distribution of days in categories and annual mean number of total days.

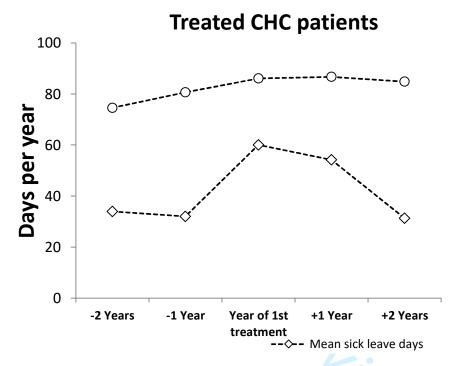

to beet terien only


BMJ Open


CHC=chronic hepatitis C.

"0" days may include sick leave episodes <14 days. General population comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.



 BMJ Open
 BMJ Open

 Provide the partition of th -hepatin. a d part-time sick leax. a period, which could be waived o. substitution therapy. The bars represent a mix of full-time and part-time sick leave and disability pension. Some sick leave episode S 14 days were not captured 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright. due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S2 Mean annual days of sick leave and disability pension in patients with register-identified CHC in a longitudinal analysis from 2 years before to 2 years after first treatment initiation.

CHC=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

Supplementary Tables

Table S1 ICD codes used for hepatitis C and liver-related complications

Diseases	ICD9 (1987-1996)	ICD10 (1997-2013)
Hepatitis		
Unspecific/virus hepatitis	070E, 070F, 070G, 070X	B19
Acute hepatitis C	-	B17.1
Chronic hepatitis C	-	B18.2
Chronic active HCV with cirrhosis		B18.2E
Chronic HCV with fibrosis		B18.2F
Chronic HCV with cirrhosis		B18.2G
Liver-related complications / liver disease		
Liver complications*	570, 571A-571G, 571X, 571W, 572C- 572E, 572W, 573W	К70, К72, К73, К74, К76
Complication of liver disease	452, 456A-456C	181, 185, 198.2, 198.3
Symptoms	782E, 789B-789C, 789F	R16, R17, R18,
Hepatocellular carcinoma (HCC)**	155A, 155C, 235D, 239A	C22.0, C22.9, D37.6
Liver transplantation***	V42H	Z94.4

* Plus sub-codes to B18.2E-G (see above); ** Plus ICD7 codes 155.0 in the cancer register; *** Plus surgery codes (see Table S4)

Liver-related complications included liver complications defined fibrosis, cirrhosis, liver failure, complications of the liver defined as portal vein thrombosis, esofageal varices and symptoms including ascites, jaundice.

Table S2 Surgical procedure codes used in the analysis

Surgical procedure	National classification of procedures (till 1996)	NOMESCO classification of surgical procedures (since 1997)
Liver transplantation	5200	JIC

Prescribed drugs			ATC codes (2005-2013)
Peg-Interferon and	l ribavirin	J05AB04, L0)3AB10, L03AB11, L03AB60, L03AB6
Protease inhibitors	5		J05AE11, J05AE12
Table S4 ICD codes	s used for co-in	fections and psychiatric disorde	ers ICD10 (1997-2013)
Co-infections		(,	
	HIV	279K, 279L	B20-B24
ŀ	lepatitis B	070C, 070D	B18.0, B18.1
Other comorbidition	es		
Psychiatric	c disorders	F00-F99	290-319

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	1
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	3
		what was done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	7
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	7
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	6
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
-		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	8
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		taking account of sampling strategy	

Continued on next page	(<i>e</i>) Describe any sensitivity analyses	Done in ref 2

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sick leave and disability pension in patients with chronic hepatitis C compared to a matched general population: A nationwide register study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035996.R2
Article Type:	Original research
Date Submitted by the Author:	23-Jul-2020
Complete List of Authors:	Büsch, Katharina; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine Hansson, Fredrik; Devicia AB Holton, Michelle; Lorimer Enterprises Inc Lagging, Martin ; Goteborgs Universitet, Westin, Johan; Goteborgs Universitet Kövamees, Jan; AbbVie Inc, Medical Affairs Sällberg, Matti; Karolinska Institutet, Department of Laboratory Medicine Söderholm, Jonas; AbbVie Inc, Medical Affairs; Karolinska Institutet, Department of Laboratory Medicine
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Gastroenterology and hepatology, Infectious diseases, Public health
Keywords:	HEALTH ECONOMICS, INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Gastroenterology < INTERNAL MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

	1
1	Sick leave and disability pension in patients with chronic hepatitis C compared to a matched general
2	population: A nationwide register study
3	
4	Katharina Büsch ^{1,2} , Fredrik Hansson ³ , Michelle Holton ⁴ , Martin Lagging ⁵ , Johan Westin ⁵ , Jan Kövamees ¹ , Matti
5	Sällberg ² , and Jonas Söderholm ^{1,2,*}
6	
0	
7	¹ AbbVie AB, Stockholm, Sweden
8	² Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet at Karolinska
9	University Hospital Huddinge, Stockholm, Sweden
10	³ Devicia AB, Stockholm, Sweden
11	⁴ Lorimer Enterprises Inc., Red Deer, Canada
12	⁵ Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of
13	Gothenburg, Gothenburg, Sweden
14	
15	Emails: Katharina Büsch, katharina_buesch@yahoo.de; Fredrik Hansson, fredrik.hansson@ctc-ab.se; Michelle
16	Holton, michelle.holton@shaw.ca; Martin Lagging, martin.lagging@medfak.gu.se; Johan Westin,
17	johan.westin@infect.gu.se; Jan Kövamees, jan.kovamees@abbvie.com; Matti Sällberg, Matti.Sallberg@ki.se; Jonas
18	Söderholm, jonas.soderholm@abbvie.com
19	
20	
20	
21	* <u>Correspondence</u>
22	Jonas Söderholm
23	Hemvärnsgatan 9
24	Box 1523, 171 29 Solna, Sweden
25	Email: jonas.soderholm@abbvie.com; jonas.soderholm@ki.se; Jonas.soderholm@gmail.com
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	1	Running title (40 characters without spaces): Sick leave/disability pension in HCV patients
4	L T	Kunning the (40 characters without spaces): Sick leave/disability pension in HC v patients
5 6	2	Keywords: Hepatitis C, chronic; Disability Leave; Sick Leave; Sweden
7 8	3	
9 10	4	Word Counts, Tables & Figures
11 12	5	Full article:3,269 words
13 14	6	Abstract: 284 words
15 16	7	Tables: 2
17 18 19	8	Tables: 2 Figures: 3 Supplemental Tables: 3 Supplemental Figures: 1
20 21 22	9	Supplemental Tables: 3
23	10	Supplemental Figures: 1
24 25		
26		
27 28		
29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
42 43		
44		
45 46		
47		
48		
49 50		
51		
52 53		
55 54		
55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00	1	

1 Abstract

OBJECTIVE: The objective of this study was to evaluate sick leave and disability pension in patients with chronic
hepatitis C virus (HCV) infection as compared with a matched general population cohort.

4 DESIGN: Retrospective register study

5 SETTING: Nationwide in Sweden

PARTICIPANTS: This register-based study used the Swedish National Patient Register to identify working-age
patients with HCV in 2012 (n=32,021) who were diagnosed between 1999 and 2007 (n=19,362). Sick leave and
disability pension data were retrieved from Statistics Sweden (1994–2012), with up to 5 matched individuals from the
general population.

PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was workdays lost due to sick
 leave episodes (>14 days) and disability pension overall. The secondary outcome was workdays lost per subgroup of
 patients with chronic HCV.

RESULTS: In 2012, 14% of the HCV patients had ≥1 registered sick leave episode compared with 10% in the matched comparator cohort. For disability pension benefits, results were 30% vs. 8%, respectively. Overall, in 2012, 57% of patients with HCV did not have any registered workdays lost, whereas 30% were absent ≥360 days compared with 83% and 9% in the matched cohort, respectively. The mean total number of annual workdays lost in 2012 was 126 days in the HCV patient cohort compared with 40 days in the matched general population comparator cohort. Annual days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis.

CONCLUSIONS: These results show that Swedish HCV patients used more sick days and have a higher frequency of
 disability pension compared with a comparator cohort from the general Swedish population. Whether earlier diagnosis
 of HCV and treatment might impact work absence in Sweden warrants further investigation.

ARTICLE SUMMARY: Strengths and limitations of the study

• Previous studies focused on describing sick leave in a small segment of patients with chronic hepatitis C, whereas this is the first study to investigating sick leave and disability pension on a nationwide level.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	1	• The registers contain routinely collected data, i.e. limiting the risk for sampling bias.
5	2	• The diagnosis analysed was retrieved from Swedish patient register and was not validated, however the
6 7	3	Swedish patient register has previously shown high reliability.
8 9	4	• The registers do not contain information on treatment outcome, so analysis on the impact of viral
10 11	5	eradication and workdays lost was not feasible.
12 13	6	• The actual number of workdays lost are underestimated since only sick leave episodes ≥ 14 days are
14 15	7	• The actual number of workdays lost are underestimated since only sick leave episodes ≥14 days are registered.
16		
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Background

Hepatitis C is an infectious viral disease affecting the liver, with Western European prevalence rates estimated between 0.35 and 1.42%.[1] In Sweden, the prevalence of chronic hepatitis C infection was estimated to be 0.36% in 2013.[2]

Patients with hepatitis C virus (HCV) infection have been shown to have increased work disabilities.[3] Furthermore, models have shown a relationship between HCV and loss of productivity, increased absenteeism, and higher healthcare benefit costs, which results in substantial economic burden to society.[4-6] A retrospective database analysis showed employees in the United States with HCV infection to have a higher number of lost workdays than employees without HCV infection. In addition, they also utilised more sick leave, with an increased use of short-term and long-term disability.[5] The annual cost due to productivity loss in untreated patients with genotype 1 HCV infection in the United States has been estimated to 7.1 billion USD.[6] Before the introduction of the new interferon-free HCV treatment options the HCV-associated productivity losses in the United Kingdom were estimated to rise from 184-367 million GBP in 2010 to 210–427 million GBP in 2035.[7]

The objective of the present study was to evaluate sick leave and disability pension in patients with chronic HCV compared with matched general population comparators using the Swedish National Patient Register. A secondary objective was to examine sick leave and disability pension within certain subgroups (e.g., patients with decompensated cirrhosis, cirrhosis, hepatocellular carcinoma, or liver transplantation) or prevalent patients, as well as sick leave in relation to diagnosis.

18 Methods

19 Setting

The population in Sweden was 9.6 million people in 2012 (Statistics Sweden; <u>www.scb.se</u>). Sweden has a universal taxfunded health care system where the Swedish Social Insurance Agency captures information on full or partial sick leave and disability compensations. In 2012 the common retirement age in Sweden was 65 years with people having the right to retire at 61 years of age or choose to continue working until 67 years of age.

Information on Swedish citizens are collected in the nationwide registers using the Swedish unique personal identity
number.[8] In the present study the following registries were used; the National Patient Register (NPR), the Cancer
Register, the Prescribed Drug Register (PDR), the Cause of Death Register (CDR), the Total Population Register (TPR),
and the Longitudinal Integrated Database for Health Insurance and Labour Market studies (LISA). The NPR contains

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

all inpatient (1987–2013) and non-primary outpatient care (2001–2013) visits, but it does not capture any primary care visits.[9] The NPR includes information on both main and contributory diagnoses based on the *International Classification of Diseases* (ICD-9, 1987–1996; ICD-10, 1997-2013). The Cancer Registry covers medical data such as the site of tumour, histologic type, basis, and date of diagnosis (1958–2013). It is mandatory to report all newly detected cancers to the registry. However, some cases are only reported to the CDR (i.e., cases denoted as death certificate only and death certificate notification) and are not necessarily included in the Cancer Registry. The PDR includes all prescribed drug use in ambulatory care (2005–2013), although in-hospital drug use is captured to a much lesser extent.[10] It contains information on dates, drugs, and costs for all pharmacy dispensed prescriptions in Sweden using Anatomical Therapeutic Chemical codes. The CDR contains information on the cause of death with information on the year and month of death. The TPR provides information on place of residence, age, sex, country of origin, and emigration status. LISA includes data on sick leave and disability pension for all residents in Sweden \geq 16 years of age with information on work-related and socioeconomic variables (e.g. education level, marital status, and days per year of sick leave and disability pension [annual data retrieved for 1994–2012]).

HCV as a diagnosis was introduced with the ICD-10 in 1997 and at the time of data collection (April 2014) was the data
on sick leave and disability pension available until December 31, 2012; thus, the current analysis is based on data from
16 1997 to 2012.

17 Informed consent is not required for large-scale registry-based studies in Sweden.[11] Data from the Swedish

18 registries are available for research after ethical and registry approval. The study was approved (Dnr 2014/746-31) by

19 the Regional Ethics Committee, Karolinska Institutet, Stockholm, Sweden.

Patient and Public Involvement

2 No patient involved.

4 Identification of patients with HCV and matched general population comparators

Patients were identified in the NPR using health care visits with a chronic HCV diagnosis (ICD10: B18.2),[12] as
described previously for this cohort.[2] Only patients of working age (i.e., between 19 and 65 years) were included.
Subgroup analyses by age (19–29, 30–39, 40–49, 50–59, 60–65), gender (male/female), education (<9 years, 10–12)

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

years, ≥12 years), disease status (e.g., decompensation cirrhosis [DCC], liver cancer [hepatocellular carcinoma {HCC}],
 liver transplantation; Table S1 and S2), treatment status (HCV treatment or opioid substitution therapy [OST]; Table
 S3), and co-infection (HIV or hepatitis B virus; Table S4), were performed. Up to 5 general population controls were
 matched by age, sex, and county of residence to each patient with HCV at the time of diagnosis.

Definition of outcomes

The outcome was the annual number of days of sick leave and disability pension (maximum of 365 per year).

Sick leave: As of 1998 the first day of sick leave is not compensated ("waiting period") in Sweden, with day 2 to 14 being paid by employers. Thus, only sick leave episodes >14 days were recorded in the LISA database, as those were paid by the Social Insurance Agency. Any episode occurring within 5 days of a previous episode does not require a new "waiting period" or "sick pay period", thus multiple short-term episodes could waive these periods. I.e. individuals with 0 days registered may in fact have had sick leave episodes ≤14 days, hence that group was denoted "0" registered days to acknowledge this uncertainty.

Disability pension: Disability pension refers to either disability pension (1990–2002) or sickness/activity compensation (2003–2012). In Sweden, disability pension can be either part-time (25%, 50%, 67%, or 75%) or full-time (100%) based on the type and severity of the medical condition. As of 2003 was the disability pension replaced by two types of compensation depending on age. "Activity compensation" was introduced for younger individuals (19 to 29 years old) whereas older individuals were eligible for "sickness compensation". Both sickness and activity compensation were either time-limited or permanent but required at least $\geq 25\%$ reduction in work capacity that was expected for at least 1 year. Gross disability pension refers to the number of days away from work, whereas net disability pension refers to the net time away, e.g. 50% sick leave for 14 days would equal 14 days gross disability pension and 7 days net disability pension (i.e. 182.5 days a year). [13]

24 Follow-up of patients with HCV and matched general population comparators

Patients with HCV were followed from the date of first visit with an HCV diagnosis during the observation time (index
date) until emigration, death, retirement (age 65 years), or study end (December 31, 2012), whichever occurred first.
The matched comparators were followed from index date until emigration, death, retirement, until HCV diagnosis, or

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

December 31, 2012, whichever occurred first. The prevalent cohort included patients alive and living in Sweden as of December 31, 2012.

For the longitudinal analyses of work loss due to sick leave and disability pension the patients with HCV were followed from 5 years before to 5 years after diagnosis. Patients were included if diagnosed between 1999 and 2007 to allow a \pm 5-year follow-up time. In addition, patients had to be between 24 and 59 years of age at the time of diagnoses in order to be eligible for benefits during the full follow-up. All codes used are available in the supplemental tables S1 – S4.

Statistics

The annual days of sick leave and disability pension were in the descriptive statistics grouped by categories ("0", 1–90, 91–180, 181–359, and \geq 360 days) and presented using arithmetic means.[14] The study calculated the total annual number of days of sick leave and disability pension in 2012 for both cohorts. The difference in workdays lost between the groups was also evaluated using multivariable regression models. The analyses were adjusted for age, sex, and educational level, as well as occurrence of psychiatric diseases and/or liver-related outcomes (defined as history of cirrhosis, mental and behavioural disorders, and/or liver transplantation), if the goodness of fit was R²>0.6.

The longitudinal analysis followed the HCV patients and their comparators from 5 years ahead of index date until 5 years after the index date. The impact of interferon-based treatment was analysed for patients with HCV treated with interferon 2 years before until 2 years after first treatment during 2005 and 2010.

18 SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. All p values are two-sided.

Overall, 32,021 patients aged 19 to 64 years were o	diagnosed with HCV and were liv	ving in Sweden on December
2012 (HCV prevalent cohort; Table 1).		
Table 1 Characteristics of register-identified patien	ts with prevalent HCV aged 19 to	o 64 years on December 31,
2012, in Sweden and their matched general populat	ion comparators	
	Patients with HCV in	Matched GenPop
	2012; 19–64 years	comparators in 2012
	(n=32,021*)	(n=149,688)
Men, n (%)	20,654 (65%)	95,546 (64%)
Mean (SD) age, y		
At identification/diagnosis	39 (11)	-
In 2012	47 (11)	47 (11)
Highest attained education, n (%)		
<9 years	11,509 (36%)	21,600 (14%)
10–12 years	16,021 (50%)	72,946 (49%)
≥ 12 years	4159 (13%)	53,866 (36%)
Missing	332 (1%)	1276 (1%)

		10		
Unmarried	19,725 (62%)	75,011 (50%)		
Married	6074 (19%)	57,376 (38%)		
Divorced	6111 (19%)	16,539 (11%)		
Widow	0	5 (<0.1%)		
Missing	111 (0.3%)	757 (1%)		
Co-infection, n (%)				
HIV	672 (2%)	210 (0.1%)		
HBV	3222 (10%)	377 (0.3%)		
Registered HCV -related outcome, n (%) [†]				
Liver cirrhosis	2346 (7%)	213 (0.1%)		
Decompensated cirrhosis	1041 (3%)	31 (0%)		
Hepatocellular carcinoma	408 (1%)	125 (0.1%)		
Liver transplantation	289 (1%)	48 (<0.1%)		
HCV treatment since 2005	6234 (19%)	-		
OST treatment since 2005	3735 (12%)	1102 (1%)		
HBV=hepatitis B virus; HCV=hepatitis C virus; L	ISA=Longitudinal Integrated D	atabase for Health Insurance and		
Labour Market Studies; NPR=National Patient Regi	ister; OST=opioid substitution t	herapy; SD=standard deviation.		
*169 patients with HCV were excluded, as there wa	s no data available in the LISA	dataset.		
[†] Interpretation of data should be done with caution, as certain outcomes such as liver cirrhosis were likely				
underreported in the NPR; all codes used to define of	outcomes are provided in Table	S1, S2, S3, and S4.		
Prevalence and days of sick leave and disability pension in 2012				

Fourteen percent of patients with HCV had ≥1 registered sick leave episode(s) in 2012 compared with 10% in the matched general population comparator cohort. Eight percent of individuals in the matched general population received disability pension benefits, compared with 30% of patients with HCV. In total, 43% of patients with HCV and 17% of individuals in the matched general population comparator cohort had at least one registered sick leave episode or received disability pension benefits in 2012 (Table 2).

Table 2 Annual number of days of sick leave and disability pension in 2012 in patients with register-identified HCV

7	and matched general population comparators
---	--

U,	Patients with HCV in	Matched GenPop	Difference (days)
	2012; 19–64 years	comparators in 2012	
	(n=32,021*)	(n=149,688)	
Mean (SD) total annual number	No.		
of days during follow-up	106 (155)	34 (97)	72
Sick leave	27 (78)	13 (55)	14
Disability pension, gross	80 (148)	21 (84)	59
Disability pension, net	76 (143)	18 (75)	58
Mean (SD) total days in 2012	126 (166)	40 (107)	86
Sick leave	22 (72)	11 (88)	11
Disability pension, gross	106 (164)	29 (98)	77
Disability pension, net	101 (159)	25 (88)	76

HCV = chronic hepatitis C; SD=standard deviation.

9 NOTE. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick

10 pay period (waived only under certain circumstances).

11 *Matched general population comparators were matched on age, sex, and place of residency at the time of diagnosis.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

The proportion of receiving a disability pension was similar among men and women, but was higher among older individuals, those with co-infection (HCV and HIV or hepatitis B virus), and those receiving OST (Figure S1). It was lower among those with a higher educational level and those who previously had been treated for HCV infection. The proportion of sick leave was higher among women and those with higher education, with minor variations by age. Proportion of sick leave or disability pension use was always higher among patients with an HCV–related complication such as cirrhosis, DCC, HCC, or liver transplantation.

7 Overall, fewer patients with HCV did not have any registered workdays lost in 2012 compared to the matched general
8 population comparator cohort (57% vs. 83%). A greater proportion (30%) of patients with HCV were absent ≥360
9 days than in the matched general population comparator cohort (9%, p<0.001; Figure 1). The median number of
10 workdays lost was "0" in both cohorts, thus the distribution of workdays lost in 2012 was non-normal.

Among prevalent patients, the annual number of workdays lost was generally higher among older patients, patients with lower education, patients with co-infection, and among patients with liver complications such as DCC, HCC, and liver transplantation (Figure 2). The average total annual number of workdays lost in 2012 was 126 in the HCV patient cohort and 40 in the matched general population comparator cohort (Table 2). When only those with a registered episode were analysed, the mean total annual number of workdays lost rose to 296 days among patients with HCV, a trend that was observed among all subgroups (Figure 2).

The multivariable regression model was adjusted for age, sex, and educational level, showed patients with HCV to have on average 75 more workdays lost compared with the general population. The number of workdays lost decreased to 60 days when considering psychiatric diseases. When also adjusting for any history of either cirrhosis, HCC, or liver transplantation the estimate was reduced to 55 days. The independent factors associated with a greater number of workdays lost were older age, lower level of education, female sex, psychiatric diseases, and history of liver-related outcomes were all independently and significantly (p<0.001).

24 Longitudinal work loss in relation to diagnosis

Among all patients with HCV 19,362 patients were diagnosed between 1999 and 2007, thus qualified for the
longitudinal analysis that followed work loss for up to 5 years before and after diagnosis. Five years before diagnosis,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

37% of patients with HCV had workdays lost registered, which increased to 51% in the year of diagnosis and thereafter remained constant. The workdays lost for the matched general population comparators for these 19,362 patients remained between 16% and 21% throughout the longitudinal analysis (Figure 3). More than 30% of patients with HCV were almost fully work disabled already 1 year after diagnosis compared with approximately 10% in the matched general population comparators. Thus, patients with HCV were 3 times as likely to be fully work disabled compared with the matched general population cohort.

The mean annual workdays lost increased from 86 days to 146 days from 5 years before HCV diagnosis to 1 year after
diagnosis. The number of workdays lost were always considerably higher among patients with HCV (5 years before
HCV diagnosis: 86 vs. 28 days = difference of 59 days; at the year of HCV diagnosis: 136 vs. 43 days = difference of
92 days; 5 years after HCV diagnosis: 148 vs. 50 days = difference of 97 days; Figure 3).

Among the 5,177 patients treated with interferon-based treatments between 2005 and 2010, the mean annual number of sick leave days was approximately 30 days before the start of treatment. Sick leave days increased to 60 days during the year of treatment initiation followed be a decrease to pre-treatment levels (approximately 30 days) 2 years after treatment initiation (Figure S2). No large differences were observed in mean annual disability pension days in relation to interferon-based treatment. The trend that showed an increase in mean disability pension days before treatment initiation was no longer evident after treatment.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

1 Discussion

Hepatitis C infection is a slowly developing disease that often begins with vague symptoms such as fatigue, loss of appetite, and headache. These symptoms often begin to manifest well before the patient is diagnosed with HCV. The comorbidities are believed to affect the general well-being of the patients with an accompanying increased need for sick leave and disability pension. However, the use of sick leave/disability has only been investigated in a few studies, with the largest examining data from 1.664 patients with HCV diagnoses who were employed in the United States. In order to get the full picture of the sick leave and disability pension use for patients with HCV in an entire country and to avoid the bias of only analysing employed patients with HCV, the present study set out to investigating the sick leave and disability pension for all diagnosed patients with HCV of working age in Sweden. The diagnosis rate of HCV differs between regions, with an estimated 75% of the cases of HCV in the United States remaining undiagnosed.[15] In contrast, the diagnosis rate in Sweden is fairly high with an estimated 20% of patients remaining undiagnosed.[16] This, in combination with the virtually complete national coverage of the Swedish registers, makes Sweden a country well-suited for the investigation of the burden of HCV on the welfare system.

Most importantly, the study showed that 43% of the patients with HCV received compensation from the Social Insurance Agency in form of sick leave or disability pension in 2012 compared with 17% of the comparators. In total, the patients with HCV lost an average of 87 extra workdays per year compared with matched comparators. One caveat is that the analysis only included individuals alive as of December 31, 2012 which introduces survivorship bias in both groups. The difference in the number of sick leave days, as well as disability pension, could be explained by the inherent differences between patients with and without HCV infection, with riskier lifestyle and psychiatric disorders being more common in patients in the HCV cohort. [17,18] This could explain the greater frequency of disability pension and higher mean sick leave days noted 5 years before HCV diagnosis. Interestingly, the annual number of days lost increased from a mean of 86 days 5 years before diagnosis to 136 days during the year of diagnosis. In contrast, there was only an increase of 15 days in the comparator cohort during the 5 year time frame (Figure 3). Thus, despite that patients with HCV started with a higher number of workdays lost, the analysis showed a rapid increase in both mean sick leave and disability pension in the years leading up to HCV diagnosis. In contrast, no such rapid increase was seen for the match comparators. It suggests that patients did most likely experience increased symptoms as the disease progress. This increase in symptoms lead to a greater utilisation of sick leave, as well as more visits to

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

both primary care physicians and specialists until the HCV diagnosis. In addition, after adjusting for psychiatric disease, the difference in sick leave between the 2 groups remained, thus suggesting that HCV impacts the general health status of patients. It is tempting to hypothesize that earlier diagnosis and treatment of patients with HCV would slow down the increasing need for sick leave and disability pension; however, the present study was not designed to investigate this. Nevertheless, other studies have suggested that earlier treatment benefits both society and the individual patient.[19–21]

8 In line with previous studies, there was an increase in mean sick leave days noted during the first year of treatment, 9 which is likely due to the side effects associated with the old interferon-based treatment.[22,23] The newly introduced 10 interferon-free regimens for patients with HCV infection have a more favourable safety profile compared with 11 interferon-based regimens.[24] This would most likely reduce the number of sick leave days needed during treatment. 12 The difference between interferon-based and interferon-free regimens will need to be analysed further when data from 13 interferon-free treatments become available in the registers.

One strength of the study was the use of nationwide register data that contained the actual number of days the social insurance pays for per person. This is in contrast to other studies relying on self-reported information, which are more prone to bias. While the data is only as valid as the information entered, the nationwide Swedish registers are considered to be >99% complete. Nationwide large-scale registries allow assessment of subgroup variations and the use of up to 5 matched comparators from the general population.

One main limitation of the study is that patients were identified in the NPR using physician entered diagnoses from inpatient and non-primary outpatient care (previously discussed for this cohort[25]) thus any mistake entering a diagnosis led to misclassification in the study. Another limitation is that the first visit during the study period may not necessary be the first HCV diagnosis given that the specific ICD code for HCV (B18.2 ICD-10) has only been available since 1997, thus the time of diagnosis must be interpreted with caution. As mentioned in the methods, the Social Insurance Agency data only includes sick leave episodes >14 days, as the first episodes are covered by the employer. This will result in an underestimation of the actual number of workdays lost; however, this applies to both cohorts. Interestingly, the main difference in work absence for US employees with HCV was driven by the short-term disability

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

(defined as sick leave between 14 days and 6 months[5,26]), thus suggesting the present study would capture the HCV-mediated impact on sick leave. The main route for HCV transmission in Europe is through the use of non-sterile drug paraphernalia [27] and since drug use is associated with absenteeism [28] it reasonable to think that the higher number of work days lost among patients with HCV is at least partly due to behavioural differences between the groups. However, the study was not designed to address this confounder.

Conclusions

To our knowledge, this is the largest study on sick leave and disability pension in patients with HCV to date and the first longitudinal study that investigated this in relation to time of diagnosis. These results indicate that patients with HCV use more sick days and have a higher frequency of disability pension compared with a comparator cohort from the general population. However, whether earlier hepatitis C diagnosis or virologic cure reduces work absence is not addressed by this study and this needs to be further investigated. Finally, the results may be less generalizable to countries where private health insurance is more common.

RZ ONI

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

ETHICS APPROVAL AND CONSENT TO PARTICIPATE: The study was approved by the Regional Ethics
 Committee, Karolinska Institutet, Stockholm, Sweden. Informed consent is not needed for large registry-based
 studies in Sweden.[11]

4 CONSENT FOR PUBLICATION: Not applicable, only aggregated data included in the study. Informed consent is
5 not needed for large registry-based studies in Sweden.[11]

AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analysed during the current study
where retrieved from the National Patient Register (NPR), the Cancer Register, the Prescribed Drug Register (PDR),
the Cause of Death Register (CDR), the Total Population Register (TPR), and the Longitudinal Integrated Database
for Health Insurance and Labor Market studies (LISA) are available for research after ethical approval. The ethical
approval for the present study does not allow for sharing data to persons not included in the ethical approval.

11 COMPETING INTERESTS: M. Lagging has consultancies with AbbVie, Gilead, and MSD/Merck and is a member 12 of the speakers' bureau for AbbVie, Gilead, and MSD/Merck. M. Sällberg is founder and owner of Svenska 13 Vaccinfabriken AB. F. Hansson reports no conflicts of interest. M. Holton is President of Lorimer Enterprises Inc., a 14 company that has consulted for AbbVie. J. Westin has had paid teaching assignments for AbbVie, Gilead, and 15 MSD/Merck. J. Söderholm and J. Kövamees are employees of AbbVie and may hold AbbVie stocks or stock options. 16 K. Büsch was an employee of AbbVie at the time of the study and may hold AbbVie stocks or stock options.

FUNDING: The design, study conduct, and financial support for the study were provided by AbbVie. AbbVie
participated in the study design, data/input analysis, interpretation of results, review, and approval of the publication.
The authors determined the final content. No payments were made to the authors for writing this publication.

AUTHOR CONTRIBUTIONS: The concept of the study was designed by KB and JS. FH and KB managed the database. KB, FH, MH, and JS interpreted the data with support from ML, JK, JW, and MS. KB and JS were the major contributors in writing the manuscript. All authors critically revised the manuscript and approved the final version that was submitted.

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	Re	ferences
2	1	daCosta DiBonaventura M, Yuan Y, Wagner J-S, et al. The burden of viral hepatitis C in Europe: a
3		propensity analysis of patient outcomes. Eur J Gastroenterol Hepatol 2012;24:869.
4		doi:10.1097/MEG.0b013e3283551dee
5	2	Büsch K, Waldenström J, Lagging M, et al. Prevalence and comorbidities of chronic hepatitis C: a
6		nationwide population-based register study in Sweden. Scand J Gastroenterol 2017;52:61–8.
7		doi:10.1080/00365521.2016.1228119
8	3	Manne V, Sassi K, Allen R, et al. Hepatitis C and Work Impairment: A Review of Current Literature
9		Clin Gastroenterol 2014; 48 :595. doi:10.1097/MCG.0000000000000080
10	4	Khoury ACE, Vietri J, Prajapati G. The Burden of Untreated Hepatitis C Virus Infection: A US Patie
11		Perspective. <i>Dig Dis Sci</i> 2012; 57 :2995–3003. doi:10.1007/s10620-012-2233-1
12	5	Su J, Brook RA, Kleinman NL, et al. The impact of hepatitis C virus infection on work absence,
13		productivity, and healthcare benefit costs. <i>Hepatology</i> 2010; 52 :436–42. doi:10.1002/hep.23726
14	6	Younossi ZM, Jiang Y, Smith NJ, et al. Ledipasvir/sofosbuvir regimens for chronic hepatitis C
15		infection: Insights from a work productivity economic model from the United States. Hepatology
16		2015; 61 :1471–8. doi:10.1002/hep.27757
17	7	Patruni B, Nolte E. Hepatitis C A Projection of the Healthcare and Economic Burden in the UK. Ro
18		Health Q 2013;3.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945231/ (accessed 9 Apr 201
19	8	Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, et al. The Swedish personal identity numbe
20		possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol 2009;24:659–67.
21		doi:10.1007/s10654-009-9350-y
		18
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 34

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

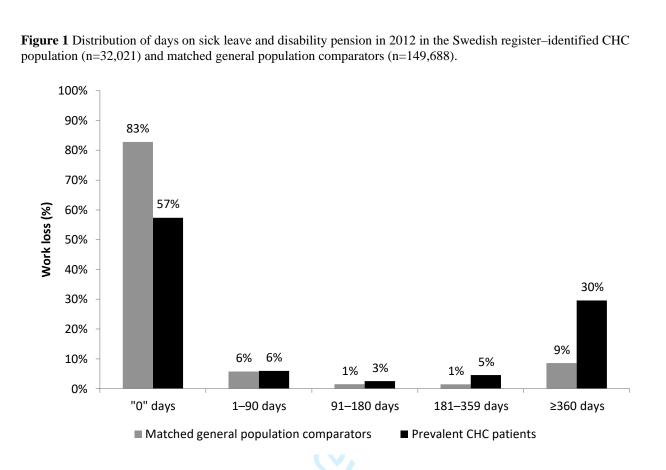
BMJ Open

2			
3 4	1	9	Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish national
5 6 7	2		inpatient register. BMC Public Health 2011; 11 :450. doi:10.1186/1471-2458-11-450
8 9 10	3	10	WHOCC. ATC/DDD Index https://www.whocc.no/atc_ddd_index/ Accessed: 2019-Apr-09.
11 12 13	4		2019.https://www.whocc.no/atc_ddd_index/ (accessed 9 Apr 2019).
14 15	5	11	Ludvigsson JF, Håberg SE, Knudsen GP, <i>et al.</i> Ethical aspects of registry-based research in the Nordic
16 17 18	6		countries. <i>Clin Epidemiol</i> 2015; 7 :491–508. doi:10.2147/CLEP.S90589
19 20	7	12	Socialstyrelsen. International Statistical Classification of Diseases and Related Health Problems,
21 22 23	8		Tenth Revision (ICD-10).
24 25	9		2016.https://apps.who.int/iris/bitstream/handle/10665/246208/9789175553801-V1-part1-
26 27 28	10		swe.pdf?sequence=11&isAllowed=y
29 30	11	13	Ludvigsson JF, Svedberg P, Olén O, et al. The longitudinal integrated database for health insurance
31 32 33	12		and labour market studies (LISA) and its use in medical research. <i>Eur J Epidemiol</i> 2019; 34 :423–37.
34 35 36	13		doi:10.1007/s10654-019-00511-8
37 38	14	14	Olofsson T, Petersson IF, Eriksson JK, et al. Predictors of work disability during the first 3 years after
39 40	15		diagnosis in a national rheumatoid arthritis inception cohort. Ann Rheum Dis 2014; 73 :845–53.
41 42 43 44	16		doi:10.1136/annrheumdis-2012-202911
45 46	17	15	Jacobson IM, Cacoub P, Dal Maso L, et al. Manifestations of Chronic Hepatitis C Virus Infection
47 48 49 50 51 52 53 54 55	18		Beyond the Liver. <i>Clin Gastroenterol Hepatol</i> 2010; 8 :1017–29. doi:10.1016/j.cgh.2010.08.026
56 57 58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

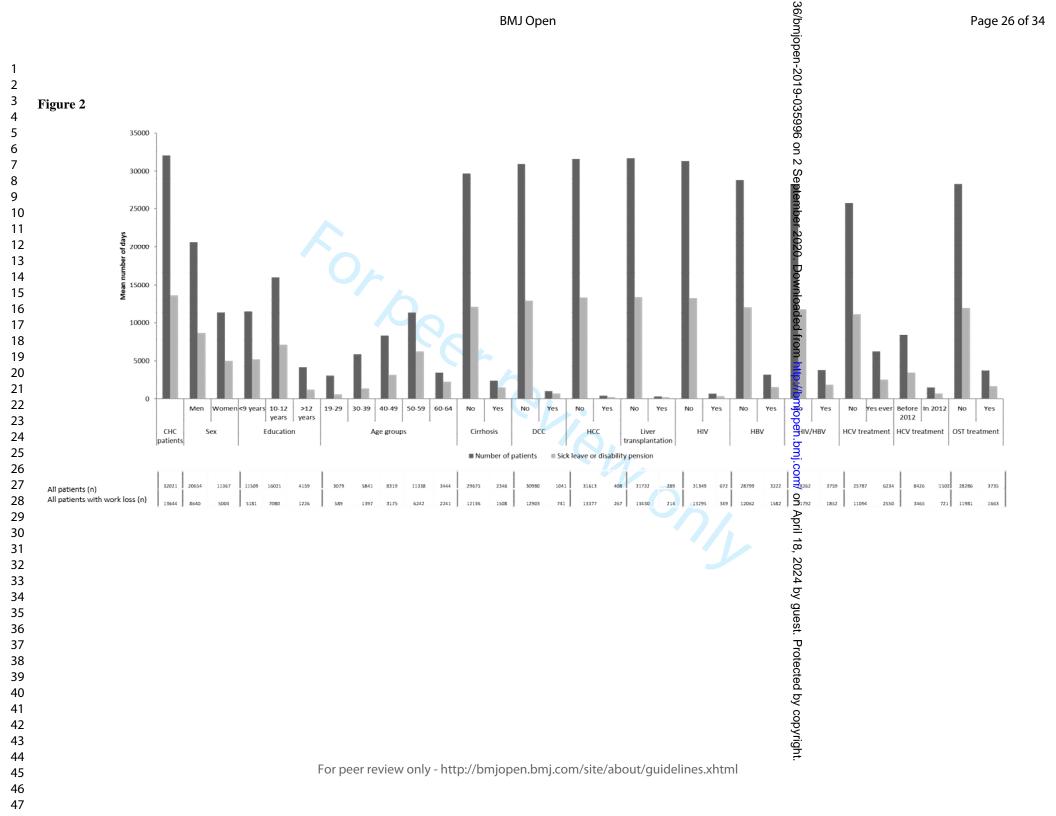
1			
2			
3 4	1	16	Duberg A-S, Blach S, Falconer K, et al. The future disease burden of hepatitis C virus infection in
5 6	2		Sweden and the impact of different treatment strategies. Scand J Gastroenterol 2015;50:233–44.
7 8 9	3		doi:10.3109/00365521.2014.990505
10 11 12	4	17	Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people
13 14	5		who inject drugs: results of systematic reviews. <i>The Lancet</i> 2011; 378 :571–83. doi:10.1016/S0140-
15 16 17	6		6736(11)61097-0
18 19	7	18	Trager E, Khalili M, Masson CL, et al. Hepatitis C Screening Rate Among Underserved Adults With
20 21 22	8		Serious Mental Illness Receiving Care in California Community Mental Health Centers. Am J Public
22 23 24 25	9		<i>Health</i> 2016; 106 :740–2. doi:10.2105/AJPH.2016.303059
26 27	10	19	Gordon SC, Pockros PJ, Terrault NA, et al. Impact of disease severity on healthcare costs in patients
28 29 30	11		with chronic hepatitis C (CHC) virus infection. <i>Hepatology</i> 2012; 56 :1651–60. doi:10.1002/hep.25842
31 32	12	20	Koh C, Heller T, Haynes-Williams V, et al. Long-term outcome of chronic hepatitis C after sustained
33 34 35	13		virological response to interferon-based therapy. Aliment Pharmacol Ther 2013;37:887–94.
36 37 38	14		doi:10.1111/apt.12273
39 40	15	21	Manos MM, Darbinian J, Rubin J, et al. The Effect of Hepatitis C Treatment Response on Medical
41 42	16		Costs: A Longitudinal Analysis in an Integrated Care Setting. J Manag Care Pharm 2013;19:438–47.
43 44 45	17		doi:10.18553/jmcp.2013.19.6.438
46 47 48	18	22	McHutchison JG, Ware JE, Bayliss MS, et al. The effects of interferon alpha-2b in combination with
49 50	19		ribavirin on health related quality of life and work productivity. <i>J Hepatol</i> 2001; 34 :140–7.
51 52 53 54	20		doi:10.1016/S0168-8278(00)00026-X
55 56 57 58			20
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
55			

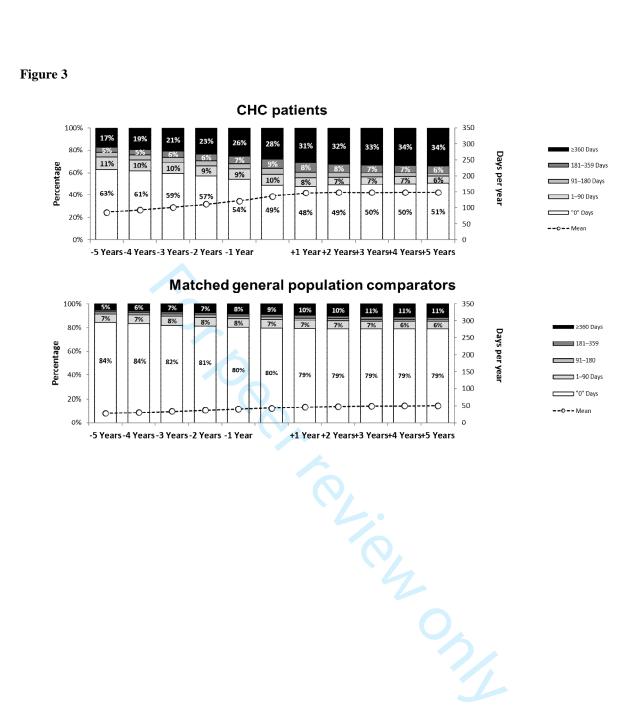
ity and medical a 2b plus
a 2b plus
l 1 :157–65.
patitis C virus
016; 36 :47–57.
veden
m 1997 till 2013.
by disease
nstrained areas.
lem. <i>Aust N Z J</i>

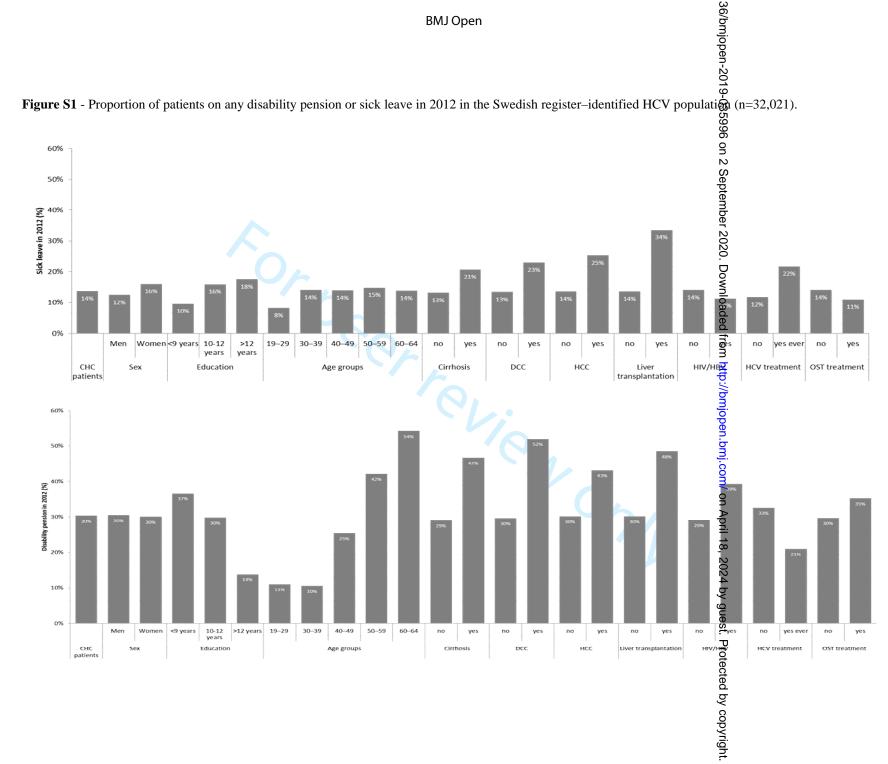

1 2		
3 4	1	Figure legends
5 6 7	2	Figure 1
8 9 10	3	Distribution of days on sick leave and disability pension in 2012 in the Swedish register-identified HCV population
10 11 12	4	(n=32,021) and matched general population comparators (n=149,688).
13 14	5	HCV=chronic hepatitis C. "0" days may include sick leave episodes <14 days. General population comparators were
15 16	6	matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
17 18 19	7	
20 21	8	Figure 2
22 23	9	Mean total annual number of days of work loss in 2012 in the Swedish register-identified HCV population
24 25 26	10	(n=32,021); among all patients and those with registered sick leave or disability pension.
27 28	11	HCV=chronic hepatitis C; DCC=decompensated cirrhosis; HBV=hepatitis B virus; HCC=hepatocellular carcinoma;
29 30	12	HCV=hepatitis C virus; OST=opioid substitution therapy. The bars represent a mix of full-time and part-time sick
31 32	13	leave and disability pension days. Some sick leave episodes <14 days were not captured due to the 1-day waiting
33 34	14	period and the 13-day sick pay period, which could be waived only under certain circumstances. General population
35 36	15	comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).
37 38 39	16	
40 41 42	17	Figure 3
43 44 45	18	Annual days of sick leave and disability pension 5 years before to 5 years after HCV diagnosis.
46 47	19	Patients with register-identified HCV who were diagnosed between the age of 24 and 59 years (n=19,362) and
48 49	20	matched general population comparators (n= 92,697) in a longitudinal analysis of annual days of sick leave and
50 51	21	disability pension from 5 years before to 5 years after diagnosis during 1999–2007.
52 53	22	HCV=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and
54 55 56 57	23	the 13-day sick pay period, which could be waived only under certain circumstances. General population 22
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date). The figures
 show the full distribution of days in categories and annual mean number of total days.

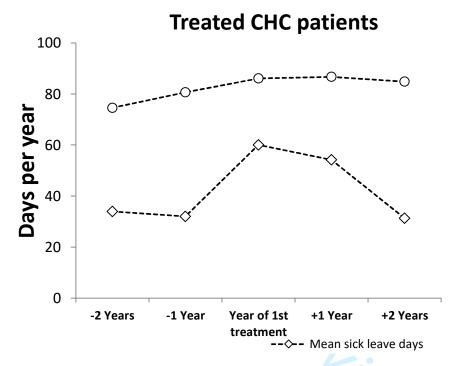

to beet terien only


BMJ Open


CHC=chronic hepatitis C.

"0" days may include sick leave episodes <14 days. General population comparators were matched 5:1 by age, sex, and place of residency at the time of diagnosis (index date).

BMJ Open: first published as 10.1136/bmjopen-2019-035996 on 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.



 BMJ Open
 BMJ Open

 Provide the partition of th -hepatin. a d part-time sick leax. a period, which could be waived o. substitution therapy. The bars represent a mix of full-time and part-time sick leave and disability pension. Some sick leave episode S 14 days were not captured 2 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright. due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S2 Mean annual days of sick leave and disability pension in patients with register-identified CHC in a longitudinal analysis from 2 years before to 2 years after first treatment initiation.

CHC=chronic hepatitis C. Some sick leave episodes <14 days were not captured due to the 1-day waiting period and the 13-day sick pay period, which could be waived only under certain circumstances.

Supplementary Tables

Table S1 ICD codes used for hepatitis C and liver-related complications

Diseases	ICD9 (1987-1996)	ICD10 (1997-2013)
Hepatitis		
Unspecific/virus hepatitis	070E, 070F, 070G, 070X	B19
Acute hepatitis C	-	B17.1
Chronic hepatitis C	-	B18.2
Chronic active HCV with cirrhosis		B18.2E
Chronic HCV with fibrosis		B18.2F
Chronic HCV with cirrhosis		B18.2G
Liver-related complications / liver disease		
Liver complications*	570, 571A-571G, 571X, 571W, 572C- 572E, 572W, 573W	К70, К72, К73, К74, К76
Complication of liver disease	452, 456A-456C	181, 185, 198.2, 198.3
Symptoms	782E, 789B-789C, 789F	R16, R17, R18,
Hepatocellular carcinoma (HCC)**	155A, 155C, 235D, 239A	C22.0, C22.9, D37.6
Liver transplantation***	V42H	Z94.4

* Plus sub-codes to B18.2E-G (see above); ** Plus ICD7 codes 155.0 in the cancer register; *** Plus surgery codes (see Table S4)

Liver-related complications included liver complications defined fibrosis, cirrhosis, liver failure, complications of the liver defined as portal vein thrombosis, esofageal varices and symptoms including ascites, jaundice.

Table S2 Surgical procedure codes used in the analysis

Surgical procedure	National classification of procedures (till 1996)	NOMESCO classification of surgical procedures (since 1997)
Liver transplantation	5200	JIC

Peg-Interferon and ribavirin J05AB04, L03AB10, L03AB11, L03AB60, L03 Protease inhibitors J05AE11, J05AE12 Table 54 ICD codes used for co-infections and psychiatric disorders Diseases CD9 (1987-1996) CD10 (1997-2013) Co-infections HIV 279K, 279L B20-B24 Hepatitis B 070C, 070D B18.0, B18.1 Other comorbidities Psychiatric disorders F00-F99 290-319	Prescribed dru	gs		ATC codes (2005-2013)
Table S4 ICD codes used for co-infections and psychiatric disorders Diseases ICD9 (1987-1996) ICD10 (1997-2013) Co-infections HIV 279K, 279L B20-B24 Hepatitis B 070C, 070D B18.0, B18.1 Other comorbidities Psychiatric disorders F00-F99 290-319	Peg-Interferon	and ribavirin	J05AB04, L0)3AB10, L03AB11, L03AB60, L03AB6
DiseasesICD9 (1987-1996)ICD10 (1997-2013)Co-infectionsHIV279K, 279LB20-B24Hepatitis B070C, 070DB18.0, B18.1Other comorbiditiesPsychiatric disordersF00-F99290-319	Protease inhibi	tors		J05AE11, J05AE12
Co-infections HIV 279K, 279L B20-B24 Hepatitis B 070C, 070D B18.0, B18.1 Other comorbidities 290-319		odes used for co-in		
Hepatitis B070C, 070DB18.0, B18.1Other comorbidities290-319			(,	(,
Other comorbidities Psychiatric disorders F00-F99 290-319		HIV	279K, 279L	B20-B24
Psychiatric disorders F00-F99 290-319		Hepatitis B	070C, 070D	B18.0, B18.1
	Other comorbi	dities		
	Psychic	atric disorders	F00-F99	290-319
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	1
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	3
		what was done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	7
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	7
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	6
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
-		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	8
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		taking account of sampling strategy	

Continued on next page	(<i>e</i>) Describe any sensitivity analyses	Done in ref 2

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.